ETSI GS ENI 005 v3.1.1 (2023-06)

= _' >

GROUP SPECIFICATION

Experiential Networked Intelligence (ENI);
System Architecture

Disclaimer

The present document has been produced and approved by the Experiential Networked Intelligence (ENI) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.

2 ETSI GS ENI 005 V3.1.1 (2023-06)

Reference
RGS/ENI-005v311_Sys_Arch

Keywords

API, architecture, artificial intelligence, closed
control loop, cognition, functional architecture,
functional block, intent management, management,
model-driven engineering, network, policy
management

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/Commitee SupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2023.
All rights reserved.

ETSI

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

3 ETSI GS ENI 005 V3.1.1 (2023-06)

Contents

Intellectual Property RIGNES.... ..ottt s e e nneene e 11
01 Yo (o OSSR 11
Modal VErDS EMINOIOQY.......ccveeeeiticiecte ettt e e s te e e besre e besbeeasesreeneetesteeneensesreensesneens 11
EXECULIVE SUMIMAIYviiicieite ettt ettt s te et e s te st e et este e e e s tesae e besteentesseese e tesaeesesaeensesbeeneensenseeaeessesneensesrennnens 11
100 0 Tox A o] o SRS 12
1 o010 R 13
2 REFEIBINCES ...ttt b e bbb bt e e et R e e bt e b e bt st e s b et et et e e s e nr e b ee 13
21 NOFMBLIVE FEFEIEINCEScoueieeitiste ittt sttt h bttt e b e sae b e e bt e a e e s e e s e b se e e bt s Rt eh e e ne e e e b sheebeemeene e e enrenes 13
2.2 INFOrMELIVE FEFEIEINCES. ...ttt et b bttt e et et bt h e e h e et e e et sbeebeeaeene e e enbe e 14
3 Definition of terms, symbols and abbreviaions............coveeeiiieeneee e 17
31 LIS LSO PP PP PPPTOPPTPPRTRPRTN 17
3.2 SYIMDOIS. ..ottt ettt b e et b e et b e s e Rt bt s e e Rt b e e e R AR e AR e Rt SRR Rt R e Rt b e Rt b et b e n e 29
33 F Y o] 1= V7= 0] S 29
4 Overview of System Architecture (iNfOrMaLiVE)ccvieeeeieeeere e 31
4.1 (T go0 W 1T oo BTSSP TP UR USSP 31
4.2 MOLIVALTON FOr BN ... et b bbbt e h et e e e b b ebesaeene e e enne s 31
4.3 21 Tc 11 £ o) = N T 32
4.4 High-Level Description of the ENI System ArchiteCtUre.............coviiiiiiieireereen s 33
441 OVEAll DESTITPIION. ...ttt bbbt b e st b e b bt e st b s b e bt e e e bt b e e e b b e e ens 33
4.4.2 THE ASSISIE SYSEEIM ...tttk bbbt b bbbt b e b st b e bt b b 33
4421 100 1 1 o PR 33
4422 Communication Options for All Classes of ASSIStEd SYSEEMS.......cccverierireierereerereeese e 34
4423 Class 1: An Assisted System that has No Al-based Capahilities...........cccocverrineininineee 35
4424 Class 2: An Assisted System with Al that is Not in the Control LOOP........cccccevveveeiesinsie e, 35
4425 Class 3: An Assisted System with Al Capabilitiesin its Control LOOPcccovvevevieereeseerieeieseeseeeneenn 36
44251 TEFOOUCTION ...ttt bbbt et e b e bt bt e ae bt et e e e e sb e e b e s aeene e e e e es 36
44252 (O =SS C 1 1] 0] = SR 36
4.4.2.6 Summary of I nteraction between the Assisted System and ENIcccccovveviiii e, 37
4.4.3 Communication and Interaction with Other External Systems.........ccccovvevvevveeeseeseeeee e 38
4.4.4 (Y Tele (=X o)l @] /< = 1 o] o AT P TSP URT SRR PR 38
4441 AllOWEd MOUES OF OPEIBLION.......eeeuerieieeieete sttt sttt sttt bbb bbbt bt eb e et b nn et 38
4442 Setting the Mode Of OPEIELIONc.coiriiiieriee ettt 38
4.4.4.3 Interaction With the ASSISIEA SYSIEIM ... bbb 39
4444 Selecting a Mode of Operation for a Class Of DECISIONS.........cccuiiieiriirieereeeereeee e 39
4.4.4.5 Communication Of MOde Of OPEIELIONcuiirieiriieeeriereeere et se s 39
4.4.4.6 Normal Operation of the Selected Mode Of OpPEration............ccevveveeiiere e 39
44.46.1 L@ SR 39
4.4.46.2 Case 1: ENI Indirectly Instructs the Assisted System to Switch Modes..........cccccvvevvceeveeieeneenes 40
4.4.46.3 Case 2: ENI Directly Instructs the Assisted System to Switch Modes..........ccccevvevevceicicceeseeniens 40
4447 Normal Operation of the Selected Mode Of OpPEration............ccevveieeiiere e 40
4.4.4.8 Exception Handling for the Selected Mode of Operationcoeceeereeneneineneeseseeee e 41
445 FUNCEIONA] COMOEPES ...ttt sttt b e bbbt b e et b e s bbb e b et bt e e b b 41
4451 Functional Concepts for Modular System OPEration...........ccoeeeereirerieene e seerens 41
4452 Overview of Prominent Control LOOP AFChITECIUIES..........cviiriiiririeeriesee et 41
44.6 ENI REFEIENCE POINES.ottt sttt st e e e e seesbesaeeneeeeseesbeseeeseeneeneeneens 41
446.1 Definition of an ENI ReferenCe POINtooi it 41
4.4.6.2 Definition of an ENI External REFErence POIN............cooiieiiiieiieiiie e 41
4.4.6.3 Definition of an ENI Internal REfErence POINL...........cccoiiiirieiiieee e 41
447 EINT INEEITACES. ... ettt b e bt b e h e b et e b s e e e bt s bt eh e e bt e ae e s e e e e e e besbeebeeneennennens 41
44.7.1 Definition of @n ENT TNEEITACEooviiieiireeee e s s sb e 41
4.4.7.2 Definition of an ENI Hardware INTEIfaCe.couoiiiiiiiieeeeee e 42
4.4.7.3 Definition of an ENI SOftware INLEITACEocciiiiirie s 42
4.4.74 Definition of an ENI Application Programming INtErfaCe..........ccoeeeriinencine e 42

ETSI

4 ETSI GS ENI 005 V3.1.1 (2023-06)

4.4.75 Comparison of ENI Software Interfaces wWith ENI APIS........ccoiiiiiiiceeeeeeeees s 42
4476 Interaction between ENI Hardware and Software Interfaces.........coovvvreeeeeeceeenee e 42
4477 Interaction between ENI Hardware and SOftWar€ APIS........ooe oo 42
45 FUNCEIONGl ATCRITECIUNE..... ettt sttt e a et e e e seeseeseeeneenee e eneees 42
451 Functional Block Diagram of the ENT SYStEMcccoiiiiiiieineee et 42
452 F I = o TSRS 44
4521 FEFOOUCTION ...t e b b b a et e e s et bRt b e e ae e e et e se e s e b e seeebeeneeb e e e ennees 44
4522 Definition of the ENI AP BIOKEocoiiieeeeeee sttt 45
4523 Use of @an API BroKer iNENT ...ttt s sb e nne s 45
4524 Alternativesto UsiNg @an APl BIrOKESooueiie ittt a e s sneenneenne e 45
453 ENI System FUNCEIONal BIOCKS..........ciuiiiiieiiie et e 45
4531 0100 1 1 o PR 45
4532 [NPUL PrOCESSING ... vttt ettt sttt ettt sttt b e et b e s bt b e s bt bt b et e bt e b e e e bt e b et b e st et eb e b et ebenbe s 45
45321 OVEBIVIEW ...ttt ettt e et tesae et e st e st e eeseesbesaeeteeaeemee e e eeseeebeebeeneenee s enseneeseesbesaeeneeneenseneens 45
45322 Data Ingestion FUNCLIONal BIOCKciiiiirieiiircsesee s 46
45323 Normalization FUNCLIONEl BIOCKccuoiiiiiireie et 46
4533 F N 0= Y OSSPSR 46
45331 Knowledge Management and PrOCESSINGcvevreeereereesieeeeseeseesseesseesseesesssessassseessessseessessessans 46
4534 Situation-based, Model-driven, POlICY GENEIationcccveveeieiiesie e eee e 47
4534.1 OVEIVIBW ...ttt ettt ettt s et s bt s b e b et e bt £ e s e st b et e st s b et e Rt e b et e bt s be e e st ebetenenbenbeneene 47
45342 Situation Awareness FUNCLiONal BIOCK...........ccooiiiiiiiiieee e 47
4534.3 Model Driven Engineering FUNCLIONal BIOCK..........c.ccveiiiiiiiie e 47
45344 Policy Management FUNCEIONal BIOCK...........cc.ciiirieiiieineecerier e 48
4535 OULPUL GENETBLION......eeeteteseeieete ettt ettt re et b et b et eb e s e et bt s b e ae e bt sb e e e bt s s e e b e s e b e e bt b e e b e nneneenis 48
45351 OVEBIVIEW ...ttt ettt sttt ee et e st e st e e et e s besae et e e seenee e e eeseeebeeseeneemee s ensensessenbesaeeneeneenseneens 48
45352 Denormalization FUNCLIONAl BIOCK..........coiiiiiriieeieeeeeee et st 49
45353 Output Generation FUNCLIONal BIOCK...........coirieiiiieirieecrierie e 49
454 DECISION-IMBKING ...ttt ettt et b e bbbt b e s e et bt et b e s e et b e bt eb e b 49
4541 OVEIVIBW ...ttt sttt sttt st s e e e st e b e e st b e s e e s e b e e e e s e bt sees e e bt s e e ne e b e e e e s e be s e st b e s eneebesbeneebeneensnnn 49
4542 Decision-Making USiNg HINASIGNLcoiieiieiecee et esnaesraesnees 49
4543 Decision-Making using DeterministiCc PrOCESSINGcccveieiieiieeiieseesieesee e seeseesteeseeee e ssaesreeseens 49
4544 Decision-Making using PrediCtive PrOCESSING.......ccvcuirireiesie e see et ses et ete e sneesreeseees 50
4545 Decision-Making using Cognitive PrOCESSINGcccvveuirirrieseeseesieesiesseeseeseeseesseesseeseessesssessaessesssens 50
455 Introduction to Artificial Intelligence Mechanisms for Modular SyStems...........coeevereineneinenecsee 50
5 ENI ArchiteCtural REQUITEMENTS........coeiiiiiisiesiere ettt st 50
51 011 0o 1 1 o | PR 50
52 Functional Architectural Requirements for ENI OPEration..........cocuoeeririeierinieinenieeses e 50
53 Architectural Requirements for Mode Of OPEIralion...........cccvecuieieeiesieeseee e st sreesneas 52
54 Non-Functional Architectural Requirements for ENI Operation...........ccecveceeierieniesieesee e esee e see e eeneens 53
55 Reference POINE REQUITEMENLSciueiieieeieseesees e eteete st e stee st e e estesseesaeesaeesseassesneesseesseesseesseesseessessesnensnns 53
5.6 Knowledge Modeling REQUITEIMENES..........c.iici ettt sttt ene e ta e teeteeeeeneennensnes 54
5.7 Control Loop Processing REQUITEIMENES.........cueiieiieieeieeeeseeseese e tees e eie e teseesaessessseesseesseessesssessessseessesssees 56
58 Functional BIOCK Processing REQUIFEIMENTS..........cuiueiiirieirierieeste sttt se s s e 57
581 Context ProCeSSING REGUITEIMIENLSotiiiriirieietereeeet ettt e st st se et se et se et seeseebesre e ebesneneerens 57
582 COgNitioN REGUITEIMIENSceviitiietiiteieie sttt ettt sttt b e bt sb e e ebesb e st e bt s b e seebesbeseebesbe e ebesbeneenesbennenens 57
583 Policy Management REQUITEIMENTSceiirieerierieie sttt sttt sttt s b e e s b e b st b s 58
59 Al Modelling and Training Model REQUIFEMENESc.coirieirireeirie sttt eb e b e eb e eene 59
5.10 AP] REQUITEIMENTS ...ttt ettt ettt e et b et b e s eb e e s b se e st e b e s e ea e eb e e e e s eb e e e s eb e s e bt bt s ese bt b enenbennennenis 60
6 ENI Reference Architectural FrameWOIK............ccoiiiiinineniieeeeeesese e 61
6.1 (T goo W 1T oo BTSSP PP USSP 61
6.2 Design Principles of the ENI System arChiteCIUNEcoveeii e e e ene e 61
6.2.1 OVEBIVIBW ..ttt ettt e et te e et e e et e e see et e s Rt eaeeae e e e eeseeeEeeReeeeemeemseeeseeebeeaeeseeneenseneeseeseesneeneeneensas 61
6.2.2 Nesting Of FUNCLIONE] BIOCKS..........cciiiiiiiece bbbt 62
6.2.3 CommuNi Cation AN INEEIrACHION.eeeeereee ettt ee e te e sbe e e eeeseestenteseessesneeneeneeneas 63
6.2.3.1 100 1 1 o PR 63
6.2.32 DISCOVETY ...ttt ettt ettt b et b e bt b s bt b e R e b e b s e b e e bt se e b e e b Heeh e e b e AE e bt eb e e eb e sb et ebenbeneebenbenneneas 63
6.2.3.3 DireCt COMMIUNICALIONcviteieeeeieieee ettt ettt e e e e beseesbesaeeaeesee s eneeseenseneeseeeseeneenseneens 63
6.2.34 INAIrECt COMMUNICALTON. ... c.teeieteeieeiiet ettt ettt bt s e e e bbb e st es e e e e b e s b e srenbesnesbe e e e e es 64
6.2.35 [N 1o 701 = 1 o o TSR 64
6.2.35.1 TNEFOTUCTION ...ttt bbbkt b e bt b e aeeb e et e e b e e b e s b e s bt ene e e e e ee 64

ETSI

6.2.35.2
6.2.35.3
6.2.35.4
6.2.35.5
6.2.4
6.24.1
6.24.2
6.2.4.3
6.244
6.2.4.5
6.2.5
6.2.6
6.2.6.1
6.2.6.2
6.2.6.3
6.2.7
6.2.7.1
6.2.7.2
6.2.7.3
6.2.8
6.28.1
6.2.8.2
6.2.8.3
6.2.83.1
6.2.8.3.2
6.3
6.3.1
6.3.11
6.3.1.2
6.3.1.3
6.3.14
6.3.1.5
6.3.1.6
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.23.1
6.3.2.3.2
6.3.2.3.3
6.3.234
6.3.2.3.5
6.3.2.3.6
6.3.2.3.7
6.3.24
6.3.24.1
6.3.24.2
6.3.24.3
6.3.24.4
6.3.24.5
6.3.2.4.6
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.34
6.3.34.1
6.3.34.2
6.3.34.3
6.3.34.4
6.3.34.5
6.3.3.4.6

5 ETSI GS ENI 005 V3.1.1 (2023-06)

DistribUtiVe NEGOTIGLIONcveviiitiieieet ettt b e 64
INtEGrative NEGOLIALTIONc.eeteieeeete ettt b e bbb b e e b b neenea 64
Functional Model: an INformative EXAMPIE.........oociiiieireieerieeereeese e 64

L0 L= LT PP 65
Administrative and Management DOMEINS..........courueiiiieiririeesiee st 65
FNEFOOUCTION ...ttt e b b e b et e s et bt s Rt bt e st e e et e se e e e b e seeebesaeebe e e e e es 65
(D] 7= T g I @ 0 = 1 o LSS 66
Interaction between Hierarchical DOMEINS.........ccoiiiirerinieeeeee e 66
Interaction between Distributed AdminiStrative DOMAINS........ccooe i 68
Interaction between Federated Administrative DOMAEINScocveieiiniiinineeeeeeeee e 68
MOJE €O KNOWIEAGE.ceeeeeeee ettt b e bbbt b et b bbb 68
2 TIPS 68
0100 1 1 o o PR 68
ProteCtion AQAINSE BiaS.........ciueiiiiiiiiiieiet ettt ettt b e et b e e et e e b b nnene 69
Adherence to Applicable Standards to Mitigate Bi@s...........cccoreeerireiiieneinereeeseeee e 69
1o TRSN 69
FNEFOOUCTION ...t e b e e b a et e e s et bt bt eh e e ae e s et e st e e e b e seeebesaeebe e e e e es 69
Methods to Ensure Ethical DeCiSION-MaKing..........cvccuieiiririiesieesieesessie s e see s sse e eee e ssaesseeseees 70
Adherence to Applicable Standards and [NItIAtIVES...........cccveiveiieienieceee e 70
Sl NS S TS 10 IS = 1 USSR 71
OVEBIVIBW ...ttt ettt et btk e e b e b e e b e bt e bt e he e e e s b sE e eb oAb e eh e e heeaeenbene e e e nbesbeebeaneebe e e ennennens 71
Class 1 and 2 ASSISIEO SYSLEIMS......cccuieieeieeie e see st ste e rte et e e et e st e e teesteeteseesseesseesseenseeneesneesseessens 72
ClasS 3 ASSISIEU SYSIEMScouirieirieieeiet ettt bbb bbb bt e bbb et s enis 72
Single Class 3 ASSISIEA SYSIEMSciviieieriiieiriere ettt bbb b e e 72
Multiple Class 3 ASSISLEA SYSLEIMIS......c.ciiiiiriiertirieesie ettt b e b 73
Architectural Functional BIOcks Of the ENT SYSIEMcc.ciiiiiiiereeceee s 75
ENI Functional Architecture with Reference POINES..........ccoooiiirieieree e 75
100 1 1 o PR 75
ENI Functional Architecture with External Reference POINES............cooiveiiienieneie e 75
ENI Functional Architecture with Internal Reference POINES...........cccooiieiinininieeeeee e 76
ENI Functional Architecture with Administrative and Management DOmainsccccecveeeveeeseeeneen. 76
ENI Functional Architecture with CONtrol LOOPS.......ccivevueecireieeiesiesee e ste e esee e eee e e e e sseeneees 78
ENI Functional Architecture with Domains and Control LOOPS.........cevvevveeeneeseeseee e se e 80
Data Ingestion FUNCLIONEl BIOCKcociiiiiiireie st 80
0100 1 1 o PR 80

Ko 1AV (o o SRR 81
Function of the Data Ingestion FUNCEIONal BIOCK............coeiiiiiirineriere e 81

11 0o 1 o PP 81

D =N (=] oo OSSOSO 82

(D e Y O (= = (oo W OO PP PR USOR 82

(D= = L O 1= 1S oo S 82

Data Anonymization and PSeudonymMiZation.............ccceecuvecerieieesee s ese e eee e saeesae e 82

(D= ez A U0 00701 = 1o o 82

Data Labelling and ANNOLELION.cccuiiiiiierieie et e et te e sra et e e e teeaeeneeenes 83
Operation of the Data Ingestion FUNCiONal BIOCK............ccoveiiieieiie e 84

11 0o 1 o PP 84

TE EMELTY PrOCESSINGveeeueeteieeieete ettt ettt ettt b e et s e et b se et b e e st s be et sb b eee 85

UL SN o) 1Y = o = - PSR 86

Use of Structure, Pattern, and Feature MatChing..........oocovviiieiieieieeereese e 86

Use of Al-based MEChaNISMS........cci ittt st ne e e e e 87

Use of Formal LogiC and ONEOIOGIES........c.ciuireereriiieiiriinieesieseeiesie sttt sne e 87

Data Normalization FUNCEIONEl BIOCKccoiiiiiiiiiieee et s 88
FNEFOOUCTION ...t e b e e b a et e e s et bt bt eh e e ae e s et e st e e e b e seeebesaeebe e e e e es 88

[Ko 1AV (o o DO USROS RO PP URURURRRRPIN 88
Function of the Data Normalization Functional BIOCKccoerieiiiiiniiiieee e 88
Operation of the Data Normalization Functional BIOCK............cccceeviiieieriee e 88

11 0o 1 o PP 88
Database Design Analogy (iNfOMBLIVE)cc.ceiirieiiireiriereeert e 89
Normalization for Maching LEArNiNGcoueeeririeirinieiriereeesieseees et 89
ApPlYing NOrmalization t0 ENccoiiiiiiciiereereee et 90
Storing Normalized Telemetry INfOrmationocuceiiriciiinicie e 91
Changing Telemetry Gathering USING POIICIES ..o e 91

ETSI

6.3.34.7
6.3.34.8
6.3.34.9
6.3.3.4.10
6.3.34.11
6.34
6.34.1
6.3.4.2
6.3.4.3
6.3.44
6.3.44.1
6.3.4.4.2
6.3.4.4.3
6.3.44.4
6.3.4.5
6.3.45.1
6.3.4.5.2
6.3.4.5.3
6.3454
6.3.4.5.5
6.3.4.5.6
6.3.4.5.7
6.3.4.6
6.3.4.6.1
6.3.4.6.2
6.3.4.6.3
6.3.4.6.4
6.3.4.7
6.34.7.1
6.3.4.7.2
6.3.4.7.3
6.34.7.4
6.3.4.7.5
6.3.4.7.6
6.3.4.7.7
6.3.4.7.8
6.3.4.7.9
6.3.5
6.3.5.1
6.352
6.3.5.3
6.3.53.1
6.3.5.3.2
6.3.5.3.3
6.354
6.3.6
6.3.6.1
6.3.6.2
6.3.6.3
6.3.6.3.1
6.3.6.3.2
6.3.6.3.3
6.3.6.3.4
6.3.6.3.5
6.3.6.4
6.3.7
6.3.7.1
6.3.7.2
6.3.7.3
6.3.74
6.3.7.4.1
6.3.7.4.2

6 ETSI GS ENI 005 V3.1.1 (2023-06)

Cognitive and Situation-Aware Directed Normalized Telemetry Gathering..........cccooeeeveneccnieenn 91
UL SN o) 1Y = o = - PR 91
Use of Structure, Pattern, and Feature MatChing..........ccocovireriieeieieeereese e 91
Use of Al-based MECHaNISMS........ccoiiiiieeeeeee ettt se et e e e 91
Use of Formal LogiC and ONEOIOGIES........c.ciuireeueriiieiiriiieesieseeiesiese st 92
Knowledge Management FUNCLIONal BIOCK............c.oiiiiieiieieeseee e 92
FEFOOUCTION ...t e b b b a et e e s et bRt b e e ae e e et e se e s e b e seeebeeneeb e e e ennees 92
1= 0o oo SN 92
[Ko 1AV (o o DO USROS RO PP URURURRRRPIN 93
KNOWI €OQE PrOCESSINGcveeurieieeieeiesesee st e st st e teete et esreeste e s e e teesteesesneesneesseasseesseenseensesneesnensseesenns 93
Knowledge Representation and ENaNCEMENcoeeririieiriieereeereee e 93
KNowledge NOrMElTIZAETON...........coiiiiiiieeee ettt 95
Transforming Data, Information, and Knowledge into WiSdom..........cccceoeereienenene e 95
SEMANTIC BUS.....eeeeeie ettt ettt e e et st e aeeseene e e e eeseesbesaeeseeneenseeeseenbesaesseeneenseneens 96
REDOSITONTES. ...tttk h bt b bbbt s e bt b e s e e bt b s e e st eb e s e et eb et eb e s b e e ebenbeneebeebenneneas 96
OVEBIVIEW ...ttt ettt sttt ee et e st e st e e et e s besae et e e seenee e e eeseeebeeseeneemee s ensensessenbesaeeneeneenseneens 96
(D= rz = 010 o 97

Y Kol (= I L= 10 o= 97
KNOWI€AQE REPOSITOIES......c.vieieiieiieiee st ste et e et e st e et e e tesee e e sreesaeeteentesseessaesseenseenseeneesneenans 97
Blackboard REPOSITOIES.........cceeieeiieciese ettt sre e sae et e e sneesraeste e beenteeneesnnennes 98
e o To i (0] A @ o= (o] o 1 99
Semantically Augmented Query and LEarNiNg........ccccevveeeeeueneesieesieesesieeseeseeseeessessessessseesseesseens 99
Function of the Knowledge Management Functional BIOCK............cccocureirireineneine e 99
11 0o 1 o PP 99
Grounding Knowledge USING SEMENLICS........cccoireiiirieirierieiriiseeesieseee e 100
Resolving KNOWIedge CONfIICES.c.ciiieiiieeiriereese ettt 100
KNOWIEAgE DiSIITDULTONc.eeueiiiieeiiitereeet ettt ettt b e 100
Operation of the Knowledge Management Functional BIOCKccoeoeiiriiiniicineneec e 100
(1100 0o 1ol USSP PP UROSUSP 100
(@01 AVl W 0ot 0] 7= 101

(@ 1= 01 g Tox o = 102
(DT Ko L=l U g Tox o USSR 102
Model-Driven-Enhanced Decide FUNCLIONAIITYcccuveieiieiieceese e 103
ACE FUNCLIONEIITY ...ttt bbbt bttt b e et 103
Model-Driven-Enhanced ACt FUNCHIONEIILYcoeoeririiiierieine et 103
Learning-Enhanced OODA ...ttt ettt b e et b e et beseebesneneeneas 103
Reasoning-ENhanced OODAooiiieire ettt sttt b b st b e b e b b seebe e neenens 104
Context-Aware Management FUNCEIONal BIOCK............ccuiiiriniiiiner e 104
g1 0o 1 o o PSR 104
1Y Ko (V= (o o DO U URURORRPP 104
Function of the Context-Aware Management Functional BIOCK............cccccuevveveecnicnvieseece e 104
(11100 0o 1ol o WU PSP PR PRORORTP 104
Modelling and Representation of CONtEXt AWAIENESS..........cccverierrerieeiieesreeseeereeseesseesseesseesseseens 105
Processing ConteXtual UPUALESciueieeieeie e cte e steesee e e e ste e s sreesseesaeeaeeneesnaesnaessaesnens 107
Operation of the Context-Aware Management Functional BIOCK............ccoccvveeveeieeni e 108
Cognition Management FUNCLIONal BIOCKcccoiiiiiiiiiiieieree e 110
g1 0o 1 o o PSR 110
Ko 1AV (o o 110
Function of the Cognition Management Functional BIOCKccoiiiiiiinninensee e 110
INtrodUCEiON (INFOFMBEIVE)eueeveieeeetereee ettt bbbt b e et 110
The Symbolic ApproaCh (INFOrMBELIVE).........ccvirieirieree e 111
The Connectionist Approach (INFOrMaLiVE)ccveeeerieieie e 113
(@00 TN =S = o 113
(000 11 1T0] 0 81 oo = 114
Operation of the Cognition Management Functional BIOCKccccociveviiieicsvee s 117
Situational Awareness FUNCEIONal BIOCKcouiiiiiiieee e e 117
g1 0o 1 o o PSR 117
Ko 1AV (o o 117
FUNCtion Of SItUBLIONal AWBIENESScc.eiuiieirieeieie ettt e e e e see st see s e e e eneeseeseesbesaeeseeneeneeees 117
Operation of the Situational Awareness FUNCLional BIOCKcccoireininceneneneeee e 118
11 0o 1 o PRSP 118
Use of Memory and the Cognition MOE ..o 118

ETSI

6.3.7.4.3
6.3.74.4
6.3.7.4.5
6.3.7.5
6.3.7.6
6.3.8
6.3.8.1
6.3.8.2
6.3.8.3
6.3.84
6.3.8.4.1
6.3.8.4.2
6.3.8.4.3
6.3.9
6.39.1
6.3.9.2
6.3.9.3
6.3.9.3.1
6.3.9.3.2
6.3.9.3.3
6.3.9.34
6.3.9.3.5
6.3.94
6.3.94.1
6.3.94.2
6.3.94.3
6.3.94.4
6.3.95
6.3.9.6
6.3.9.6.1
6.3.9.6.2
6.3.9.6.3
6.3.9.6.4
6.3.9.6.5
6.3.9.6.6
6.3.9.6.7
6.3.10
6.3.10.1
6.3.10.2
6.3.10.3
6.3.10.4
6.3.11
6.3.11.1
6.3.11.2
6.3.11.3
6.3.11.4
6.3.11.4.1
6.3.11.4.2
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.5
6.5.1
6.5.2
6.5.3
6.5.3.1
6.5.3.2
6.5.3.3
6.5.34
6.5.35

7 ETSI GS ENI 005 V3.1.1 (2023-06)

Definition and Management of Goalsto be Achieved.............ccoveiiiicinncin e 118
Architecture of a Cognitive FUNCtional BIOCK ..o 118
Leveraging Historical Situation INfOrmation............cccoereiiencine s 120
Difference between Context Awareness and Situational AWarenesS.........ccceoevereriereserieeeeseeneenee e 121
Difference between Cognition Management and Situational AWAreNESScoeeveererererenesesieenns 121
Model Driven Engineering FUNCLIONal BIOCKccveiiiiiiie e 121
IEFOOUCTION.....e ettt e bbbt e e bbbt e e e e et e e e s et seeebesneenn e e ennas 121

Y Ko (V= (o o DO TS S U URURORRPP 121
Function of the Model Driven Engineering Functional BIOCKcccccveoveiineeiiece e, 122
Operation of the Model Driven Engineering Functional BIOCKccccccoveviiviene i, 122

11 0o 1 o PRSP 122
Knowledge Data Fusion, Transformation, and ProCeSSING........cccveerereerenerie e seesee e 124
Knowledge Transformation into Policy INfOrmation............cocceireinineineneese e 124

Policy Management FUNCEIONEI BIOCK ..ot 124
g1 0o 1 o o PSR 124

Ko 1AV (o o 124
Modelling and Representing TYPES Of POIICIES.........ccviieiee et 125
(11100 0o 1ol o WU PP PRSRORP 125

Reuse of the MEF POliCy MOUEcooiieieee ettt 125

Reuse of the MEF COre MOTEooiiiiiece et s 125

Types of POIICIES USEU INENI ..ottt e 126
Overview of aUnified Policy Information Modelccooeeiieieini e 127
PrOCESSING POLICIES. ...ttt ettt bbbt bbbt b e sttt b e 127

11 0o 1 o PRSP 127
Constructing Policies: Parsers vs. Compilers vs. INTErPretersooeevireveneieneneeseseeseneens 127
POIICY LBNGUAGES.veeeeeetereeieetest ettt se ettt bbbt bt b e b se b b se bt sb e se e st e b e seebesb e e ebenbenneneas 127
POIICY SCOPE ...tttk b bbbt b e bt b e bbbt et ese bt s b e se e bt s e et eb e s b e e e b e e be e ene s 128
Function of the Policy Management FUNctional BIOCKccoeiriienniineneeese e 131
Operation of the Policy Management Functional BIOCKccuevveiiieiiesiesece e 131
(1100 0o 1ol WU PSP PR URORRSP 131

The POlICY CONLINUUIM.......ccuieiieieeie st ste et e e e e e te e e s eesaeesre e seenseessesseesseenseeseenseeneennns 132

Policy Management ArChITECIUNEcuviee e sr e e esraesreennees 133

Policy Management FEAEIrationcoveciieiiiesiesees ettt e sttt naesraenneas 139
Constructing, Deploying, and Activating POlICIES..........cceiriiiirireee s 139
MBNAGING POLICIESevieciiiteeet et b e et b e et b e e eb e sb e b b neeneas 140
Deactivating and REMOVING POlICIES.ccciiirieiiierieiestereete ettt eene s 141
Denormalization FUNCLIONal BIOCKco.eiiiieeieee ettt st 142
g1 0o 1 1o o PR SS 142

Ko £V 1o o R 142
Function of the Denormalization FUNCtional BIOCKcccoiiiiriiiiiinieeeeeee e 142
Operation of the Denormalization Functional BIOCKcccccviieiiiiieniie e 143
Output Generation FUNCHIONE] BIOCKccueiieiiciecie sttt et 144
FNEFOOUCTION.....e et b bbbt s et b e bt bt e st et eb e e e e b e sbesreebeeneenn e e ennas 144

1Y Ko LAV (o o DO TSP UV URP 144
Function of the Output Generation Functional BIOCKccovveiieiiiecicese e 144
Operation of the Output Generation FUNCtional BIOCK ..o 144

g1 0o (1 1 o o PRSP 144
Treating Output Generation as the Inverse of NOrmalization............c.ccoecvireineneieneseeseseee 145

F N T (0] (= S 146
1 0o 1 (') o SR 146
Y7o 1Y oo O 146
FUNCLION Of The API BIOKEYoiiiiiieeiieeeeee ettt sttt b ettt sn e b st ene e e 146
Operation Of e API BIOKEccieiieieeeeiesee e st e se et eteetessae s e s e steesseeseeneesseesseenseenseensessenssensans 147
Communication Between FUNCLioNal BIOCKScooiiiiieeee e e 148
[000 [0 (o] o FOO OSSRV 148
Common CommuniCatioN REQUIFEMENTS.c.eiueieeieereesteeieeiesaeseeseesteeseesesseesseesseesseesesssessesssesssees 148
Recommended Communication Patterns to be Used Within ENI ... 149
g1 0o 1 o o PSR 149
Remote Procedure Calls and Remote Method INVOCatioNS...........coceieiirinenieeee e 149
BatCh FIlE EXCRENGEottt e 149

S T o [DT = o = = TR 149

L= o 1 o USSP ST UPT SR PRORP 150

ETSI

8 ETSI GS ENI 005 V3.1.1 (2023-06)

6.5.35.1 11 0o 1 o o PSR 150
6.5.35.2 Common Requirements of MeSSaging SYSEIMSccueeririiiririiieerieeee e 150
6.5.35.3 MESSAING FUNCLIONAIITY.....ceeueitiieeiiete ettt ettt st s b e neene s 151
6.5.4 Recommended Communication Patterns to be Used Between ENI and External Systems...........ccc........ 151
6.6 SECUNTY CONSIAEIBLIONS.c.veuetiteieetert ettt sttt b b st b bbb e bt b et e bt ee e bt e b s ne b e b e st et b e 151
7 REFEIENCE POINES.......eieeeeeee ettt s bt be b e st et et e st e s e bene e b et e e s 152
7.1 g1 T 18 ot (oo PSPPSR U RS URTPRSPRPRN 152
7.2 External Reference POINT OVEIVIEWcociiiiiiieeee et se e sre e enenneseenens 152
7.3 External Reference Point DEfiNitiONS..........cccoriioiieie e st se s 156
731 REFEIENCE POINT B eni-tat - «--+«x+exeerserrerseemuererruesuesseseseeteseessesseasesseeneeseessessesaeesesseensessessessesseesesssensessessessenes 156
7.3.2 REFEIENCE POINT B eni-cmd--««-+e+eerserrerreeerrerruesuessessereeeeseesseseessesseeneeseessessesaeasesseesessessessesseasesseensessessesseses 156
7.3.3 REFEIENCE POINE Eoss nipol --«-+vevererrruererieieririeie s e e s 156
734 REFEIENCE POINE Egpp-eni-ctx-«-vcvereremrrerreieririeie st 157
7.3.5 REFEIENCE POINE Egpp-eni-oth ««-+vcverereeuererteeriseie st s e s 157
7.3.6 REFEIENCE POINT Eqpp-eni-kno«-««-+eeerrersermeemeenserteste st steee e e st b sbe bt sse e e eese e besaeebesaeess e s e sseabesaeebe e e e s e neenrenbeene 158
737 REFEIENCE POINT Eqpp-eni-pol «-+«x+exeerrerrermeemeereeriertestesteetetessesteste bt sseeeeeess e besaeebesaeessesesseabesaeebe e e eneeneenreneenee 158
7.3.8 REFEIENCE POINT Elpss-eni-tat -+ «-vereeverrerreserrermeerserseessessessssessesssessessesessessesessessesessessesessesressssesressssessessesessessns 158
7.39 REFEIENCE POINT Elpss ni-cm- v ereeverrererersermeersesseessesseessessesssessesse e s se e se e ssesre e ssesre e ssesreseesesresnesesnessens 159
7.3.10 REFEIENCE POINT Eiss eni-pol +++«++exrerrerrerueemeerserteste st stteeeteseesbesee bt sse et eeese e besaeebeeaeessesesseabesneebe e e enseneenreneeene 159
7.311 REFEIENCE POINT Elsr-eni-pol - +++«x+exrerrerrermeeeerterteste st st et et st bbbt e e ee st e besae bt e st e s e eesbenbeseeebe e e eneeneenrenee e 159
7.3.12 REFEIENCE POINT Epr-eni-dlat --«--+«x+exeerserrerseemernerrueseeseesteseeseeseensessessessesseeseeseensessessessesseeseensensessessessessessesnsensees 160
7.3.13 REFEIENCE POINT Eor-eni-md -« -««-sexeerserrerseeuerernuesuesteesesieeteseasteseessesseeeeeessessesaeesesseensessessessesseaseseensessessessenes 160
7.3.14 REFEIENCE POINE Epr-ni-pol -+« veverereirrerieierese st s 160
7.3.15 REFEIENCE POINE Eirf-eni-lat «--+«x+exeerserrerreeuerersueruesseeserieeeeseesteseessesseeeeseessessesaeesesseensessessessesseasesseensessessessenes 161
7.3.16 REFEIENCE POINT Einf-eni-omd «--+«++e+eesserrerreemerrerseesuessesseseeeeseesseseeesesseeeeseessessesaeesesneensensessessesseesesneensessessessenes 161
7.3.17 REFEIENCE POINE Eoani-apinin «+««-+«seeerrerrermeeieeeriesie st stesieesee st esseste b sbe st st e e e s e seesbesbesbeese e e enseseeabesbesbeene e e ensees 161
7.3.18 REFEIENCE POINT Eoai-api-0ut - «++«++exrerserrermeemeersertesiestesteete e st esbesee bt s st eeebese e besaeebesae e s e neesseabesneebe e e enseneenrenbenne 161
7.3.19 REFEIENCE POINT Eai-api-gev-«-+«-+exrerrerrermeeerrsintentestesseseetestesteseesbesse e eeeseesbesaeebeeseessesessesbeseeebe e e enseneenrensenne 162
7.3.20 REFEIENCE POINT Eani-api-rtn-«-+«-+eeerrerrermeeeententeste st st et et st bbbt e et se et sae b e e st e s et e b e abesbeebe e e e e e e e nrenbe e 162
7321 REFEIENCE POINT Eani-api-amge--««-+«++e+seererreemeerseriertestesseseetessestesee st sseeeeeeseesbesaeebesaeessessessesbesaeebe e e ensensenrensesne 162
7.3.22 REFEIENCE POINT Eai-api-emg e -««-+«sesserrerueeeerterierte st steseetessesteseesre st eeeeese e besaesbesaeesseeesseabesaeebe e e ensensenreneenne 163
7.4 External Reference Points Protocol SPECIfiCalioN..........cocoeeireiiiiriieie st 163
74.1 1 0o 1 (') o SR 163
742 Generic Protocols for use with External ReEfErence POINESccoverireienene e 163
7.4.3 Specific Protocols for use with External Reference POINES.........coooviireiiincinereesee e 164
7431 (01RO o I I N OSSR 164
7.4.3.2 (€T 100 (@ = oo o 8 I I TSRS 164
7433 HATEOAS @NU HTTPILL ..ottt 164
7434 REST @N0 HTTP/LL..c.e ittt 164
75 ENT APL OVEIVIBW ...ttt b bbbt e et b et ne bt nn b nna 164
751 INEFOTUCTION. ...ttt e et R e Rt Rt R et r e et r e n et r e ne e 164
75.2 F N BN (o TR o LN = 1Y =SS 167
7521 g1 0o 1 o o PSR 167
7522 Challengesin APl ATChITECIUIES.........oouiiiieeeete ettt b e b e b e sre s 168
7523 REST APL SEYI@ ...ttt ettt b bbbt et b et b e e et et e eb e e bene s 168
7524 HATEOAS AP SEYIE ...ttt sttt b e ettt n e s b et et e e bene s 169
7525 GraphQL AP SEYIE.......oieeeeeeee ettt b e et b e sttt e et b e b e bt b nneneas 170
75.2.6 (0] O N o IS Y = SOOI 170
7.5.2.7 ENI API Architectural Style ReCOMMENELIONS...........cccueiieiieie e 172
753 ENI APl FUNCEONE] BIOCKS ..ot 173
7531 ENI API Development FUNCLIONal BIOCK...........ccviiiiieiiesieseee e 173
75311 g1l 18 Tot (' o OSSPSR 173
75.3.1.2 ENI Broker APl OrCheStration LaYErccieeieeie e sie et ste e eae e e e et saessaennees 174
7.5.3.1.3 ENI Broker APl Management Functional BIOCKS...........ccocveiienicie s 174
7532 ENI APl Runtime FUNCiONal BIOCKc.ooiiiiiieieeee e e 176
7533 ENI Management Services FUNCEIONEl BIOCKcccoiieiiiniciieeese e 176
7534 ENI Security Services FUNCEONal BIOCK..........ccciiiiiiieenie et 177
7535 ENI Analytic Services FUNCLioNal BIOCKcccooiiiiiiiiiiece e 177
754 ENI APl System Deployment MOGEIS. ..o 177
754.1 On Premise vs. Cloud-Based DeplOymMENTceiiriiiiieese ettt eenea 177
7542 ENI APl ArchiteCture ENVIFONMENEcovveiiiieeee e 177

ETSI

9 ETSI GS ENI 005 V3.1.1 (2023-06)

7543 Securing the ENI APl Broker from the INTErNEL..........oooiiiiiiiieeeeereeere e 177
7544 SCaAliNG the ENT API BIOKESc..oeiiiitieeeiteeeterteree sttt sttt s besnenneneas 178
7.6 Internal REFErENCE POINT OVEIVIEWWcc.eiiuieiiie ettt ettt s aee st e s te e s teetesaeesaeesbeebeenseeasesaeesseesrnesanas 178
1.7 Internal Reference POiNt DEfiNITIONS..........c.i it et raesaeas 179
7.7.1 REFEIENCE POINE [ingnorm. -« veveeerereeereeiee e 179
7.7.2 REFEIENCE POINT I n0rm-seim e+ ««xeexvereereeeterieeueee ettt sttt ettt st sb et b e e e e b e besb e b e s bt ese e e e b e seesbesbesbeene e e ennees 179
7.7.3 REFEIENCE POINT I sermikim - vesvereeteseenterie ettt sttt ettt et b et e et e e et bt s aeese e e et e sbesbeebesaeene e e ennees 180
774 REFEIENCE POINT I sarmi-cae«evveueerrererterterieeitet ettt sttt st ettt b e bt b e et e e eesreebesaeese e e et e seesbesbesaeene e e ennees 180
7.75 REFEIENCE POINT | sarmi-coge -+ +ssexsereerrerrermermeeserteste st ste st et e e estesbesbesbesaeese e e e s e seesbesbesseese e e et e seesbenbesbeeneeneennees 180
7.7.6 REFEIENCE POINT I sormisa e+ eevveueereetestenterie ettt sttt ettt et eb et b et be bt b e s heese e e et e nbesbesbesaeene e e ennees 180
7.0.7 REFEIENCE POINE | sommde v eesveesreerreieeiieeieeiteeireeteetesteesteesteessesseseesseesseeseesseessesseessaesseesesnsesnsesaessseensesnsenns 180
7.7.8 REFEIENCE POINE Lsempm -« vceeeereeereriee et 180
7.7.9 REFEIENCE POINT | Som-tenorm «+eesveereeeeiieeieeiteeiteeiteeiteseesteesteesteessesseessesseasseesseeteessesssesseesaeesseenseesesssessenssenss 181
7.7.10 REFEIENCE POINT | Jerionm-out ««+eesseesreererieeeeesteeiteeiteeiteseesteesteesseesseesessseaseesseesseetesssessssssessaeesseessessesssessenssenss 181
7.8 Internal Reference Point Protocol SPECIfiCaliON.ceiirieiriericereeie e 181
781 INEFOTUCTION. ...ttt ettt e st e e st e e beeabesaeesaeeebe e be e beeabeeasesaaesbeensesnsesanesaeesaeebeentenns 181
782 Generic Protocols for use with Internal Reference POINESccccooiiireiiniieseeeeeee e 181
7.8.3 Specific Protocols for use with Internal Reference POINES.........ccvecviieieeieece e 181
8 A o D= o o S 182
8.1 T goTo W 1ol BTSSP PRSP PPO 182
8.2 DIESIGN GOBIS ...ttt ettt etttk b et h bbbt h bt s e h e bt se bt bt e e e b e b e e R e R e R e R ekt R et b e R et benbe e eneere e eneas 182
8.3 Methodology fOr CONSIIUCTING APISc.oiuiiiiitireieete ettt st b e et b e e b e ebesae e enea 183
831 INEFOTUCTION. ...ttt ettt e et e st e st e e be et e s aeeeaeeebe e be e beeabeeasessaesbeensesnsesanesaeesaeenbeentenns 183
832 CommON API ParatigmS......c..oiieiieeeiiere ettt bbbt bbb 183
833 ORPC AP CONSIIUCTTION. ...ttt sttt ettt sttt sttt bbb et b e se st b e se st ebesee st eb e e et e sbeseebeebeneeneas 184
8.34 Lo O T 01 =" =[]0 o 187
84 Overview Of APl FUNCHONAIITYvoieeiee ettt et e s e te e seenteenneenneenes 187
84.1 [g0 e [0 (o] o FEO TSP UR PRSP 187
84.2 EXternal REFEIENCE POINT Egsseni-dat.««««-x«eserserrerrerrerieeieersesiesseasesseseeseessesseseessesseseessessessessessesseessensessesseses 188
84.3 EXternal REFEIENCE POINT Egsseni-omd ««««-x«esererrerrerrereeierteniessessesseseesessesseseessesseeseessessesseseessesseensensessessenes 189
844 EXternal REFEIENCE POINT Egsseni-pol «««««-xxeserrerreruererieeiersesiessessesseseessessesseseessesseeseessessesseseessesseessessessesseses 190
8.4.5 External REference POINT Eapp-eni-ctx ««-r-xrerrrrrerrriririeiresiee s e s 192
8.4.6 External REference POINT Eapp-eni-oth -« crerrerrermririeiresee e e s 195
8.4.7 External REfErence POINT Eapp-eni-kno -« -« erverreruriririeiresiee s s 198
8.4.8 External REference POINt Eapp-eni-pol «-«-«-xrerrerrerueiririeiireeiee e e s 201
8.4.9 EXternal REFEIrENCE POINT Epss-eni-tate- . eeeseeereerreerrerrrerieeiieeieesseesseessessseeseesseessesssesssessssessseesseessesssesssessesssenns 204
8.4.10 EXternal REFEIrENCE POINT Epsseni-cmd «eeeseeereerreerreeieeseeieesteesseessessseessesseesseessesssessessssssessssesseessessssssessesssenas 205
84.11 EXternal REFEIENCE POINT Epsseni-pol «««««-xxeserrerrersererieeeerseniessessesseseesessessesaessesseeeessessessessessessesssessessenseses 206
8.4.12 EXternal REFEIENCE POINT Eug-ni-pol«««««-seeserrerrerrererieeiersaniesteasesseeeesessesseseessesseseessessessessessesseessensessessenes 208
8.4.13 EXternal REFEIENCE POINT Epr-gni-date«««««-xseserrerrerrererieeierseniessessesseeeesessesseseessesseessessessessessessesseensensessessenes 210
8.4.14 EXternal REFEIENCE POINT Eor-eni-cm «««««eseeserrerrertererieeiersesiestestesseseeseessesseseessesseeeessessesseseessessesssensessesseses 212
8.4.15 EXternal REFEIENCE POINT Eor-eni-pol.«««««eseerserrertertertereeiestesiestestesseeeeeesses e seesbesseeseessessesbeseessesseessensessesseses 213
8.4.16 EXtErnal REFEIENCE POINT Einf-eni-tat «seeeseeereerreerreeiueieeieeieesseesseessessseeseesseesseessessesssssseesseesseessesssessessesssenns 215
8.4.17 EXternal REFEIENCE POINT Einf-eni-amd-.seeeseeereerreerrerieeseeiieeseesseesseesseesesseesseessesssessesssssssssseesseessesssesssssesssenns 217
9 Interacting with Other Standardized ArChiteCtUIES..........ccvii e e 218
9.1 T (oo L8 o 1o o USSR UROURRO 218
9.2 GENENIC ATCNITECTUIE ...ttt st b b he bt e b e se e e b e s bt e bt eb e e it ese e e e e e s besaesbe e e ennennens 218
9.3 Generic SDO INteraCtion AFCHITECIUIEc.iieiieeieeeie ettt e b et e b e e e 220
931 [g0 e [0 (o] o FOO TSP RPR USSP 220
94 Interaction With NFV MANO ... bbbttt et b e neenas 220
94.1 High Level description of the NFV MANO - ENI INteraCtioncocveeeeieicnsie e seese e ees e 220
94.2 Initial proposals for iINtEraCtion SCENAITOS.ccueiiirieiiieer bbb 222
9421 IEFOTUCTION ...ttt et eete e be et e e abeeatesaaesheesaeesbeenbeeaeesseenbeenseenresaeesraesrnns 222
94.22 Scenario 1: Passive Notification to NFV MANO ...t 222
94.23 Scenario 2: Active Data AnalySiS for NFV MANOccoiiiiiiiieseseee et 222
94.24 Scenario 3: Active Assistance to the NFV MANO SYSIEMc.coiiiriineneene e 222
9.4.25 Scenario 4: Active Assistance to the ASSIStEd SYSEEM........coeiiiieire e 222
94.3 Interaction Scenarios for Assisted Policy Management in NFV MANO ... 223
9.5 Interaction With the MEF LSO RA ...ttt s 223
10 ArEaSTOr FULUIE STUYoeiieiieiieiieiiete ettt bbbt nr e 223

ETSI

10 ETSI GS ENI 005 V3.1.1 (2023-06)

10.1 Open ISsUes fOr the PreSent DOCUMENL...........cci ittt bbb st sb e 223
10.2 [SSUES FOI FULUIE SEUAYcve ettt et e b e et b e et b e et b e bbb e e et e sb e e b e sbenneneas 223
Annex A (informative): SDO and Open Source I NtEractions..........ccoeverererereieeeeesese s 225
A.1l Integration with Other SDOs and Open Source COMMUNITIES.........ccevviiieceereieese e 225
A.l1l 0100 1 1 o o PRSP 225
A.l2 Interaction With BBF CIOUACO.........coiiieieee ettt sttt e et et e be e stesneeneeneeneas 225
A.2 Interaction with Open Source COMMUNITIESccicieiiieeie et ereens 226
Annex B (informative): ENI Architectural EVOIULION.........cccooieieiicee e 227
B.1 ENI Architecture EVOIULION MOUIVELION........ccveeeiiiieiciese et ens 227
B.2 ENI Architecture EVOlULION PrOPOSEL...........couiiiiiiiiiiieeeee e 227
B.3 Proposed Definition of the ENI PhaSES..........ccoi ettt 227
Annex C (informative): BibliOgrapny ..o s 228
L 11 0] Y 229

ETSI

11 ETSI GS ENI 005 V3.1.1 (2023-06)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI Web server (https:/ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ logo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM ® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Group Specification (GS) has been produced by ETSI Industry Specification Group (1SG) Experiential Networked
Intelligence (ENI).

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto beinterpreted as described in clause 3.2 of the ETS| Drafting Rules (Verba forms for the expression of
provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

Executive summary

The present document specifies a high-level functional abstraction of the ENI System Architecture in terms of
Functional Blocks and External Reference Points. This includes describing how different classes of systems interact
with ENI. Processes, models, and detailed information are beyond the scope of the present document.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

12 ETSI GS ENI 005 V3.1.1 (2023-06)

Introduction

The present document defines a high-level functional abstraction of the ENI System Architecture. The organization of
the present document is as follows:

clause 1 defines the scope of the present document;
clauses 2 and 3 provide normative and informative references and definition of terms, respectively;

clause 4 provides an informative overview of the ENI System Architecture, including its motivation, benefits,
important concepts, and an overview of its Functional Blocks;

clause 5 lists requirements of the ENI System Architecture;

clause 6 defines important design principles of the ENI System Architecture, and then specifies the different
Functional Blocks that make up the ENI System Architecture;

clause 7 specifies the External Reference Points of the ENI System Architecture;
clause 8 specifiestheinitial design of ENI Application Programming Interfaces
clause 9 describes how ENI interacts with other SDO Systems, and

clause 10 delineates a list of future study items.

ETSI

13 ETSI GS ENI 005 V3.1.1 (2023-06)

1 Scope

The present document specifies the functional architecture of an ENI System, which is a high-level decomposition of an
ENI System into its major components, along with a characterization of the externally visible behaviour (e.g. as defined
by a set of reference points) of the components. Thisincludes:

e defining the functionality and behaviour of a system that satisfy the ENI Requirements (ETSI
GSENI 002 [i.40]);

e defining afunctiona architecture, in terms of Functional Blocks, that addresses the goals specified by the ENI
Use Cases (ETSI GS ENI 001 [3]);

. defining Reference Points used by the above Functional Blocks for all communication with systems and
entities that are external to the ENI System,

e proposing aprogression plan towards full support of the proposed ENI System and intermediary level of
compliance (e.g. support of some architecture components or a subset of the Reference Paints).

The purpose of the present document is to continue the development of ETSI GS ENI 005 [i.53] (V2.1.1) to:
. define and specify APIs, Interfaces, and protocols used by ENI based on information and data models;
. specify the ENI cognition model in detail;

. enhance the description and specification of the ingestion, normalization, and output generation of data,
information, and policies (imperative, declarative, and intent) in greater detail;

. enhance the description and specification of the control loops used in ENI;
e enhance the description and specification of policy management used in ENI;

. enhance the description and specification of architectural principles for interacting with other groups within

and outside ETS!.
2 References
2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GSNFV-MAN 001: "Network Functions Virtualisation (NFV); Management and
Orchestration".

[2] IETF RFC 4949: "Internet Security Glossary, Version 2", Shirey, R., August 2007.

[3] ETSI GSENI 001 (V3.1.1): "Experiential Networked Intelligence (ENI); ENI use cases".

[4] Strassner, John and Agoulmine, Nazim and Lehtihet, E. (2006): "FOCALE: A Novel Autonomic

Networking Architecture”. In: Latin American Autonomic Computing Symposium (LAACS),
2006, Campo Grande, M S, Brazil.

ETSI

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/
https://www.rfc-editor.org/info/rfc4949
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/001/03.01.01_60/gs_eni001v030101p.pdf
https://repository.wit.ie/189/1/2006_LAACS_Strassner_et_al_final.pdf
https://repository.wit.ie/189/1/2006_LAACS_Strassner_et_al_final.pdf

(5]
[6]

[7]
(8]
[9]

[17]

2.2

14 ETSI GS ENI 005 V3.1.1 (2023-06)

Boyd, J. R.: "The Essence of Winning and Losing", June 1995..

Strassner. J.: "Knowledge Representation, Processing, and Governance in the FOCALE
Autonomic Architecture”, chapter 11 of Autonomic Network Management Principles, 2011,
Elsevier.

MEF Standard MEF 78.1: " MEF Core Model (MCM)", July 2020.

MEF Standard MEF 95: "MEF Policy Driven Orchestration (PDO)", July 2021.

ETSI GSENI 019 (V3.1.1): "Experiential Networked Intelligence (ENI); Representing, Inferring,
and Proving Knowledge in ENI".

IETF RFC 7301: "Transport Layer Security (TLS) Application-Layer Protocol Negotiation
Extension”, S. Friedl, A. Popov, A. Langley and E. Stephan, July 2014.

|IETF RFC 8447: "|ANA Registry Updates for TLSand DTLS", J. Salowey, S. Turner, August
2018.

Void.
Void.
Void.

IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", D. Cooper, et a., May 2008.

IETF RFC 6818: "Updates to the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile", P.Y ee, January 2013.

IETF RFC 8399: "Internationalization Updates to IETF RFC 5280", R. Housley, May 2018.

Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE:

While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]

[i.2]

[i.3]

[i.4]

[i.5]

[i.6]

Strassner J.: "Policy-Based Network Management”, Morgan Kaufman, ISBN 978-1558608597,
September 2003.

Strassner J., de Souza J.N., Raymer D., Samudrala S., Davy S., Barrett K.: "The Design of a Novel
Context-Aware Policy Model to Support Machine-Based Learning and Reasoning”, Journal of
Cluster Computing, Vol 12, Issue 1, pages 17-43, March 2009.

Strassner J., van der Meer S., O'Sullivan D. and Dobson S.: "The Use of Context-Aware Policies
and Ontologies to Facilitate Business-Aware Network Management”, Journal of Network and
Systems Management 17(3), pages 255-284, 2009.

Strassner J., Betser J., Ewart R., Belz F.: "A Semantic Architecture for Enhanced Cyber
Situational Awareness', Secure and Resilient Cyber Architectures Conference, MITRE, 2010.

GammakE., Helm R. Johnson R., Vlissides J.: "Design Patterns. Elements of Reusable Object-
Oriented Software", Addison-Wesley, November 1994. |SBN 978-0201633610.

Baumer D., Riehle D., W. Siberski, M. Wulf: "The Role Object Pattern”, Proceedings of the 1997
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
'97), ACM Press, 1997, Pages 218-228.

ETSI

https://fasttransients.files.wordpress.com/2010/03/essence_of_winning_losing.pdf
https://www.elsevier.com/search-results?query=978-0-12-382190-4
https://www.elsevier.com/search-results?query=978-0-12-382190-4
https://www.mef.net/resources/mef-78-1-mef-core-model-mcm/
https://www.mef.net/resources/mef-95-mef-policy-driven-orchestration
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/019/03.01.01_60/gs_eni019v030101p.pdf
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6818
https://www.rfc-editor.org/info/rfc8399

[i.7]

[i.8]
[i.9]

[i.10]

[i.11]

[i.12]

[i.13]

[i.14]

[i.15]

[i.16]

[i.17]

[i.18]

[i.19]

[i.20]
[i.21]
[i.22]
[i.23]

[i.24]

[i.25]
[i.26]
[i.27]

[i.28]
[i.29]

[i.30]

15 ETSI GS ENI 005 V3.1.1 (2023-06)

ChinK.O., Ganb K.S,, Alfred R., Anthony P. and Lukose, D.: "Agent Architecture: An
Overview", Transactions on Science and Technology, vol 1, No 1, pp 18-35, 2014.

Shehory O. and Sturm A. editors: " Agent-Oriented Software Engineering”, Springer, 2014.

Martin R. C.: "Agile Software Development, Principles, Patterns, and Practices"’, Prentice Hall,
2003 ISBN 978-0135974445.

Ritter F.E., Tehranchi F., Oury J.D.: "ACT-R: A Cognitive Architecture for Modeling Cognition",
Wiley Interdisciplinary Reviews, Cognitive Science 10(4): €1488.

IETF RFC 8328: "Policy-Based Management Framework for the Simplified Use of Policy
Abstractions (SUPA)", LiuW., Xie C., Strassner J., Karagiannis G., KlyusM., Bi J., Cheng Y. and
D. Zhang.

Rothenberg, J.: "The Nature of Modelling", Artificial Intelligence, Simulation, and Modeling, John
Wiley and Sons, Inc., 1989, pp. 75-92.

Recommendation I TU-T 9594-1: "Information Technology - Open Systems Interconnection - The
Directory: Overview of Concepts, Models, and Services'.

Recommendation ITU-T 9594-7: "Information Technology - Open Systems Interconnection - The
Directory: Selected Object Classes'.

ETSI GR ENI 003 (V1.1.1): "Experiential Networked Intelligence (ENI); Context-Aware Policy
Management Gap Analysis'.

Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).

Mitchell Tom M.: "Machine Learning”, McGraw-Hill, 978-0070428072.

Gruber Thomas R.: "Toward Principles for the Design of Ontologies Used for Knowledge
Sharing", International Journal of Human Computer Studies, Vol 43, pp 907-928, 1993.

Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M.: "Pattern-Oriented Software
Architecture - A System of Patterns', John Wiley and Sons, 1996.

|EEE P7003™: " Algorithmic Bias Considerations'.
Void.

The Moral Machine project demonstration.

Anderson M. and Anderson S.L.: "GenEth: A genera ethical dilemmaanalyzer”, AAAI, pages
253-261, 2014.

Cointe N., Bonnel G. and Boissier O.: "Ethical judgment of agents' behaviors in multi-agent
systems', AAMAS, pages 1106-1114, 2016.

The IEEE™ Global Initiative on Ethics of Autonomous and Intelligent Systems.

Gartner: "Magic Quadrant for Full Life Cycle APl Management”, October 2019.

Koene A., Smith A.L., Egawa T., Mandalh S. and Hatada Y .: "I EEE P70xx, Establishing
Standards for Ethical Technology”, KDD, 2018.

Rao A.S. and Georgeff M.P.: "BDI Agents. From Theory to Practice”, AAAI, 1995.

|EEE™: "Ethically Aligned Design: A Vision for Prioritizing Human Well-being with
Autonomous and Intelligent Systems”.

Famaey J., Latré S., Strassner J. and De Turck F.: "An Ontol ogy-Driven Semantic Bus for
Autonomic Communication Elements', |EEE International Workshop on Modeling Autonomic
Communication Environments, pages 37-50, 2010.

ETSI

https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://sites.ieee.org/sagroups-7003/
http://moralmachine.mit.edu/
https://standards.ieee.org/industry-connections/ec/autonomous-systems.html
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead_v2.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead_v2.pdf

[i.31]
[i.32]
[i.33]

[i.34]

[i.35]

[i.36]

[i.37]

[i.38]

[i.39]

[i.40]
[i.41]

[i.42]

[i.43]
[.44]
[.45]

[i.46]

[i.47]
[i.48]
[i.49]
[i.50]

[i.51]
[i.52]
[i.53]
[i.54]

16 ETSI GS ENI 005 V3.1.1 (2023-06)

OMG: "Semantics of Business VVocabulary and Rules', version 1.5, December 2019.

Attempto Controlled English.

ETSI GR ENI 008 (V2.1.1): "Experiential Networked Intelligence (ENI); InTent Aware Network
Autonomicity (ITANA)".

Hohpe G. and Woolf B.: "Enterprise Integration Patterns’, Addison-Wesey, 2003, ISBN
9780321200686.

ETSI GR ENI 016 (V2.1.1): "Experiential Networked Intelligence (ENI); Functional Concepts for
Modular System Operation™.

ETSI GRENI 017 (V2.1.1): "Experiential Networked Intelligence (ENI); Overview of Prominent
Control Loop Architectures'.

ETSI GR ENI 018 (V2.1.1): "Experiential Networked Interlligence (ENI); Introduction to
Artificial Intelligence Mechanisms for Modular Systems'.

Barrett K., Davy S., Strassner J., Jennings S., van der Meer S., Donnelly W.: "A Model Based
Approach for Policy Tool Generation and Policy Analysis', Global Information Infrastructure
Symposium, 2007.

BBF TR-384: "Cloud Central Office Reference Architectural Framework", January 2018, G.
Karagiannis, D. Hai.

ETSI GSENI 002 (V3.1.1): "Experiential Networked Intelligence (ENI); ENI requirements”.

ETSI TR 103 240: "Powerline Telecommunications (PLT); Powerline communication
recommendations for smart metering and home automation”.

ETSI GSENI 005 (V1.1.1): "Experiential Networked Intelligence (ENI); System Architecture",
September 2019.

Minsky M.: "The Society of Mind", Simon and Schuster, New Y ork, 1988.
GRPC Core.

Fielding R.T.: "Architectural Styles and the Design of Network-based Software Architectures”,
Ph.D. thesis, 2000.

|EEE 7000-2021™: "|EEE Standard Model Process for Addressing Ethical Concerns during
System Design”.

|EEE 7001-2021™: "|EEE Standard for Transparency of Autonomous Systems".
|EEE 7002-2022™: "|EEE Standard for Data Privacy Process'.
|EEE 7006™: "Personal Data Al Agent" (work in progress).

|EEE 7007-2021™: "|EEE Ontological Standard for Ethically Driven Robotics and Automation
Systems'.

gPRC.
OAuth 2.0.
ETSI GSENI 005 (V2.1.1): "Experiential Networked Intelligence (ENI); System Architecture”.

IEEE P7008™: " Standard for Ethically Driven Nudging for Robotic, Intelligent and Autonomous
Systems'.

ETSI

http://attempto.ifi.uzh.ch/site/resources/
https://grpc.github.io/grpc/core/md_doc_g_stands_for.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://grpc.io/docs/guides/auth/
https://oauth.net/2/

17 ETSI GS ENI 005 V3.1.1 (2023-06)

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

abstraction: hiding of unnecessary details to focus on data and information that is relevant for defining a particular
concept or process

NOTE: ETSI GR ENI 003 [i.15], defined abstraction as the "process of focusing on the important characteristics
and behaviour of a concept, and realizing this as a set of one or more elementsin an information or data
model". The above definition is introduced to emphasi ze the importance of hiding (not deleting)
unnecessary details, and more importantly, removing the constraint of use for a model. Abstraction is
fundamentally a mental process that may take the form of model elements, but does not have to.

actor: role, played by an external entity (human or machine), which interacts with the subject of a use case
NOTE: An actor isaways atype of stakeholder (but not vice versa). See stakeholder.

agent: computational process that implements the autonomous, communicating functionality of an application:
. softwar e agent: software that acts on behalf of a user or another program

. softwar e autonomous agent: software agent that acts on behalf of the entity that owns it without any
communication from the owning entity

o softwareintelligent agent: software agent that reasons about its environment and take the best set of actions
to satisfy a set of goals

NOTE: This hasthe connotation of containing Al mechanisms to provide the reasoning and decision-making
capabilities.

. softwar e multi-agent: set of software agents that are physically separate that work together to satisfy a set of
goals

anomaly: measurable consequences of an unexpected change in state of a datum, or set of data, which is outside of its
local or global norm

API: set of communication protocols, code, and tools that enable one set of software components to interact with either
ahuman or a different set of software components

NOTE: Thisisaso known asan Application Programming Interface.

API Broker: software entity that mediates between two systems with different APIs, enabling the two different systems
to communicate transparently with each other

ar chitecture: set of rules and methods that describe the functionality, organization, and implementation of a system:

. cognitive architecture: system that learns, reasons, and makes decisions in a manner resembling that of a
human mind

NOTE 1: Specifically, the learning, reasoning, and decision-making is performed using software that makes
hypotheses and proves or disproves them using non-imperative mechanisms that typically involve
constructing new knowledge dynamically during the decision-making process.

. deliberative ar chitecture: symbolic world model that enables problem-solving components to be built using a
sense-plan-act paradigm

. hybrid ar chitecture: system made up of reactive and deliberative components that are combined into a
hierarchy of interacting layers, where each layer reasons at a different level of abstraction

ETSI

18 ETSI GS ENI 005 V3.1.1 (2023-06)

e reactivearchitecture: system that isaware of changes that affect its computations and adjusts accordingly

NOTE 2: The adjustment is made by reacting to an event in real-time without centralized control. The availability
of new information drives program logic execution.

. softwar e ar chitecture: high-level structure and organization of a software-based system. this includes the
objects, their properties and methods, and relationships between objects

assisted system: system that the ENI system is providing recommendations and/or management commandsto is
referred to as the "assisted system"

axiom: statement that is assumed to be true, in order to serve as a starting point for further reasoning

bias: systematic difference in treatment of certain objects, ideas, or people in comparison to others:
. algorithmic bias: agorithm that possesses systematic and repeatable errors that create unfair outcomes
. emer gent bias: reliance on an algorithm that has not been adjusted to eval uate new forms of data

. inductive bias. set of assumptions that are used in a machine learning algorithm are used to predict outputs for
inputs that it has not encountered

Bidirectional Encoder Representations from Transformers (BERT): unsupervised deep learning strategy that
utilizes bidirectional models that considers all words of the input sentence simultaneously and then uses an attention
mechanism to develop a contextual meaning of the words

blackboard: architecture that uses a shared workspace that a set of independent agents contribute to, which contains
input data along with partial, alternative, and completed solutions

BSS-like functionality: used to support customer-facing activities for the operator
NOTE: Examplesinclude customer service, rating, order management, billing, and settlement.
capability: type of metadata that represents a set of features that are available to be used from a managed entity

NOTE: These features may, but do not have to, be used. These features may represent all or a subset of the
functionality provided by a managed entity. Since a Functional Block is atype of managed entity,
Capabilities can be defined for Functional Blocks as well. A Capability provides information about the
functionality of a managed entity that enables management entities to decide whether that managed entity
is useful for agiven task.

case-based reasoning: use of existing experiences and knowledge to understand and solve new problems

catastrophic for getting: tendency of an artificial neural network to forget previously learned information when
learning new information

class: template for defining a specific type of object that exhibits a common set of characteristics and behaviour:
. abstract class. classthat cannot be directly instantiated
. concrete class: class that can be directly instantiated

classifier: procedure that predicts which elements of a set belong to which (pre-defined) classes:

NOTE 1. The classification is done using training data whose category membership is known, and can be thought
of asafunction that assigns a new observation a class label.

. binary classifier: classifier that decides whether or not an input belongs to one of two groups (i.e. classes)
based on a classification function

. discriminative classifier: classifies an object based on the class |abels

NOTE 2: Thisdirectly estimates the conditional probability of P(Y [X). An exampleislogistic regression.

ETSI

19 ETSI GS ENI 005 V3.1.1 (2023-06)
. gener ative classifier: classifier that learns amodel of the joint probability of an input x and the label y, uses
Bayes rulesto calculate p(Y [X), and then assigns the most likely label
NOTE 3: Thisestimates P(Y |X) by estimating P(Y) and P(X]Y). An example is Naive Bayes classifier.

. hierar chical classifier: classifier that mapsinput datainto atree-like set of output categories by first,
classifying at alow level, and then iterating each lower-level classification into a higher-level classification

. linear classifier: classifier that assigns alabel based on alinear combination of its features

. probabilistic classifier: classifier that assigns alabel to an object based on a (conditional) probability
distribution

clustering: grouping of a set of objects such that objectsin the same group are more similar to each other, by one or
more measures, than to other objectsin other groups

cognition: process of acquiring and understanding data and information and producing new data, information, and
knowledge:

. cognition model: computer model of how cognitive processes, such as comprehension, action, and prediction,
are performed and influence decisions

collaborating: two or more managed entities cooperate to accomplish a given task

compiler: computer program that translates the content of a source programming language into a different, or target,
programming language

concept drift: not taking changing data and its meanings into account when training an ML model

context: collection of measured and inferred knowledge that describe the environment in which an entity exists or has
existed

control loop: mechanism that senses the performance of an object or process being controlled to achieve desired
behaviour:

. adaptive closed control loop: closed control loop whose controlling function adapts to the object or process
being controlled using parameters that are either unknown and/or vary over time

. closed control loop: control loop whose controlling action is dependent on feedback from the object or
process being controlled

NOTE 1: Thistype of control loop measures the difference between the actual and desired val ues of a set of
variables to adjust a set of parameters to change the behaviour of the system to bring the actual value
closer to that of the desired value.

. cognitive closed control loop: closed control loop that selects data and behaviours to monitor that can help
assess the status of achieving a set of goals, and produce new data, information, and knowledge to facilitate the
attainment of those goals

. distributed closed control loop: closed control 1oop whose components are physically distributed among
different locations

o federated closed control loop: set of semi-autonomous closed control loops that use formal agreementsto
govern their interaction and behaviour

. hierar chical closed control loop: closed control loop that is organized in the form of atree

. open control loop: control loop whose controlling action is independent of the output of the object or process
being controlled

NOTE 2: Thistype of control loop does not link the control action to the object or process being controlled (it
simply continues to apply the control action).

. peer closed control loop: two or more closed control loops that may interact, but are independent of each
other

ETSI

20 ETSI GS ENI 005 V3.1.1 (2023-06)

coupling: amount of interdependence between two components, modules, or systems
data mining: procedure that discovers patterns in, and extracts knowledge from, data sets
NOTE: For the purposes of ENI, these patterns are of two principal types:
1) patternsthat cause the generation of data; and
2) patternsthat relate data (typically in a semantic manner).

decidable: procedure that determines, by a mathematical formal meansin afinite amount of time, whether aformulais
valid

decision making: set of processes that result in the selection of a set of actions to take from among severa alternative
possible actions

denormalization: process of changing information from a canonical form to one specialized for a particular actor
and/or domain

designated entity: operator, nms, ems, controller, or orchestrator acting on behalf of the assisted system
NOTE: The designated entity is atrusted system, (atype of trusted entity [2]).
design pattern: general, reusable solution in a given context to a commonly occurring software problem:

NOTE: Thistype of design patternis not an architecture and not even afinished design; rather, it describes how
to build the elements of a solution that commonly occurs. It may be thought of as a reusable template.

. design pattern, architecture: general, reusable solution in a given context to acommonly occurring problem
in the design of the software architecture of a system

e design pattern, software: general, reusable solution in a given context to a commonly occurring problemin
the design of a software system

domain: collection of Entities that share a common purpose:

NOTE 1: Each congtituent Entity in a Domain is both uniquely addressable and uniquely identifiable within that
Domain. Thisis based on the definition of an MCMDomain in [7].

e administrative domain: domain that employs a set of common administrative processes to manage the
behaviour of its constituent Entities

NOTE 2: Thisisbased on the definitionin [7].

e management domain: domain that uses a set of common Policies to govern its constituent Entities

NOTE 3: A Management Domain refines the notion of a Domain by adding three important behavioural features:
1) it definesaset of administrators that govern the set of Entities that it contains;

2) itdefinesaset of applications that are responsible for different governance operations, such as
monitoring, configuration, and so forth;

3) it definesacommon set of management mechanisms, such as policy rules, that are used to govern
the behaviour of MCMManagedEntities contained in the MCMManagementDomain. This is based
on the definition of an MCMDomainin [7].

ENI Interface: point across which two or more components exchange information:

. ENI API Interface: ENI Interface set of communication mechanisms through which a devel oper constructs a
computer program

. ENI Hardware Interface: ENI Interface across which electrical, mechanical, and/or optical signals are
conveyed from a sender to one or more receivers using one or more protocols

. ENI Software Interface: ENI Interface point through which communication with a set of resources
(e.g. memory or CPU) of a set of objectsis performed

ETSI

21 ETSI GS ENI 005 V3.1.1 (2023-06)

ENI Reference Point: logical point of interaction between specific Functional Blocks:

. ENI External Reference Point: ENI Reference Point that is used to communicate between an ENI Functiona
Block and an external Functional Block of an external system

° ENI Internal Reference Point: ENI Reference Point that is used to communicate between two or more
Functional Blocks that belong to the ENI System

entity: object in the environment being managed that has a set of unique characteristics and behaviour
NOTE: Objects are represented by classes in an information model.
ethics: set of principles that govern the moral behaviour of a person or machine:

. consequentialist ethics: agent is ethical if and only if it considers the consequences of each decision and
chooses the decision that has the most moral outcome

. deontological ethics: agent is ethical if and only if it respects obligations, duties, and rights appropriate for a
given situation

. ethical dilemma: situation in which any available decision leads to infringing on one or more ethical
principles

. virtue ethics: agent isethical if and only if it acts according to a set of moral values
feature: (traditionally), individually measurable property of an object under observation
feature: (for ENI), individually measurable characteristic or behaviour of an object being observed:

NOTE 1. Traditionaly, individually measurable characteristics were assigned numerical values. For ENI, these
individually measurable characteristics or behaviours may be allowed to be numeric or other types of
data.

e featureconstruction: creating higher-level features from lower-level features (see feature hierarchy)

o featureengineering: process of transforming raw datainto features that better represent the underlying
problem to the predictive models, resulting in improved model accuracy on unseen data

NOTE 2: Feature engineering is concerned with determining the best representation of the sample datato learn a
solution for a given problem.

o featurehierarchy: tree-like structure of features, where a higher-level object represents the composition of its
lower-level objects

formal: study of (typically linguistic) meaning of an object by constructing formal mathematical models of that object
and its attributes and relationships:

e formal grammar: set of structural rulesthat define how to form valid strings from a language's a phabet that
obey the syntax of the language

formula: finite sequence of symbols from an alphabet that is part of aformal language:
. atomic formula: formulathat does not have logical connectives
o first-order logic formula: well-formed formulathat has a subject and a predicate that can have quantifiers

NOTE 1: First-order logic restricts the predicate to refer to a single subject. Both the universal and existential
guantifiers may be used in constructing a first-order logic formula.

. propositional formula: well-formed formulathat has a unique truth value
e well-formed formula: formulaused in logic that obeys the grammatical rules of its formal language

NOTE 2: Feature engineering is concerned with determining the best representation of the sasmple datato learn a
solution for a given problem.

ETSI

22 ETSI GS ENI 005 V3.1.1 (2023-06)

functional architecture: model of the architecture that defines the major functions of each module, and how each
module interacts with each other

functional block: abstraction that defines a black box structural representation of the capabilities and functionality of a
component or module, and its relationships with other functional blocks

graph: collection of nodes, where some subset of the nodes is connected:

NOTE 1: Visually, anodeisa"point" and aconnectionisa"line", called an "edge". For the purposes of ENI, any
graph may be directed, weighted, or both.

. directed graph: graph where each connection, or edge, has an associated direction

. graph loop: edge of a graph that joins a vertex to itself

NOTE 2: For ENI, graph loops are not permitted.

e hypergraph: graph in which generalized edges may connect more than two nodes

e multigraph: graph in which multiple edges between nodes are permitted

. weighted graph: graph where each connection, or edge, has an associated weight
hyper parameter: learning parameter that is set before the learning processis started:

. algorithm hyperparameter: hyperparameter that affects only the speed and/or quality of the learning process,
and does not affect the mathematical or statistical model used in the learning process (e.g. learning rate)

. model hyper parameter: hyperparameter that selects the mathematical or statistical model used in the learning
process (e.g. size and topology of the ANN)

hypothesis: set of statements for explaining an observation that is not yet known to be true

inter preter: computer program that directly executes code from a programming language without requiring the code to
have been compiled into a machine language program

knowledge: analysis of data and information, resulting in an understanding of what the data and information mean:

NOTE: Knowledge represents a set of patterns that are used to explain, as well as predict, what has happened, is
happening, or is possible to happen in the future; it is based on acquisition of data, information, and skills
through experience and education.

. inferred knowledge: knowledge that was created based on reasoning, using evidence provided

e measured knowledge: knowledge that has resulted from the analysis of data and information that was
measured or reported

e propositional knowledge: knowledge of a proposition, along with a set of conditions that are individually
necessary and jointly sufficient to prove (or disprove) the proposition

knowledge representation: definition of data and information, applied in a particular context, that enables a machine
to understand and use in computations

NOTE: Thisisavailable at http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html.

label: identification of an output value for a given input

NOTE: Supervised learning uses labelled data; semi-supervised learning uses labels for a portion of the training
data (the remaining training data are not labelled); unsupervised learning is based on training data that are
not labelled.

language: structured and well-defined system of communication:

. controlled language: restricted version of asingle Natural Language that uses a subset of the grammar of the
Natural Language

ETSI

http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html

23 ETSI GS ENI 005 V3.1.1 (2023-06)
o Domain Specific Language (DSL): small human-understandable language that uses a higher level of
abstraction to communicate and configure software systems for a particular application domain:
- external DSL: DSL that hasits own custom syntax
NOTE 1: Anexternal DSL is not dependent on another language.
- internal DSL: DSL that defines a specific way to use a host language to give it adifferent feel

NOTE 2: Aninternal DSL does not require a custom compiler or interpreter, because it is embedded into its base
language.

. general purpose language: programming language that can address a wide variety of problems and domains
. natural language: human-understandable language that isis used to interact with a computer program

lear ning: process that acquires new knowledge and/or updates existing knowledge to optimize a function using sample
observations:

NOTE 1: Thelearning process adjusts parameters to minimize observed errors; if the error rate becomes too high,
then the ANN needs to be redesigned.

. active learning: learning algorithm that can query a user interactively to label data with the desired outputs

NOTE 2: The algorithm proactively selects the subset of examples to be labeled next from the pool of unlabeled
data. Theideaisthat an ML algorithm could potentially reach a higher level of accuracy while using a
smaller number of training labels if it were allowed to choose the data it wantsto learn from.

e batch learning: type of offline learning algorithm that is updated (i.e. retrained) periodicaly

. deep learning: use of hierarchical computational models, which are composed of multiple processing layers,
to learn representations of data with multiple levels of abstraction

NOTE 3: This replaces manually-intensive processes, and enables a machine to both learn features and use them to
perform atask. Deep learning can be applied to almost any of the other algorithms defined here, aslong
asthere are at least two hidden layers.

e dictionary learning: use of sparse matrices to represent input data using a linear combination of elements
from a dictionary learned from training data

. distributed data learning: sets of data that are used to train multiple instances of the same model on different
subsets of the training data set in parallel

NOTE 4: The same model isavailableto all computational nodes, so that a single coherent output emerges
naturally by combining each of the model updates

. distributed learning: distribution of machine learning applications to multiple computing nodes

. distributed model lear ning: multiple exact copies of the same data sets are processed by working nodes that
operate on different parts of the model; the resulting model is an aggregate of each of these operations

. ensemble learning: use of multiple learning algorithms to obtain better performance in predicting results than
is possible from using any single learning algorithm

e explanation-based learning: learning generalized problem-solving by analysing solutions to specific
problems

NOTE 5: Explanation-based |earning enables a search procedure, constrained by general domain knowledge related
to the context of the actual problem, to be used to provide more accurate and efficient learning in
knowledge-intensive systems.

o featurelearning: learning representations of datathat make it easier to discover information from raw data
when building different types of predictors (e.g. classifiers)

NOTE 6: This replaces manually-intensive processes, and enables a machine to both learn features and use them to
perform atask.

ETSI

24 ETSI GS ENI 005 V3.1.1 (2023-06)
o federated learning: approach that trains an algorithm across multiple decentralized entities holding local data
samples, without exchanging their data samples

NOTE 7: Each device trains the model on their own local data set, and then each client sends a model or model
update to a centralized service, which aggregates each client's contribution into one global model. The
centralized service then distributes the global model back to the clients.

. incremental lear ning: learning from a continuously changing source of data (e.g. streaming data) that arrives
over time

NOTE 8: Thisisaform of online learning.

. machine learning: use of a series of inputsto build a model, followed by the use of that model to create a
representation, a decision, a prediction, or an answer

NOTE 9: Decisions are made without explicit instructions (e.g. through inferencing or other types of logical
actions). A more formal definitionis"A computer programis said to learn from experience E with respect
to some class of tasks T and performance measure P if its performance at tasksin T, as measured by P,
improves with experience E" [i.17]. It isa subset of Artificial Intelligence genre.

. offline learning: data set being worked on does not change

NOTE 10: This means that parameters defined during the training depend on the entire training data set (e.g. are
global).

. onlinelearning: learning when datais not previoudly available

NOTE 11:1n this approach, data arrives over time, and a model isfirst inferred, and then refined after each
subsequent time step. It is similar to incremental learning, except that it is bounded in time (and possibly
other factors, such as model complexity and resources).

e reinforcement learning: use of software agentsto take actionsin an environment in order to maximize a
cumulative reward

NOTE 12: The learning agent is not told which actions to take, but instead needs to discover which actions yield the
highest reward.

. rule-based lear ning: use of rulesto represent the knowledge of a system

NOTE 13: Thistype of system learns rulesto make decisions, instead of using amodel. These rules are different
than other types of rule-based systems because this set of rules are learned, while rulesin other types of
systems are defined.

. semi-supervised learning: hybridisation of supervised and unsupervised learning, where the training data
consists of both labelled and unlabelled data

. supervised learning: learning afunction that maps an input to an output based on example pairs of labelled
inputs and outputs

e unsupervised learning: learning a function that maps an input to an output without the benefit of the data
being classified or labelled

lexeme: linguistic unit of meaning, consisting of aword or group of words

NOTE: A lexemeisan abstract unit that can have many different forms. For example, ininflectional languages, a
lexeme will have many forms (e.g. present and past). Idioms, as well as expressions, are also lexemes.

lexicon: collection of all words, phrases and symbols used in alanguage, along with their definition(s) and meaning(s)

NOTE: Moreformally, alexicon isthe complete set of morphemesin alanguage, along with their definitions and
grammatical rules, that enables a complete vocabulary to be defined.

location: physical geographic location (e.g. a geocode or a bounding polygon) of an entity (e.g. a server)

NOTE: Contrast this with Placement.

ETSI

25 ETSI GS ENI 005 V3.1.1 (2023-06)

logic: formal or informal language that evaluates a conclusion based on a set of premises:

. alethic logic: representing, using mathematical formalisms, expressions involving necessity, possibility, and
contingency

. defeasible logic: representing, using mathematical formalisms, weak rules that are not necessarily justified by
the fact, and could thus be proven incorrect

NOTE 1: Defeasible logic (and reasoning) uses three types of rules: strict rules that are TRUE, wesk rules that may
be true if no evidence can be found to contradict them, and "defeaters" that represent contradictory
evidence to prove that aweak rule isincorrect.

. deontic logic: representing, using mathematical formalisms, expressions involving obligation, permission, and
the concept of being forbidden

. description logic: family of formal languages that are subsets of first-order logic to ensure decidability and
efficiency

. doxastic logic: representing, using mathematical formalisms, expressions involving the belief of a particular
entity or set of entities

o first-order logic: extension of propositional logic to include predicates and quantification

. fuzzy logic: type of many-valued logic that allows atruth value to be any real number between 0 and 1
inclusive

NOTE 2: Fuzzy logic is most often used to reason about the degree of truth, or probability, in a system.
. modal logic: representing, using mathematical formalisms, expressions involving necessity and possibility

. propositional logic: manipulation of a set of propositions, possibly with logical connectives, to prove or
disprove aconclusion

NOTE 3: Propositional logic does not deal with logical relationships and properties that involve the parts of a
statement smaller than the statement itself. It also called sentential logic, zeroth-order logic, and
propositional (or sentential) calculus.

e temporal logic: representing, using mathematical formalisms, expressions involving time (e.g. it will be, it
will always be, it was, and it has always been)

logic clause: expression made up of afinite set of literals (i.e. literals), including the negation of literals:
NOTE 1: In propositional logic, aliteral isavariable. In predicate logic, alitera isan atomic formula.
. Boolean clause: expression that, when evaluated, produces a value of either true or false
. Fact (clause): Horn clause with no negative literals
. Goal clause: Horn clause without a positive literal
. Horn clause: disunction of literals that contains at most one positive literal
NOTE 2: Thisisalso called adefinite clause. Thisis used in some types of automated theorem proving.
message system: system that transfers data between components

model: representation of the entities of a system, including their relationships and dependencies, using an established
set of rules and concepts:

. data model: representation of concepts of interest to an environment in aform that is dependent on data
repository, data definition language, query language, implementation language, and/or protocol

NOTE 1: Thisdefinitionistaken from[7].

ETSI

26 ETSI GS ENI 005 V3.1.1 (2023-06)
e information model: representation of concepts of interest to an environment in a form that is independent of
data repository, data definition language, query language, implementation language, and protocol
NOTE 2: Thisdefinition istaken from [7].

. machine lear ning model: representation of a deterministic system using mathematical and/or logical
formalisms

NOTE 3: A deterministic system is a system in which successive states of a system are determined by its preceding
state; this means that an algorithm, given a particular input, will always produce the same output

. ML model: machine learning model

e dtatistical model: representation of a non-deterministic system using a set of statistical assumptions that
describe how system data are generated

NOTE 4: Inthis model, randomnessis introduced via defining some variables as stochastic (i.e. their values depend
on the outcome of arandom phenomenon). Thisistypically represented using probability distributions.

Model-Driven Behaviour (M DB): approach in which the behaviour of components, modules of systems are managed
using MDE

NOTE: For ENI, thisappliesto Functional Blocks, not components within a Functional Block.

M odel-Driven Engineering (M DE): approach in which models are central to all phases of the development and
implementation processes

model element: attributes, methods, constraints, relationships, and stereotypes used in constructing a model
mor pheme: smallest unit of meaning in alanguage
negotiation: set of communications that is intended to reach a beneficial outcome for a set of conflicting issues:

e distributive negotiation: zero-sum game, in which each participant assumes that there is a fixed amount of
value to be divided between the (winning) bidders

e integrative negotiation: win-win (or non-zero-sum) game, in which al collaborating participants receive
optimal value

neural network: network of nodes that communicate with other nodes via specialized connections:

NOTE 1: The above technically refersto the biological concept, where anode isaneuron (i.e. nerve cell). ENI will
use the term artificial neural network, or ANN, to refer to the artificial intelligence concept.

e artificial neural network: computing system that learns to perform functions by using artificial neurons that
take the form of a directed, weighted graph

NOTE 2: An ANN learnsto perform afunction by analysing examples (i.e. training data) instead of being
programmed to perform atask.

. artificial neuron: nodein an ANN hat receives weighted input data, adds the data, and produces an output
using a non-linear output function

NOTE 3: The output function is also called a transfer function or activation function, and represents what portion of
the potential action is transmitted.

. feedforward neural network: ANN whose inter-nodal connections do not form a cycle

NOTE 4: Put another way, information always moves forward and never backwards. In general, any directed
acyclic graph is atype of feedforward neural network.

. recurrent neural network: ANN where connected between nodes form a directed graph across atemporal
sequence

NOTE 5: RNNSs contain cyclic connections that make them effective in storing history and state. Thisis done by
using feedback loops in the processing of an output.

ETSI

27 ETSI GS ENI 005 V3.1.1 (2023-06)

normalization: process of changing ingested information to a canonical form
np-complete: class of computational problems for which no efficient solution algorithm has been found
object: instance of a concrete class
ontology (traditionally): explicit specification of a conceptualization [i.18]
NOTE: Thisdefinition isthe basisfor definitionsin OneM2M and SmartM2M.

ontology (for ENI): language, consisting of avocabulary and a set of primitives, that enable the semantic
characteristics of adomain to be modelled

OSSlike Functionality: used to support back-office activities that configure and operate a network for the operator
NOTE: Examplesinclude inventory, configuration management, service assurance, and service activation.

parser: computer program that creates one or more data structures from an input programming language using an
associated formal grammar

per ceptron: supervised learning algorithm for binary classifiers, where the classification function is based on alinear
function that combines the weighted sum of inputs with the feature vector:;

NOTE 1: Since alinear function is used, a perceptron can only distinguish data that islinearly separable (compare
to multi-layer perceptron).

. multi-layer perceptron: type of feedforward ANN that consists of an input layer, an output layer, and one or
more hidden layers

NOTE 2: Since anon-linear function is used, a multi-layer perceptron can distinguish data that is not linearly
separable (compare to perceptron).

placement: logical placement of an entity (e.g. a virtual machine) on or in another entity (e.g. a server)
NOTE: Contrast thiswith Location.

planning: finding a procedural course of action for a declaratively described system to reach its goals while optimizing
overall performance measures

policy: set of rulesthat is used to manage and control the changing and/or maintaining of the state of one or more
managed objects:

NOTE 1: Thisisdefined in[7] and [8], but see also [i.4].

. declarative policy: type of policy that uses statements from aformal logic to describe a set of computations
that need to be done without defining how to execute those computations

o ENI Policy Rules: set of imperative, declarative, and/or intent policy rules
. imper ative policy: type of policy that uses statements to explicitly change the state of a set of targeted objects

NOTE 2: The canonical form of an imperative policy isatriple, consisting of a set of Event, Condition, and Action
Boolean clauses. Conceptually, it is evaluated as: when the Event Clause occurs, |F the Condition Clause
isTRUE, THEN a set of actions may be executed.

e intent policy: type of policy that uses statements from arestricted natural language (e.g. an external DSL) to
express the goals of the policy, but does not specify how to accomplish those goals

NOTE 3: In particular, formal logic syntax is not used. Therefore, each statement in an Intent Policy may require
the trandation of one or more of itstermsto aform that another managed functional entity can
understand.

. policy conflict: two policies that, when executed, cause contradictory and otherwise incompatible results
within a given execution time window

predicate: statement that can be true or false depending on the value of its variables

ETSI

28 ETSI GS ENI 005 V3.1.1 (2023-06)

probability: numerical value defining the likelihood of an occurrent occurring:

. conditional probability distribution: probability of an event occurring given that another event already
occurred

. probability distribution: mathematical function that defines the probability of occurrence of al possible
outcomes of the random phenomenom being observed

process. execution of a set of instructions that produce a result
proposition: statement that can be true or false

NOTE: The above definition, though incomplete, will be used for ENI for this release. Formaly, this definition of
aproposition isused in truth-functional propositional logic.

guantifier: specification of the number of objectsin a given domain that satisfy aformulawith at least one variable:
. existential quantifier: assertion that a property or relation holds for at least one member of adomain
e universal quantifier: assertion that a property or relation holds for all members of adomain

repository: centralized location of a set of storage devices that enable different functional blocks to store and retrieve
information:

. activerepository: repository that pre- and/or post-processes information that is stored or retrieved

NOTE: It may contain dedicated (typically internal) Reference Points that provide the loading, activation,
deactivation, and unloading of specialized functions that change the pre- and/or post-processing
functionality according to the needs of the application.

. passiverepository: repository that stores or retrieves information without pre- or post-processing
sample: set of objects selected or collected from a statistical population using a procedure
SDO system: part of an Assisted System that is defined by another SDO

NOTE: Examplesinclude NFV MANO and MEF LSO.

semantic bus: type of message bus used to orchestrate and filter communications between ENI Functional Blocks
based on the meaning, attributes, and metadata of a message using a shared set of interfaces

semantic closeness. measure of how similar the semantics of two different sets of concepts are

NOTE: Thetypes of semantic relationships may be changed to achieve a closer amount of semantic closeness.
Thisis one important mechanism in the knowledge discovery and alignment processes (see clause 6.3.4
for more information).

semantics: study of the meaning of something (e.g. a sentence or arelationship in a model)
situation: set of circumstances and conditions at a given time that may influence decision-making:

. situation awar eness: perception of data and behaviour that pertain to the relevant circumstances and/or
conditions of a system or process, the comprehension of the meaning and significance of these data and
behaviours, and how processes, actions, and new situations inferred from these data and processes are likely to
evolve in the near future

NOTE: Thisdefinition is based on the material in [i.4].

ETSI

29 ETSI GS ENI 005 V3.1.1 (2023-06)

stakeholder: set of individuals and/or organizations that may affect, be affected by, or perceive themselvesto be
affected by a decision, activity, or outcome of a process

syntax: set of rules that govern how elements of a statement are structured, including what element goes wherein a
statement

telemetry: automated process of recording and transmitting data to receiving equipment for monitoring purposes

NOTE: The processistypicaly automated, and the data transfer may include wireless, cellular, optical, and other
mechani sms.

theorem: set of statements that has been mathematically proven to be true, based on a set of axioms and/or (previously
proven) theorems

training: process of teaching an entity a set of knowledge, skills, processes, and/or behaviours:

e Offlinetraining: phase in machine learning that is used to create a model when the algorithm is not currently
being executed

. online training: phase in machine learning that is used to perform inferencesin real-time (i.e. when the model
is actively being used)

use case: description of a specific configuration/deployment scenario of a system from the user point of view (ETSI
TR 103 240[i.41])

use case (for ENI): list of actions defining the interactions between a set of actors and the system in order to achieve a
goal that has an observable result beneficial to a set of stakeholders

NOTE: The above definition of use case is more applicable for ENI modelling activities. In addition, the list of
actions may consist of different sets of actionsto accomplish agoal.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AAA Authentication, Authorization, and Accounting
ACT-R Adaptive Control of Thought-Rational

AES Advanced Encryption Standard

Al Artificial Intelligence

ALPN Application-Layer Protocol Negotiation

ANN Artificial Neural Network

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BBF BroadBand Forum

BERT Bidirectional Encoder Representations from Transformers
BSS Business Support System

CA Certificate Authority

CLI Command Line Interface

CPU Central Processing Unit

DIKW Data-| nformati on-K nowledge-Wisdom

NOTE: SeeETSI GRENI 016 [i.35].

DSL Domain Specific Language

EMS Element Management System

ENI Experiential Networked Intelligence

FB Functional Block

FOCALE Foundation Observation Comparison Action Learning Environment

ETSI

30 ETSI GS ENI 005 V3.1.1 (2023-06)

FTP File Transfer Protocol

GDPR General Data Protection Regulation
GPL Graphics Purpose Language

GPS Global Positioning System

GPU Graphics Processing Unit

GR Group Report

gRPC gRPC Remote Procedure Call

NOTE: Originaly, gRPC was arecursive acronym (the 'g' stood for gRPC). Now, the 'g' stands for various words
that start with the letter g. See [i.44].

GSENI Group Specification of the Experiential Networked Intelligence | SG
GS Group Specification

GUI Graphical User Interface

HATEOAS Hypermedia As The Engine Of Application State
HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDL Interface Definition Language

loT Internet of Things

IP Internet Protocol

ISG Industry Specification Group

ITU-T International Telecommunications Union - Telecommunication standardization sector
JSON JavaScript Object Notation

KPI Key Performance Indicator

LAN Loca Area Network

LDAP Lightweight Directory Access Protocol

LSO Lifecycle Service Orchestration

LSTM Long Short-Term Memory

MAC Media Access Control

MANO Management and Network Orchestration
MBT Model-Based Trandation

MCM MEF Core Model

MDB Model-Driven Behaviour

MDE Model Driven Engineering

MEF MEF (a Standards body)

ML Machine Learning

MPM MEF Policy Model

mTLS mutual TLS

NER Named Entity Recognition

NFV Network Functions Virtualisation

NFVI Network Functions Virtualisation Infrastructure
NFVO Network Functions Virtualisation Orchestrator
NMS Network Management System

OAuth Open Authentication

OODA Observe-Orient-Decide-Act

OPEX OPerational EXpenditures

0SS Operations Support System

PMFB Policy Management Functional Block

RA Reference Architecture

RAML RESTful API Modelling Language

RDBMS Relational DataBase Management System
REST Representational State Transfer

RMI Remote Method Invocation

RNN Recurrent Neural Network

ROA Resource Orientated Architecture

RPC Remote Procedure Call

SBVR Semantics of Business VVocabulary and business Rules
SDN Software Defined Network

SDO Standards Defining Organization

SLA Service Level Agreement

SQL Structured Query Language

SSL Secure Socket Layer

ETSI

31 ETSI GS ENI 005 V3.1.1 (2023-06)

TCP Transmission Control Protocol
TLS Transport Level Security
TR Technical Report
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF Unicode Transformation Format
VIM Virtualised Infrastructure Management
VNF Virtualised Network Function
VNFM Virtualised Network Function Manager
VOLTE Voice over Long-Term Evolution
VPN Virtual Private Network
WADL Web Application Description Language
WAN Wide Area Network
WG Working Group
WSDL Web Service Description Language
XML eXtensible Markup Language
YANG Y et Another Next Generation
4 Overview of System Architecture (informative)
4.1 Introduction

This clause provides an informative introduction to the ENI System Architecture. Clauses 4.2 and 4.3 describe the
motivation and benefits of ENI. Clause 4.4 provides a high-level description of the ENI System Architecture, including
how it interacts with the Assisted System (and/or its Designated Entity), different types of Assisted Systems, the mode
of operation that the Assisted System (or its Designated Entity) can choose, direct and indirect communication between
the ENI System and the Assisted System (or its Designated Entity), and important concepts used in this System
Architecture. Clause 4.5 describes the functional architecture of the ENI System in terms of Functional Blocks. It ends
with a discussion of how decision-making is done in the ENI System.

NOTE: Seeclause 9 for further applicable future work.

4.2 Motivation for ENI

Current network management provisioning and monitoring functions are time-consuming and error-prone. Thisis due
to the proliferation of different technologies, as well as different implementations from different vendors. In addition,
users are demanding more complex services (e.g. context-aware, personalized services). Hence, operators are concerned
about the increasing complexity of integration of different platformsin their network and operational environment.
These human-machine interaction challenges increase the time to market of innovative and advanced services.
Moreover, thereis no efficient and extensible standards-based mechanism to provide context-aware services (e.g.
services that adapt to changes in user needs, business goals, or environmental conditions).

These and other factors contribute to a very high OPerational EX penditure (OPEX) for network operation and
management. Operators need to optimize the use of networked resources (e.g. through the automation of their network
configuration and monitoring processes to reduce this OPEX). More importantly, operators need to improve the use and
maintenance of their networks.

Indeed, operators are concerned about decreasing the number of the operator's personnel dedicated to managing the
infrastructure (e.g. how many people are required to control a given number of network devices, or particular structures,
such as SD-WANS). This requires improved automation and real-time closed control loops. Operators are also keenly
interested in improving infrastructure efficiencies. For example, it islikely that 5G and |oT are expected to have
complex interactions between different sets of network devices. Concurrently, user needs, business goals, and the
environment frequently change. Thus, network intelligence is needed to detect these contextual changes, determine
which groups of devices and services affect each other, and manage the resulting services while maintaining Service
Level Agreements (SLAS).

ETSI

32 ETSI GS ENI 005 V3.1.1 (2023-06)

To accomplish these targets, the associated challenges are stated as:

a) automating complex human-dependent decision-making processes (e.g. managing and optimizing network and
system configuration processes) by providing system and network intelligence tools and services;

b) determining which services need to be offered, and which of those services are in danger of not meeting their
Service-Level Agreements (SLAS), asafunction of changing context;

c) determining how to avoid service performance degradation through analysis that leads to further automated
and intelligent operations;

d) defining how best to visualize how network services are provided and managed to improve network
mai ntenance and operation;

€) providing an experiential architecture (i.e. an architecture that uses Artificial Intelligence (Al) and other
mechanisms to improve its understanding of the environment, and hence the operator experience, over time);

f) improving operator's personnel efficiency through improved management and automation, while providing
increased visibility and a simplified interface between the operator and the networks and networked
applications; this reduces errors and makes human-directed commands more efficient and intuitive; and

g) improving infrastructure utilization and agility (response to real-time changes) while maintaining SLAs. The
deployed networks and systems likely need to be aware of the needs of Services and Applications, and handle
environmental changes in an automated way without human involvement.

4.3 Benefits of ENI

The ENI System defines a Functional Block architecture that hel ps address the seven challenges of clause 4.2. It
specifies Functional Blocks and Reference Points for providing a model-based, policy-driven, context-aware system
that provides recommendations and/or commands to Assisted Systems. This communication isto be done directly or
indirectly viaa Designated Entity acting on the behalf of the Assisted System. A Designated Entity isan NM S, EMS,
controller, or current or future management and orchestration systems. The ENI System is expected to enable the
Assisted System to perform more accurate and efficient decision making.

The ENI System provides the following important benefits:
1) tomeasure and quantify the operation and performance of the resources and services of an operator;
2) toenable personalized servicesto be provided to customers;
3) tolearnfrom the operation of the network, and decisions made by the operator;

4) to automate the operator's complex human-dependent decision-making processes by translating changing user
needs, business goals, and environmental conditionsinto closed-loop configuration and monitoring;

5) to enable the optimization and adjustment of resources and services managed by the operator, as well as
associated tools and applications needed by the operator to conduct business.

The ENI System is based on an experiential architecture. This meansthat it learns through experience (i.e. through the
operation of the systemsthat it assists in governing). This self-learning principle is key to improving operator
experience, and enables the system to evolve over time from proposing to implementing decisions.

The ENI architecture enables the operator to adjust the offering of servicesin response to contextual changes. It is
expected that an ENI System enabl es the deployment, administration, and control of migration toward new
technologies, such as SDN and NFV.

ETSI

33 ETSI GS ENI 005 V3.1.1 (2023-06)

4.4 High-Level Description of the ENI System Architecture

4.4.1 Overall Description

Carrier and Enterprise network architectures are becoming increasingly complex and diverse. For example, it is possible
to split asingle application into separate distributed entities. As another example, managers, controllers, and
orchestrators are also being distributed, making their interaction critical. Furthermore, the network and applications use
new technologies and are programmed in diverse languages. Therefore, it is becoming more and more difficult to
realize potential and significant reductions in CapEx and OpEx. A primary goal of ENI isto provide arobust,
distributed platform that uses modelling, policy management, and Al to solve these problems.

The ENI System is an innovative, policy-based, model-driven functional architecture that improves operator experience.
In addition to network automation, the ENI System assists decision-making of humans as well as machines, to enable a
more maintai nable and reliable system that provides context-aware services that more efficiently meet the needs of the
business. For example, the ENI System enables the network to change its behaviour (e.g. the set of services offered) in
accordance with changes in context, including business goals, environmental conditions, and the varying needs of
end-users.

Thisisachieved by using policy-driven closed control loops that use emerging technologies, such as big data analysis,
anaytics, and artificial intelligence mechanisms, to adjust the configuration and monitoring of networks and networked
applications. It dynamically updates its acquired knowledge to understand the environment, including the needs of
end-users and the goals of the operator, by learning from actions taken under its direction as well as those from other
machines and humans (i.e. it is an experiential architecture). It also ensures that automated decisions taken by the ENI
System are correct and increase the reliability and stability, and lower the maintenance required, of the network and the
applications that it supports. It improves and simplifies the management of network services through their visualization,
and enables the discovery of otherwise hidden trends and interdependencies.

Finally, it helps determine which services are appropriate to be offered for a specific context, and which services arein
danger of not meeting their Service-Level Agreement (SLA), asafunction of changing context. In order to achieve the
latter and to assist in monitoring and improving infrastructure efficiencies, it draws knowledge from telemetry shared
with it.

It is possible to use the ENI System to advise on balancing the resources or availability of the network elements or
function used to provide the services.

NOTE: Thegoal of the present document, at this stage in the industry evolution of AI/ML, isto ensure proper
management mechanisms are present in any control loop used within the ENI System. This enables the
ENI System or a human operator to manage the degree of autonomicity used within the control loop. This
applies to passive and active recommendations and commands (e.g. monitoring information and sending
reconfiguration commands), which in turn ensures the prevention of undesired outputs.

4.4.2 The Assisted System

4421 Introduction

The system that the ENI System is providing recommendations and/or management commandsto isreferred to as the
"Assisted System™. Within the current scope of ENI, there are three classes of Assisted Systems. In each case, an ENI
System requires data from the Assisted System. Changes to the Assisted System are not required for any class of
Assisted System in order to facilitate the use and rapid adoption of ENI.

The ENI System uses an API Broker to mediate between the ENI System and the Assisted System (regardless of its
class). Thisis because the ENI System and the Assisted System typically have different APIs. The API Broker defines
the correct way for one system to request services from the other system without requiring an ENI System to understand
the details of every APl of every Assisted System that wants to communicate with it. All communication is done using
external Reference Points.

ETSI

34 ETSI GS ENI 005 V3.1.1 (2023-06)

The Assisted System and/or its Designated Entity do not have to accept the recommendations offered by an ENI System
when in recommendation mode. It is expected that the Assisted System and/or its Designated Entity accept the
recommendations and/or commands offered by an ENI System when in management mode. This includes those
decisions that apply to recommendations and commands, respectively, when the Assisted System isin a mixed mode of
operation. These different operational modes are defined in clause 4.4.3, and specified as requirements [MOP15] and
[MOP16] in clause 5.3.

4.4.2.2 Communication Options for All Classes of Assisted Systems

There are two common options for communication between an System ENI and the Assisted System. These two options
are shown in Figure 4-1.

1) Inoption 1, an ENI System communicates, using its APl Broker, with the Operator or Designated Entity of the
Assisted System. Dataingestion by an ENI System (e.g. "telemetry data') and assistance in response from an
ENI System (e.g. "recommendations and commands') are communicated viathe APl Broker. Thisisshownin
Figure 4-1 by using the solid red line and solid blue line, respectively. All communication is defined by the
capabilities of the ENI API; hence, additional communication types not shown in Figure 4-1 are also possible.

2) Inoption 2, an ENI System preferentially communicates with the APIs of the Assisted System to conduct data
ingestion and assistance response. Thisis again shown in the figure by the combination of red line and blue
lines. All communication is defined by the capabilities of the ENI API. Hence, additional communication
types not shown in Figure 4-1 are also possible. Both communication alternativesin option 2 are able to be
used interchangeably.

The dashed brown line in option 2 shows that there are two alternative communication options.

Both communication alternatives are able to be used interchangeably. For example, the API of the Assisted System
(e.0. the solid blueline) is used to implement some policy changes, while other policy changes are implemented by
communicating directly to the operator or Assisted System (e.g. the dashed brown line).

OPTION 1 OPTION 2

Alternative 2: bi-directional communication between _|
ENI and the Assisted System

v% Telemetry and Other Data Sent to ENI

Recommendations and
Commands Sent from ENI

APIIS ilabl
for use by ENI

APl is NOT available

o
for use by ENI and C

Sent from ENI

Alternative 1: R

API Broker

Alternative 1: Telemetry and
Other Data Sent to ENI

| Functional Blocks |

Functional Blocks

Assisted System Assisted System

Figure 4-1: Two Common Communication Options of Classes of the Assisted System

For illustration purposes, in option 2, API trangation is performed by the API Broker between a standard API provided
by ENI and the API of the Assisted System (or its Designated Entity) that is communicating with an ENI System. This
trandation is external to the ENI System, because each Assisted System (or Designated Entity) typically hasits own
unique API. It isdesirable to insulate an ENI System from the specific details of the Assisted System, so that it does not
have to change with every change of APIs of the Assisted System. Thus, an API Broker isused, and functionsas a
gateway between the constant standardized set of APIs provided by an ENI System and the varying set of APIsthat are
particular to each individual Assisted System. Alternatively, the ENI System communicates with the Operator or
Designated Entity of the Assisted System using the API Broker in option 2.

ETSI

35 ETSI GS ENI 005 V3.1.1 (2023-06)

4.4.2.3 Class 1: An Assisted System that has No Al-based Capabilities
Thistype of Assisted System has no Al-based decision-making capabilities. Two options are shown in Figure 4-2.

OPTION 1 OFHION. 2

V% Telemetry and Other Data Sent to ENI - Alternative 2: bi-directional communication between]
ENI and the Assisted System |

|

|

and
Commands Sent from ENI

API IS available
for use by ENI Alternative 1: dationsand C
Sent from ENI

APl is NOT availabl
for use by ENI

API Broker

Alternative 1: Telemetry and
Other Data Sent to ENI

‘ Functional Blocks |
Functional Blocks

Assisted System Assisted System

Figure 4-2: Class 1: The Assisted System Has No Al Capabilities

This class of Assisted System has no Al capabilities, so an ENI System operates as an external system that
communicates with the Assisted System through standard Reference Points and APIs defined by ENI. In addition, most
Assisted Systems of this class were not designed to accommodate new internal modules, so ENI needs to be
incorporated as a discrete external system. The Assisted System and its Designated Entity are likely not able to use the
outputs of the ENI System to their full potential, due to their lack of having Al capabilities.

In this class of Assisted System, the ENI System is not involved in making decisions in the real-time control loop of the
Assisted System. The ENI System sends recommendations and/or management commands to improve decisions that do
not involve real-time configuration (e.g. change some statically defined parameters to improve resource utilization). The
burden ison ENI (and the API Broker, in the case of APIs) to present itsresultsin aform that the Assisted System is
able to understand. Hence, nothing has to change in the Assisted System in order for ENI to be used.

4424 Class 2: An Assisted System with Al that is Not in the Control Loop

Thistype of Assisted System has some Al-based decision-making capabilities. Two options are also possible as shown
in Figure 4-3.

Alternative 2: bi-directional communication between j

_% Telemetry and Other Data Sent to ENI
) ENI and the Assisted System |

API IS ilabl:
for use by ENI

Alternative 1: Recor dations and C
Sent from ENI

APl is NOT available Recommendations and
for use by ENI Commands Sent from ENI

API Broker

Alternative 1: Telemetry
and Other Data
Sentto ENI

Al Functional Blocks

Other Functional Blocks

Assisted System

Assisted System

Figure 4-3: Class 2: Assisted System with Al, but Not in the Control Loop

This class of Assisted System uses some Al-based algorithms, but critically, does not use Al initsinternal control loop.
For example, optimization of the physical server location, virtual machine, and/or Container placement on a server, as
well as the geographic location of the server, islikely performed using an Al-algorithm by this class of Assisted
System. However, for this class of Assisted System, the ENI System is not involved in making decisionsin the real-
time control loop of the Assisted System. The ENI System sends recommendations and/or management commands to
improve decisions that do not involve real-time configuration (e.g. as indicated above, change some statically defined
parameters to improve resource utilization). This class of system works as an extension of class 1.

ETSI

36 ETSI GS ENI 005 V3.1.1 (2023-06)

The architectural details of the Assisted System for class 2 systems are not visible to ENI. The two types of Functional
Blocks shown in Figure 4-2 (i.e. "Al Functional Blocks" and "Other Functional Blocks') are meant to illustrate the
separation of Al and non-Al Functional Blocks, and emphasize that Al Functional Blocks are not involved in rea-time
operational decisions.

Again, asfor Class 1, a Class 2 Assisted System is not designed to directly accommodate all of the features provided by
an ENI System. Hence, ENI operates as an external system that communicates with the Assisted System and/or its
Designated Entity, as shown in Figure 4-3. The burden is on ENI (and the API Broker, in the case of APIS) to present its
resultsin aform that the Assisted System and its Designated Entity are able to understand. Hence, nothing has to
change in the Assisted System, or its Designated Entity, in order for ENI to be used.

4425 Class 3: An Assisted System with Al Capabilities in its Control Loop

44251 Introduction

Thistype of Assisted System has Al-based decision-making capabilities as part of itsinternal control loop. Two options
are shown in Figure 4-4. Both of these options are shown using the API of the Assisted System. While thisis not
mandated, the lack of APl communication in a Class 3 system means that it cannot take advantage of real-time
operational changes from an ENI System and hence, will behave like a Class 2 system.

Alternative 2: bi-directional communication between
Alternative 2: bi-directional communication between - ENI and the Assisted System
Operator — _E‘l\iaﬂ the AsslstediSystam . -5 5 oon Operator & Alternative 1: Rec dations and Ci g |
Sent from ENI

.

jons and C
Sent from ENI

Alternative 1:

Alternative 1: Telemetry
and Other Data Sent to ENI

oy
- =
=1

Assisted Systems

Alternative 1: Telemetry
and Other Data
Sent to ENI

’ Other Functional Blocks

Closed

Control Loop

Assisted System

Figure 4-4: Class 3: Assisted System with Al in the Control Loop

This class of Assisted System optionally has other Al capabilities. The ENI System isinvolved in making decisions for
any function performed by the Assisted System, as long as it has permission to do so. Significantly, thisincludes
real-time decisions for this class of Assisted System. Thisis afundamental difference between this class of Assisted
System and those of Classes 1 and 2.

44252 Class 3 Options

442521 Introduction

There are two different options for using an ENI System with the control loop(s) of class 3 Assisted Systems. The first
option (shown on the left of Figure 4-4) uses an ENI System as a modular addition that is able to directly affect the
control loop(s) of the Assisted System through APl commands. The second option (shown on the right of Figure 4-4)
enables an ENI System to communicate its recommendations and commands to one or more Assisted Systems using a
communication mechanism that the set of Assisted Systems use. This alternative enables an ENI System to
communicate with distributed arrangements of collaborating Assisted Systems.

ETSI

37 ETSI GS ENI 005 V3.1.1 (2023-06)

442522 Option 1 Feedback

Option 1 emphasizes two key points:
e AnENI System isonly communicating with a single Assisted System (compared to option 2).
. The Assisted System has one or more closed control loops.

Since thereisonly asingle Assisted System, ENI is concerned with managing and optimizing the performance of just a
single Assisted System.

An ENI Systemis not aware of the number or type of control loops that the Assisted System has. Two typical types of
control loops are shown in Option 1.

For informational purposes, the first type of control loop is to feedback information from the control loop to other
Functional Blocks; this enables the control loop to affect the behaviour of multiple Functional Blocks (regardless of
what type of task each Functional Block performs). The second type of control loop isto feedback information viathe
API. This enables Functional Blocks that are in different administrative domains to participate in behavioural decisions
that are allowed by their containing administrative domain. This theoretically enables an ENI System to tap into the
control loop of the Assisted System. However, thisis not appropriate for some real-time decisions due to the
communication and security constraints of using an API [2]. For example, a delay in communication caused by using
the API (versus, for example, remote method invocation or other types of communication), as well as additional time
required to secure the communication between two entities that are not co-located, islikely not going to be acceptable
in certain scenarios.

442523 Option 2 Communication
Option 2 emphasizes two key points:
o ENI is communicating with multiple Assisted Systems (compared to option 1).

. For some scenarios, ENI does not have to be aware that it is communicating with a particular Assisted System,
whereas in other scenarios, it does.

In one set of scenarios, an ENI System does not differentiate between Assisted Systems. Thisis common for
collaborative scenarios in which each Assisted System has the same capabilities and responsibilities. An ENI System
registers or otherwise logs that it is communicating with specific Assisted Systems, aslong asit is either
communicating with them directly or istold that a particular Assisted System is communicating with it. For example,
this may be necessary if agiven Assisted System is acting as a Controller, and other Assisted Systems are dependent on
the decisions of it. Another example is a peer-to-peer architecture. In a different set of scenarios, an ENI System needs
to be aware of a specific Assisted System, since the set of Assisted Systems do not have the same capabilities and
responsibilities.

442524 Working as an External Discrete System

In both Class 3 aternatives, an ENI System also works as its own discrete system external to the Assisted System, as
shown in Figure 4-4. However, most Assisted Systems of this class were not designed to accommodate new internal
modules, so ENI needs to be incorporated as a discrete external system. The burden ison ENI (and the API Broker, in
the case of APIs) to present its resultsin aform that the Assisted System (or its Designated Entity) are able to
understand. Hence, nothing has to change in the Assisted System, or in its Designated Entity, in order for ENI to be
used.

4.4.2.6 Summary of Interaction between the Assisted System and ENI

In each of the above classes of Assisted System, the ENI System interacts with either the Assisted System directly, or
with the Designated Entity of the Assisted System. The Assisted System does not need to know if it is communicating
with the ENI System or with the operator, an EMS, an NMS, or a controller. The point isto reduce the barrier of
adoption for using an ENI System by not requiring new APIs from the Assisted System to interact with the ENI System.
The use of an API Broker insulates the ENI System from having to know what entity it is specifically communicating
with.

Common Features are shown in Table 4-1.

ETSI

38 ETSI GS ENI 005 V3.1.1 (2023-06)

Table 4-1: Common Characteristics and Behaviour of Assisted Systems

Feature

Class 1 Assisted System

Class 2 Assisted System

Class 3 Assisted System

Assisted System

Assisted System

making

Need to Change to NO NO NO
Use ENI?
Al Capabilities of NONE Only in non-real-time decision |Real- or non-real-time

decision making

Scope of Assisted
System APIs

None in Option 1, limited to
non-Al functionality in Option 2

None in Option 1, limited to
non-Al functionality in Option 2

Real- or non-real-time
decision making

Communication
Types

Option 1: through Operator or
Designated Entity;
Option 2: through APIs

Option 1: through Operator or
Designated Entity;
Option 2: through APIs

Option 1: communication
with a single Assisted
System using APIs;
Option 2: communication
with one or more Assisted
Systems using APIs

ENI Operation as an
External System to
Assisted System

YES; embedding is not an
option (see clause 6.2.3.1)

YES; embedding is not an
option

YES; embedding is not an
option

Directly Affect

Assisted System

Control Loop? NO NO YES
ENI is able to interact)
with modules of NO NO YES, as defined by the

Assisted System

4.4.3

Communication and Interaction with Other External Systems

All standardized communication between the ENI System and the Assisted System (or its Designated Entity) uses
External Reference Points, which are defined in clause 7 of the present document. The ENI System is defined as a set of
Functional Blocks (see clause 6.3 and ETSI GR ENI 016 [i.35], clause 4.2). Functional Blocks define a recursive
mechanism to represent functionality with well-defined inputs and outputs; if these inputs and/or outputs are meant to
be interoperable, then they are defined as Reference Points. An External Reference Point (see clauses 4.4.6.1, 7.2 and
7.3) is a Reference Point between an ENI System Functional Block and an external system, whereas an Internal
Reference Point (see clauses 4.4.6.2, 7.6 and 7.7) is a Reference Point between different ENI System Functional Blocks.

4.4.4 Mode of Operation

4441 Allowed Modes of Operation

The ENI System operates in two different modes, called "recommendation mode" and "management mode".

The operation of the ENI System in recommendation mode is analogous to that of a Recommender system - it provides
recommendations to the Assisted System. In contrast, when the ENI System is operating in management mode, the ENI
System provides decisions and commands to be implemented by the Assisted System. These decisions and commands
are subject to the approval of the Assisted System (or its Designated Entity).

The ENI System supports a recommendation mode and optionally supports a management mode of operation. A mixed
mode of operation (i.e. the combination of recommendation and management modes) for different sets of decisionsis
also optionally supported. Both modes may be used with the same Assisted System. For example, if the Designated
Entity of the Assisted System decides that recommendations belonging to a particular category have been verified, it
then changes decisions for that category to operate in management mode; this is done independently of other categories,
so that other operations stay in recommendation mode.

4.44.2 Setting the Mode of Operation

The ENI System initially sets the mode of operation. In order to do that, the ENI System selects its mode of operation
based on the capabilities of the Assisted System (see[7] for adefinition of capabilities from the MEF Core Model),
along with other applicable information (e.g. regulatory policies, status of the infrastructure, and goalsinput by the
operator) in agiven context or situation. All standardized communication between the ENI System and the Assisted
System is through Reference Points defined in the present document (see clause 4.4.6).

ETSI

39 ETSI GS ENI 005 V3.1.1 (2023-06)

The ENI System optionally has a default mode of operation that is used when:
1) theENI Systemisinitialized; and/or
2) aclassof decisionsisreached that is not specified by the Assisted System.

For example, suppose the user has specified how to handle best effort traffic, but not how to handle prioritized service
classtraffic. In thisexample, if the ENI System has defined defaults that are appropriate to each service class, then best
effort traffic is handled as specified by the user, while prioritized traffic is handled by the default specified by the ENI
System. The default mode of operation is optionally changed as desired by either the Assisted System or its Designated
Entity.

4443 Interaction with the Assisted System

All communication regarding mode of operation change(s) is done using a request-reply interaction paradigm over an
appropriate External Reference Point defined in the present document. This paradigm applies to any entity that requests
achange (e.g. the User, the Designated Entity of the Assisted System, or an agent ([i.7] and [i.8]) acting on behalf of
these).

In any mode of operation, the ENI System interacts with the data, control, management, and/or orchestration planes of
the Assisted System, underlying infrastructure, and network. That interaction requires the Assisted System to expose
new datafor analysis by the ENI System; thisis communicated as requests to change the configuration of the affected
components, devices, and/or systems.

4.4.4.4 Selecting a Mode of Operation for a Class of Decisions

The Designated Entity of the Assisted System optionally selects a desired mode of operation for a class of decisions to
the ENI System.

Alternatively, since the ENI System is an intelligent system, the ENI System optionally suggests that a particular mode
of operation is used for a set of decisions that the Assisted System (or the Designated Entity on its behalf) has not
specified or envisaged. In this case, the Assisted System needs to approve that it accepts ENI recommendations and/or
management commands, as appropriate. These decision classes may be described by a set of capabilities (e.g. metadata)
advertised by ENI.

4445 Communication of Mode of Operation

Communication is done by the Designated Entity of the Assisted System, which by definition isatrust anchor [2] (a
type of trusted entity). This means that the ENI System and the Designated Entity of the Assisted System collectively
operate as expected, according to design and policy, despite environmental disruption, human user and operator errors,
and attacks by hostile parties. In addition, in either mode of operation, this behaviour is validated by each entity before
application.

4.4.4.6 Normal Operation of the Selected Mode of Operation

44.46.1 Overview

The ENI System notifies the Assisted System (or its Designated Entity) when it wants to change the mode of operation
for aparticular decision. It does so by sending a request to the Assisted System (or its Designated Entity) using an
appropriate External Reference Point. These two options are described in clauses 4.4.4.6.2 and 4.4.4.6.3, respectively. If
this mode of operation is not supported by the Assisted System for this decision, then the Assisted System (or its
Designated Entity) informs the ENI System that thisis not allowed. If this operation is supported by the Assisted
System, then the Assisted System analyses the proposed change to determine if it is acceptable. If it is not, then
optionally, negotiation isthen initiated by either the Assisted System or the ENI System. Once agreed, the Assisted
System (or its Designated Entity) informs the ENI System that the change is allowed. The ENI System operates the
same way in either mode of operation; the difference is the set of outputs (information, recommendations, and
commands) generated by the ENI System that are sent to the Assisted System.

ETSI

40 ETSI GS ENI 005 V3.1.1 (2023-06)

All standardized communication with an ENI System is done using the External Reference Points specified in the
present document. If an Assisted System is not capable of supporting some or all of these ENI External Reference
Points, a possible solution isto use an API Broker to mediate between an ENI System and the Assisted System (or its
Designated Entity) as described above.

A precondition of the entity requesting a change in the mode of operation isthat it is atrusted entity (see requirements
[MOP11] and [MOP12] in clause 5.3). The Designated Entity of the Assisted System chooses to either trust all
decisions to be made, or to only trust decisions for a particular set of functions belonging to a particular category.

Ultimately, the Designated Entity of the Assisted System has the final decision regarding what mode of operation is
used for any (and all) decisions. Conceptually, there is no difference between switching from recommendation to
management mode or vice-versa. There are two cases to be considered, depending on which entity the ENI System
communicates with, as detailed below.

4.4.46.2 Case 1: ENI Indirectly Instructs the Assisted System to Switch Modes

This case assumes that the Assisted System is not able to decide on its own whether it is able to switch modes, and
always defers this decision to its Designated Entity. Hence, the ENI System communicates directly with the Designated
Entity of the Assisted System, which in turn instructs the Assisted System to switch modes.

4.4.4.6.3 Case 2: ENI Directly Instructs the Assisted System to Switch Modes

This case assumes that the Assisted System decides on its own whether it is able to switch modes. Hence, the ENI
System communicates directly with its Designated Entity; either the Assisted System or its Designated Entity informs
its manager (either network manager or orchestrator) that it has switched modes.

4.44.7 Normal Operation of the Selected Mode of Operation

The default configuration of the ENI System is to start in recommendation mode when first booted. This mode of
operation is defined for all types of decisions, since the ENI System has not been able to learn about its environment,
services and resources that it is managing, as well as the preferences of the operator.

After booting, the ENI System then queries the Designated Entity of the Assisted System to determine the set of
capabilities the Assisted System has, which Reference Points are defined, and what additional information and
requirements (e.g. regulatory policies) are appropriate to be used. Given these initial inputs, the ENI System then asks
the Designated Entity of the Assisted System if there are any types of decisions that it would like assi stance with:

. If not, the ENI System is limited to passively learning through observing the actions of the Designated Entity
of the Assisted System, and their effect on the infrastructure, as shared with the ENI System through
information provided on the external Reference Points of an ENI System.

o If s0, then the ENI System asks which mode of operation is desired for each class of decision.
For both cases, the ENI System will also ask if the Designated Entity would like to subscribe to notifications.

The Designated Entity of the Assisted System optionally defines a preferred mode for the ENI System to operate in for
agiven class of decisions. An ENI System acknowledges each such request, and also confirms when the requested
mode of operation is ready to be used for each class of decisions.

Operation then continues with the ENI System learning through observation, except that the ENI System provides
recommendations and/or commands based on the selected mode of operation for each decision defined above.

The ENI System notifies the Assisted System (or its Designated Entity) when it wants to change the mode of operation
for a particular decision. If this mode of operation is not supported by the Assisted System for this decision, then the
Assisted System (or its Designated Entity) informs the ENI System that thisis not allowed. If this operationis
supported by the Assisted System, then the Assisted System analyses the proposed change to determineif it is
acceptable. If it isnot, then optionally, negotiation isinitiated by either the Assisted System or the ENI System. Once
agreed, the Assisted System (or its Designated Entity) informs the ENI System that the change is allowed.

If the ENI System requires data that is not being monitored, it asks the Designated Entity of the Assisted System to
change its configuration to report those data. The configuration change is required to enable data that are not currently
being monitored to be made available to the ENI System.

ETSI

41 ETSI GS ENI 005 V3.1.1 (2023-06)

4.4.4.8 Exception Handling for the Selected Mode of Operation
An exception israised any time that:
1) arequest or aresponse from either the Assisted System or an ENI System is not delivered; or

2) an ENI System is not able to change the mode of operation as requested.
4.4.5 Functional Concepts

445.1 Functional Concepts for Modular System Operation

NOTE: Clauses4.4.5.1t04.4.5.9.2.3 are moved from the present document to a new document, titled " Functional
Concepts for Modular System Operation” (ETSI GR ENI 016 [i.35]).

4452 Overview of Prominent Control Loop Architectures

NOTE: This clause (previoudly clause 4.4.5.10) is moved from the present document to a new document, titled
"Overview of Prominent Control Loop Architectures’ (ETSI GR ENI 017 [i.36]).

4.4.6 ENI Reference Points

446.1 Definition of an ENI Reference Point

An ENI Reference Point isthe logical point of interaction between specific Functional Blocks. Each Reference Point
defines a set of related interfaces that specify how the Functional Blocks communicate and interact with each other.

4.46.2 Definition of an ENI External Reference Point

An ENI Externa Reference Point is a Reference Point that is used to communicate between an ENI Functiona Block
and an external Functional Block of an external system (e.g. a Functional Block of the OSS, BSS, or Assisted System).

446.3 Definition of an ENI Internal Reference Point

An ENI Internal Reference Point is a Reference Point that is used to communicate between two or more Functional
Blocks that belong to the ENI System. This communication stays within an ENI System, and is not seen by systems that
are external to an ENI System.

4.4.7 ENI Interfaces

4.4.7.1 Definition of an ENI Interface

An Interface is a point across which two or more components exchange information. An interface describes the public
characteristics and behaviour that specify a contract for performing a service. In an ENI System, there are three types of
Interfaces:

1) hardwareinterfaces;
2) softwareinterfaces; and
3) application programming interfaces.

ENI Interfaces exist at defined External and Internal Reference Points (see clause 7 of the present document). ENI
Reference Points differentiate between "consumer" and "producer” by separating data, control, management, and other
specific types of communication information from being communicated on the same interface. See clause 7.1 of the
present document for further details.

ETSI

42 ETSI GS ENI 005 V3.1.1 (2023-06)

4.47.2 Definition of an ENI Hardware Interface

An ENI Hardware Interface is a point across which electrical, mechanical, and/or optical signals are conveyed from a
sender to one or more receivers using one or more protocols. A Hardware I nterface decoupl es the hardware
implementation from other Functional Blocksin a system.

4.4.7.3 Definition of an ENI Software Interface

An ENI Software Interface defines a point through which communication with a set of resources (e.g. memory or CPU)
of aset of objectsis performed. This decouples the implementation of a software function from the rest of the system.

4.4.7.4 Definition of an ENI Application Programming Interface

An API isaset of communication mechanisms through which a developer constructs a computer program. It consists of
tools, object methods, and other elements of a model and/or code. APIs simplify producing programs, since they
abstract the underlying implementation and only expose the objects, and the characteristics and behaviour of those
objects that are needed.

4.4.7.5 Comparison of ENI Software Interfaces with ENI APIs

An ENI Software Interface is a managed logical entity that supports communication of data, information, and/or
knowledge. In contrast, an ENI APl uses one or more ENI Software Interfaces to provide external access for developers
to write programs to interact with ENI.

4.47.6 Interaction between ENI Hardware and Software Interfaces

Simplistically, software contains instructions that tells hardware modules what functionality is needed. Hardware
interfaces include plugs, sockets, cables and set of electrical, optical, and/or logical signals traveling between the
entities that it connects, along with the protocol (s) used. In contrast, Software interfaces perform programming
functions. They can be used to communicate with hardware and other software modules. ENI does not specify a
hardware-software interface except for those interfaces that support ENI APIs.

4.47.7 Interaction between ENI Hardware and Software APls

An APl sometimes reflects the language that it is meant to be used with. For example, an API for an object-oriented
language would provide a specification for creating, editing, deleting, and manipulating classes. Other types of APIs
provide specifications at different abstraction levels (e.g. for create, read, update, or delete operations) that are
dependent on the object that they are being applied to. For example, a"service-orientated" API could apply operations
such as the previous four to a service, while a"resource-orientated" APl would do the same thing to resources. Note that
if appropriate abstractions are used al of these examples are independent of hardware and software entities. ENI APIs
operate through either an External or an Internal Reference Point, and are specified in clause 7.4.

4.5 Functional Architecture

45.1 Functional Block Diagram of the ENI System

A high-level Functional Block diagram that includes the use of an API Broker is shown in Figure 4-5 (for inputsto an
ENI System) and Figure 4-6 (for outputs from an ENI System). Thisis a simplified view of the main processing
components of an ENI System. It isimportant to realize that alinear flow from input to output is not prescribed, and
does not have to actually occur. Thisis explained in the following clauses, and elaborated further in clause 6. The
arrowsin Figure 4-5 and Figure 4-6 represent the directionality of data and information using any of the eighteen
External Reference Points defined in clause 7.

ETSI

43 ETSI GS ENI 005 V3.1.1 (2023-06)

Assisted and/or Governing System Application, User, and
0OSS- and BSS-like Functionality and Orchestrator

Input Data

Q in Native API Translation
Format

L -

=
~
~

® Output Recommendations/ API N
: : " N\
Commands in Native Format | Translation \
\

API Broker £ e SR
g So \
I Input Data in 0 0 Input Data in Output Recommendations/ Output Recommendations/ 3 5 \

! g ENI Format ENI Format Commands in ENI Format @ O Commands in ENI Format 3 S
1§ i3 ek
I < / /z"“\ \;g Closed \I

4 3 53| Control 4
I‘ H 5| Loop(s) /
N 52
\ ontro ! m
\ ﬁ ENtintemal Format Loop(s) 1 ENI Internal Format SySte /
\
P N Analysis: Context-Aware, Knowledge Management, Cognitive
Processing, Situation-Aware, Model-Driven, and Policy Management FBS
O ENI External Reference Point
@ ENI internal Reference Point
Figure 4-5: High-Level Functional Architecture of ENI When an API Broker Is Used
A high-level Functional Block diagram that includes the use of an API Broker is shown in Figure 4-5 (for inputsto an
ENI System) and Figure 4-6 (for outputs from an ENI System). Thisis a simplified view of the main processing
components of an ENI System. It isimportant to realize that alinear flow from input to output is not prescribed, and
does not have to actually occur. Thisis explained in the following clauses, and elaborated further in clause 6. The
arrows in Figure 4-5 and Figure 4-6 represent the directionality of data and information using any of the eighteen
External Reference Points defined in clause 7.
Assisted System Application, User, and/or =
2 = 0OSS- and BSS-like Functionality and Orchestrator i
/’ RN -~
4 Input Data i > N
/£ () in Native Output Recommendations/ \
/ g Commands in Native Format So \
r |z :5 \
1 |g — 23 \

Doi/ e TN O\ i \
i s | System ¢ \ §5| E22
v g 32| Closed |

3 Closed gs| Control A

1 £ Control g2 1

== Loop(s)

\ o Loop(s) C !

\ Input Data in Output Recommendations/ /
\ ENI Internal Format Commands in ENI Format P o
\
N Analysis: Context-Aware, Knowledge Management, Cognitive Re i
b) Processing, Situation-Aware, Model-Driven, and Policy Management FBS [
\\ ~ o NS~ _ - ’j
¢ — Infrastructure — y

QO ENI External Reference Point
@ ENI Internal Reference Point

Figure 4-6: High-Level Functional Architecture of ENI When an API Broker is Not Used

ETSI

44 ETSI GS ENI 005 V3.1.1 (2023-06)

The purpose of the API Broker isto serve as a gateway (i.e. trandation mechanism) between different systems. Thereis
currently no dedicated Functional Block to trandate between the APIs and data formats used externa to the ENI System
and the APIs and data formats used internally by the ENI System. Specifically, the Input Processing and Normalization
group of Functional Blocks assumes that the input from the Assisted System has been trandlated to aform that it can
understand. Thisis because there are significant differences in the format and language used by vendors for both
telemetry information as well as APIs. Similarly, the Denormalization and Output Generation group of Functional
Blocks assumes that, due to the above heterogeneity in APIs and commands, another entity will perform the tranglation
from ENI format to the Assisted System's Native format. Therefore, without the API Broker, it is possible that the ENI
System is not able to communicate directly to external systems (in this case, the Assisted System and its Designated
Entity, Applications, Users, and the Infrastructure).

The ENI System functional architecture consists of three types of Functional Blocks:
1) Oneor more Functional Blocks for ingesting and normalizing data.
2) Oneor more Functional Blocks for denormalizing and generating recommendations and/or commands.

3) Oneor more Functional Blocks for analysing ingested data, determining if the Assisted System is operating as
expected, and if not, providing a set of recommendations and/or commands.

A key assumption isthat the ENI System functionality evolves over time. It is anticipated that the capabilities of various
Functional Blocks also evolve over time. As human operators gain confidence in automated decision-making, it islikely
that ENI Functional Blocks operate with different and increased levels of autonomicity. Therefore, no attempt is made
to standardize the interaction among internal blocks.

Figures 4-5 and 4-6 define the main Functional Blocks of the ENI System. Different use cases (refer to ETSI
GS ENI 001 [3]) arerealized by different flows through the above Functional Blocks, where any Functional Block is
visited zero or more times.

ENI isa system that functions in two different modes, as described in clause 4.4.3. Both modes are depicted by showing
the interaction of an ENI System as a separate system that gets data from, and provides information (including
recommendations and/or commands) to the Assisted System (or its Designated Entity); the difference between the
modes is whether commands are provided to the Assisted System (or its Designated Entity) or not. The ENI System
itself consists of three or more Functional Blocks; these perform input processing, analysis, and output processing,
respectively. An overview of these functionsis described in the following clauses; see clause 5.3 for normative
descriptions and requirements.

An ENI System operates in recommendation or command mode, or a combination of these.

NOTE: Any Functional Block (except the Data | ngestion, Normalization, Denormalization, and Output
Generation Functional Blocks) is allowed to simultaneously operate in recommendation and/or command
mode. However, thisis not externally observable by the Assisted System (or its Designated Entity).

452 API Broker

4521 Introduction

An APl isaset of communication protocols, code, and tools that enable one set of software components to interact with
either a human or a different set of software components. APIs are critical for platform and ecosystem devel opment.
[i.26] discusses this point, and says that API programs enable organisations to build a platform and associated
ecosystem for digital transformation.

In general, each product has its own API. An API Broker is software that mediates between two systems with different
APIs, enabling the two different systems to communicate transparently with each other. There are many benefits of
using API Brokers, including error reduction via software transmitting data instead of humans and business process
automation through automated transfer of data between applications. APl Brokers also enable custom applications that
integrate different application data.

ETSI

45 ETSI GS ENI 005 V3.1.1 (2023-06)

4522 Definition of the ENI API Broker

The ENI API Broker is used to trandate between the ENI APIs and APIs of the Assisted System and its Designated
Entity. More specifically, the ENI API Broker ingests APIs through an appropriate ENI External Reference Point,
analysesthe API, and then routes the functionality of the ingested API to an appropriate ENI Functional Block (thisis
typically the Data Ingestion Functional Block, but may be a different Functional Block if the API is known to an ENI
System). Thisis discussed morein clause 6.4.

45.2.3 Use of an API Broker in ENI

One purpose of the API Broker isto decouple the ENI System from other external systems that it communicates with.
In general, each Assisted System has its own unique functionality and set of APIs. Thisimpliesthat the ENI System
would have to understand each of these different sets of APIsin order to communicate with them. Thisis not desirable,
and makes the building of an ENI System very complex. Instead, the present document defines an API Broker to aid in
the trangdlation between external systems and the ENI System. This enables the ENI System to define a single set of
APIs. Therefore, the purpose of the API Broker isto:

1) trandate data communicated from the Assisted System (or its Designated Entity) into a normalized form that
all ENI Functional Blocks are able to understand; and

2) trandate recommendations and commands from the normalized form used in an ENI System to a form that the
Assisted System (or its Designated Entity) is able to understand.

Another purpose of the API Broker isto manage APIs. Thisincludes the authentication and authorization of the entities
that want to communicate using ENI APIs (e.g. between the ENI System and third-party applications, and vice-versa).

45.2.4 Alternatives to Using an API Broker

There is no aternative to using an APl Broker. Thisis because an ENI System is designed to be used by a variety of
existing and future systems that each can have their own unique APIs. The aternative of embedding API plug-ins for
each targeted Assisted System directly in an ENI Functional Block (e.g. the Data Ingestion and Output Generation
Functional Blocks) does not scale, and directly impedes the continued development of ENI. Rather, an extensible AP
Broker that itself has plug-ins for different targeted Assisted Systems, as well as generic API capabilities, is a preferred
approach. It also enables API composition, which is discussed further in clause 6.4.

4.5.3 ENI System Functional Blocks

4531 Introduction
The ENI System shown in Figures 4-5 and 4-6 has three types of Functional Blocks. They are:
. Input Processing.

. Analysis, which includes Knowledge Management, Context Aware Management, Cognition Management,
Situation-Aware Management, Model-driven, Policy Management.

. Output Generation.

Different types of decision-making strategies that apply to all three types of ENI System Functional Blocks are
described in clause 4.5.4.

45.3.2 Input Processing

45.3.2.1 Overview

Input processing consists of two Functional Blocks: the Data Ingestion and the Normalization Functional Blocks. All
external data enters the Data Ingestion Functional Block. It is possible to combine the functionality of the Data
Ingestion and Normalization Functional Blocksinto a single Functional Block if desired.

ETSI

46 ETSI GS ENI 005 V3.1.1 (2023-06)

45322 Data Ingestion Functional Block

The purpose of the Data Ingestion Functional Block isto collect data from multiple input sources and implement
common data processing techniques to enable ingested data to be further processed and analysed by other ENI
Functional Blocks.

Data used by the Functional Blocks in an ENI System typically comes from different sources, is created using different
applications and programming languages, and typically isingested using different protocols. Datais produced by
different entities, layers, and domains of the Assisted System (or its Designated Entity), and communicated to the API
Broker of ENI viathe exposed External Reference Points and/or APIs of the Assisted System (or its Designated Entity).

The API Broker may assist in parsing and possibly translating communicated data into aformat defined by the
Knowledge Management Functional Block.

It is possible to combine this Functional Block with the Normalization Functional Block if desired.

45.3.2.3 Normalization Functional Block

The purpose of the Normalization Functional Block isto process and trandlate data received from the Data I ngestion
Functional Block into aform that other ENI Functional Blocks are able to understand and use. This enables the data
used by the Functional Blocksin an ENI System to be interpreted and understood in a unified and consistent manner;
this facilitates the reuse of these Functional Blocks, enables the modularization and generalization of the design of the
other Functional Blocks, and supports vendor neutrality. The normalization optionally includes pre- and/or
post-processing of the data from different domains. The normalized data is then passed to other Functional Blocksin the
ENI System for further processing.

Different data models are likely to be used by different ENI Functional Blocks. Each such data model typically uses
different data structures, objects, and protocols to represent its concepts. It is possible for the same concept to be
represented differently in different data models (e.g. customer datain a Lightweight Directory Access Protocol (LDAP)
or electronic Directory Service (Recommendation ITU-T 9594-1 [i.13] and Recommendation ITU-T 9594-7 [i.14]) vs.
the same customer datain a Relational Database Management System (RDBMS)). Thisis addressed by ensuring that
each data model is derived from a single information model, which facilitates reconciling these different representations
of the same concept into a single object.

It is possible to combine this Functional Block with the Data Ingestion Functional Block if desired.

45.3.3 Analysis
45331 Knowledge Management and Processing
453311 Overview

Knowledge Management and Processing consists of three Functional Blocks: Knowledge Management, Context-Aware
Management, and Cognition Management Functional Blocks. It is possible to combine the functionality of these three
Functional Blocksinto asingle Functional Block if desired.

45.3.3.1.2 Cognition Model

Cognition is defined as "the process of understanding data and information and producing new data, information, and
knowledge". A cognition model defines how cognitive processes, such as comprehension, action, and prediction, are
performed and influence decisions. Thisis how, for example, behaviour is recognized.

A cognition model enables a cognitive system to reason about what actions to take in a methodological and structured
manner. It can learn from its experience to improve its performance. It can al'so examine its own capabilities and
prioritize the use of its services and resources, and if necessary, explain what it did and accept external commands to
perform necessary actions. Thisincludes:

1) revising (i.e. correcting) existing knowledge;
2) acquiring and encoding new knowledge from instruction or experience; and

3) combining existing components to infer and deduce new knowledge.

ETSI

47 ETSI GS ENI 005 V3.1.1 (2023-06)

4533.13 Knowledge Management Functional Block

The purpose of the Knowledge Management Functional Block isto represent information about both the ENI System as
well as the system being managed. This includes differentiating between known facts, axioms, and inferences. There are
many examples of knowledge representation formalisms, ranging in complexity from models and ontologies to
semantic nets and automated reasoning subsystems [66]. It is likely that the ENI System Architecture relies heavily on
logic-based as well as various inferencing mechanisms. A more complete and formal definition of knowledge
representation is defined in clause 3.1. This Functional Block is used by all other Functional Blocks of the ENI System.

453314 Context Aware Management Functional Block

The purpose of the Context-Aware Management Functional Block isto describe the state and environment in which a
set of entitiesin the Assisted System (i.e. system being assisted and/or governed) exists or has existed. Context-aware
management is used to continuously update the context in which decisions are made.

Context consists of measured and inferred knowledge, and typically changes over time. For example, it is possible that a
company has a business rule that prevents any user from accessing the code server unless that user is connected using
the company intranet. This business rule is context-dependent, and the system is required to detect the type of
connection of a user, and adjust access privileges of that user dynamically.

A more complete and formal definition of context, and how it is used in management, isdefined in [i.1], [i.2] and [i.3].

453.3.15 Cognition Management Functional Block

For the purposes of the present document, cognition is defined in clause 3.1 as the "process of understanding data and
information and producing new data, information, and knowledge".

The purpose of the Cognition Management Functional Block is to enable the ENI System to understand normalized
ingested data and information, as well as the context that defines how those data were produced; once that
understanding is achieved, the Cognition Management Functional Block then eval uates the meaning of the data, and
determines if any actions need to be taken to ensure that the goals and objectives of the system are met. Thisincludes
improving or optimizing performance, reliability, and/or availability. These metrics are exemplary - it is possible to use
any other metric used for evaluation of the ENI and/or the Assisted System. The Cognition Management Functional
Block mimics some of the processes involved in human decision-making to better comprehend the relevance and
meaning of ingested data.

45.3.4 Situation-based, Model-driven, Policy Generation

45341 Overview

Situation-based Policy Generation Functional Block consists of three Functional Blocks:
e Situation Awareness;
. Model-Driven Engineering; and

o Policy Management Functional Blocks.

4534.2 Situation Awareness Functional Block

The purpose of the Situation Awareness Functional Block is to enable the ENI System to be aware of events and
behaviour that are relevant to a set of entitiesin the environment of the Assisted System (i.e. system being assisted
and/or governed). This includes the ability to understand how information, events, and recommended commands given
by the ENI System impact the management and operational goals and behaviour, both immediately and in the near
future. Situation awareness is especially important in environments where the information flow is high, and poor
decisions have the possibility to lead to serious consequences (e.g. violation of SLAS). A thorough introduction to
situation awareness is defined in [i.4].

45343 Model Driven Engineering Functional Block

The purpose of the Model Driven Engineering Functional Block isto use a set of domain models that collectively
abstract al important concepts for managing the behaviour of objectsin the system(s) governed by the ENI System.

ETSI

48 ETSI GS ENI 005 V3.1.1 (2023-06)

The use of reusable models defines a set of concepts that are shared by all constituencies that use them. It is permissible
for a given congtituency to use them directly or indirectly; examples of these are an application developer and a
business user, respectively. It maximizes productivity by defining common definitions and usage of concepts used by
different entities, including Functional Blocks and systems.

A model is made reusable through the use of common elements that are arranged in similar patterns, or templates. This
practice is called design patterns, and occurs at multiple levels of abstraction. ENI is principally concerned with the use
of software design patterns and architecture design patterns. A software design pattern is a general, reusable solution in
agiven context to acommonly occurring problem in the design of a software system. It is not afinished design that is
able to be transformed directly into code; rather, it describes how to build the elements of a solution to a type of
problem that commonly occurs in designing software. It typically shows concepts and interactions between those
concepts, these are trandated into classes, attributes, operations, and relationships. An architectural design patternis
similar to a software design pattern, but has a broader scope. It is not an architecture and not even afinished design;
rather, it describes how to build the elements of a solution to atype of architecture problem that commonly occurs.

Model Driven Engineering is a software devel opment and implementation methodology that creates reusable domain
models, which are conceptual models of concepts, including how concepts relate to each other, which are important to
the system being managed. It simplifies the design and implementation processes, and promotes a common
understanding of terminology and concepts of the system by different teams working on the system. Put another way, a
set of domain models abstract the concepts and activities to be managed. The MDE approach is meant to increase
productivity by maximizing compatibility between Functional Blocks and systems through the reuse of standardized
models.

A domain is modelled using existing and new design patterns wherever possible.

45.3.4.4 Policy Management Functional Block

The purpose of the Policy Management Functional Block isto provide decisions to ensure that the system goals and
objectives are met (see clause 6.3.9 for more information on how decisions are made). Policies are used to provide
scalable and consistent decision-making. Policies are generated from data and information received by the Knowledge
Management and Processing set of Functional Blocks. Formally, according to [i.4], the definition of policy is:

"Policy isa set of rulesthat is used to manage and control the changing and/or maintaining of the state of one
or more managed objects’, seeaso [7], [8] and [i.1].

Policies may be used in several waysin an ENI System:

. Policies are defined by an ENI System for managing, monitoring, controlling, and orchestrating behaviour of
Functional Blocksin the Assisted System.

. Policies are defined by an ENI System to request changes in the Assisted System (e.g. for monitoring a new
output).

. Policies that are input to an ENI System by an external entity (e.g. end-user or application) are subject to
verification by the ENI System (e.g. they need to pass a parsing or compilation stage with no errors or
warnings produced).

In each case, policies may represent goal's, recommendations, or commands. Typically, any information to be conveyed
to the Assisted System or its Designated Entity take the form of a set of policies. Each set of policies may be made up of
one or more imperative, declarative, and/or intent policy. The details of policy definition, generation, and processing are
defined in clause 6.3.9.

4535 Output Generation

45.35.1 Overview

Output Generation consists of two Functional Blocks: Denormalization and Output Generation Functional Blocks. It is
permissible that the functionality of these two Functional Blocks is combined into a single Functional Block if desired.

ETSI

49 ETSI GS ENI 005 V3.1.1 (2023-06)

45.35.2 Denormalization Functional Block

The purpose of the Denormalization Functional Block is to process and trandlate data received from other Functional
Blocks of the ENI System into aform that facilitates subsequent translation to aform that a set of targeted entities are
able to understand. For example, different data models are likely to be used by different ENI Functiona Blocks. Each
such data model typically uses different data structures, objects, and protocols to represent its concepts. It is possible to
represent the same concept differently in different data models (e.g. customer datain an LDAP or X.500 directory vs.
the same customer datain an RDBMS). Thisis addressed by ensuring that each data model is derived from asingle
information model, which facilitates reconciling these different representations of the same concept into a single object.

The Denormalization Functional Block receives policies, recommendations, and/or commands. The Denormalization
also optionally includes pre- and/or post-processing of the data from different domains to facilitate the trandation of
these data for atargeted set of entities. The denormalized data is then passed to the Output Generation Functional Block
for further processing.

It is possible to combine this Functional Block with the Output Generation Functional Block if desired.

45.35.3 Output Generation Functional Block

The purpose of the Output Generation Functional Block isto convert data received by the Denormalization Functional
Block into aform that the Assisted System (or its Designated Entity) is able to understand. This includes defining an
appropriate set of protocols, changing the encoding of the data, and other related functions.

It is possible to combine this Functional Block with the Denormalization Functional Block if desired.

4.5.4 Decision-Making

4541 Overview

Decision-making is the cognitive process of selecting a course of action from several possible alternative actions based
on the information available and the preferences of the decision maker. Every decision-making process produces afinal
choice. The final choice does not have to be implemented immediately; this depends on the situation that the decision is
madein.

The ENI architecture is specifically designed to provide collaborative interaction of each Functional Block. This
enabl es the domain-specific functionality of each Functional Block to be reused by other Functional Blocks. This avoids
having to build too much processing functionality in any one particular Functional Block, and more importantly,
implementing the same function differently in different Functional Blocks. The ENI architecture combines localized

and domai n-specific knowledge to develop higher-level, global decisions.

The following clauses describe the progression of decision-making envisioned by the ENI System, from hindsight to
reactive to predictive to (full) cognitive processing.

45.4.2 Decision-Making using Hindsight

Hindsight is defined as the "realization of the significance and nature of data and events after they have occurred”. This
realization is typically based on understanding, which in turn requires data, information, and knowledge; wisdom is of
course very helpful and needed for all but simple and straightforward (i.e. easy to understand) occurrences. This type of
decision-making dominated early management systems until more functionality was available.

45.4.3 Decision-Making using Deterministic Processing

Deterministic processing is a step beyond hindsight. Deterministic processing recognizes the occurrence of significant
events and data, and invokes predefined rules, processes, and/or policiesin response to correct behaviour. A simple
exampleis an expert system, which defines rules to handle different inputs. This type of system responds very quickly
and accurately to some events, because the input matches one or more rules that already exist. However, if an input does
not match any rule, then this type of system has a problem - it has no choice to give, and no extensible way to make a
decision. It hasto wait for anew rule.

Put another way, this type of system reacts to past events, and cannot predict future behaviour. However, it represents a
significant improvement over hindsight, which is only able to make a decision after the fact.

ETSI

50 ETSI GS ENI 005 V3.1.1 (2023-06)

454.4 Decision-Making using Predictive Processing

Predictive processing uses a set of processes to predict, or estimate the likelihood of, afuture event, state, or behaviour.
The prediction or estimation is based on analysing current and historical factsin order to identify risks and opportunities
to improve the likelihood of the prediction. Predictive processing also typically allows probability and/or risk
assessment. Predictive models often perform cal culations during transactionsin order to estimate the risk or opportunity
involved with making a decision; the actual decision isimplemented by the predictive processing entity or some other
entity.

4545 Decision-Making using Cognitive Processing

A cognitive processing system uses cognition (see clause 6.3.6) to prove or disprove a hypothesis about how to correct
an undesirable state in the system. Cognitive processing requires the tight integration of different mechanisms

(e.0. knowledge, short- and long-term memory, perception, planning, and reasoning) that together understand what has
happened and plan a corrective set of actions. Thistight integration isin contrast to modern software architectures that
emphasize loose coupling of Functional Blocks.

There isasignificant difference between machine learning and cognitive processing. Some examples include:

. Machine Learning is based on concrete mechanisms, such as classification and statistical pattern recognition.
In contrast, cognitive processing emphasizes abstract reasoning and problem solving.

. Machine Learning is based on dissimilar, discrete mechanisms. In contrast, cognitive processing emphasizes
uniform and integrated representation of data and information.

. Machine Learning is based on pipelines of different functions. In contrast, cognitive processing emphasizes
integrated architectures that provide seamless integration between various cognitive functions.

The ENI System architecture employs both traditional Al mechanisms as well as cognitive processes to achieve the best
of both worlds.

4.5.5 Introduction to Artificial Intelligence Mechanisms for Modular
Systems

NOTE: Thisclauseis moved from the present document to a new document, titled "Introduction to Artificial
Intelligence Mechanisms for Modular Systems* (ETSI GR ENI 018 [i.37]).

5 ENI Architectural Requirements

5.1 Introduction

The following clauses define requirements for the ENI system architecture.

NOTE: The numbering of these requirements in the present document has changed from ETSI GS ENI 005 [i.42].

5.2 Functional Architectural Requirements for ENI Operation
The ENI System Architecture shall meet the following requirements.

[FAR1] ENI shall operate as a model-driven system.

NOTE 1: See clause 5.6 for more information.

[FAR2] ENI shall operate using one or more closed control loops.

NOTE 2: See clause 5.7 for more information.

[FAR3] ENI shall use a modular architecture, realized as a set of Functional Blocks.

ETSI

51 ETSI GS ENI 005 V3.1.1 (2023-06)

[FAR3.1] A Functional Block may consist of zero or more nested Functional Blocks, forming a hierarchy.

[FAR3.2] In aset of hierarchical Functional Blocks, alower-level Functional Blocks shall implement
functionality of ahigher-level Functional Block in a modular fashion.

[FAR3.3] Inaset of hierarchical Functional Blocks, alower-level Functional Block need not implement
functionality that is not needed by a higher-level Functional Block.

NOTE 3: [FARS.2] and [FAR3.3] mean that alower-level Functional Block only implements functionality required
by a higher-level Functional Block, and cannot implement orthogonal functionality. Hence, the purpose
of alower-level Functional Block isto modularize functionality for better reusability, availability,
performance, and other similar metrics.

[FAR4] ENI shall use and recognize administrative domains.

[FARA4.1] An Administrative Domain shall be governed by a common set of administrative policies.

[FARA4.2] An Administrative Domain may consist of zero or more nested Administrative Domains, forming
ahierarchy.

[FARA4.3] In aset of hierarchical Administrative Domains, alower-level Administrative Domain shall

implement all administrative policies of all of its higher-level Administrative Domains.

[FAR4.4] In aset of hierarchical Administrative Domains, alower-level Administrative Domain may
implement new administrative policies that do not conflict with any administrative policies defined
by any higher-level Administrative Domain.

NOTE 4: [FAR4.3] and [FAR4.4] mean that alower-level Administrative Domain implements all administrative
policies defined by a higher-level Administrative Domain. It cannot implement any administrative
policiesthat conflict with any administrative policies defined by a higher-level Administrative Domain.

[FARA4.5] Operations between entities within an Administrative Domain may interact via Services defined
within that Administrative Domain.

[FARA4.6] Operations between entities between different Administrative Domains shall interact via Services
defined explicitly for Federated Domains.

[FARA4.7] The behaviour of Federated Domains shall be governed by special Policies, called Federation
Policies.

[FARA4.8] Tasks should be assigned to Domainsin a distributed Domain by Policies.

[FAR4.9] Task assignment should be based on mechanisms that match the functionality offered by a Domain
to the needs of the tasks.

[FAR5] ENI may use agents, organized in various architectures, to implement various functions defined in
one or more of its Functional Blocks.

[FARS.1] A set of autonomous and/or intelligent agents may be used for data ingestion, normalization,
denormalization, and output generation.

[FARS.2] ENI may use a variety of agent architectures, ranging from simple reactive architectures to fully
cognitive architectures.

[FARS.3] ENI may use adistributed or hybrid agent architecture.

[FARG] The ENI System may use negotiation to arrive at adecision that is satisfactory to both the ENI
System and the entity that it is communicating with.

[FARG.1] If negotiation is not used, or if it isused but fails, the Designated Entity of the Assisted may define
a preferred mode for the ENI System to operate in.

[FARG6.2] If negotiation is not used, or if it is used but fails, the ENI System may have a default mode of
operation that specifies the mode of operation to use when a class of decision isreached that is not
specified by the Assisted System.

ETSI

[FARG.3]
[FAR6.4]

[FARG.5]

5.3

52 ETSI GS ENI 005 V3.1.1 (2023-06)
Negotiation shall include the ability for each entity participating in the negotiation process to
discover the capabilities of all other entities that it is negotiating with.

Negotiation shall include the ability for each entity participating in the negotiation processto
synchronize state with each other.

Negotiation shall include the ability for each entity participating in the negotiation process to agree
on parameters and resources to use as part of the negotiation process.

Architectural Requirements for Mode of Operation

The ENI Mode of Operation shall meet the following requirements.

[MOP1]
[MOP2]
[MOP3]

[MOP4]

[MOPS]
[MOP5.1]

[MOP5.2]
[MOP§]
[MOP7]

[MOPS]

[MOP9]

[MOP10]

[MOP11]

[MOP12]

[MOPL3]

[MOP14]

[MOP15]

[MOP16]

The ENI System shall support a recommendation mode.
The ENI System may support a management mode of operation.

The ENI System may support a mixed mode of operation for different sets of decision classes (e.g.
some types of decisions are made using one mode of operation, and other sets of decisions are
made using the other mode of operation).

The ENI System shall discover (and/or be told) the capabilities of the Assisted System in
supporting the desired mode of operation.

The ENI System shall support and adapt to external inputs for each mode of operation.

The ENI System shall support and adapt to changes in the context and/or situation of the Assisted
System.

The ENI System shall support external input of regulatory policies and operator goals.
The ENI System shall use the above two factorsin [MOP5] to select its mode of operation.

The ENI System shall ask permission from the Operator or Designated Entity to change modes of
operation using an agreed External Reference Point.

The Assisted System, or its Designated Entity shall ask the ENI System to change modes of
operation using an agreed External Reference Point.

The ENI System shall confirm through the agreed External Reference Point to the Operator or
Designated Entity of the Assisted System when it has successfully switched modes of operation.

The ENI System may suggest that a particular mode of operation is used when a class of decision
isreached that is not specified by the Assisted System.

The Assisted System and/or its Designated Entity need not accept the recommendations offered by
the ENI System when in recommendation mode. This includes those decisions that apply to
recommendations when the Assisted System isin a mixed mode of operation.

The Assisted System and/or its Designated Entity need not accept the recommendations offered by
the ENI System when in management mode. This includes those decisions that apply to commands
when the Assisted System isin a mixed mode of operation.

Decisions and commands in management mode are subject to the approval of the Assisted System
(or its Designated Entity).

The Assisted System (or its Designated Entity) may tell the ENI System that it approves all
commands sent to it when it isin management mode.

The Assisted System may revoke the above setting at any time, in which case [MOP13] then
applies (once acknowledged by the ENI System).

If the Assisted System (or its Designated Entity) rejects acommand sent to it by the ENI System
when it isin recommendation mode, it shall send a notification to the ENI System.

ETSI

[MOP17]

5.4

53 ETSI GS ENI 005 V3.1.1 (2023-06)

If the Assisted System (or its Designated Entity) rejects acommand sent to it by the ENI System
when it isin management mode, it shall send a notification to the ENI System.

Non-Functional Architectural Requirements for ENI
Operation

ENI shall meet the following non-functional reguirements.

[NFA1]

[NFAL1]
[NFAL.2]
[NFAL.3]

[NFAL.4]

5.5

All classes of Assisted System need not change in order to benefit from, and use the outputs of, the
ENI System.

If an API Broker is used, then the ENI System need not be responsible for trandating its
recommendations and commands to a form that the Assisted System, of any class, can understand.

The ENI System may use an API Broker, or similar function, to perform the trandlation specified
in [NFAL.1].

All classes of Assisted System need not change in order for the ENI System to ingest data from the
Assisted System.

All classes of Assisted System need not change in order for the ENI System to send
recommendations and commands to the Assisted System.

Reference Point Requirements

ENI shall meet the following requirements for Reference Points that it defines.

[RPR1]

[RPRL.1]

The ENI System shall use Reference Points defined in the present document (see clause 7) for all
communication and interaction with the Designated Entity of the Assisted System.

The ENI System shall communicate with either the Assisted System or the Designated Entity of
the Assisted System by using established ENI Reference Points.

NOTE 1: In both cases, the operator (or its Designated Entity) isin control.

[RPRL1.2]

The ENI System need not communicate with the Assisted System by using non-ENI Reference
Points.

NOTE 2: Reference Points not defined by ENI are not within the current scope of the ENI Architectural

[RPR2]
[RPR2.1]
[RPR2.2]

[RPR2.3]
[RPR2.4]

[RPR3]
[RPR3.1]

[RPR3.2]
[RPR3.3]

Framework.

All External Reference Points shall provide common characteristics and behaviour.
The ENI System shall provide RESTful interfaces for each External Reference Point.

All External Reference Points may have the capability to define operations that work on lists of
objects.

All External Reference Points shall provide standardized exception handling for all operations.

All External Reference Points may provide one or more mechanisms to process multiple messages
at a given Reference Point in parallel.

All Internal Reference Points shall provide common characteristics and behaviour.

All Internal Reference Points may have the capability to define operations that work on lists of
objects.

All Internal Reference Points shall provide standardized exception handling for all operations.

All Internal Reference Points may provide one or more mechanisms to process multiple messages
at agiven Reference Point in parallel.

ETSI

54 ETSI GS ENI 005 V3.1.1 (2023-06)

[RPR4] All Internal and External Reference Points shall provide common messaging behaviour.

[RPR4.1] ENI shall employ standardized messaging patterns to promote interoperability.

[RPR4.2] ENI may use synchronous and/or asynchronous messaging for internal and external
communication using Reference Points.

[RPR4.3] ENI shall use a set of dedicated message channels for communication over its Reference Points.

[RPR4.4] ENI shall use messages with appropriate properties to enable data to be exchanged over a channel.

[RPR4.5] ENI Functional Blocks may use routing to decouple a message sender from a message receiver.

NOTE 3: Communication can be from channel-to-channel, or employ different Functional Blocks to create more
complex messaging flows.

[RPRA4.6] ENI Functional Blocks may use filtering or similar operations to determine the destination of the
message.

NOTE 4: Filtering enables a message to be forwarded or routed based on it matching certain criteria. Thisincludes
the presence or absence of fieldsin a message as well astheir content.

[RPR4.7] ENI Functional Blocks may use point-to-point, point-to-multi-point, publish-subscribe, or receiver
lists to communicate with recipients.

NOTE 5: Combinations of these (e.g. receive a message, split, process, and recombine) may also be supported.

[RPRA4.8] ENI Functional Blocks may use a set of translation mechanisms to change the format and/or
structure of the message to suit the needs of message receivers.

[RPR4.9] ENI Functional Blocks may use a set of enrichment mechanisms to change the content of the
message to suit the needs of message receivers.

[RPR4.10] ENI Functional Blocks may use a set of patterns to consume messages.

[RPR4.11] ENI Functional Blocks may support durable messaging.

NOTE 6: For the purposes of the present document, durable messaging ensures that if a subscriber istemporarily
disconnected when a message is sent, the subscriber is guaranteed to see this message when it reconnects.

[RPR5] All Internal and External Reference Points shall provide testing to verify that the operation
occurring on that Reference Point was successful.

5.6 Knowledge Modeling Requirements

[KPR1] A domain shall be modelled using existing and new design patterns wherever possible.

[KPR2] ENI shall produce normalized data and information in a consistent format that all ENI Functional
Blocks can understand.

[KPR2.1] ENI shall provide the ability to ingest structured, semi-structured, and unstructured data from
different data sources.

[KPR2.2] ENI may provide the ability to ingest telemetry datain streaming and batch modes, as well as
on-demand.

[KPR2.3] ENI shall pre-process al ingested data to provide a uniform and consistent input format.

[KPR2.4] The API Broker may help translate input data to be ingested.

[KPR2.5] The functions of data ingestion and normalization may be separated or combined.

[KPR2.6] ENI shall use context information to augment ingested data and information where applicable.

[KPR2.7] ENI shall provide the ability to change the sources of data to be ingested based on changing

context information.

ETSI

[KPR2.8]
[KPR2.9]

[KPR2.10]

[KPR2.11]

[KPR3]
[KPR3.1]

[KPR3.2]

[KPR3.3]

[KPR3.4]
[KPRA4]
[KPRS]

[KPRS]

[KPR7]
[KPRS]
[KPR8.1]
[KPR8.2]

[KPR8.3]

[KPR8.4]

[KPR9]

[KPR9.1]

[KPR9.2]

[KPRO.3]

NOTE:
[KPR9.4]

55 ETSI GS ENI 005 V3.1.1 (2023-06)

ENI shall use situation information to augment ingested data and information where applicable.

ENI shall provide the ahility to change the sources of datato be ingested based on changing
situation information.

ENI may use a set of models, including data types and data structures, to perform the
transformation into a unified data format.

ENI may use a set of ontologies, along with either description logic or first-order logic, to perform
the transformation into a unified data format.

ENI shall process new data and information using its stored knowledge.

If new data, information, or knowledge does not conform to the internal ENI models, then either
the models and/or the new data, information, or knowledge shall be changed to realign them.

New data, information, and knowledge that is fully processed by one ENI Functional Block shall
conform to the internal models held by the ENI System, at that moment in time, before being
passed to another ENI Functional Block.

Alignment of new knowledge with existing knowledge may be done by any set of Functional
Blocks at any timein the ENI architecture.

Data, information, or knowledge shall be semantically annotated.
ENI shall represent policies using an information model and one or more data models.

ENI shall represent contextual information using an information model and one or more data
models.

ENI shall represent situational information using an information model and one or more data
models.

ENI shall resolve perceived changesto existing data, information, and knowledge.
ENI may provide augmentation of information and data models using one or more ontologies.
ENI may use hypergraphs and/or multigraphs to perform the semantic augmentation process.

ENI shall use semantic closeness to determine which model elements are related to which
ontol ogies when building a knowledge representation.

ENI shall use a semantic relationship to construct edges in a hypergraph or multigraph as part of
the augmentation process.

ENI shall use aform of first order logic (including description logics) when it isrequired to prove
a hypothesis.

ENI shall provide different Repositories for the storage, update, and retrieval of different types of
data and information that require different types of access control.

ENI shall provide at least one Data Repository for the storage, update, and retrieval of collected
data and information from different parts of the Assisted System after processing by the Data
Ingestion and Normalization Functional Blocks.

One or more Data Repositories may be used for the storage, update, and sending of data and
information to the Denormalization and Output Generation Functional Blocks.

ENI shall provide at least one Knowledge Repository for the storage, update, and retrieval of
knowledge and wisdom used for making decisions.

See ETSI GR ENI 016 [i.35] for further information and examples of knowledge and wisdom.

ENI shall provide at least one Model Repository storage, update, and retrieval of data models,
ontologies, and the information model.

ETSI

56 ETSI GS ENI 005 V3.1.1 (2023-06)

[KPR9.5] ENI shall provide at least one Blackboard Repository to provide a shared working space for
computations required by different Functional Blocks.

[KPRO9.6] All Repositories may be used to store and retrieve historical data and information of its appropriate
type.

[KPR9.7] Enhanced security mechanisms shall be used to govern the access, update, use, and transmission of

the information and data associated with any Model.

5.7 Control Loop Processing Requirements

[CLR1] ENI shall use one or more closed control loops to implement decisionsto ENI Functional Blocks.

[CLR1.1] An ENI closed control loop shall operate on a clearly defined goal.

[CLR1.2] If ENI uses more than one closed control loop, each closed control loop may operate
independently or as part of a group of closed control loops to accomplish a goal.

[CLR2] Real-time ENI closed control loop decisions may only be allowed for class 3 Assisted Systems.

[CLR2.1] Class 1 and Class 2 Assisted Systems may only use ENI recommendations and/or commandsin
non-real-time decisions.

[CLR2.2] The ENI System may only be involved in real-time control loop decisions for class 3 Assisted
Systems.

[CLR3] ENI shall use one or more closed control loops as part of its main processing architecture.

[CLR3.1] ENI shall use at least one OODA-like closed control loop to implement decisions.

NOTE 1: See[i.1] for adetailed explanation of why OODA-based control loops, such as FOCALE, are superior to
other types of control loops.

[CLR3.2] ENI may use other, non-OODA-like closed control loops for specialized purposes.

[CLR3.3] ENI may provide the ability to accelerate the processing through a closed control loop (i.e. not
have to examine each of the constituent elements of the closed control loop).

[CLR3.4] ENI shall provide the ahility to interrupt the processing of a closed control loop to perform other
actions.

[CLR3.5] ENI closed control loops shall be able to request data, information, and knowledge from any
Functional Block in the ENI System that it has access privileges for.

[CLR3.6] ENI closed control loops shall be able to supply decisionsto any Functional Block in the ENI
System that it has access privileges for.

[CLR3.7] ENI closed control loops shall be able to provide data, information, and knowledge in support of
its decisions to any Functional Block in the ENI System that it has access privileges for.

[CLR3.8] An ENI closed control loop shall provide instructions in the form of an ENI policy.

NOTE 2: An ENI policy may be expressed in an imperative, declarative, or intent form, or as a combination of

these forms.
[CLR3.9] An ENI closed control loop may accept instructions in the form of an ENI policy.
[CLR3.10] An ENI closed control loop shall log each goal and its final set of actions for that goal.

NOTE 3: Achieving agoa may require multiple iterations and multiple decisions per iteration. This requirement
states that the goal and the final set of actions that either achieved the goal or concluded that the goal
could not be achieved will be logged.

[CLR4] An ENI closed control loop shall be associated with one or more administrative or management
domains.

ETSI

[CLR4.1]
[CLR4.2]
[CLR5]
[CLRS]

NOTE 4:

5.8

5.8.1
[CTX1]

[CTX2]
[CTX3]
[CTX4]

[CTX5]
NOTE 1:

[CTX6]
NOTE 2:

58.2
[COG1]

[COG2]
[COG3]
NOTE 1:

[COG4]

57 ETSI GS ENI 005 V3.1.1 (2023-06)

An ENI closed control loop may span multiple administrative and/or management domains.

An ENI closed control loop in one administrative and/or management domain shall be able to
request an ENI closed control loop in a different administrative and/or management domain to
implement decisions on its behalf.

An ENI System need not be aware of the number of closed control loops that an Assisted System
has.

An ENI System need not be aware of how commands that it sent to the closed control loop of an
Assisted System are realized by the Assisted System.

Commands sent by an ENI System may directly or indirectly affect the behaviour of a closed control loop
of an Assisted System. In the former case, the commands are delivered directly to the closed control loop,
while in the latter case, the commands are first processed by one or more Functional Blocks of the
Assisted System before they are delivered to the closed control loop. In either case, the ENI Systemis
unaware of these mechanics.

Functional Block Processing Requirements

Context Processing Requirements

Context shall be used for assigning different roles to perform context-sensitive behaviour and
processing.

Context shall be used for establishing the identity of an object of interest that needs to interact with
the ENI System.

Context shall be used for establishing the authentication, authorization, accounting, auditing, and
similar privileges of an entity that needs to interact with the ENI System.

Context shall be used for determining what information and data should be retrieved for agiven
context, as well as how often the information and data need refreshing.

Context shall be used for determining the relevance of ingested information and data.

ENI uses a model-driven architecture, which means that the current context, as well as changesto that
context, can be mapped directly to model elements (e.g. objects, attributes, and relationships). This
enables various types of functions, such as fuzzy logic, to be used to define and alter the relevance of
ingested information and data.

Context shall be used for determining whether goals are being satisfied.

Goals are represented as formal (i.e. mathematically well-defined) policies or rules. An ENI System may
use various mechanisms, such as simple weighting or decision trees, as well as fuzzy logic, for measuring
relevance and to determine if goals are being satisfied.

Cognition Requirements

Cognition Processing in ENI shall use formal structures to model and represent each stage of the
cognition process [7] and [i.4].

A formal cognition model shall be used to guide the cognition processes used in an ENI System.
Cognition shall be aware of its own capabilities.

Cognition is the process of acquiring data and information, understanding the data and/or information,
and producing new knowledge. Its previoudly stored information and knowledge, as well as modelled
objects and behaviours, define the capabilities of an ENI cognitive System. Thisis similar to how
Autonomic Systems are designed and implemented. See [4], [i.2] and [i.4].

Cognition shall examine its own behaviour to ensure that inappropriate conclusions were not
reached.

ETSI

58 ETSI GS ENI 005 V3.1.1 (2023-06)

NOTE 2: Examination of recommendations and commands issued by an ENI System may be done using a variety
of methods. For example, modelled information and data may be translated into finite state automata, and
the projected action to be taken by an ENI System may then be matched to the actual behaviour observed.

[COG5] Cogknition processing may be used for providing explanations as to which actions an ENI System
took.

[COGH] Cognition shall use various types of repositories, such as ones dedicated for storing short- and
long-term knowledge.

[COGT] Cognition processes shall continuously evaluate and dynamically update the knowledge it has.

[COGS8] Cognition shall be used to meet, preserve, or protect the end-to-end goals of the system.

[COGY] An ENI System may use different processes, including first-order logic or computational
linguistics, to derive or infer the understanding of a new fact or behaviour.

[COG10] An ENI System may store decisions, along with their stimuli, for future use.

[COG1]] An ENI System shall review decisionsto assess their accuracy and to determine if that was the

best, or optimal, decision at that particular time.

5.8.3 Policy Management Requirements

[PMR1] Policies may be used to implement recommendations or commands.

[PMR1.1] ENI Policies may be defined asimperative, declarative, and/or intent policies.

[PMR1.2] ENI Policies shall be stored in aform that facilitates their reuse.

[PMR1.3] ENI Policies may be defined and implemented using one or more Domain Specific Languages.

NOTE 1: ENI DSLs are defined by developing aformal grammar that is used to formally verify the structure and
correctness of the grammar, and hence, are testable by definition. The grammar of ENI DSLs contain
modelled knowledge.

[PMR1.4] ENI Policies shall be used to recommend or define (depending on operational mode) desired
behavioura changes to the Assisted System.

[PMR1.5] ENI Policies may be used to recommend or define desired behavioural changes to Functional
Blocks of the ENI System.

[PMR2] ENI Policies shall incorporate any contextual changes.

NOTE 2: ENI Policiesincorporate changes in context before they are sent to the Entities that they affect. This
enables the behaviour of those Entities to adjust to changing context.

[PMR3] ENI Policies may incorporate situationally aware information.

NOTE 3: ENI Policies may incorporate situationally aware information before they are sent to the Entities that they
affect. This enables the behaviour of those Entities to adjust to changing situations, such as changesin

goasor threats.
[PMR4] The ENI System shall use DSL s to specify end-to-end goals to the Cognitive System.
[PMR5] The ENI System and the Assisted System shall agree on what types of Policy Rules are
exchanged.
[PMR5.1] The ENI System and the Assisted System may use negotiation to specify the type and format of

Policy Rules that are exchanged.

[PMR5.2] The ENI System and the Assisted System may specify the grammar of any Policy Rule DSL that
will be exchanged between them.

[PMR5.3] The ENI System shall acknowledge the receipt of Policy Rules sent by the Assisted System.

ETSI

[PMR5.4]
[PMRE]
[PMR6.1]

[PMR6.2]

[PMR6.3]

[PMR6.4]

[PMR6.5]

[PMRG6.6]

[PMR6.7]

[PMR6.8]

[PMR7]

59 ETSI GS ENI 005 V3.1.1 (2023-06)

The Assisted System shall acknowledge the receipt of Policy Rules sent by the ENI System.
The ENI System and the Assisted System shall agree on how Policy Rules are executed.

The Assisted System may request the ENI System to negotiate parametersto arrive at a mutually
acceptable Policy.

The Assisted System shall report to the ENI System if any data, information, recommendations, or
commands sent to it by the ENI System are not understood.

The Assisted System may ask for further clarifying information, including examples, if it has
received data, information, or Policies from the ENI System that it does not understand.

The ENI System may request the Assisted System to negotiate parametersto arrive a mutually
acceptable Policy.

The ENI System shall report to the Assisted System if any data, information, recommendations, or
commands sent to it by the Assisted System are not understood.

The ENI System may ask for further clarifying information, including examples, if it has received
data, information, or Policies from the Assisted System that it does not understand.

The ENI System shall record any comprehension problems detailsin [PMR6.2], [PMR6.3],
[PMR6.5], and [PMR6.6] in its knowledge base.

The ENI System shall record the correct format and content to any comprehension problems found
in [PMR6.7] in its knowledge base.

Policy Rules may have descriptive and/or prescriptive metadata attached.

5.9 Al Modelling and Training Model Requirements

[AIMTY]

[AIMT2]

[AIMT3]

[AIMT4]
[AIMTA4.1]

[AIMT4.2]

[AIMT5]
[AIMT6]

[AIMT6.1]

[AIMT6.2]

[AIMT6.3]

[AIMT6.4]

An ENI System shall incorporate methods to discover bias against individuals and groups of
objects, ideas, and people.

An ENI System shall be able to demonstrate that it uses a set of repeatable mechanisms as part of
the machine learning process to help mitigate bias.

An ENI System shall be able to demonstrate adherence to appropriate standards for showing that it
can detect and mitigate bias.

An ENI System shall analyse and provide feedback and/or explanation on ethical decisions.

Agents used by an ENI System should use one or more mechanisms to enable their ethical
decisions to explain their actions.

An ENI System should augment its learning and reasoning mechanisms with whitelist and
blacklist rules.

An ENI System should use formal logic(s) to be able to mathematically prove hypotheses.

An ENI System may use either an individual or a collaborative ethical decision-making
framework.

An ENI System shall use aformal cognition model for each intelligent agent that is used for
ethical decision-making.

An ENI System may use alogically separate mechanism to reconcile ethics-based requirements
with the proposed actions of an agent before those actions are implemented.

Individual ethical decision-making frameworks used by an ENI System shall enable agentsto
make ethical decisions, either on their own or in consultation with other agents.

Individual ethical decision-making frameworks used by an ENI System shall be able to determine
if an ethical decision made by another agent isin fact ethical or not.

ETSI

[AIMT6.5]

[AIMT6.6]

[AIMT6.7]

[AIMT6.8]

[AIMT7]

[AIMT7.1]
[AIMT7.2]
[AIMT7.3]

60 ETSI GS ENI 005 V3.1.1 (2023-06)
Collaborative ethical decision-making frameworks used by an ENI System shall form a network of
trust to ensure that ethical decisions are free of uncertain and malicious behaviour.

Collaborative ethical decision-making frameworks used by an ENI System may use a collection of
specialized agents (e.g. some being deontological agents, and others being consequentialist
agents).

A learning mechanism should be used to devel op strategies to compute a collective decision by
these agents in a collaborative ethical decision-making framework.

The learning mechanism in a collaborative ethical decision-making framework may include a
voting strategy, where different agents are assigned different weights based on the type of the
ethical decision to be made.

An ENI System shall be compliant with any applicable standards that define how ethics should be
processed.

An ENI System shall protect privacy data.
An ENI System should make as many of its decisions as possible to be transparent.

An ENI System should be able to represent the needs of an end-user (e.g. act as a proxy for the
user in machine-to-machine decisions).

5.10 API Requirements

[API1]

[API2]
[API2.1]

[API2.2]

[API3]

An ENI System should use an API Broker to communicate with external entities such as the
Assisted System.

An ENI System may interact with one or more Assisted Systems.

An ENI System may interact with APIs and/or the Designated Entity for class 1 and 2 Assisted
Systems.

An ENI System should use APIs to interact with multiple Assisted Systems based on the
communications architecture used by the Assisted Systems, as specified in [API3] or [API4].

An ENI System should interact with one or more collaborating Assisted Systems by sending the
same APl commands to each of the collaborating Assisted Systems.

NOTE: "Collaborating" means that each of the Assisted Systems has the same capabilities and responsibilities.

[API3.1]
[API3.2]

[API3.3]

[API3.4]

[API4]

[API4.1]

[API4.2]

[API4.3]

An ENI System need not know that it is communicating with a specific Assisted System.

An ENI System need not be aware of the number of collaborating Assisted Systemsthat it is
sending recommendations and commands to.

An ENI System may use any communication mechanism that ensures that the same
recommendations and commands are sent to each collaborating Assisted System.

The interactions between the APl module in each Functional Block of each collaborating Assisted
System need not be visible to an ENI System.

An ENI System shall know the identity of each non-collaborating Assisted System that the ENI
System is directly connected to, if that Assisted System wants to receive recommendations and/or
commands.

An ENI System shall be aware of the capabilities and responsibilities of each non-collaborating
Assisted System that it is directly connected to.

An ENI System should be aware of the number of non-collaborating Assisted Systemsthat it is
sending recommendations and commands to.

An ENI System may be able to indirectly control non-collaborating Assisted Systems that it is not
directly connected to.

ETSI

61 ETSI GS ENI 005 V3.1.1 (2023-06)

[API4.4] An ENI System need not be aware of its control of the behaviour of any non-collaborating
Assisted Systems that it is not directly connected to.

[API4.5] The interactions between the APl module in each Functional Block of each non-collaborating
Assisted System need not be visible to an ENI System.

[API5] An ENI System shall include APl Management.

[API5.1] An ENI System shall include authentication of APIs.

[API5.2] An ENI System shall include authorization of APIs.

[API5.3] An ENI System shall include accounting of APIs.

[API5.4] An ENI System shall include auditing of APIs.

6

6.1

ENI Reference Architectural Framework

Introduction

This architectura framework describes the ENI System as a set of Functional Blocks. Each Functional Block is
described in terms of its inputs, outputs, state, and optionally, transfer function. This specifically means that this
architectural framework does not define a specific implementation.

6.2

6.2.1

Design Principles of the ENI System architecture

Overview

The following are generic design principles that shall be followed in the design of the ENI System Architecture:

1)
2)

3)

4)

5)

6)

7)
8)

9)

The internal implementation of a Functional Block shall not be defined.

Functional Blocks may be nested, where the nested Functional Blocks provide greater detail for the containing
Functional Block. See clause 6.2.2 for more information.

Management, control, interaction with the Assisted System and orchestration of the ENI System shall be
defined in terms of Reference Points that may use APIs and/or DSLs.

The ENI System may provide management, control, and/or orchestration commands and recommendations to
the Assisted System.

Architectures from other SDOs shall be interfaced to using a subset of dedicated Reference Points for that
purpose.

It isdesirable for the ENI System to communicate with external actors. To maximize the ease with which this
is accomplished, the ENI System shall trandate external policies, data, services, and other information to a
form it can understand, and shall not rely on external actors understanding itsinternal functionality. Similarly,
outputs from the ENI System shall be translated to aform that external actors can consume. An ENI System
shall use an API Broker to insulate the ENI System from having to know what entity it is specifically
communicating with.

Any Functional Block may use negotiation to achieve its goals. See clause 6.2.3.5 for more information.

ENI shall use role-based modelling [i.5] and [i.6] to enable different functions and services to be viewed,
accessed, and managed. Thisincludes individual and groups of users, objects, Functional Blocks, and
applications representing these entities.

ENI shall use one or more closed control loops as part of its main processing architecture. The primary control
loop shall be at least one OODA-like closed control loop. See clause 5.7 for control loop requirements.

ETSI

62 ETSI GS ENI 005 V3.1.1 (2023-06)

6.2.2 Nesting of Functional Blocks
Figure 6-1 shows a simplified notation (compared to UML) for Functional Blocks. The following terms are defined:
o Nested Functional Block: a Functional Block that is contained by another Functional Block.
J External Reference Point: a Reference Point that is external to this Functional Block.
o Internal Reference Point: a Reference Point that is internal to this Functional Block.
. Port: an interaction point between the Functional Block and its environment.
. Logical Connectives: logical AND, OR, and NOT operators may be used to define flow paths.
Ports may be uni- or bi-directional; thisis indicated with one or two arrows, respectively.

Two examples of nested Functional Blocks are shown in Figure 6-1. There are two top-level Functional Blocks, named
A and B. A contains two nested Functional Blocks, named A.1 and A.2. B contains two nested Functional Blocks,
named B.1 and B.2; B.1 contains two nested Functional Blocks, named B.2.1 and B.2.2.

Functional Block A Functional Block B
? #Functional Block A.1 %j O—t>O—0) + Functional Block B.1 +
Internal / a4
External Reference Port
Reference Point
Point 1 Functional Block B.2.1

O— (]

Functional Block B.2.2 +

Functional Block A.2

Functional Block B.2

Figure 6-1: Functional Block Notation

In text form, using indentation to indicate nesting, Figure 6-1 may be represented as follows:
J Functional Block A:
- Functional Block A.1.
- Functional Block A.2.
o Functional Block B:
- Functional Block B.1.
- Functional Block B.2:
. Functional Block B.2.1.
" Functional Block B.2.2.

In Functional Block B, alogical AND connector is used to indicate that the input interface (at the level of Functional
Block B) shall connect to both Functional Block B.2.1 and Functional Block B.2.2. Logical connectives are not limited
to occurring within a Functional Block; they may control flows between any Functional Blocks at any level.

Administrative and Management Domains may be associated with multiple Functional Blocks. For example, in

Figure 6-1, one configuration could be that Functional Blocks A and B (and their constituent Functional Blocks) could
be part of the same Administrative or Management Domain. As another example, Functional Block A.1 and Functional
Block B.2 could be part of the same Administrative or Management Domain.

ETSI

63 ETSI GS ENI 005 V3.1.1 (2023-06)

Closed control loops may also be associated with multiple Functional Blocks, in the same way as described above for
Administrative and Management Domains.

6.2.3 Communication and Interaction

6.2.3.1 Introduction

All standardized communication between the ENI System and the Assisted System (or its Designated Entity) shall use
External Reference Points, which are defined in clause 7 of the present document. The ENI System shall be defined as a
set of Functional Blocks (see clauses 4.5 and 6.3). Functional Blocks define a recursive mechanism to represent
functionality with well-defined inputs and outputs; if these inputs and/or outputs are meant to be interoperable, then
they shall communicate using an ENI Reference Points. An External Reference Point (see clauses 4.4.6.1, 7.2 and 7.3)
is a Reference Point between an ENI System Functional Block and an external system, whereas an Internal Reference
Point (see clauses 4.4.6.2, 7.6 and 7.7) is a Reference Point between different ENI System Functional Blocks.

Communication is not limited to a single mechanism: direct (e.g. point-to-point) and/or indirect (e.g. systems connected
by a bus) communication may be used for any ENI Reference Point.

Communication shall be performed between two or more trusted entities, and forms a trusted system [2] (see
requirement [MOP11] in clause 5.3).

An ENI System shall be able to communicate and interact with Assisted Systems as an external system. The current
ENI System need not communicate as an entity embedded in an Assisted System. Thisis because al of the ENI
External Reference Points would then have to have two flavors, or profiles: one for normal operation as an external
means of communication, and one that is used only for internal communication.

NOTE: Itiscurrently possibleto co-locate (physically and/or logically) an ENI System with other systems (e.g.
an OSS). This enables the ENI System to keep using its defined External Reference Points in a consistent
manner.

In general, the ENI System shall acknowledge all commands and information given to it by the Assisted System or its
Designated Entity. Note that only the Designated Entity behaves as a trusted entity. The ENI System sends notifications
of other important events, such as completing the change to a new mode of operation, to the Designated Entity.

6.2.3.2 Discovery

A basic assumption is that when adevice, application, or system starts up, it has no information about any peer devices,
the network structure, or what specific set of roles[i.1], [i.4] and [i.6] it is assigned to play. Therefore, the discovery
process should be repeated as often as necessary in order to find peers that support each function required. The
discovery process may be event-driven.

The discovery process al so needs to be flexible enough to accommodate different topologies. The ENI System needs to
understand the capabilities of the Assisted System so that it may provide recommendations and commands for functions
that involve those capabilities.

EXAMPLE: The ENI System requires data to be monitored from the Assisted System in order for the ENI
System to supply recommendations and commands. If the Assisted System changesits
functionality, then the System Architecture should be notified of such changes so that the
monitored data may be adjusted.

The understanding of these capabilities shall be used to support appropriate recommendations and commands for the
desired mode of operation.

6.2.3.3 Direct Communication

ENI Functional Blocks may support direct (e.g. point-to-point) communication through sequences of messages.

EXAMPLE: Routing protocols use amodel based on distributed devices that communicate repeatedly with each
other. Current routing protocols mainly consider simple data, such aslink status. Thisis aform of
information synchronization between peers.

ETSI

64 ETSI GS ENI 005 V3.1.1 (2023-06)

6.2.3.4 Indirect Communication

ENI Functional Blocks may support indirect (e.g. systems connected by a bus, proxy, or broker) communication of
control and management parameters through sequences of messages.

6.2.3.5 Negotiation

6.2.3.5.1 Introduction

Negotiation is fundamentally a decentralized process that requires at least two entities, one designated as the buyer and
one or more designated as sellers. It is fundamental to various architectures, including message-driven and reactive
architectures (see https.//www.reactivemanifesto.org/).

ENI shall use role-based modelling to identify buyers and sellers. ENI entities, such as services availablein a
Functional Block, may participate as a buyer and/or a seller when negotiating externally (i.e. with the Assisted System
or its Designated Entity) or internally (i.e. with other Functional Blocks that are in different administrative domains of
an ENI System).

6.2.3.5.2 Distributive Negotiation

Distributive negotiation may be used by the buyer and/or the seller when either wants to gain as much in the negotiating
process. Distributive negotiation is a zero-sum game (i.e. each agent's gain or loss is balanced by the losses or gains of
the other agents). The participants may adopt different fixed positions (which may be extreme in nature, such as being
overly expensive); then, each seeks to give as little as possible before reaching a deal. This encourages one participant
to view the other as an adversary, rather than a partner. Put another way, distributive negotiation assumes that thereisa
fixed amount of value (which could also be services and/or resources) to be divided between the bidding agents.

6.2.3.5.3 Integrative Negotiation

Integrative negotiation may be used by the buyer and/or the seller when either wants to form partnersin the negotiating
process to ensure that it, and its partners, can maximize their gain. I ntegrative negotiation is a win-win (or
non-zero-sum) game (i.e. all participating agents can profit). In theory, thisimproves the quality and likelihood of
negotiated agreement by taking advantage of the fact that different parties often value various outcomes differently.
Integrative negotiation may have some distributive elements, especially when different agents value different items the
same, or when critical details are left to be alocated at the end of the negotiation. Integrative negotiation may involve a
higher degree of trust and the formation of relationships, which enables each collaborating agent to "win". Hence, a
good agreement is not one with maximum individual gain, but rather, one that provides optimum gain for al
collaborating agents. Put another way, integrative negotiation attempts to create value in the course of the negotiation
by either compensating the loss of one item with the gain of another item, or by restructuring the contract to specifically
enable all collaborating agents to benefit.

6.2.3.5.4 Functional Model: an Informative Example
A simplified version of a market-based distributed negotiation model is as follows:
. An agent declaresitself as a buyer.

e Thebuyer publishes one or more contracts, where each contract includes a specification of the set of tasks to
be performed. The specification encodes a description of the task, any constraints, and metadata information.

. Agents that receive the contract request then decide if they want to bid on the contract. If so, then:
- Each bidding agent announces itself asa seller.

- Each seller then replies to the contract by either accepting the contract asis, or presenting a counter-
proposal. The counter-proposal may include differences on one or more parameters in each task in each
contract.

- Any seller may generate a set of sub-contracts to help it meet the terms of the contract. If thisis done,
then the seller becomes a contract-buyer, and follows the above steps until it can satisfy the original
contract.

ETSI

https://www.reactivemanifesto.org/

65 ETSI GS ENI 005 V3.1.1 (2023-06)

e The (original) buyer then may either accept a seller's bid, or provide a counter-proposal, to all agents that
submitted a bid on the contract.

6.2.3.5.5 Usage

ENI Functional Blocks may support negotiation of control and management commands. Negotiation is fundamental to
agent interaction, asit enables interaction between entities that have different functions, and helps entities arrive at a
mutually agreed upon compromise in functionality. It also may be used to negotiate data and commands exchanged
between an ENI System and an external entity.

In the context of an ENI System, a negotiation process between digital agents of each system achieves agreement on the
use of services and/or resources; this may also include a set of rules governing the use of each.

ENI isan experiential system, which meansthat it constantly learns while it is operating. This means that if the context
in which an ENI System is operating changes the behaviour and functionality required by an ENI System, then the
appropriate ENI Functional Blocks also change dynamically.

Therefore, static configuration of the behaviour of ENI Functional Blocksis not desirable, since the provided
functionality cannot change in response to changing context and/or situations. Negotiated behaviour enables each
negotiating entity to customize the functionality being negotiated dynamically at runtime. More importantly, it ensures
that the collaborating entities arrive at a mutually agreed-upon solution. For example, suppose that an ENI System has a
network slice management system to deliver sets of services to different customers from the same networked
infrastructure. It is possible to use Al-based solutions to dynamically analyse current operational performance, as well
astrendsin that performance, and recommend or change network resources and services to adapt to changing user
needs, business goal's, and environmental changes. In this example, the benefit of negotiation is efficiency. For example,
if the Functional Blocks that are supplying the changed behaviour have multiple programmabl e parameters, negotiating
anew serviceislikely to be more effectively done by asking for a desired overall service and using negotiation to
fine-tune applicable parameters. This also enables the negotiation to optionally include additional compensation, such
as credit issued.

The negotiation processis a request-response message exchange pattern that is guaranteed to terminate with success or
failure. More specifically, negotiation is a process by which two or more entities iteratively interact to agree on
parameter settings that best satisfy the objectives of all participants.

Robust negotiation processes include loop prevention, time-outs, and generic tie-breaking rules for each parameter that
is being negotiated. In addition, if negotiation is used in ENI, then the following additional communication
requirements are typical:

. ability for each negotiating entity to discover each other;
. ability for each negotiating entity to synchronize state with each other;

. ability for each negotiating entity to agree (negotiate) on parameters and resources to use directly with each
other.

If negotiation is not used, or if it isused but is not successful, architectural requirements[MOP11] and [MOP12] of
clause 5.3 apply.
6.2.4 Administrative and Management Domains

6.2.4.1 Introduction

A domain is acollection of Entities that share acommon purpose (e.g. has a set of common characteristics and/or
behaviours and/or roles). Each constituent Entity in a Domain is both uniquely addressable and uniquely identifiable
within that Domain.

ENI uses two types of domains: Administrative Domains and Management Domains.

An Administrative Domain is a Domain that employs a set of common administrative processes to manage the
behaviour of its congtituent Entities. A Management Domain is an Administrative Domain that uses a set of common
Policy Rules as the management mechanism to govern its constituent Entities.

ETSI

66 ETSI GS ENI 005 V3.1.1 (2023-06)

NOTE: A Management Domain refines the notion of a Domain by adding three important behavioural features:
1) it definesaset of administrators that govern the set of Entities that it contains;

2) itdefinesaset of applications that are responsible for different governance operations, such as
monitoring, configuration, and so forth;

3) it defines acommon set of management mechanisms, such as policy rules, that are used to govern
the behaviour of MCM ManagedEntities contained in the MCM ManagementDomain. Thisis based
on the definition of an MCMDomainin [7].

6.2.4.2 Domain Operations

An Administrative Domain shall be governed by a Domain Authority. A Domain Authority is a set of management
entities that determines the Policies for a given Domain (and al child Domains of the given Domain). The Domain
Authority shall have the ability to delegate and revoke this ability, on a Domain-by-Domain basis, to another set of
management entities. ENI shall model a Domain Authority as a set of Roles.

An Administrative Domain shall use a set of management processes to govern the behaviour of its constituent entities.
If Policy Rules are used, then an Administrative Domain is considered a Management Domain.

Policies associated with a given Management Domain govern the behaviour of that Management Domain. All child
Management Domains of this given Domain shall implement the same behaviour, and shall not implement behaviour
that conflicts with the behaviour, defined in a parent Management Domain. In the present document, Policies conflict
with each other if, for the same stimulus, they produce different behaviours. Any type of Policy Rule (e.g. imperative,
declarative, intent) may be used to specify the behaviour of a Domain and entities within that Domain. The behaviour of
a Management Domain includes any operation whose execution is specified using a Policy. Exemplary operations
include the creation, reading, updating, managing, and deleting of objects (and their attributes), and invoking of
methods in information and data model s (and associated implementations), as well as defining access privileges to data,
information, and knowledge within a Management Domain.

From this point forward in the present document, the term "Domain" shall refer specifically to a Management Domain
unless otherwise indicated.
6.2.4.3 Interaction between Hierarchical Domains

The position of aDomain in a hierarchy typically defines the containment rel ationships of that Domain (i.e. is that
Domain contained in another Domain, and does that Domain contain other Domains). Examples are shown in
Figure 6-2.

ETSI

67 ETSI GS ENI 005 V3.1.1 (2023-06)

Domain A
Domain B DomainC
Domain B.1
Domain A
Domain B
Domain B.1
: DomainB.2
Domain B.2 Domain B.2.1
Domain B.2.2
Domain B.2.1 Domain B.2.2 o
DomainC
(a) Graphical lllustration (b) Textual lllustration

Figure 6-2: Exemplary Domain Relationships

In Figure 6-2, Domain B contains two child Domains, B.1 and B.2. Conceptually, these Domains are at the same level,
and are called sibling Domains. Domain B.2 also contains 2 child Domains, B.2.1 and B.2.2. Thus, containment
relationships shown in Figure 6-2 are summarized as follows:

. Domains B and C are both child Domains of A and sibling Domains (of each other).
. Domains B.1 and B.2 are also sibling Domains.
. Domain B.2 isachild Domain of Domain B and the parent Domain of B.2.1 and B.2.2.
. DomainsB.2.1 and B.2.2 are aso sibling Domains.
For this example, the following rules apply concerning all types of Policies that are applied to these Domains:

. Domain A shall be governed by a common set of administrative Policies (see requirement [FAR4.1] in
clause 5.2).

. If Domain A defines aPolicy P1, then all child Domains of Domain A shall implement P1 (see requirement
[FARA4.3] in clause 5.2).

. In addition, al child Domains of Domain A shall not define a Policy P2 that conflicts with P1 (see requirement
[FAR4.4] in clause 5.2).

. Any child Domain of Domain A may define zero or more new administrative Policies; however, each new
administrative Policy defined by a child Domain shall not conflict with any administrative Policy in any parent
Domain of that child Domain (see requirement [FAR4.4] in clause 5.2).

. Sibling Domains to Domain A (not shown) shall use federation Policies to govern how the Domains interact;
examples include controlling access to and communication with Domain entities, and deciding to work
together (e.g. in a master-slave, 3-tier, collaborative, distributed, or other manner) (see requirement [FAR4.7]
in clause 5.2).

ETSI

68 ETSI GS ENI 005 V3.1.1 (2023-06)

6.2.4.4 Interaction between Distributed Administrative Domains

A distributed set of Domainsis a set of Domains whose components work together to achieve a set of common goals.
One or more communication mechanisms are used to coordinate actions between the Domains. Since each Domainin a
set of distributed Domains typically has only alimited and incomplete view of the system, the components of each
Domain in a distributed system have access to their own distinct Domain memory. Data may be local to agiven
Domain. In addition, some data may be shared across multiple Domains.

Distributed Domains are used to distribute tasks to different Domains that have functionality most suited to
accomplishing the goals required. If agoal can be subdivided into multiple tasks, then each such task can run
concurrently.

Policies should be used to assign tasks to appropriate Domains (see requirement [FAR4.8] in clause 5.2). Task
assignment should use one or more mechanisms, such as metadata, to guide the assignment of tasksto Domains (see
requirement [FAR4.9] in clause 5.2). For example, the concept of a Capability isdefined in [7]. A Capability isatype
of metadata, and represents a set of features that are available to be used from a managed entity. These features may
include all, or a subset, of the available features of the managed entity. These features may, but do not have to, be used.
A Capability provides information about the functionality of a managed entity that enables management entities to
decide whether that managed entity is useful for a given task.

Distributed Domains also enable failuresin al or part of a Domain to be more easily tolerated.

6.2.4.5 Interaction between Federated Administrative Domains

A federated set of Domainsis a set of Domains that use formal agreements to govern their interaction and behaviour.
The agreement(s) are used to standardize interoperability between each federated Domain. The set of federated
Domains act collectively, but each Domain is distinct and has its own identity.

Dataistypically local for each Domain in a Federated Domain. Each domain may have access to common shared data,
information, and knowledge, but are limited in their ability to edit or remove these common shared data, information,
and knowledge. For example, each Domain may be given the same starting information model and/or ML model, but
can only send its own suggested updates to a Governing Authority that is responsible for implementing those changes.

Policies should be used to govern the behaviour of each Domain in a federated Domain (see requirement [FAR4.7] in
clause 5.2). Thisincludes determining which Domains in afederated Domain assist which other Domains on a given
task or goal.

Entities in each federated Domain may communicate with each other. External users and applications interact with each
Domain independently (i.e. there istypically no mechanism, such as a proxy, that enables the same user or application
to talk to all federated Domains together).

6.2.5 Modelled Knowledge

NOTE: Thisentire clause has been moved from the present document to a new document, titled " Representing,
Inferring, and Proving Knowledge in ENI", and will be specified in a future release.

6.2.6 Bias

6.2.6.1 Introduction

Biasis defined as "the systematic difference in treatment of certain objects, ideas, or people in comparison to others'. In
this definition, systematic means that the difference in treatment is predictable and typically constant.

The different types of Bias are defined in ETSI GR ENI 018 [i.37], clause 4.4.2.

ETSI

69 ETSI GS ENI 005 V3.1.1 (2023-06)

6.2.6.2 Protection Against Bias

An ENI System shall incorporate methods to discover bias and discrimination against both individuals and groups of
objects, ideas, or people. Such methods may include statistical and/or probabilistic methods and, more generally, types
of data mining. Data mining methods include anomaly detection (i.e. identifying objects that are outliers or significantly
different from other elementsin their class), association rule learning (i.e. discovering relationships between variables),
clustering (i.e. discovering similar groups and structures in a data set that are more similar to each other than to othersin
the data set). Data mining should use both protected attributes (e.g. those affecting privacy, gender, religion, etc.) and
combinations of attributes that indirectly discriminate in some way. For example, the association rule:

IF city == X and neighborhood == Y THEN perform Z (D]
appears fine. However, if it is combined with another rule that contains protected attributes, such as:

IF city == X and neighborhood == Y THEN protected attribute is TRUE 2
the conjunction of (1) and (2) is:

IF city == X and neighborhood == Y and protected attribute is TRUE THEN perform Z 3
which is clearly biased.

Many types of machine learning algorithms, such as neural networks, are too complex to understand how datais
computed in each stage of each iteration. Thisis because the nested non-linear structure of such systems makesit very
difficult to determine what information in the input data makes the system actually arrive at its decisions.

An ENI System shall be able to demonstrate that it uses a set of repeatable mechanisms as part of the machine learning
process to help mitigate bias. Exemplary techniques include:

e pre-processing, which is used to change the learning procedure of an ML model;

. post-processing, which treats the ML model asa"black box" and does not modify the learning algorithm or
training data;

e processing during learning (e.g. adding a discrimination-aware regularization term to the learning objective).

6.2.6.3 Adherence to Applicable Standards to Mitigate Bias

An ENI System shall be able to demonstrate adherence to appropriate standards for demonstrating that it can detect and
mitigate bias. The |IEEE P7003 [i.20] standard enables creators to communicate to users, and regulatory authorities, that
best practices were used in the design, testing and eval uation of the algorithm(s) used in a product or system to attempt
to avoid bias, and that itsresults are fair. The standard describes specific approaches that allow users of the standard to
define how addressed and eliminated bias in the creation of their algorithmic system. For example, P7003 defines
methods for checking if all customer groups are sufficiently represented in the testing data.

As another example, the GDPR [i.16] describes a"right to explanation. When combined with the "data protection by
design" principles, the GDPR implies that data auditing methodol ogies designed to safeguard against algorithmic bias
throughout the entire product life cycle will likely become the new standard for promoting compliance in automated
systems.

6.2.7 Ethics

6.2.7.1 Introduction

The definition of ethics, as used in ENI, is"a normative philosophical discipline of how a person or object should act
towards others. It comprises three dimensions:

1) Consequentialist Ethics: an agent is ethical if and only if it considers the consequences of each decision and
chooses the decision that has the most moral outcome.

2) Deontological Ethics: an agent is ethical if and only if it respects obligations, duties, and rights appropriate
for a given situation.

ETSI

70 ETSI GS ENI 005 V3.1.1 (2023-06)

3) Virtue Ethics: an agent isethical if and only if it acts according to a set of moral values."

Anintroduction to ethicsis provided in ETSI GR ENI 018 [i.37], clause 4.5.

6.2.7.2 Methods to Ensure Ethical Decision-Making

Two approaches to creating ethical decision-making are individual [i.23] and collaborative [i.24] decision frameworks.
Theissue of ethical dilemmas are present in both approaches. An ENI System shall analyse and provide feedback
and/or explanation of ethical decisions.

Agents used by an ENI System should use one or more mechanisms to enable their ethical decisionsto explain their
actions. An ENI System should augment its learning and reasoning mechanisms with whitelist and blacklist rules. The
former arerulesthat explicitly allow a set of identified entities to be granted a set of particular privileges, while the
latter is the opposite (rules that explicitly disallow a set of identified entities to be granted a set of particular privileges).

An ENI System should use formal logic(s) to be able to mathematically prove hypotheses. In particular, it should define
rules that:

. shall be implemented (i.e. obligation, permission, and delegation): deontic logic;
. may be proved wrong by contrary evidence: defeasible logic;
. may modify context by expressing modality: alethic logic.
An ENI System may use either an individual or a collaborative ethical decision-making framework.

Individual ethical decision-making frameworks used by an ENI System shall enable agents to make ethical decisions,
either on their own or in consultation with other agents[i.22]. Similarly, an individual ethical decision-making
framework used by an ENI System shall be able to determine if an ethical decision made by another agent isin fact
ethical or not. Both of these properties shall use aformal cognition model for the agent (or set of agents), such asthe
belief-desire-intention model [i.28]. In addition, an ENI System may use alogically separate mechanism to reconcile
ethics-based requirements with the proposed actions of an agent before those actions are implemented.

Collaborative ethical decision-making frameworks used by an ENI System shall form a network of trust to ensure that
ethical decisions are free of uncertain and malicious behaviour. Collaborative ethical decision-making frameworks used
by an ENI System may use a collection of specialized agents (e.g. some being deontological agents, and others being
consequentialist agents). In this approach, alearning mechanism should be used to develop strategies to compute a
collective decision by these agents. The |earning mechanism may include a voting strategy, where different agents are
assigned different weights based on the type of the ethical decision to be made.
6.2.7.3 Adherence to Applicable Standards and Initiatives
There are anumber of international standards that may be applicable for an ENI System. These include:

o |EEE P70xx Series (i.e. P7001-P7014) [i.27].

e GDPRJi.16].

. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems [i.25].

There are several specific worksin the |IEEE P7000 series that involve Ethics.

IEEE P7000 [i.46] is dedicated to identify, analyse, and reconcile ethical concerns. An ENI System shall perform these
or similar efforts at the beginning of system and software life cycles. This affects both technol ogists and end-users.

|IEEE P7001 [i.47] states that the operation of any intelligent system shall be transparent. An ENI System should make
as many of its decisions to be transparent. This enables end-users to ask why the intelligent system made the decision it
did, and helpstrace internal processes that led to erroneous behaviour. More importantly, it helps users of the intelligent
system trust the intelligent system, since it is more understandable.

|EEE P7002 [i.48] defines requirements for a privacy-oriented process for ensuring that personal data are protected. An
ENI System shall make every effort to ensure private data are protected.

ETSI

71 ETSI GS ENI 005 V3.1.1 (2023-06)

| EEE P7006 [i.49] defines standards for personal data Al agents, ensuring that machine-to-machine decisions will be
made with appropriate transparency and explanations. An ENI System should apply this principle to all machine-to-
machine decisions that directly affect the end-user. In addition, an Al agent should be able to represent the needs of an
end-user (e.g. act as a proxy for the user in machine-to-machine decisions).

|EEE P7007 [i.50] standards formal communication for defining Ethical and Moral Theories. An ENI System should
use ontologiesto realize ethical and moral features, since ontologies use formal logics, and hence, can be
mathematically proved. Thisisimportant for auditing and explanation. Similarly, IEEE P7008 [i.54] standardizes the
notion of ethically-driven "nudging” (i.e. arecommendation or action that influences the behaviour of auser). An ENI
System may use nudging to guide the end-user in ethical decision-making.

The GDPR [i.16] impliesthat Al systems should enable equitable societies by supporting human agency and
fundamental rights, and not decrease, limit or misguide human autonomy. A preferred way of doing thisisto augment
pure learning and reasoning Al systems with different types of formal logics, including deontic, defeasible, and alethic
logic. This enables ethical decisions made by an ENI System to be explained mathematically:

. The |IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems has defined Ethically Aligned
Design [i.29]. Thisis alarge document that defines a number of goalsthat an ENI System should implement.
This includes ensuring that an intelligent system should not infringe on internationally recognized human
rights.

e Anintelligent system should prioritize metrics of well-being in the design and use of Al-based systems.

e Anintelligent system should use appropriate practices, such as anonymization, to protect the discovery and use
of privacy attributes.

e Anintelligent system shall provide informed consent for the user of personal privacy data.

e Thedesigners, developers, and operators of an intelligent system should be responsible and accountable for
decisions made by the intelligent system.

e Anintelligent system should operate in a transparent manner.
e Anintelligent system should provide safeguards against its misuse.
e Anintelligent systems shall be subject to applicable law.

e Anintelligent system shall respect the rules of applicable government, industry, and other stakeholdersin
which it operates. This includes obeying rules governing decisions that shall never be allowed to be performed
by an intelligent system.

e Anintelligent system should similarly obey rules governing decisions that shall only be allowed to be
performed by an intelligent system in coordination with humans.

e All applicable parties shall have accessto all data and information generated and used by an intelligent system.

e Thelogic and rules embedded in an intelligent system should be available for examination and subject to risk
assessments and testing.

e Anintelligent system should generate audit trails recoding the facts and law supporting its ethical decisions.

e Anintelligent system should enable third-party verification of ethical decisionsthat it has made.

6.2.8 The Assisted System

6.2.8.1 Overview

An important design principle of an ENI System is that changes need not be required to an Assisted System in order for
an Assisted System to make use of recommendations or commands sent to it by an ENI System (see requirement
[NFA1] in clause 5.4). Thisistrue for all three classes of Assisted Systems (see clause 4.4.2).

ETSI

72 ETSI GS ENI 005 V3.1.1 (2023-06)

In general, if an Assisted System of any classis able to expose an API, then it may be able to take better advantage of
the capabilities of an ENI System. This is because this defines a direct mapping between the functionality of an Assisted
System and that of an ENI System. The API trandation shall be done by an API Broker (see clause 6.4).

6.2.8.2 Class 1 and 2 Assisted Systems

Class 1 and 2 Assisted Systems are represented as individual systems. Interaction between them and an ENI System
may be done using APIs and/or the Designated Entity of an Assisted System.

If it isdesired for an ENI System to interact with aset of class 1 or 2 Assisted Systems, then the mechanisms of Class 3
Assisted Systems, Option 1 (see clause 6.2.8.3.1) or Option 2 (see clause 6.2.8.3.2) shall be used, depending on the type
of communication that is required. More specificaly, if each Assisted System has the same set of responsibilities and
capabilities, then Option 1 should be used; otherwise, Option 2 should be used.

6.2.8.3 Class 3 Assisted Systems

6.2.8.3.1 Single Class 3 Assisted Systems

Thistype of Assisted System, called option 1, was described in clause 4.4.2.5.2.2. In thisinteraction, an ENI Systemis
aware that it is providing recommendations and commands to a single Assisted System, but is not aware of the number
or type of control loops that the Assisted System has. There are two types of control loop arrangements, as shown in
Figures 6-3 and 6-4.

Designated Entity/Operator

!

API Broker

ENI

Functional Block B

Closed
Control Loop(s)

Functional Block C
Functional Block A

Class 3 Assisted System

Figure 6-3: API of Single Class 3 Assisted System Directly Affect Closed Control Loop

In Figure 6-3, the API is sent directly to a Functional Block that contains a set of closed control loops. This type of
closed control loop enables decisions made by the control loop(s) to be sent to other Functional Blocks, thereby
affecting their behaviour (regardless of what type of task each Functional Block performs). The interactions between the
API module and Functional Block A, as well as between Functional Block A and the other Functional Blocksin this
figure, are not visible to the ENI System.

In contrast, Figure 6-4 shows that the APl command(s) that affect the set of closed control loopsin Functional Block A
are delivered indirectly. This option enables any intervening Functional Blocks (B and C in this example) to pre-process
the APl command(s) for delivery to Functional Block A. Again, these interactions are not visible to the ENI System.

ETSI

73 ETSI GS ENI 005 V3.1.1 (2023-06)

Designated Entity/Operator

I

API Broker

ENI

Functional Block B

Closed
Control Loop(s)

Functional Block C

Functional Block A

Class 3 Assisted System

Figure 6-4: API of Single Class 3 Assisted System Indirectly Affect Closed Control Loop

The first option, shown in Figure 6-3, uses the API to direct the operation of the closed control loop(s), which in turn
direct the operation of other Functional Blocks. In contrast, the second option (shown in Figure 6-4) usesthe AP, in
combination with other Functional Blocks, to direct the operation of the closed control loop(s).

In both cases, care should be taken to ensure that the effects of using an API do not adversely effect the operation of the
Functional Blocks being affected. For example, this may not be appropriate for some real-time decisions due to the
communication and security constraints of using an API. Thisis because a delay in communication caused by using the
API (versus, for example, remote method invocation or other types of communication), as well as additional time
required to secure the communication between two entities that are not co-located, islikely not going to be acceptable
in certain scenarios.

6.2.8.3.2 Multiple Class 3 Assisted Systems

Figure 4-4 (in clause 4.4.2.5.1) describes the possibility of an ENI System managing multiple Assisted System. There
are two distinct cases:

o ENI is communicating with multiple Assisted Systems whose capabilities and responsibilities are identical.
. ENI is communicating with multiple Assisted Systems whose capabilities and responsibilities are not identical.

The first case applies to collaborative scenarios, such as peer-to-peer architectures, in which each Assisted System has
the same capabilities and responsibilities. Thisis shown in Figure 6-5.

ETSI

74 ETSI GS ENI 005 V3.1.1 (2023-06)

Designated Entity/Operator

Assisted System 1

- API Broker

Assisted System 2

L]
L]
L]

BN

Assisted System i

Figure 6-5: Multiple Collaborative Assisted Systems Controlled by an ENI System

In arrangements such as that shown in Figure 6-5, the ENI System need not know that it is communicating with a
specific Assisted System, since the capabilities and responsibilities of each Assisted System are identical.
Communication mechanisms may include peer-to-peer, individually sent mechanisms (e.g. broadcast), or using a bus.

The interactions between the APl module in each Functional Block of each Assisted System in thisfigure are not visible
to the ENI System.

The second case applies to scenarios in which one or more Assisted Systems have different capabilities and
responsibilities. Thisis shown in Figure 6-6.

Designated Entity/Operator
a

T" Assisted System 1

Assisted System 2

Assisted System 3 h—

. Assisted System i

API Broker

Figure 6-6: Multiple Disparate Assisted Systems Controlled by an ENI System

In Figure 6-6, some Assisted Systems are directly connected to an ENI System, while other Assisted Systems are only
connected to other Assisted Systems. However, an ENI System shall know the identity of each non-collaborating
Assisted System that the ENI System is directly connected to, if that Assisted System wants to receive
recommendations and/or commands.

ETSI

75 ETSI GS ENI 005 V3.1.1 (2023-06)

An ENI System shall be aware of the capabilities and responsibilities of each non-collaborating Assisted System that it
isdirectly connected to. For example, in afloating master architecture, at least one of the Assisted Systems shall be
designated as a master, and is responsible for coordinating and synchronizing data and commands to the other Assisted
Systems (known as members). If amember Assisted System is promoted to function as a master Assisted System, then
the ENI System shall be notified of this change. The ENI System shall interact directly with each master Assisted
System in such an arrangement.

An ENI System should be aware of the number of non-collaborating Assisted Systems that it is sending
recommendations and commandsto. This helps the ENI System to keep track of the state of each non-collaborating
Assisted System that it is providing recommendations and commands to.

It may be possible for an ENI System to indirectly control Assisted Systemsthat it is not connected to (e.g. 2and 3in
Figure 6-6) through the set of Assisted Systemsthat it is directly connected to. However, the ENI System need not be
aware of such behaviour.

The interactions between the APl module and each Functional Block of each Assisted Systemin this figure are not
visible to the ENI System.

6.3 Architectural Functional Blocks of the ENI System

6.3.1 ENI Functional Architecture with Reference Points

6.3.1.1 Introduction

The following clauses show the External and Internal Reference Points of the ENI Functional Architecture, along with
examples of how Administrative and Management Domains, as well as Control Loops, may be realized.

6.3.1.2 ENI Functional Architecture with External Reference Points

Figure 6-7 shows a more detailed Functional Block Diagram that contains al of itsinput External Reference Points (see
clause 7.3).

0SS- and BSS-like

API Broker

—f— — —_— = e - —t

/ i 1 y i r 1 1 L4 1 L 2] L \
ENI System _

Semantic Bus (Inputs) —

o T T o

S T e e _—— o
Knowledge Context Cognition Situational Model-Driven Policy
\ Management Awareness Management Awareness Engineering Management

—'—' External Reference Point NOT defined by ENI
—I— External Reference Point defined by ENI

Figure 6-7: Functional Architecture with its Input Reference Points

Similarly, Figure 6-8 shows a more detailed Functional Block Diagram that contains all of its output External Reference
Points (see clause 7.3).

ETSI

76 ETSI GS ENI 005 V3.1.1 (2023-06)

Knowledge Context Cognition Situational Model-Driven Policy \
Management Awareness Management Awareness Englneerlng Management

e e e e e e itk e et e e _______________-.______________.-________________u. ______

wa—em—cmd Eoss'emrcmd Eoss—enrrpol Ebss—em—cmd Ebssempor Eappen\c(x Eappren\rkno Eappremrom Eappren\—po\ Eovren\—cmd Eovremrpol EusvremrpoJ

[s 11 APIBroker v]

Functionality

Extemal Reference Point NOT defined by ENI

—I— External Reference Point defined by ENI
.....|.... Internal Reference Point defined by ENI

Figure 6-8: Functional Architecture with its Output Reference Points

6.3.1.3 ENI Functional Architecture with Internal Reference Points

Figure 6-9 shows a detailed Functional Block Diagram that contains al of the ENI Internal Reference Points (see
clause 7.7).

/ ENI System —TTT . I

Img-norm
—
0

Semantic Bus hhomsem ==

sem -km . sem ca —E— sern cog —'— sem sa —'— sern mde —|— sem pm —!—

Knowledge Context Cogmtlon Sltuatlonal Model-Driven Pollcy
Management Awareness Management Awareness Engineering Management
sem -denorm —-—

0
K |denorm»og _E_ /

Figure 6-9: Functional Architecture with its Internal Reference

6.3.1.4 ENI Functional Architecture with Administrative and Management Domains

Figures 6-10a and 6-10b show a detailed Functional Block Diagram of the ENI Functional Architecture with
Administrative Domains and Policy Management with exemplary external and internal domains, respectively. The
External and Internal Reference Points are the same asin the previous figures, but are now shown within the context of
an Administrative Domain.

ETSI

—

Input Data in Native Format

N\
7

77 ETSI GS ENI 005 V3.1.1 (2023-06)

Assisted System Application, User, and/or Domain 1
0SS- and BSS-like Functionality and Orchestrator
Input Data .
in Native Output Recgmmepdatlons/ Domain 2
Format Commands in Native Format

AP| Broker

Recommendations System

and/or Commands in
ENI Internal Format

Input Data in
ENI Internal Format

Analysis: Context-Aware, Knowledge Management, Cognitive Processing, Situation-
Aware, Model-Driven, and Policy Management FBS

(@)

o
Input Datain () Input Data in Output Recommendations/ Output Recommendations/ 58
ENI Format ENI Format Commands in ENI Format Commands in ENI Format § =
8
O
g3
$2
35
iz
ENI
O

ENI Sysliem

o

Figure 6-10a: Functional Architecture with An External Exemplary Domain

Assisted System Application, User, and/or

0OSS- and BSS-like Functionality and Orchestrator

Input Data

Infrastructure < J

Domain1

in Native Output Recommendations/ Domain 2
Format Commands in Native Format

w API Broker O
= o
S (=]
S Input Data in Input Data in Output Recommendations/ Output Recommendations/ 3
§ ENI Format ENI Format Commands in ENI Format Commands in ENI Format §
= =
= =
£ :
s @
g J
£ 3
85

i

~

o~ /SUolepUBLILIOISY INndinO

Recommendations
and/or Commands in
ENI Internal Format

/ Input Data in

ENI Internal Format

Analysis: Context-Aware, Knowledge Management, Cognitive Processing, Situation-
Aware, Model-Driven, and Policy Management FBS

K Infrastructure <

Domain3

Figure 6-10b: Functional Architecture with Exemplary Internal Domains

ETSI

78 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.1.5 ENI Functional Architecture with Control Loops
Figure 6-11 shows an exemplary mapping of a simple closed control loop (as described in ETSI GR ENI 017 [i.36].

055- and BSS-like pus
Infrastructure Functionality Applications Orchestrato User
[___|_ 1 ApiBroker T B | e e] e 1__]
rﬁ:t |- dat E-.-.-? en-dd E._,_N £ni-pol Eh‘a en-dat El-.\? ani-pol E.’.Lf.- ENHtx E..;{- £ra-kno E;,;.:- h En:.r.--.\r P E en-dat E €f EJ _.- ‘,
"-.-..—':______ - e —— o . o =i T —
/ Y L y E i i \
: Transducer
ENI SYStem Target System
Semantic Bus (Inputs) i :
== _'_'_'.'..__ T __?::'_ ettt ::_:1:'_': dpdelalple b et
| ; ; o2
| Knowledge Context Cognitian
[Management Awareness Management
I s —L ——
1 e e e R L s
b i o e e -
Canzrc;Her
(\ E‘"f'en"C”‘d EDSS'GW'Cmd EDSS—emrpo\ Ebss—enl—cmd Ebss—em—po\ Eapp'emw Eapp—em—kno EHPD'EW'OVW Eapprenkpol Eoy,em,smd Eovrem—pof Eusrrem—p‘o[\/
R - 4--———__L 1 APIBroker_] < PR s
— o e — — — — 7 ———————————— — - —
e e oo e i / e e e el s e e e

Functionality

Figure 6-11: Functional Architecture with Exemplary Control Loops

Figure 6-11 specifiesthat al external entities that have the ability to send Policy Rules to, and receive Policy Rules
from, the ENI System use dedicated External Reference Pointsto do so.

The following exemplary description is done in a somewhat serial flow for ease of understanding. This does not mean
that the actual processing done is serial. One reason that abusis used is to enable complex communication to occur
between different internal Functional Blocks.

A closed control loop, as described in ETSI GR ENI 017 [i.36], consists of the following functions:
e Adesired input, or goal.
e A function that compares the desired input and the feedback (transduced adjustment in [i.36], Figure 4.3.2-1).
e Acontroller.
. A target system.
e A transducer.

In Figure 6-11, the above five functions are represented by one or more ENI Functional Blocks (or signals from them).
More specifically:

e Thegoal (which every closed control loop has) is represented inits final formin the Model-Driven
Engineering Functional Block.

e Thefunction that compares the desired input and feedback is contained in the Controller in this example.

ETSI

79 ETSI GS ENI 005 V3.1.1 (2023-06)

e TheController isrepresented by the four Functional Blocks (Knowledge Management, Context-Aware
Management, Cognition Management, and Situational Awareness).

. The Target System is represented by the Model-Driven Engineering and Policy-Based Management Functional
Blocks.

. The Transducer is represented by the Situational Awareness, Model-Driven Engineering, and Policy-Based
Management Functional Blocks.

The following explains the operation of a generic closed control loop using Figure 6-11.

The closed control loop isfirst supplied agoal to achieve. This goal shall be supplied by ENI, though it may have
originated from the Assisted System. If the former, then that goal is stored in the Knowledge Management Functional
Block for use by other Internal Functional Blocks. If the latter, then the goal appears asinput data, and hence, is
ingested and normalized, followed by being stored in the Knowledge Management Functional Block. In either case, the
god is represented in the Model-Driven Engineering Functional Block.

Input data to the closed control loop may come from one or more of the five main sources (Infrastructure, OSS- and
BSS-like functionality, Applications, Orchestrator, and User). All input is transmitted to the API Broker, which then
communicates the data using one (or more) of the designated ten input External Reference Points. Each input first goes
to the Data Ingestion and then to the Normalization Functional Blocks. At this point, the dataisin aformat that can be
understood by the six Internal ENI Functional Blocks. The six Internal Functional Blocks are notified that new data has
been ingested and normalized via a message delivered by the Semantic Bus [i.30].

The function of the Controller is played by the Knowledge Management, Context-Aware Management, Cognition
Management, and Situational Awareness Functional Blocks. Briefly, the Knowledge Management Functional Block is
responsible for representing data, information, and knowledge about the target system. Once the ingested data is
represented, all interested consumers are notified of this via the Semantic Bus.

The Context-Aware Management Functional Block enables an ENI System to adapt its behaviour according to changes
in context. For example, the ENI Internal Functional Blocks may collectively decide that a more efficient way to
achieve agoal isto use different operations and processes given new contextual information. Current and historical
context may be used, since both provide different information when doing statistical analysis and inferencing. Once
context data has been integrated with the ingested data, all interested consumers are notified of this via the Semantic
Bus.

The Cognition Management Functional Block is responsible for ensuring that an ENI System is achieving its end-to-end
goals as efficiently as possible. More specifically, thisincludes understanding how ingested data and information
interact with and are affected by the current (and possibly historical) context(s). This enables the Cognition
Management Functional Block to change existing knowledge and/or add new knowledge. Outputs from this Functional
Block are then made available to all interested consumers via the Semantic Bus.

The Situation Awareness Functional Block enables an ENI System to understand what has just happened, what is likely
to happen, and how both may affect the goals that an ENI System is trying to achieve. Hence, the fundamental part of
any closed control loop that makes decisions will use the facilities of this Functional Block. Outputs from this
Functional Block are then made available to al interested consumers via the Semantic Bus.

Asthe Controller completes its processing, the Knowledge Management Functional Block stores updated knowledge
representations that all Internal Functional Blocks may use. Thisincludes, but is not limited to, adjustments to
information and data models, adjustmentsto ML and statistical models, and generation of other relevant information
(e.g. heurigtics).

The Model-Driven Engineering Functional Block is responsible for taking the decision(s) from the Controller and
tranglating it to recommendations and/or commands. This process is made scalable by converting recommendations and
commands to a common structural form that is contained in one or more Policy Rules. Any combination of intent,
imperative, and declarative Policy Rules may be used to properly represent the recommendations and/or commands.
This output is fed directly to the Policy Management Functional Block, but parts of the output may be made available to
all interested consumers via the Semantic Bus.

The Policy Management Functional Block is responsible for delivering the output of the closed control loop, whichisa
set of Policy Rules. Policy Rules may contain recommendations or commands, and multiple Policy Rules may be
communicated to the Assisted System.

ETSI

80 ETSI GS ENI 005 V3.1.1 (2023-06)

Recommendations and/or Commands are then sent to the Denormalization and Output Generation Functional Blocks,
where they are sent to the Assisted System viathe appropriate set of External Reference Points.

6.3.1.6 ENI Functional Architecture with Domains and Control Loops

Figure 6-12 shows an exemplary mapping of ENI with internal domains that are part of a closed control loop.

Domain1
Inputs

ona Applicatio Orchestrator

- e et e — — — e e et

(APiBroker § | | __ |- __J___])

e - — -
-

E
e et —r— =l — e = = T

—— —
r_Emi-em—dav EOSS-en\~dal Eoss-em-pol Ebssvens-dat Ebssem-po\ Eapp-em-dx Eapp-em-kno Eapp-em-olh Eapp-em-po\ Eor-em-dal Eor-em-pol Eusrem-po\ | -~
gl

SN - [

/ ¥ y
Domain 2 ==

ENI System _

Semantic Bus (Inputs) -

— =
I s :
W Knowledge Context Cogniti
[l Management Awareness \ELET]
R — —I
1 - & e e e L
e - Semantic Bus (Outputs)

Controller

Domain3

P == = == = —— —= 1 = e = = = = -
(i[EW'e”"Cmd Eossenicmd Eoss—emrpol Epes sniond Ebssrem—po\ Eapprem—ux Eapp—emrkno EHDP'BN'DW Eapp,em,pg\ Eorenicmd Eurremrpo\ Eusr—emrp‘ol
—— R
VN ——-— AR 4 y 2 Y Y y Y - - ==]
—————— . J_ APIBroker ¥ ___ .} ___) -F---
Infrastructure 0OSS- and BSS-like Outputs Applications Orchestrator
Functionality Domain 1

Figure 6-12: Functional Architecture with Exemplary Domains and Control Loops

Figure 6-12 is a combination of Figure 6-10 and Figure 6-11. Inputs and Outputs to ENI are in Domain 1. Inputs are
accepted by the API Broker and sent using the appropriate ENI External Reference Point to the Data Ingestion
Functional Block. Similarly, outputs from ENI are send from the Output Generation Functional Block to the API
Broker, where they are translated into an appropriate form that the consuming external entity can use.

Domains 2 and 3 make up the closed control loop. ENI may implement a closed control loop in one or more
management domains. In this example, the parts of the closed control loop that observe, orient, analyse, and plan ENI
actionsisin Domain 2, while the MDE and policy generation portions are in Domain 3.

Details of control loops are found in ETSI GR ENI 017 [i.36].
6.3.2 Data Ingestion Functional Block

6.3.2.1 Introduction

This clause describes the processes associated with ingesting different data from various data sources. Oncethisis
complete, dataisthen sent to the Normalization Functional Block, which translates the datainto a common format for
further processing by the other Functional Blocks of the ENI System.

ETSI

81 ETSI GS ENI 005 V3.1.1 (2023-06)

A network has different domains (e.g. RAN/Fixed Access, Transport, and Core). Each domain has its specific functions
and services, as well as specific APIs. In acase where the ENI System helps with alocalized network functionin a
specific domain (e.g. optimizing resource allocation at the RAN/Fixed Access), the ENI System may interact with the
interfaces of the Assisted Systems of that domain, and may collect data from that domain only. In amore likely case,
where the ENI System hel ps with a cross-domain function (e.g. end-to-end network service assurance), the ENI System
may interact with multiple domains of the network. In either case, this shall be done using External Reference Points,
and may use the API Broker to insulate an ENI System from having to change its functionality to accommodate the
characteristics and behaviour of different APIsfrom different Assisted Systems.

These characteristics give rise to the following reguirements:

. ENI shall provide the ability to ingest structured, semi-structured, and unstructured data from different data
sources. This may be efficiently implemented using a multi-agent architecture.

. ENI shall also provide the ability to ingest datain streaming and batch mode, as well as on-demand. In
addition, ENI shall provide the ability to contextually change the sources of data to be ingested. In al cases,
the data collected shall be normalized to a uniform data format.

o Data Ingestion may be realized as a Functional Block that is separate from the Data Normalization Functional
Block. This adheres to the Single Responsihility Principle [i.9], and enables a more scalable and robust system
to be designed and built.

6.3.2.2 Motivation

Each domain has its specific functions, services, APIs, and may run on its specific time cycle. Thus, the dataingestion
Functional Block shall be able to operate on different types of domain-specific data. Similarly, the processing
operations applied to the ingested data are also a function of what Functional Blocks will use the data created from this
Functional Block, as well as the nature of functions performed in that domain. The normalization of the time granularity
may also be needed, where up/down sampling and interpolation may be applied.

The ENI System shall collect data based on the tasks it needs to perform (e.g. configuration vs. monitoring changes) as
well as the nature of the analysis being done (e.g. as congestion is being controlled, different points in the network and
different types of data may need to be monitored). The tasks are defined by either the Assisted System (or its
Designated Entity) or an ENI System, typically in response to externally defined goals and policies. In the case when
the tasks are defined by the Assisted System (or its Designated Entity), the Assisted System (or its Designated Entity)
shall send arequest of performing such an action to the ENI System. In the case when the tasks are defined by an ENI
System, the ENI System shall send appropriate requests to the Assisted System (or its Designated Entity). Functional
Blocks of ENI (e.g. policy management, or cognition management, or Situation awareness management) interpret the
requirements of each task and are then responsible for defining the types of data, when, and how they are collected.

6.3.2.3 Function of the Data Ingestion Functional Block

6.3.2.3.1 Introduction

If the Data Normalization Functional Block is not present, then the Data | ngestion Functional Block shall perform all
required actions that would have been performed by the Data Normalization Functional Block. Otherwise, the following
clauses define the actions that may be performed in the Data Normalization Functional Block.

The processing may include learning and inferring from the available raw data of one or more domains; once these data
are analysed, the processing shall then decide on what knowledge is forwarded to other Functional Blocks of ENI. The
processing may also benefit from Model-Driven Engineering (MDE) mechanisms, since modelled data define how the
data should appear and behave in an error-free state. Thisis discussed more in clause 6.3.8.

In certain cases, the processing may save the raw form of the ingested data for further use. For example, many types of
trend processing require access to raw data. In most cases, the processing function may save the processed form of the
data; thisis both faster and more efficient. The choice of whether to save the raw or processed form of the ingested data
is dependent on the current context (see clause 6.3.5) and/or the current and anticipated situations (see clause 6.3.7).
The Situation Awareness Functional Block may also define a set of Policy Rules that take action based on, for example,
the type of data or the intended Functional Block that will use the ingested data. The Cognition Management Functional
Block (see clause 6.3.6) may aid in the understanding of ingested data.

ETSI

82 ETSI GS ENI 005 V3.1.1 (2023-06)

The processing may include aggregation and correlation functions (e.g. to reduce dimensionality) as well as machine
learning (e.g. this may yield faster results by dealing with significantly smaller data sets, and enable what-if analysis
and other game-theoretic algorithms to be used). In such a case, the resulting normalized data may also contain
knowledge of a specific domain, or multiple domains.

The particular set of processing functions required is dependent on the current context (see clause 6.3.5) and/or the
current and anticipated situations (see clause 6.3.7). The Situation Awareness Functional Block may also define a set of
Policy Rules that take action based on, for example, the type of data or the intended Functional Block that will use the
processed data. The Cognition Management Functional Block (see clause 6.3.6) may augment the meaning of ingested
data (e.g. by adding metadata).

6.3.2.3.2 Data Filtering

Datafiltering is the removal of unnecessary or unwanted information. Thisis done to simplify and possibly increase the
speed of the analysis being performed. Thisis similar to removing the "noise" in asignal. Filtering is generally (but not
aways) temporary - the complete data set is kept, but only part of it is used for the calculation.

Filtering requires the specification of rules and/or business|ogic to identify the data that shall be included in the
analysis. Examplesinclude outlier removal, time-series filtering, aggregation (e.g. constructing one data stream from
pieces of other data streams, such as merging name, | P address, and application data), validation (i.e. datais rejected
because it does not meet value restrictions), and deduplication.

6.3.2.3.3 Data Correlation

Data correlation refers to an association or relationship between data. It expresses one set of datain terms of its
relationship with other sets of data. For example, the number of upsells to a higher class of service may increase due to
targeted advertising, and may increase even more when offering free time-limited trials. Another exampleis collecting
the complete set of datarelated to a subscriber. These data are usually collected using different mechanisms, and hence,
are fragmented among different collection points. Data correlation can use rules and/or business logic to collect the
scattered data and combine it to improve analysis. Data correlation is the first step in gaining increased understanding of
relationships between data and their underlying objects.

6.3.2.3.4 Data Cleansing

Data Cleansing is a set of processes that detect and then correct or remove corrupt, incomplete, inaccurate, and/or
irrelevant data. Data cleansing typicaly is performed on batches of data. It differs from data validation in that data
validation is performed at the time of ingestion, whereas data cleansing is performed later.

Data cleansing solutions may also enhance the data, either by making it more complete by adding related information or
by adding metadata. Finally, data cleansing may also involve harmonization and standardization of data. For example,
abbreviations may be replaced by what they stand for, and data such as phone numbers may be reformatted to a
standard format.

6.3.2.3.5 Data Anonymization and Pseudonymization

Data Anonymization is the process of either removing or encrypting information that can be used to identify people
from a data set. For the purposes of the present document, the Anonymization process is defined asirreversibly severing
data that can be used to identify a person from the data set. Any future re-identification is no longer possible.

Data Pseudonymization is the process of replacing information that can be used to identify a person with one or more
artificial identifiers (i.e. pseudonyms). For the purposes of the present document, the Pseudonymization processis
reversible by certain trusted entities, since the identifying data was not removed, but rather substituted with other data.

6.3.2.3.6 Data Augmentation

For the purposes of the present document, data augmentation is the process of adding other types of datato the existing
data set to enrich it in some way. Two examples are the addition of metadata and the addition of ontological datato a
data set to increase the understanding of the data. For example, metadata consists of additional information that describe
or prescribe the characteristics, behaviour, and operation of the data. Ontological dataislogic-based data that has one or
more relationships to the original datathat help explain those data. For example, ontological data could provide
linguistically related information to provide additional information about the data.

ETSI

83 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.2.3.7 Data Labelling and Annotation

6.3.2.3.7.1 Introduction

Datalabelling is the process of adding corresponding class |abels to data based on real information provided by the
Assisted System (or its Designated Entity). The class labels represent the state or attribute of the data. When used in
machine learning, the labels show the answer that the machine learning model should predict. For example, for a fault
detection case, labels could identify normal or abnormal traffic types in atraffic identification case. The labelled datais
used in model training with supervised ML agorithms.

Labelling istypically done by adding tags and/or metadata to the ingested data. Data labelling is more properly called
data annotation when metadata is used, as the metadata is more descriptive and/or prescriptive than asimple label.

6.3.2.3.7.2 Types of Data Annotations
The following is a non-exhaustive list of the most common types of data annotations used.

Text Categorization. Thistype of annotation is used to assign text to predefined categories. For example, different
parts of adocument could be assigned different topics (see clause 6.5.3.5) for transmission using the Semantic Bus
(e.g. aparent topic could be called congestion data, with two sub-topics, called domestic and international congestion
data).

Entity Annotation. Named Entity Recognition (NER) (see clause 6.3.5.4) isthe most common form of entity
annotation. NER classifies text according to predefined entitiesin an information or data model, and/or in an ontology.
Examples include finding the names of people, organizations, places, and equipment, and adds facts and meaning to
each entity occurrence. This then allows Named Entity Linking, where two different named entities that occur in
different parts of a document are associated with each other. For example, a Service can be associated with a Provider,
or atype of equipment associated with an Internet Gateway.

Image Annotation. This uses one or more processes to target an area of interest in the image. For example, abox can
be placed on an image to identify an object. Another example is assigning each pixel avalue corresponding to its
meaning and/or importance in recognizing the image. This helps a machine learning model recognize the annotated area
as adistinct type of object, and can be used for autonomous vehicle guidance, facial recognition, and even to block
sensitive or inappropriate content.

Video Annotation. Similar to image annotation, this adds bounding boxes, polygons, or other identifying tags to video
content. This can be done using a video annotation tool, or more typically, on aframe-by-frame basis, where frames are
subsequently stitched together to help track the movement of the annotated object. This can be used for devel oping
computer vision models for object tracking and similar tasks.

Linguistic Annotation. This type of annotation is used in each of the parsers (or compilers) present in the ENI System
(e.g. inthe Situational Awareness, MDE, and Policy Management Functional Blocks). It tags the words in a piece of
content with their grammatical meaning (e.g. verb, verb phrase, and proper noun).

Semantic Annotation. Semantic annotation adds meaning to annotated data. Machine learning models use semantically
annotated data to learn how to categorize new concepts, as well asto infer other relationshipsto better categorize and
annotate other parts of the text, image, or video. ENI shall use thistype of annotation to form hypotheses about entities
found as well as their behaviour.

6.3.2.3.7.3 Labelling Accuracy and Labelling Quality

Data labelling accuracy measures how close the labelled features match real-world data, and is independent of the type
of dataand model that is being annotated. Data labelling quality measures the accuracy of the labels across the entire
dataset. For example, it examines whether each label works the same and provides the same result everywhere that it
occurs.

Annotation shall require context. This enables the annotation system to choose the correct meaning for a label having
multiple meanings. For example, the word "bank™" could mean afinancia institution, to count on something being true,
apart of ariver, or an aerial maneuver. It also enables type-of relationships (e.g. red is atype of colour, wherered isa
hyponym and colour is a hypernym); this enables substitution of such relationships to be found.

ETSI

84 ETSI GS ENI 005 V3.1.1 (2023-06)

Annotation should require situation awareness. This enables the relevance of the data that is being labelling to be
defined based on the goals of the situation (see clause 6.3.7). For example, if telemetry saysthat 17 packets were
dropped, then the action depends on what type of packets were dropped, along with what protocol, when, and where.
Continuing the example, if the dropped packets were transmitted using FTP, that protocol will take care of recovering
and transmitting them. In contrast, if the dropped packets were control or management packets, that represents a more
serious problem, and the system needs to retransmit them (perhaps using a " guaranteed delivery” message channel as
described in clause 6.5).

6.3.2.3.7.4 Semantic Annotation

One of the most reliable and efficient ways to implement semantic annotation is to use neural networks. Thisis because
semantic annotation can be seen as a classification problem, where the correct meaning of the input is discovered using
various machine learning mechanisms. The basic problem is that there may be a large number of features that contain
information, but it is difficult for the classifier to properly combine them. In addition, a particular input may be
associated with more than one label. Thisiswhy neural networks are preferred to other simpler classification models
(e.g. random forest), because neural networks are better suited to handling large number of features and can recognize
non-linear combinations.

There are many cases where obtaining labelled data is expensive, even for text classification. Active learning may be
used to minimize the amount of labelled datathat is required to build an accurate model for machine learning (see ETSI
GR ENI 0187i.37]). The representation used to represent the content of a document is crucial.

NOTE: Release4 (seeclause 9) will compare vectorized representations based on word frequencies
(e.g. bag-of-words), word embeddings (e.g. words are mapped into a vector space where the distance
between words in the spaceis related to the syntactic ad semantic features of the words; and exampleis
word2vec), and document-level mechanisms (e.g. bi-directional encoder representations from
transformers, or BERT) to determine which (if any) of these approaches could be used effectively in
active learning.

6.3.2.4 Operation of the Data Ingestion Functional Block

6.3.24.1 Introduction

Different data sources use different languages and protocols to communicate their data. One way to accommodate this
isto use a set of agentsthat each understands a particular data source and the data that it sends. This approach is shown
in Figure 6-13. The functional block diagram shown in Figure 6-13 does not prescribe an implementation. Rather, it
describes the high-level Functional Blocks that are needed to implement the needs of data ingestion. Different
implementations may need to add other Functional Blocks to meet their particular operational requirements.

[l)ala Source z\J [l)ala Source BJ Ll)ata Source (‘J

/>
l Role A] [Role B I mli‘ uolcl

Level 1

Figure 6-13: Data Ingestion Operation

ETSI

85 ETSI GS ENI 005 V3.1.1 (2023-06)

Figure 6-13 shows a preferred method of operation of the Data Ingestion Functional Block. The bottom three levels
represent agents. Level 1 isthe agent having the highest level of abstraction, while level 2 isa set of agentsthat are
either controlled by the corresponding level 1 agent or represent functionality required by the corresponding level 1
agent. Similarly, level 3 represent a set of agentsthat are either controlled by or represent functionality required by the
corresponding level 2 agent. Thisis an example; there is ho requirement to implement an agent hierarchy or a hierarchy
that has a fixed number of levelsfor an ENI Agent System. Each agent may take on zero or more roles, and each role
may be assigned a set of functions to a given data source. For example, Role A may be assigned the ability to perform
any configuration operation required for monitoring, while Role B is assigned the ability to perform traffic engineering
operations.

The advantages of thistype of architecture include:

. Flexibility: the implementation may change (e.g. lower levels of agents may change) without affecting the API
(built from more abstract levels).

. Extensibility: new levels of agents may be added or removed to suit the needs of the application.
o Manageability: instead of having to manage individual agents, the management focusis abstracted to
managing roles.

6.3.2.4.2 Telemetry Processing

6.3.24.2.1 Cognitive and Situation-Aware Directed Telemetry Gathering

One of the advantages of using an adaptive closed control loop (see ETSI GR ENI 017 [i.36]) isto be able to easily
change the goal(s) and/or the data being analysed by the control loop. In this case, the Cognition Management
Functional Block of ENI (see clause 6.3.6) shall be responsible for relating the actions taken by the ENI System to the
set of end-to-end goals that the ENI System istrying to satisfy. The Cognition Management Functional Block works
closely with the Situational Awareness Functional Block to understand the meaning and significance of data and
behaviour that is being analysed. It shall build plans that describe various mechanisms that can be performed to move
the current state of the entity being monitored to its desired state.

Both may postulate theories as to how the system being monitored, and/or its environment, are behaving. Such theories
may necessitate telemetry, as well as one or monitoring points, to change in order to prove these theories.

6.3.2.4.2.2 Detecting Anomalies

An anomaly may be defined as "the measurabl e consequences of an unexpected change in state of a datum, or set of
data, which is outside of itslocal or global norm".

There are several approaches to detecting anomalies. Uni-variate anomaly detection approaches process the different
telemetry parameters independently. In contrast, multi-variate anomaly detection approaches take into account possible
correlations between the different parameters, allowing contextual anomalies to be detected:

NOTE: Thefollowing will be examined in Release 4 (see clause 9) of the present document.
. Statistical. This uses historical datato model the expected behaviour of a system.
o Probabilistic. Similar to statistical, but uses probabilities or fuzzy algebrato do the comparison.

. Distance-based Metrics. This uses the distance between a newly measured datum and previous data, and
defines the datum as an anomaly if the distance is larger than a pre-defined value.

. Pattern Matching. This compares each new measurement against a database of known anomalies, and
classifies measurements that are more similar to known anomalies than to correct data as anomalies.

e Structural Matching. This compares the structure of the data to known data fields from models and/or
ontologies. If the data matches correct or anomal ous data, then a corresponding decision is made.

e Clustering. This projects measured data into a multi-dimensional space. M easurements that do not belong to,
or aretoo far from acluster, are classified as anomalies.

ETSI

86 ETSI GS ENI 005 V3.1.1 (2023-06)

o Ensemble M atching. This approach uses a number of different algorithms to analyse each measurement, and
then defines a collective vote from each method.

. M achine L ear ning. Different types of machine learning algorithms can be used. For example, deep neural
networks (e.g. LSTM, or Long Short-Term Memory, which are a type of recurrent neural network capable of
learning order dependence in sequence prediction problems) could be compared against autoencoders (e.g. a
type of neural network that can be used to learn a compressed representation of raw data, which learns a
condensed representation of the input data) and transformers ((see ETSI GR ENI 018 [i.37]).

6.3.2.4.2.3 Storing Telemetry Information
Telemetry information shall be gathered as directed by the ENI System. More specifically:

. ENI Policies shall be used to define what telemetry information is desired, where it shall be collected, and the
frequency of collection.

. ENI Policies may specify one or more collection methods in prioritized order.

o Raw telemetry information shall be ingested using the Data Ingestion and Normalization Functional Blocks
through the appropriate ENI External Reference Point (see clause 7.3).

e Telemetry information that is deemed valuable for making future decisions should be stored in an appropriate
repository (see clause 6.3.4.5). Stored telemetry information may be anonymized or pseudonymized as
appropriate, and should be compressed.

6.3.2.4.2.4 Changing Telemetry Gathering using Policies

The ENI System should use an adaptive and cognitive control loop (see clause 6.3.4 and ETSI GR ENI 017 [i.36]). This
enables its actions to reflect changes in user needs, business goals, and environmental conditions. As these elements
change, the ENI System may need to gather new telemetry (e.g. to verify hypotheses made). All requests to gather
telemetry should be made using ENI Palicies.

6.3.2.4.3 Use of Metadata

The Data Ingestion Functional Block should use metadata to describe and prescribe processing that should be done on
different types of ingested data. Metadata may be used in identifying the type of ingested data. Since metadata may
contain descriptive as well as prescriptive information, metadata may a so contain important information that defines
which processing operations should be executed on the ingested data before it is sent to the next Functional Block. This
method may be used with any of the methodsin clauses 6.3.2.4.4, 6.3.2.4.5 and 6.3.2.4.6.

6.3.2.4.4 Use of Structure, Pattern, and Feature Matching

The same data may be organized and/or formatted in different ways. It may also be ingested where the individual
elements of the data are out of order. Therefore, the Data I ngestion Functional Block should use the following set of
related model-based approaches to classify and process ingested data that has not yet been identified.

Pattern matching matches groups of objects that occur together. For example, congestion information requires
information on at least two endpoints and the link that they use to communicate.

Feature matching concentrates on a set of attributes that together constitute a distinguishing characteristic of an object.

Structural matching uses the structure of a set of elements as a baseline for comparing the structure of the ingested data.
There are severa variations. The ssimplest treats the datum as an object, and searches for an equivalence match to one or
more objectsin the ENI information or data models. Here, an equivalence match assigns a probability that the ingested
datum is the same as that matched in the ENI model (e.g. 100 % if its attributes are the same, and 0 % if none of its
attributes are the same). Object matching extends the above to sets of objects, where the typical definition of an
equivalence match is that some minimum percentage of each object matches.

The above two variations can each be enhanced by considering the relationships of the object(s) representing the
ingested data to the relationships in the ENI model. This provides additional confidence of a match, because it provides
an indication that the behaviour of the ingested datais likely to be the same as the behaviour of the modelled object(s).

ETSI

87 ETSI GS ENI 005 V3.1.1 (2023-06)

The Data Ingestion Functional Block should use one or more of these methods to identify ingested data beforeit is
passed to subsequent ENI Functional Blocks. This method may be used with any of the methodsin clauses 6.3.2.4.3,
6.3.2.4.5and 6.3.2.4.6.

6.3.2.4.5 Use of Al-based Mechanisms

There are anumber of different Al-based mechanisms that can be used to identify ingested data. This approach is
typically used in situations where large amounts of real-time data are collected (e.g. optical networks or autonomous
driving systems) or when fine-grained analysisis required to identify data. It may be thought of as an extension to
structural, pattern, and feature matching, where all three are used to identify learned structures that can be matched.
Therefore, the Data Ingestion Functional Block should use appropriate Al-based approaches to classify and process
ingested data that has not yet been identified.

The advantage of Al-based mechanismsisthat strong correlations and similarities between data are inherently included
as part of the algorithm. This can extend to data ingested from different sources and regions. Data-fusion-assisted
telemetry enables various data fusion algorithms to be used to analyse ingested data and find matches to known objects
or to develop hypotheses as to what known objects are the most similar to ingested data based on their similarity.

For example, optical systems provide optical and digital information. Both of these domains require specia systems for
transmitting and interpreting data (e.g. fibre amplifiers and digital signal processing algorithms). Correlation between
data transmitted optically and received digitally can improve measurements. As another example, signals from different
channel s share the same fibre and travel through the same equipment in a Dense Wavelength-Division Multiplexing
system. Hence, these signal's experience similar processing, which once again yields correlations between each other
exist. In all of the above cases, fusing information from these different sources provides more accurate monitoring.

More importantly, machine learning models can be made stronger by using an ensemble approach. This combines a set
of relatively simple learning models to produce a much stronger learning model.

Exemplary mechanismsinclude:

. Direct concatenation of knowledge from different sources to produce afeature vector. This method is simple
and useful as long as the number of featuresis small.

. Stage-based learning, where the identification of the dataiis divided into a set of stages, with each stage using
an algorithm (that is possibly different from other stages) that is specific to that type of processing. Thistype
of learning has the advantage of using many open source boosting and bagging al gorithms.

. Deep neural networks, which have the advantage of more easily identifying new features that can then be
analysed using another system.

The Data Ingestion Functional Block should use one or more of these methods to identify ingested data beforeit is
passed to subsequent ENI Functional Blocks. This method may be used with any of the methodsin clauses 6.3.2.4.3,
6.3.2.4.4 and 6.3.2.4.6.

6.3.2.4.6 Use of Formal Logic and Ontologies

If semantic information is known about the ingested data, then the Data I ngestion Functional Block should use formal
logic and ontologies to identify and process ingested data. This method can be illustrated using two different
approaches.

Many domains provide inherently relational information. In this case, probabilistic methods can be used to process the
relational data; thisis called Statistical Relational Learning (or sometimes, Probabilistic Logic Models). The advantage
of this approach is that it can easily and succinctly represent probabilistic dependencies among the attributes of different
related objects, which generates a compact representation of learned models. This is done by combining probability
theory with first-order logic to represent the rich structure of the data.

Another method isinductive logic programming. This exploits contextual knowledge to constrain the search space
while learning. The contextual knowledge consists of a set of facts and a small set of rules. Learning then consists of
first, developing hypotheses by using the contextual knowledge to prove al positive examples; thisis then refined so
that no negative examples are proven. This method is often used to handle noisy data by maximizing the number of
positive examples proved while minimizing the number of proved negative examples. It may be combined with fuzzy
logic and/or probability theory.

ETSI

88 ETSI GS ENI 005 V3.1.1 (2023-06)
This method may be used with any of the methods in clauses 6.3.2.4.3, 6.3.2.4.4 and 6.3.2.4.5.
6.3.3 Data Normalization Functional Block

6.3.3.1 Introduction

The Data Normalization Functional Block receivesingested data from the Data | ngestion Functional Block, which
trandates the data into a common format for further processing by the other Functional Blocks of the ENI System.

These characteristics give rise to the following requirements:

o ENI shall provide the ability to transform structured, semi-structured, and unstructured data from different data
sources into a single common, uniform format.

. ENI shall use a set of models, including data types and data structures, to perform the transformation into a
unified data format.

. Data Normalization may be realized as a Functional Block that is separate from the Data Ingestion Functional
Block. This adheres to the Single Responsibility Principle [i.9], and enables a more scalable and robust system
to be designed and built.

6.3.3.2 Motivation

Each domain produces data of interest to ENI using its own processes. Each such process may use different
programming languages and protocols, which means that the same data may be received in completely different
formats. For example, the same data about a customer may be processed using relational databases and directories; if
these customer data are both ingested by the Data Ingestion Functional Block, then the data comprising the customer
will be organized differently and may contain different information (e.g. arelational databaseis easier to query and can
store richer datathan adirectory). If these differences can be identified early in the data acquisition process, then the
knowledge processing processis greatly ssmplified.

In this example, recognizing that the object is a Customer, even though the data is different, may be done by comparing
the ingested data with expected data from the model. For example, the Customer object in an information model has a
set of mandatory (and optional) attributes, as well as relationships to other objects. It may also have metadata that
disambiguates this instance of a Customer from all other instances of a Customer. The normalization process arranges
and formats the ingested data that facilitates the comparison and recognition of these and other common characteristics
and behaviours.

6.3.3.3 Function of the Data Normalization Functional Block
This clause explains the importance of data normalization.

Data normalization trandates the data to a standardized form. Thisincludes the use of pre-defined data structures, where
datais converted to a standard format that uses a standard encoding. In the case of an ENI System, thisis facilitated
using its set of models. In ENI, models represent objects as templates; this includes defining a set of mandatory and
optional attributes, operations, relationships, and other standard features. This enables ingested data to be compared to
the same data that is error-free. Thisis discussed morein clause 6.3.3.4.

A normalized form is critical for the operation of other ENI Functional Blocks. A normalized form means that every
ENI Functional Block may be designed using knowledge about the characteristics and behaviour of pertinent data and
objects. Otherwise, each ENI Functional Block would have to accommodate data that could be represented in different
formats using different data structures.

6.3.34 Operation of the Data Normalization Functional Block

6.3.3.4.1 Introduction

The principles of normalization, as used in relational calculus, are a good analogy for the operation of the Data
Normalization Functional Block. Thisanalogy is explained in clause 6.3.3.4.2, followed by an example of how data
normalization may be used in machine learning in clause 6.3.3.4.3. Finally, clause 6.3.3.4.4 relates these concepts more
specifically to the needs of ENI.

ETSI

89 ETSI GS ENI 005 V3.1.1 (2023-06)

If the Data I ngestion Functional Block is not present, then the Data Normalization Functional Block shall perform all
required actions that would have been performed by the Data Ingestion Functional Block. Otherwise, the following
clauses define the actions that may be performed in the Data Normalization Functional Block.

6.3.3.4.2 Database Design Analogy (informative)

Normalization is arelational calculus design technique that organizes tables in a manner that reduces redundancy and
dependency of data. Thisis done by dividing larger tables to smaller tables and linking the tables using relationships.
This ensures that atable is about a specific topic, and that only supporting topics are included. For example, a table that
contains information about sales people, support technicians, and customers serves several purposes:

. | dentify sales peoplein an organization.
. | dentify support technicians in an organization.
. Identify all customers of an organization.
o Identify which sales people call on which customers.
. Identify which support technicians help which customers.
o Identify which sales people rely on which support technicians.
There are several advantages of having a highly normalized data schema:
. Increased consistency. Information is stored in one place only, reducing the possibility of inconsistent data.

. Single purpose. By limiting a table to one purpose, the number of duplicate data contained within the database
is reduced; this eliminates many issues encountered when the database is modified.

. Simplify queries. Normalizing a database identifies different dependencies between data, and makes querying
more efficient.

. Easier object-to-data mapping. Highly-normalized data schemata are closer conceptually to object-oriented
schemata because the object-oriented goals of promoting high cohesion and loose coupling between classes
result in similar solutions.

There are five standardized forms of data normalization. Brief descriptions of the first three are;

e Anentity typeisin First Normal Form when all entities have a unique identifier, and when each column does
not contain any repeating groups of data (i.e. each table cell has asingle value, and each record is unique) or
composite fields.

e Anentity typeisin Second Normal Form whenitisin First Normal Form and when all columns that do not
contain unique identifiers depend on the entire unique identifier(s), and not just a part of the identifier.

e Anentity typeisin Third Normal Form when it isin Second Normal Form and when each column that is not
part of the unique identifier does not depend on another column that is not part of the unique identifier (i.e.
changing a non-key column does not cause other non-key columns to change - thisis called atransitive
functional dependency).

The primary disadvantage of normalization is slower reporting performance. Thisis accomplished through using a
separate, denormalized data model .

6.3.3.4.3 Normalization for Machine Learning

A neural network may be trained by supplying data and then comparing the expected output to the true output of the
network. The model parameters may then be updated using a number of agorithms. For example, gradient descent
updates the parameters of the model in the direction that minimizes the difference between the expected (or ideal)
outcome and the true outcome. There are different types of gradient descent; however, all of them scale the magnitude
of the parameter update by alearning rate. This rate ensures that the parameter is not being changed too drastically,
which can cause the update to overshoot and fail to find the optimal value. The normalization of the input datato a
standard scal e enables the network to more quickly learn the optimal parameters for each input node. It also reduces
complex computational problems associated with floating point number precision.

ETSI

90 ETSI GS ENI 005 V3.1.1 (2023-06)

In aneural network, changing one weight affects subsequent layers, which then affect subsequent layers, and so on.
This means changing one weight can affect activations in subsequent layers in complex ways. By ensuring the
activations of each layer are normalized, the overall loss function topology is simplified. Thisis especially helpful for
the hidden layers of the network, since the distribution of unnormalized activations from previous layers will change as
the network evolves and learns more optimal parameters.

One method for doing thisis called batch normalization. This controls the magnitude and mean of the activations
independent from all other layers. Other methods include weight normalization (i.e. instead of normalizing activations
in the intermediate layers of neural networks, the weight vectors of aneural network are reparameterized to enable
optimization to converge more quickly); layer normalization (i.e. instead of normalizing the input features across the
batch dimension as in batch normalization, it normalizes the inputs across the features); group normalization (i.e. the
mean and standard deviation over groups of channels for each training example).

6.3.3.4.4 Applying Normalization to ENI

In ENI, the Normalization Functional Block uses modelled information (e.g. objects, attributes, operations, and
relationships) to standardize the information being sent to other ENI Functional Blocks. ENI may use a number of
different mechanisms, including those described in the previous two clauses, to identify and convert datainto model
elements (e.g. classes, attributes, operations, and relationships). Metadata may also be used to describe and prescribe
how normalization is performed; this may help reversing the process when ENI needs to output recommendations and
commands to the Assisted System (and/or its Designated Entity). In order to do this, accumulated knowledge from other
ENI Functional Blocks (included predefined model information) shall be made available to the Normalization
Functional Block, as shown in Figure 6-14. The functional block diagram shown in Figure 6-14 does not prescribe an
implementation. Rather, it describes the high-level Functional Blocks that are needed to implement the needs of
normalization. Different implementations may need to add other Functional Blocksto meet their particular operational
requirements.

Data from
External Sources

1

Normalisation - Data Ingestion
Functional Block | Functional Block
Modelled
Information
bor g’at"sed Knowled%e Management
ais Functional Block
. New Facts, Hypotheses, and Inferences;
l Semantic Bus If Information to Model Translation
r 3 A} a h
\ 4 \ 4 A 4 A
Context-Aware Cognition Situational Model Driven
Management Framework Awareness Emeermg
Functional Block Functional Block Functional Block Functional Block

Figure 6-14: Data Normalization Operation
Data from the Normalization Functional Block is sent to the Semantic Bus[i.30]. Thisisauni-directional

communication; information from the Semantic Busis not sent to the Normalization Functional Block; it is first filtered
by the Knowledge Management Functional Block.

ETSI

91 ETSI GS ENI 005 V3.1.1 (2023-06)

Knowledge from the Context-Aware, Cognition Management, Situational Awareness, and Model Driven Engineering
Functional Blocks result in changes to the models used by ENI. Changes can be in the form of new model elements as
well as corrections and elaborations to existing model elements. These changes are important, as it enables the modelled
information to evolve as the ENI System learns; it aso enables the knowledge itself to adapt (e.g. be used in different
ways) as the context and situation changes. Hence, the ENI models are a form of active repository. The results are sent
to the Knowledge Management Functional Block. Thisis discussed morein clause 6.3.4.

6.3.3.4.5 Storing Normalized Telemetry Information

Telemetry information shall be gathered and normalized as directed by the ENI System. Specifically, thisincludes:

. ENI Policies shall be used to define what telemetry information is desired, where it shall be collected, and the
frequency of collection.

o ENI Policies may specify one or more collection methods in prioritized order.

. Raw telemetry information shall be ingested using the appropriate ENI External Reference Point (see
clause 7.3).

. Telemetry information that is deemed valuable for making future decisions should be stored in an appropriate
repository (see clause 6.3.4.5). Stored telemetry information may be anonymized or pseudonymized as
appropriate, and should be compressed.

6.3.3.4.6 Changing Telemetry Gathering using Policies

The ENI System should use an adaptive control loop (see clause 6.3.4.7 and ETSI GR ENI 017 [i.36]). Thisenablesits
actionsto reflect changesin user needs, business goals, and environmental conditions. As these elements change, the
ENI System may need to gather new telemetry (e.g. to verify hypotheses made). All requests to gather telemetry should
be made using ENI Policies.

The ENI System shall use an appropriate mechanism to normalize ingested data. The normalization may consist of
multiple processing stages. However, the result shall conform to the ENI models being used.

6.3.3.4.7 Cognitive and Situation-Aware Directed Normalized Telemetry Gathering

This process is the same as that described for clause 6.3.3.4.6, except that metadata and/or ENI Policies should be used
to specify any specia processing requirements to normalize newly specified telemetry to be gathered. This method may
be used with any of the methods in clauses 6.3.3.4.8, 6.3.3.4.9, 6.3.3.4.10 and 6.3.3.4.11.

6.3.3.4.8 Use of Metadata

The Data Normalization Functional Block should use metadata to describe and prescribe processing that should be done
on different types of ingested datato ensure its proper normalization. Since metadata may contain descriptive as well as
prescriptive information, metadata may also contain important information that defines which processing operations
should be executed to normalize the ingested data before it is sent to the next Functional Block. This method may be
used with any of the methodsin clauses 6.3.3.4.9, 6.3.3.4.10 and 6.3.3.4.11.

6.3.3.4.9 Use of Structure, Pattern, and Feature Matching

The Data Normalization Functional Block should use the same set of related model-based approaches to help normalize
ingested data as those described in clause 6.3.2.4.4. This method may be used with any of the methodsin
clauses 6.3.3.4.8, 6.3.3.4.10 and 6.3.3.4.11.

6.3.3.4.10 Use of Al-based Mechanisms

The Data Normalization Functional Block should use the same set of Al-based mechanisms to help normalize ingested
data as those described in clause 6.3.2.4.5. This method may be used with any of the methodsin clauses 6.3.3.4.8,
6.3.3.4.9and 6.3.3.4.11.

ETSI

92 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.3.4.11 Use of Formal Logic and Ontologies

The Data Normalization Functional Block should use the same set of Formal Logic mechanismsto help normalize
ingested data as those described in clause 6.3.2.4.6. This method may be used with any of the methodsin
clauses 6.3.3.4.8, 6.3.3.4.9 and 6.3.3.4.10.

6.3.4 Knowledge Management Functional Block

6.34.1 Introduction

Knowledge management is fundamental to all disciplines of modelling and Al. Briefly, knowledge representation
defines a set of formalisms that define data, information, and knowledge in a form that a computer system can utilize.
Knowledge management includes processes, strategies, and systems that create, revise, sustain, and enhance the storage,
assessment, use, sharing, and refinement of knowledge assets using a consensual knowledge representation.

Knowledge management also enables machine learning and reasoning - without aformal and consensual representation
of knowledge, algorithms cannot be defined that reason (e.g. perform inferencing, correct errors, and derive new
knowledge) about data, information, and knowledge. Knowledge representation defines mechanisms for the
characteristics and behaviour of the set of entities being modelled; this enables the computer system to plan actions and
determine consequences by reasoning using the knowledge representation, as opposed to taking direct action on the set
of entities.

This Functional Block also manages the Data and Knowledge Repositories of ENI. In addition, this Functional Block is
responsible for managing the lifecycle of the knowledge in the Data and K nowledge Repositories. Knowledge obtained
from one ENI System may be reused by another ENI System or the Assisted System, through dedicated External
Interfaces that share part or al of the knowledge repositories of the two systems. This shall be subject to access control
permissions. The Knowledge management Functional Block may check, or instruct the Knowledge Repository to check,
if any of the required knowledge is already available, before carrying out any tasks. If that knowledge exists, then
conflict resolution (see clause 6.3.4.6.3) will be performed to either edit the existing knowledge or add the new
knowledge. It may also retrieve knowledge from the Knowledge Repositories, if such knowledge is available; or
instructing the intelligent system to collect appropriate dataif the requested knowledge is not available. The Knowledge
Management Functional Block shall proactively publish new knowledge to the knowledge repository, where any
consumer (including ENI Functional Blocks and external systems) interested in that knowledge may retrieve it.

Knowledge management works with data, information, knowledge, and wisdom; see "Functional Concepts for Modular
System Operation” (ETSI GR ENI 016 [i.35]). In particular, this Functional Block directs which context and situation
information are applied to the raw data, transforming it to information and then knowledge. If appropriate, wisdom is
then derived from those two trandations. As such, it is recommended that data is always first transformed into
information; thisis because there is no context or situation knowledge to understand the data.

The Knowledge Management Functional Block provides foundational functionality that shall be used to analyse,
validate, and infer new and changed data, information, knowledge, and wisdom. Thus, it is used in a variety of tasks,
including analysis and decision-making.

6.3.4.2 Inferencing

An inference system automatically extends the knowledge base of the system. If inductive or abductive inferencing is
used, then the conclusions are not guaranteed, and some knowledge may be in error. ENI shall use inferencing to extend
and correct its knowledge base. For example, an inference system can gather evidence and develop a hypothesis, which
can later be proved to be true or false. Such hypotheses can also be generalized. For instance, suppose that ENI has
observed multiple occurrences of a set of faults that cause performance degradation that eventually lead to a Service
Level Agreement (SLA) violation. A possible conclusion could be that whenever this set of faults occurs, an SLA will
always occur. That may not be true. In this situation, ENI may add this conclusion to its knowledge base while using
metadata to describe its source and/or add its approximate probability. Since ENI is an experiential system, ENI shall
update the metadata (and most importantly, its probability) asit gathers more evidence to prove or disprove this
hypothesis. ENI may also use multiple types of inferencing to validate hypotheses. For example, in addition to
abduction, ENI may use reinforcement learning to more quickly converge to a conclusion as to the validity of the
hypothesis.

Inferencing is critical for realizing cognition. ENI uses a closed control loop powered by a model-driven architecture.
The closed control loop is based on FOCALE's extensions to the Observe-Orient-Decide-Act (OODA) control loop [5],
[i.1], [i.2] and [i.4]. See clause 6.3.4.7 for more details.

ETSI

93 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.4.3 Motivation

A knowledge representation framework defines a set of primitives that define and describe the meaning, and optionally
additional semantic characteristics (e.g. synonyms and antonyms), of concepts important to the managed environment
that can be processed by a computer system. This includes how these concepts relate to each other.

Key concepts that determine the function and nature of a knowledge representation framework include:
. How can knowledge be represented
. How can knowledge be discovered, extracted, translated, and searched
. How can knowledge be used for further inference
. How can knowledge from different sources be normalized and composed into different knowledge

A knowledge framework can be as simple as a collection of data structures and tools to manipulate those data
structures, to an architecture for representing and processing knowledge (e.g. semantic networks), to dedicated
languages for representing knowledge (these a so include languages known as theorem provers that are typically based
on First Order Logic). Ontologies, and ontological tools, are typically used to provide and/or reinforce knowledge that
islinguistic in nature and/or is amenable to logic-based processing. Finally, dedicated tools for knowledge extraction,
filtering, and fusion may be required in environments where knowledge from different data sources needsto be
combined, filtered, correlated, or otherwise processed in order to produce new knowledge.

Knowledge frameworks are specific to the applications that use them. The knowledge framework of ENI is designed to
support situation awareness and cognitive decision-making.

6.3.4.4 Knowledge Processing

6.3.4.4.1 Knowledge Representation and Enhancement

The present document does not define a single approach to represent knowledge, since knowledge is dependent on
context, situation, and usage. Rather, it describes how models and ontologies may be used to build alexicon that
represents knowledge in an extensible manner (see clause 5.6 for knowledge management requirements).

ENI shall provide at least one separate repository for processing changes to its knowledge base.

Information and data models are far more common than ontologies for networking, especialy for representing low-level
concepts such as network telemetry. Hence, the ENI System shall use an information model as the authoritative source
for defining conceptsin atechnology neutral fashion.

An information model represents concepts in their pure form. In the real world, concepts are reified as data models,
which binds the concept to a particular implementation. The ENI System shall use its information model to construct a
set of data models according to the needs of the system.

In this approach, the information model serves as the authoritative source for defining the concepts, and the set of data
model s represent commonly encountered data from the real world. This basic combination is more useful than it
appears. For example, given the knowledge of an output format of a command, this combination may be used to
determine if datais missing when that command is executed. However, it lacks both general semantics as well as usage
for a given context and/or situation. For example, telemetry may indicate that 42 bytes were dropped. This datais not
usable, since it is not known what type of message the bytes were from, and what protocol was used to send the
message. Knowledge of both of these enable the system to conclude what, if any, action to take (e.g. if thiswasa
control or management message, then it needs to be retransmitted; if this was data, then determine whether the protocol
will do the retransmission automatically or not). As another example, suppose that a business policy states that no one
can access the code server unless they are connected on the company intranet. In this context, the type of connection
determines whether actions are allowed or disallowed, as well as whether other actions should be taken (e.g. determine
if thisisamalicious attack or not).

Thus, most data and information should require the addition of context and situation information to enhance it for
decision-making processes. However, neither of these will provide all of the semantics that are possibly required for
robust decision-making. This is because both context and situation are, fundamentally, facts. While additional
inferences may be derived from both, neither provides additional semantics for the data and information.

ETSI

94 ETSI GS ENI 005 V3.1.1 (2023-06)

Therefore, the ENI System should add ontological data and processes to the models. One way to do thisisto build a
multigraph (or aset of multigraphs), as shown in Figure 6-15. In this approach, the models and the ontologies are both
represented as graphs; semantic edges (i.e. relationships of a semantic nature, such as synonymy and meronymy) are
then created between the graphs to define how one set of conceptsis related to the other set of concepts. The resulting
multigraph consists of semantic relationships that join the model on the left to the set of ontologies on the right; these
are represented by the double-edged arrow connecting them for simplicity. This semantic representation is built
iteratively, and is summarized in Figure 6-15.

Information Model Set of Ontologies

RS

Lexicon

Figure 6-15: Knowledge Representation and Enhancement

Step 1 starts with identifying one or more model elementsin the information model. Step 2 may use a number of
different tools, including computational linguistics, semantic equivalence, and pattern and structural matching to relate
the set of model elementsto a set of termsin the lexicon. This broadened view is then used to search for semantically
equivalent conceptsin a set of ontologies. In general, this method will identify a part of ataxonomy without identifying
al concepts in the taxonomy. Each identified concept may be weighted and, for the moment, is represented as a uni-
directional edge, forming a directed graph. Each ontology concept that was identified in the semantic matching process
in step 3 may then be examined to seeif it isrelated to other conceptsin this or other ontologies. As each new concept
isfound, it shall be marked (e.g. annotated and/or added to alist) for possible addition to the existing concepts that were
already matched from the lexicon. Step 4 then takes the semantic concepts and relationships and determinesiif there are
any new model elementsthat are related to them. In this step, the weight of the edge representing the relationship may
be adjusted, as well asits directionality; however, if it isfound to be bi-directional, then this should be represented
using two edges, since in general, the nature of the relationship will differ. Step 4 is bidirectional, which signifies that
the above processisiterative. This process shall iterate until either no more relationships can be found, or until a
sufficient number of relationships are found. When a specific task is being executed, often al that isrequired isto find
enough matching elementsto either prove or disprove a hypothesis.

Figure 6-15 has been simplified to only show the process for finding concepts that are directly related to the concept
being searched. For example, if aconcept is found that is not directly related to aterm in the, then additional checks are
formed to seeif:

1) itisindirectly related; or
2) it should be added as a new relation (i.e. this represents new knowledge).

The underlying idea for these additional checksisto verify that each new concept reinforces or adds additional support
for the concept that was already selected. Hence, this process can be thought of as strengthening the semantics of the
match. Aslarger groups of concepts are matched to larger groups of model elements, a stronger correlation between the
meaning of the grouped concept and the group of factsis established. Thisis, in effect, a self-check of the correctness of
the mapping, and is used to eliminate concepts and model elements that match each other, but are not related to the
managed entity that is being modelled.

In the above process, the types of semantic relationships may be changed to achieve a closer amount of semantic
closeness. This may help speed the alignment process.

ETSI

95 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.4.4.2 Knowledge Normalization

The discussion in the previous clause shows the complexity that may be involved in generating and validating
knowledge. Therefore, knowledge needs to be normalized.

Knowledge normalization reguires the correct meaning of aword or phrase to be discovered so that incorrect and
ambiguous information can be corrected. Many of the same techniques discussed in clauses 6.3.3.4.8, 6.3.3.4.9,
6.3.3.4.10 and 6.3.3.4.11 of the Data Normalization Functional Block may also be used to normalize knowledge.
Al-based techniques for natural language processing are of particular interest. For example, Bidirectional Encoder
Representations from Transformers (BERT) is a context-dependent algorithm that considers al of the words of an input
sentence simultaneously and then uses an attention mechanism to devel op a contextual meaning of the words. This
meansif the same word appears twice in the same sentence, but has different meanings, (e.g. "He is banking on the top
5 banking stocks increasing in value"), each meaning will have a different embedding. This enables common
recognition and classification tasks to be performed. Examplesinclude:

1) determineif aquestion-answer pair is relevant or not;

2) classify asingle sentence (e.g. detect if the input sentence is spam or not);
3) generate an answer to a given question; and

4) single sentence tagging tasks such as named entity recognition.

See "Introduction to Artificial Intelligence Mechanisms for Modular Systems' (ETSI GR ENI 018 [i.37]) for a
description of transformers and related algorithms for natural language processing.

Natural language processing models excel at identifying the meaning of aword or phrase in a sentence. This can then be
coupled with ontologies and formal logic to ensure that when a given word or phrase is changed, both the meaning of
that word or phrase as well as the meaning of the sentence are not altered. Natural language processing models, such as
transformers, should be used in an ENI System to recognize and normalize knowledge.

Natural language processing is particularly important for processing ENI Intent Policies. Thisis because ENI Intent
Policies are written using a restricted natural language. However, they are also useful for other applications, such as
business rules, contextual, and situational information, as well as any other input that can be expressed using natural
language.

6.3.4.4.3 Transforming Data, Information, and Knowledge into Wisdom

The Data-Information-K nowledge-Wisdom (DIKW) hierarchy is often used to contextualize data, information,
knowledge, and wisdom, and to identify and describe the processes involved in the transformation of an entity at a
lower level in the hierarchy (e.g. data) to an entity at a higher level in the hierarchy (e.g. wisdom). Each of the higher
typesin the hierarchy includes the categories that fall below it. See "Functional Concepts for Modular System
Operation” (ETSI GR ENI 016 [i.35]) for more background information for a more thorough discussion of the DIKW
hierarchy.

The ability to transform an entity at alower level in the hierarchy to an entity at a higher level in the hierarchy shall be
based on the understanding required to move to that higher level. Hence:

e transforming datainto information involves understanding how contextual and situational information are used
to add meaning to ingested data;

. transforming information to knowledge involves understanding complex relationships to detect patterns of and
relationships between information;

e transforming knowledge to wisdom involves understanding the relevance and significance of information and
knowledge and, more importantly, why the information and knowledge exists.

Data shall be transformed into information when relations between data, and the context that generated the data, are
understood. This also includes understanding the relevance of data given the current context or situation. Information
shall be transformed into knowledge when what the information means, as well as the patterns that generated the
information, are understood. Knowledge consists of a mix of contextual information, values, experience, and rules that
represent situational choices. Knowledge involves the synthesis of multiple sources of information over time, and
hence, should be refined experientially. Knowledge shall be required to perform decision-making and predict future
outcomes.

ETSI

96 ETSI GS ENI 005 V3.1.1 (2023-06)

Knowledge shall be transformed into wisdom when the specific occurrence of specific data, information, and
knowledge is understood. Wisdom is accumulated knowledge that enables situational decision-making to be performed
accurately and efficiently. Wisdom shall enable more effective planning and prediction.

6.3.4.4.4 Semantic Bus

A Semantic Busis atype of message bus used to orchestrate and filter communications between ENI Functional Blocks
based on the meaning, attributes, and metadata of a message using a shared set of interfaces. See "Functional Concepts
for Modular System Operation” (ETSI GR ENI 016 [i.35]) for more background information.

A Semantic Bus shall use meaning, attributes, and metadata for the following tasks: publication of and subscription to
messages, routing messages, and transformation of message content. For example, message content can be normalized
(to use consensual terminology and concepts) by the Semantic Busin order to facilitate different endpoints
understanding a message. As another example, content can be orchestrated by routing on the meaning of the message,
as opposed to just attributes. This shall be performed by semantically interpreting a message (including its payload)
using an ontology and/or natural language processing (see clause 6.3.4.4.2).

6.3.4.5 Repositories

6.3.4.5.1 Overview
The Knowledge Management FB shall contain at least four different types of repositories:

. aData Repository, to store the collected data from different parts of the Assisted System after appropriate
trandation by the API broker;

e aKnowledge Repository, to store knowledge and wisdom (see clause 6.3.4.5);
. aModel Repository, to store the information model, data models, and ontologies;
. aBlackboard Repository, to provide a shared working space for computations.

Each Repository shall have a different Internal Reference Point, with different APIs, for communication with other ENI
functional blocks. Thisis necessary to accommodate different access permissions to the types of data and information
that are stored in each Repository.

Each Repository may be used to store and retrieve historical data and information of its appropriate type.

An ENI system shall have the capability of proactively publishing new data and knowledge to the respective
repositories, and proactively retrieving updated data and knowledge from both repositories as needed.

Figure 6-16 shows a functional overview of the Repository Management Functional Block, which isa part of the
Knowledge Management Functional Block. The following clauses are organized as follows. Clauses 6.3.4.5.1 through
6.3.4.5.5 explain the function of the different Repositories. Then, clause 6.3.4.5.6 provides afunctional overview of
how the rest of the Functional Blocks operate to manage the different Repositories, as well as communicate to the other
ENI Functional Blocks. Finally, clause 6.3.4.5.7 describes semantic querying.

Figure 6-16 only shows the Semantic Bus that is used by different Functional Blocks for communication; it does not
show any Internal Reference Point of the Knowledge Management Functional Block for simplicity.

ETSI

97 ETSI GS ENI 005 V3.1.1 (2023-06)

Input Processing ENI SYStem Denormalization and Output
and Normalization Generation
T
+ Internal Reference Point -!.-
I
int =—it—
I’ Somantic Bis Internal Reference Point :

Controller @l Situation Results Query Parsing
State Output

Other ENI
Functional Blocks

Semantic Analyser

Query Results
Assembler Query Rewriter

|

Data Model Knowledge Blackboard
Repositories ll Repositories ll Repositories i Repositories

Repository Management FB

Knowledge Management FB

Figure 6-16: Repository Management Functional Block

6.3.4.5.2 Data Repository

The ENI System shall provide one or more Data Repositories for collecting ingested data and information from external
sources. The Data Repository may contain raw network data, obtained using the appropriate External Reference Points,
between an ENI System and the Assisted System, as well as contextual, business, and other types of data and
information. The Data Repository should interact with the Context Aware, Cognition Management, Situation
Awareness, Model-Driven Engineering, and Policy Management Functional Blocks using the Semantic Bus. In
addition, a set of Internal Reference Points may be used for direct communication between ENI Functional Blocks.

The Data Repository interacts with the Data | ngestion and Normalization Functional Blocksto ingest and store input
data and information to ENI functions, and interacts with the Denormalization and Output Generation Functional
Blocks to store and provide output data from ENI.

6.3.4.5.3 Model Repaositories

The ENI System shall use asingle Information Model, as well as a set of Data Models that are each derived from the
Information Model, as the foundation of its knowledge representation. The ENI System may use a set of ontologiesto
augment the knowledge representation with deeper semantics.

The ENI Information Model, along with its set of derived Data Models and, possibly, Ontologies, represent the
foundation of how ENI represents knowledge. Therefore, additional security mechanisms shall govern operations on
accessing, updating, using, and sending the information and data associated with any Model Repository.

The Model Repository should interact with the Context Aware, Cognition Management, Situation Awareness,
Model-Driven Engineering, and Policy Management Functional Blocks using the Semantic Bus. In addition, a set of
Internal Reference Points may be used for direct communication between ENI Functional Blocks.

6.3.4.5.4 Knowledge Repositories

The ENI System shall use at |east one dedicated repository, called the Knowledge Repository, to store, manipulate, edit,
and retrieve knowledge and wisdom. This may include axioms, theories, and hypotheses.

The ENI System should annotate hypotheses with their current state (i.e. proven, disproven, or work in progress). This
annotation may include the context and/or situation in which the hypothesis was made.

ETSI

98 ETSI GS ENI 005 V3.1.1 (2023-06)

The Knowledge Repository should interact with the Context Aware, Cognition Management, Situation Awareness,
Model-Driven Engineering, and Policy Management Functional Blocks using the Semantic Bus. In addition, a set of
Internal Reference Points may be used for direct communication between ENI Functional Blocks.

6.3.4.5.5 Blackboard Repositories

The ENI System should use at least one repository that works as a blackboard system. A blackboard system usesa
shared workspace that a set of independent agents contribute to, which contains input data along with partial,
aternative, and completed solutions. Both the blackboard and the contributing agents are under the control of a
dedicated management entity. Each agent is specialized in its function and operation, and typically is completely
independent of other agents that are using the blackboard. A controller monitors the state of the contents of the
blackboard and synchronizes the agents that are working with the blackboard. Thisis a basic software architectural
pattern ([i.19]).

ENI may use a variant of ablackboard architecture, in which the blackboard is divided into a set of layers. This type of
system is shown in Figure 6-17.

» Blackboard Layeri «— Agent(s) j «

Blackboard Layer 3 Agent(s) 3 <

» Blackboard Layer 2 7 Agent(s) 2 «

» Blackboard Layer 1 | Agent(s) 1 .
Control Bus

i

Blackboard Controller

A

Semantic Bus

Figure 6-17: Blackboard Architecture

In Figure 6-17, each blackboard layer is a shared working space, and ingests data and information from a set of agents
that are at that level. A level could be one hypothesis from a set of hypotheses, or a particular stage in the computation
of aprogram, or other similar stages. For example, if the blackboard was being used as part of a larger compiler
program, then level 1 could be the raw input, level 2 could be part-of-speech tags, level 3 could be grouping those tags
into larger phrases, and so forth.

The lowest level agent typically supplies the raw data and information to the blackboard system. Higher-level agents
may have additional data and information received from outside the blackboard system, as well as inputs from one or
more layers of the blackboard, and infer new entities to be stored in one or more higher layers.

The blackboard controller is responsible for coordinating the blackboard and the agents. Thisistypically done using an
inference cycle, which is driven by a set of events received. The blackboard controller responds to an event by
publishing a message to all agents that are interested in this event. The ENI System may prioritize the publishing of
eventsto a set of agents by using a set of criteria, such as relevance, context, and other factors. The blackboard ingests
the input data and information from the affected agents and produces new entities on the blackboard, which triggers a
new event. The blackboard controller examines the entities produced by the last inference cycle, and then a new
inference cycle starts; this process iterates until no other agent can contribute anything else.

ETSI

99 ETSI GS ENI 005 V3.1.1 (2023-06)

NOTE: Thisprocess may not succeed (e.g. a hypothesis cannot be proven in finite time); however, this
information is valuable in and of itself.

The Blackboard Repository should interact with the Context Aware, Cognition Management, Situation Awareness,
Model-Driven Engineering, and Policy Management Functional Blocks using the Semantic Bus. In addition, a set of
Internal Reference Points may be used for direct communication between ENI Functional Blocks.

6.3.4.5.6 Repository Operation

Each of the four types of repositories described in the preceding clauses operates in a common manner, which is
described below. Each repository may be realized as an active repository (i.e. one that pre- and/or post-processes
information that is stored or retrieved). In addition, the Blackboard Repository may be used by any of the other
repositoriesto aid in processing queries.

The Repository Management Functional Block should provide arepository service that clients may subscribe to without
having to know about the internal structure of any repository. Therefore, a query for information or data shall be sent
either using the Semantic Bus or, alternatively, using an appropriate Internal Reference Point, to the Knowledge
Management Functional Block. This query is read by the Query Parsing function of the Repository Management
Functional Block, which parses the query for completeness and syntactic correctness. The results are then sent to the
Semantic Analyser, which analyses the meaning of the query with respect to the current context and/or situation. This
enables the Repository Management Functional Block to understand which set of Repositories contain data and/or
information that can satisfy the query (see clause 6.3.4.5.3). Accordingly, the Query Rewriter takes this information and
rewrites the origina query into a set of queries, where one or more of the rewritten queries are formulated specifically
for aparticular repository. The rewritten set of queries may target one or more repositories.

Each rewritten query is sent to the appropriate repository. The results of each rewritten query are collected by the Query
Results Assembler, which organizes the results into one or more result statements; these result statements are then sent
by the Results Output to the Semantic Bus (or alternatively, to an appropriate Internal Reference Point).

The Controller monitors the external state of the ENI System, and correlates that with the internal state of the
Repository Management Functional Block. Thisis used to synchronize the blackboard (if it is used), along with the
querying and collecting of results from each repository.

Note that while the Data Repositories are typically used to store and retrieve data, other Repositories may actively pre-
and post-process information that they store and retrieve. For example, an ontology in the Model Repository will make
inferences, which produces new data and information. Once validated, those changes shall be added to affected
Repositories by the Knowledge Management Functional Block, which shall publish a notification of those changesto
the Semantic Bus. Such Repositories are referred to as Active Repositories.

6.3.4.5.7 Semantically Augmented Query and Learning

The purpose of the Semantic Analyser shown in Figure 6-16 is to analyse the meaning of the query with respect to the
current context and/or situation. More specifically, the context and/or situation may alter the meaning of the query.
Hence, the Semantic Analyser shall use an ontology and/or natural language processing (see clause 6.3.4.4.2) to ensure
that the query as written takes contextual and situational data into account. For example, a query may ask for all
authenticated connections to a domain. However, a business rule could be in force that restricts the type of connections
to that domain to a particular type (e.g. only the private Intranet is allowed to connect to the domain). Therefore, when
the query is examined by the Semantic Analyser, it shall understand the constraints imposed by the situation and return
only those connections from the private Intranet that have been authenticated.

6.3.4.6 Function of the Knowledge Management Functional Block

6.3.4.6.1 Introduction

The purpose of the Knowledge Management Functional Block isto discover, analyse, validate, and infer new and
changed data, information, knowledge, and wisdom. See "Functional Concepts for Modular System Operation” (ETSI
GR ENI 016 [i.35]) for more background information.

ETSI

100 ETSI GS ENI 005 V3.1.1 (2023-06)

The Knowledge Management Functional Block shall attach multiple contextual- and/or situational-specific meaningsto
aword, phrase, or concept. This enables the ENI System to account for the correct meaning of that word, phrase, or
concept when user needs, business goals, and/or environmental conditions change. The attachment of multiple
contextual- and/or situational-specific meanings to a word, phrase, or concept shall be done during the Knowledge
Processing phase (see clause 6.3.4.4) and stored in one or more appropriate Repositories (see clause 6.3.4.5). The
attachment should include metadata that defines the context and/or situation for each meaning.

6.3.4.6.2 Grounding Knowledge Using Semantics

Context defines the knowledge about an Entity that exists or has existed. It is modelled as a set of objects and
relationships. The context model shall include mechanisms that represent changes in the environment, as well as
changes in behaviour of an ENI Functional Block as a set of closed loop systems.

There are anumber of existing technologies and open source that can be used to represent context and knowledge.

6.3.4.6.3 Resolving Knowledge Conflicts

A knowledge conflict is defined when the definition of aword, phrase, object, or behaviour does not match its stored
definition. The Knowledge Management Functional Block shall be able to detect such conflicts. The Knowledge
Management Functional Block need not declare that a knowledge conflict exists until suitable processing (e.g. as
described in clause 6.3.3.4.3) has been performed.

There are three potential reasons for a knowledge conflict. First, an error was made in storing the previous definition.
The Knowledge Management Functional Block shall compare the previous definition with the current definition using
semantic reasoning as described in clauses 6.3.3.4.8 and 6.3.3.4.9), Al-based natural language processing (e.g. as
described in clause 6.3.3.4.10), and/or formal logic (e.g. as described in clause 6.3.3.4.11).

Second, contextual and/or situational information was not correctly taken into account. The Knowledge Management
Functional Block shall compare the metadata of the current definition to the metadata of all stored definitions to
determine if this was the case and, if so, correct it.

Third, a new meaning of that word, phrase, object, or behaviour was discovered. The Knowledge Management
Functional Block shall first perform the above two checks. Then, the Knowledge Management Functional Block may
define a hypothesis to test the new definition, and attempt to prove the hypothesis using either Al-based natural
language processing and/or formal logic. If the hypothesisis validated, then the new definition shall be added; metadata
defining the current context and/or situation shall also be added to the definition.

6.3.4.6.4 Knowledge Distribution

Knowledge should be distributed using the Semantic Bus (see clause 6.3.4.4.4). Knowledge may be distributed using a
shared repository or viafile transfer if using the Semantic Bus does not meet application-specific requirements. See
"Functional Concepts for Modular System Operation” (ETSI GR ENI 016 [i.35]) for more background information on
the Semantic Bus.

6.3.4.7 Operation of the Knowledge Management Functional Block

6.3.4.7.1 Introduction

Figure 6-18 shows a highly simplified view of basic knowledge processing based on the OODA control loop [5]. The
functional block diagram shown in Figure 6-18 does not prescribe an implementation. Rather, it describes the high-level
Functional Blocks that are needed to implement the needs of knowledge management. Different implementations may
need to add other Functional Blocks to meet their particular operationa requirements.

ETSI

101 ETSI GS ENI 005 V3.1.1 (2023-06)

—_,,-/”"_——- OODA -Inspired Inner Control Loop

Semantic Knowledge Situational Transformed
Annotation Inferencing Processing Knowledge

OODA-Inspired Outer Control Loop

L Observe y L Orient 2l Decide L
Y S < - >F 2\ Y 2
Input Processing Knowledge Processmg Decision Processing Output Processing
(i.e., Data Ingestion (i.e., Knowledge Management, (i.e., Model-Driven (i.e., Denormalisationand
and Normalisation Context-Aware Management, Engineeringand Output Generation
Functional Blocks) Cognition Framework, and Policy Management Functional Blocks)

Situational Awareness Functional Blocks Functional Blocks)
Figure 6-18: Simplified Knowledge Processing Flow

Figure 6-18 uses a multi-level set of OODA-inspired control loops [5], similar to FOCALE [4]. Both of these are
discussed in more detail in clauses 6.3.4.7.2 through 6.3.4.7.5.

The assignment of Functional Blocks to each stage of OODA processing illustrates the main activities of those
Functional Blocks. Some Functional Blocks, such as Knowledge Management, may perform tasksin other parts of the
OODA loop. For example, the Knowledge Management Functional Block provides the knowledge representation used
by all ENI Functional Blocks. In FOCALE, this principle was used to facilitate input processing of ingested data by
matching the data, along with observed patterns of data, to known knowledge to more quickly and efficiently validate
and verify ingested data. As another example, the Situational Awareness Functional Block is responsible for
understanding the relevant changes that pertain to the data, information, and behaviour of the Assisted System, how
those changes affect the goals of the ENI System, and to project what is likely to happen in the future (see clause 6.3.6).
This spans the Orient and Decide functions of OODA.

Figure 6-18 is depicted as a sequential flow for simplicity. However, OODA isaform of closed control loop, and
hence, the operationsin the Knowledge and Decision Processing groups of functional blocks typically interact in a non-
sequential manner. Thisis made more apparent in FOCALE, which is an autonomic architecture using an enhanced
version of the OODA control loop.

The following clauses describe the functionality of the Knowledge Processing and Decision Processing functionsin the
context of an OODA control loop. In actuality, thisisa hierarchical set of OODA-inspired control loops; the "outer"
control loop consists of the four sets of processing operations, and the "inner" control loop is the Knowledge and
Decision Processing operations. Thisinner loop is necessary to properly process and derive knowledge and wisdom,
and perform accurate inferencing (see clause 6.3.5), on contextually-changing information.

Reference[i.1] describes why the OODA loop was chosen over other methodologies, such as MAPE-K.

6.3.4.7.2 Observe Functionality

Input processing uses a set of agents to ingest input data. It consists of the Data Ingestion and Normalization Functional
Blocks, as described in clauses 6.3.2 and 6.3.3. This stage corresponds to the "Observe" part of the OODA control loop.
The purpose of this part of the OODA control loop is to ensure that the correct data and information is gathered. The
output of the input processing agentsis sent to the Knowledge Processing functional block.

The OODA loop assumed that different data and information was normalized and combined. This process was first
explicitly realized using the FOCALE architecture. Thisiswhy it is recommended that the input processing consist of
two Functional Blocks; this adheres to the Single Responsibility Principle[i.9], acrucial software design tenet for
building scalable software-intensive systems. See also "Functional Concepts for Modular System Operation” (ETSI
GR ENI 016 [i.35]) for more background information on such principles.

ETSI

102 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.4.7.3 Orient Functionality

Knowledge Processing consists of four main Functional Blocks: Knowledge Management, Context-Aware, Cognition
Management, and Situational Awareness. The last three are described in clauses 6.3.5, 6.3.6 and 6.3.7. This set of
Functional Blocks correspond to the "Orient" part of the OODA control loop. The purpose of this part of the OODA
control loop isto ensure that input data and information is adapted to the current context and situation.

The"Orient" part of the OODA control loop consists of three types of processing: semantic annotation, knowledge
inferencing, and situational processing. In each case, one or more of these four Functional Blocks may perform each of
these three functions.

Semantic Annotation is a set of processes that examine the input data, and annotates it where possible to enableit to be
better understood by subsequent Functional Blocks. The annotation is based on the current context and situation. This
enables behaviour to be adapted based on changes to the current context and/or situation to ensure that the goals of the
system and protected and maintained. Knowledge Inferencing, which is done primarily by the Cognition Management
and the Situation Awareness Functional Blocks, then follows.

The contextually-aware data is then ready for inferencing operations to be performed to discover more about the nature
and meaning of the data. Different types of inferencing (e.g. structural and logical) may then be performed. Inferencing
produces knowledge from knowledge, and the newly produced knowledge shall also be integrated into the collective
ENI knowledge base (thisis not shown in Figure 6-18). The inferencing may take different forms, but is predominantly
semantic in nature. For example, if a Customer object is recognized, then the annotations may describe relevant SLAs
and contracted Services that are currently active. As another example, it may define applicable business and regulatory
policies that shall be considered that are based on the current context. At this point, the newly ingested information has
completed "pre-processing”, and is ready for situational processing (the last stage of the "Orient" operation of the
OODA control loop).

Situational processing analyses the "pre-processed” knowledge to determine what (if anything) hasjust occurred that
does not align with its system goals. This could take many forms, such as determining that possible system degradation
may occur, or that the system could be better optimized, or that one or more of its goals are in jeopardy. If no problems
have occurred, then actions need not be taken. Otherwise, the situational processing then decides what islikely to
happen, and how that affects the goals that the system is trying to achieve. This produces a set of possible alternative
actions. An ENI System shall examine each set of actions, and choose the set that best meet its current set of goals.

6.3.4.7.4 Decide Functionality

The "Decide" part of the OODA control loop consists of two Functional Blocks: Model-Driven Engineering and Policy
Management. These are described in clauses 6.3.8 and 6.3.9, respectively. The Model-Driven Engineering Functional
Block acts asthe "brains®, and the Policy Management Functional Block acts as the "brawn". The purpose of this part of
the OODA control loop is to decide whether any action should be taken to preserve the goals of the system.

The Model-Driven Engineering Functional Block takesitsinput from the "Orient" function, that compares the current
state and situation of the system being managed to its desired state for that situation, and has recommended a set of
corrective actions to take. Up to this point, al analysis has been done on the system model, which is alogical model that
defines the manageable objects, relationships, and constraints that are being managed. The Model-Driven Engineering
processes take the changes to the system model and then trandlates the appropriate set of actions into aform that can be
implemented by the Assisted System or its Designated Entity. The result of this tranglation is then given to the Policy
Management Functional Block.

NOTE: The present document does not define how the above trandation is done, as that isimplementation-
specific.
The Policy Management Functional Block trandates the output of the Model Driven Engineering Functional Block to a
reusable set of policies. ENI Policies are made reusable in two ways:
1) storing the policy as an object in one or more models and repositories; and
2) storing the language definition of the policy in one or more repositories.

Each ENI policy may be written in imperative, declarative, and/or intent forms, and may represent recommendations or
commands. The use of policies provides two important benefits. First, it defines a reusable output that can be stored and
retrieved; thisis critical for explanation-based auditing of what decisions the ENI System made. Second, it simplifies
construction and integration issues, since any policy is an instance of an underlying language. ENI may use Domain
Specific Languages (DSLs) to implement one or more forms of policies.

ETSI

103 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.4.7.5 Model-Driven-Enhanced Decide Functionality

The "Decide" portion of the OODA control loop may be enhanced by using M odel-Driven Engineering principles
(MDE). MDE is a model-centric software engineering approach for building software systems that can be dynamically
modified at runtime. It treats models as first-class artifacts, and does design and analysis of modelsin place of code.
MDE is particularly effective when the use of software design patterns is maximized [i.5] and [i.10].

The addition of MDE mechanisms should be used to enhance the Decide portion of the OODA loop. Thisis especially
useful when the context and situation changes. The use of MDE in these circumstances enables the functionality of this
portion of the control loop to be dynamically changed at runtime, thereby facilitating its adaptation to the changesin the
context and/or situation. More specifically, this enhancement may enable the Decide portion to generate better and more
complete plans.

6.3.4.7.6 Act Functionality

The"Act" part of the OODA control loop consists of two Functional Blocks: Denormalization and Output Generation.
These are described in clauses 6.3.10 and 6.3.11, respectively. The functionality of the Denormalization and Output
Generation Functional Blocks may be combined into a single Functional Block if desired. The purpose of this part of
the OODA control loop is to take one or more actions to preserve the goals of the system.

Theinput to the Denormalization Functional Block is the set of Policies defined by the Policy Management Functional
Block. These policies arein a normalized form for ENI; the Denormalization Functional Block translates them to a
denormalized form to enable external Functional Blocks to understand each policy. This may be done using a set of
output processing agents. Each agent is responsible for de-normalizing the data (e.g. trandating the knowledge into a
specific language and format for a given set of devices). For example, these agents could translate an ENI policy to an
aternative form; one example istranslating an ENI declarative policy to Open Stack Congress. Thisis then sent to the
Output Generation Functional Block.

The Output Generation Functional Block packages the translated ENI Policy to aform appropriate for the external
entity that is using the ENI Policy. Output processing may use a set of agents to trandate the ENI Policy into specific
forms (e.g. per vendor and per device, or into a payload for a specific protocol that uses a particular encoding format).

6.3.4.7.7 Model-Driven-Enhanced Act Functionality

The addition of MDE mechanisms should be used to enhance the Act portion of the OODA loop. Similarly to
enhancing the Decide portion of the OODA loop with MDE (see clause 6.3.4.7.5), this enables the functionality of this
portion of the control loop to be dynamically changed at runtime, thereby facilitating its adaptation to the changes in the
context and/or situation. More specifically, this enhancement may enable the Act portion to generate more accurate
recommendations and commands.

6.3.4.7.8 Learning-Enhanced OODA

FOCALE [4] added both learning and reasoning to the OODA control loop. Learning included both machine learning in
the traditional Al sense aswell as learning using reasoning mechanisms, which is covered in clause 6.3.4.7.9.

Supervised learning (see ETSI GR ENI 018 [i.37]) should be used when one or more datasets that have labelled input
and output values. Supervised learning algorithms are ideal for classification and regression tasks. Classification
algorithms are used to predict the category that a new datum belongs to based on one or more independent variables. In
contrast, regression a gorithms predict an associated numerical value for the input datum based on previously observed
data.

Unsupervised learning (see ETSI GR ENI 018 [i.37]) should be used when there is alarge amount of data that do not
have labels, and the task is to determine the structure of the data. Clustering is a multivariate statistical procedure that
collects data contai ning information about a sample of objects and then arranges the objects into groups, where objects
in the same group are more similar to each other than to objects in other groups. Clustering identifies commonalitiesin
the objects in each group, which can also be used to detect anomal ous data that do not fit into any group.

Reinforcement learning (see ETSI GR ENI 018 [i.37]) should be used when thereis no data, or the dataset is
inadequate, and the task is to learn what action to take in a particular situation when interacting with a new entity. This
type of learning should also be used when the only way to collect information about the entity is to interact with it.
More specifically, reinforcement learning shall interact with the entity to first, negotiate its capabilities, and then
discover how to exchange data and commands through learning how to react with the entity.

ETSI

104 ETSI GS ENI 005 V3.1.1 (2023-06)

These and other types of learning should be used to enable the OODA-based control loops used in the ENI System to
operate more efficiently. In essence, learning provides memory to al phases of the OODA control loop.

6.3.4.7.9 Reasoning-Enhanced OODA

Reasoning is the process of making a conclusion or decision by analysing the facts available in a situation. There are
two types of reasoning, inductive and deductive.

Inductive reasoning involves drawing conclusions from facts, using logic. Inductive reasoning involves Bayesian
updating. A conclusion can seem to be true at one point until further evidence emerges and a hypothesis needs to be
adjusted. Bayesian updating modifies the probability of a hypothesis being true as new evidence is supplied. Thisis
why formal logic plays an important role in the decision making processes used in the ENI System.

Thus, induction can thus be strong or weak. If an inductive argument is strong, the truth of the premise meansthat the
probability that the conclusion is correct is stronger. Similarly, if an inductive argument is weak, then the probability
that the conclusion is correct is weak. Note that in particular, a conclusion is either strong or weak, and shall not be
considered right or wrong. In contrast, deductive reasoning involves deciding whether an inference is correct or
incorrect from a given set of premises. In deduction, the ideais to determine whether link between the set of premises
and the conclusion is always true or not. More formally, a hypothesisis formed, and then evidence is collected to
support it. If observations support its truth, the hypothesisis confirmed.

Deductive reasoning shall be used for decision-making in an ENI System when enough facts, axioms, and/or knowledge
is present to support inferencing. Inductive reasoning should be used for decision-making in an ENI System wheniitis
required to prove ageneral principle, not a specific fact or inference.

6.3.5 Context-Aware Management Functional Block

6.35.1 Introduction

This clause describes the motivation for using context-aware behaviour, the effect it has on the System Architecture,
and the benefitsthat it provides. See clause 6.3.7 or a description of situation awareness, and specifically clause 6.3.7.5
for a comparison between this Functional Block and the situation awareness Functional Block.

6.3.5.2 Motivation
Most management systems today are collections of functionality that operate as silos. They are characterized by:
. Static, end-to-end process-based management.

. Little or no understanding of context, and hence, no ability to provide behaviour and services personalized to a
given context.

. No ability to change behaviour due to changes in context.

Context may produce a higher intrinsic value for data versus raw data, and hence, make the generation of information
easier. Context-awareness assumes that either the data and/or the associated metadata deliver additional information
about the characteristics and behaviour of the environment that an ENI System interacts with. Context ensures that an
ENI System isfocused on tasks that the operator defines as important. The additional knowledge provided by context
may offer a greater level of reliability and usefulness, both for the information and knowledge gathered by an ENI
System as well as for the actions taken by the ENI System.

6.3.5.3 Function of the Context-Aware Management Functional Block

6.3.5.3.1 Introduction
Context-awareness enables a system to gather information about itself and its environment [i.2], [i.3] and [i.15]. This

enables the system to provide personalized and customized services and resources corresponding to that context. More
importantly, it enables the system to adapt its behaviour according to changesin context.

ETSI

105 ETSI GS ENI 005 V3.1.1 (2023-06)

Context-awareness enabl es diverse data and information to be more easily correlated, and hence, integrated, since
context acts as a unifying filter. As such, identifying contextual information is critical for understanding both ingested
data and information as well as how data and information, as well as existing knowledge and wisdom, can be affected.

The contextual history of auser, auser application, or adevice, aswell asits prior interactions with an ENI System
(including, for example, session state), may be useful for driving policy decisions regarding the current and future
interaction between an ENI System and that entity, including decisions made by the ENI System that affect that entity.
For example, past behaviour can be used to more quickly arrive at adecision. Alternatively, historical information can
be used to flag anomalies that need further action to resolve.

Contextual data may be categorized in terms of data and information that an ENI System interacts with. Thisincludes a
user, the applications of a user, the time and location of objects that the user interacts with, and different types of
relationships that exist among entities that an ENI System interacts with as well as between an ENI System and those
entities. Examples include:

. Personal and group information for a user (e.g. contact information, roles played by the user, and profile and
preference information).

. Location of the user and any devices that the user is using or interacting with (e.g. geo-code, the centroid of a
surrounding polygon).

e Characteristics and behaviour of adevice (e.g. type of access provided (if any), MAC and | P addresses, and
features such as forward, routing, encryption).

. Characteristics and behaviour of any applications used by a user.

e Typesof relationshipsthat exist between an ENI System and entities that use or interact with an ENI System,
as well asthe nature of those relationships (e.g. isit temporally sensitive or static).

e Typesof relationships that exist between entities that an ENI System interacts with.

The Context of an Entity is a collection of measured and inferred knowledge that describe the state and environment in
which an Entity exists or has existed [i.2]. In particular, this definition emphasizes two types of knowledge - facts
(which can be measured) and inferred data, which results from machine learning and reasoning processes applied to
past and current context. It also includes context history, so that current decisions based on context may benefit from
past decisions, as well as observation of how the environment has changed.

6.3.5.3.2 Modelling and Representation of Context Awareness

Different aspects of the DEN-ng [i.1] context model are described [i.2] and [i.3]. Thisis arobust information model,
and shall serve as the foundation of the context information model used for the ENI System Architecture. It isshown in
Figure 6-19.

ETSI

106 ETSI GS ENI 005 V3.1.1 (2023-06)

Oun ManagedEntity
— 0.n
Ko—
nagedEntiytissConlext ManagedEntityHas ContextData
ContextDataDetails
isValidContextData : Boolean
RelatedContexts contextDataV alidityStartTime : String
contextDataValidityEndTime : String
isContextDataMandatory : Boolean {>=1 ContextDataAtomic ||
0..n 0..n 0..n| >=1ContextDataComposite}
|
0..n Context i \ L ContextData 1.n
= K> = b
1..n HasContextData
{>=1 ContextAtomic | /""'.“ A
>=1 ContextComposite} 5 i AggregatesContextData
AggregatesContext I
0..n| ContextComposite ContextAtomic ContextData ContextData g n
— Atomic Composite [~
{ordered) {ordered}
X A
i ['s T—
Contextinference ContextFact ContextDataFact ContextDatalnference

Figure 6-19: Foundation of the DEN-ng Context Model

The DEN-ng model represents the Context of a ManagedEntity as a collection of data, information, and knowledge that
result from collecting measurements of and reasoning about that ManagedEntity. Thisis represented by the
ManagedEntityHasContext aggregation. Not all ManagedEntities have associated Context, so the multiplicity of this
relationship is 0..n - 0..n. This enables both Context and the ManagedEntity to be defined independent of whether oneis
associated with the other.

Context is defined as an extensible set of building blocks that can be combined as required. Hence, two classes are
defined, called Context and ContextData, that represent the concepts of whole (or assembled) context and partial (or
component pieces of) context, respectively. They each a set of subclasses, and each may be associated with different
concepts (e.g. location, time, and connectivity). Thisisaunique model in thisfield, asit enables the component pieces
of context (i.e. instances of the ContextData class) without affecting the overall context. Thisis how the context model
is adjusted to reflect changing user needs, business goals, and environmental conditions. This approach avoids a
common weakness of traditional context models, which try to represent context using an unorganized smattering of
objects that each contain some interesting attributes, but are not cohesive (see ETSI GR ENI 016 [i.35]) in nature. It
also avoids the temptation to define types of context as rigid classes that always have to be used. Instead, this model
enables ContextData to model the same concept (e.g. Location or Connectivity) in different ways to match the specific
needs of the application using it.

The ContextData class represents the context of one or more ManagedEntity classes that are part of alarger context.
The Context class represents the context of the ManagedEntity that the management system isinterested in, and consists
of its own knowledge plus a set of aggregated ContextData objects. Note that the HasContextData aggregation has a
multiplicity of 0..n - 1..n. This means that a Context has one or more ContextData objects, but each ContextData object
can be instantiated and updated before it is aggregated by a particular Context object. The advantages of this approach
are:

1) it encouragesthe modelling of smaller "context building blocks' (i.e. instances of the ContextData object) that
can be reused and combined to form larger contexts (i.e. instances of the Context object);

2) theinformation model can be used to define different aspects of context as either ContextData or as Context;
and

ETSI

107 ETSI GS ENI 005 V3.1.1 (2023-06)

3) different aspects of context can be modelled in the varying detail that they require whilst still being able to
assembl e them into a coherent whole.

The composite pattern [7] and [i.5] is applied to both the Context as well as the ContextData objects, enabling the
construction of extensible hierarchies of different aspects of aggregate contexts. The ContextDataAtomic class models
ContextData as a single, stand-alone object, while the ContextDataComposite class model s objects that are compositein
nature (e.g. made up of multiple distinct ContextData objects that can each be separately managed).
ContextDataComposite objects function as containers that can contain ContextDataComposite and/or
ContextDataAtomic objects, similar to folders and files in a directory. Both Context and ContextData objects can
represent facts and inferences.

The ContextDataDetail s association class defines the semantics of how each particular type of ContextData object is
aggregated by the Context object. The four attributes of ContextDataDetails are common to al types of aggregations of
ContextData; this enables different applications to have a common "control point" for processing context information.
Thisis explained more in clause 6.3.5.3.3.

6.3.5.3.3 Processing Contextual Updates

The Policy Pattern [i.1] isused in DEN-ng as well asin the MEF Core Model [7] and MEF Policy Model [8]. This
pattern is represented in Figure 6-20, and shall be used in the ENI System Architecture due to its flexibility and
extensibility.

MenagedEntity O.n ManagedEnbtyHasPhysicallocation
T PalicyRule Structure Poiicies GovemingGontextDatal ocation _ ContextDatalocationDetals
- O.n On
NOo.n /
SelectsPoliciesToActivate
ManagedEntityHasContextData
O.n O.n / 0.n
ContextData [3 Location O.n
0.n ContextDataHasLocationSemantics -
ContextData] " - .
Semantics | pssContextDataSemantics b
A HaslocationElements
l Il 1
ContextDataAtomic 0.n| LocationComposite LocatonAtomic
.—/\‘;
:". !‘-
| | [| [l
ContextDataFact ContextDatalnference Postion Address Structure Geographic
Regon

Figure 6-20: Controlling the Semantics of Location ContextData using Policies

The Policy Pattern enables different applications to represent their specific needs by constructing an association
between the superclass of all Policies[8] and the association class of a particular ManagedEntity that the set of Policies
should control. Thisis shown in Figure 6-20 as the PoliciesGoverningContextDatal ocation association. Policy
management of context is thus consistently done by defining application-specific policies and associating them with the
appropriate context association classes.

Figure 6-20 also shows how another model (in this case, Location) may be used in the context model. In Figure 6-20,
the ContextDataHasL ocationSemantics aggregation is used to associate the top part of the DEN-ng Location model with
the ContextData class. Since all relationships are model -independent, this enables any other Location model to be used
in place of the DEN-ng Location model. The above model is far superior to the common practice of defining a set of
attributes in a context class to represent location. First, there are many different types of locations that are of interest to
a managed networking environment, such as the location of a card in a networking device, the GPS coordinates of a
Customer Premise Equipment, the physical or logical address to deliver an Order to, and so forth. More generally,
location is more than just | atitude and longitude, but al so includes height, proximity, co-location with other entities,
orientation, and other factors. How can a single set of static attributes represent all of these different concepts?

ETSI

108 ETSI GS ENI 005 V3.1.1 (2023-06)

Second, according to MDB principles, this maximizes reusability in an extensible and technol ogically-neutral manner.
The same concepts for different types of locations can be reused, partially or in their entirety.

Finally, this enables different parts of the Location model to be used for different purposes; it also enables the same
parts of the Location model to have different semantics attached to them. The physical characteristics of Location are
defined in these Location classes, while the semantics of the Location are defined in the ContextData classes.Put
another way, this approach allows the semantics of location to change as a function of context.

6.3.5.4 Operation of the Context-Aware Management Functional Block
A good overview of designing for context-awarenessis provided in[i.2], [i.3] and [i.15].

Figures 6-7, 6-8 and 6-9 shows the Context-Aware Management Functional Block connected to a Semantic Bus (see
clause 6.3.4.4.4 for adescription of the functionality of a Semantic Bus). The functional block diagram shown in these
figures should not prescribe an implementation. Rather, it describes the high-level Functional Blocks that are needed to
implement the needs of context-awareness. Different implementations may need to add other Functional Blocks to meet
their particular operational requirements.

Figure 6-21 shows some of the roles that can be used in a context-aware system. The overall (aggregate) context is used
to derive one or more of the five exemplary roles shown, which in turn are used to define behaviour appropriate for that
context. The five roles are described in Figure 6-21.

Aggregate means computed and JERT oG
inferred context as well as sub- Establish Set of Identities

contexts (e.g., network, user, ...) to Use per Interaction Type

Define AAA Mechanisms to
Use per Interaction Type

Aggregate Define Context-Aware Define
Context Policies to Use Behavior

Define Filters for
Determining Info Relevance

Define Set of Goals and
Their Priorities To Achieve

__ System '=

Figure 6-21: Contextual Roles

o Identities per Interaction Type. Thisrole defines a set of processes that define the characteristics and
behaviour of a particular set of identities for objects in this context. Interaction type includes the set of entities
in the context that this object interacts with, along with how the interaction is done (e.g. which set of protocols
are used). For example, a passport is generally required to authorize travel to aforeign country, but islikely
not usable when a user logs onto their personal computer.

e AAA Mechanismsper Interaction Type. Thisrole defines the applicable set of authentication, authorization,
and accounting interactions for this particular context. It may include other related operations, such as
auditing.

. Context-Awar e Paliciesto Use. Thisrole defines a set of policies that shall be produced by the Policy
Management Functional Block in response to changesin the current state deviating from the desired state for
this context.

ETSI

109 ETSI GS ENI 005 V3.1.1 (2023-06)
o Filtersfor Deter mining Relevance. Thisrole defines a set of filters that determine the relative relevance of
ingested data and information for this particular context. This enables the system to:
1) adapt which data are gathered as context changes; and
2) modify its processing according to the contextual changes.

. Set of Goalsto Achieve. Thisrole defines a set of goalsto achieve for this particular context. For example, if
the ratio of the users of the Platinum, Gold, Silver, and Bronze service classes change, then the ENI System
may need to generate a new set of policiesthat govern the behaviour of each service classin order to maximize
revenue.

Figure 6-22 shows an exemplary set of operations that occur when a context is analysed.

Semantic Analysis
Named Entlty Recognition \

Knowledge

Semantic Base 1

/ Annotation
Feature Extraction :

/ Knowledge
Base n

Figure 6-22: Context-Based Reasoning

Raw Big Data

Context may be modelled as Big Data, since there is an abundance of Big Data, and the critical factor is extracting value
from Big Data. The three operations above Big Data in Figure 6-22 describe a set of increasingly specific operations
that can be used to semantically annotate information.

A "feature" may be defined as an important element that helps describe and aid in the understanding of an object. For
example, edges and corners are points of interest in an image. Feature extraction reduces the number of resources
required to describe data. Reducing the number of featuresisimportant in analysis and reasoning, since if there are too
many features, it could cause overfitting in training.

Named Entity Recognition identities and maps entities that have specific names into models. For example, the sentence
"John worked at ETSI in the 1990s" could be analysed, producing three named entities: "John", "ETSI", and "1990s".
This could be annotated as " JohNnjpersor] Worked at ET Sl jorganization] 1N the 1990Stime period” -

Semantic Analysis analyses the information for specific semantic concepts, searching on those concepts, and then
adding additional semantic relationships to enrich the information and provide more specific meaning. From alinguistic
perspective, this analyses text and finds sets of syntactic structures that are related to each other. This may be
represented as a graph, or network, of related words, phrases, and other elements of a sentence. From a machine
learning perspective, this computes metrics such as semantic similarity (i.e. the meaning of an object compared to the
meaning of other objects, where the comparison is done using synonymy, antonymy, hyponymy, hypernymy, and other
types of relationships). Thisis a practical and more computationally tractable approach than " absolute understanding”,
since the latter requires a rigorous world model, which is np-complete.

Semantic Annotation is the process of providing annotations (either as metadata and/or in a specialized markup) to add
meaning to a given object. An example of semantic annotation was given in the named entity recognition description.

ETSI

110 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.6 Cognition Management Functional Block

6.3.6.1 Introduction

The Cognition Management Functional Block is a collection of Functional Blocks that are responsible for operating the
ENI Cognition Model (see clause 6.3.6.3.5) to understand ingested data and information in order to produce new data,
information, and knowledge. This means that the scope of the cognitive framework is conceptually operating above the
scope of both the infrastructure and the other Functional Blocks of the ENI System.

6.3.6.2 Motivation

The purpose of the Cognition Management Functional Block isto enable the ENI System to understand ingested data
and information, as well as the context and situation that defines how those data and information were produced. Once
that understanding is achieved, the Cognition Management Functional Block then provides the following functions:

. change existing knowledge and/or add new knowledge corresponding to those data and information;
. perform inferences about the ingested information and data to generate new knowledge;

. use raw data, inferences, and/or historical data to understand what is happening in a particular context and/or
situation, why the data were generated, and which entities could be affected; and

. determine if any new actions should be taken to ensure that the goals and objectives of the system will be met.

In each of the four functions above, the Cognition Management Functional Block uses existing knowledge to validate
and generate new knowledge. This means that new knowledge may be added, and in some cases, existing knowledge
may be changed. Hence, the ENI System uses a dynamically changing set of repositories (as opposed to other
management systems, which typically use repositories that use fixed content). A cognition framework uses multiple
diverse processes and technologies, including linguistics, computer science, Al, formal logic, neuroscience, psychology,
and philosophy, along with others, to analyse existing knowledge and synthesize new knowledge.

In addition, the Cognition Management Functional Block will not take actions; it will just determine what does not
agree with its Cognition Model and annotate accordingly. The actual actions to be taken will be computed by the
Situation Awareness Functional Block (see clause 6.3.7) and then implemented by the MDE and Policy Management
Functional Blocks (see clauses 6.3.8 and 6.3.9). The actions are embedded in a set of ENI Policies, and then sent
through the Denormalization and Output Generation Functiona Block. The transformed set of ENI Policiesis then sent
to the API Broker, which puts the set of ENI Policiesin an appropriate APl readable by the receiving entity (i.e. the
Policy Target, see ETSI GSENI 019 [9]).

6.3.6.3 Function of the Cognition Management Functional Block

6.3.6.3.1 Introduction (informative)

Cognition seeks to understand conceptsin away similar to how the human brain understands concepts. Thisis done by
using a set of specialized data structures and computational procedures that mimic how the human brain operates.
Connectionist theories use this principle to define artificial neural networks. Other approaches, such as those involving
formal logic, Bayesian models, and deep learning, provide different algorithms, but are till based on the above premise.

Cognition can be used to process new data and information, along with new inferences, and compare those to
previously stored knowledge. The function of this Functional Block is to process and understand goals so that it can
institute behaviour that protects and meets those goals. Thisis done using knowledge and inferencing to explain why
input data occurred and how to adapt to it. Intelligent agents [i.7] and [i.8] are examples of entities that exhibit
goal-directed behaviour. Other examples are cognitive architectures that solve problems by creating their own sub-goals
to solve a problem; such cognitive architectures also learn from their experience.

Any entity that exhibits cognition will exhibit at least the following three functions:
1) interfacesthat interact with the environment providing stimuli;
2) processing that can analyse and manipulate data, information, and knowledge; and

3) memoriesthat hold data, information, and knowledge.

ETSI

111 ETSI GS ENI 005 V3.1.1 (2023-06)

These three functions provide cognitive control and cognitive capabilities, which differentiate a cognitive architecture
from other architectures.

Cognitive control includes reflexive and habitual behaviour that respond to long-term intentions. Cognitive capabilities
include functions that reflect processing as done in the human brain, such as perception, reasoning, learning and
planning. Critically, a system that uses cognition is able to explain why it acted a certain way in response to stimuli, and
more importantly, can learn whether that action was incorrect and, if correct, whether it was optimal.

There are two main approaches to building cognitive systems: symbolic and connectionist. Hybrid architectures, which
combine these approaches, are also starting to be researched.

6.3.6.3.2 The Symbolic Approach (informative)

This approach (also called computationalism) views cognition as a set of computational processes that act on a set of
structures that represent abstract (mental) representations of the world that can be manipulated by symbols. Thereisa
clear separation of cognition into low-level (e.g. sensorimotor) and high-level (e.g. planning and reasoning) processes.
This approach builds models of high-level cognition that resemble the structure of the brain (as opposed to
connectionist models, which build models that resemble neurological structures). The symbolic models obey rules for
processing data and information, as well as for interacting with other symbolic models. This leads to domain-specific
symbolic sub-systems for processing different types of data and information (e.g. language processing, reasoning, and
planning).

Each of the different domain-specific sub-systems are interconnected, forming a modular architecture. Actionsin this
architecture can be modelled as operations acting on these sub-systems that collectively form a modular program. The
representations and actions taken in the cognitive architecture correspond to the real-world objects and their behaviour.
In other words, the symbolic abstractions used in the program are kept in sync with the external world. For example, in
robotic systems, the sensorimotor processing is responsible for this synchronization.

An Al programming language can be used to construct a cognitive model. Thisisideal for knowledge-based problem
solving and learning. For example, the Al programming language could be used to construct a search through a problem
space, where a problem space defines a set of states and operators that manipulate the states. The solving of a problem
is achieved by traversing from an initial state to afinal state using a set of operators. An example of such an architecture
isprovided in [i.10]. In this architecture, a set of IF-THEN (imperative) rules are used to operate on the symbolic
representations. When the IF clauseis satisfied, the set of actionsin the THEN clause are executed. A high-level
functional architecture of ACT-R, one example of a symbolic cognitive architecture, is shown in Figure 6-23.

ETSI

Modules

112

ETSI GS ENI 005 V3.1.1 (2023-06)

(i

Intention

al module
(not |dent|f|ed)

Declarative module
(Prefrontal)

Temporal module
(Cortex)

)

Buffers

Imaglnal

Goal

Retrieval

C

(Parietal)

X

(ACC) (VLPFC)

| Matching (Striatum) | >
Y Cortex

| selection (Pallidum) |
A4

(Cortex)

Production

| Execution (Thalamus) |

Aural location

Aural
(Auditory)

\ isual location
Visual
(Fusn‘orm)

Manual module

(

Aural module
(loosely modeled)

Vlsua[module
(loosely modeled)

(loosely modeled)

5 ¢

)(

)

Auditory world

Environment

Figure 6-23: The ACT-R Cognitive Architecture

The main modules of ACT-R are:

1) avisual module for identifying objectsin the visual field;

2) agoal module for keeping track of current goals and intentions;

3) adeclarative module for retrieving information from memory;

4) amanua module for controlling the hands; and

5) aproduction system for taking actions and coordinating the communication and performance of these

modules.

Actionsin each of these modules take time, although they work concurrently. The time used within modelsis based on
human performance. This time can be provided as areal-time trace. The default cycle for taking an action in the
production system is 50 msec.

Information is passed between the modules and the central production system through buffers, which hold alimited
amount of information (thisis motivated from psychological and neuroscientific studies). The central production system
matches the content of the buffers against the IF portions of its rules, and selects asingle rule for execution. The
selection mechanism is based on the computation of expected utility of arule for the current goal and the input. The
expected utility is learned from experience using Bayesian processing. A rule can have multiple actions, including
updating declarative or goal memory, modifying the value of a buffer, and issuing a command.

ETSI

113 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.6.3.3 The Connectionist Approach (informative)

This approach assumes that all cognitive processes are the same, and are derived from neural activation dynamics. In
contrast to the symbolic approach, connectionism argues that mental representations are not structured as explicit
models, but rather, are implicitly encoded in the activation values of neurons. This leadsto the parallel processing of
many simple modules that are connected as a network. Information is stored in the form of weights between
connections.

Knowledge is not provided explicitly to the system, but rather, is learned by the system through the processing of
training samples. Learning algorithms extract statistical information from sample pairs of input and output values, and
the network adapts its connection weights to approximate the training data. Thus, task execution by connectionist
approaches requires suitable training data, and depends on both the network structure methodology and the learning
algorithm(s) used. A simplistic Recurrent Neural Network (RNN) is shown in Figure 6-24.

Output Layer

Hidden Layer

Input Layer

Figure 6-24: A Simplified Cognitive Processing Architecture using Neural Networks

RNNs use looping of the hidden layers back to themselves, which enables them to accept variable length sequences of
inputs. RNNs provide a way to process data where time and order are important. For example, with textual data, the
ordering of words isimportant. Changing the order or words can alter the meaning of a sentence. In contrast, in simple
feed forward networks, the hidden layer only has access to the current input. It has no "memory" of any other input that
was aready processed. An RNN, by contrast, is ableto "loop™" over itsinputs and see what has come before. This
provides context for processing words that come later in a sentence.

6.3.6.3.4 Cognitive System

A cognitive system is a system capabl e of independently devel oping strategies for and solving human tasks. A cognitive
system is both context- and situation-aware. As such, a cognitive system should understand, identify, and extract
contextual elements such as meaning, syntax, time, location, appropriate domain, regulations, user's profile, process,
task and goal. A cognitive system may draw on multiple sources of information, including both structured and
unstructured digital information, as well as sensory inputs (visual, gestural, auditory, or sensor-provided).

Typicaly, a cognitive system is built to perform comprehension, learning, and reasoning by mimicking those tasks as
done by a human. More formally, cognition is defined as the process of acquiring and understanding data and
information and producing new data, information, and knowledge. Cognitive systems may utilize artificial intelligence
(Al) methods such as machine learning, neural networks and deep learning as well as other methods such as multimodal
perception and declarative memory (i.e. the encoding, storage, and retrieval of facts and events).

Theindividual functional blocks of a cognitive system, as well as multiple cognitive systems, shall be able to
collaborate on a set of tasks. Once the set of tasks has been completed, the collective may disband.

Anindividual system shall be capable of taking over mission-critical functions on its own in case coordination or
communication with other collaborating entitiesis not functioning. The collective should furthermore optimally and
efficiently complete its tasks in such a situation.

A cognitive system should be able to adapt as information and context changes. A cognitive system should also be able
to adapt as goals and requirements evolve.

ETSI

114 ETSI GS ENI 005 V3.1.1 (2023-06)

A cognitive system need not be explicitly programmed to do its tasks. Rather, a cognitive system shall learn and reason
from their interactions with humans and from their experiences with their environment. Cognitive systems may use
deterministic mechanisms; however, cognitive systems should be mostly probabilistic in nature. Cognitive systems
should generate hypotheses, reasoned arguments and recommendations. Cognitive systems should be able to generate
explanations of their reasoning processes.

A cognitive system shall be able to reason about what actions to take, even if a situation that it encounters has not been
anticipated. It shall learn from its experience to improve its performance. It should be able to examine its own
capabilities and prioritize the use of its services and resources, and if necessary, explain what it did and accept external
commands to perform necessary actions.

Cognitive systems should be used to augment human decision-making and action processes. Cognitive systems are not
meant to replace humans, but rather, enhance them. An analogy is how Garry Kasparov, the one-time world chess
champion who lost to IBM Deep Blue in 1997, changed from being "against” computers to using computers. He
competed inin "freestyle" chess leagues, where players were able to compete in chess tournaments with the assistance
of computers. Kasparaov wrote: "Teams of human plus machine dominated even the strongest computers. Human
strategic guidance combined with the tactical acuity of a computer was overwhelming. We [peopl€] could concentrate
on strategic planning instead of spending so much time on calculations. Human creativity was even more paramount
under these conditions'.

6.3.6.3.5 Cognition Model

6.3.6.3.5.1 Introduction

A cognition model isacomputer model of how cognitive processes, such as comprehension, action, and prediction, are
performed and influence decisions.

For the purposes of ENI, a cognition model mimics human cognition. More specifically, the perception portion provides
the notion of classifying datainto pre-defined representations that are understood and relevant to the current situation;
memory is used to increase comprehension of the situation; actions are judged by how effectively they perform to
support the situation. These concepts are supported in cognitive psychology, where Minsky modeled this using three
interacting layers, called reactive (or subconscious), deliberative, and reflective [i.43].

Reactive processes shall take immediate responses based upon the reception of an appropriate external stimulus. In
humans, these processes correspond to instinctual and learned behaviours. In ENI, such processes may have no
understanding of the semantics of the external stimulus; rather, they shall respond with some combination of
pre-defined and learned reactions.

Deliberative processes shall receive data from and can send recommendations and/or commands to the reactive
processes. Deliberative processes need not interact directly with the external world. In humans, this part of the brainis
responsible for our ability to achieve more complex goals by applying short- and long-term memory in order to create
and carry out more elaborate plans. In ENI, these processes shall use short- and long-term memory. Furthermore, these
processes shall accumulate and generalize knowledge from experience, and combine that with what is learned from
other people and systems.

Reflective processes shall supervise the interaction between the deliberative and reactive processes. In humans, these
processes enable the brain to reformulate and reframe its interpretation of the situation in away that may lead to more
creative and effective strategies. In ENI, these processes should consider what predictions turned out wrong, along with
what obstacles and constraints were encountered, in order to prevent sub-optimal performance from occurring again. In
ENI, these processes should also include self-reflection, which analyses how well the actions that were taken solved the
problem at hand.

6.3.6.3.5.2 ENI Cognition Model

A cognition model is used to both embed intelligence as well as to enable a system to learn and reason while taking
long-term intentions into account. The conceptual relationship between perception, comprehension, and action and the
three types of cognitive processing are shown in Table 6-1.

ETSI

115 ETSI GS ENI 005 V3.1.1 (2023-06)

Table 6-1: Types of Cognition and their Responsibilities

Reactive Prioritise event Not needed Fixed action taken
handling
Deliberative Analyse stimuliand Consider different Take appropriate
related short-term possibilitiesand rank action based on
events according to current planning outcometo
needs satisfy needs
Reflective Analyze stimuliand Consider different Take appropriate
related short- and possibilitiesand rank action based on
long-term events according to goals planning outcome to
satisfy goals

Reactive cognition assumes that a pre-defined set of actions are associated with each stimulus. Aswill be seen, even
though an action istaken, learning and reasoning functions of the ENI System will analyse the action(s) taken and
evaluate their effectiveness, both to satisfy current needs as well as the long-term goals of the system. Conceptually, this
isa"shortcut" through the processing steps that are required for deliberative and reflective processing.

Deliberative processing compares the input stimuli to short-term events, and their responses, which are related to it.
Planning is then initiated to consider different types of responses and their effect on the current needs of the system
being managed. These possibilities are then ranked according to how well each satisfies the current needs of the system.
The action that ranks the best is then executed. However, the set of possible responses, along with their stimuli, are
recorded for further analysis. Learning and reasoning functions will then compare this and other actions to seeif the
collected set of actions were the optimal responses that could be taken.

Reflective processing compares the input stimuli to short- and long-term events, and their responses, which are related
toit. Planning isthen initiated to consider different types of responses and their effect on the goals (both short- and
long-term) of the system being managed. These possibilities are then ranked according to how well each satisfies the
goals of the system being managed. The action that ranks the best is then executed. However, the set of possible
responses, along with their stimuli, are recorded for further analysis. Learning and reasoning functions will then
compare this and other actions to seeif the collected set of actions were the optimal responses that could be taken.
Conceptually, reflective processing is atype of meta-management, where the current needs of the system being
managed are weighed against the goal s that are to be achieved.

A simplified functional architecture that uses a Cognitive Model is shown in Figure 6-25.

ETSI

116 ETSI GS ENI 005 V3.1.1 (2023-06)

ENI System
Comprehension
‘| Learning and | Pla.n.nmgand
Reasoning Cognitive Control
Reflective
> Memories 3
Deliberative
> Knowledge !
Reactive
Perception Actions Human
=) Direction
Recommendations
Sensed Data and/or Commands
Input Processing Denormalisation and
and Normalisation Output Processing
API Broker
A

Figure 6-25: A Simplified Functional Architecture using a Cognitive Model

Figure 6-25 starts with the "outer” ENI closed control loop (environment — APl Broker — Sensed Data — Processing
— Actions — API Broker — Environment). The Processing portion of the ENI System (i.e. the six Inner Functional
Blocks) are redrawn to emphasize the cognitive processing that they collectively provide. This provides comprehension
of the perceived information. The actions are then sent to the API Broker, which delivers them back to the system being
managed by ENI.

Planning is defined as the task of finding a procedural course of action for a declaratively described system to reach its
goals while optimizing overall performance measures. In an ENI System, additional constraints, such as business rules
and most importantly, the set of goals to be achieved, determine the current set of goals and what specific measuresto
optimize (e.g. time to solve, resources used, or a combination of these and other metrics). Finally, planning in an ENI
System al so includes reviewing the courses of action that are available and predicting their expected (and unexpected)
results (e.g. "think before act").

The Cognition Management Functional Block shall use the ENI Cognition Model for planning and scheduling functions
to be performed in order to achieve a goal. Planning determines what steps to take, while scheduling decides when to
carry out a certain step. The planning process may use a finite state machine for planning. In this approach, the finite
state machine consists of two main states (an initial state and a goal state) that are connected through a set of one or
more actions defined as intermediate states.

The planning performed in the Cognition Management Model is optimized according to current context and situation.
For example, this may mean that the Finite State Machine(s) being used are updated with state transitions leading to a
new state. The Cognition Management Functional Block then determines if this new state has achieved its goal state, or
if not, isthe new state closer or farther away from achieving its goal state. Thisinformation, along with an optionally
defined schedule, is then sent to the Situation Awareness Functional Block.

The mechanisms used in planning should know nothing about the specific problem that they are solving. This makes the
planning portion of the Cognition Management Functional Block independent of the goals that it is trying to achieve.

ETSI

117 ETSI GS ENI 005 V3.1.1 (2023-06)

Both Al- and non-Al based plannerstreat planning as a search problem. The program will traverse a potentially large
search space and find a plan that starts at the initial state and generates afinal end state that contains the desired goals.

The Cognition Management Functional Block's planner uses short-term and long-term memories (part of the
Knowledge Management Functional Block), knowledge from the Context-Aware and Situation-Aware Functional
Blocks (represented as "Knowledge" in Figure 6-25), and Learning and Reasoning (part of the Cognition Management
Functional Block). The Planning and Cognitive Control Functional Block also contains part of the Cognition
Management Functional Block. The actions (i.e. recommendations and/or commands) are produced by the MDE and
Policy Management Functional Blocks.

NOTE: Addanew section in clause 6 that describes the operation of ENI as a whole, and the role played by the
Cognition Management system.

6.3.6.4 Operation of the Cognition Management Functional Block

NOTE: Thisisfor further study in Release 3 (see clause 9), asthisis dependent on an agreed upon Cognition
Model.

6.3.7 Situational Awareness Functional Block

6.3.7.1 Introduction

This clause describes the motivation for using situational awareness, the effect it has on the System Architecture, and
the benefits that it provides. See clause 6.3.5 for a description of the context-awareness Functional Block, and
clause 6.3.7.5 for a comparison of this Functional Block to the context-awareness Functional Block.

Situation awareness enables the system to understand what has just happened, what is likely to happen, and how both
may affect the goals that the system is trying to achieve. Thisimplies the ability to understand how and why the current
situation evolves. ENI shall observe the evolving of different situations, examining them for patterns within each
situation and between different situations. Such knowledge shall be stored in the knowledge base of ENI. As such,
identifying changes in both the current situation as well as possible future situations are critical for understanding how
the environment is changing, and how those changes affect the goals that ENI is trying to achieve or maintain.

For example, security situation awareness could include being aware of the scope and impact of the attack, correlating
that with the behaviour of the adversary, so that effective counter-measures can be implemented.

6.3.7.2 Motivation

Networks are fundamentally heterogeneousin nature. Current as well as legacy devices have different software,
hardware, and use different protocols. Data may be represented in multiple ways. Hence, there is aneed for acommon
and scalable mechanism to abstract this heterogeneity so that their functionality can be represented in a normalized
manner. This would enable common approaches to be devel oped for enhancing interoperability between heterogeneous
systems, letting devel opers create new applications that use these common characteristics and behaviour.

6.3.7.3 Function of Situational Awareness
The working definition of situation awareness for ENI is:

"The perception of data and behaviour that pertain to the relevant circumstances and/or conditions of a
system or process ("the situation™), the comprehension of the meaning and significance of these data and
behaviours, and how processes, actions, and new situations inferred from these data and processes are likely
to evolve in the near future to enable more accurate and fruitful decision-making"”.

It consists of five actions. gathering data (perception), understanding the significance of the gathered data (through both
facts and inferences), determining what to do (if anything) in response to a given event, making a decision (or set of
decisions), and performing those actions. It enables the application of context and policiesto a particular situation, and
can use inference as well as historical datato understand what is happening at a particular context, why, and what (if
anything) should be done in response.

ETSI

118 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.7.4 Operation of the Situational Awareness Functional Block

6.3.7.4.1 Introduction

A situation shall be determined by the analysis of data and behaviour. The evolution of future situationsis a function of
understanding the particular context, the factors determining the evolution of that context, and inferring what the future
situation will be based on the past and current data and behaviour. Semantics play an important role in understanding
the significance and cause of data and behaviour, and shall be used to understand the underlying meaning of data and
information that have been ingested.

A situation reflects an entity's contextual view of a collection of data and processes at a particular instance in time.
Shared situational awareness is therefore a consensus view of a number of individual viewsthat each describes the same
situation. The ENI System may use any distributed mechanisms, such as agents, to realize shared situational awareness
when needed.

6.3.7.4.2 Use of Memory and the Cognition Model

The cognition model used in the ENI System may be quite involved. For example, the cognition model of FOCALE
was complex (since it modelled how the human brain thought) and very memory-intensive. The actual cognition model
of an ENI System isfor further study (see clause 9).

However, an ENI System will, in general, have the following three types of memory modules that are used in the
Situational Awareness Functional Block:

. Working Memory isamemory of limited capacity for temporary storage of information. Information may be
mani pulated and transformed in a working memory. It may consist of a one or more modules, where each
module is optimized for a particular category of information. It is used to analyse information before
committing it to short- or long-term memory.

. Short-Term Memory isamemory of limited capacity for temporarily holding, but not manipulating,
information. It is a cognitive memory that holds events and concepts that have significance to the managed
environment, such as names, numbers, and other managed objects.

. Long-Term Memory isamemory of moderate to large capacity where information may be indefinitely held.
Long-term memory examines information held in short-term memory and semantically augments it. Repeated
occurrences of the same information in short-term memory cause that information to be strengthened (e.g.
made more important and certain) in long-term memory. Different types of long-term memory exist; thisis
beyond the scope of the present document.

6.3.7.4.3 Definition and Management of Goals to be Achieved

There are two types of goals used in this Functional Block. External goals are provided by the Operator or Designated
Entity of the Assisted System, and specify objectives that the Assisted System wants to achieve. Internal goalsare
defined by ENI, and represent goals and/or sub-goals that the ENI System has defined in order to make solving the goal
easier. Both internal and external goals may be represented by a set of policies.

6.3.7.4.4 Architecture of a Cognitive Functional Block

A high-level functional block diagram of a situational awareness Functional Block is shown in Figure 6-26. The green
rounded rectangl e represents the Situational Awareness Functional Block; all other rounded rectangles define a
Functional Block that is nested within the Situational Awareness Functional Block. The red arrows represent a closed
control loop within the Situational Awareness Functional Block.

The functional block diagram shown in Figure 6-26 does not prescribe an implementation. Rather, it describes the
high-level Functional Blocks that are needed to implement Situational Awareness. Different implementations may need
to add other Functional Blocks to meet their particular operational requirements.

ETSI

119 ETSI GS ENI 005 V3.1.1 (2023-06)

L Situational Awareness Functional Block N

System Capability, Constraints,

Ease of Implementation, Policy Governance

Data from \
Knowledge Situation Awareness
Mgmt,
Context Perception Comprehension Projection
Mgmt, and of Elements in of Current of Future
Cognition Current Situation Status
Mgmt FBs Situation

Learning and
Reasoning

Semantic Bus

N
\ 4

Abilities, Goals and

Information Processing Mechanisms
Working Short-Term Long-Term /
Memory Memory Memory /

/

Experience, Objectives
Training

7’
I

Figure 6-26: A Simplified Cognitive Processing Architecture using Neural Networks

Each of the boxes and rounded rectanglesin Figure 6-26 may be modelled as a Functional Block. They are defined as

follows:

. Data from Knowledge M anagement, Context-Awar e M anagement, and Cognition Functional Blocks:

The combination of data and information from this set of Functional Blocks shall serve as input that
enables the Situation Awareness nested Functional Block determine the current state of the Assisted
System and its Operational Environment.

The other main input comes from external goals received from the Assisted System (or its Designated
Entity), aswell asinternal goals defined by the ENI System that are necessary for its correct operation.

. System Capabilities, Constraints, Ease of | mplementation, Policy Gover nance:

System Capabilities are optional information that define the various functions that the ENI System can
perform. They may be specified by metadata. This may be used by this Functional Block to determine
the set of viable next actions to take, and choose among them.

Constraints take two forms. External constraints are provided by the Operator or Designated Entity of
the Assisted System, and shall specify limitations that shall be obeyed when an ENI System definesits
recommendations and commands. Internal constraints shall be defined by ENI, and represent restrictions
that ENI imposes on its decision-making processes in order to achieve a set of goals.

Ease of Implementation istypically represented as either metadata or using a probabilistic or fuzzy
logic mechanism. It enables the Situation Awareness Functional Block to take near-optimal courses of
action if taking an optimal course of action istoo costly (e.g. in time, resources, or other factors).

Policy Governanceisaset of ENI-generated policies (see clause 6.3.9) that shall be used to manage the
operation of the Situation Awareness Functional Block.

ETSI

120 ETSI GS ENI 005 V3.1.1 (2023-06)

. Situation Awar eness:

This defines the ENI System's internal model of the state of the environment. Its input comes from the
Knowledge Management, Context-Aware Management, and Cognition Functional Blocks and from
external and internal goals. The Situation Awareness function shall be separate from decision-making
and action specification functions. Thisis because even if there is a perfect understanding of the
situation, incorrect decisions can till be made. The three foll owing functions describe data analysis and
planning performed by this Functional Block.

Per ception produces an awareness of situational elements (e.g. objects, events, people, systems, and
environmental factors) and their current states (e.g. modes and locations). Perceived objects may be
stored in any of the three types of memories shown in Figure 6-26.

Comprehension examines the situational elements that have been perceived in order to better understand
how they fit together; this hel ps characterize the situation as awhole, and how this situation affects the
goalsthat the ENI System istrying to achieve.

Projection isfocused on predicting the most likely evolution of the current situation, sinceit istypically
too costly and time-consuming to enumerate all possible situations. However, it may be possible in some
situations to specify more evolution predictions. This may be done in a constrained fashion on-line,
and/or a more complete fashion off-line. This model also reflects the differences between working,
short-, and long-term memory from cognitive psychology.

. Abilities, Experience, Training:

These are represented by metadata, and provide inputs to enable an assessment of how positive the
Situational Awareness Functional Block isin performing a particular operation.

. Infor mation Processing M echanisms:

NOTE:

Information processing analyses and optionally changes ingested information. It is made up of four
components: input, storage, processor, and output. See clause 5.3 of ETSI GSENI 019 [9] for a
definition of those portions of the MPM that are used in the ENI Information Model, as well as
clause 5.3.2.7 and clause 5.3.28 of ETSI GS ENI 019 [9] for a description of ENI Extensions to the
MPM and the overall ENI Extended Policy Model, respectively.

Information processing is for further study in Release 4 of the present document (see clause 9).

. L earning and Reasoning:

6.3.7.4.5

Learning is the process of acquiring new, or modifying existing, data, information, or knowledge.
Reasoning is the process of understanding stimuli and the environment, verifying facts, making
inferences, applying a decision-making mechanism (e.g. logic), and then implementing a set of actions to
induce change. Both learning and reasoning are defined by different types of Al algorithms. Some
important examples of learning include:

" Non-associative learning is the strengthening of aresponse to a given stimulus due to repeated
exposure to that stimulus.

L] Associative learning is the process of learning an association between different stimuli.

" Episodic learning is the production of a change in behaviour as aresult of one or more events.

Leveraging Historical Situation Information

Historical information may be used if the algorithm being employed requires such data. It also may be used for trend
analysis. Historical information should be stored in an appropriate repository in either this Functional Block or in the
Repository Functional Block (see clause 6.3.4.5); the choice depends on whether thisinformation is deemed important
for this Functional Block only, or for this Functional Block in particular.

ETSI

121 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.7.5 Difference between Context Awareness and Situational Awareness

The Context of an Entity describe the state and environment in which an Entity exists or has existed; it usesa
combination of historical data, as well asfacts and inferencesto do this. In contrast, situational awareness includes
contextual information and other inputs in order to understand the meaning and significance of data and behaviour of
the entire Assisted System and its operational environment; more importantly, situational awareness includes a
prediction of the evolution of the situation, and how that evolution affects the goals that the ENI System istrying to
achieve. Hence, context is one aspect of situational awareness.

6.3.7.6 Difference between Cognition Management and Situational Awareness

Cognition is the process of acquiring and understanding data and information and producing new data, information, and
knowledge. In contrast, situation awareness is the perception of data and behaviour that pertain to the relevant
circumstances and/or conditions of a system or process, the comprehension of the meaning and significance of these
data and behaviours, and how processes, actions, and new situations inferred from these data and processes are likely to
evolve in the near future.

The planner in the Cognition Management Functional Block is responsible for achieving a set of goals given a set of
congtraints. This may include competing goals (e.g. cost vs. performance) as well as goals that change (e.g. considering
aservice class less important if resources are scare and allowing resources to be taken from it to satisfy higher priority
services). The Cognition Management Functional Block uses the Cognition Model (see clause 6.3.6.3.5) as a guide to
determining when state transitions should be made. The output of the Cognition Management Functional Block isinput
to the Situational Awareness Functional Block.

A situation is defined as a set of circumstances and conditions at a given time that may influence decision-making. This
may be constantly changing. Hence, a snapshot of the current situation, and its goals, are sent as input to the Cognition
Management Functional Block, which responds with progress on achieving the set of goals defined in that situation.

Hence, the difference between these two Functional Blocks s that the Cognition Management Functional Block is
responsible for ingesting, understanding, and producing new data, information and knowledge (by using the ENI
Cognition Model), whereas the Situational Awareness Functional Block is responsible for comparing progress on
achieving goal s from the Cognition Management Functional Block to the achievement of its current goals.

6.3.8 Model Driven Engineering Functional Block

6.3.8.1 Introduction

The Model Driven Engineering (MDE) Functional Block is responsible for enabling software development to be
accomplished using models instead of code. The advantage of MDE is that models are, by definition, machine-readable.
Hence, they can be used to specify Functional Blocks, programs, and applications. An example of MDE is to generate
code directly from a model.

MDE represents an approach to software devel opment where models are used in the understanding, design,
implementation, deployment, operation, maintenance and modification of software systems. A set of models may be
defined based on different viewpoints. Formally, a viewpoint is an abstraction of the function and behaviour of a system
using a selected set of architectural concepts; this facilitates focusing on a particular aspect or set of responsibilities of
the system. Model transformation tools and services are used to align the different models (e.g. deriving a set of data
models from an information model), and for generating code.

6.3.8.2 Motivation
Software systems continue to grow in complexity. While modelling is commonly used, models are often only used for

idea generation and design, and are not linked to implementation. Worse, models are not updated as frequently as code,
which increases the separation between the models and the implementation.

ETSI

122 ETSI GS ENI 005 V3.1.1 (2023-06)

One of the original reasons for using models was that concepts that were more familiar to domain experts could be more
easily represented in away that those experts could understand (as opposed to having to know how to write and debug
code). Furthermore, this was deemed an easier and more straightforward way of specifying business log that was
independent of the platform and technology used. Modelling abstracts technical concepts to make them more accessible
to domain experts as well as more casual users. It focusses on aspects of what occurs in the domain of interest. See
[1.12] for more detailed information.

Thus, the motivation for using MDE is to focus on the business logic, not code, by using a methodology that uses
abstractions (instead of, for example, software libraries and function calls).

6.3.8.3 Function of the Model Driven Engineering Functional Block

The function of the MDE Functional Block is to decide how to implement the selected actions from the Situational
Awareness Functional Block. It uses model-driven engineering mechanisms to convert the actions into aform that
enables imperative, declarative, and/or intent policiesto be constructed (by the Policy Management Functional Block).
More specifically, information and data models shall represent key grammatical concepts (e.g. nouns and verbs) of
policies, as well as other concepts that a policy grammar can refer to. Therefore, use of the model serves three important
purposes:

1) Itensuresthat all different data models used in the ENI System maintain a consistent definition and
understanding of concepts, even if a concept is represented using different data structures in different parts of
the ENI System.

2) Itenablesdifferent policies at different levels of abstraction to communicate with each other using a common
vocabulary and data dictionary.

3) It decouplesthe need for policy (defined by the Situation Awareness Functional Block) from the specification
of policy (defined in the MDE Functional Block) from the implementation of policy (defined in the Policy
Management Functional Block).

6.3.8.4 Operation of the Model Driven Engineering Functional Block

6.3.8.4.1 Introduction

A high-level functional block diagram of an MDE Functional Block is shown in Figure 6-27. The functional block
diagram shown in Figure 6-27 does not prescribe an implementation. Rather, it describes the high-level Functional
Blocks that are needed to implement the needs of model-driven engineering. Different implementations may need to
add other Functional Blocks to meet their particular operational requirements.

Action Plan

l Current State, Goal, and Plan Information
Action Parser

L

Ontological Knowledge

State Machine

Knowledge
Repositories

. n =
Model Graph ? Semantic Graph g Context-Aware
-~ 7] Lexicon : 3 Management
Construction Construction g
=3
;
H <
Multigraph & Management

Construction

|

Action Policy Policy Specification
Validation Construction

Cognition
Management

Policy
—
Management

1 s

Model-Driven Engineering Functional Block

Figure 6-27: A Simplified Functional Architecture of the MDE Functional Block

ETSI

123 ETSI GS ENI 005 V3.1.1 (2023-06)

A high-level description of the flow of operations represented by Figure 6-27 is as follows.

The Situation Awareness Functional Block sendsits current state and goal (s), along with any actions to take, to the
State Machine of the Model-Driven Engineering Functional Block. These action descriptions shall consist of text,
metadata, and/or modelled objects. Thisis used to synchronize the state of the Model-Driven Engineering Functional
Block with the state of the Situation Aware Management Functional Block. The correlation between these actions and
theinternal and external goals of the ENI System is attached as metadata, and will be embedded into the resulting ENI
Policy Rules.

The Model-Driven Engineering Functional Block shall contain multiple active repositories. The two most important are
the Information Model Repository and the Data Model Repository. The Information Model Repository shall contain the
authoritative information model of record, and may contain one or more copies of that information model that are used
to process and evaluate changes to be made to the information model of record. Changes are made to the information
model of record to reflect new information that has been learned, including changes to existing information. Any
changed information shall be verified by at least one other independent ENI Functional Block before a change is made
to the information model of record.

The information model of record shall be used as the authoritative version of the model by all other ENI Functional
Blocks. All data models used by ENI Functional Blocks shall be derived from the information model of record.

The Data Model Repository shall contain one or more data models. Each ENI Functional Block may use one or more
data modelsto suit its needs. For example, an LDAP directory and an RDBM S may be used to store information about
the same or different managed objects. Each data model shall be optimized to reflect the needs of the Functional Block
that isusing it. For example, a data model may flatten a set of objects defined in the information model of record to
produce asingle class that contains all of the attributes, operations, constraints, and behaviours of the information
model classes; this may be done to increase and simplify access to data and behaviour. As another example, a data
model may restructure and trandate data into different data structures (e.g. in order to facilitate protocol operations), as
long as in so doing, it does not ater the meaning of the original data.

The Model-Driven Engineering Functional Block should maintain one or more active repositories for applicable
ontologies. Thisisin order to verify the semantics of applying the recommended set of actions from the Situational
Awareness Functional Block.

The set of actions defined by the Situational Awareness Functional Block are parsed by the Action Parser, which
verifies the structure and meaning of the action descriptions, and ensures that the Model-Driven Engineering Functional
Block understands the actions that the Situational Awareness Functional Block wants to take. The first part of this
processis to verify the syntax used in the action description. For example, a Customer is atype of Named Entity (i.e. it
shall exist in adata model as an instance of a Customer object); if that is not the case, then an error is produced. Any
errors and warnings found are sent back to the Situational Awareness Functional Block, along with as much context as
the Action Parser can provide; work in the Model-Driven Engineering Functional Block is then stopped. Continuing the
Customer example, the Action Parser could annotate that the usage of aterm indicates that it could possibly be a
Customer, but that no Customer with such a name was found. Two mechanisms of doing this parsing are:

1) using modelled objects to help understand words and phrases in the action description; and

2) using the modelsto build an (internal) language, whose syntax and semantics are formally defined, and then
using the syntax and semantics of that formal language to compile the action descriptions.

The Model-Driven Engineering Functional Block uses its state machine, along with any applicable models and
ontological information, to determine how best to implement the recommended set of actions of the Situational
Awareness Functional Block. A principal concern isto check the semantics of the recommended set of actions, and any
effects that those semantics may have on the running system. Clause 6.3.4.4.1 defined how knowledge is represented in
the ENI System. The Model-Driven Engineering Functional Block uses this approach to check the semantics of the
recommended set of actions to be applied by iteratively constructing a multigraph, where the nodes are derived from the
data models and the edges are semantic relationships that relate one or more ontologies to that node. In addition, some
nodes may be derived from concepts in an ontology, and its edges are semantic rel ationships that relate one or more
models to that node.

The Action Validation logic then compares the set of recommended actions from the Situational Awareness Functional
Block to the multigraph to ensure that the recommended set of actions are safe. In particular, it examines the set of
semantic relationships, looking for semantic closeness between managed entities that may be affected by the set of
actions. If it is deemed unsafe, then errors and warnings are sent back to the other Functional Blocks of the ENI System,
and the actions are not taken.

ETSI

124 ETSI GS ENI 005 V3.1.1 (2023-06)

If the actions are safe, then the Model-Driven Engineering Functional Block takes those actions and applies them to al
applicable data models. This constructs an updated data model, reflecting the effects that the set of actions will havein
the runtime system when the set of actionsis applied. This definesimportant data and information that will indicate the
success or failure of each action when deployed.

The set of actions are constructed into an internal format, called the Policy Intermediate Form. Thisis the start of
defining a set of policies that represent the formal trandation of the set of actions sent by the Situational Awareness
Functional Block into a set of ENI Policy Rules. Formally, thisis a compilation stage that connects the initial actions of
the compiler (in the Model-Driven Engineering Functional Block) to their final output form (in the Policy Management
Functional Block). The Policy Intermediate Form may be structured in atree or graph format. The relationship between
the set of actions and the current goal(s) of the ENI System should be embedded in each ENI Policy Rule using
metadata or other similar mechanisms. These Policy Definitions take the form of text, and are output to the Policy
Management Functional Block, which completes the compilation process by producing a set of imperative, declarative,
and/or intent policies for the set of actions produced by the Situational Awareness Functional Block.

6.3.8.4.2 Knowledge Data Fusion, Transformation, and Processing

Datafusion is necessitated when heterogeneous systems are required to interoperate in an open world, where the syntax
and semantics of data provided by a sensor or a human is domain-specific and does not conform to any one specific
vocabulary. This requires the translation of each vocabulary used into a common set of concepts and terms, so that the
data can be integrated. The ENI System shall perform data fusion in order to associate different definitions of the same
concept with each other; thisis used to provide a more comprehensive understanding of situations.

6.3.8.4.3 Knowledge Transformation into Policy Information

Some systems may need to know additional data, information, and/or knowledge concerning how to deploy and execute
aset of ENI Policy Rules. For example, pre- and/or post-conditions, or best current practices, may be useful to execute,
monitor, and validate that the actions of an ENI Policy Rule had the desired effect. There are two options for conveying
this knowledge:

1) If thereisadistributed set of ENI Systems, then this knowledge sharing should be in the form of models,
ontologies, and ENI Policy Rules to ensure that each ENI System instance is working on the same knowledge.

2) If the knowledge is being sent to an external, non-ENI System component (e.g. the Assisted System, or an
application), then this knowledge sharing shall bein the form of metadata. This lowers the attack surface of the
ENI System by ensuring that external entities are not allowed to see or edit models or the knowledge derived
from them directly.

6.3.9 Policy Management Functional Block

6.39.1 Introduction

This clause describes the motivation for using policy management, the effect it has on the System Architecture, and the
benefitsthat it provides. This Functional Block provides a set of uniform and intuitive mechanisms for providing
consistent recommendations and commands. These characteristics give rise to the following requirements:

o ENI shall provide the ability to transform data and information from its own internal format to format that
facilitates generating outputs that are understandable by the Assisted System and/or its Designated Entity.

. ENI shall use a set of models, including data types and data structures for producing outputs that are
understandable by the Assisted System and/or its Designated Entity.

. Data Denormalization may be realized as a Functional Block that is separate from the Output Generation
Functional Block. This adheres to the Single Responsibility Principle [i.9] and enables a more scalable and
robust system to be designed and built.

6.3.9.2 Motivation
Management invol ves monitoring the activity of a system, making decisions about how the system is acting, and

performing control actions to modify the behaviour of the system. The purpose of Policy Management is to ensure that
consistent and scalable decisions are made governing the behaviour of a system.

ETSI

125 ETSI GS ENI 005 V3.1.1 (2023-06)

Organizations are policy-driven entities. Policy is anatural way to express rules and restrictions on behaviour, and then
automate the enforcement of those rules and restrictions. However, the number of policies can be very large

(e.g. 100 000+), and the relationships between policies can be complex. In addition, policy can change contextually. For
example, different actions can be taken based on type of connection, time of day, and network state.

The present document uses the following definition of Policy, see[7], [8] and [i.1]:

"Policy isa set of rulesthat is used to manage and control the changing and/or maintaining of the state of one
or more managed objects’.

Policy is a mechanism for controlling the behaviour of an Entity, not the actual end result. For example, an access
control list is created and managed using policy, but is not a policy instance or type of policy.

Policy is not absolute. The actions of a policy shall be verified. In addition, agoal of ENI isto continually evaluate and
optimize policy, so that it becomes more effective with experience.

The size and complexity of modern systems has resulted in the need for automating management operations. If Policies
are coded into a management component, their lifecycle becomes interlocked with that component, and their behaviour
can only be altered by recoding the component. Hence, Policies should be defined and management independent from
management components to enable policies to be changed and reused without affecting the lifecycle of the management
system. It aso enables the Policies to adapt to evolutionary changes in the system being managed, as well asto
accommodate new application requirements. Ultimately, the business and oper ational policiesthat govern the
construction and deployment of configuration changes are more important than the configuration changes
themselves!

6.3.9.3 Modelling and Representing Types of Policies

6.3.9.3.1 Introduction

Management invol ves monitoring the activity of a system, making decisions about how the system is acting, and
performing control actions to modify the behaviour of the system. The purpose of policy isto ensure that consistent
decisions are made governing the behaviour of a system.

ENI isamodel-driven system. Hence, it uses a single information model that can be used to represent different types of
policies (e.g. imperative, declarative and intent). Thisisdescribed in ETSI GS ENI 019 [9].

6.3.9.3.2 Reuse of the MEF Policy Model

Currently, the only industry information model that defines a unified model for representing different types of policies
isthe MPM [8]. A unified policy model enables different types of policies to be used to accomplish tasks independent
of the type or structure of policy. It also enables one type of policy to call any other types of policy. Therefore, ENI
shall reuse the MPM as a starting point to develop its policy information model.

In the present document, reuse of a model means to incorporate text and graphics from an external modelling standard
into the present document. Specifically, the ENI model for the present document shall reuse the MPM asiit, without any
changes.

See clause 5.3 of ETSI GS ENI 019 [9] for a definition of those portions of the MPM that are used in the ENI
Information Model, as well as clause 5.3.2.7 and clause 5.3.28 of ETSI GS ENI 019 [9] for a description of ENI
Extensions to the MPM and the overall ENI Extended Policy Model, respectively.

6.3.9.3.3 Reuse of the MEF Core Model

The MPM is derived from the MCM [7]. Specifically, the MPM model elements are al derived from an MCM
superclass. The MCM is ageneric model that defines managed entities (e.g. products, services, and resources),
unmanaged entities (e.g. locations and cell towers), entities that are controlled by other managed entities (e.g. P and
MAC Addresses), and metadata. Since the MPM is derived from the MCM, any aobject (managed or otherwise) defined
inthe MCM may be defined as atarget of an ENI Policy.

In the present document, the ENI model shall reuse MCM model elements referenced by the MPM asiit, without
changes.

ETSI

126 ETSI GS ENI 005 V3.1.1 (2023-06)

See clause 5.2 of ETSI GS ENI 019 [9] for a definition of those portions of the MCM that are used in the ENI
Information Model, as well as clause 5.2.3 and clause 5.2.4 of ETSI GS ENI 019 [9] for a description of ENI
Extensions to the MCM and the overall ENI Extended Core Model, respectively.

6.3.9.3.4 Types of Policies Used in ENI

Asdescribed in[7], [8] and [i.1], there are three different types of policiesthat are defined for an ENI System:

Imperative policy: atype of policy that uses statementsto explicitly change the state of a set of targeted objects.
Hence, the order of statements that make up the policy is explicitly defined. An example of an imperative policy, using
informal English, is:

WHEN an Alarmisreceived
IF the severity of the Alarmis Critical
THEN execute the Critical Alarm Policy

In the present document, I mperative Policy will refer to policies that are made up of Event, Condition, and Action
clauses.

Declarative policy: atype of policy that uses statements from aformal logic to describe a set of computations that need
to be done without defining how to execute those computations. Hence, state is not explicitly manipulated, and the order
of statements that make up the policy isirrelevant. An example of adeclarative policy, using First Order Logic, is:

x3y (Customer(x) 1 SLA(Y) A have(x, V))
The English equivalent is:
Some Customers have an SLA

In the present document, Declarative Policy will refer to policies that execute as theories of aformal logic. The syntax
of adeclarative policy typically uses some type of first order logic, though predicate and description logics may aso be
used.

Intent policy: atype of policy that uses statements from a restricted natural language (e.g. an external DSL) to express
the goals of the policy, but does not specify how to accomplish those goals. In particular, formal logic syntax is not
used. Therefore, each statement in an Intent Policy may require the trandation of one or more of itstermsto aform that
another managed functional entity can understand.

In the present document, Intent Policy will refer to policies that do not execute as theories of aformal logic. They
typically are expressed in arestricted natural language, and require a mapping to aform understandable by other
managed functional entities. An example of an intent policy is:

No processor shall run at more than 75 % utilization

The above example indicates different types of ambiguity that may exist in an intent statement. For example, does the
term "processor” include both CPUs and GPUs? What about ASICs that have processing capabilities? As another
example, the term "utilization" could refer to memory, 1/O operations, or processor utilization.

A further exampleis:
VOLTE drop rateislessthan 0,5 % in cities greater than 1 000 000 people

In this example, the term "drop rate” could refer to average, minimum, or maximum drop rate. In addition, the clause
"in cities greater than 1 000 000 peopl€" shall be tranglated to a specific city or area by the ENI System.

An ENI System may use any combination of imperative, declarative, and intent policies to express recommendations
and commands to be issued to the system that it is assisting and/or managing. Each of these types of policies are defined
in MEF 95 [8].

ETSI

127 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.9.3.5 Overview of a Unified Policy Information Model

6.3.9.3.5.1 Introduction

A unified policy information model serves as a common language that enables concepts used by different policy authors
to be mapped to equivalent conceptsin other levels. It also enables one type of policy to invoke other types of policies.
The specification is based on the MEF Policy Model (MPM) [8]. In this model, any policy, regardless of its structure
and semantics, shall be abstracted into a set of statements. Each statement may in turn be abstracted into a set of

clauses. Each clause is made up of a set of policy elements. Thus, the type of MPM PolicyStructure shall determine the
type of statements that it can contain; thisin turn shall determine the types of clauses and policy elements that are
alowed by thistype of statement. The MPM isdescribed in ETSI GS ENI 019 [9].

ENI Policies contain commands and/or recommendations. ENI Policies, as defined in the MPM, may affect the
behaviour of managed entities under the management of an ENI System. The MCM defines managed entities of interest
to an ENI System. Hence, ENI Policies are able to affect managed entities defined in the MCM since the MPM is also
based on the MCM.

6.3.9.3.5.2 Representing Different Types of Policies with a Single Information Model
This clause has been moved to ETSI GS ENI 019 [9], where it has a so been enhanced.

6.3.9.4 Processing Policies

6.3.9.4.1 Introduction

Clause 6.3.9.3.2 described three types of policies that may be used by an ENI System (i.e. imperative, declarative, and
intent). Clause 6.3.9.3.3 described the important classes of the information model that will be used to represent these
policies. The following clauses first describe options for representing and processing policies, then describe the types of
different languages that may be used to formally define policies, and conclude with differences between policies that
are used within an ENI System versus policies that are used between an ENI System and the Assisted System.

6.3.9.4.2 Constructing Policies: Parsers vs. Compilers vs. Interpreters

Policies used in an ENI System shall be derived from aformal grammar. This simplifies the parsing, compiling, or
interpreting of the policy, and increases the understandability of the policy. It aso simplifies debugging.

From alinguistics point-of-view:
e thesyntax of agrammar isthe set of rules used in agrammar to create sentences;
. the semantics of agrammar is the meaning of a sentence;
. the pragmatics of a grammar is the meaning of a sentence in a particular context.
In general, each of these linguistics aspects should be verified for each type of policy used in an ENI System.

Each type of policy used in an ENI System shall be verified using either a parser and/or a compiler. Multiple parsers
and/or compilers may be used in the verification process.

Once verified, each type of policy used in an ENI System may be either compiled into executable code or interpreted
without having to perform the compilation process.

6.3.9.4.3 Policy Languages

6.3.9.4.3.1 Introduction

Each type of policy in an ENI System shall be written using either a Controlled Language, a Domain-Specific Language
(DSL), or a General Purpose Language (GPL).

ETSI

128 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.9.4.3.2 Controlled Languages

A Controlled Language is arestricted version of alanguage that has been engineered to meet a particular purpose. The
most common form of Controlled Language is a Controlled Natural Language, which is a restricted version of a Natural
Language, such as English.

More formally, a Controlled Natural Language is arestricted version of asingle Natural Language (i.e. the base
language) that uses a subset of the grammar of the base language. A Controlled Natural Language preserves most of the
properties of the base language, so that speakers of the base language can correctly understand the magjority of texts of
the Controlled Natural Language. The vocabulary of a Controlled Natural Language is also restricted (typically to

1 000 words or less). Two examples of a Controlled Natural Language is SBVR (Semantics of Business Vocabulary and
business Rules) [i.31] and Attempto Controlled English [i.32].

6.3.9.4.3.3 DSLs

A Domain Specific Language (DSL) is a small human-understandable language that uses a higher level of abstraction to
communicate and configure software systems for a particular application domain. The term "higher level of abstraction”
means that some programming constructs are simplified (possibly at the expense of the associated details being more
clearly understood). Examples include constructs that determine the flow of execution of a program, the use and
specification of functions, and the types of data structures allowed. It emphases simplicity and the comprehension by
application domain experts at the expense of expressiveness and precision.

An important difference between DSL s and General Purpose Languages (GPLS) isthat DSLs are typically designed to
be used by non-programmers that are experts in the application domain that the DSL is addressing. Thisis not aways
true, as DSLs exist for different specialized tasks (e.g. network configuration vs. network monitoring).

There are two main types of DSLs, referred to asinternal and external DSLs. Aninternal DSL does not require a
custom compiler or interpreter, because it is embedded into its base language (GPL); hence, its grammar isrestricted to
asubset of the grammar of the base language. In contrast, an external DSL requires the creation of its own grammar that
exists outside of a base language, and hence, requires acompiler or interpreter to execute or interpret it.

6.3.9.4.34 GPLs

A General Purpose Language (GPL) is a programming language that can address a wide variety of problems and
domains. It emphases expressiveness and precision at the expense of simplicity. It istypically used by professional
programmers and developers.

6.3.9.4.35 Recommendation
The recommendations for languages used by an ENI system are as follows:

o Intent Policies should use an external DSL, in order to maximize the ability of non-programming
constituencies to define and use intent policies.

. Declarative Policies should use either a dedicated logic programming language or a DSL (internal or external)
built specifically to handle the logic formalisms used.

. Imperative Policies may use either an appropriate DSL (internal or external) or a GPL.

The ENI system should include the intent grammar specification for Intent Policies. This facilitates the intent trandlation
process and increases interoperability.

While Controlled Natural Languages are attractive for Intent Policies, they would require significant work to develop
and maintain, and will not be further discussed in this release of the present document.

6.3.9.4.4 Policy Scope

6.3.9.4.4.1 Introduction

There are two different uses of Policies processed by an ENI System. The first use is when an External Entity (e.g. an
Operator) sends a Policy (of any type) to the ENI System that affects the behaviour of the Assisted System (or its
Designated Entity). This means that the ENI System will trandlate the Intent Policy, processit, and send
recommendations and/or commands back to the Assisted System (or its Designated Entity).

ETSI

129 ETSI GS ENI 005 V3.1.1 (2023-06)

The second use is when an External Entity sends a Policy (of any type) to the ENI System that affect the behaviour of
the ENI System. This means that the ENI System will translate the Intent Policy, process it, and act on it to affect its
own behaviour (e.g. add or remove knowledge from the Knowledge Management Functional Block, or define new goals
that it should try and achieve).

For either use of Policies, the Functional Blocks of an ENI System are conceptualized into two categories. External and
Internal.

The External Functional Blocks are the Data I ngestion, Data Normalization, Data Denormalization, and Output
Generation Functional Blocks. The Internal Functional Blocks are the other six Functional Blocks.

External Functional Blocks communicate to the API Broker using External Reference Points (see clauses 7.2 and 7.3).
Internal Functional Blocks communicate using Internal Reference Points via the Semantic Bus (see clauses 7.6 and 7.7).

6.3.9.4.4.2 Policy Communication Requirements

The following requirements apply to both uses of Policies (i.e. external to affect the behaviour of an External Entity vs.
internal to affect the behaviour of an ENI System).

All Policy communication between an ENI System and the Assisted System shall use an API Broker.

All Policies sent to and received from the APl Broker shall use an appropriate External Reference Point (€.9. Eoss-eni-pol,
see clause 6.3.9.5). The External Reference Point is determined by the entity that the API Broker is communicating
with. For example, if the communicating entity is the OSS, then it shall use the Egsseni-po External Reference Point. As
another example, if the communicating entity isthe end user, then it shall use the Eug-eni-pol Externa Reference Point.

6.3.9.4.4.3 Policies that Affect the Behaviour of an External Entity
The following steps shall be used to process Policies that affect the behaviour of an External Entity:

1) The Datalngestion Functional Block shall accept input Policies only through designated External Reference
Points (see clause 6.3.9.5).

2) TheENI System shall send an acknowledgement of receiving the Policy through the appropriate External
Reference Point (see clause 6.3.9.5).

3) The Normalization Functional Block shall use a dedicated Internal Reference Point (i.e. ling-norm, Se€
clause 6.3.9.5) to accept Policies from the Data I ngestion Functional Block.

4) The Normalization Functional Block shall use a dedicated Internal Reference Point (i.e. Inorm-sem, S€€
clause 6.3.9.5) to send Policies from the Normalization Functional Block to the Semantic Bus (see
clause 6.3.4.4.4).

5) Theinput Policy is processed using the relevant ENI Internal Functional Blocks, and transformed to a set of
recommendations and/or commands, which is published using the Semantic Bus.

6) The ENI System shall send one or more status messages to the External Entity using the appropriate External
Reference Point (see clause 6.3.9.5). The number and type of status messages are defined by the External
Entity.

7) The Data Denormalization Functional Block shall use a dedicated Internal Reference Point (i.€. | sem-denorm, S€€
clause 6.3.9.5) to accept Policies from the Semantic Bus.

8) The Data Denormalization Functional Block shall use a dedicated Internal Reference Point (i.€. ldenorm-out, S€€
clause 6.3.9.5) to send Policies to the Output Generation Functional Block.

9) The Output Generation Functional Block shall use an appropriate External Reference Point (€.9. Eoss-eni-pol, S€€
clause 6.3.9.5) to send Palicies to the API Broker, which shall subsequently send the recommendations and/or
commands to the appropriate External Entity (the OSSin this example) viaan API.

10) The External Entity shall acknowledge receipt of the set of recommendations and/or commands through the
appropriate External Reference Point (see clause 6.3.9.5).

ETSI

130 ETSI GS ENI 005 V3.1.1 (2023-06)

DSL s and/or GPLs may be used to build Policies that are used within an ENI System. The same type of Policy should
be used consistently throughout an ENI System for the same purpose by the same constituency. For example, if Intent
Policies are used for business tasksin one Functional Block, they should be used for business tasks in the other
Functional Blocks.

6.3.9.4.4.4 Policies that Affect the Behaviour of an ENI System

The following steps shall be used to process Policies that affect the behaviour of an External Entity:

1)

2)

3)

4)

5)

6)

7)

8)

The Data Ingestion Functional Block shall accept input Policies only through designated External Reference
Points (see clause 6.3.9.5).

The ENI System shall send an acknowledgement of receiving the Policy through the appropriate External
Reference Point (see clause 6.3.9.5).

The Normalization Functional Block shall use a dedicated Internal Reference Point (i.€. ling-norm, See
clause 6.3.9.5) to accept Policies from the Data I ngestion Functional Block.

The Normalization Functional Block shall use a dedicated Internal Reference Point (i.€. lnorm-sem, Se€
clause 6.3.9.5) to send Policies from the Normalization Functional Block to the Semantic Bus.

Theinput Policy is processed using the relevant ENI Internal Functional Blocks, and transformed to a set of
recommendations and/or commands, which is published using the Semantic Bus (see clause 6.3.4.4.4).

The transformed set of recommendations and commands are then processed by the ENI System.

The ENI System shall send one or more status messages to the External Entity using the appropriate External
Reference Point (see clause 6.3.9.5). The number and type of status messages are defined by the External
Entity.

The External Entity shall acknowledge receipt of the set of recommendations and/or commands through the
appropriate External Reference Point (see clause 6.3.9.5).

The Policy Management Functional Block shall use the following Internal Reference Point to communicate with other
ENI Functional Blocks:

lingnorm IS Used to transfer data from the Data Ingestion Functional Block to the Data Normalization Functional
Block. Ingested data may include all types of data, information, knowledge, Policies, and metadata sent from
the API Broker through any of the External Reference Points that supply inputs to the Data Ingestion
Functional Block.

I norm-sem 1S USed to transfer normalized data from the Data Normalization Functional Block to the Semantic Bus.
Thisisauni-directional Internal Reference Point, meaning that data for processing shall only flow from the
Data Ingestion Functional Block to the Data Normalization Functional Block.

lsempmiS USed to transfer all types of data, information, knowledge, Policies, and metadata from the Semantic
Bus to the Policy Management Functional Block that the Policy Management Functional Block has subscribed
to. The Policy Management Functional Block may send any type of data, information, knowledge, policies,
and metadata to the Semantic Bus that it deems necessary.

| sem-denorm 1S USed to transfer data from the Semantic Bus to the Data Denormalization Functional Block. These
data may be data, information, knowledge, policies, and metadata from any internal ENI Functional Block that
IS necessary to communicate to the Assisted System or its Designated Entity.

| denorm-out 1S USed to transfer data from the Data Denormalization Functional Block to the Output Generation
Functional Block, whereit will be sent by an appropriate External Reference Point (see Figure 7-2 and
clauses 7.2 and 7.3 for their definitions). Data output may include al types of data, information, knowledge,
policies, and metadata.

ETSI

131 ETSI GS ENI 005 V3.1.1 (2023-06)

6.3.9.5 Function of the Policy Management Functional Block

The function of the Policy Management Functional Block is to turn the input from the Model Driven Engineering
Functional Block into aset of ENI Policies that contain recommendations and/or commands. This enables a common
mechanism for an ENI System to communicate actions to take to an entity. The ENI Policies may be any combination
of imperative, declarative, and/or intent policies.

The Policy Management Functional Block shall use the following External Reference Points to send ENI Policies to the
API Broker for subsequent transmission to any external entity:

. Eosseni-pol defines Policies and associated information and/or metadata exchanged between the OSS-like
Functionality and the ENI System that control behaviour (including services and resources) for the Assisted
System.

e Egyp-eni-pa defines Policies and associated information and/or metadata exchanged between the BSS-like
functionality and the ENI System that control behaviour (including services and resources) for the Assisted
System.

e Ebseni-pa defines Policies and associated information and/or metadata exchanged between the BSS-like
functionality and the ENI System that control behaviour (including services and resources) for the Assisted
System.

. Eusr-eni-pal defines Policies and associated information and/or metadata exchanged between Applications and the
ENI System that control behaviour (including services and resources) for a user (or an agent acting on behal f
of the user).

. Eor-eni-pot defines Policies and associated information and/or metadata exchanged between the Orchestrator and
the ENI System that control behaviour (including services and resources) for the Assisted System.

The Policy Management Functional Block shall use the following Internal Reference Point to communicate with other
ENI Functional Blocks:

o lsempmiS Used to transfer all types of data, information, knowledge, policies, and metadata from the Semantic
Bus to the Policy Management Functional Block that the Policy Management Functional Block has subscribed
to. The Policy Management Functional Block may send any type of data, information, knowledge, policies,
and metadata to the Semantic Bus that it deems necessary.

6.3.9.6 Operation of the Policy Management Functional Block

6.3.9.6.1 Introduction

The Policy Management Functional Block is used to send recommendations, commands, and associated data and
metadata to external entities. Imperative, declarative, and/or intent policies may be used. More specifically, all classes
in the MPM inherit from M CM PolicyObject, which in turn inherits from MCMEntity. The

MCM EntityHasM CM M etaData aggregation defines which MCM M etaData objects may be aggregated by which
MCMEntity objects. This aggregation is owned by the MCM Entity class, which means that all of its subclasses inherit
this aggregation. Hence, both ENI Policies (represented as subclasses of the MPM PolicyStructure class) and their
components (represented as subclasses of the MPM PolicyComponentStructure class) may al have zero or more
subclasses of the MCMMetaData class.

MCMMetaData is used to describe as well as prescribe information that is associated with a given MCMEntity. For
example, best current practices and version information are examples of descriptive Thisis shown in Figure 6-28.

ETSI

132 ETSI GS ENI 005 V3.1.1 (2023-06)

«OpenModelClass»
MCMRootEntity

ﬁk

[|

« enModelClgss» «OpenModelClass»
MCMEntity | MCMEntityHasMCMMetaData MCMMetaData
T < — |
0.1 AN 0..*
N\
2 §
N\
Ar \
N\
\
\
«OpenModelClass» i) «OpenModelClass»
E¢ MCMManagedEntity £ MCMEntityHasMCMMetaDataDetail
«OpenModelClass»
| MCMPolicyObject |
[]
& MPMPolicyStructure |] MPMPolicyComponentStructure

Figure 6-28: Policies and Metadata

6.3.9.6.2 The Policy Continuum
Figure 6-29 illustrates a key concept of Policy, called the Policy Continuum [7], [8], [i.1], [i.2] and [i.3].

High
Business View: SLAs, Processes, Guidelines, and Goals
System View: Device- and Technology-Independent Operation

-

@]

Administrator View: Device- Independent, Technology-Specific Operation g

A}

S

Device View: Device- and Technology-Specific Operation S

Instance View: Device-Specific MIBs, PIBs, CLI, etc. Implementation

Y Low

Figure 6-29: The Policy Continuum

ETSI

133 ETSI GS ENI 005 V3.1.1 (2023-06)

The purpose of the Policy Continuum is to formally differentiate between the needs of different constituenciesin
defining and expressing policy. Each constituency is made up of a set of users that have similar business needs, and
more importantly, use similar concepts and terminology. For example, business users and product managers use
significantly different terminology than application developers or network administrators. The number of continuain
the Policy Continuum shall be determined by the applications using it. There is no fixed humber of continua.

Figure 6-29 shows five, because this enables a set of much smaller trandations of terms (e.g. from a representation
without technology, to one with technology while being device, vendor, and technology independent, to successively
lower levels that fix each of these three dimensions). However, Figure 6-29 is used to illustrate the principles of the
Policy Continuum, not to define the type or number of continua used in ENI.

6.3.9.6.3 Policy Management Architecture

6.3.9.6.3.1 Policy Input

Figure 6-30 shows the set of External Reference Points that may be used to send policies to the ENI System. Five types
of Policy Users (the End-User, an Application, the OSS, the BSS, and the Orchestrator) shall be able to send Policiesto
the ENI System. In addition, certain types of Applications may be able to submit knowledge specific to a set of Policies
that they want to execute.

0OSS- and BSS-like

Functlonall Applications Orchestrator
API Broker l

E
Oscgsl-oen/l;pgl —_ Ebss-eni-pol Eapp-eni;ppl — Eorenipol —— -T- Eusr-eni-pol
olicies BSS Policies Input Policies Orchestrator Input Policies

/ v y from A | Policies

ENI System Normalisation

e Semantic Bus

Knowledge Context Cognition Situational Model-Driven
K Y ENEEE Awareness Management Awareness Engineering

Figure 6-30: Policy Input External Reference Points

Y v

uissaosoud

juawaeue|n Adiljod

./

There are five types of input Policies, plus the ability to ingest information and knowledge that applies to policies from
aparticular source, that are considered in the present document. They are:

1) End-User Policies. End-users, such as Subscribers, shall use the Eysr-eni-po External Reference Point to send
Policies to the ENI System.

2) Application Policies. Different types of Applications shall use the Exp-eni-po EXternal Reference Point to send
Policiesto the ENI System.

3) OSSPolicies. Most OSSs and BSSs currently do not have a standardized Policy Language. Thisis mitigated
by the use of a dedicated External Reference Point. Hence, the OSS will shall use the Eqsseni-pa External
Reference Point to send OSS Policiesto the ENI System.

4) BSSPalicies. Most OSSs and BSSs currently do not have a standardized Policy Language. Thisis mitigated
by the use of a dedicated External Reference Point. Hence, the BSS shall use the Epsseni-pol EXternal Reference
Point to send BSS Policies to the ENI System.

5) Orchestrator Policies. Orchestrators shall use the Eqr-eni-pot External Reference Point to send Policiesto the
ENI system.

ETSI

134 ETSI GS ENI 005 V3.1.1 (2023-06)

Related external knowledge and information ingestion for input policies are:

. Application Knowledge. The External Reference Point Expyp-eni-kno May be used to add application-specific
knowledge to the Knowledge Repositories of ENI. For example, such knowledge could describe particular
semantics that an application wants to associate with a set of Policies.

Related internal knowledge and information for input policies are:

e Application Knowledge. The Internal Reference Point Isem-pm may be used to add internal knowledge from
other Functional Blocks of the ENI System that is relevant to the processing of any ingested policy. For
example, such knowledge could include the current context and situation, as well as historical events.

6.3.9.6.3.2 Policy Acknowledgements and Output

Figure 6-31 shows the set of External Reference Points that may be used to send policies to ENI. Four types of Policy
Users (the End-User, an Application, the OSS, and the BSS) shall be able to receive Policies from ENI. In addition,
certain types of Applications may be able to receive knowledge specific to a set of Policies that they want to execute.

0SS- and BSS-like

Functlonallty Applications Orchestrator

-) 3 a

E)
0 S°Sss/f”;7p9| = e = Ebss.em'_po\ Eapp-enl-pql o Eorenipol =g - Eusr-eni-pol
glcies BSS Policies Output Policies Orchestrator Output Policies

/ from Aii Policies \

R

ENI System —

- Semantic Bus

Knowledge Context Cognition Situational Model-Driven
K Management Awareness Management Awareness Engineering

Figure 6-31: Policy Output External Reference Points

8uissasoud

juswadeueln Adljod

./

There are five types of output Policies, plus the ability to export information and knowledge that appliesto policies
from ENI, that are considered in the present document. They are:

1) End-User Palicies. The ENI System shall use the Euse-eni-pol External Reference Point to send Policies to
different End-Users.

2) Application Policies. The ENI System shall use the Exp-eni-pol EXternal Reference Point to send Policies to
applications.

3) OSSPalicies. The ENI System shall use the Eqsseni-pol EXternal Reference Point to send Policies to the OSS.
4) BSSPalicies. The ENI System shall use the Epsseni-po EXternal Reference Point to send Policies to the BSS.

5) Orchestrator Policies. The ENI System shall use the Eq.eni-pol External Reference Point to send Policies to the
Orchestrator.

Related external knowledge and information ingestion for output policies are:

e Application Knowledge. The ENI System shall use the Egp-eni-kno External Reference Point to send knowledge
curated by an ENI System to specific applications. For example, such knowledge could describe particular
semantics that an application needs to enforce when it uses a particular set of Policies.

ETSI

135 ETSI GS ENI 005 V3.1.1 (2023-06)

Related internal knowledge and information for output policies are:

. Application Knowledge. The Internal Reference Point |sem-pm may be used to send policy information and
knowledge to other Functional Blocks of the ENI System that is relevant. For example, such knowledge could
include the current policy used to remedy a problem for future processing in similar situations.

6.3.9.6.3.3 Policy Management Options

There are several aternatives for building a Policy Management Architecture. Thisis because ENI treats different types
of policies, such asintent, imperative, declarative, and utility functions, as instances of acommon Policy. That is, their
content is different, but their object type isthe same. Thisis a powerful abstraction, and enables ENI to have different
policy typesinteract. This clause will consider two such options. Option 1 assumes that the operation of different types
of policiesis supported using the same set of (nested) Functional Blocks. Option 2 assumes that the operation of
different types of policiesis supported using afundamentally different set of (nested) Functional Blocks.

6.3.9.6.34 Option 1: A Single Unified Policy Management Architecture

This option assumes that the same set of (nested) Functional Blocks are used to manage and process different types of
Policies, whether those Policies are internal or external. This may be thought of as a"templatized" architecture; the
same set of high-level Functional Blocks always exist, and may operate differently in response to processing different

policy types.

Figure 6-32 shows a simplified functional architecture of the Policy Management Functional Block. The functional
block diagram shown in Figure 6-32 does not prescribe an implementation. Rather, it describes the high-level
Functional Blocks that are needed to implement the needs of policy-based management in a given administrative
domain. Different implementations may need to add other Functional Blocksto meet their particular operational
requirements. An exemplary implementation is described in [i.1] and [i.11].

- E— E—— EEE S RS B S RS S S RS S S S S S S S S S e e

: i
I Policy Creation Poli I
and Editing oney I
| = Repository :
' I
|
; Policy |
Syntax and Verification |
| Semantics i
| Validation Policy I
| ! ~ | Execution I
| Policy Language [~ ¢
I Translation _/ ' | Policy :
I _*_— " “*|Decisions |
I Polic idati —~
y Validation ._ I :
I (Local Conflict f'ff’ a . g ViR Rolley
1 Resolution) — & | I > Domains
: Policy Broker I
" i I
I Policy Domain ,
l_ — — — S — — o — — — — pe— e — — i — — = — — — — -

Figure 6-32: Option 1: a Templatized Policy Management Functional Architecture

ETSI

136 ETSI GS ENI 005 V3.1.1 (2023-06)

Any combination of textual, graphical, and/or command-line tools may be used to author any type of Policy. The Policy
Management Functional Block (PMFB) may assist in helping the user to author and edit policies. For example, the
PMFB may identify errors, such asincorrect syntax, to the user, before and after the user submits the policy to the ENI
System. An event may be created when the user is finished authoring or editing the policy and submitsit to the ENI
System.

Once acompleted policy isreceived by the ENI System, that policy may be saved in a Policy Repository. A completed
policy shall then be either parsed or compiled. In either case, the parsing or compilation shall first check for correct
syntax and semantics. Any warnings or errors shall be sent back to the user to correct. Operation on a policy with errors
and/or warnings shall not proceed until those errors and/or warnings are fixed.

Once a policy has been successfully parsed or compiled, additional operations may be necessary before it can be
deployed, depending on the type of policy and the type of actions to be performed:

. Policy Language Trandation:

- Sometimes a policy may need to be trandated from one form to another form. The most common caseis
when a policy isinput at a high-level of abstraction and needs to be trandated to a more concrete formin
order to be validated and processed. This shall be done for al intent policies that are input to the ENI
System, since by definition, an intent policy iswritten in arestricted natural language, such asan
external DSL.

. Policy Validation - Local Conflict Resolution:

- Local Conflict Resolution ensures that a new policy shall not conflict with any deployed policies. This
ensures that policy management is always deterministic.

- A policy issaid to conflict with another policy if the actions of a policy cause the behaviour of other
policies to be changed during the same execution scope and time. For example, if a Policy Foo sets an
attribute bar to 1, and a subsequent policy sets the same attribute bar to a different value, that isa
conflict. This subject istreated more thoroughly in [8].

- The essential part of policy conflict resolution is determining the execution scope and time. For the
purposes of the present document, the execution scope is defined as the set of variables, object,
functions, and data structures that a Policy has accessto at a particular time during its lifetime. Execution
time is defined as the time during which a Policy is deployed, enabled, and active.

For Imperative Policies, execution time and scope are conceptually straightforward. Given a set of
Policies Py - Py:

Execution scope: the time when all Policies are active and enabled, their event clauses all evaluate to
TRUE, their condition clauses all evaluation to TRUE, but two or more of their action
clauses cause conflicting actions.

Executiontime: the time between the start of the first Policy to execute (e.g. P1) and the end of the last
Policy to finish execution (e.g. Py).

- Local conflict resolution ensures that no actionsin a set of policies conflict when they are executed.
. Policy Language Validation - Global Conflict Resolution:

- Global Conflict Resolution ensures that policies that execute in different Policy Domains shall not
conflict with each other.

- Policy Domains communicate with other Policy Domains through a special mechanism called a Policy
Broker. This entity facilitates communication between Policy Domains that are collaborators, consumers,
and producers:

" Two Policy Domains collaborate when the actions taken by both Policy Domains affect the same
set of entities in a non-conflicting manner.

= A Policy Domain Cisaconsumer of aPolicy Domain P when one or more policies of Policy
Domain P are used by Policy Domain C as part of its execution. Similarly, in this example, Policy
Domain P is said to be a producer for Policy Domain C.

ETSI

137 ETSI GS ENI 005 V3.1.1 (2023-06)

. Policy Decision Entity:

- A Policy Decision Entity is a managed entity in a Policy Management Domain that is responsible for
deciding which, if any, policies shall be executed in response to a request by another managed entity for
a set of governance actions.

. Policy Execution Entity:

- A Policy Execution Entity is a managed entity in a Policy Management Domain that is responsible for
managing the execution of a set of Policies.

. Policy Verification Entity:

- A Poalicy Verification Entity is a managed entity in a Policy Management Domain that is responsible for
verifying that a Policy that was executed by a Policy Execution Entity operated as expected.

. Policy Broker:
- The Policy Broker is responsible for facilitating communication between different Policy Domains.
NOTE: Thissubjectisfor further study in Release 4 of the present document (see clause 9).

Figure 6-32 shows that each Policy Domain may provide its own closed control loop. This may start at any one of the
nested Functional Blocks (e.g. the Syntax and Semantics Validation) and return to that nest Functional Block viathe
Event Bus. In addition, the combination of Policy Decision Entity, Policy Execution Entity, and Policy Verification
Entity provide feedback for any decisions made; this feedback may be logged by the Policy Domain. Once logged, this
feedback may be published to other Policy Domainsto aid their decision-making.

6.3.9.6.3.5 Option 2: Differentiating between Intent and Other Types of Policies

This option assumes that a different set of (nested) Functional Blocks are used to manage and process each type of
Policy, whether those Policies are internal or external.

Figure 6-33 illustrates the important Functional Blocks that are particular to processing Intent Policies.

ETSI

138 ETSI GS ENI 005 V3.1.1 (2023-06)

Intent User i
Knowledge Repositories
Context & Situation Awareness
Resolve and

. Start Over
Policy Management
Verification Engine
Policy Management
Verify Rewrite Decision Engine

Resolve and

Start Over with User N
Policy Management
?
Execution Engine Problem?

Change OK

Intent
Intent Compiler
Conflict Removal

Intent Abstraction

Intent Conflict Removal
Abstraction Translator

Figure 6-33: Option 2: a Dedicated Processing of Intent Policies

Since Intent Policies are submitted by External Entities, then they are subject to validation by an ENI System. Thisis
particularly important in the case of Intent Policies, since the input policy text may have syntactic or semantic errors,
and also be ambiguousin nature. If the Intent Parser detects such an error, then it will stop processing and return the
error to the user.

The first important difference between processing Intent Policies and other types of Policiesisthat Intent Policies are
written in arestricted natural language, such as an external DSL, and then submitted to the ENI System. Hence, Intent
Policies shall need a translation mechanism to change the submitted Intent Policy into aform that the ENI Systemiis
able to understand. This intent translation function is performed by the Intent Parser. It uses knowledge from various
Knowledge Repositories (e.g. the ENI Information and Data Models, along with knowledge that is specific to working
with Intent Policies, referred to as the Intent Knowledge) to trandate the input Intent Policy to aform that can be
understood by the ENI System. The Intent Parser contains both syntactical (i.e. lexical analysis, token generation, and
syntactic analysis) and semantic (e.g. type checking, binding of objects with references, and semantic annotation to
guide further analysis) analysis.

The second important difference between processing Intent Policies and other types of Policiesisthat Intent Policies,
once tranglated, may need to be rewritten. For example, aword or phrase may be substituted to better match objectsin
the information or data model. If the rewriting changes the Intent Policy in any significant way, then the Intent
Processing Functional Block should first verify with the Intent User (i.e. an End-User, Application, OSS, or BSS) that
the rewrite of the intent policy is acceptable to the Intent User. If it is not, then the processing stops for that Intent
Policy until anew Intent Policy is submitted by that Intent User. Otherwise, the Intent Policy is then checked for
conflicts with other existing Intent Policies at that particular level of abstraction. For example, multiple Intent Policies
that involve End-Users may be checked for conflicts, while Intent Policies that involve specific devices may not be
checked for conflicts at thistime. If aconflict is detected, then the Intent User is notified of the problem, and processing
of this Intent Policy is stopped until the Intent User submits a new policy. Otherwise, processing continues.

The third important difference between processing Intent Policies and other types of Policiesisthat Intent Policies may
need to be trandated to a different level of abstraction. For example, an Intent Policy that identifies a specific End-User
may need to be trandated to a different form, such as arange of 1P or MAC addresses, for further processing. One or
more such abstraction translations are performed, as required. Each such abstraction translation may require a repeat of
one of more of the previous steps.

ETSI

139 ETSI GS ENI 005 V3.1.1 (2023-06)

A necessary consequence of the above processing is that, for each abstraction trandation, conflicts shall be checked for
that level of abstraction. Once all abstraction conflicts are resolved, then the final Intent Policy is compiled to aform
that can be sent to the Policy Management Execution Functional Block. Thisis where additional checks (e.g. conflicts
between the Intent Policy and other Policies that are not | ntent-based) are performed.

6.3.9.6.4 Policy Management Federation

NOTE: Thisisfor further study in Release 4 (see clause 9).

6.3.9.6.5 Constructing, Deploying, and Activating Policies

ENI Policies should be constructed using model-driven techniques. A model of a system is a description or specification
of that system and its environment for some certain purpose. Model-driven is a methodology for using models to direct
the understanding, design, construction, deployment, operation, maintenance and modification of software systems.

Figure 6-34 shows a functional block diagram of model-driven engineering for constructing and deploying policies
[1.38]. Inthisfigure, the numbered steps are explained as follows:

. Step 1 annotates the information model with tag-value pairs, a UML extension to the meta-attributes of a UML
model; thisis used to add information for tools to manipulate the model.

. Step 2 generates one or more DSL s that are used to describe the object model(s) created from the information
model. This enables these models to be shared across different tools and programming languages to enable a
consistent and coherent view of the information to be accessible. Multiple DSLs, along with associated parsers
and editors, may be generated from identified and tagged subsets of an information model. This enables
different object models to be defined that correspond to the disparate aspects of the managed.

. Step 3 generates a"policy DSL" to model the behaviour of the system being managed. This ensures that
behaviours defined by policies are supported in and consistent with the information model.

. Step 4 generates one or more ontologies that can be used to provide automated reasoning capabilities for the
set of produced policies. Alternatively, existing ontologies may ne matched to the needs of the above DSLs.
However, ontology matching is a complex subject, and is for further study in afuture Release.

. Step 5 analyses the produced policies. Thisincludes syntactic and semantic checking and conflict resolution.
Reasoning is used to help resolve any conflicts found. In addition, reasoning is used to transform a policy to a
different form in the Policy Continuum (see clause 6.3.9.6.2). This can aso be used to transform a policy of
one type (e.g. intent) to a policy of another type.

ETSI

140 ETSI GS ENI 005 V3.1.1 (2023-06)

<D

Information Model (Tagged)

y Generated y
Creates Step 2
aal— tructural DSL

Parser / Editor

Generated
Creates @ -

Object [@—] Policy DSL
Model Parser / Editor

Modifies

New / Modified
Policies Generated

Generpted -
L System Ontology

A

Model Checkin QT Reasoning
4

Syntactic / Semantic Policy Analyser
Checking

i s

Policy Policy Conflict
Transformation [P Prevention

)

Transformed Policies Reasoning

Events
§ -

Policy Deployment and Enforcement

Actions / Configurations

A J

Managed System

Figure 6-34: Model-Driven Engineering using Policies

Once an ENI Policy has been analyses, it may be deployed, activated, and enforced. Activation enables the policy to be
used in decision-making. Metadata contained in the policy may constrain the use of a policy (e.g. between a particular
set of start and end times). Enforcement may be done by arange of different mechanisms, from simple assertions
embedded in the policy to dynamic reasoning. Policy execution is used to control state transitions, which represent the
behaviour of the system being managed.

6.3.9.6.6 Managing Policies

Figure 6-35, [4], [i.1] and [i.3] show a simplified functional block diagram of the FOCALE architecture. Thisisa
cognitive and adaptive set of closed control loops (see ETSI GR ENI 017 [i.36] that uses policies to direct the
processing of adaptive control loops that are model-driven.

ETSI

141 ETSI GS ENI 005 V3.1.1 (2023-06)

Context Manager _——— Policy Manager

Policies control application of intelligence

Autonomic Manager
Control Control Control
y
. Control
Managed v . Model-Based | Analyse Data ~ Determine Current State =
Resource i Translation i and Events " Actual State Desired State?
3 . A
Ontological Reasoning and
Comparison Learning Define New Device
Configuration(s) a
Control

Figure 6-35: Simplified Functional Block Diagram of the FOCALE Architecture

The Model-Based Trandation (MBT) layer is similar in function to the Data Ingestion and Normalization Functional
Blocks of the ENI Architecture, except that the MBT is purely model-driven. Normalized data and events are then
analysed, and the current state of the system being managed is determined. Thisisthen matched to the desired state. If
the two match, the upper monitoring loop is taken, since no action is needed, and the loop shall begin again where it
started. If they do not match, then the lower reconfiguration loop is taken. The reconfiguration loop may direct the
control loop to start at anew (logical) part of the system; it may also instantiate a completely new control loop.

The Policy Manager, in conjunction with the Autonomic Manager, controls the behaviour of FOCALE. Context-aware
Policies are used to capture business goals and constraints, as well as convert intent policies from various constituents to
a common normalized form. The Autonomic Manager then takes these policies, along with additional information, then
trandates these directives into a form that controls the composition and function of each of the Functional Blocks
shown in Figure 6-35.

The models and ontologies are continuously updated to reflect the changing state of the system being managed and its
environment. This motivates the need for active repositories (see clause 6.3.4.5). Knowledge processing (see
clauses 6.3.4.4, 6.3.4.6 and 6.3.4.7) is thus continually performed.

Policies are thus managed throughout the execution of the control loops.

ENI Policies shall be continuously monitored and updated throughout the lifecycle of the ENI System. This should
include, but is not limited to:

. continuously monitoring the working set of policies for correct execution;

. continuously monitoring the working set of policies for possible conflicts;

. continuously look to improve the accuracy of its active knowledge repositories;

. support goal-orientated tasks (i.e. enable the system to focus on dynamic procedures, rather than static,

pre-defined tasks) to reflect the changing prioritization of user needs, business goals, and environmental
conditions.

6.3.9.6.7 Deactivating and Removing Policies

ENI Policies should be deactivated when they are no longer applicable to the current situation. One approach isto scan
the current set of states in the state machine(s) that are being used by the ENI System. As previously mentioned, a
policy isrelated to a state transition. Therefore, if no states exist that could be reached by the policy, then it is not
currently applicable.

ETSI

142 ETSI GS ENI 005 V3.1.1 (2023-06)

ENI Policiesthat are deactivated may still be kept in local or remote storage for later use. In general, an ENI Policy
should only be removed when it is known that it cannot be applicable to the current tasks at home, or that it is not
operating correctly. Care should be taken to ensure that the plan(s) generated by the control loops (see clause 6.3.4.7
and ETSI GR ENI 017 [i.36]) will not require the use of a policy. If that istrue, then the policy in question may safely
be removed. However, it is still much simpler to deactivate a policy, as this keeps the policy, and all of the associated
work required for its instantiation, available.

6.3.10 Denormalization Functional Block

6.3.10.1 Introduction

The Data Denormalization Functional Block receives processed data from the ENI System. These data and information
arein one or more ENI internal formats. The Data Denormalization Functional Block then trand ates these data and
information into aform that the Assisted System (and/or its Designated Entity) may understand.

These characteristics give rise to the following reguirements:

. ENI shall provide the ahility to transform recommendations and commands into a form that the Assisted
System (and/or its Designated Entity) may understand.

. ENI shall use a set of models, including data types and data structures, to perform the transformation into
native format(s) used by the Assisted System (and/or its Designated Entity).

. Data Denormalization may be realized as a Functional Block that is separate from the Output Generation
Functional Block. This adheres to the Single Responsibility Principle[i.9], and enables a more scalable and
robust system to be designed and built.

6.3.10.2 Motivation

Each ENI Functional Block may use different data structures and representation of information that is specific to its
own processing. Such data structures and representation may be different in nature to the data structures and
representation used by other ENI Functional Blocks. In all cases, these data structures and representations are internal to
ENI for efficiency of internal understanding and operation. Therefore, each ENI Functional Block may use different
programming languages and protocols, which means that the same data may be represented in completely different
formats. For example, the same data about a customer may be processed using relational databases and directories. Itis
important to consolidate all changes to information and data needed by the Assisted System (and/or its Designated
Entity); this ensures that conflicting commands and recommendations are not sent to the Assisted System (and/or its
Designated Entity).

In this example, recognizing that the object is a Customer, even though the data is different, may be done by comparing
the ingested data with expected data from the model. For example, the Customer object in an information model has a
set of mandatory (and optional) attributes, as well as relationships to other objects. It may also have metadata that
disambiguates this instance of a Customer from all other instances of a Customer. The Denormalization process
arranges and formats the data and information to be output so that it may be more easily and efficiently translated into a
form that is understandable by the Assisted System (and/or its Designated Entity).

6.3.10.3 Function of the Denormalization Functional Block

As stated previoudly, the ENI System may use one or more internal formats to represent, analyse, and process data and
information. The ENI System shall not expect the Assisted System (and/or its Designated Entity) to be able to
understand the internal format(s) of ENI. Data Denormalization trans ates information and datain one or more internal
formats used by the ENI System to a standardized form; this facilitates the generation of recommendations and
commands in aform that the Assisted System (and/or its Designated Entity) is able to understand.

ETSI

143 ETSI GS ENI 005 V3.1.1 (2023-06)

A normalized form is critical for the operation of other ENI Functional Blocks. A normalized form means that every
ENI Functional Block may be designed using knowledge about the characteristics and behaviour of pertinent data and
objects. Otherwise, each ENI Functional Block would have to accommodate data that could be represented in different
formats using different data structures. Similarly, adenormalized form is critical for the Assisted System (and/or its
Designated Entity) to be able to understand recommendations and commands given to it by ENI without having to be
modified. Thislack of modification isimportant to facilitate early adoption of ENI. The Assisted System (and/or its
Designated Entity) need not be able to understand recommendations and commands in the internal format(s) of the ENI
System. Therefore, adenormalized form is critical for enabling the ENI System to produce outputsin aform that the
Assisted System (and/or its Designated Entity are able to understand without any additional assistance. The purpose of
the Denormalization Functional Block isto decouple the internal format(s) used by the ENI System from the native
format(s) used by the Assisted System (and/or its Designated Entity); this enables both Systems to change
independently without affecting the operation of the other.

6.3.10.4 Operation of the Denormalization Functional Block

Data and information Denormalization translate data and information from one or more internal formsto asingle
standardized form. The denormalization process includes the use of pre-defined data structures, where datais converted
to astandard format that uses a standard encoding. In the case of ENI, thisisfacilitated using its set of models. In ENI,
model s represent objects as templates; thisincludes defining a set of mandatory and optional attributes, operations,
relationships, and other standard features. M etadata may be used to help describe and/or prescribe this process.

In order to do this, accumulated knowledge from other ENI Functional Blocks (included predefined model information)
shall be made available to the Denormalization Functional Block, as shown in Figure 6-36. Thisis essentially the
inverse of the example provided in clause 6.3.3.4. The functional block diagram shown in Figure 6-36 does not
prescribe an implementation. Rather, it describes the high-level Functional Blocks that are needed to implement the
needs of Denormalization. Different implementations may need to add other Functional Blocks to meet their particular
operational requirements.

Data to
External Sources

I

Denormalisation | Output Generation
Functional Block "| Functional Block

r 3 A
Modelled Modelled

Data to be i
Information Information

Denormalised

Knowledge Management
Functional Block

A

. New Facts, Hypotheses, and Inferences;
Semantic Bus Information to Model Translation

S A {k 3

' $ } ,

Context-Aware Cognition Situational Model Driven
Management Framework Awareness Engmeermg
Functional Block Functional Block Functional Block Functional Block

Figure 6-36: Data Denormalization Operation

ETSI

144 ETSI GS ENI 005 V3.1.1 (2023-06)

Applicable data and information are not sent directly to the Denormalization Functional Block. Rather, they are first
filtered by the Knowledge Management Functional Block, which also supplies modelled data and information to aid the
Denormalization Functional Block in denormalizing the data and information that it receives. After the denormalization
process is complete, it sendsits result to the Output Generation Functional Block.

6.3.11 Output Generation Functional Block

6.3.11.1 Introduction

This clause describes the processes associated with generating recommendations and commands that are specific to the
format(s) of a particular Assisted System (and/or its Designated Entity). Recommendations and commands are received
from the Data Denormalization Functional Block. The Output Generation Functional Block then trand ates the data into
aspecific format (or set of formats) required by the Assisted System (and/or its Designated Entity). Thisis essentially
the inverse of the example provided in clause 6.3.2.4.

These characteristics give rise to the following requirements:

. ENI shall provide the ability to output recommendations and commands in one or more formats specified by
the Assisted System (and/or its Designated Entity). This may be efficiently implemented using a multi-agent
architecture.

. ENI shall provide the ability to output recommendations and commands on-demand as well asin batch, push,
or other agreed upon communication modes.

. Output Generation may be realized as a Functional Block that is separate from the Data Denormalization
Functional Block. This adheres to the Single Responsibility Principle [i.9], and enables a more scalable and
robust system to be designed and built.

6.3.11.2 Motivation

The motivation for this Functional Block is similar to that of the Denormalization Functional Block (see

clause 6.3.10.2). It isimportant that the Assisted System (and/or its Designated Entity) are decoupled from the ENI
System; this enables each to change independent of the other. In addition, it isimportant that the Assisted System
(and/or its Designated Entity) need not have to change in order to benefit from interacting with the ENI System. Hence,
the function of the Output Generation Functional Block is to translate recommendations and commands from the ENI
System to the form(s) specified by the Assisted System (and/or its Designated Entity).

6.3.11.3 Function of the Output Generation Functional Block

As stated previoudly, the ENI System may use one or more internal formats to represent, analyse, and process data and
information. The ENI System shall not expect the Assisted System (and/or its Designated Entity) to be able to
understand the internal format(s) of ENI. Data Denormalization trandlates information and data in one or more internal
formats used by the ENI System to a standardized form; this facilitates the generation of recommendations and
commandsin aform that the Assisted System (and/or its Designated Entity) is able to understand.

6.3.11.4 Operation of the Output Generation Functional Block

6.3.11.4.1 Introduction

Figure 6-37 shows one possible functional block diagram of an agent-based system for generating outputs. The
functional block diagram shown in Figure 6-37 does not prescribe an implementation. Rather, it describes the high-level
Functional Blocks that are needed to implement the needs of output generation. Different implementations may need to
add other Functional Blocksto meet their particular operational requirements.

ETSI

145 ETSI GS ENI 005 V3.1.1 (2023-06)

b |
| |
1 T R e e e e e e e e e et Gt 11
1y Agent 11
. | 11
Assisted | : i
System
y it API 1 Model- 11
(orits A L, A Management Recommendations | I 1
Desi Broker based
emgnated ¥ Ty ? i s J Adapter and/or Commands | 1 |
¢ Translation
Entity) (Y 11
I 11
| Gl iy ol S5 e e el o 5 gy e Coimcmypo o | 11
| Denormalised Data |
| EERSER TIPS MR S RSP | | i e e TR O NS SR P |
Denormalisation |
Modelled Functional Block
Information
Modelled Data to be
Information Denormalised

Knowledge Management
Functional Block

Figure 6-37: Output Generation Operation

The Output Generation Functional Block of the ENI System communicates with the Assisted System (and/or its
Designated Entity). This communication may use an APl Broker to translate between the APIs of the ENI System and
the APIs of the Assisted System (and/or its Designated Entity). The Output Generation Functional Block is shown as an
agent-based architecture. This architecture hides the native interfaces of both Assisted System (and/or its Designated
Entity) as well as each managed entity of the Assisted System that is being managed by the ENI System.

In recommendation mode, communication from the Output Generation Functional Block shall go to the Assisted
System (and/or its Designated Entity); it shall not be sent to managed entities of the Assisted System.

In management mode, communication from the Output Generation Functional Block shall go to the Assisted System
(and/or its Designated Entity); it may a so be sent to managed entities of the Assisted System, with the approval of the
Assisted System (and/or its Designated Entity).

The model-based trandlation shown in the Agent is separate from the MDE Functional Block. The purpose of the
agent's model -based translation is to use modelled information to ensure that the recommendations and commands are
in aformat that can be understood by the Assisted System (and/or its Designated Entity).

The advantages of thistype of architecture include:

. Flexibility: the implementation may change (e.g. agent functionality may change) without affecting the API
(built from more abstract levels) of either the ENI System or the Assisted System.

. Extensibility: new agents may be added or removed to suit the needs of the application.

o Manageability: instead of having to manage individual agents, the management focusis abstracted to
managing roles.

6.3.11.4.2 Treating Output Generation as the Inverse of Normalization

NOTE: Thisisfor further study in Release 4 (see clause 9).

ETSI

146 ETSI GS ENI 005 V3.1.1 (2023-06)

6.4 API Broker

6.4.1 Introduction

The API Broker shall be implemented as a trusted entity. Only trusted entities can see, let alone interact with, the API
Broker. The API Broker shall be a mandatory component, which implies that the APl Broker shall be compliant with all
ENI External Reference Points.

The API Broker has four main functions:
1) serveasan API gateway (i.e. an entity that can translate between different APIs);
2) provide programmable tools that enable the developer to design and realize APIsfor the ENI API Broker;

3) provide the developer with the ability to change the mode of operation of the ENI API Broker
(i.e. development, runtime, and test modes);

4) provide APl management.

Management of APIs shall include, but not be limited to, the following functions: authentication, authorization,
accounting, auditing, and related functionality.

The design of the API Broker should facilitate external analysis, including but not limited to sending API statistics to an
analytics module (e.g. to understand API performance) as well asto an ANN (e.g. to use different algorithms to assess
if the API Broker is being attacked; examples include malicious URL detection and other types of intrusion detection).

6.4.2 Motivation

The motivation for using an API Broker isthreefold:

. The use of an API Broker enables the continuing development of the ENI System architecture to proceed
independently of any specific requirements of interacting with externa entities.

e Theuseof an APl Broker provides a more scalable and extensible solution, asit facilitates the use of generic
(e.g. RESTful) technologies as well as custom plug-ins to meet the needs of communication with different
external entities.

. The use of an API Broker enables advanced solutions, such as APl composition, to be used.

In addition, it isimportant that the Assisted System (and/or its Designated Entity) need not have to change in order to
benefit from interacting with the ENI System. An APl Broker provides the best solution, based on accepted industry
practice, for enabling communication with external entities independent of their structure and function.

6.4.3 Function of the API Broker
The function of the API Broker isto interact with external entities using APIs. More specifically, the APl Broker shall:

. accept incoming APIs transmitted through an ENI External Reference Point and route them to the appropriate
ENI Functional Block(s);

. accept outgoing ENI APIs transmitted through an ENI External Reference Point and route them to the
appropriate external entity;

. convert protocols used by external entities to protocols used by the ENI System, and vice-versg;
. manage different versions of the same API.

NOTE: An API Broker can also be used for API composition. Thisitem is for further study in Release 4 (see
clause 9).

APIsthat are received from external entities by the API Broker may include metadata that aids the API Broker in
properly routing the API.

ETSI

147 ETSI GS ENI 005 V3.1.1 (2023-06)

ENI APIsthat are sent to external entities by the API Broker should include metadata that aids the API Broker in
properly routing the API.

The API Broker shall use the following External Reference Pointsto send ENI APIsto, and receive APIs from, an
external entity:

Eeni-api-in defines API's and associated information and/or metadata sent from an external entity to the ENI
System.

Eeni-api-our defines ENI API's and associated information and/or metadata sent from the ENI System to an
external entity.

Eeni-api-dev defines ENI APIs and associated information and/or metadata for a developer to create and manage
the Functional Blocks that make up the ENI API Broker.

Eeni-api-run defines ENI APIs and associated information and/or metadata sent from the ENI System to an
externa entity.

Eeni-api-dmg CONtai NS generic operational, administrative, management, and performance data and associated
information and/or metadata used by developers to manage the ENI Broker.

Eeni-api-emg CONtai NS generic operational, administrative, management, and performance data and associated
information and/or metadata used by an externa entity to manage the ENI Broker. Such information and data
may be a subset of the information and data contained in the Eeni-ai-amg Reference Point.

The API Broker shall interact with al 22 ENI External Reference Points to transmit received APIsto, and send ENI
APIsfrom, ENI Functional Blocks. See clause 7.3 for a description of each of the External Reference Points.

See clause 7.5 for adescription of the six APIsused in the API Broker.

6.4.4

Operation of the API Broker

The purpose of the ENI API Broker is to function as a common intermediary between external entities and an ENI
System that communicate using APIs. Thisis shown in Figure 6-38.

/ ENI API Broker

Format;

Broker
Mediation Format,
Layer

API
Gateway

_

A 4

ENI System

Figure 6-38: Function of the ENI API Broker

The API Broker consists of two distinct parts, the APl Gateway and the Broker Mediation Layer. Thisis an application
of the Fagade pattern [i.5]. The Fagade pattern creates an object that serves as a front-facing interface masking more
complex interfaces and protocols that are used by other parts of the system. This pattern thus creates a consistent view
from the perspective of the API consumer. An API Facade provides future compatibility, since it insulates clients from
any changes to the functionality of the underlying system that the client is accessing. From the APl consumer
perspective, nothing will have changed.

ETSI

148 ETSI GS ENI 005 V3.1.1 (2023-06)

The API Gateway isthe entry point for external entities to request API-based services of an ENI System (and similarly,
the exit point for an ENI System to request ENI API-based services of an external system). As such, the APl Gateway is
responsible for enabling each client (including an ENI System) to see and use only those services that they need. The
API Gateway may provide ageneric or atailored API to aclient to route requests, transform protocols, and implement
shared logic like validation, authentication and rate-limiting. Tailored responses are supplied by plug-ins; this enables
different responses for the same task to suit client-specific needs.

The Broker Mediation Layer is responsible for integrating client API requests with the underlying system

(e.g. integrating APl requests from the Assisted System to an ENI System, or vice-versq). It transforms API requests
into formats acceptable for different systems (e.g. XML, JSON, YANG), delivers the request, and then processes and
transforms the response of the underlying system into response and data formats the API has promised to return to the
API consumers. This layer can perform tasks ranging from simple data manipulations, such as converting a response
from XML to JSON, to much more complex operations where an application-specific client is required to run in order
to connect to existing systems.

6.5 Communication Between Functional Blocks

6.5.1 Introduction

ENI uses a set of patterns to communicate between its own internal Functional Blocks as well as with external systems.
These patterns are documented in the following clauses.

Enterprise integration is the task of making separate applications work together to produce a unified set of functionality.
Some applications may be custom devel oped in-house while others are bought from third-party vendors. The
applications probably run on multiple computers, which may represent multiple platforms, and may be geographically
dispersed. Some of the applications may be run outside of the enterprise by business partners or customers. Some
applications may need to be integrated even though they were not designed for integration and cannot be changed.
These issues and others like them are what make application integration difficult. This clause will explore the options
available for application integration.

6.5.2 Common Communication Requirements

Communication patterns used within ENI shall meet the following criteria:

. An ENI System shall use a messaging system for communication and interaction with other ENI Functional
Blocks.

e AnENI System should use a Semantic Bus to implement its messaging system.

o Each ENI Functional Block shall be loosely coupled, so that each ENI Functional Block can evolve
independently of other ENI Functional Blocks.

. Each ENI Functional Block should use the Semantic Bus for communication and interaction with other ENI
Functional Blocks.

. ENI Externa and Internal Functional Blocks should exchange datain atimely manner.
. ENI External and Internal Functional Blocks should enable asynchronous processing.
. Each ENI Internal Functional Block shall use a common data format.

. Each ENI Interna Functional Block shall avoid duplicating the functionality and behaviour of another ENI
Internal Functional Block.

The components of aloosely coupled systems are independent, enabling changes in one module to be performed
without affecting other modules. For example, the code in one component should not be reused by other components.

ETSI

149 ETSI GS ENI 005 V3.1.1 (2023-06)

Timeliness of exchanging data isimportant and should be minimized. Otherwise, the data and information used in
making a decision may becomeirrelevant. All data exchange between Internal Functional Blocks should use either a
messaging bus or another mechanism to populate information and data as quickly as possible, such as a shared database.
This enables the appropriate ENI Internal Functional Blocks to decide if the data and information is useful in their own
contexts. Similarly, different ENI Functional Blocks should be able to complete their tasks asynchronously, unless there
are constraints that demand synchronous task compl etion.

The ENI Internal Functional Blocks shall use normalized input data and information to avoid complex transformation
processing. For input data and information coming from external sources, the normalized datais created by the Data
Normalization Functional Block and sent using the I norm-sem I Nternal Reference Point (see clause 7.7.2); otherwise, such
data and information is exchanged using an appropriate Internal Reference Point that connects the Internal Functional
Block to the Semantic Bus (see clauses 7.7.3 through 7.7.8). For output data and information, if the output datais to be
sent to an external source, then the Internal Reference Point | sem-denorm (Se€ clause 7.7.9) is used to send the normalized
data to the Denormalization Functional Block, where it will be converted to an appropriate form for external
consumption); otherwise, the datais exchanged using an appropriate Internal Reference Point that connects the Internal
Functional Block to the Semantic Bus (see clauses 7.7.3 through 7.7.8).

6.5.3 Recommended Communication Patterns to be Used Within ENI

6.5.3.1 Introduction

Communication between ENI Functional Blocks should use appropriate ENI Reference Points and the Semantic Bus
whenever possible. Communication patterns follow standard enterprise messaging exchange patterns (e.g. [i.34]).

A messaging exchange pattern is a software design pattern that describes how two different parts of a messaging system
connect and communicate with each other. For example, the Request-Reply design pattern enables a sender to request
information (viaa message) and ensures that the receiver replies to that message. As another example, the Pipes and
Filters design pattern connects a set of functions (the filters) to a stream of data (using pipes).

6.5.3.2 Remote Procedure Calls and Remote Method Invocations

Remote Procedure Call (RPC) and Remote Method Invocation (RMI) are two mechanisms that allow the user to invoke
or call processes that will run on a different component from the one that is currently being used. The main differenceis
that RPC is an imperative approach that calls specific functions, while RMI uses areference to a method of an object
that is being invoked.

Both approaches isolate the sender from the receiver. However, both approaches have two disadvantages. First, both
impose a potentialy brittle point-to-point communication mechanism between the sender and the receiver. Second, such
mechanisms tend to be vendor-specific and not interoperable. As such, this type of mechanism need not be used as a
general mechanism.

Therefore, these and similar mechanisms should only be used for exclusive (i.e. point-to-point) communication between
two components with well-defined interfaces whose semantics are known to and understood by each component.

6.5.3.3 Batch File Exchange

Files are an efficient means of transferring data. It provides physical decoupling between different system components,
and may be stored for later use. However, files themselves are rarely efficient, especially if only changesin previous
data are of interest. More importantly, if data formats change, then data integrity problems are caused.

Therefore, batch file exchange should be restricted to content whose data format do not change, and the content should
be highly cohesive (i.e. al content should be related to each other). For example, a data model update could use this
approach. However, if there are only small updates, then other approaches, such as federated learning, are both more
secure and more efficient.

6.5.3.4 Shared Database

The motivation for using a shared database is to eliminate unnecessary data duplication and replication. It takes
advantage of inherent tools of a database to notify clients of content changes. Databases can be distributed and scaled
both horizontally and vertically. The key deficiency isthat this system exchanges data, as opposed to responding to
changesin goals to be obtained.

ETSI

150 ETSI GS ENI 005 V3.1.1 (2023-06)

6.5.3.5 Messaging

6.5.3.5.1 Introduction

In general, the preferred communication mechanism for communication between ENI Functional Blocks should be to
use a messaging system. Thisis because such systems provide asynchronous and reliable data transfer without requiring
knowledge of specific publishers and subscribers. A messaging system allows loosely coupled communication to serve
as an intermediate layer between producers and consumers. The ENI Semantic Bus (see clause 6.3.4.4.4) issimilar in
functionality to the Semantic Service Bus described in [i.30], but has additional functionality. This enables the ENI
Semantic Bus to use an event-driven architecture for registering, discovering, persisting, processing, and routing
messages. A message may contain data, information, metadata, and/or policies.

The ENI Semantic Bus shall provide an automatic semantic transformation of services, via event-driven messages,
which guarantees interoperability between heterogeneous Functional Blocks. This provides loose coupling of the
Functional Blocks of ENI, ensuring that the evolution of each ENI Functional Block isindependent of all other ENI
Functional Blocks.

6.5.3.5.2 Common Requirements of Messaging Systems

All types of messaging systems used by ENI shall support the following semantics.

Publishers: Publishers need not know the identity of a subscriber. Publishers need not know which
subscribers are subscribed to which messages.

Subscribers: Subscribers need not know the identity of a publisher. Subscribers need not know which
publishers created which messages.

Time Decoupling: Publishers and subscribers need not be active at the same time.

Asynchronicity: Subscribers shall be able to retrieve a message any time after it has been published (subject

to persistence characteristics).
Guaranteed Delivery: Each message sent by a publisher shall be guaranteed to be delivered to all subscribers.
No Duplicates: Each message sent by a publisher shall be guaranteed to be delivered to all subscribers.
Content Subscription: An ENI messaging system shall support content-based subscription.
Topic Subscription: An ENI messaging system shall support topic-based subscription.
Semantic Subscription: An ENI messaging system should support semantic-based subscription.
Storage Persistence: Each message should be stored persistently.

NOTE 1: An ENI Messaging System may provide a configurable choice for which types of messages are stored
persistently.

Logging: An ENI messaging system should support the logging of messages.
NOTE 2: Thisfeature facilitates auditing, guaranteed delivery, and message replay.
Request-Reply: An ENI Messaging System may support the request-reply pattern [i.34].

M essage Ordering: An ENI Messaging System may support message ordering (i.e. messages arrive at a
subscriber in the same order as sent by the producer).

The above requirements describe three types of subscriptions. A content-based subscription instructs the messaging
system to deliver messages if the attributes and/or content of those messages matches constraints defined by the
subscriber. Similarly, a topic-based subscription assigns a message to one or more topics by the publisher; the
subscriber then will receive all messages for the topics that they subscribe to.

ETSI

151 ETSI GS ENI 005 V3.1.1 (2023-06)

A semantic-based subscription [i.30] matches messages based on the meaning of the message (in addition to content
and topic). The meaning could be simplistically approximated using metadata, but should be defined using either
ontologies or linguistics. In contrast to classical subscription mechanisms, a semantic-based subscription does not
require publishersto explicitly declare the topic a message belongs to. Instead, the subscriber defines the structure
and/or meaning of the message typesin which it isinterested. This may be done by using a declarative policy, by using
aformal logical expression, or by other similar means. Thisis another reason why it isimportant to have asingle policy
information model that enables different policiesto be represented, so that interoperability between different types of
policies (e.g. imperative, declarative, and intent) is achievable. See clause 6.3.9 for more information.

6.5.3.5.3 Messaging Functionality
Figure 6-39 shows a functional block diagram of a messaging system suitable for ENI, such asthe ENI Semantic Bus.

NOTE: Each of the blocks shown in Figure 6-39 is part of alarger set of patterns. Thisis for further study in the
next release of the present document.

Message Orchestrator

Message Message Message Message Message Message
Endpoint and Payload Channel Router Transformer Endpoint

Figure 6-39: Functional Block Diagram of an ENI Messaging System

A Message Endpoint is the connection from an ENI Functional Block to the ENI Semantic Bus. It may be asimple
component, a gateway, or have more complex functionality, as explained in [i.30].

A message is a special type of datatype that is sent through a message channel. The message has attributes that can be
read by the messaging system to put it in the correct message channel, as well as an optional payload. The attributes and
metadata of the message and payload are read, normalized, and then used to help select the appropriate message
channel. For example, simple semantic differences, such as the name of an attribute (e.g. "employeel D" vs. "ftel D" vs.
"ID_employee", are detected and normalized to the consensual hame expected in the data model. When such changes
are made, metadata is appended to the message specifying the nature of the change and a timestamp of when the change
was made.

A message channel is a construct that messages are written into and subsequently removed from; the removed message
isthen sent to a set of destinations. There are different channel types, such as a publish-subscribe channel and a point-
to-point channel.

A message transformer changes the data format and/or content to conform with a desired output data model. Thisis

similar to the Adaptor pattern of [i.5]; it enables two incompatible interfaces to interoperate by converting the interface
of an object to the interface expected by the client using that object.

6.5.4 Recommended Communication Patterns to be Used Between ENI
and External Systems

NOTE: Thisisfor further study in Release 4 (see clause 9).

6.6 Security Considerations

NOTE: Thisisfor further study in Release 4 (see clause 9).

ETSI

152 ETSI GS ENI 005 V3.1.1 (2023-06)

7 Reference Points

7.1 Introduction

This clause uses the definitions of Reference Points from clause 4.4.6 to define the set of Reference Points used by ENI
for communication between its different components as well as between it and the Assisted System.

ENI only standardizes communications that occur over a Reference Point. This enables ENI External and Internal
Reference Points to differentiate between data, control, management, and other specific types of communication
information. This differentiation is denoted by suffixes for each Reference Point, as follows:

-dat: denotes a data (input-only) interface
-cmd: denotes a management (output-only) interface that sends recommendations and/or commands
-pol: denotes a management bi-directional interface that sends or receives ENI policies

NOTE 1: Policy APIsand interfaces use a separate policy reference point that is separate from other management
concepts (e.g. modelled and contextual data). This enables external Systemsto more easily communicate
policies with ENI.

-ctx: denotes a data only bi-directional interface that sends context- and situation-aware data

NOTE 2: Inadistributed ENI system, context and situational data may need to be exchanged between different ENI
systems and Functional Blocks.

-oth: denotes a data only bi-directional interface that is used to send and receive other types of
application-specific data that is not part of any of these other categories

-kno: denotes a data only bi-directional interface that sends model and other semantic data

EXAMPLE: In adistributed ENI system, thisinterface is used to send model updates between ENI system

Functional Blocks; another example is creating knowledge from data and information as described
in clause 6.3.4.4.3 of the present document.

-api: denotes separate APIs that send or receive information and data between external systems and the
ENI API Broker
7.2 External Reference Point Overview

Figure 7-1 shows an overview of the External Reference Points that provide internally facing External Reference Points
(i.e. External Reference Points that communicate data and information from external entitiesto ENI). Figure 7-1 shows
ENI Reference Points for a single domain only.

ETSI

153 ETSI GS ENI 005 V3.1.1 (2023-06)

0SS- and BSS-like

m Functionality Applications Orchestrator m

—— e e e e —— | — —— —— ——
[API Broker |
Em'-enidal EOSNN*M Eoss-em-pol Ebsnnrpol Epss.entaat E pp-eni-ct E pp-eni-k E pp-eni-oth Eappenrpol Eoc~enndat Eomnidal Eusun»pol
Input Input Input 1 input "1 Input] [Tnput | App Tlnput | Orch User
| InputData b Polic: Policy ¥ ¥ Data Data Data Polic Data ¥ Policy Polic

/ﬁpul Data
ENI System [Wormasiaton]

Semantic Bus -
Knowledge Context Cognition Situational Model-Driven Policy
\ Management Awareness Management Awareness Engineering Managemen
: External Ref Point NOT defined by ENI ’
: External Ref Point defined by ENI
I

Figure 7-1: Overview of the ENI Internal Facing External Reference Points

Figure 7-2 shows an overview of the External Reference Points that provide externally facing External Reference Points
(i.e. External Reference Points that communicate data and information from ENI to external entities.

Knowledge Context Cognition Situational Model-Driven Policy
Management Awareness Management Awareness Engmeenng Management

Semantic Bus

.
——

— —t —— —_—— e —_— e —

Eml-onl«cmd Eon-tnl-cmd Eosumpol Ebsum—cmd Ebn-'m& Eapptm-m E3224n1~kno E-‘W'"\“N" Eagp-onrpol Eon-omvcmd Eomnl-& Eoc»ompo{
[1 L 2R * vAPI Broker Yy v 3 ¥

Output=f= Output === =t= Policy Qutput =e= =t== Policy ~Outputem= == OQutput Output=f= =t=Policy == Output —4= Policy Policy

Infrastructure 0SS- and BSS-like Applications
Functionality

: External Ref\ Point NOT defined by ENI
}— Extornal Point defined by ENI
----- I- ««s Internal Reference Point defined by ENI

Figure 7-2: Overview of the ENI External Facing External Reference Points

Figure 7-2 shows ENI Reference Points for a single domain only.

NOTE: Currently, it isassumed that all applications are trusted. Work on non-trusted applications will start in a
future Release.

Table 7-1a provides brief descriptions of the External Reference Points of an ENI System.

ETSI

154

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 7-1a: ENI External Reference Point Overview (not Including ENI API Broker)

Name Brief Definition Interface Functions
Defines data and information sent from the OSS-like functionality to the |Any data from the OSS-like
Eosseni-dat |ENI System; these data and information may be acknowledged by the |functionality that the ENI System

ENI System.

can use.

Eoss-eni-cmd

Defines recommendations and/or commands sent from ENI to the
OSS-like functionality; these recommendations and commands shall
be acknowledged by the Assisted System.

The type of data sent by the ENI
System depends on the mode
that it is operating in.

Defines Policies and associated information and/or metadata
exchanged between the OSS-like Functionality and the ENI System
that control behaviour (including services and resources) for the

These may be defined by the
operator or the OSS-like

Eoss-eni-pol Assisted System. Policies and information received by the ENI System |Functionality. Inputs may be in a
shall be acknowledged by the ENI System. Similarly, Policies and controlled language or DSL for
information received by the Application shall be acknowledged by the |Intent.

Application.
Defines situation- and/or context-aware data and information Contains input information for the
exchanged between applications and the ENI System. Data and ENI System to determine context

Eapp-enictx |information received by the ENI System may be acknowledged by the |and output context result data
ENI System. Similarly, data and information received by the from the ENI System for
Application may be acknowledged by the Application. Applications.

Defines generic application data exchanged between Applications and . . s

the ENI System, which is neither situation- or context-aware data and g]c;?tr?]'gs g:r:gg?u??gltlﬁgtgsldata
E _ also is not model or knowledge information. Data and information S stemyand eneric data from

app-en-oth - received by the ENI System may be acknowledged by the ENI System. hy ENI'S 9 h b
Similarly, data and information received by the Application may be the ystem that may be
e useful to applications.

acknowledged by the Application.

Defines model and/or knowledge information and acknowledgements

exchanged between Applications and the ENI System. Data and Limited to just DIKW and model

Eapp-eni-kmo |information received by the ENI System may be acknowledged by the |information. Requires additional

ENI System. Similarly, data and information received by the security.
Application may be acknowledged by the Application.
Defines Policies and associated information and/or metadata
exchanged between the BSS-like functionality and the ENI System that |These are defined by the
E , control behaviour (including services and resources) for the Assisted application. Inputs may be in a
app-enpol | gystem. Policies and information received by the ENI System shall be |controlled language or DSL for
acknowledged by the ENI System. Similarly, Policies and information Intent.
received by the Application shall be acknowledged by the Application.
Defines data and information sent by the BSS-like functionality to the |Any data from the BSS-like

Ebss-eni-dat |ENI System; these data and information may be acknowledged by the |functionality that the ENI System
ENI System. can use.

Defines data and acknowledgements sent from the ENI System to the |The type of data sent by the ENI

Ebsseni-cemd |BSS-like functionality; recommendations and commands sent from the |System depends on the mode
ENI System shall be acknowledged by the BSS-like functionality. that it is operating in.

Defines Policies and associated information and/or metadata .

exchanged between the BSS-like functionality and the ENI System that Zggrseic;??r/ Rlid;;'gi?kgy the

Ebcs.cnio control behaviour (including services and resources) for the Assisted functionality. Inouts mav be in a

SenPelIsystem. Policies and information received by the ENI System shall be trolled ly' P éSLf

acknowledged by the ENI System. Similarly, Policies and information fr?tgr:? edlanguage or or

received by the Application shall be acknowledged by the Application. '

Defines Policies and associated information and/or metadata

exchanged between Applications and the ENI System that control

behaviour (including services and resources) for a user (or an agent These may be defined by the user

Eusr-eni-pol acting on behalf of the user). Policies and information received by the |or the operator. Inputs may be in
ENI System shall be acknowledged by the ENI System. Similarly, a controlled language for Intent.
Policies and information received by the Application shall be
acknowledged by the Application.

Defines data and acknowledgements sent from the Orchestrator to the

Eor-eni-dat ENI System; data sent from the Orchestrator may be acknowledged by @Qt/ ?hegeémg;zé r(zré:gﬁsut;ztor
the ENI System.

Defines commands and acknowledgements sent from the ENI System |The type of data sent by the ENI

Eor-eni-cmd to the Orchestrator; recommendations and commands sent from the System depends on the mode

ENI System shall be acknowledged by the Orchestrator.

that it is operating in.

ETSI

155 ETSI GS ENI 005 V3.1.1 (2023-06)
Name Brief Definition Interface Functions

Defines Policies and associated information and/or metadata

exchanged between the Orchestrator and the ENI System that control | These may be defined by the
Eoron behaviour (including services and resources) for the Assisted System. |operator or the OSSOrchestrator.

or-eni-pol Policies and information received by the ENI System shall be Inputs may be in a controlled

acknowledged by the ENI System. Similarly, Policies and information language or DSL for Intent.

received by the Application shall be acknowledged by the Application.

Defines data and acknowledgements sent from the infrastructure to the |Any data from the Orchestrator
Eint-eni-dat ENI System; data sent to the ENI System may be acknowledged by that the ENI System can use (e.g.

the ENI System. log files, telemetry, alarms).

Defines recommendations and/or commands sent from the ENI The type of data sent by the ENI
Eint-eni-cmd System to the infrastructure; recommendations and commands sent System depends on the mode

from the ENI System shall be acknowledged by the Assisted System.

that it is operating in.

Figure 7-3 shows the six External Reference Points dedicated to ENI API Broker interaction.

eni-api-dev ENI API Development
ENI Developer & ks
- i Eeni-api-dme Functional Blocks
Eeni-api-emg Eeni-api-run
External Manager §
E eni-api-in ENI APl Runtime
Assisted System ” F— Functional Blocks
eni-apl-ou

E

ENI APl Broker

/

Figure 7-3: Overview of the ENI External Reference Points for the ENI API Broker

Table 7-1b provides brief descriptions of the External Reference Points of an ENI System. Refer to clause 7.5.1,
Figure 7-4, for a picture of the ENI API Broker External Reference Points.

Table 7-1b: ENI External Reference Point Overview (just the ENI APl Broker)

Name Brief Definition Interface Functions
Define recommendations and/or commands and associated
information and/or metadata sent by an external entity to the ENI Sends input recommendations and
Eorincii System. Data and information received by the ENI Broker may be commands from an external entit
enaprn acknowledged by the ENI Broker. Similarly, data and information to the ENI AP| Brok y
received by an external entity may be acknowledged by that external othe roKer.
entity.
Defines ENI APIs and associated information and/or metadata sent
by the ENI System to an external entity. Data and information Sends output recommendations
Eeni-api-out |received by the ENI Broker may be acknowledged by the ENI Broker. |and commands from the ENI API
Similarly, data and information received by an external entity may be |Broker to an external entity.
acknowledged by that external entity.
Defines ENI APIs and associated information and/or metadata for a
Eonian developer to create and manage the Functional Blocks that make up |Management of an ENI API Broker
enap-devthe ENI AP Broker. Data and information received by the ENI Broker |by a developer.
may be acknowledged by the ENI Broker.
Control the operation of the ENI API Broker. This includes putting the
ENI API Broker into different operational states, selectively enable
and disable different functionality, and for catching exceptions and .
Eeni-api-un |Other runtime errors produced by the ENI API Broker during its g?on;;?l the operation of the ENI API
operation. All operational and control messages generated by the ENI '
API Broker should be sent to the ENI System. The ENI System
should acknowledge all such operational and control messages.
Defines generic operational, administrative, management, and ggrgtiﬁligfra?t?\?eer:g;np:rgtrlr?:ril’an d
performance data and associated information and/or metadata erformance o,lata ang assoc’iate d
Eeni-api-dmg |€Xchanged between developers and the ENI API Broker. Data and P

information received by the ENI APl Broker may be acknowledged by
the ENI API Broker.

information and/or metadata used
by developers to manage the ENI
Broker.

ETSI

156 ETSI GS ENI 005 V3.1.1 (2023-06)

Name Brief Definition Interface Functions
Defines generic operational, administrative, management, and Contains generic operational,
performance data and associated information and/or metadata administrative, management, and

exchanged between developers and the ENI API Broker. Data and performance data and associated

Beni-apiems lintormation received by the ENI API Broker may be acknowledged by |information and/or metadata used
the ENI API Broker. Such information and data may be a subset of by an external entity to manage the
the information and data contained in the Eeni-api-amg Reference Point. |[ENI Broker.

7.3 External Reference Point Definitions

7.3.1 Reference Point Egss-eni-dat

This External Reference Point is used by the OSS-like Functionality of the Assisted System to provide data and
information for the ENI System to ingest and process. This can include data, information, and metadata. Policies, and
policy-related information, shall not be sent over this External Reference Point. The ENI System shall acknowledge the
receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited data. Thisis a uni-
directional External Reference Point, meaning that data for processing shall only flow from the OSS-like Functionality
to the ENI System.

The ENI System shall ingest the data and normalize it. If it is not possible to normalize the data, the ENI System shall
report this to the OSS-like functionality of the Assisted System and ask for further information that defines the format,
as well as expected characteristics and behaviour, of these data. Upon receipt of thisinformation, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.2 Reference Point Egss-eni-cmd

This External Reference Point is used by the ENI System to send recommendations and/or commands, as well as
acknowledgements, to the OSS-like functionality. Policies, and policy-related information, shall not be sent over this
External Reference Point. Recommendations and commands sent from the ENI System shall be acknowledged by the
OSS-like functionality. The ENI System may include metadata to describe how the recommendations and/or commands
are to be used by the OSS-like Functionality. Thisisauni-directional External Reference Point, meaning that
commands and recommendations for processing shall only flow from the ENI System to the OSS-like Functionality.

If any recommendations or commands are ambiguous or are not understood by the OSS-like Functionality, then the
OSS-like Functionality shall report thisto the ENI System and ask for further information that defines the meaning and
usage of the recommendation and/or command. A negotiation of data and information contained in the recommendation
or command may need to occur to arrive at afinal viable communication aternative. In this case, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.3 Reference Point Eoss-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata sent by the
0SS-like Functionality to the ENI System and/or Policies sent by the ENI System to the OSS-like Functionality. Both
the OSS-like Functionality and the ENI System may send any type of Policy that is mutually agreeable. Thisincludes
acknowledgements by the receiving entity in both cases. Both the OSS-like Functionality as well asthe ENI System
may include metadata to describe how the recommendations and/or commands are to be used by the OSS-like
Functionality or the ENI System. Thisis abi-directional External Reference Point, meaning that Policies may be sent to
the ENI System by the OSS-like Functionality and/or Policies may be sent from the ENI System to the OSS-like
Functionality.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point
(i.€. Eosseni-pa), SO that the acknowledgement could be sent back using the appropriate External Reference Point. Thisis
described in[i.33].

The metadata includes policy Type, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. Thisis also described in [i.33].

ETSI

157 ETSI GS ENI 005 V3.1.1 (2023-06)

If any Policy Rule (including any attached metadata) is ambiguous or is not understood by the entity receiving the
Policy Rule, then the receiving entity shall report thisto the entity sending the Policy Rule and ask for further
information that defines the meaning and usage of the Policy Rule. A negotiation of data and information contained in
the recommendation or command may need to occur to arrive at afinal viable communication aternative. In this case,
the ENI System shall record thisin its knowledge base and correct the format and content of future recommendations
and commands sent to this entity to facilitate future communications.

7.3.4 Reference Point Eapp-eni-cix

This External Reference Point is used to define situation- and/or context-aware data and information and
acknowledgements exchanged between applications and the ENI System. Policies, and policy-related information, shall
not be sent over this External Reference Point. The ENI System shall acknowledge the receipt of data and information
that it has requested, and may acknowledge the receipt of unsolicited data. Similarly, the Application shall acknowledge
the receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited data. Thisisa
bi-directional External Reference Point, meaning that context and situation data and information may flow from the ENI
System to the Application or vice-versa.

Input context and situation aware data received by the ENI System shall be ingested and normalized. If it is not possible
to normalize the data, the ENI System shall report this to the Application and ask for further information that defines the
format, as well as expected characteristics and behaviour, of these data. Upon receipt of thisinformation, the ENI
System shall record thisin its knowledge base and correct the format and content of future recommendations and
commands sent to this entity.

The ENI System may include metadata to describe how the recommendations and/or commands are to be used by the
Application. If any recommendations or commands are ambiguous or are not understood by the Application, then the
Application shall report this to the ENI System and ask for further information that defines the meaning and usage of
the recommendation and/or command. A negotiation of data and information contained in the recommendation or
command may need to occur to arrive at afinal viable communication aternative. In this case, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.5 Reference Point Eapp-eni-oth

This External Reference Point is used to define generic application data and acknowledgements exchanged between
applications and the ENI System that is neither situation- or context-aware data and also is not model or knowledge
information. Policies, and policy-related information, shall not be sent over this External Reference Point. The ENI
System shall acknowledge the receipt of data and information that it has requested, and may acknowledge the receipt of
unsolicited data. Similarly, the Application shall acknowledge the receipt of data and information that it has requested,
and may acknowledge the receipt of unsolicited data. Thisisabi-directional External Reference Point, meaning that
other types of data and information may flow from the ENI System to the Application or vice-versa.

Input application data received by the ENI System shall be ingested and normalized. If it is not possible to normalize
the data, the ENI System shall report this to the Application and ask for further information that defines the format, as
well as expected characteristics and behaviour, of these data. Upon receipt of thisinformation, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity.

The ENI System may include metadata to describe how the recommendations and/or commands are to be used by the
Application. If any recommendations or commands are ambiguous or are not understood by the Application, then the
Application shall report thisto the ENI System and ask for further information that defines the meaning and usage of
the recommendation and/or command. A negotiation of data and information contained in the recommendation or
command may need to occur to arrive at afinal viable communication aternative. In this case, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

ETSI

158 ETSI GS ENI 005 V3.1.1 (2023-06)

7.3.6 Reference Point Eapp-eni-kno

This External Reference Point defines model and/or knowledge information and acknowledgements exchanged between
applications and the ENI System. Policies, and policy-related information, shall not be sent over this External Reference
Point. The ENI System shall acknowledge the receipt of data and information that it has requested, and may
acknowledge the receipt of unsolicited data. Similarly, the Application shall acknowledge the receipt of data and
information that it has requested, and may acknowledge the receipt of unsolicited data. Thisis abi-directional External
Reference Point, meaning that knowledge and model information may flow from the ENI System to the Application or
vice-versa. This Reference Point shall contain extra security measures to protect the sensitive nature of these types of
data and information.

NOTE: Thedataand information transmitted over this Reference Point require a special protocol to exchange
their content. That protocol will be defined in Release 3 of the present document (see clause 9).

Input application data received by the ENI System shall be ingested and normalized. If it is not possible to normalize
the data, the ENI System shall report this to the Application and ask for further information that defines the format, as
well as expected characteristics and behaviour, of these data. Upon receipt of thisinformation, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity.

The ENI System may include metadata to describe how the recommendations and/or commands are to be used by the
Application. If any recommendations or commands are ambiguous or are not understood by the Application, then the
Application shall report this to the ENI System and ask for further information that defines the meaning and usage of
the recommendation and/or command. A negotiation of data and information contained in the recommendation or
command may need to occur to arrive at afinal viable communication aternative. In this case, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.7 Reference Point Eapp-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata sent by
Applicationsto the ENI System and/or Policies sent by the ENI System to Applications. Both Applications and the ENI
System may send any type of Policy that is mutually agreeable. This includes acknowledgements by the receiving entity
in both cases. Both Applications as well asthe ENI System may include metadata to describe how the recommendations
and/or commands are to be used by Applications or the ENI System. Thisis a bi-directional External Reference Point,
meaning that Policies may be sent to the ENI System by the Application and/or Policies may be sent from the ENI
System to the Application.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point
(i.e. Eapp-eni-pa), SO that the acknowledgement could be sent back using the appropriate External Reference Point. Thisis
described in[i.33].

The metadata includes policy Type, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. Thisisdescribed in [i.33].

If any Policy Rule (including any attached metadata) is ambiguous or is not understood by the entity receiving the
Policy Rule, then the receiving entity shall report this to the entity sending the Policy Rule and ask for further
information that defines the meaning and usage of the Policy Rule. A negotiation of data and information contained in
the recommendation or command may need to occur to arrive at afinal viable communication alternative. In this case,
the ENI System shall record thisin its knowledge base and correct the format and content of future recommendations
and commands sent to this entity to facilitate future communications.

7.3.8 Reference Point Epss-eni-dat

This External Reference Point is used by the BSS-like functionality to send data to the ENI System. Policies, and
policy-related information, shall not be sent over this External Reference Point. The ENI System shall acknowledge the
receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited data. Thisisa
uni-directional External Reference Point, meaning that data for processing shall only flow from the BSS-like
functionality to the ENI System.

ETSI

159 ETSI GS ENI 005 V3.1.1 (2023-06)

Input application data received by the ENI System shall be ingested and normalized. If it is not possible to normalize
the data, then the ENI System shall report this to the BSS-like functionality and ask for further information that defines
the format, as well as expected characteristics and behaviour, of these data. Upon receipt of thisinformation, the ENI
System shall record thisin its knowledge base and correct the format and content of future recommendations and
commands sent to this entity to facilitate future communications.

7.3.9 Reference Point Epss-eni-cmd

This External Reference Point is used by Defines data and acknowledgements exchanged between the BSS-like
functionality and the ENI System. Policies, and policy-related information, shall not be sent over this External
Reference Point. Recommendations and commands sent from the ENI System shall be acknowledged by the BSS-like
functionality. The ENI System may include metadata to describe how the recommendations and/or commands are to be
used by the BSS-like functionality. Thisis a uni-directional External Reference Point, meaning that commands and
recommendations for processing shall only flow from the ENI System to the BSS-like functionality.

If any recommendations or commands are ambiguous or are not understood by the BSS-like functionality, then the
BSS-like functionality shall report this to the ENI System and ask for further information that defines the meaning and
usage of the recommendation and/or command. A negotiation of data and information contained in the recommendation
or command may need to occur to arrive at afinal viable communication alternative. In this case, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.10 Reference Point Ebss-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata sent by the BSS-
like functionality to the ENI System and/or Policies sent by the ENI System to the BSS-like functionality. Both the
BSS-like functionality and the ENI System may send any type of Policy that is mutually agreeable. Thisincludes
acknowledgements by the receiving entity in both cases. Both the BSS-like functionality as well asthe ENI System may
include metadata to describe how the recommendations and/or commands are to be used by the BSS-like functionality
or the ENI System. Thisis abi-directional External Reference Point, meaning that Policies may be sent to the ENI
System by the BSS-like functionality and/or Policies may be sent from the ENI System to the BSS-like functionality.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point (i.e.
Ebss-eni-pol), SO that the acknowledgement could be sent back using the appropriate External Reference Point. Thisis
described in[i.33].

The metadata includes policy Type, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. Thisisdescribed in [i.33].

If any Policy Rule (including any attached metadata) is ambiguous or is not understood by the entity receiving the
Policy Rule, then the receiving entity shall report this to the entity sending the Policy Rule and ask for further
information that defines the meaning and usage of the Policy Rule. A negotiation of data and information contained in
the recommendation or command may need to occur to arrive at afinal viable communication alternative. In this case,
the ENI System shall record thisin its knowledge base and correct the format and content of future recommendations
and commands sent to this entity to facilitate future communications.

7.3.11 Reference Point Eusr-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata exchanged between
external entities and the ENI System that control behaviour (including services and resources) for a user (or an agent
acting on behalf of the user). The ENI System shall acknowledge the receipt of data and information that it has
requested, and may acknowledge the receipt of unsolicited data. Similarly, the external entity shall acknowledge the
receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited data. Thisisa
bi-directional External Reference Point, meaning that data and Policies may flow from the ENI System to the external
entity or vice-versa.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point
(i.e. Eusr-eni-pal), SO that the acknowledgement could be sent back using the appropriate External Reference Point. Thisis
described in[i.33].

ETSI

160 ETSI GS ENI 005 V3.1.1 (2023-06)

The metadata includes policy Type, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. Thisis described in [i.33].

Input Policies received by the ENI System shall be ingested and parsed. If the parsing produces any errors or warnings,
the ENI System shall report this to the entity that sent the Policy. The ENI System may record the types of errors and/or
warnings detected and later analyse them to determine if the grammar can be made clearer. The ENI System shall not
continue work on the input Policy that did not parse completely until it has been fixed by the external authoring entity.

The ENI System may include metadata to describe how Policies are to be used by the external entity. If any Policies
generated by the ENI System are not understood unambiguoudly by the external entity, then the external entity shall
report thisto the ENI System and ask for further information that defines the meaning and usage of the Policy. A
negotiation of data and information contained in the Policy may need to occur to arrive at afinal viable alternative. In
this case, the ENI System shall record thisin its knowledge base and correct the format and content of future Policies
sent to this entity to facilitate future communications.

7.3.12 Reference Point Eoreni-dat

This External Reference Point is used to define data and information sent from the Orchestrator to ENI. Policies, and
policy-related information, shall not be sent over this External Reference Point. ENI shall acknowledge the receipt of
data and information that it has requested, and may acknowledge the receipt of unsolicited data. Thisisa uni-directional
External Reference Point, meaning that data for processing shall only flow from the Orchestrator to ENI.

Input application data received by the ENI System shall be ingested and normalized. If it is not possible to normalize
the data, the ENI System shall report this to the Orchestrator and ask for further information that defines the format, as
well as expected characteristics and behaviour, of these data. Upon receipt of thisinformation, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communications.

7.3.13 Reference Point Eor-eni-cmd

This External Reference Point is used to define recommendations and commands sent from the ENI System to the
Orchestrator. Policies, and policy-related information, shall not be sent over this External Reference Point.
Recommendations and commands sent from the ENI System shall be acknowledged by the Orchestrator. The ENI
System may include metadata to describe how the recommendations and/or commands are to be used by the
Orchestrator. Thisisauni-directional External Reference Point, meaning that commands and recommendations shall
only flow from the ENI System to the Orchestrator.

The ENI System may include metadata to describe how policies are to be used by the external entity. If any
recommendations or commands are ambiguous or are not understood by the Orchestrator, then the Orchestrator shall
report thisto the ENI System and ask for further information that defines the meaning and usage of the recommendation
and/or command. A negotiation of data and information contained in the recommendation or command may need to
occur to arrive at afinal viable communication aternative. In this case, the ENI System shall record thisin its
knowledge base and correct the format and content of future recommendations and commands sent to this entity.

7.3.14 Reference Point Eor-eni-pol

This External Reference Point is used to define Policies and associated information and/or metadata sent by the
Orchestrator to the ENI System and/or Policies sent by the ENI System to the Orchestrator. Both the Orchestrator and
the ENI System may send any type of Policy that is mutually agreeable. Thisincludes acknowledgements by the
receiving entity in both cases. Both the Orchestrator as well as the ENI System may include metadata to describe how
the recommendations and/or commands are to be used by the Orchestrator or the ENI System. Thisis a bi-directional
External Reference Point, meaning that data and Policies may flow from the ENI System to the Orchestrator or
vice-versa.

The associated information includes policyRefPoint, which is used to indicate the specific External Reference Point
(i.e. Eor-eni-pal), SO that the acknowledgement could be sent back using the appropriate External Reference Point. Thisis
described in[i.33].

ETSI

161 ETSI GS ENI 005 V3.1.1 (2023-06)

The metadata includes policy Type, which is used to indicate the specific type of the policy (i.e. imperative policy,
declarative policy and intent policy as defined in clause 6.3.9.3.2), so that the ENI system could perform appropriate
actions as specified in clause 6.3.9.6.3. Thisis described in [i.33].

If any Policy Rule (including any attached metadata) is ambiguous or is not understood by the entity receiving the
Policy Rule, then the receiving entity shall report this to entity sending the Policy Rule and ask for further information
that defines the meaning and usage of the Policy Rule. A negotiation of data and information contained in the
recommendation or command may need to occur to arrive at afinal viable communication alternative. In this case, the
ENI System shall record thisin its knowledge base and correct the format and content of future recommendations and
commands sent to this entity.

7.3.15 Reference Point Eint.eni-dat

This External Reference Point is used to define data and acknowledgements exchanged between the infrastructure and
the ENI System. Thisisauni-directional External Reference Point, meaning that data shall only flow from the
Infrastructure to the ENI System.

Input application data received by the ENI System shall be ingested and normalized. The ENI System shall
acknowledge the receipt of data and information that it has requested, and may acknowledge the receipt of unsolicited
data. If it is not possible to normalize the data, the ENI System shall report thisto the infrastructure or the Assisted
System and ask for further information that defines the format, as well as expected characteristics and behaviour, of
these data. Upon receipt of thisinformation, the ENI System shall record thisin its knowledge base to facilitate future
communication.

7.3.16 Reference Point Eint-eni-cmd

This External Reference Point is used to define recommendations and/or commands sent by the ENI System to the
infrastructure. Recommendations and commands sent from the ENI System shall be acknowledged by the infrastructure
or an agent acting on behalf of the infrastructure. The ENI System may include metadata to describe how the
recommendations and/or commands, which may be in the form of policies, are to be used by the external entity. Thisis
auni-directional External Reference Point, meaning that recommendations and/or commands shall only flow from the
ENI System to the Infrastructure.

If any recommendations or commands are ambiguous or are not understood unambiguously by the infrastructure, then
the infrastructure shall report this to the ENI System and ask for further information that defines the meaning and usage
of the recommendation and/or command. A negotiation of data and information contained in the recommendation or
command may need to occur to arrive at afinal viable communication aternative. In this case, the ENI System shall
record thisin its knowledge base and correct the format and content of future recommendations and commands sent to
this entity to facilitate future communication.

7.3.17 Reference Point Eeni-api-in

This External Reference Point is used to define recommendations and/or commands sent by an external entity to the
ENI System. The external entity may include metadata to describe or prescribe additional information as necessary.
Thisisauni-directional External Reference Point, meaning that APIs shall only flow from an external entity to the API
Broker over thisinterface.

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
thisto the external entity and ask for further information that defines the meaning and usage of the API from the
sending external entity. The API Broker shall notify the ENI System that this API request was unclear. A negotiation of
data and information contained in the API may need to occur to arrive at afinal viable communication alternative. In
this case, the API Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send
the results of the negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to
facilitate future communication.

7.3.18 Reference Point Eeni-api-out
This External Reference Point is used to define ENI APIs sent by the ENI System to an external entity. The ENI System

should include metadata to describe how the ENI APl isto be used by the external entity. Thisis a uni-directional
External Reference Point, meaning that ENI APIs shall only flow from the ENI System to the external entity.

ETSI

162 ETSI GS ENI 005 V3.1.1 (2023-06)

If any ENI APIs are ambiguous or are not understood unambiguously by the external entity, then the external entity
shall report thisto the API Broker and ask for further information that defines the meaning and usage of the
recommendation and/or command. The API Broker shall notify the ENI System that this API request was unclear.

A negotiation of data and information contained in the recommendation or command may need to occur to arrive at a
final viable communication alternative. In this case, the API Broker shall conduct the negotiation. Once the negotiation
is completed, the API Broker shall send the results of the negotiation to the ENI System, so that this negotiation may be
recorded in its knowledge base to facilitate future communication.

7.3.19 Reference Point Eeni-api-dev

This External Reference Point is used to define ENI APIs for a devel oper to create and manage the Functional Blocks
that make up the ENI API Broker. Core APl Management functions shall include API creating, updating, deleting,
documenting, and versioning APIs. It should also include supporting the importing and exporting of API description
languages (e.g. RAML, WADL, WSDL, and Swagger) to enable API definitions to be exchanged between the ENI
System and external systems and developers that use different languages, platforms, and programming environments.
System API Management functions shall include API discovery, APl consumer onboarding, configuration management,
version management, monitoring, and auditing.

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
thisto the developer and ask for further information that defines the meaning and usage of the API from the developer.
The API Broker shall notify the ENI System that this API request was unclear. A negotiation of data and information
contained in the APl may need to occur to arrive at afinal viable communication alternative. In this case, the API
Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send the results of the
negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to facilitate future
communication.

7.3.20 Reference Point Eeni-api-run

This External Reference Point is used to control the operation of the ENI API Broker. Thisincludes putting the ENI
API Broker into development, testing, and operational states. It also includes the ability to selectively enable and
disable different functionality via External Reference Points. Finally, it is also responsible for catching exceptions and
other runtime errors produced by the ENI API Broker during its operation for mitigation by an appropriate role-based
entity (e.g. adeveloper, an administrator, or an operator).

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
this to the developer and ask for further information that defines the meaning and usage of the API from the developer.
The API Broker shall notify the ENI System that this API request was unclear. A negotiation of data and information
contained in the APl may need to occur to arrive at afinal viable communication alternative. In this case, the API
Broker shall conduct the negotiation. Once the negotiation is completed, the APl Broker shall send the results of the
negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to facilitate future
communication.

7.3.21 Reference Point Eeni-api-dmg

This External Reference Point is used by the developer to monitor the performance and functionality of the ENI API
Broker. Thisincludes functionality to analyse the performance of the ENI API Broker in terms of how many APIs have
been correctly and incorrectly executed as well as problems in tranglating from external information to an ENI internal
format and vice-versa

ETSI

163 ETSI GS ENI 005 V3.1.1 (2023-06)

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
this to the developer and ask for further information that defines the meaning and usage of the API from the developer.
The API Broker shall notify the ENI System that this API request was unclear. A negotiation of data and information
contained in the APl may need to occur to arrive at afinal viable communication alternative. In this case, the API
Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send the results of the
negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to facilitate future
communication.

7.3.22 Reference Point Eeni-api-emg

This External Reference Point enables an external entity to perform all or some of the functionality provided by the Eei-
api-dmg. SO0me of the functionality that isinternal to an ENI System and critical for its operation may not be accessible by
some external entities.

If any APIs are ambiguous or are not understood unambiguously by the API Broker, then the API Broker shall report
thisto the external entity and ask for further information that defines the meaning and usage of the API from the
external entity. The APl Broker shall notify the ENI System that this API request was unclear. A negotiation of data and
information contained in the APl may need to occur to arrive at afinal viable communication alternative. In this case,
the API Broker shall conduct the negotiation. Once the negotiation is completed, the API Broker shall send the results
of the negotiation to the ENI System, so that this negotiation may be recorded in its knowledge base to facilitate future
communication.

7.4 External Reference Points Protocol Specification

7.4.1 Introduction

Table 7-3 in clause 7.5.2.7 summarizes the advantages and disadvantages of four popular protocols: REST, HATEOAS,
GraphQL, and gRPC. Thisresultsin the following requirements:

. An ENI System should use gRPC and HTTP/2.An ENI System may use GraphQL and HTTP/1.1 for specific
use cases.

. An ENI System may use REST and HTTP/1.1 for specific use cases.

e AnENI System may use HATEOAS and HTTP/1.1 for specific use cases.

7.4.2 Generic Protocols for use with External Reference Points

gRPC enables aremote client or server to communicate with another server by simply calling the receiving server's
function asif it were local. This makes communicating and transferring large data sets between client and server much
easier in distributed systems. Like other RPC systems, gRPC defines a service. It specifiesits methods and return types
using protobuf to enable the easy definition of services and auto-generation of client libraries. gRPC uses this protocol,
currently on version 3, asits interface definition language and serialization tool set.

The gRPC protocol supports various authentication mechanisms, making it easy to adapt to new and existing systems.
For example, authentication in gRPC client-server communications can be implemented using recommended
mechanisms like TLS (one-way) or mTLS[10], [11] (mutual TLS, for authentication between a client and a server)
with or without Google™ token-based authentication. Custom authentication is also supported by extending the built-in
authentication function in grRPC [i.51].

By default, gRPC comes bundled with the following authentication mechanisms:
. SSL and TL S to authenticate the server and encrypt the data exchanged between the client and the server.
e Generic token-based authentication mechanism to attach metadata-based credentials to requests and responses.
. Google-specific mechanisms (not covered in the present document).

An ENI System should use TLS or mTLS for authentication and encryption. An ENI System may use token-based
authentication mechanism.

ETSI

164 ETSI GS ENI 005 V3.1.1 (2023-06)

OAuUth2 [i.52] should be used if token-based authentication is used.
7.4.3 Specific Protocols for use with External Reference Points

7.43.1 gRPC and HTTP/2

gRPC shall use HTTP/2. gRPC requires HTTP/2, which multiplexes calls over a single TCP connection.

Securing gRPC shall use HTTP/2 over TLS with the Application-Layer Protocol Negotiation (ALPN) extension to
TLS[10], [11], to negotiate whether both the client and the server support HTTP/2. The TL S Handshake Protocol
enables the server and client to authenticate each other and to negotiate an encryption algorithm and cryptographic keys
before the application protocol transmits or receivesits first byte of data. During this protocol, the server will send a
signed TLS certificate, which the client validates with its CA. (A CA isatrusted party that issues digital certificates.)
This X.509v3 certificate format is used, as described in [15], [16] and [17].

gRPC [i.51] shall use the Galois/counter mode of AES. AES is a symmetric-key block cipher algorithm that provides
data authenticity (integrity) and confidentiality. A block is afixed length of bits, and the Gal ois/counter mode of
operation defines how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger
than a block.

7.4.3.2 GraphQL and HTTP/1.1
GraphQL should use HTTP/1.1. However, GraphQL is transport-layer agnostic, so it could use other protocols.
GraphQL may use other transport-layer protocols, such as WebSockets.

GraphQL's conceptual model is an entity graph. Hence, entities in GraphQL are not identified by URLSs. Instead, a
GraphQL server operates on a single URL/endpoint, usually /graphgl, and all GraphQL requests for a given service
should be directed at this endpoint.

7.4.3.3 HATEOAS and HTTP/1.1
GraphQL should use HTTP/1.1.

HTTP/1.1 should use areliable transport layer protocol. The most common example is TCP.

7.4.3.4 REST and HTTP/1.1
REST should use HTTP/1.1.

HTTP/1.1 should use areliable transport layer protocol. The most common example is TCP.

7.5 ENI API Overview

751 Introduction

A Software Architecture represents the design decisions related to the structure and behaviour of a software system.
From the perspective of ENI, a software architecture is the decomposition of a software system into a set of software
modules, each of which obeys the principles outlined in "Functional Concepts for Modular System Operation™ [i.35].

The ENI API Architectureis atype of software architecture that focusses on devel oping software interfaces that expose
ENI data and information for use by external applications. The ENI API Architectureis a set of communication
protocols, code, and tools that enable an ENI System to interact with either a human or an external software system.

A high-level functional diagram of the ENI API Architecture is shown in Figure 7-4.

ETSI

165 ETSI GS ENI 005 V3.1.1 (2023-06)

-dat, -cmd
Ref Points

ENI API -cmd, -pol
Management Services Ref Points
ENI API Broker
I ‘ ENI API -kno
-api 2ol 'Deve opment Semantic Services Ref Points
P Functional Blocks
Ref —
Functional Blocks Situation Services Ref Points
ENIAPI wee
Security Services Ref Points
(FFS)

Figure 7-4: High-Level ENI API Architecture Functional Diagram

s

Figure 7-4 defines 7 types of APIs:

ENI Developer APIs: These APIs are exclusively for the use of the development of the ENI API Broker.

ENI Runtime APIs. These APIs are exclusively for the use of the ENI API Broker, and enable information to
be communicated from the Assisted System to the ENI API Broker and hence to the ENI System and
vice-versa.

ENI API Analytics Services: These APIs are used to transfer data between external entities and the ENI
System for use in analytics.

ENI API Management Services. These APIs are used to send recommendations or commands, including
policies, between external entities and the ENI System. Recommendation and commands are uni-directional,
APIs, while policies are bi-directional APIs.

ENI APl Semantic Services: These APIs are used to transfer semantic information between external entities
and the ENI System. These are bi-directional APIs.

NOTE 1: Semantic services, such as models and inferencing explanations, are separated from management services

in order to differentiate between a management decision and other information that can be used to make a
management decision.

ENI API Situation Services. These APIs are used to transfer context- and situation-aware information, as
well as application-specific data, between external entities and the ENI System. These are bi-directional APIs.

ENI API Security Services. These APIs are used to perform security functions between external entities and
the ENI System. These APIs are for further study.

Figure 7-5 provides a more detailed view of how these seven sets of APIs are organized among the ENI API Broker and
the ENI System. In thisfigure, the ENI API Analytics Services are input output only (i.e. from the ENI System to the
API Broker and hence to the Assisted System). All other ENI API Services are bi-directional.

ETSI

E kopt Eeni-api-run
External Manager § eni-api-emg

ENI Developer ym

Assisted System 7 - < Functional Blocks

166 ETSI GS ENI 005 V3.1.1 (2023-06)

Eeni-api-dev K ENIAPI Development [\ WA\ Brokerx

EeniAapi—dmg Functional B|OCkS

E ENI API Runtime

eni-api-in

eni-api-out \ /
4

Data from all input-only and Data from all output-only and
bi-directional External Reference Points bi-directional External Reference Points

ENI System \

/ o ostwingesin
lognom ==

Semantic Bus '

NOM-SEM el

lsemim

: lsemca = lsemcog mtmm lemsa —i— lsemmde =g lsem pm =t
Knowledge Context Cognition Situational Model-Driven Policy
Management Awareness Management Awareness Engineering Management

sem.denom g

NG | OupGenersion

Figure 7-5: ENI API Broker Interaction

The purpose of the Functional Blocks shown in Figure 7-5 are summarized as follows.

The ENI System is an innovative, policy-based, model-driven functional architecture that improves operator
experience. The ENI System assists decision-making of humans as well as machines, to enable amore

mai ntainable and reliable system that provides context-aware services that more efficiently meet the needs of
the business. It isdefined in clause 6.3 of the present document.

The ENI API Broker decouplesthe ENI System from other external systemsthat it communicates with. This
enables the development of the ENI System and external systemsto proceed independently. The ENI API
Broker shall be used to trandate between the ENI APIs and APIs of the Assisted System and its Designated
Entity. More specifically, the ENI API Broker shall ingest APIsthrough an appropriate ENI External
Reference Point, analyse the ingested API, and then route the functionality of the ingested API to an
appropriate ENI Functional Block (thisistypically the Data Ingestion Functional Block, but may be a different
Functional Block if the API is known to an ENI System). Two new API-specific Functional Blocks are
introduced into the ENI API Broker:

- The ENI API Development Functional Block. This Functional Block shall be responsible for the ENI
API design and development. It can be thought of as a toolbox that contains reusable and modular
building blocks to compose ENI APIs. Two Externa Reference Points are defined. The first, Eeni-api-dev, 1S
used by a developer to create and manage the Functional Blocks that make up the ENI API Broker. Core
API Management functions shall include API creating, updating, deleting, documenting, and versioning
APIs. It should aso include supporting the importing and exporting of API description languages (e.g.
RAML, WADL, WSDL, and Swagger) to enable API definitions to be exchanged between the ENI
System and external systems and developers that use different languages, platforms, and programming
environments. System APl Management functions shall include API discovery, APl consumer
onboarding, configuration management, version management, monitoring, and auditing. The second, Eeni-
api-run, 1S USed to control the operation of the ENI API Broker. Thisincludes putting the ENI API Broker
into development, testing, and operational states. It is also responsible for catching exceptions and other
runtime errors produced by the ENI API Broker during its operation for mitigation by an appropriate
role-based entity.

ETSI

167 ETSI GS ENI 005 V3.1.1 (2023-06)

- The ENI API Runtime Functional Block. This Functional Block shall be responsible for executing
APIs. It enables the APIsto accept incoming requests from external consumers of the ENI APIs and
provide appropriate responses. Formally, APl Brokering translates external information and commands
to aformat suitable for ENI ingestion, and similarly, translates ENI internal information and commands
to aformat suitable for external ingestion. Two External Reference Points are defined. Eeni-api-in IS Used to
define recommendations and/or commands sent by an external entity to the ENI System. Eeni-api-out iS used
to define ENI APIs sent by the ENI System to an external entity. API Service Level Agreements (i.e.
contractual definitions defining the performance requirements of the ENI API Broker) may optionally be
included in this Functional Block.

e The performance of the ENI API Broker has two External Reference Points. Eeni-api-amg iS Used by the devel oper
to monitor the performance and functionality of the ENI API Broker. Similarly, some or all of these functions
may be done by an external entity using Eeni-api-emg-

There are five different types of data services provided by ENI:

. ENI API Analytics Services shall consist of a set of data and information sent from the ENI System to an
external entity for analysing the performance of an ENI System as well as to further enhance the conclusions
of an ENI System. Thisincludes information that was ingested by an ENI System as well as recommendations
and commands that were produced by an ENI System (e.g. the datainput via the -dat External Reference
Points as well as the recommendations and commands sent via the -cmd External Reference Points).

. ENI APl Management Services shall consist of the recommendations and commands produced by an ENI
System (e.g. the recommendations and commands sent viathe -cmd External Reference Points and/or the
policies sent via the -pol External Reference Points). It may also include insights as to the ENI API Broker
performance (e,.g., from Eeni-api-emg)-

. ENI Semantic Services shall consist of data, model, and related information produced by an ENI system
(e.g. information sent via the -kno External Reference Point).

. ENI Situation Services shall consist of data and related information produced by an ENI system
(e.g. information sent via the -ctx and -oth External Reference Point).

. ENI API Security Servicesisfor further study.

NOTE 2: Additiona functionality, such as API lifecycle management and an ENI API Developer portal, depend on
the type of API architectural style chosen and other factors, and will be addressed in a future version of
the present document.

7.5.2 API Architectural Styles

7521 Introduction

One of the primary purposes of an API isto exchange information and data. For the purposes of ENI, "information” is
represented by Information, Knowledge, and Wisdom; coupled with Data, this represents the DIKW hierarchy referred
toin clause 6.3.4.4.3 and defined in "Functional Concepts for Modular System Operation” (ETSI GR ENI 016 [i.35])
for background information and a more thorough discussion of the DIKW hierarchy.

The most generic form of data exchange is to transform data from a form structured according to a source schemato a
form structured in atarget schema, so that the target data is an accurate representation of the source data. Since this
involves atransformation, there are three cases to consider:

1) Thereisasingleway to transform adatum from its original (source schema) to its intended (target schema)
representation.

2) There may be no way to transform a datum from its original (source schema) to itsintended (target schema)
representation.

3) There may be many different ways to transform a datum from its original (source schema) to its intended
(target schema) representation.

ETSI

168 ETSI GS ENI 005 V3.1.1 (2023-06)

The current state-of-the-art is to define an architecture that uses APIs for data exchange. More specifically, it has clients
interacting with an API layer representing the application on the server-side. The benefit of this API-based approach to
application architecture design is that it enables awide variety of physical client devices and application types to
interact with the given application. For example, the same API can be used for PC-based, cellphone, and 10T
computing. Communication may occur between humans and/or applications.

7.5.2.2 Challenges in API Architectures

Applications are designed using a variety of languages and protocols. This causes a proliferation of file types and
encodings. Two exemplary file types aretext (e.g. HTML, XML, TEXT, SQL) and binary (e.g. FOC, XLS, PDF, MP3).
File formats are protocols which programs agree to use to represent information. A file format is responsible for
ensuring the data is structured properly and correctly represented. For example, a JPG file is an image that has a
predefined internal format that allows different programs (Browsers, Spreadsheets, Word Processors) to use the file as
an image. Thisis also true of text files (e.g. the format of HTML enables a Browser to render a web page in a specific
way). Another exampleisajson file, which definesits structure as a set of nested key-value pairs.

An encoding transforms data into a format required for a number of information processing needs Generically, this
transforms data into a set of symbols. The reverse processis called decoding. A simple example is adding metadata,
such as a checksum, into atransmission that can be used to verify data's correctness. Another example isto increase
interoperability, json files should be encoded in UTF-8.

Consequently, there are variationsin APIs that depend on file format and encoding.

Different API architectures may be used to implement data exchange between entities. Most API architectures are
intended to exchange data. ENI shall be able to exchange both data as well as information, knowledge, and wisdom.
These |atter three categories may include inferences, models, and other information.

ENI has defined specific APIs to differentiate between exchanging data and these other types of information. Thisis
shown in Figure 7-4 and Figure 7-5, and described in clause 7.5.1.

The following four clauses will describe four popular API architectures: REST, HATEOAS, GraphQL, and gRPC.
Clause 7.5.2.6 will compare them and provide recommendations for use in ENI.

7523 REST API Style

REST (Representational State Transfer) isan architectural style for services, and it defines a set of architectural
constraints and agreements for building web-based APIs. The constraints are [i.45]:

1) Client-server. Clients and servers are distinct, and may be implemented and deployed independently, using any
language or technology, so long as they conform to the Web's uniform interface.

2) Uniforminterface. Thisis defined asfour separate rules:

i) Identification of resources. Each distinct Web-based concept is known as a resource and may be
addressed by a unique identifier.

ii) Clients manipulate representations of resources. The same exact resource can be represented to different
clientsin different ways.

iii) Self-descriptive messages. A resource's desired state can be represented within a client's request
message. A resource's current state may be represented within the response message that comes back
from a server.

iv) Links. A resource's state representation includes links to related resources.

3) Layered system. This enables network-based intermediaries such as proxies and gateways to be transparently
deployed between a client and server using the Web's uniform interface.

4) Cache. A web server can declare the cacheability of each response's data.

5) Stateless. A web server isnot required to keep track of the state of its client applications. Asaresult, each
client shall include all of the contextual information that it considers relevant in each interaction with the web
server.

ETSI

169 ETSI GS ENI 005 V3.1.1 (2023-06)

6) Code-on-demand. This enables web serversto temporarily transfer executable programs, such as scripts or
plug-ins, to clients.

NOTE: Code-on-demand defines atechnology coupling between web servers and their clients, since the client
needs to be able to understand and execute the code that it downloads on-demand from the server. Hence,
this constraint should be considered optional.

REST is a stateless, cacheable, and simple architecture that is not a protocol but a pattern. REST is designed to make
optimal use of an HTTP-based infrastructure. The fundamental concept behind the REST style is using resources. A
resource is a data structure, which can be serialized to various concrete representations (e.g. a JSON or an XML
representation). REST APIs expose and manipul ate these resources.

REST Resources are similar to objects, except that in REST, methods are restricted to the set of HT TP methods
(sometimesthey are also called HTTP verbs). This set of allowed methods provides a standard set of methods that can
be used to manipulate the resource. No other methods can be stated in API requests, neither inthe HTTP body nor in
the base path nor in the parameters. The five major methods are:

Table 7-2: REST Methods

REST VERB Description Success Code(s) Failure Code(s)
GET Fetches a set of resources 200 404
POST Creates a new set of resources 200 n/a
PUT Updates or replaces the given set of resources 200, 204 404
PATCH Modifies the given resource 200, 204 404
DELETE Deletes the given resource 200 404

The status codes are the same status codes used by HTTP.

RESTful APIsmay also use HTTP methods. For example, the OPTIONS method enables a client to discover how it can
interact with aresource (i.e. which specific REST methods can be used, which version of HTTP the server supports, and
what type of content the API isreturning. As another example, the HEAD method returns information about the
resource itself (e.g. hasit been changed, and metadata about the resource).

The REST architectural style ensuresthat APIs use HT TP correctly by imposing the following constraints:
. APls are designed to use resources, not methods. Hence, APIs use nouns, not verbs.

e A uniforminterface, defined by a subset of HTTP methods and capabilities, is used. This ensures that the
semantics of using HT TP are adhered to.

. Statel ess communication occurs between client and server.
. Requests should be independent and loosely coupled.

The REST architectural style provides a number of important benefits. First, the implementation can scale easily by
adding additional servers. This also provides improved fault tolerance, availability, and reliability. Caching is provided
by the HTTP infrastructure. The REST API style is designed to be simple, and does not require much overhead. Finally,
REST can support multiple content types (e.g. a REST API may be able to deliver the resource in multiple, alternative
formats, enabling different clients that have different capabilities to use the same API). HTTP provides content type
negotiation mechanisms, which define how clients can exchange information about their capabilities and negotiate the
appropriate content type.

7.5.2.4 HATEOAS API Style

The HATEOAS (Hypermedia as the Engine of Application State) API architecture style constrains a REST API
architecture style to enable APIs to be self-descriptive. In HATEOAS, the term "hypermedia’ refers to any content that
contains links to other forms of media, such asimages, movies, and text. The semantics of the resourcesis provided by
mediatypes. That is, al actions that can be performed on a resource are described in the representation of the resource
in the form of annotated links. The annotated links can be navigated by a generic client, which can interpret and follow
links. Since al resources are linked, the client only needs to have access to the root resource; the client can then follow
the links to reach any other resource. This enables a dynamic architecture to be defined, since it effectively decouples
the client from the server. All meta-information is obtained before the API request. Hence, if the API is changed, all
resources that link to the changed resource are updated with new links and new associated meta-information.

ETSI

170 ETSI GS ENI 005 V3.1.1 (2023-06)

A REST request only provides the data and not any actions around it. A HATEOAS request enables the server to send
the data and any related actions. For example, with HATEOAS, arequest for a calendar entry may also return URIsto
any actions associated with that calendar entry. This simplifies understanding and is a step towards making APIs self-
documenting.

The single most important reason for HATEOAS isloose coupling (see ETSI GR ENI 016 [i.35], clause 4.1.8). If a
consumer of a REST service needs to hard-code all the resource URLs or URIs, then it istightly coupled with its
service implementation. Instead, if URLs or URIs are returned, then there is no tight dependency on the URI structure,
asitisspecified and used from the response, and it isloosely coupled.

The HATEOAS API architecture style can be modeled as a state machine. Resources correspond to states, and the links
between the resources correspond to the transitions of the state machine. This provides a number of important
advantages. First, the HATEOAS API architecture style isinherently flexible, since new versions, or changed media
types, can be handled by the server without breaking any clients. Second, since the client and server are decoupled, the
API and its clients do not need to evolve together. Most importantly, the client does not need any a-priori knowledge of
the API.

7525 GraphQL API Style

GraphQL is an open-source data query language for APIs and aruntime for fulfilling those queries. GraphQL is
intended to develop APIs used on the web. GraphQL was originally developed by Facebook for internal use before
being publicly released in 2015. The GraphQL project was subsequently moved from Facebook to the GraphQL
Foundation, hosted by the Linux Foundation.

Despite its name, GraphQl is not a graph database. GraphQL defines a a type system, query language and execution
semantics, static validation, and type introspection. It supports reading, writing, and subscribing to changes to data.
GraphQL is not tied to any specific language. Instead, it enables the devel oper to define the structure of the data
required. This meansthat query results have the same composition as the query. GraphQL formalized this by defining
its own Schema Definition Language.

Simplistically, a GraphQL query reports on fieldsin an object. In contrast to REST APIs, GraphQL APIs are structured
in terms of types and fields, not endpoints. This means that GraphQL may use a single endpoint to describe a system.
Furthermore, every GraphQL field and object may have a set of arguments; this means that GraphQL may enable
multiple API callsto be made. Thisisin contrast to a REST-based approach, which is limited to only providing asingle
set of arguments (i.e. the query parameters and URL segmentsin arequest).

GraphQL's type system defines a set of rules that assign variables, functions, and other parts of a program to a datatype,
which governs the behaviour of that program component. A type system enables interfaces between different parts of a
computer program to have predictable and consistent semantics (e.g. an integer always behaves as an integer).

GraphQL does have some notable limitations. First, GraphQL isjust asimple query language. It does not have the

power of arobust query language, such as SQL. For example, it does not support transitive closure (e.g. given aquery
that returns the parents of an object, it cannot return the set of all parents of that object in asingle query). A side effect
of this (and other limitations) is that queries that return too many results, or are recursive in nature, need to be avoided.

Second, since GraphQL allows each query to be different (e.g. with different parameters), caching results for GraphQL
is more complicated than other approaches. GraphQL does not offer built-in, standardized caching. Similarly, limiting
the number of queriesin a GraphQL system is also very difficult. Thisis mitigated to some extent by some GraphQL
implementations.

Third, GraphQL queries always return a HT TP status code of 200, regardless of whether or not that query was
successful. If your query was unsuccessful, the response will have atop-level errors key with associated error messages
and stacktrace. This can make it much more difficult to do error handling and can lead to additional complexity for
things like monitoring.

7.5.2.6 gRPC API Style

The gRPC (Remote Procedure Call) is an open-source data exchange technology developed by Google using the
HTTP2 protocol. HTTP is not presented to the API developer or server, so there is no need to explicitly map RPC
conceptsto HTTP. It uses the Protocol Buffers binary format (Protobuf) for data exchange. This means that Protobuf
may be used as both its Interface Definition Language (IDL) and as its underlying message interchange format. Also,
this architectural style enforces rules that a developer shall follow to develop or consume web APIs.

ETSI

171 ETSI GS ENI 005 V3.1.1 (2023-06)

While REST isaset of guidelines for designing web APIs, it does not enforce anything. In contrast, gRPC enforces
rules by defining a .proto file that shall be adhered to by both client and server for data exchange.

gRPC is aResource-Orientated Architectural (ROA) style. Distributed architectures are made up of components that are
consumed across a network through well-defined interfaces. In ROA, these components are referred to as resources.

A resource is a self-contained, identifiable entity having a state that can be assigned a uniform resource locator (URI).
While a service represents the execution of arequested action, a resource represents a distributed component that is
manageable through a consistent, standardized interface.

ROA extends the REST architectural style and offers a broader, extensible, flexible, and transport-independent
architecture. ROASs have four main features:

1) Uniform Interface. A uniform and consistent set of well-defined methods that manipul ate the resourcesin an
application. In particular, standard methods are preferred over custom methods. (see clause 8.3).

2) Addressability. An application is addressable if it publishes the salient aspects of its data set as service
endpoints. ROA resources are exposed using URIs.

3) Statelessness. Statelessness requires the client to provide all information that the server needs for the request
to be successful. Thisis because the server does not store information from previous requests.

4) Connectedness. Similar to HATEOAS (see clause 7.5.2.4), applications built on ROA should have al of its
resources linked to each other. A hyperlink can be used to connect any resource to another resource.

In gRPC, aclient application can directly call a method on a server application on a different machine asif it were a
local object. gRPC is based on the concept of defining a service. The service consists of a set of methods, with their
parameters and return types, that can be called remotely. On the server side, the server implements the methods declared
by the service and runs a gRPC server to handle client calls. The gRPC infrastructure decodes incoming requests,
executes service methods, and encodes service responses. On the client side, the client has alocal object known as stub
(for some languages, the preferred term is client) that implements the same methods as the service. The client can then
just call those methods on the local object, wrapping the parameters for the call in the appropriate ProtoBuf message
type - gRPC looks after sending the request(s) to the server and returning the server's ProtoBuf response(s). gRPC
clients and servers can run and talk to each other in a variety of environments. For example, a gRPC server may be
created in one programming language, and one or more clients may be created in the same or different programming
languages.

By default, gRPC uses ProtoBuf, although it can be used with other data formats such as JSON.

ProtoBuf isan IDL, and as such, the first step involves defining he structure for the data to be serialized in a specific
file, called aproto file. Thisis an ordinary text file with a .proto extension. ProtoBuf data is structured as messages,
where each message isasmall logical record of information containing a series of name-value pairs called fields. When
all of the data structures have been specified, the ProtoBuf compiler (protoc) is used to generate data access classesin
the language(s) defined in the proto definition. The compiler generates gRPC client and server code, as well asthe
regular ProtoBuf code for populating, serializing, and retrieving messages. M essages provide simple accessors for each
field, like name() and set_name(), as well as methods to serialize/parse the whole structure to/from raw bytes. These
classes can then be used in applications to populate, serialize, and retrieve those entities from ProtoBuf messages. gRPC
provides strongly typed messages automatically converted using the Protobuf exchange format to the chosen
programming language.

gRPC follows a client-response model of communication for designing web APIs that rely on HTTP2. Hence, gRPC
allows streaming communication and serves multiple requests simultaneously. In addition to that, gRPC also supports
unary communication similar to REST.

HTTP2 supports multiple requests over a single TCP connection (HTTPL1.1 does not). Thisisimportant, since some
browsers have limits on the number of TCP connections. In HTTP2, browser performance increases significantly
because alarge number of requests can be made under a single connection.

Synchronous RPC calls that block until aresponse arrives from the server are the closest approximation to the
abstraction of a procedure call that RPC aspiresto. On the other hand, networks are inherently asynchronous and, in
many scenarios, it isimportant to start RPCs without blocking the current thread. The gRPC programming APl comes
in both synchronous and asynchronous flavors in most languages. gRPC enables four kinds of service methodsto be
defined:

1) Unary RPCs. The client sends asingle request to the server and gets a single response back.

ETSI

172 ETSI GS ENI 005 V3.1.1 (2023-06)

2) Server streaming RPCs. The client sends a request to the server and gets a sequence of messages back to
read. The client reads from the returned stream until there are no more messages. gRPC guarantees message
ordering within an individual RPC call.

3) Client streaming RPCs. The client writes a sequence of messages and sends them to the server. The client
walits for the server to read them and return its response. gRPC guarantees message ordering within an
individual RPC call.

4) Bidirectional streaming RPCs. The client and server both send a sequence of messages using a read-write
stream. The two streams operate independently, so clients and servers can read and write in whatever order
they like. The order of messagesin each stream is preserved.

gRPC allows clients to specify how long they are willing to wait for an RPC to compl ete before the RPC is terminated
with aDEADLINE_EXCEEDED error. On the server side, the server can query to seeif a particular RPC has timed
out, or how much timeisleft to complete the RPC. A deadline (also called atimeout) is language-specific: some
language APIswork in terms of timeouts (durations of time), and some language APIs work in terms of adeadline
(afixed point in time) and may or may not have a default deadline. In either case, both the client and server make
independent and local determinations of the success of the call, and their conclusions may not match. For example, an
RPC that finishes successfully on the server side may fail on the client side (e.g. the response arrived after its deadline).
Finally, either the client or the server can cancel an RPC at any time. A cancellation terminates the RPC immediately so
that no further work is done. This means that any changes made before a cancellation are not rolled back.

gRPC relies on HTTP2 protocol, which uses multiplexed streams. Therefore, several clients can send multiple requests
simultaneoudly without establishing a new TCP connection for each one. Also, the server can send push notifications to
clients via the established connection.

However, gRPC has limited browser support because numerous browsers (usually the older versions) have no mature

support for HTTP2. So, it may require gRPC-web and a proxy layer to perform conversions between HTTP 1.1 and
HTTP2. Therefore, gRPC is currently primarily used for internal services.

75.2.7 ENI API Architectural Style Recommendations
Table 7-3 compares the key features of REST, HATEOAS, GraphQL, and gRPC.

Table 7-3: Comparison of API Styles

Concept REST HATEOAS GraphQL gRPC
Abstraction Communication- Same as REST Data-Orientated: Client |Programming
Orientated: request- determines data, how it |Orientated: Services
response model of is served, and in what with Interfaces and
HTTP 1.1 format structured messages
Comm Model |Unary Client Same as REST Supports sync or async |Unary or Streaming
Request-Response calls and responses (Server, Client, or both)
(e.g. synchronous) Client-Response
Protocol Typically built on Same as REST Typically built on Requires HTTP 2
HTTP1.1 HTTP1.1
Format Many Same as REST Typically JSON ProtoBuf (by default)
Response Sends everything found |Sends everything found |Sends just what is Defined by data
with actions needed structures
Payload No structure defined Same as REST Defined according to the [Strong typing defined by
Structure GraphQL specification |the ProtoBuf
specification
Browser Fully supported by all Same as REST Most popular browsers |Fully supported by
Support common browsers have GraphQL addons [HTTP 2 Browsers, else
requires gRPC-web and
a proxy layer
State Stateless Same as REST Stateless with support |Stateless
of async messages
Sync vs. Synchronous only Same as REST Supports sync or async |Supports unary sync &
Async calls and responses async and streaming
Data Heavyweight (formats |Same as REST Heavyweight (formats Lightweight (ProtoBuf is
Transmission [need to be serialized) need to be serialized) binary)
Human Full if json is used Same as REST Full if json is used None if ProtoBuf is used
Readability of
Payload

ETSI

173 ETSI GS ENI 005 V3.1.1 (2023-06)
Concept REST HATEOAS GraphQL gRPC
Different NONE, needs API Same as REST Specification enables YES
Languages for |Broker support for different
Client and clients and servers to be
Server built
Language NONE, needs third Same as REST Specification enables ProtoBuf auto converts
Support party tools support for different messages to client and
clients and servers server programming
languages
Code on Supported by the Same as REST Not supported Not supported, but also,
Demand architecture not applicable
Code None; a third party tool |Same as REST Native code generation |Native code generation
Generation is required for support languages for support languages

7.5.3

7531

7.53.1.1

ENI API Functional Blocks

ENI API Development Functional Block

Introduction

The purpose of the ENI API Development Functional Block isto enable the developer to program the functionality of
the ENI API Broker. The External Reference Point Eeni-api-dev defines ENI APIs and associated information and metadata
for a developer to create and manage the Functional Blocks that make up the ENI API Broker (see clause 7.2,

Table 7-1b). The ENI API Development Functional Block may be accessible through a number of means, including
APIs, aGUI, and/or CLI.

The ENI API Broker APIs define the following functionality that should be made available at runtime:

1) Proxy Definition.

2) APl Management.

3) Request Routing.

4) APl Composition.

5) Protocol Trandation.

Figure 7-6 shows a simplified overview of theinternal architecture of the ENI API Broker.

ETSI

E,

eni-api-dev

GUI Access
ENI Developer

CLI Access

E

eni-api-in

174

ETSI GS ENI 005 V3.1.1 (2023-06)

ENI API Broker

ENI API Development Functional Blocks

API Transformation
and Decoupling

API Endpoint
Creation

ENI API Composition

E

eni-api-run

!

Orchestration Layer

API Filtering,
Routing, and
Channel Creation

and Management
Operational Mode, and

ENI API Validation Policies

Control API Status, Client

ENI API Management Functional Blocks

Internal External

CRUD Operations,

Access, Versioning, ~ AP| KP| Compliance,

APl Analytic Service

External .

eni-api-out

Entity

ENI API Runtime Functional Blocks

Protocol Translation

API Authentication
and Authorization

API

Content Encryption
and Decryption

Rate Limiting

API Monitoring
API Analytics

Figure 7-6: Overview of the ENI APl Broker Internal Architecture

7.5.3.1.2

ENI Broker API Orchestration Layer

The ENI Broker API Orchestration Layer separates development and runtime concerns according to the Single
Responsibility Principle[i.9]. Orchestration is how data, information, and inferences are moved through the ENI API
Broker based on APIs. Orchestration can be seen as combining service callsto create higher-level, more useful
composite services, and implies implementing business-level processes combining business-specific services across
applications and information systems.

Orchestration involves decoupling point-to-point integration in favour of chains of operations that can be reused or
changed as a business or its systems need change. For example, if an event triggers a set of complex operations on a set
of datathat have interdependencies (e.g. data need to be encrypted, validated, ordered, and deduplicated), then the ENI
API Broker Orchestration Layer will transform the set of possibly encrypted, duplicated, and unordered datainto a
stream of unique, ordered, and encrypted data using a set of APIsthat are composed in a particular pattern to solve this
problem. Thisis an example of realizing a service-based framework, where multiple components are wrapped with
endpoints to decouple them from protocols and routing requirements. This enables multiple servicesto work as one
when implementation requirements demand it.

7.5.3.1.3

ENI Broker API Management Functional Blocks

The ENI Broker APl Management Layer controls the internal and external management of the ENI Broker APIs.

Internal functionality includes:

1)
2)
3)
4)
5)
6)
7)

Control which ENI APIs clients can use.
The versioning of an ENI API.
The management of metadata for each ENI API.

Control the initial deployment status of an ENI API.

The definition and use of policies for validating each ENI API.

Controlling the mode of operation of the ENI API Broker.

ETSI

The Creation, Reading, Updating, and Deletion (CRUD) of an ENI API.

175 ETSI GS ENI 005 V3.1.1 (2023-06)

CRUD operations of an ENI API shall include defining the capabilities of an ENI API. Examples include defining
metadata for a given ENI API, different persistent schemes for API requests and responses, applicable ENI API
Validation Policies, and transaction functionality (if any).

Controlling the status of an ENI API shall determine whether it is active or inactive (and can or cannot be used in an
operational system), or whether isin a special development or test mode (see below).

Controlling which ENI APIs aclient can use should be done using a combination of Roles and metadata from the ENI
Extended Core Model [9], as this prescribes an extensible mechanism to group functionality desired by aclient into a
Role that other clients may share, and defines how to attach one or more metadata objects to any other object.

ENI API versioning should be done using the ENI Extended Core Model [9], as this prescribes an extensible
mechanism to attach one or more metadata objects to any other object.

Each ENI API should have attached metadata that describes and/or prescribes how to use this particular API. This
should be done using the ENI Extended Core Model [9].

All ENI APIs shall have a set of one or more policiesto validate ENI API requests. ENI API responses may also be
validated. Thistype of policy iscalled an ENI API Validation Policy. An ENI API Validation Policy isatype of ENI
Policy (see clause 6.3.9 and [9]) that executes appropriate business logic to determine if an ingress API request to (and
optionally, egress response from) the ENI API Broker is well-formed, unambiguous, and has no syntax or semantic
errors. In particular, an ENI API Validation Policy:

1) shall be constructed using the ENI Extended Policy Model [9];

2) should be context-dependent (this may require multiple policies, one or more for each context);

3) shal bevalidated by the ENI Broker API Proxy;

4) shal provide atraceable account of the operation of the ENI API Validation Policy;

5) may provide arate limit to a particular ENI API in terms of role, context, system load, and other factors.
The mode of operation of the ENI API Broker shall include at least the following modes:

1) Developer Mode. This mode placesthe ENI API Broker into a special state for enabling a developer to
change the functionality of the ENI API Broker. In this state:

a) generic external accessto the ENI API Broker shall not be allowed;
b) only personnel having a devel oper role shall have full accessto the ENI API Broker in this mode;
c) specia build processes may need to be used.

2) Testing Mode. This mode places the ENI API Broker into a special state for enabling a devel oper to test the
functionality of the ENI API Broker. In this state:

a) generic external accessto the ENI API Broker shall not be allowed;

b) ENI System personnel, along with certified external clients and testing personnel that have atesting role
shall have full accessto the ENI API Broker in this mode;

c) special build processes may need to be used;

d) theability to selectively enable and disable different functionality shall be allowed by personnel having a
developer role.

3) Operational Mode. This mode placesthe ENI API Broker into a normal operational mode. In this state:
a) generic externa accessto the ENI API Broker shall be allowed,;

b) personnel having a developer role shall have full accessto the ENI API Broker (e.g. in case of having to
fix a catastrophic failure);

¢) personnel having a developer or an operator role shall have the ability to selectively enable and disable
different functionality;

ETSI

176 ETSI GS ENI 005 V3.1.1 (2023-06)
d) catching exceptions and other runtime errors shall be allowed by an appropriate role-based entity (e.g. a
developer, an administrator, or an operator).

External functionality includes performance and analytics of ENI APIs. Performance of the ENI API Broker is defined
in terms of appropriate KPIs. These include:

1) How many ENI APIs have been correctly and incorrectly executed?

2) How many ENI APIs had trandation problems (e.g. protocol, encoding, format) in translating from external
information to an ENI internal format and vice-versa?

3) How many ENI APIs contained ambiguous content (thisis primarily for policy APIs)?
4) How many ENI APIs had to negotiate to resolve error problems?
5) How many requests had violations?

The ENI API Broker should provide analytics of its APIs. Analytics uses the above performance information, as well as
API Event statistics, to provide information suitable for display via reports or preferably, a dashboard. In particular,
analytics offer the capability to filter, sort, aggregate, and infer statistical and trending information about the ENI APIs.
Exemplary analyticsinformation includes:

. Latency and Delay metrics.

. Request and Response codes.

. Requests by Date or Location.

. Requests resulting in an error or failure.

. Requests per ENI External Reference Point.
. Requests by Function.

. Requests per ENI Internal Functional Block.

7.5.3.2 ENI API Runtime Functional Block

The API Runtime Functional Blocks provides asingle entry point for al API callsthat are sent to the ENI System,
regardless of how the ENI System is deployed (e.g. hosted in an on-premises data center or on acloud). It accepts
requests that come in remotely over the External Reference Point Eeni-api-in. Similarly, it provides a single entry point for
all responsesto API requests, and returns the requested data over the External Reference Point Eeni-api-out (Se€ clause 7.2,
Table 7-1b for the definitions of both of the External Reference Points). The ENI API Broker makes data availablein a
way appropriate for the requestor's technology. This goes beyond ensuring that the protocol and encoding are correct.
For examples, aregquester on a computer is able to see much more information than a requester viewing the same data
on a mobile phone, since the computer has more powerful functionality. The ENI API Broker can also enable real-time
communication between an external client and an ENI System, as well as between multiple ENI Systems.

The ENI API Broker knows the protocol(s) of incoming API requests, and transates those protocols between the
requester and the ENI System on ingress and between the ENI System and the requester on egress. This translation can
be device-specific (e.g. aweb browser or mobile device) or network-specific (e.g. aWAN, LAN, or RAN).

The ENI API Runtime Functional Blocks provide workflow orchestration as it aggregates the requested information
from multiple APIs, bundles the data. and returns it to the requestor in composite form.
7.5.3.3 ENI Management Services Functional Block

API management is an overall solution that manages the entire API lifecycle as well asthe ENI API Broker and how
ENI APIs are developed and managed. The goal of APl management isto ensure that the needs of developers and
applications that may use the API are being met, concerning organizations that publish or use APIsto monitor an
interface's lifecycle.

ETSI

177 ETSI GS ENI 005 V3.1.1 (2023-06)

The management of the AP lifecycle shall include the processes for distributing, controlling, and analysing the APIs
that connect applications and data across the enterprise and across clouds. API lifecycle management enables APIsto be
manageable from design, through implementation, until retirement. The three main phases of the API lifecycle are
creating (building and documenting the API), controlling (applying security) and consuming (publishing and
monetizing your APISs). APl gateways fall under the control phase of the API lifecycle - they secure APIs and keep data
safe.

The goal of APl management isto allow organizations that use APIs to monitor activity and ensure the needs of the
developers and applications using the API are being met.

The management of the ENI API Broker shall include providing access control, rate limits, and usage policies to govern
the use of APIs. Most API management solutions generally also include the following capabilities:

The management of the development of APIs should include a developer portal and analytics. A developer portal
should provide API documentation along with developer onboarding processes like signup and account administration.
Analytics provide detailed metrics for determining how the ENI APIs are performing, including whether they are
meeting their KPIs as well as how many APIs have failed and why.

7534 ENI Security Services Functional Block

API security isavital element of APl management. It protects the ENI APIs against unauthorized access and threats.
API security requires more than authenticating and authorizing user access to the API. Standards and policies shall be
established to protect sensitive data and ensure those data are not leaked or compromised. Thisis for further study in
Release 4.

7.5.35 ENI Analytic Services Functional Block

API analytics focusses on the centralized collection and analysis of API metrics provided by real-time monitoring and
optionally, tools such as dashboards. API analytics allows devel opers and organizations to see and understand how their
APIs are being used as well as rank their performance. Thisisfor further study in Release 4.

7.5.4 ENI APl System Deployment Models

754.1 On Premise vs. Cloud-Based Deployment

The ENI API Architecture may be deployed on premise or in the cloud. For security reasons, the ENI System backend
systems shall not be available via the Internet.

The advantage of deploying the ENI API Architecture on premise is that the required backend systems that the ENI API
Architecture communicates and interacts with are also on premise. The API Architecture thus serves as an additional
protection and security layer for the backend systems. The advantage of cloud-based deployment modelsis that they are
typicaly elastic and scale well. API platformsin the cloud make sense as long as they do not need to connect to secured
backend systemsin a private network. If they do, then a virtual private network, or some other means of securing the
network, needs to be used.

7.5.4.2 ENI API Architecture Environment

Large organizations may have a number of legacy systems. In this case, the API Broker shall serve asan APl gateway,
enabling legacy APIs and protocols to connect to and interact with ENI APIs.

7543 Securing the ENI API Broker from the Internet

Security devices (e.g. firewalls) may be placed between the Internet and the ENI API Broker. MAC and IP level
filtering are typically performed by dedicated bespoke security devices, while application level filtering is performed by
the API runtime Functional Block.

ETSI

178 ETSI GS ENI 005 V3.1.1 (2023-06)

7544 Scaling the ENI API Broker

Load balancers may be placed between the ENI APl Broker and the Internet. For example, load balancers may be used
to route the traffic from the Internet to one of several nodes of the ENI API Broker (e.g. if it isrunning as a distributed
system or cluster) to distribute API requests equally among the nodes. Load balancers may also detect the source of the
API request (e.g. the type of client) and type of API request (e.g. its purpose) and preferentially route such APIsto
dedicated processing nodes. L oad balancers may also be placed between the ENI API Broker and the ENI System. For
example, the APl Broker may send all requests for a specific ENI System function, such as Intent Policy parsing, to a
specific set of load balancers.

7.6

Figure 7-7 shows an overview of the Internal Reference Points that provide internally facing Internal Reference Points
(i.e. Internal Reference Points that communicate data and information between internal ENI Functional Blocks). Such

Internal Reference Point Overview

communication should use the Semantic Bus to ensure that any ENI Functional Block that needs the information can
receive it through an appropriate subscription. Internal Reference Points that are between specific Functional Blocks
may be used, but are discouraged; thisis because the six internal ENI Functional Blocks collaborate on the large
majority of operations. Figure 7-6 shows ENI Reference Points for asingle domain only.

ENI System

"
lmg-norm .

.
Inorm»sem el
.

Semantic Bus

~

sem km

Knowledge Context Cognltlon
Management Awareness Management

sem ca —,h sem cog —l—

sem -denorm —-—

.
Idenormrog e

.
sem sa —l—

Sltuatlonal Model- Dnven Pollcy
Awareness Engineering \EREEEINE)

sem mde sem pm —'—

/

Figure 7-7: Overview of the ENI Internal Facing External Reference Points

Table 7-4 provides brief descriptions of the Internal Reference Points of ENI.

Table 7-4: ENI Internal Reference Point Overview

Name Brief Definition Interface Functions
Defines data and information sent by the Data Ingestion - .
ling-norm Functional Block to the Normalization Functional Block. This Data from the API Broker is ingested in

is a uni-directional interface.

preparation for normalization.

norm-sem

Defines normalized data and information that are sent to the
Semantic Bus, where subscribed Functional Blocks may
consume the normalized data and information. This is a
uni-directional interface.

The Semantic Bus enables any of the
Internal Functional Blocks to publish data
and/or subscribe to data.

Isem-km

Defines the data and information received by the Knowledge
Management Functional Block from the Semantic Bus, as
well as data and information that the Knowledge
Management Functional Block publishes to the Semantic
Bus. This is a bi-directional interface.

The Knowledge Management Functional
Block shall first define subscriptions that
specify the type of data and information that
it wants to receive from the Semantic Bus.
Then, it automatically receives information
from the Semantic Bus that matches its
subscriptions.

ETSI

179 ETSI GS ENI 005 V3.1.1 (2023-06)
Name Brief Definition Interface Functions
Defines the data and information received by the
Context-Aware Management Functional Block from the
sem-ca Semantic Bus, as well as data and information that the Same procedure as above.
Context Awareness Functional Block publishes to the
Semantic Bus. This is a bi-directional interface.
Defines the data and information received by the Cognition
Management Functional Block from the Semantic Bus, as
sem-cog well as data and information that the Cognition Management |Same procedure as above.
Functional Block publishes to the Semantic Bus. This is a
bi-directional interface.
Defines the data and information received by the Situational
Awareness Functional Block from the Semantic Bus, as well
sem-sa as data and information that the Situational Awareness Same procedure as above.
Functional Block publishes to the Semantic Bus. This is a
bi-directional interface.
Defines the data and information received by the
Model-Driven Engineering Functional Block from the
sem-mde Semantic Bus, as well as data and information that the Same procedure as above.
Model-Driven Engineering Functional Block publishes to the
Semantic Bus. This is a bi-directional interface.
Defines the data and information received by the Policy
Management Functional Block from the Semantic Bus, as
Isem-pm well as data and information that the Policy Management Same procedure as above.
Functional Block publishes to the Semantic Bus. This is a
bi-directional interface.
Data, information, and policies that are to be
Defines the data and information received by the ;eni to external cirfltltlestr(]e.%. the At'_ssgtedt
lsem-denorm |Denormalization Functional Block from the Semantic Bus. th)c/asggqn)o?rz’?afiigtiorr?n;unStioﬁgaE:clngk t%s 0
This is a uni-directional interface. b :
begin processing to a form the external
entity can understand.
Data, information, and policies that are to be
) . . . sent to external entities (e.g. the Assisted
| Defines _the data gnd information received by th(_e Ogtput System) are sent from the Denormalization
denorm-og Generation Functional Block from the Denormalization

Functional Block. This is a uni-directional interface.

Functional Block to the Output Generation
Functional Block, where they are sent to the
API Broker once the generation is complete.

7.7

7.7.1

Internal Reference Point Definitions

Reference Point ling-norm

This Internal Reference Point is used to transfer data from the Data Ingestion Functional Block to the Data
Normalization Functional Block. Ingested data may include al types of data, information, knowledge, policies, and
metadata sent from the API Broker through any of the External Reference Points that supply inputs to the Data
Ingestion Functional Block (see Table 7-4 and clause 7.6 for their definitions). Thisis a uni-directional Interna
Reference Point, meaning that data for processing shall only flow from the Data I ngestion Functional Block to the Data
Normalization Functional Block.

The Data Ingestion Functional Block may generate an event to the Semantic Bus that informs other ENI internal
Functional Blocks of the receipt of new data.

If the Data I ngestion Functional Block is combined with the Data Normalization Functional Block, then this Internal
Reference Point need not be defined.

7.7.2

Reference Point Ihorm-sem

This Internal Reference Point is used to transfer normalized data from the Data Normalization Functional Block to the
Semantic Bus. Thisis auni-directional Internal Reference Point, meaning that data for processing shall only flow from
the Data Ingestion Functional Block to the Data Normalization Functional Block.

ETSI

180 ETSI GS ENI 005 V3.1.1 (2023-06)

The ENI System shall ingest the data and normalize it. If it is not possible to normalize the data, the ENI System shall
report this to the Assisted System and ask for further information that defines the format, as well as expected
characteristics and behaviour, of these data. Upon receipt of thisinformation, the ENI System shall record thisin its
knowledge base and correct the format and content of future recommendations and commands sent to this entity to
facilitate future communications.

7.7.3 Reference Point lsem-km

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Knowledge Management Functional Block that the K nowledge Management Functional Block
has subscribed to. The Knowledge Management Functional Block may send any type of data, information, knowledge,
policies, and metadata to the Semantic Bus that it deems necessary.

Thisis abi-directional Internal Reference Point.

7.7.4 Reference Point lsem-ca

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Context-Aware Management Functional Block that the Context-Aware Management Functional
Block has subscribed to. The Context-Aware Management Functional Block may send any type of data, information,
knowledge, policies, and metadata to the Semantic Bus that it deems necessary.

Thisisabi-directional Internal Reference Point.

7.7.5 Reference Point lsem-cog

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Cognition Management Functional Block that the Cognition Management Functional Block has
subscribed to. The Cognition Management Functional Block may send any type of data, information, knowledge,
policies, and metadata to the Semantic Bus that it deems necessary.

Thisisabi-directional Internal Reference Point.

7.7.6 Reference Point lsem-sa

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Situational Awareness Functional Block that the Situational Awareness Functional Block has
subscribed to. The Situational Awareness Functional Block may send any type of data, information, knowledge,
policies, and metadata to the Semantic Bus that it deems necessary.

Thisisabi-directional Internal Reference Point.

7.7.7 Reference Point lsem-mde

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Model-Driven Engineering Functional Block that the Model-Driven Engineering Functional
Block has subscribed to. The Model-Driven Engineering Functional Block may send any type of data, information,
knowledge, policies, and metadata to the Semantic Bus that it deems necessary.

Thisisabi-directional Internal Reference Point.

7.7.8 Reference Point lsem-pm

This Internal Reference Point is used to transfer all types of data, information, knowledge, policies, and metadata from
the Semantic Bus to the Policy Management Functional Block that the Policy Management Functional Block has
subscribed to. The Policy Management Functional Block may send any type of data, information, knowledge, policies,
and metadata to the Semantic Bus that it deems necessary.

Thisisabi-directional Internal Reference Point.

ETSI

181 ETSI GS ENI 005 V3.1.1 (2023-06)

779 Reference POint Isem-denorm

This Internal Reference Point is used to transfer data from the Semantic Bus to the Data Denormalization Functional
Block. These data may be data, information, knowledge, policies, and metadata from any internal ENI Functional Block
that is necessary to communicate to the Assisted System or its Designated Entity. Thisisa uni-directional Internal
Reference Point, meaning that data for processing shall only flow from the Semantic Bus to the Data Denormalization
Functional Block.

The Data Denormalization Functional Block may generate an event to the Semantic Bus that informs other ENI internal
Functional Blocks of the receipt of new data.

If the Output Generation Functional Block is combined with the Data Denormalization Functional Block, then this
Internal Reference Point need not be defined.
7.7.10 Reference Point lgenorm-out

This Internal Reference Point is used to transfer data from the Data Denormalization Functional Block to the Output
Generation Functional Block, where it will be sent by an appropriate External Reference Point (see Figure 7-2 and
clause 7.3 for their definitions). Data output may include al types of data, information, knowledge, policies, and
metadata. Thisisauni-directional Internal Reference Point, meaning that data for processing shall only flow from the
Data Denormalization Functional Block to the Output Generation Functional Block.

The Output Generation Functional Block may generate an event to the Semantic Bus that informs other ENI internal
Functional Blocks of the transmission of these data.

7.8 Internal Reference Point Protocol Specification

7.8.1 Introduction

Internal protocols need to run as fast as possible while still providing strong security. The protocols defined in
clause 7.4 of the present document are also applicable for ENI internal protocols (i.e. protocols used over ENI Internal
Reference Points):

e AnENI System should use gRPC and HTTP/2 between distributed Functional Blocks.

e AnENI System may use GraphQL and HTTP/1.1 for specific use cases between distributed Functional
Blocks.

. An ENI System may use REST and HTTP/1.1 for specific use cases between distributed Functional Blocks.

e AnENI System may use HATEOAS and HTTP/1.1 for specific use cases between distributed Functional
Blocks.

7.8.2 Generic Protocols for use with Internal Reference Points

Protocols are only required when Internal Reference Points communicate between distributed Functional Blocks. In that
case, the protocols defined in clause 7.4.2 of the present document should be used.

7.8.3 Specific Protocols for use with Internal Reference Points

Protocols are only required when Internal Reference Points communicate between distributed Functional Blocks. In that
case, the protocols defined in clause 7.4.3 of the present document should be used.

ETSI

182 ETSI GS ENI 005 V3.1.1 (2023-06)

8 ENI API Design

8.1 Introduction

Table 7-3 in clause 7.5.2.7 summarizes the advantages and disadvantages of four popular protocols. REST, HATEOAS,
GraphQL, and grRPC.

Asexplained in clause 7.5.2, gRPC offers many advantages compared to standard REST for creating APIs. An API
architecture created using gRPC enables multiple functions created in different programming languages to work
together. Thisis very important in ENI, as it enables different functionality in ENI to be free to use the best language
implementation available. Thisis particularly important given the wide diversity of functionality used in ENI (e.g. Al,
machine learning, telemetry, and context and situation awareness). gRPC uses the protocol buffers (Protobuf)
messaging format, which is a highly efficient messaging format for serializing structured data while being platform- and
language-agnostic. Transmission speed is much faster using Protobuf, since it reduces message size and is asimpler and
lighter weight protocol. gRPC also uses HTTP2, which uses binary format encapsulation (instead of plain text asin
HTTPL.1). In addition, HTTP2 uses three different types of streaming (see clause 7.5.2.6), which enables code
optimization. gRPC has built-in library features enabling it to intelligently and quickly select which back-end server to
send traffic to. It also supports connection pooling for state-related communications. Finally, gRPC enables native code
generation instead of having to rely on third-party tools to generate code by using its own protoc compiler. This works
in multiple languages and can be used in polyglot environments.

The main disadvantage of gRPC isthat it is more difficult to implement than REST due to the fact that thereis not
much support yet for this API structure when it comes to third-party tools and code frameworks.

Thisresults in the following requirements:
e AnENI System should use gRPC APIsfor communication between it and an Assisted System.
e AnENI System should use gRPC APIs for communication between multiple ENI Systems.
e AnENI System may use GraphQL APIsfor communication between it and an Assisted System.
e AnENI System may use GraphQL APIsfor communication between multiple ENI Systems.
e AnENI System may use REST APIsfor communication between it and an Assisted System.
e AnENI System may use REST APIsfor communication between multiple ENI Systems.
e AnENI System may use HATEOAS APIs for communication between it and an Assisted System.

e AnENI System may use HATEOAS APIs for communication between multiple ENI Systems.

8.2 Design Goals

The following are the design goals for ENI APIs:

1) Each ENI API shall be created from the ENI Extended Core Model [9]. This provides inherent extensibility,
and enables each ENI API to use class operationsto fulfil al or part of the functionality of the API.

2) APl designisan interface for developers. It should therefore be structured for use by devel opers. For example,
instead of focusing on what a service needs to provide, ENI APIs should be easy for the devel oper to use. In
particular:

a AnENI Functional Block shall have groups of similar APIs.

b) Each function in an ENI Functional Block shall have its own set of similar APIs. This supports several
principlesin [i.35], such as the Single Responsibility Principle and building modular code.

¢) ENI APIsacrossal ENI Functional Blocks shall have similar naming, structure, error handling, and
other functionality.

ETSI

3)

4)
5)

6)
7)
8)
9)

10)
11)
12)
13)

8.3

8.3.1

183 ETSI GS ENI 005 V3.1.1 (2023-06)
d) All ENI APIsshall be ableto call class methods to perform al or part of their functions. Software
contracts [i.35] facilitates understanding an API and specifiesits behaviour clearly and concisely.

Each ENI API should be easy to learn and use. Its functionality should be easy to explain, and obvious from
how it is named.

Each APl in the ENI API should perform a single function (see the Single Responsibility Principle in [i.35]).

Each ENI API should be hard to use incorrectly. Initial versions may not contain all possible functionality,
parameters, and other variations. Such functionality may be added later in a new version of the API.

Each ENI API should maximize information hiding [i.35].
Each ENI API should be easily discoverable.
Each ENI API should be able to be used, understood, created, tested, and debugged independently.

It isimpossible to define a perfect API. APIs specify not just the interfaces for programmers to understand and
write code against but also for computers to execute, making them brittle and difficult to change. Hence:

a) Each ENI API shall support versioning.
b) Each version of each ENI API should be able to be used. This makesthe ENI APIs user-friendly.

¢) When an old version of an ENI APl isused, the ENI API should inform the user that a newer version is
available.

The ENI API users should be able to abort or reset operations and easily get the API back to a normal state.
The ENI should help users recognize, diagnose, and recover from errors.
The ENI shall provide documentation.

The ENI should provide context-specific help.

Methodology for Constructing APIs

Introduction

The construction of the ENI set of APIs consists of the following phases:

1)

2)

3)

8.3.2

A developer shall define a set of paradigms for the ENI Reference Point (Internal or External) that a set of ENI
APlIsuse.

A developer shall define a set of paradigms that are common for all ENI APIs. This provides a common look-
and-feel for the ENI APIs, aswell as standard client- and server-side applications and libraries and common
authentication and authorization mechanisms.

Once a particular architectural styleis chosen, a developer shall conform to applicable standards for that
particular architectural style.

Common API Paradigms

Usability, as well as a common look-and-feel for the ENI APIsisimportant. Clause 8.2 shall be used to guide usability
and a common look-and-feel.

This extends to consistent usage of standards. In particular:

1)
2)

3)

The ENI APIs shall use the same authentication and authorization mechanisms.

For specific ENI APIs that require additional security, those ENI APIs should use the same additional security
protection mechanisms.

All ENI APIs shall use a secure protocol, as described in clauses 7.4 and 7.8.

ETSI

4)

5)

8.3.3

184 ETSI GS ENI 005 V3.1.1 (2023-06)

All ENI APIs shall use the same logging, monitoring, and tracing mechanisms to enable detailed API analytics
to be gathered.

Each set of ENI APIsthat operate in a particular ENI Functional Block should define limits, quotas and traffic
management policies.

a)

b)

Limits and Quotas:

i)

i)

Vi)

Limits and quotas are placed on ENI APl requests to protect the ENI System from receiving more
data than it can handle, and to optimize the distribution of the ENI System resources used.

Quotas are used in production systems to ensure that a customer states within their contractual
terms.

Define which limits and quotas are changeable by the devel oper, and the range of parametersthat a
developer is able to use.

Define which limits and quotas are changeable by the end-user (if any), and the range of parameters
that a developer is able to use.

Limits may be static or dynamic. A static limit operates as a threshold that, once exceeded, results
in an aborted request and the return of an appropriate error. A dynamic limit will allow arequest to
complete but will also return a warning. Repeated exceeding of a dynamic limit will resultin
aborting subsequent API requests and the return of an appropriate error.

Policiesthat are used in a consistent fashion if alimit or quotais exceeded.

Traffic Management Policies:

i)

i)

i)

iv)

Vi)

vii)

An ENI System shall implement |oad balancing and exponential backoff traffic management
policies.

Define which traffic management policies are changeable by the devel oper, and the range of
parameters that a developer is able to use.

Load balancing defines fine-grained configuration of how incoming traffic is distributed. A load
balancer has two main parts: a frontend and a backend configuration. The frontend configuration
describes the exposed public or private | P address of the load balancer. The backend configuration
defines how the traffic is distributed.

The ENI API Broker shall provide adefault APl gateway load balancing mechanism.

The ENI API Broker default API gateway |oad balancing mechanism should support different
configurations optimized for different use cases (e.g. high availability and service chaining).

The ENI API Broker may support the ability for a developer to customize load balancing
functionality.

Exponential backoff isthe process of a client periodically retrying afailed request over an
increasing amount of time. Exponential backoff increases the efficiency of bandwidth usage,
reduces the number of requests required to get a successful response, and maximizes the throughput
of requestsin concurrent environments.

gRPC API Construction

This clause describes how clauses 8.3.1 and 8.3.2 of the present document are used for the specific case of gRPC APls
inan ENI System.

gRPC should use aresource-orientated architectural design style (see clause 7.5.2.6). Resources are named entities
(e.g. an end-user service), and resource names are their identifiers. Each resource shall have its own unique resource
name. The resource name shall consist of the resource ID, the ID(s) of any parent resources, and its APl service name.

gRPC APIs should use scheme-less URIs (i.e. aURI that does not specify a protocol to use) for resource names. This
enables gRPC APIsto be familiar to users of REST URL conventions. In addition, this enables their behaviour to be
similar to a network file path. Finally, this enables gRPC APIsto be mapped to REST URLS.

ETSI

185 ETSI GS ENI 005 V3.1.1 (2023-06)

A collection isatype of resource that contains alist of sub-resources of identical type. Collections can contain
collections. For example, adirectory isa collection of file resources, and a service collection could contain a collection
of end-user services and a collection of ENI internal services. The resource nameis organized hierarchically using
collection IDs and resource | Ds, separated by forward dashes. If a resource contains a sub-resource, the sub-resource's
name shall be formed by specifying the parent resource name followed by the sub-resource's ID separated by forward
dlashes. For example, aresource of type service has a collection of services, where each service has a collection of
objects.

Protocol Buffers (ProtoBuf) is a data serialization protocol that is used to exchange data. The serialization process
requires that the structure of datato be exchanged is defined in a .proto file using the Protocol Buffers language (.proto
file syntax); this step is a so known as defining a Protocol Buffers message type (see clause 7.5.2.6). The ProtoBuf
compiler then reads the .proto file, and compiles the data structure into a class in the target language, which can then be
used to manipulate the data programmatically. In addition, gRPC offers a specia plugin for the ProtoBuf compiler that
compiles .proto filesto server-side and client-side artifacts for gRPC API services, in addition to the data classes. This
requires the addition of service definitions to the .proto files, which describes the gRPC APIs. A service definition
contains the methods that allow consumers to call remotely, the method parameters and message formats to use when
invoking those methods, and so on. Each gRPC API takes one ProtoBuf message type as input (request), and produces
another ProtoBuf message type as output (response).

gRPC defines a set of standard message field definitions that should be used when similar concepts are needed. This
ensures that the same concept has the same name and semantics across different APIs. gRPC also support a set of
common request parameters available across all APl methods. These parameters are known as system parameters.
ogRPC APIs support this feature in HTTP request headers with keys in lowercase. An example of thisfeature is
authorization. Standard field and system parameters, as well as naming conventions, are explained in
https://github.com/googl eapis/googleapis.

gRPC uses .proto files to define the APl and .yaml files to configure the API service. Each API service shall have an
API directory inside an API repository. The API directory should follow the standard gRPC directory layout. The API
directory should contain all API definition files and build scripts (see https.//github.com/googl eapis/googleapis).

gRPC uses a simple protocol-agnostic error model. This provides a consistent experience across different APls and
different error contexts (such as asynchronous, batch, or workflow errors). Errors areincluded in the headers, and errors
should not exceed 2 kilobytesin size.

The error model for gRPC APIsislogically defined by google.rpc. Status, an instance of which isreturned to the client
when an API error occurs. Error handling for resource-orientated API design should use asmall set of standard errors.
For example, instead of defining different kinds of "not found" errors, the server uses one standard google.rpc.Code.
NOT_FOUND error code and tells the client which specific resource was not found. The smaller error space increases
consistency, reduces the complexity of documentation, affords better idiomatic mappingsin client libraries, and reduces
client logic complexity while not restricting the inclusion of actionable information.

Hence, gRPC API shall use the canonical error codes defined by google.rpc.Code. Individual APIs shall not define
additional error codes. The error message should help users understand and resolve the API error easily and quickly.
The following guidelines should be used when writing error messages:

1) ENI API error messages shall be clear and easy to understand.

2) ENI API error messages should be independent about the underlying service implementation and error
context.

3) ENI API error messages should be constructed such that a technical user can respond to the error and correct
it.

4) ENI API error messages should be brief.
5) ENI API error messages may include alink to additional information.

gRPC APIs shall define a set of standard error payloads for error details, which are defined in
google/rpc/error_details.proto. These cover the most common needs for API errors, such as quota failure and invalid
parameters. Like error codes, developers should use these standard payloads whenever possible, and should not define
custom payloads unless absol utely needed.

ETSI

https://github.com/googleapis/googleapis
https://github.com/googleapis/googleapis

186 ETSI GS ENI 005 V3.1.1 (2023-06)

Additional error detail types should only beintroduced if they can assist application code to handle the errors. If the
error information can only be handled by humans, the devel oper should rely on the error message content and let
developers handle it manually rather than introducing additional error detail types.

Common performance paradigms include:

1)

2)

3)

Keepalive pings should be used to keep HTTP/2 connections alive during periods of inactivity to allow initial
RPCs to be made quickly without a delay.

Streaming RPCs should be used when handling along-lived logical flow of data from the client-to-server,
server-to-client, or in both directions. Streams can avoid continuous RPC initiation, which includes connection
load balancing at the client-side, starting a new HTTP/2 request at the transport layer, and invoking a user-
defined method handler on the server side. However, streams cannot be load balanced once they have started
and can be hard to debug for stream failures. Streams should be used to optimize the application, not gRPC.

Each gRPC channel should use zero or more HTTP/2 connections. Each connection should place alimit on
the number of concurrent streams. When the number of active RPCs on the connection reaches this limit,
additional RPCs shall be queued in the client and will wait for active RPCs to finish before they are sent.
Hence:

a) aseparate channel should be created for each area of high load in the application; or

b) apool of gRPC channels should be used to distribute RPCs over multiple connections.

If compatibility with REST APIsis desired, then the following additional semantics should be used:

1)

2)

3)

Get. The Get method shall take a resource name, zero or more parameters, and return the specified resource.
This method shall map to a GET operation. The request message field(s) receiving the resource name shall
map to the URL path. All remaining request message fields shall map to the URL query parameters. A request
body shall not be defined. The returned resource shall map to the entire response body.

Create. The Create method shall take a parent resource name, aresource, and zero or more parameters. It
shall create a new resource under the specified parent, and shall return the newly created resource. This
method shall map to a POST operation. An API supporting resource creation shall have a Create method for
each type of resource that can be created. The request message shall have afield parent that specifies the
parent resource name where the resource is to be created. The request message field containing the resource
shall map to the HTTP request body. The request may contain a field named <resource>_id to allow callersto
select aclient assigned id. This may be inside the resource. All remaining request message fields shall map to
the URL query parameters. The returned resource shall map to the entire HT TP response body. If the Create
method supports client-assigned resource names and the resource already exists, the request shall fail with an
appropriate error code signifying that the resource already exists. This parallels the design of class operations
inETSI GSENI 019[9].

Update. The Update method shall take a request message containing a resource and zero or more parameters.
It shall update the specified resource and its properties, and shall return the updated resource. This method
mapsto either aPUT or a PATCH operation, as follows. If an Update method supports full resource update (as
shown in the class operation design in ETSI GS ENI 019 [9]), this method shall map to a PUT operation. If an
Update method supports partial resource update (as shown in the class operation design in ETSI

GS ENI 019 [9)]), this method shall map to a PATCH operation. Any Update method tht needs more advanced
patching semantics should use a custom method. The ability to move and/or rename a resource shall not be
included in the Update method; it should be defined using a custom method. The message field receiving the
resource name shall map to the URL path. The field may be in the resource message itself. The request
message field containing the resource shall map to the request body. All remaining request message fields
shall map to the URL query parameters. The response message shall be the updated resource itself. If the API
accepts client-assigned resource names, and a resource name is not found, then the Update method should fail
with an appropriate error code indicating that the resource name was not found. If an Update method also
supports resource creation, then a separate Create method shall be provided.

ETSI

187 ETSI GS ENI 005 V3.1.1 (2023-06)

4) Delete. The Delete method shall take a resource name and zero or more parameters, and del etes the specified
resource. The Delete method should return google.protobuf.Empty. This method shall map to aDELETE
operation. An API shall not rely on any information returned by a Delete method, as it cannot be invoked
repeatedly. The request message field(s) receiving the resource name should map to the URL path. All
remaining request message fields shall map to the URL query parameters. A parameter may be specified to
defineif the resource isto be deleted immediately or at a scheduled time. A Delete operation shall not have a
request body. If the Delete method immediately removes the resource, it should return an empty response. If
the Delete method only marks the resource as being deleted, it should return the updated resource.

5) List. The List method shall take a collection name and zero or more parameters as input, and shall return alist
of resources that match the input. This method shall map to a GET operation. This method may be used to
search for resources. List is suited to data from a single collection that is bounded in size and not cached. For
broader cases, the custom method Search should be used. The request message field(s) receiving the name of
the collection whose resources are being listed should map to the URL path. If the collection name mapsto the
URL path, the last segment of the URL template (the collection ID) shall be aliteral. All remaining request
message fields shall map to the URL query parameters. This method shall not contain arequest body. The
response body should contain alist of resources along with optional metadata.

Custom methods should only be used for functionality that cannot be easily expressed via the above five methods. In
general, standard methods should be used instead of custom methods whenever possible. A custom method may be
associated with aresource, a collection, or aservice. It may take an arbitrary request and return an arbitrary response,
and also supports streaming requests and responses. To map to HTTP, a custom method shall use the following generic
HTTP mapping:

"https: //service.name/v?/some/r esour ce/name: customVerb"

where "v?" denotes the current version of the method. The colon (*:") is used instead of aforward slash ("/") in order to
separate the custom verb from the resource name. Thisis necessary in order to support arbitrary paths. Custom methods
should use HTTP POST sinceit has the most flexible semantics. An important exception is a custom method that
defines Get or List semantics. Custom methods should not use HTTP PATCH. The request message field(s) receiving
the resource name of the resource or collection with which the custom method is associated should map to the URL
path. If the HTTP verb used for the custom method allows an HTTP request body (e.g. POST, PUT, PATCH, or a
custom HTTP verb), the HTTP configuration of that custom method shall use the body: "*" clause and all remaining
request message fields shall map to the HTTP request body. If the HTTP verb used for the custom method does not
accept an HTTP request body (GET, DELETE), the HTTP configuration of such method shall not use the body clause
at al, and al remaining request message fields shall map to the URL query parameters.

8.3.4 gRPC Integration

There are severa open source community efforts that are creating a gRPC gateway for integrating gRPC APIs with
other APIs, such as REST.

The ENI System may support creating a gRPC gateway. Thisis for further study in Release 4 of the present document
(see clause 9).

8.4 Overview of API Functionality

8.4.1 Introduction

Each ENI API runs over aparticular ENI External or Internal Reference Point. The applicable protocols shall be those
described in clauses 7.4 and 7.8 of the present document.

gRPC uses a client-server architecture, where the client application can call functions on a server. gRPC defines a
service on the server side that has methods that can be called remotely with their parameters and return types. The client
side has a stub that provides the same methods as the one in the server side. This enablesaclient to call afunction on
the server application hosted in a different machine asiif it werein alocal object.

Hence, each object may have a set of one or more functions for each structured data object defined in the .proto file.

The following clauses describe the different functions available on each ENI External Reference Point. The functions
for each ENI Internal Reference Point are for further study in Release 4.

ETSI

8.4.2

188

External Reference Point Eoss-eni-dat

ETSI GS ENI 005 V3.1.1 (2023-06)

The functionality of this External Reference Point is defined in clause 7.3.1. Ten resources are defined for this External

Reference Point:

1) acontainer for ingested data;

2) ingested data and information;

3) acontainer for normalized data;

4) normalized data and information;

5) acontainer for data with problems preventing normalization;

6) datawith problems preventing normalization;

7) acontainer for data with solutions enabling normalization;

8) solved normalized data;

9) acontainer for negotiation information;

10)

negotiated information.

The functions are shown in Table 8-1, which provides brief descriptions of each function.

Table 8-1: ENI External Reference Point Egss-eni-dat Functions from the OSS to the ENI System

R?\T:rﬁ;ce Resource URI Miti\((:)d Description
CREATE _Creates anew In_gestedOSSData resource and stores
OSS Input Jeoss data in ingested data in it
Data - = GET Retrieves all ingested data from the IngestedOSSData
resource
OSS Input GET Retrieves a single IngestedOSSData resource
Data leoss_data_in/{ingestDatalD} |UPDATE Modifies a single IngestedOSSData resource
Operations DELETE Deletes a single IngestedOSSData resource
(ORTS) CREATE Creates a new NormalizedOSSData resource
Normalized /eoss_normalized_data GET Retrieves all normalized data from the
Data NormalizedOSSData resource
0SS GET Retrieves an existing NormalizedOSSData resource
Normalized /eoss_normalized_data/ UPDATE Modifies an existing NormalizedOSSData resource
gzgations {normalizedDatalD} DELETE Deletes an existing NormalizedOSSData resource
0SS CREATE Creates a new NormalizedOSSDataProblem resource
Normalized leoss_normalized_data/
Data having {normalizedDatalD}/problem |GET Retrieves all NormalizedOSSDataProblem resources
Problems
0SS GET Retrieves an individual NormalizedOSSDataProblem
Normalized /eoss_normalized_data/ rhiigh‘llré:: an individual NormalizedOSSDataProblem
Data having {normalizedDatalD}/problem |UPDATE resource
Problems KproblemID} —— -
Operations DELETE Deletes an individual NormalizedOSSDataProblem
resource
0SS CREATE Creates a new NormalizedOSSDataSolution resource
Normalized /eoss_normalized_data/
Data with {normalizedDatalD}/solution |GET Retrieves all NormalizedOSSDataSolution resources
Solutions
0SS GET Retrieves an individual NormalizedOSSDataSolution
. . resource
Normalized \/eoss_normalized_data/ Modifies an individual NormalizedOSSDataSolution
Data yvith {normalized DatalD}/solution/ |UPDATE resource
gglgrt;?igis {solutionID} DELETE Deletes an individual NormalizedOSSDataSolution
resource

ETSI

189

ETSI GS ENI 005 V3.1.1 (2023-06)

Resource RPC N
Name Resource URI Method Description
0SS i CREATE Creates a new NormalizedOSSDataNegotiate resource
Normalized /eoss_r;prrga |zed_d/ata/ o
Data with g:]orma 222 DEEID) g Bz GET Retrieves all NormalizedOSSDataNegotiate resources
Negotiation
0SS GET Retrieves an individual NormalizedOSSDataNegotiate
Normalized /eoss_normalized_data/ resource _____ - -
Data with {normalizedDatalD}/solution/ |UPDATE I',\gzgﬁf;an individual NormalizedOSSDataNegotiate
Negotiation {negotiationID} —— - -
Operations DELETE Deletes an individual NormalizedOSSDataNegotiate
resource
8.4.3 External Reference Point Eoss-eni-cmd

The functionality of this External Reference Point is defined in clause 7.3.2. Eight resources are defined for this
External Reference Point:

1) acontainer for recommendations and commands to be sent;

2) recommendations and commands;

3) acontainer for recommendations and commands that the OSS could not understand,;

4) recommendations and command problems;

5) acontainer for recommendations and commands with solutions that the OSS accepted,;

6) solved recommendations and commands;

7) acontainer for negotiation information;

8) negotiated information.

The functions are shown in Table 8-2, which provides brief descriptions of each function.

Table 8-2: ENI External Reference Point Egss-eni.ema FUnctions from the ENI System to the OSS

RPC L.
Resource Name Resource URI Method Description
. Creates a new RecommendCommandOSS
Recommendations CREATE resource and stores in it
e} CEITECS i fEEEE TS Eme_ e Retrieves all recommendations and commands
resaliine Oes cE from the RecommendCommandOSS resource
Retrieves a single RecommendCommandOSS
. GET
Recommendations resource
and Commands to Modifies a single RecommendCommandOSS
be Sent to the OSS leoss_rec_cmd_out/{recCmdID} |UPDATE resource
Operations DELETE Deletes a single RecommendCommandOSS
resource
Recommendations CREATE Creates a new
and Commands to |/eoss_rec_cmd_out/ RecommendCommandOSSProblem resource
be Sent to the OSS |{recCmdID}/problem GET Retrieves all
having Problems RecommendCommandOSSProblem resources
. Retrieves an individual
Recommendations GET RecommendCommandOSSProblem
and Commands to leoss_rec_cmd_out Modifies an individual
be S_,ent to the OSS |/{recCmdID}/problem UPDATE RecommendCommandOSSProblem
having Problems KproblemID} ——
Operations DELETE Deletes an individual
RecommendCommandOSSProblem
Recommendations CREATE Creates a new
and Commands to |/eoss_rec_cmd_out/ RecommendCommandOSSSolution resource
be Sent to the OSS |{recCmdID}/solution GET Retrieves all
with Solutions RecommendCommandOSSSolution resources

ETSI

190 ETSI GS ENI 005 V3.1.1 (2023-06)
Resource Name Resource URI RPC Description
Method
. Retrieves an individual

Recommendations GET RecommendCommandOSSSolution resource
and Commands to |/eoss_rec_cmd_out/ Modifies an individual
be Sent to the OSS |{recCmdID}/solution/ UPDATE RecommendCommandOSSSolution resource
with Sqlutions {solutionID} Deletes an individual
Operations DELETE RecommendCommandOSSSolution resource
Recommendations CREATE Creates a new
and Commands to Jeoss rec cmd out/ RecommendCommandOSSNegotiate resource
be Sent to the OSS — = = Retrieves all
with Negotiation izt |IDy =g eUEiE GET RecommendCommandOSSNegotiate

resources
Recommendations GET Retrieves an individual
and Commands to RecommendCommandOSSNegotiate resource
be Sent to the OSS /eoss_rec_cmd_oyt/. Modifies an individual
with Negotiation {rechd[D}/negotlatlon UPDATE RecommendCommandOSSNegotiate resource
Operations {negotiationID} DELETE Deletes an individual

RecommendCommandOSSNegotiate resource
8.4.4 External Reference Point Eoss-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.3. Sixteen resources are defined for this
External Reference Point:

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)

acontainer for policies sent by the OSS;

OSS input policies,

acontainer for policies not understood by the ENI System;

ENI System policies having Problems;

acontainer for policies with solutions that the ENI System accepted;
ENI System solved policies;

a container for negotiation information for problem policies for the ENI System;
negotiated ENI System policy information;

acontainer for policies for sent by the ENI System to the OSS;
policies for the OSS;

acontainer for policies not understood by the OSS;

OSS policies having Problems;

acontainer for policies with solutions that the OSS accepted;

solved OSS policies;

acontainer for negotiation information for problem OSS policies;

negotiated OSS policy information.

The functions are shown in Table 8-3 and Table 8-4 for policies sent by the OSS(and received by the ENI System) and
policies sent by the ENI System (and received by the OSS), respectively, along with brief descriptions of each function.

ETSI

191

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-3: ENI External Reference Point Egss-eni-pol fOr Functions Sent by the OSS to the ENI System

RPC -
Resource Name Resource URI Method Description
Policies Sent by o CREATE Cr?a_tes a new OESPollcyDgta resource and stores
0SS /eoss_policy_in policies sent byF e OSSinit .
GET Retrieves all policies from the OSSPolicyData resource
Policies Sent b GET Retrieves a single policy received from the OSS
0SS Operation;/ /eoss_policy_in/{policylD} |UPDATE Modifies a single policy received from the OSS
DELETE Deletes a single policy received from the OSS
. Creates a new OSSPolicyDataProblem resource for
ol sent B /eoss_policy_in/{policylD}/ CREATE policies containing problems
OSS having : =
problem Retrieves all policies sent by the OSS that the ENI
Problems GET -
System has problems understanding
GET Retrieves an existing policy sent by the OSS that the
Policies Sent by ENI System cannot understand
OSS having leoss_policy_in/{policylD} UPDATE Modifies an existing policy sent by the OSS that the
Problems problem/{problemID} ENI System cannot understand
Operations Deletes an existing policy sent by the OSS that the ENI
DELETE
System cannot understand
Policies Sent by Jeoss_policy_inf{policylDY/ CREATE Creates a new OSSPolicyDataSolution resource
OSS with solutiaﬁ y_Inipolicy GET Retrieves all policies sent by the OSS that the ENI
Solutions System can now understand
GET Retrieves an existing policy sent by the OSS that the
Policies Sent by ENI System can now understand
0SS with /eoss_policy_in/{policylD}/ UPDATE Modifies an existing policy sent by the OSS that the
Solutions solution/{solutionID} ENI System can now understand
Operations Deletes an existing policy sent by the OSS that the ENI
DELETE
System can now understand
Policies Sent by feoss_policy_inf{policylD} CREATE Creates a new OSSPolicyDataNegotiate resource
OSS with ne oti_ef)tiony_ policy GET Retrieves all negotiation information for all policies sent
Negotiation 9 by the OSS to the ENI System to resolve problems
Retrieves negotiation information for a selected policy
GET sent from the OSS that the ENI System can now
. understand
Policies Sent by - T - :
0SS with Jeoss_policy_in/{policylD}/ Modifies negotiation information for a selected policy
L = - UPDATE sent from the OSS that the ENI System can now
Negotiation negotiation/{negotiationID} understand
Operations Deletes negotiation information for a selected policy
DELETE sent from the OSS that the ENI System can now

understand

Table 8-4: ENI External Reference Point Egss-eni-pol fOr Functions Sent by the ENI System to the OSS

Resource Name Resource URI Mth;I%d Description
o CREATE Creates anew ENIOSSPolicyData resource and
Policies Sent by Jeoss_policy_out stores policies created by the ENI System in it
the ENI System — - GET Retrieves all policies from the ENIOSSPolicyData
resource
Policies Sent by GET Retrieves a single policy created by the ENI System
the ENI System leoss_policy_out/{policylD} |UPDATE Modifies a single policy created by the ENI System
Operations DELETE Deletes a single policy created by the ENI System
Policies Sent by feoss_policy_out{policylD}Y CREATE Creates a new ENIOSSPolicyDataProblem resource
the ENI System roblem - GET Retrieves all policies created by the ENI System that
having Problems P the OSS has problems understanding
GET Retrieves an existing policy sent by the ENI System
Policies Sent by that the OSS cannot understand
the ENI System leoss_policy_out/{policylD}/ UPDATE Modifies an existing policy sent by the ENI System
having Problems |problem/{problemID} that the OSS cannot understand
Operations DELETE Deletes an existing policy sent by the ENI System
that the OSS cannot understand

Policies Sent by feass_policy_outi{policylD}/ CREATE Creates a new ENIOSSPolicyDataSolution resource
the ENI System solution - GET Retrieves all policies sent by the ENI System that the
with Solutions OSS can now understand

ETSI

192 ETSI GS ENI 005 V3.1.1 (2023-06)
Resource Name Resource URI RPC Description
Method
GET Retrieves an existing policy sent by the ENI System
Policies Sent by that the OSS can now understand
the ENI System leoss_policy_out/{policylD}/ UPDATE Modifies an existing policy sent by the ENI System
with Solutions solution/{solutionID} that the OSS can now understand
Operations DELETE Deletes an existing policy sent by the ENI System
that the OSS can now understand
Polici CREATE Creates a new ENIOSSPolicyNegotiate resource
olicies Sent by . . : T — : =
the ENI System /eoss__ppl|cy_out/{pollcylD}/ Retrieves all negotiation information for all policies
with Negotiation negotiation GET created by the ENI System for the OSS to resolve
problems
Retrieves an existing policy sent by the ENI System
GET to the OSS to resolve problems that the OSS can
now understand
Policies Sent by Jeoss_policy_outi{policylD}/ Modifies negotiation information for a selected policy
the ENI System ne oti_zftion/{ﬁe otirg)ationle} UPDATE sent by the ENI System that the OSS can now
with Negotiation 9 9 understand
Deletes negotiation information for a selected policy
DELETE sent by the ENI System that the OSS can now

understand

8.4.5

External Reference Point Eapp-eni-ctx

The functionality of this External Reference Point is defined in clause 7.3.4. Twenty resources are defined for this
External Reference Point, ten resources from the application to the ENI System, and ten resources from the ENI System
to the application. The ten resources from the Application to the ENI System are:

1) container for ingested information;

2) ingested context- and situation-aware information;

3) container for processing and normalizing context- and situation-aware information;

4) processed and normalized context- and situation-aware information;

5) container for processing and normalizing context- and situation-aware information from the application that
the ENI System cannot understand;

6) processed and normalized context- and situation-aware information;

7) container for processing and normalizing context- and situation-aware information from the application that
the ENI System can now understand;

8) processed and normalized context- and situation-aware information;

9) container for negotiation information for resolving problems;

10) negotiated application policy information.

The ten resources from the ENI System to the Application are:

1) container for ingested information;

2) ingested context- and situation-aware information;

3) container for processing and normalizing context- and situation-aware information;

4) processed and normalized context- and situation-aware information;

5) container for processing and normalizing context- and situation-aware information from the ENI System that
the application cannot understand;

6) processed and normalized context- and situation-aware information;

ETSI

193

ETSI GS ENI 005 V3.1.1 (2023-06)

7) container for processing and normalizing context- and situation-aware information from the ENI System that
the application can now understand,;

8) processed and normalized context- and situation-aware information;

9) container for negotiation information for resolving problems;

10)

negotiated application policy information.

The functions are shown in Table 8-5 and Table 8-6, which provides brief descriptions of each function in each table.

Table 8-5: ENI External Reference Point Eapp-eni-ctx FUNctions Sent by the Application to ENI System

RPC

Resource Name Resource URI Description
Method
App Input Data CREATE _Creates anew C.txtS|tApp resource and stores
S ingested data in it
SIS HEETETL (PREEREE SAIVEHET T Retrieves all ingested data from the CtxtSitA
System GET 9 pp
resource
App Input Data GET Retrieves a single ingested CixtSitApp resource
for the ENI /eapp_context_situation_in/ |UPDATE Modifies a single ingested CtxtSitApp resource
System ituati . . .
O{)Ser ations {contexSituationtD} DELETE Deletes a single ingested CtxtSitApp resource
App Input Data / ituation in/ CREATE Creates a new CtxtSitAppNormalized resource
for the ENI eapp_context_situation_in/ : .
S . {contexSituationtID}normaliz Retrieves all normalized data from the
ystem that is d GET CixtSi lized
Normalized e txtSitAppNormalized resource
App Input Data Jeapp_context_situation_in/ GET Retrieves an existing CtxtSitAppNormalized resource
?;Sttf:n Et’r\:;t N {contexSituationtiD}normaliz UPDATE Modifies an existing CtxtSitAppNormalized resource
Normalized ?r%rmalizedlD} DELETE Deletes an existing CtxtSitAppNormalized resource
Operations
App Input Data /eapp_context_situation_in/ CREATE Creates a new CtxtSitAppNormalizedProblem
Normalized {contexSituationtID}normaliz resource
having ed/ GET Retrieves all CtxtSitAppNormalizedProblem resources
Problems {normalizedID}/problem that the ENI System could not understand
App Input Data Jeapp,_context_situation_in/ |GET rRe(eStélLtler\éees an individual CtxtSitAppNormalizedProblem
Normalized {contexSituationtiD}normaliz Modifies an individual CtxtSitAppNormalizedProblem
having ed!/ UPDATE | 0= PP
Problems {normalizedID}/problem/ —— - -
Operations {problemID} DELETE rDeeSI:)aLtﬁ;an individual CtxtSitAppNormalizedProblem
App Input Data /eapp_context_situation_in/ CREATE Creates a new CtxtSitAppNormalizedSolution
Neymelaes] i {contexSituationtID}normaliz resource : _ _
Solutions ed/ GET Retrieves all CtxtSitAppNormalizedSolution resources
{normalizedID}/solution that the ENI System can now understand
App Input Data /eapp_context_situation_in/ |GET Retrieves an individual normalized data with solutions
Normalized with {contexSituationtiD}normaliz |UPDATE Modifies an individual normalized data with solutions
| ed/
lut . . R . . .
g(;:r;\(t)ir(])is {normalizedID}/solution/ DELETE Deletes an individual normalized data with solutions
{solutionID}
App Input Data /eapp_co_ntex_t_s|tuat|on_|n_/ CREATE Creates a new CtxtSitAppNormalizedNegotiate
Normalized with {contexSituationtID}normaliz resource
i ed/
Negotiation {normalizediD}/negotiation GET Retrieves all CtxtSitAppNormalizedNegotiate data
/ ntext situation in/ |GET Retrieves an individual
App Input Data {igﬁt%(csoitugtigstlB?ngrrﬁaliz CixtSitAppNormalizedNegotiate resource
Normalized with ed/ UPDATE Modifies an individual CtxtSitAppNormalizedNegotiate
Negotiation {normalizedID}/negotiation/ resource
Operations {negotiationiD} DELETE Deletes an individual CtxtSitAppNormalizedNegotiate

resource

ETSI

194

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-6: ENI External Reference Point Eapp-eni-ctx FUnctions Sent from the ENI System to Application

Rﬁ:rﬂ?e Resource URI MZtF;I%d Description

ENI System CREATE icr:wreea;tfesa ad gtegvi nC:ittxtS.ltENI resource and stores
DRIV AT EEIpE EOTIEE. SR, Z1E Rgtrieves all ingested data from the CitxtSitENI
Application GET resource 9
ENI System GET Retrieves a single ingested CixtSitENI resource
Data for an /eapp_context_situation_out/ UPDATE Modifies a single ingested CtxtSitENI resource
Application {contexSituationtID} . . .
Operations DELETE Deletes a single ingested CtxtSitENI resource
ENI System CREATE Creates a new CtxtSitENINormalized resource
DEVEIET UIe Rl EERL GIUEIEn_ Guh Retrieves all normalized data from the
App that is {contexSituationtID}normalized |GET CixtSItENINormalized resource
Normalized
ENI System GET Retrieves an existing CtxtSitENINormalized resource
Data for the /eapp_context_situation_out/ UPDATE Modifies an existing CtxtSitENINormalized resource
App that is {contexSituationtiD}normalized/
Normalized {normalizedID} DELETE Deletes an existing CtxtSitENINormalized resource
Operations
ENI System CREATE Creates a new CtxtSitENINormalizedProblem
Rgtpa [/eapp_context_situation_out/ resource
Normalized Eﬁg?ﬁgﬂgﬁgﬁ?ﬂg&?g&mm'Zed/ GET Retrieves all CtxtSitENINormalizedProblem
having p resources that the Application could not understand
Problems
ENI System GET Retrieves an individual
Data for the Jeapp context situation out/ CtxtSitENINormalizedProblem resource
App . {coﬁF&Situatio_ntlD}norrﬁalized/ UPDATE Modifies an individual CtxtSitENINormalizedProblem
E;)\Simngllzed {normalized|D}/problem/ resource
Problems {problemID} DELETE Deletes an CtxtSitENINormalizedProblem resource
Operations
ENI System CREATE Creates a new CixtSitENINormalizedSolution
2;:)& [/eapp_context_situation_out/ resource
Normalized gg?:ﬁ;?;gﬁg?ggﬁggrzmal'Zed/ GET Retrieves all CtxtSitENINormalizedSolution
with resources that the Application can now understand
Solutions
ENI System GET Retrieves an individual
2ata for the Jeapp_context_situation_out/ Ctxts!tENINprmgllzedSolutlgn resource .

pp {contexSituationtiD}normalized/ |UPDATE Modifies an individual CtxtSitENINormalizedSolution
\l/\lv?t:qmallzed {normalizedID}/solution/ resource
Solutions {solutionID} DELETE Deletes an individual CtxtSitENINormalizedSolution
Operations resource
ENI System CREATE Creates a new CtxtSitENINormalizedNegotiate
iata 17 H0E /eapp_context_situation_out/ resource
Ngfm alized {contexSituationtID}normalized/
with {normalizedID}/negotiation GET Retrieves all CtxtSitENINormalizedNegotiate data
Negotiation
ENI System GET Retrieves an individual
Bata for the Jeapp_context_situation_out/ E:Atx(tjﬁ:tENIrl:l?)nr(rjrilj\iléze(fNegotlate resource

PR {contexSituationtiID}normalized/ |UPDATE odimes a ua .
Nprmallzed {normalizedID}/negotiation/ CtxtSitENINormalizedNegotiate resource
\l/\lv:etgotiation {negotiationID} DELETE Deletes an individual CtxtSitENINormalizedNegotiate
Operations resource

ETSI

8.4.6

195 ETSI GS ENI 005 V3.1.1 (2023-06)

External Reference Point Eapp-eni-oth

The functionality of this External Reference Point is defined in clause 7.3.5. Twenty resources are defined for this
External Reference Point, ten resources from the application to the ENI System, and ten resources from the ENI System
to the application. The ten resources from the Application to the ENI System are:

1)
2)
3
4)
5)

6)
7)

8)
9)
10)

container for ingested information;

ingested information;

container for processing and normalizing information;
processed and normalized information;

container for processing and normalizing information from the application that the ENI System cannot
understand;

processed and normalized information;

container for processing and normalizing information from the application that the ENI System can now
understand;

processed and normalized information;
container for negotiation information for resolving problems;

negotiated application information.

The ten resources from the ENI System to the Application are:

1)
2)
3)
4)
5)

6)
7)

8)
9)
10)

container for ingested information;

ingested information;

container for processing and normalizing information;
processed and normalized information;

container for processing and normalizing information from the ENI System that the application cannot
understand;

processed and normalized information;

container for processing and normalizing information from the ENI System that the application can now
understand;

processed and normalized information;
container for negotiation information for resolving problems that the application cannot understand;

negotiated application information.

The functions are shown in Table 8-7 and Table 8-8, which provides brief descriptions of each function.

ETSI

196

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-7: ENI External Reference Point Eapp-eni-oth Functions from Application to ENI System

Resource RPC R
Name Resource URI Method Description
App Other CREATE Creates a new OtherAppData resource and
Input Data for Jeapp data in other stores ingested data in it
the ENI Pp_ - = GET Retrieves all ingested data from the
System OtherAppData resource
App Other GET Retrieves a single OtherAppData item
Input Data for UPDATE Modifies a single OtherAppData resource
the ENI /eapp_data_in_other/{otherDatalD}
System DELETE Deletes a single OtherAppData resource
Operations
App Other CREATE Creates a new OtherAppDataNormal resource
Input Data for
the ENI / eapp_plata_m_other/ toine ezl Retrieves all normalized data from the
System normalized GET
q OtherAppDataNormal resource
Normalized
Data
App Other GET Retrieves an existing OtherAppDataNormal
Input Data for resource
the ENI /eapp_data_in_other/{otherDatalD}/ UPDATE Modifies an existing OtherAppDataNormal
System normalized/{normalizedDatalD} resource
Normalized Deletes an existing OtherAppDataNormal
Operations DELETE resource
App Other Creates a new OtherAppDataNormalProblem
Input Data for CREATE resource
the ENI /eapp_data_in_other/{otherDatalD}/
System normalized/{normalizedDatalD}/ .
Normalized problem GET Retrieves all OtherAppDataNormalProblem
. resources
having
Problems
App Other GET Retrieves an individual
Input Data for OtherAppDataNormalProblem resource
the ENI . Modifies an individual
/eapp_data_in_other/{otherDatalD}/ |UPDATE
System. normalizedi{normalizedDatalD}/ OtherAppDataNormalProblem resource
Normalized
. problem/{problemID} L
having DELETE Deletes an individual
Problems OtherAppDataNormalProblem resource
Operations
App Other Creates a new OtherAppDataNormalSolution
CREATE
Input Data for . h h resource
the ENI /eapp_l_data_ln_ot cl-:_'r/{ot erDlgtalllD}/
System gcc:lrl;gir;zed/{norma ARIDRIEID), GET Retrieves all OtherAppDataNormalSolution
Normalized resources
with Solutions
App Other GET Retrieves an individual
Input Data for OtherAppDataNormalSolution resource
the ENI /eapp_data_in_other/{otherDatalD}/ UPDATE Modifies an individual
System normalized/{normalizedDatalD}/ OtherAppDataNormalSolution resource
Normalized solution/{solutionID} Deletes an individual
with Solutions DELETE :
Operations OtherAppDataNormalSolution resource
App Other Creates a new OtherAppDataNormalNegotiate
Input Data for CiREATIE resource
the ENI /eapp_data_in_other/{otherDatalD}/
System normalized/{normalizedDatalD}/ . .
Normalized negotiation GET Retrieves all OtherAppDataNormalNegotiate
: resources
with
Negotiation
App Other GET Retrieves an individual
Input Data for OtherAppDataNormalNegotiate resource
the ENI . Modifies an individual
/eapp_data_in_other/{otherDatalD}/ |UPDATE .
System. normalized/{normalizedDatalD}/ OtherAppDataNormalNegotiate resource
Normalized - i
: negotiation/{negotiationID} Lo
with DELETE Deletes an individual
Negotiation OtherAppDataNormalNegotiate resource
Operations

ETSI

197

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-8: ENI External Reference Point Eapp-eni-oth Functions from ENI System to Application

Resource RPC A
Name Resource URI Method Description
ENI System Creates a new OtherENIData resource
CREATE . e

Other Input Jeapn data out other and stores ingested data in it
Data for the PP_ - = GET Retrieves all ingested data from the
App OtherENIData resource
ENI System GET Retrieves a single OtherENIData item
Other Input Modifies a single OtherENIData
Data for the leapp_data_out_other/{otherDatalD} UPDATE resource g
App D i

. eletes a single OtherENIData
Operations DELETE resource
ENI System
Other Input CREATE gse:LfCSea new OtherENIDataNormal
Data for the /eapp_data_out_other/{otherDatalD}/
gD . I3 Retrieves all normalized data from the
Normalized GET

OtherENIDataNormal resource
Data
ENI System GET Retrieves an existing
Other Input OtherENIDataNormal resource
Data for the /eapp_data_out_other/{otherDatalD}/ UPDATE Modifies an existing
App normalized/{normalizedDatalD} OtherENIDataNormal resource
Normalized Deletes an existing
Operations DELETE OtherENIDataNormal resource
ENI System Creates a new
Other Input CREATE | otherENIDataNormalProblem resource
Data for the /eapp_data_out_other/{otherDatalD}/
App normalized/{normalizedDatalD}/ Retrieves all
Normalized problem GET OtherENIDataNormalProblem
having resources
Problems
ENI System . oo
Retrieves an individual

82:;;(')?%‘; GET OtherENIDataNormalProblem resource
App /eapp_data_out_other/{otherDatalD}/ — .

. normalized/{normalizedDatalD}/ Modifies an individual
Eg\iimngl'zed problem/{problemID} UPDATE OtherENIDataNormalProblem resource
Problems DELETE Deletes an individual
Operations OtherENIDataNormalProblem resource
ENI System Creates a new

CREATE .

Other Input Jeapp_data_out_other/{otherDatalD}/ OtherENIDataNormalSolution resource
Data for the) .
App normalized/{normalizedDatalD}/ Retrieves all
Normalized solution GET OtherENIDataNormalSolution
with Solutions resources
ENI System GET Retrieves an individual
Other Input OtherENIDataNormalSolution resource
Data for the leapp_data_out_other/{otherDatalD}/ UPDATE Modifies an individual
App normalized/{normalizedDatalD}/ OtherENIDataNormalSolution resource
Normalized solution/{solutionID} Delet individual
with Solutions DELETE | Sioren DataNoralSolut
Operations er ataNormalSolution resource
ENI System Creates a new
Other Input CREATE OtherENIDataNormalNegotiate
Data for the /eapp_data_out_other/{otherDatalD}/ resource
App normalized/{normalizedDatalD}/ Retrieves all
\ll\lvti)thallzed negotiation GET OtherENIDataNormalNegotiate
Negotiation resources

ETSI

198 ETSI GS ENI 005 V3.1.1 (2023-06)

Rﬁ:ﬂ‘i;‘:e Resource URI MZtF;I%d Description

ENI System Retrieves an individual

Other Input GET OtherENIDataNormalNegotiate

Data for the resource

App /eapp_data_out_other/{otherDatalD}/ Modifies an individual

Normalized normalized/{normalizedDatalD}/ UPDATE OtherENIDataNormalNegotiate

with negotiation/{negotiationID} resource

Negotiation Deletes an individual

Operations DELETE OtherENIDataNormalNegotiate
resource

8.4.7 External Reference Point Eapp-eni-kno

The functionality of this External Reference Point is defined in clause 7.3.6. Twenty resources are defined for this
External Reference Point, ten resources from the application to the ENI System, and ten resources from the ENI System
to the application. The ten resources from the Application to the ENI System are:

1)
2)
3
4)
5)

6)
7)

8)
9)

container for ingested knowledge information;

ingested knowledge information;

container for processing and normalizing knowledge information;
processed and normalized knowledge information;

container for processing and normalizing knowledge information from the application that the ENI System
cannot understand;

processed and normalized knowledge information;

container for processing and normalizing knowledge information from the application that the ENI System can
now understand;

processed and normalized knowledge information;

container for negotiation information for resolving problems understanding knowledge from the application;

10) negotiated application knowledge information.

The ten resources from the ENI System to the Application are:

1)
2)
3)
4)
5)

6)
7)

8)
9)

container for ingested knowledge information;

ingested knowledge information;

container for processing and normalizing knowledge information;
processed and normalized knowledge information;

container for processing and normalizing knowledge information from the ENI System that the application
cannot understand;

processed and normalized knowledge information;

container for processing and normalizing knowledge information from the ENI System that the application can
now understand;

processed and normalized knowledge information;

container for negotiation knowledge information for resolving problems;

10) negotiated knowledge information.

The functions are shown in Table 8-9 and Table 8-10, which provides brief descriptions of each function.

ETSI

199 ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-9: ENI External Reference Point Eapp-eni-kno Functions from the Application to the ENI System

Resource Resource URI RPC Method Description

Name
App CREATE Creates a new KnowledgeApp resource and stores ingested
Knowledge Jeapn knowledae in datain it
Data for the PP_ 9e_ Retrieves all ingested data from the KnowledgeApp

GET

ENI System resource
App GET Retrieves a single KnowledgeApp resource
ngav?:rd?hee Jeapp,_ knowledge._in/ UPDATE Modifies a single KnowledgeApp resource
ENI System {knowledgelD} DELETE Deletes a single KnowledgeApp resource
Operations
App CREATE Creates a new KnowledgeAppNormalized resource
Knowledge .
Data for the leapp_ knowledge_ln/_ . . . o
ENI System {knowledgelD}/normali GET Retrieves all normallzgd data and stores in an existing
Normalized zed KnowledgeAppNormalized resource
Data
App GET Retrieves an existing KnowledgeAppNormalized resource
Knowledge Jeapp._ knowledge_in/ UPDATE Modifies an existing KnowledgeAppNormalized resource
Data for the {knowledgelD}/normali
ENI Sy;tem zed o .
ggtrgwallzed {normalizedDatalD} DELETE Deletes an existing KnowledgeAppNormalized resource
Operations
App CREATE Creates a new NormalizedAppProblem resource
Knowledge /eapp_ knowledge_in/
Data for the {knowledgelD}/normali
Ezl:nigﬁtzzrg {ergrmalize dDatalD}pro GET Retrieves all NormalizedAppProblem resources
Data having blem
Problems
App GET Retrieves an individual NormalizedAppProblem resource
Knowledge leapp_ knowledge_in/ |UPDATE Modifies an individual NormalizedAppProblem resource
Data for the {knowledgelD}/normali
ENI System zed
gg{?ﬁgéﬁ% g?g;]rr/]ahzedDatalD}/pro DELETE Deletes an individual NormalizedAppProblem resource
Problems {problemID}
Operations
App CREATE Creates a new NormalizedAppSolution resource
Knowledge /eapp_ knowledge_in/
Data for the {knowledgelD}/normali
E'(;l:n?gﬁtzirc? {ergrmalize dDatalD}/sol GET Retrieves all NormalizedAppSolution resources
Data with ution
Solutions
App GET Retrieves an individual NormalizedAppSolution resource
Knowledge leapp_ knowledge_in/ |UPDATE Modifies an individual NormalizedAppSolution resource
Data for the {knowledgelD}/normali
ENI System zed
ggtrng?lliltzhed Ejrt]ic())rr?allzedDatalD}/sol DELETE Deletes an individual NormalizedAppSolution resource
Solutions {solutionID}
Operations
App CREATE Creates a new NormalizedAppNegotiate resource
Knowledge /eapp_ knowledge_in/
Data for the {knowledgelD}/normali
ﬁg‘:géﬁtzzrg fr?c?rmalize dDatalDY/ GET Retrieves all NormalizedAppNegotiate resources
Data with negotiation
Negotiation

ETSI

200

Resource -
Name Resource URI RPC Method Description

App GET Retrieves an individual NormalizedAppNegotiate resource
Knowledge /eapp_ knowledge_in/ |UPDATE Modifies an individual NormalizedAppNegotiate resource
Data for the {knowledgelD}/normali
ENI System zed
ggtr (,T \Zli'tf]ed E\Ta%r(r)?izltlizoenc;g 2?(')3;%0” DELETE Deletes an individual NormalizedAppNegotiate resource
Negotiation ID}
Operations

Table 8-10: ENI External Reference Point Eapp-enikno Functions from the ENI System to the Application

Resource Resource URI RPC Method Description

Name

ENI System Creates a new KnowledgeENI resource and stores
CREATE - o

Knowledge Jeapn knowledae out ingested data in it
Data for the PP ge_ GET Retrieves all ingested data from the KnowledgeENI
App resource
ENI System GET Retrieves a single KnowledgeENI resource
Knowledge Jeapp__ knowledge_ out/ UPDATE Modifies a single KnowledgeENI resource
Data for the {knowledgelD}
App DELETE Deletes a single KnowledgeENI resource
Operations
ENI System CREATE Creates a new KnowledgeENI resource
Data for the |/SaPp. knowledge_ouy . | N
App {knowledgelD}/normalize GET Retrieves all normallzgd data and stores in an existing
A d KnowledgeENINormalized resource
Data
ENI System GET Retrieves an existing KnowledgeENINormalized resource
Knowledge UPDATE Modifies an existing KnowledgeENINormalized resource
Data for the /eapp_ knowledge_out/
App {knowledgelD}/normalize
Normalized d {normalizedDatalD} DELETE Deletes an existing KnowledgeENINormalized resource
Data
Operations
ENI System CREATE Creates a new NormalizedENIProblem resource
Knowledge /eapp_ knowledge_out/
Data for the {knowledgelD}/normalize
ngmalized ?normalizedDataID}/probl GET Retrieves all NormalizedENIProblem resources
Data having em
Problems
ENI System GET Retrieves an individual NormalizedENIProblem resource
Knowledge /eapp_ knowledge_out/ |UPDATE Modifies an individual NormalizedENIProblem resource
Data for the {knowledgelD}/normalize
App d
gg{?ﬁgiﬁdg g::])/rmallzedDatalD}/probl DELETE Deletes an individual NormalizedENIProblem resource
Problems {problemID}
Operations
ENI System CREATE Creates a new NormalizedENISolution resource
Knowledge /eapp_ knowledge_out/
Data for the {knowledgelD}/normalize
ngmalized ?normalizedDataID}/squt GET Retrieves all NormalizedENISolution resources
Data with ion
Solutions

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06)

201 ETSI GS ENI 005 V3.1.1 (2023-06)
Re,\f:n‘igce Resource URI RPC Method Description
ENI System GET Retrieves an individual NormalizedENISolution resource
Knowledge /eapp_ knowledge_out/ |UPDATE Modifies an individual NormalizedENISolution resource
Data for the {knowledgelD}/normalize
App d
gg{?\zliltf]ed i{gr?/rmallzedDatalD}/solut DELETE Deletes an individual NormalizedENISolution resource
Solutions {solutionID}
Operations
ENI System CREATE Creates a new NormalizedENINegotiate resource
Knowledge
Data for the /eapp_ knowledge_ou_tl
App {knowledgeID}/normahze . . .
Normalized d {normghzedDatalD}/ GET Retrieves all NormalizedENINegotiate resource
Data with negotiation
Negotiation
ENI System GET Retrieves an individual NormalizedENINegotiate resource
Enowledge Jeapp._ knowledge_out/ UPDATE Madifies an individual NormalizedENINegotiate resource
ata for the h
App {knowledgeID}/normallze
Normalized d {nor.mgllzedDatallD.}/ o . .
Data with negotiation/{negotiationl |DELETE Deletes an individual NormalizedENINegotiate resource
Negotiation D}
Operations
8.4.8 External Reference Point Eapp-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.7. Twenty resources are defined for this
External Reference Point, ten resources from the application to the ENI System, and ten resources from the ENI System

to the application. The ten resources from the Application to the ENI System are:

1) container for ingested policy information;

2) ingested policy information;

3) container for processing and normalizing policy information;

4) processed and normalized policy information;

5) container for processing and normalizing policy information from the application that the ENI System cannot
understand;

6) processed and normalized policy information;

7) container for processing and normalizing policy information from the application that the ENI System can now
understand;

8) processed and normalized policy information;

9) container for negotiation information for resolving problems understanding policies from the application;

10) negotiated application policy information.

The ten resources from the ENI System to the Application are:

1) container for ingested policy information;

2) ingested policy information;

3) container for processing and normalizing policy information;

4) processed and normalized policy information;

ETSI

202 ETSI GS ENI 005 V3.1.1 (2023-06)
5) container for processing and normalizing policy information from the ENI System that the application cannot
understand;
6) processed and normalized policy information;

7) container for processing and normalizing policy information from the ENI System that the application can now
understand;

8) processed and normalized policy information;

9) container for negotiation policy information for resolving problems;

10) negotiated policy information.

The functions are shown in Table 8-11 and Table 8-12, which provides brief descriptions of each function.

Table 8-11: ENI External Reference Point Eapp-eni-pol FUnctions from the Application to the ENI System

Resource RPC _
Name Resource URI Method Description
App Policy CREATE preatesazacjnevy AppPollcyD@ resource and stores
Data for the /eapp_policy_in mge;te atg In it :
ENI System GET Retrieves all ingested data from the AppPolicyData
resource
App Policy GET Retrieves a single AppPolicyData resource
Data for the Jeapp._policy_in/{policyID} UPDATE Modifies a single AppPolicyData resource
ENI System DELETE Deletes a single AppPolicyDat
Operations eletes a single AppPolicyData resource
App Policy CREATE Creates a new AppPolicyDataNormalized resource
Data for the 1,020 policy_in/{policyIDy
ENI System nor?ﬁeﬁ&e d y_Infipolicy GET Retrieves all normalized data and stores in an existing
Normalized AppPolicyDataNormalized resource
Data
App Policy GET Retrieves an existing AppPolicyDataNormalized resource
Data for the UPDATE Modifies an existing AppPolicyDataNormalized resource
ENI System leapp_policy_in/{policylD}/
ggtrgwallzed normalized/{normalizediD} DELETE Deletes an existing AppPolicyDataNormalized resource
Operations
App Policy Creates a new AppPolicyDataNormalizedProblem
CREATE
Data for the S . resource
leapp_policy_in/{policylD}/
ENI Sy;tem normalized/{normalizedID}/
Normalized roblem GET Retrieves all AppPolicyDataNormalizedProblem
Data having P resources
Problems
App Policy GET Retrieves an individual
Data for the AppPolicyDataNormalizedProblem resource
ENI System leapp_policy_in/{policylD}/ UPDATE Modifies an individual AppPolicyDataNormalizedProblem
Normalized normalized/{normalizedID}/ resource
Data having problem/{problemID} . . .
Problems DELETE Deletes an individual AppPolicyDataNormalizedProblem
Operations resource
App Policy Creates a new AppPolicyDataNormalizeSolution
CREATE
Data for the S . resource
leapp_policy_in/{policylD}/
ENI System ; .
- normalized/{normalizedID}/
heialized solution GET Retri Il AppPolicyDataN lizeSolution resources
Data with uti etrieves all AppPolicyDataNormalizeSoluti u
Solutions
App Policy Retrieves an individual AppPolicyDataNormalizeSolution
GET
Data for the resource
ENI System leapp_policy_in/{policylD}/ UPDATE Modifies an individual AppPolicyDataNormalizeSolution
Normalized normalized/{normalizedID}/ resource
Data with solution/{solutionID} Lo . . .
Solutions DELETE Deletes an individual AppPolicyDataNormalizeSolution
Operations resource

ETSI

203 ETSI GS ENI 005 V3.1.1 (2023-06)
Resource RPC —
Name Resource URI Method Description
App Policy Creates a new AppPolicyDataNormalizeNegotiate
CREATE

Data for the S . resource

leapp_policy_in/{policylD}/
=l Sys_tem normalized/{normalizedID}/
Normalized L Retrieves all AppPolicyDataNormalizeNegotiate

. negotiation GET

Data with resources
Negotiation
App Policy GET Retrieves an individual
Data for the AppPolicyDataNormalizeNegotiate resource
ENI System /eapp_policy_in/{policylD}/ UPDATE Modifies an individual AppPolicyDataNormalizeNegotiate
Normalized normalized/{normalizedID}/ resource
Data with negotiation/{negotiationID} Lo . . .
Negotiation DELETE rDeil(;etis:ean individual AppPolicyDataNormalizeNegotiate
Operations u

Table 8-12: ENI External Reference Point Eapp-eni-pol FUnctions from the ENI System to the Application

Resource

RPC

Name Resource URI Method Description
ENI System CREATE Creates a new ENIAppPolicyData resource and stores
Policy for the |/eapp_ policy_out ingested data in it
App GET Retrieves all ENIAppPolicyData resources
ENI System GET Retrieves a single ENIAppPolicyData resource
iggCy for the Jeapp_policy._out/{policylD} UPDATE Modifies a :T‘,lngle ENIAppPo.IlcyData resource
Operations DELETE Deletes a single ENIAppPolicyData resource
ENI System CREATE Creates a new ENIAppPolicyDataNormalized resource
iggcy (S /eapp__policy_out/{policyID}/ _ _ _
Normalized normalized GET Retrieves all ENIAppPolicyDataNormalized resources
Data
ENI System GET Retrieves an existing ENIAppPolicyDataNormalized
Policy for the resource
App /eapp_policy_out/{policylD}/ UPDATE Modifies an existing ENIAppPolicyDataNormalized
Normalized normalized/{normalizedID} resource
Data Deletes an existing ENIAppPolicyDataNormalized
Operations DELETE resource
ENI System Creates a new ENIAppPolicyDataNormalizedProblem
Policy for the . . CIRIEATIE resource
App /eapp_pollcy_out/{pol|cyID}/
Normalized normahzed/{normallzedlD}/ Retrieves all ENIAppPolicyDataNormalizedProblem
Data having probiem cel resources
Problems
ENI System GET Retrieves an individual
Policy for the ENIAppPolicyDataNormalizedProblem resource
App /eapp_policy_out/{policylD}/ UPDATE Modifies an individual
Normalized normalized/{normalizedID}/ ENIAppPolicyDataNormalizedProblem resource
Eata having problem/{problemID} Deletes an individual
roblems DELETE ENIAbDPolicvDataN lizedProbl

Operations ppPolicyDataNormalizedProblem resource
ENI System Creates a new ENIAppPolicyDataNormalizedSolution
Policy for the . . SR resource
App /eapp_pollcy_out/{pol|cyID}/
Normalized normahzed/{normahzedlD}/ Retrieves all ENIAppPolicyDataNormalizedSolution
Data with SDILLEN ey resources
Solutions
ENI System GET Retrieves an individual
Policy for the ENIAppPolicyDataNormalizedSolution resource
App /eapp_policy_out/{policylD}/ UPDATE Modifies an individual
Normalized normalized/{normalizedID}/ ENIAppPolicyDataNormalizedSolution resource
Data with solution/{solutionID} S
Solutions DELETE Deletes an .|nd|V|duaI . .

: ENIAppPolicyDataNormalizedSolution resource
Operations

ETSI

204 ETSI GS ENI 005 V3.1.1 (2023-06)
Resource RPC L
Name Resource URI Method Description
ENI System Creates a new ENIAppPolicyDataNormalizedNegotiate
. CREATE
Policy for the . . resources
App /eapp_pollcy_out/{pol|cyID}/
Normalized normgh;ed/ el Retrieves all ENIAppPolicyDataNormalizedNegotiate
. negotiation GET
Data with resources
Negotiation
ENI System GET Retrieves an individual
Policy for the ENIAppPolicyDataNormalizedNegotiate resource
App /eapp_policy_out/{policylD}/ UPDATE Modifies an individual
Normalized normalized/{normalizedID}/ ENIAppPolicyDataNormalizedNegotiate resource
Data with negotiation/{negotiationID} s
N e Deletes an individual
egotiation DELETE ENIAppPolicyDataN lizedNedotiat
Operations ppPolicyDataNormalizedNegotiate resource
8.4.9 External Reference Point Epss-eni-dat

The functionality of this External Reference Point is defined in clause 7.3.8. Ten resources are defined for this External

Reference Point:

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)

ingested BSS information;

negotiated BSS information.

container for ingested BSS information;

processed and normalized BSS information;

processed and normalized BSS information;

processed and normalized BSS information;

container for processing and normalizing BSS information;

container for processing and normalizing BSS information that the ENI System cannot understand;

container for processing and normalizing BSS information that the ENI System can now understand;

container for negotiation information for resolving problems understanding BSS information;

The functions are shown in Table 8-13, which provides brief descriptions of each function.

Table 8-13: ENI External Reference Point Epss.eni.dat FUNCtions from the BSS to the ENI System

Resource RPC _—
Name Resource URI Method Description
CREATE _Creates anew IngestedBSSData resource and stores
BSS Input Jebss data in ingested data in it
Data - = GET Retrieves all ingested data from the IngestedBSSData
resource
BSS Input GET Retrieves a single IngestedBSSData resource
Data lebss_data_in/{ingestDatalD} |UPDATE Modifies a single IngestedBSSData resource
Operations DELETE Deletes a single IngestedBSSData resource
Elgrsmalized lebss_data_in/ingestDatalD}/ CREATE Creates a new NormalizedBSSData resource
Data normalized GET Retrieves all NormalizedBSSData resources
BSS Jebss_data_in/{ingestDatalD}/ GET Retrieves an existing NormalizedBSSData resource
ggtrgwallzed normz;Iized/_{normaIizedDatalD UPDATE Modifies an existing NormalizedBSSData resource
Operations } DELETE Deletes an existing NormalizedBSSData resource

ETSI

205 ETSI GS ENI 005 V3.1.1 (2023-06)
Rﬁ;ﬂ‘i;‘:e Resource URI MZt';%d Description

BSS lebss_data_in/{ingestDatalD}/ |CREATE Creates a new NormalizedBSSDataProblem resource
Normalized normalized/{normalizedDatalD
Data having Y GET Retrieves all NormalizedBSSDataProblem resources
Problems problem
BSS o GET Retrieves an individual NormalizedBSSDataProblem
Normalized /ebss_data_ln/{mge;tDataID}/ resource ‘
D) normalized/{normalizedDatalD Modifies an individual NormalizedBSSDataProblem

ata having Y UPDATE resource
(P)rpoebrlaetrig?]s problem/{problemID} DELETE rD(_:‘eslgileriean individual NormalizedBSSDataProblem
BSS lebss_data_in/{ingestDatalD}/ |CREATE Creates a new NormalizedBSSDataSolution resource
Normalized normalized/{normalizedDatalD
Data with Y GET Retrieves all NormalizedBSSDataSolution resources
Solutions solution
BSS o GET Retrieves an individual NormalizedBSSDataSolution
Normalized /ebss_c_iata_ln/{mge_stDataID}/ resource _ _
Data with normalized/{normalizedDatalD UPDATE Modifies an individual NormalizedBSSDataSolution
Solutions Y . . resourceé - -
Operations solution/{solutionID} DELETE rDeeslggisean individual NormalizedBSSDataSolution
BSS /ebss_data_in/{ingestDatalD}/ CREATE Creates a new NormalizedBSSDataNegotiation
Normalized normalized/{normalizedDatalD resource
Data with Y GET Retrieves all NormalizedBSSDataNegotiation
Negotiation negotiation resources
BSS GET Retrieves an individual NormalizedBSSDataNegotiation
Normalized lebss_data_in/{ingestDatalD}/ resource
Data with normalized/{normalizedDatalD Modifies an individual NormalizedBSSDataNegotiation
Negotiation M UPDATE resource
Operations negotiation/{negotiationID} DELETE Deletes an individual NormalizedBSSDataNegotiation

resource

8.4.10 External Reference Point Epss-eni-cmd

The functionality of this External Reference Point is defined in clause 7.3.9. Eight resources are defined for this
External Reference Point:

1) acontainer for recommendations and commands to be sent;

2) recommendations and commands;

3) acontainer for recommendations and commands that the OSS could not understand,;

4) recommendations and command problems;

5) acontainer for recommendations and commands with solutions that the OSS accepted;

6) solved recommendations and commands;

7) acontainer for negotiation information;

8) negotiated information.

The functions are shown in Table 8-14, which provides brief descriptions of each function.

ETSI

206

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-14: ENI External Reference Point Epss-eni-emd Functions from the ENI System to the BSS

RPC L.
Resource Name Resource URI Method Description
Recommendations CREATE Creates a new Recomr_nendCommandBSS
resource and stores in it
and Commands to /ebss_rec_cmd_out ; :
be Sent to the BSS GET Retrieves all recommendations and commands
from the RecommendCommandBSS resource
Retrieves a single RecommendCommandBSS
. GET
Recommendations resource
and Commands to Modifies a single RecommendCommandBSS
be Sent to the BSS lebss_rec_cmd_out/{recCmdID} |UPDATE resource
Operations DELETE Deletes a single RecommendCommandBSS
resource
Recommendations CREATE Creates a new
and Commands to |/ebss_rec_cmd_out/ RecommendCommandOSSProblem resource
be Sent to the BSS |{recCmdID}/problem GET Retrieves all
having Problems RecommendCommandOSSProblem resources
Recommendations GET Retrieves an individual
RecommendCommandOSSProblem
and Commands to /ebss_rec_cmd_out Modifies an individual
be Sent to the BSS |/{recCmdID}/problem UPDATE RecommendCommandOSSProblem
having Problems HAproblemID} ——
Operations DELETE Deletes an individual
RecommendCommandOSSProblem
Recommendations CREATE Creates a new
and Commands to |/ebss_rec_cmd_out/ RecommendCommandOSSSolution resource
be Sent to the BSS |{recCmdID}/solution GET Retrieves all
with Solutions RecommendCommandOSSSolution resources
Recommendations GET Retrieves an individual
RecommendCommandOSSSolution resource
and Commands to lebss_rec_cmd_out/ Modifies an individual
b(_e Sent to_the BSS {recC_deD}/squtlon/ UPDATE RecommendCommandOSSSolution resource
with Solutions {solutionID} Deletes an individual
Operations DELETE RecommendCommandOSSSolution resource
. Creates a new
Recommendations CREATE .
and Commands to |/ebss_rec_cmd_out/ E:fr?g;nsegﬁ CCMMEMEIOENEL RS TESTIER
be Sent to the BSS |{recCmdID}/negotiation .
with Negotiation GET RecommendCommandOSSNegotiate
resources
. Retrieves an individual
Recommendations GET RecommendCommandOSSNegotiate resource
and Commands to lebss_rec_cmd_out/ Modifies an individual
be Sent to the BSS |{recCmdID}/negotiation UPDATE RecommendCommandOSSNegotiate resource
with Negotiation {negotiationID} —— 9
Operations DELETE Deletes an individual .
RecommendCommandOSSNegotiate resource
8.4.11 External Reference Point Epss-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.10. Sixteen resources are defined for this
External Reference Point:

1) acontainer for policies sent by the BSS;

2) BSSinput policies;

3) acontainer for policies not understood by the ENI System;

4) ENI System policies having Problems;

5) acontainer for policies with solutions that the ENI System accepted;

6) ENI System solved policies;

7) acontainer for negotiation information for problem policies for the ENI System;

ETSI

8)

9)

10)
11)
12)
13)
14)
15)
16)

BSS output policies,

BSS policies having Problems;

solved BSS policies;

negotiated BSS policy information.

207

negotiated ENI System policy information;

acontainer for policies for sending to the BSS;

acontainer for policies not understood by the BSS;

ETSI GS ENI 005 V3.1.1 (2023-06)

acontainer for policies with solutions that the BSS accepted;

a container for negotiation information for problem BSS policies;

The functions are shown in Table 8-15 and Table 8-16 for policies sent by the BSS (and received by the ENI System)
and policies sent by the ENI System (and received by the BSS), respectively, along with brief descriptions of each

function.

Table 8-15: ENI External Reference Point Epss-eni.pot FUNCtions from the BSS to the ENI System

Resource Resource URI RPC Method Description
Name
. Creates a new BSSPolicyData resource and stores
EOlécéeSS sent /ebss_policy_in SRS policies sent by the BSS in it
y GET Retrieves all policies from the BSSPolicyData resource
Policies Sent GET Retrieves a single policy received from the BSS
by BSS lebss_policy_inf{policylD} |UPDATE Modifies a single policy received from the BSS
Operations DELETE Deletes a single policy received from the BSS
. Creates a new BSSPolicyDataProblem resource for
I Serjt lebss_policy_in/{policylD}/ SRS policies containing problems
by BSS having : =
problem Retrieves all policies sent by the BSS that the ENI
Problems GET -
System has problems understanding
GET Retrieves an existing policy sent by the BSS that the ENI
Policies Sent System cannot understand
by BSS having |/ebss_policy_in/{policylD}/ UPDATE Modifies an existing policy sent by the BSS that the ENI
Problems problem/{problemID} System cannot understand
Operations Deletes an existing policy sent by the BSS that the ENI
DELETE
System cannot understand
Policies Sent febss_policy_inf{policylD}/ CREATE Creates a new BSSPolicyDataSolution resource
by BSS with solutiar? y_Infipolicy GET Retrieves all policies sent by the BSS that the ENI
Solutions System can now understand
Retrieves an existing policy sent by the BSS that the ENI
. GET
Policies Sent System can now understand
by BSS with lebss_policy_in/{policylD}/ UPDATE Modifies an existing policy sent by the BSS that the ENI
Solutions solution/{solutionID} System can now understand
Operations Deletes an existing policy sent by the BSS that the ENI
DELETE
System can now understand
Policies Sent lebss._policy_inf{policylD}/ CREATE Creates a new BSSPolicyNegotiate resource
by BSS with ne oti_erq)tiony_ policy GET Retrieves all negotiation information for all policies sent
Negotiation 9 by the BSS to the ENI System to resolve problems
Retrieves negotiation information for a selected policy
. GET sent by the BSS that the ENI System can now
Policies Sent
by BSSwith |/ebss_policy_in/{policylD}/ understand
Negotiation negoti_ation/{ﬁegotiationID} UPDATE Modifies negotiation information for a selected policy sent
Operations by the BSS that the ENI System can now understand
DELETE Deletes negotiation information for a selected policy sent
by the BSS that the ENI System can now understand

ETS

208

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-16: ENI External Reference Point Egss-eni-pol fOor Functions Sent by the ENI System to the OSS

Rﬁ:rﬂ?e Resource URI MZtF;I%d Description
. Creates a new ENIBSSPolicyData resource and stores
ES',{'EEENSIem febss_policy_out EiREAIE poliqies created .by the ENI System in it .
System — - GET Retrieves all policies from the ENIBSSPolicyData
resource
Policies Sent GET Retrieves a single policy created by the ENI System
g);/sttheemENl Jebss_policy_out/{policylD} UPDATE Modifies a sllngle polllcy created by the ENI System
Operations DELETE Deletes a single policy created by the ENI System
Policies Sent CREATE Creates a new ENIBSSPolicyDataProblem resource
e /ebss_policy_out/{policylD}/
System roblem - GET Retrieves all policies created by the ENI System that the
having P BSS has problems understanding
Problems
Policies Sent GET Retrieves an existing policy sent by the ENI System that
by the ENI the BSS cannot understand
System /ebss_policy_out/{policylD}/ UPDATE Modifies an existing policy sent by the ENI System that
having problem/{problemID} the BSS cannot understand
Problems DELETE Deletes an existing policy sent by the ENI System that
Operations the BSS cannot understand
Policies Sent CREATE Creates a new ENIBSSPolicyDataSolution resource
by the ENI /ebss_policy_out/{policylD}/ . -
System with solution GET Egtsni\;sne;l:lvpgrl:cdlsrss f:nn; by the ENI System that the
Solutions
. Retrieves an existing policy sent by the ENI System that
E;ltlr?:aeél\?lem _ _ GET the OSS can now understand
S . /ebss_policy_out/{policylD}/ Modifies an existing policy sent by the ENI System that
ystem with . : UPDATE
: solution/{solutionID} the BSS can now understand
80|(l;rt£i2is DELETE Deletes an existing policy sent by the ENI System that
P the BSS can now understand
Policies Sent CREATE Creates a new ENIBSSPolicyDataNegotiate resource
by the ENI /ebss_policy_out/{policylD}/ Retrieves all negotiation information for all policies
System with negotiation GET created by the ENI System for the BSS to resolve
Negotiation problems
Retrieves an existing policy sent by the ENI System to
GET the OSS to resolve problems that the BSS can now
Policies Sent understand
by the ENI /ebss_policy_out/{policylD}/ Modifies negotiation information for a selected policy
System with negotiation/{negotiationID} UPDATE sent by the ENI System that the BSS can now
Negotiation understand
DELETE Deletes negotiation information for a selected policy sent

by the ENI System that the BSS can now understand

8.4.12 External Reference Point Eusr-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.11. Sixteen resources are defined for this
External Reference Point:

1) acontainer for policies sent by the user;

2) userinput policies,

3) acontainer for policies not understood by the ENI System;

4) ENI System policies having Problems;

5) acontainer for policies with solutions that the ENI System accepted;

6) ENI System solved palicies;

7) acontainer for negotiation information for problem policies for the ENI System;

ETSI

209

8) negotiated ENI System policy information;

9) acontainer for policiesto be sent to the user;

10)
11)
12)
13)
14)
15)
16)

policiesfor the user;

user policies having Problems;

solved user palicies;

negotiated user policy information.

acontainer for policies not understood by the user;

ETSI GS ENI 005 V3.1.1 (2023-06)

acontainer for policies with solutions that the user accepted;

acontainer for negotiation information for problem user policies,

The functions are shown in Table 8-17 and Table 8-18 for policies sent by the user (and received by the ENI System)
and policies sent by the ENI System (and received by the user), respectively, along with brief descriptions of each

function.

Table 8-17: ENI External Reference Point Epss-eni-pol FUNctions from the User to the ENI System

Re’\'ls,ource Resource URI RPC Method Description
ame
Policies Sent o CREATE Cre_ra_tes a new UserPollc_yD_ata resource and stores
by User [eusr_policy_in pollqles sent by the user in it
GET Retrieves all UserPolicyData resources
Policies Sent GET Retrieves a single policy received from the user
by User leusr_policy_in/{policylD} |UPDATE Modifies a single policy received from the user
Operations DELETE Deletes a single policy received from the user
Policies Sent Creates a new UserPolicyDataProblem resource for
L . CREATE S -
by User leusr_policy_in/{policylD}/ policies containing problems
having problem GET Retrieves all policies sent by the user that the ENI
Problems System has problems understanding
. Retrieves an existing policy sent by the user that the ENI
EOllIJCslgf Sent GET System cannot understand
y- leusr_policy_in/{policylD}/ Modifies an existing policy sent by the user that the ENI
having UPDATE
Problems problem/{problemID} System cannqt l.Jnderst.and
Operations DELETE Deletes an existing policy sent by the user that the ENI
System cannot understand
Policies Sent feusr_policy_inf{policylD}/ CREATE Creates a new UserPolicyDataSolution resource
by User with squtiBFr)l y_Iniipolicy GET Retrieves all policies sent by the user that the ENI
Solutions System can now understand
GET Retrieves an existing policy sent by the BSS that the ENI
Policies Sent System can now understand
by User with leusr_policy_in/{policylD}/ UPDATE Modifies an existing policy sent by the BSS that the ENI
Solutions solution/{solutionID} System can now understand
Operations Deletes an existing policy sent by the BSS that the ENI
DELETE
System can now understand
Policies Sent feusr_policy_in/{policylD} CREATE Creates a new UserPolicyDataNegotaiate resource
by User with ne oﬁgtiony_ policy GET Retrieves all negotiation information for all policies sent
Negotiation 9 by the user to the ENI System to resolve problems
Retrieves negotiation information for a selected policy
. GET sent by the user that the ENI System can now
Policies Sent
by User with |/eusr_policy_in/{policylD}/ understand
N)::' otiation ne oﬁgtiony{_ne gtiatignlD} UPDATE Modifies negotiation information for a selected policy sent
Opgerations 9 9 by the user that the ENI System can now understand
DELETE Deletes negotiation information for a selected policy sent

by the user that the ENI System can now understand

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-18: ENI External Reference Point Egss-eni-pol fOr Functions Sent by the ENI System to the User

Reﬁ:rﬂ::e Resource URI MEtF;wcéd Description
. Creates a new ENIBSSPolicyData resource and stores
ES',{'EEENSIem feusr_policy_out EiREAIE poliqies created .by the ENI System in it .
System - - GET Retrieves all policies from the ENIBSSPolicyData
resource
Policies Sent GET Retrieves a single policy created by the ENI System
g);/sttheemENl Jeusr_policy_out/{policylD} UPDATE Modifies a sllngle polllcy created by the ENI System
Operations DELETE Deletes a single policy created by the ENI System
Policies Sent CREATE Creates a new ENIBSSPolicyDataProblem resource
e /eusr_policy_out/{policylD}/
System roblem GET Retrieves all policies created by the ENI System that the
having P BSS has problems understanding
Problems
Policies Sent GET Retrieves an existing policy sent by the ENI System that
by the ENI the BSS cannot understand
System /eusr_policy_out/{policylD}/ UPDATE Modifies an existing policy sent by the ENI System that
having problem/{problemID} the BSS cannot understand
Problems DELETE Deletes an existing policy sent by the ENI System that
Operations the BSS cannot understand
Policies Sent CREATE Creates a new ENIBSSPolicyDataSolution resource
by the ENI /eusr_policy_out/{policylD}/ . -
System with solution GET Egtsni\;sne;l:lvpgrl:cdlsrss f:nn; by the ENI System that the
Solutions
. Retrieves an existing policy sent by the ENI System that
E;ltlr?:aeél\?lem _ _ GET the OSS can now understand
S . /eusr_policy_out/{policylD}/ Modifies an existing policy sent by the ENI System that
ystem with ; . UPDATE
: solution/{solutionID} the BSS can now understand
80|(l;rt£i2is DELETE Deletes an existing policy sent by the ENI System that
P the BSS can now understand
Policies Sent CREATE Creates a new ENIBSSPolicyDataNegotiate resource
by the ENI leusr_policy_out/{policylD}/ Retrieves all negotiation information for all policies
System with negotiation GET created by the ENI System for the BSS to resolve
Negotiation problems
Retrieves an existing policy sent by the ENI System to
GET the OSS to resolve problems that the BSS can now
Policies Sent understand
by the ENI /eusr_policy_out/{policylD}/ Modifies negotiation information for a selected policy
System with negotiation/{negotiationID} |UPDATE sent by the ENI System that the BSS can now
Negotiation understand
DELETE Deletes negotiation information for a selected policy sent

by the ENI System that the BSS can now understand

8.4.13 External Reference Point Eor-eni-dat

The functionality of this External Reference Point is defined in clause 7.3.12. Ten resources are defined for this
External Reference Point:

1) container for ingested Orchestrator information;

2) ingested Orchestrator information;

3) container for processing and normalizing Orchestrator information;

4) processed and normalized Orchestrator information;

5) container for processing and normalizing Orchestrator information that the ENI System cannot understand,;

6) processed and normalized Orchestrator information;

7) container for processing and normalizing Orchestrator information that the ENI System can now understand;

ETSI

8) processed and normalized Orchestrator information;

211

9) container for negotiation information for resolving problems understanding Orchestrator information;

10) negotiated Orchestrator information.

The functions are shown in Table 8-19, which provides brief descriptions of each function.

Table 8-19: ENI External Reference Point Eoreni-dat FUNctions from the Orchestrator to the ENI System

Resource

RPC

Name Resource URI Method Description
Creates a new IngestedOrchData resource and stores
ﬁrcl:wteggtae;[or /eor_data_in CREATE ingested data in it
P GET Retrieves all IngestedOrchData resources
Orchestrator GET Retrieves a single IngestedOrchData resource
Input Data /eor_data_in/{ingestDatalD} |UPDATE Modifies a single IngestedOrchData resource
Operations DELETE Deletes a single IngestedOrchData resource
Orchestrator CREATE Creates a new IngestedOrchDataNormalized resource
Input Data /eor_normalized_data . .
Normalized GET Retrieves all IngestedOrchDataNormalized resources
Retrieves an existing IngestedOrchDataNormalized
GET
Orchestrator resource
Input Data /eor_normalized_data/ Modifies an existing IngestedOrchDataNormalized
. . UPDATE
Normalized {normalizedDatalD} resource
Operations DELETE Deletes an existing IngestedOrchDataNormalized
resource
Orchestrator Creates a new IngestedOrchDataNormalizedProblem
. CREATE
Input Data /eor_normalized_data/ resource
Norm LS emrelAEe R e Retrieves all IngestedOrchDataNormalizedProblem
having m cel resources
Problems
Orchestrator GET Retrieves an individual
Input Data /eor_normalized_data/ IngestedOrchDataNormalizedProblem resource
Normalized {normalizedDatalD}/proble UPDATE Modifies an individual
having m IngestedOrchDataNormalizedProblem resource
Problems HproblemID} DELETE Deletes an individual
Operations IngestedOrchDataNormalizedProblem resource
Orchestrator Creates a new IngestedOrchDataNormalizedSolution
CREATE
Input Data . resource
Normalized /eor_no_rmallzed_data/ _) .)
with {normalizedDatalD}/solution GET Retrieves all IngestedOrchDataNormalizedSolution
Solutions resources
Orchestrator GET Retrieves an individual
Input Data /eor_normalized_data/ IngestedOrchDataNormalizedSolution resource
Normalized {normalizedDatalD}/solution UPDATE Modifies an individual
with / IngestedOrchDataNormalizedSolution resource
Solutions {solutionID} DELETE Deletes an individual
Operations IngestedOrchDataNormalizedSolution resource
Orchestrator Creates a new IngestedOrchDataNormalizedNegotiate
. CREATE
Input Data /eor_normalized_data/ resource
Normalized {normalizedDatalD}/negotia . . .
with tion GET Feitc:fr\f:iss all IngestedOrchDataNormalizedNegotiate
Negotiation
Orchestrator GET Retrieves an individual
Input Data /eor_normalized_data/ IngestedOrchDataNormalizedNegotiate resource
Normalized {normalizedDatalD}/solution UPDATE Modifies an individual
with / IngestedOrchDataNormalizedNegotiate resource
Negotiation {solutionID} DELETE Deletes an individual
Operations IngestedOrchDataNormalizedNegotiate resource

ETSI

ETSI GS ENI 005 V3.1.1 (2023-06)

212 ETSI GS ENI 005 V3.1.1 (2023-06)

8.4.14 External Reference Point Eor-eni-cmd

The functionality of this External Reference Point is defined in clause 7.3.13. Eight resources are defined for this
External Reference Point

1)
2)
3)
4)
5)
6)
7)
8)

a container for recommendations and commands to be sent to the Orchestrator;
recommendations and commands;

a container for recommendations and commands that the Orchestrator could not understand;
recommendations and command problems;

a container for recommendations and commands with solutions that the Orchestrator accepted,;
solved recommendations and commands;

acontainer for negotiation information;

negotiated information.

The functions are shown in Table 8-20, which provides brief descriptions of each function.

Table 8-20: ENI External Reference Point Eqr-eni-cmd Functions from

the ENI System to the Orchestrator

RPC ..

Resource Name Resource URI Method Description
Recommendations CREATE Creates a new RecommendCommandOrch
and Commands to Jeor rec cmd out resource and stores in it
be Sent to the - = — GET Retrieves all RecommendCommandOrch
Orchestrator resources
Recommendations GET rRe(eStéchler\éees a single RecommendCommandOrch
and Commands to Modifies a single RecommendCommandOrch
be Sent to the leor_rec_cmd_out/{recCmdID} |UPDATE resource 9
Orchestrator Delet ndle R ic doreh
Operations DELETE eletes a single RecommendCommandOrc

resource

Recommendations CREATE Creates a new
and Commands to / d out/ RecommendCommandOrchProblem resource
be Sent to the eor_reca_cn; —%‘f .
Orchestrator having {recCmdID}/problem GET Retrieves all
[o RecommendCommandOrchProblem resources
Recommendations GET Retrieves an individual
and Commands to Jeor rec cmd out RecommendCommandOrchProblem resource
be Sent to the — = — Modifies an individual
Orchestrator having ﬁrergglzr?]llg}}/problem UPDATE RecommendCommandOrchProblem resource
Problems P DELETE Deletes an individual
Operations RecommendCommandOrchProblem resource
Recommendations CREATE Creates a new
and Commands to RecommendCommandOrchSolution resource
be Sent to the /eor_rec_cmd_ou_t/ .
o ! {recCmdID}/solution Retrieves all

rchestrator with GET .
Sl RecommendCommandOrchSolution resources
Recommendations GET Retrieves an individual
and Commands to Jeor rec cmd out/ RecommendCommandOrchSolution resource
be Sent to the {recEdeD}/saution/ UPDATE Modifies an individual
Orchestrator with Ui RecommendCommandOrchSolution resource
Soluti {solutionID} ——

olutions DELETE Deletes an individual
Operations RecommendCommandOrchSolution resource
Recommendations CREATE Creates a new
and Commands to / d out/ RecommendCommandOrchNegotiate resource
be Sent to the SELIEE e BUL .
o ! {recCmdID}/negotiation Retrieves all

rchestrator with GET .
Negotiation RecommendCommandOSSNegotiate resources

ETSI

213 ETSI GS ENI 005 V3.1.1 (2023-06)

RPC i
Resource Name Resource URI Method Description
Recommendations GET Retrieves an individual
and Commands to RecommendCommandOSSNegotiate resource

be Sent to the
Orchestrator with
Negotiation

leor_rec_cmd_out/

{recCmdID}/negotiation UPDATE Modifies an individual

RecommendCommandOSSNegotiate resource

{negotiationID} ———
DELETE Deletes an individual

Operations RecommendCommandOSSNegotiate resource

8.4.15 External Reference Point Eor-eni-pol

The functionality of this External Reference Point is defined in clause 7.3.14. Sixteen resources are defined for this
External Reference Point:

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)

a container for policies sent by the Orchestrator;

Orchestrator input policies,

acontainer for policies not understood by the ENI System;

ENI System policies having Problems;

acontainer for policies with solutions that the ENI System accepted;

ENI System solved policies;

acontainer for negotiation information for problem policies for the ENI System;
negotiated ENI System policy information;

acontainer for policies to be sent to the Orchestrator;

policies for the Orchestrator;

a container for policies not understood by the Orchestrator;

Orchestrator policies having Problems;

a container for policies with solutions that the Orchestrator accepted;
solved Orchestrator policies;

acontainer for negotiation information for problem Orchestrator policies;

negotiated Orchestrator policy information.

The functions are shown in Table 8-21 and Table 8-22 for palicies sent by the user (and received by the ENI System)
and policies sent by the ENI System (and received by the user), respectively, along with brief descriptions of each

function.

ETSI

214

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-21: ENI External Reference Point Eysr-eni-poi Functions Sent by the Orchestrator to ENI System

Resource Name Resource URI RPC Method Description
Orchestrator CREATE Creates a new OrchPolicyData resource and stores
Policy Input /eor_policy_in ingested data in it
Data GET Retrieves all OrchPolicyData resources
Orchestrator GET Retrieves a single OrchPolicyData resource
ggltg:y Input Jeor_policy_in/{policylD} UPDATE Modifies a sllngle OrchPolllcyData resource
Operations DELETE Deletes a single OrchPolicyData resource
Orchestrator CREATE Creates a nhew OrchPolicyDataNormalized resource
Policy Input /eor_policy_in/{policylD}/
Data normalize GET Retrieves all OrchPolicyDataNormalized resources
Normalized
Orchestrator GET Retrieves an existing OrchPolicyDataNormalized
Policy Input leor_policy_in/{policylD}/ resource
Data normalize/{normalizedDat Modifies an existing OrchPolicyDataNormalized
. UPDATE
Normalized alD} resource
Operations DELETE Deletes an existing OrchPolicyDataNormalized resource
Orchestrator CREATE Creates a new OrchPolicyDataNormalizedProblem
Policy Input /eor_policy_in/{policylD}/ resource
Data normalize/{normalizedDat
Normalized alD}/ GET Retrieves all OrchPolicyDataNormalizedProblem
having problem resources
Problems
Orchestrator GET Retrieves an individual
Policy Input L . OrchPolicyDataNormalizedProblem resource
Data feor_policy_in/{policylB}/ Modifies an individual
Normalized gloé;r;ahze/{normahzedDat UPDATE OrchPolicyDataNormalizedProblem resource
having problem/{problemID} Deletes an individual
Problems DELETE OrchPolicyDataNormalizedProblem resource
Operations y
Orchestrator Creates a new OrchPolicyDataNormalizedSolution
. N . CREATE

Policy Input /eor_policy_in/{policylD}/ resource
Data normalize/{normalizedDat
Normalized alD}/ GET Retrieves all OrchPolicyDataNormalizedSolution
with solution resources
Solutions
Orchestrator GET Retrieves an individual_ _
Eglt:\:y Input /eor_pqlicy_in /{pol_icyID}/ '\O/Igcdhigggzﬁljﬁﬁtlig[jrglahzedSolutlon resource
Normalized gloé;r;ahze/{normahzedDat UPDATE OrchPolicyDataNormalizedSolution resource
VSV(I)III?Jtions solution/{solutionID} DELETE Deletes an individual OrchPolicyDataNormalizedSolution
Operations resource
Orchestrator CREATE Creates a new OrchPolicyDataNormalizedNegotiate
Policy Input /eor_policy_in/{policylD}/ resource
Data normalize/{normalizedDat
Normalized alD}/ GET Retrieves all OrchPolicyDataNormalizedNegotiate
with negotiation resources
Negotiation
Orchestrator GET Retrieves an individual
Eglt:\:y Input /eor_pqlicy_in /{pollicyID}/ '\OﬂgcdhigggZﬁl)ﬁtde}\l:ligilrgfhzedNegotlate resource
Normalized gloér}r;allze/{normahzedDat UPDATE OrchPolicyDataNormalizedNegotiate resource
with L L L

. negotiation/{negotiationID} Deletes an individual
ggg?gﬁgﬁ Sn DELETE OrchPolicyDataNormalizedNegotiate resource

ETSI

215

ETSI GS ENI 005 V3.1.1 (2023-06)

Table 8-22: ENI External Reference Point Eysr-eni-pol Functions Sent by the ENI System to the User

R(ilsource Resource URI RPC Method Description
ame
Policies Sent CREATE Creates a new ENIOrchPolicyData resource and stores
by the ENI leor_policy_out ingested data in it
System GET Retrieves all ENIOrchPalicyData resources
Policies Sent GET Retrieves a single ENIOrchPolicyData resource
gil/st[]eemENl Jeor_policy_out/{policylD} UPDATE Modifies a :“,lngle ENIOrchPolllcyData resource
Operations DELETE Deletes a single ENIOrchPolicyData resource
Policies Sent CREATE Creates a new ENIOrchPolicyDataNormalized resource
by the ENI leor_policy_out/{policylD}/
System having [normalize GET Retrieves all ENIOrchPolicyDataNormalized resources
Problems
Policies Sent GET rRe(eSt(;iLcler\éees an existing ENIOrchPolicyDataNormalized
by the ENI leor_policy_out/{policylD}/ — — - -
System having |normalize/{normalizedDatal |[UPDATE r'\gggﬁlﬁ:sean existing ENIOrchPolicyDataNormalized
Problems b} Deletes an existing ENIOrchPoli lized
Operations DELETE g rchPolicyDataNormalize
resource
Policies Sent |/eor_poalicy_out/{policylD}/ CREATE Creates a new ENIOrchPolicyDataNormalizedProblem
by the ENI normalize/{normalizedDatal resource
System with DY GET Retrieves all ENIOrchPolicyDataNormalizedProblem
Solutions problem resources
Policies Sent . . GET Retrieves an individual .
by the ENI /eor_pqllcy_out/{ppllcylD}/ ENIQrchPolllcy[.)a}taNormallzedProblem resource
S . normalize/{normalizedDatal Modifies an individual
ystem with UPDATE . .
Solutions DY/ ENIOrchPo!lcy_D_ataNormahzedProblem resource
Operations problem/{problemID} DELETE Deletes an |_nd|V|duaI _
ENIOrchPolicyDataNormalizedProblem resource
Policies Sent |/eor_policy_out/{policylD}/ Creates a new ENIOrchPolicyDataNormalizedSolution
X - CREATE
by the ENI normalize/{normalizedDatal resource
System with DY/ GET Retrieves all ENIOrchPolicyDataNormalizedSolution
Negotiation solution resources
GET Retrieves an individual
Policies Sent |/eor_policy_out/{policylD}/ ENIOrchPolicyDataNormalizedSolution resource
by the ENI normalize/{normalizedDatal UPDATE Modifies an individual
System with DY ENIOrchPolicyDataNormalizedSolution resource
Negotiation solution/{solutionID} DELETE Deletes an individual
ENIOrchPolicyDataNormalizedSolution resource
Policies Sent /eor_policy_out/{policylD}/ CREATE Creates a new ENIOrchPolicyDataNormalizedNegotiate
by the ENI normalize/{normalizedDatal resource . . :
S D}/ Retrieves all ENIOrchPolicyDataNormalizedNegotiate
ystem i GET
negotiation resources
GET Retrieves an individual
Policies Sent |/eor_policy_out/{policylD}/ ENIOrchPolicyDataNormalizedNegotiate resource
by the ENI normalize/{normalizedDatal UPDATE Modifies an individual
System DY/ ENIOrchPolicyDataNormalizedNegotiate resource
Operations negotiation/{negotiationID} DELETE Deletes an individual
ENIOrchPolicyDataNormalizedNegotiate resource

8.4.16 External Reference Point Eint.eni-dat

The functionality of this External Reference Point is defined in clause 7.3.15. Ten resources are defined for this
External Reference Point:

1)
2)
3)
4)

ingested Infrastructure information;

container for ingested I nfrastructure information;

ETS

container for processing and normalizing Infrastructure information;

processed and normalized Infrastructure information;

216

ETSI GS ENI 005 V3.1.1 (2023-06)

5) container for processing and normalizing Infrastructure information that the ENI System cannot understand;

6) processed and normalized Infrastructure information;

7) container for processing and normalizing Infrastructure information that the ENI System can now understand;

8) processed and normalized Infrastructure information;

9) container for negotiation information for resolving problems understanding Infrastructure information;

10)

negotiated Infrastructure information.

The functions are shown in Table 8-23, which provides brief descriptions of each function.

Table 8-23: ENI External Reference Point Eint.eni-dat FUnctions from the Infrastructure to ENI System

RPC

Resource Name Resource URI Description
Method
Creates a new IngestedinfraData resource and stores
:zfrjts'g:tc;ure leinf_data_in RS ingested data in it

P GET Retrieves all IngestedinfraData resources
Infrastructure GET Retrieves a single IngestedinfraData resource
Input Data leinf_data_in/{ingestDatalD} |[UPDATE Modifies a single IngestedinfraData resource
Operations DELETE Deletes a single IngestedinfraData resource
Infrastructure Jeinf normalized data CREATE Creates a new IngestedinfraDataNormalized resource
Normalized Data - - GET Retrieves all IngestedinfraDataNormalized resources

GET Retrieves an existing IngestedinfraDataNormalized
Infrastructure /einf_normalized_data/ rh‘;aligiLflig:an existing IngestedinfraDataNormalized
Normalized Data _no - UPDATE g'ng
Operations {normalizedDatalD} resource _ .
DELETE Deletes an existing IngestedinfraDataNormalized
resource
Infrastructure CREATE Creates a new IngestedInfraDataNormalizedProblem
Normalized Data |/einf_normalized_data/ resource
having {normalizedDatalD}/problem GET Retrieves all IngestedinfraDataNormalizedProblem
Problems resources
Infrastructure GET Retrieves an individual
h . . IngestedinfraDataNormalizedProblem resource
Normalized Data |/einf_normalized_data/ Modifies an individual
having {normalizedDatalD}/problem |UPDATE .
IngestedinfraDataNormalizedProblem resource
Problems HproblemiD} Deletes an individual
Operations .

P ! DELETE IngestedinfraDataNormalizedProblem resource
Infrastructure CREATE Creates a new IngestedinfraDataNormalizedSolution
Normalized Data |/einf_normalized_data/ resource
with {normalizedDatalD}/solution GET Retrieves all IngestedInfraDataNormalizedSolution
Solutions resources
Infrastructure GET Retrieves an individual
Normalized Data /einf_normalized_data/ IngestedinfraDataNormalizedSolution resource

- {normalizedDatalD}/solution Modifies an individual
with UPDATE . .

Solutions i tioniD) IngestedinfraDataNormalizedSolution resource
. solution Deletes an individual
Operations . .

P I DELETE IngestedinfraDataNormalizedSolution resource
Infrastructure . . Creates a new IngestedinfraDataNormalizedNegotiate
Normalized Data gﬁg:agﬁgzggﬁgrgf}fé otiat ST resource
with o 9 GET Retrieves all IngestedinfraDataNormalizedNegotiate
Negotiation resources
Infrastructure GET Retrieves an individual
Normalized Data /einf_normalized_data/ IngestedinfraDataNormalizedNegotiate resource

- {normalizedDatalD}/solution Modifies an individual
with UPDATE . .

Negotiation / . Ingestedlnfr.aD.a.taNormallzedNegotlate resource
Operations {solutionID} DELETE Deletes an individual

IngestedinfraDataNormalizedNegotiate resource

ETSI

8.4.17

217 ETSI GS ENI 005 V3.1.1 (2023-06)

External Reference Point Eint-eni-cmd

The functionality of this External Reference Point is defined in clause 7.3.16. Eight resources are defined for this
External Reference Point:

1)
2)
3)
4)
5)
6)
7)
8)

a container for recommendations and commands to be sent to the Infrastructure;
recommendations and commands;

a container for recommendations and commands that the I nfrastructure could not understand;
recommendations and command problems;

a container for recommendations and commands with solutions that the Infrastructure accepted;
solved recommendations and commands;

acontainer for negotiation information;

negotiated information.

The functions are shown in Table 8-24, which provides brief descriptions of each function.

Table 8-24: ENI External Reference Point Eint.eni-cma Functions from the ENI System to Infrastructure

RPC ..

Resource Name Resource URI Method Description
Recommendations CREATE Creates a new RecommendCommandinfra
and Commands to Jeinf rec cmd out resource and stores in it
be Sent to the - = — GET Retrieves all RecommendCommandinfra
Infrastructure resources
Recommendations GET rReitéfr\(l:Zs a single RecommendCommandinfra
and Commands to Modifies a single RecommendCommandInfra
be Sent to the leinf_rec_cmd_out/{recCmdID} |UPDATE resource 9
Infrastructure Delet nale R ac ant
Operations DELETE eletes a single RecommendCommandInfra

resource

Recommendations CREATE Creates a new
and Commands to Jeinf d out/ RecommendCommadInfraProblem resource
be Sent to the en _reg_crr —E:J :
Infrastructure {recCmdID}/problem GET rReest(;|l(Jar\(/:eesSaII RecommendCommadInfraProblem
having Problems
Recommendations GET Retrieves an individual
and Commands to Jeinf rec cmd out RecommendCommadInfraProblem resource
Ibe Sent to the /{rec_CmcﬁD}/pr_oblem UPDATE Modifies an individual

nfrastructure K{problemID} RecommendCommadInfraProblem resource
having Problems P DELETE Deletes an individual
Operations RecommendCommadInfraProblem resource
Recommendations CREATE Creates a new
and Commands to . RecommendCommadInfraSolution resource
be Sent to the /elnf_rec_cmd_oqt/ . .
Infrastructure with {recCmdID}/solution GET Retrieves all RecommendCommadInfraSolution
Solutions resources
Recommendations GET Retrieves an individual
and Commands to Jeinf rec cmd out/ RecommendCommadInfraSolution resource
be Sent to the {recC_:de_D}/so_Iution/ UPDATE Modifies an individual
Infrastructure with . RecommendCommadInfraSolution resource
Soluti {solutionID} ——

olutions DELETE Deletes an individual
Operations RecommendCommadInfraSolution resource
Recommendations CREATE Creates a new
and Commands to inf RecommendCommadInfraNegotiate resource
be Sent to the fein _rec_cmd_ouf[/ . .
| ! {recCmdID}/negotiation Retrieves all

nfrastructure with GET .
Negotiation RecommendCommadinfraNegotiate resources

ETSI

218 ETSI GS ENI 005 V3.1.1 (2023-06)

RPC i
Resource Name Resource URI Method Description
Recommendations GET Retrieves an individual
and Commands to RecommendCommadInfraNegotiate resource

leinf_rec_cmd_out/

{recCmdID}/negotiation UPDATE Modifies an individual

RecommendCommadInfraNegotiate resource

be Sent to the
Infrastructure with

{negotiationID}

Negotiation Deletes an individual

Operations DELETE RecommendCommadInfraNegotiate resource
9 Interacting with Other Standardized Architectures
9.1 Introduction

The ENI System uses policy management, knowledge engineering, and cognition to enhance the operation and
performance of the monitoring, configuration, management, and orchestration processes of the Assisted System. The
ENI System will also offer the automation of these processes. The ENI System does not require any changes to
Reference Points or their interfaces with existing Systems, including NFV MANO, SDN Controllers, or the MEF-LSO
architecture. Rather, ENI uses those definitions and provides adaptation and mediation with external standardized
architectures. However, changes made to existing Assisted Systems to comply with ENI External Reference Points and
ENI APIswill benefit ENI as well as increase the semantics and understanding of interaction between the ENI System
and these existing Assisted Systems.

ENI interacts with architectures from other SDOs using a subset of External Reference Points defined in clause 7.

An Assisted System may contain zero or more SDO Systems. All previous information defined in clauses 3 to 7 still
apply to the Assisted System regardless of how many SDO Systemsiit contains.

Every clause that follows representsinitial thinking of the ENI ISG. Each interaction with each external SDO is pending
future collaboration and liaison work with that SDO.

Clause 8.2 describes a generic architecture that enables ENI to interact with one or more SDO Systems. Clause 8.4
provides preliminary thoughts about how the generic architecture may be applied to NFV MANO.

NOTE: Further work on interaction with NFV MANO, as well as with other SDO Systems, are for further study
in Release 3 of the present document (see clause 9).

9.2 Generic Architecture

Figure 9-1 isa high-level diagram that illustrates how the ENI System may interact with an Assisted System that
includes one or more SDO Systems (e.g. NFV MANO, MEF-L SO, BBF-CloudCO, as well as others that may become
available in the market that are of interest to the ENI 1SG) or their Designated Entities. In particular, it shows how ENI
may interact at different levels (e.g. physical, resource, service, customer) of the combination of the SDO System(s) and
the Assisted System or its Designated Entity. There may be zero or more instances of an SDO System in an Assisted
System.

The SDO System layer(s) are arbitrarily shown between the Service and Resource layers. This need not be construed as
arequirement that any particular SDO Component logically exists at that layer. In addition, an SDO System may affect
one or more of the Physical, Resource, Service, or Customer Layers. An SDO System may introduce a new logical layer
aswell.

ETSI

219 ETSI GS ENI 005 V3.1.1 (2023-06)

| Customer Layer :
I a
(== p—
1 Service Layer :O >
1 [= Y l:, 410
L & =% 13 g ENI
I s ~
| SDO Layer(s) |3 -
! @ I:—c H %) 000
| - 10— S p—
i Resource Layer :g (o) ﬁ E
I | = \ J
b | o
: | 00 =
I Phy5|cal Layer = L
| “ @ ~
: \sﬁ—\y—% I
| |
| Assisted System l

Figure 9-1: Overall view of System Interaction of ENI

Definitions of the above layers are summarized as follows:

. Customer Layer: Customer portal, and status notifications of their services and system health. This interface
isneeded as ENI is potentially changing this layer's behaviour.

e ServicelLayer: Logical constructs that combine multiple elements to deliver asingle service.

EXAMPLE: A VPN service isacombination of components, including afirewall service, authentication
service and routing services, blended into a single purpose construct.

. SDO Layer: Functionality provided by a System defined by an SDO. This appears as a set of Functional
Blocksto ENI.

o Resour ce Layer: Datafrom all physical and virtualisation telemetry (e.g. CPU, storage, and network).

. Physical Layer: All hardware resources supporting the infrastructure. Information on system health, usage
and resource utilization will contribute to understanding the current state of hardware, and aid in predicting its
future state. For example, thiswill aid in the optimization of the physical layer when using machine learning
mechani sms.

Thisrelease of the ENI System architecture is limited to proposing how telemetry data from an Assisted System that
contains one or more SDO Systems may interact.

NOTE: Thistopic will be further specified in Release 4 of the present document (see clause 9).

ETSI

220 ETSI GS ENI 005 V3.1.1 (2023-06)

9.3 Generic SDO Interaction Architecture

9.3.1 Introduction

An API Broker may be used to facilitate the interaction between Assisted Systems and the ENI System. This interaction
may include one of two options:

1) direct communication between the ENI System and the Assisted System (or its Designated Entity); and/or
2) direct communication between the ENI System and the SDO System.

The differenceisthat in the first option, the Assisted System (or its Designated Entity) is responsible for
communicating between ENI and the SDO System, whereas in the second option, the ENI System communicates
directly with the SDO System. In the second option, the SDO System may inform the Assisted System (of whichitisa
part) of itsinteraction with the ENI System. In either of these options, the interaction shall not extend, or require the
extension of, the functionality of the SDO system, or any of its components, beyond what the SDO System has
currently defined in its specifications.

The interaction between the ENI and SDO Systems will use a set of common scenarios to investigate what types of
interactions are possible. These scenarios are not unique to any one particular SDO, and some scenarios may not be
applicableto all SDOs. They are provided to define a common framework to encourage conversation on interaction
between ENI and each SDO System that wants to interoperate with ENI.

A common theme in each scenario is the functionality provided by the SDO System compared to the Assisted System
that contains the SDO System. More specifically, the following five exemplary scenarios examine:

. Passive notification to the SDO System, no interaction with the rest of the Assisted System.
. Data analysis between the ENI and SDO Systems, no interaction with the rest of the Assisted System.
. Active assistance to the SDO System, no interaction with the rest of the Assisted System.

. Active assistance to the entire Assisted System for only those functions that are contained in both the SDO
System and the Assisted System.

e Active assistance to the entire Assisted System, regardless of whether afunction isonly in the Assisted System
or the SDO System.

The above five scenarios are defined in order of increasing complexity.

NOTE: Thesearefor further study in Release 3 of the present document (see clause 9).

9.4 Interaction with NFV MANO

9.4.1 High Level description of the NFV MANO - ENI Interaction

NOTE 1: The contents of this clause requires aliaison and agreement with the NFV MANO ISG, and is for further
study in Release 3 of the present document (see clause 9).

The interaction of ENI with an NFV MANO-based architecture is shown in the following diagram. Note that the
functionality provided by NFV MANO isonly a part of what service providers work with in orchestration. For
example, NFV MANO does not directly monitor or manage some of the componentsin the Physical Layer, as well as
the most functionality of the Service and Customer Layers. All of these components need to be coordinated. This
coordination may be done by the ENI System.

The High Level NFV MANO - ENI Interaction Architecture Framework is shown in Figure 9-2, where the ENI System
is external to the NFV MANO framework.

ETSI

221 ETSI GS ENI 005 V3.1.1 (2023-06)

i mm— e e - i
|
I (:
I I
| \ :
. [
| - i
| Q)
' S 3
1 NFV Layer 'g w =
| -
: NFVO | [VNFM Jis =3) (0)) 0) (0)) (
| VIM NFVI :E'D_C -
| t —
I Resource Layer e .8
| =
| [gegy == '@ =
=E= = = :
: == == |g 0
10 =
: Physical Layer |
L |]RLAS Iv—c
2 < |
: ‘ﬁﬂ—‘ﬂ‘ |
I
:_ Assisted System i

Figure 9-2: Interaction between the NFV MANO and ENI

The ENI System shall connect to the NFV MANO framework through specific External Reference Pointsin the
following four functional areas:

. NFVO (NFV Orchestrator).

e VNFM (VNF Manager).

e VIM (Virtualised Infrastructure Manager).
. NFVI (NFV Infrastructure).

This will enable the collection of appropriate telemetry for ENI to analyse. However, it isunclear, at this point in time,
how ENI can provide recommendations and/or commands to the NFV MANO Assisted System (or its Designated
Entity), as the existing NFV MANO Reference Points are not suitable for conveying such information.

NOTE 2: Appropriate Reference Points are not currently defined by NFV MANO. Hence, thiswill be work for
Release 3 of the present document (see clause 9), after aliaison has been created between |SG ENI and
ISG NFV.

The purpose of the NFV MANO System is to provide orchestration, management, and control functions. In the
envisaged interaction, the ENI System may support and help to improve these NFV MANO functionalities. ENI may
also enhance the effectiveness of NFV MANO by providing Al-based functionalities as well as context- and
situation-awareness. There are several options for NFV MANO and ENI to interact. One exampleis using the AP
Broker to translate between ENI and NFV MANO APIs. However, equivalent External Reference Points will first need
to be defined by the NFV MANO System for at least the NFV Orchestrator, VNF Manager, and VIM Functional
Blocks. The desire to implement this interaction could aso imply the addition and/or modification of External ENI
Reference Points to facilitate this interaction. The advantage of this approach is that the API Broker decouples the ENI
and NFV MANO Systems, so that either can change without directly affecting the other.

ETSI

222 ETSI GS ENI 005 V3.1.1 (2023-06)

The NFV MANO System has specific management responsibilities that are different in scope than those of the ENI
System. The interaction between the NFV MANO and the ENI Systems may take on a number of permutations;
exemplary scenarios are described in the following clauses. The behaviour of both Systems to the messages that are
exchanged in each scenario being proposed shall be defined in clauses 4.4.2.1 and 4.4.3 of the present document.

9.4.2 Initial proposals for interaction scenarios

94.2.1 Introduction

The following clauses describe four scenarios of interaction between the ENI and Assisted Systems, where the latter has
an NFV MANO System embedded in it. The first three scenarios limit the ENI System to interacting with the NFV
MANO part of the Assisted System only, while the last scenario removes these restrictions and allows the ENI System
to interact with the entire NFV MANO System.

9.4.2.2 Scenario 1: Passive Notification to NFV MANO
This scenario assumes that interaction between ENI and the Assisted System shall be limited to ENI and NFV MANO.

The ENI System observes the interaction between the Assisted System and the NFV MANO System. The ENI System
may then place information describing the results of analysis performed by ENI in arepository shared by the NFV
MANO and ENI Systems for review and future decision support. In this option, the ENI System shall not send
recommendations or commands to either the Assisted System or the NFV MANO System. The ENI System can only
send notifications to the NFV MANO System when it adds or changes data or information in the shared repository.

9.4.2.3 Scenario 2: Active Data Analysis for NFV MANO
This scenario assumes that interaction between ENI and the Assisted System shall be limited to ENI and NFV MANO.

The ENI System may take on the role of augmented data analysis, and enhance the MANO subsystem via delivery of
decision support to the NFV MANO orchestrator in real time. In this option, the ENI System only sends
recommendations or commands to the NFV MANO System that affect data analysis and related functions, such as trend
prediction. It may also send repository change notifications to the NFV MANO System.

9424 Scenario 3: Active Assistance to the NFV MANO System
This scenario assumes that interaction between ENI and the Assisted System shall be limited to ENI and NFV MANO.

The ENI System may take on an expanded role, assisting the NFV MANO System where appropriate. In this option, the
ENI System sends recommendations and commands to the NFV MANO System for al functions that both the ENI and
NFV MANO Systems have. However, the ENI System will not send recommendations and commands to the NFV
MANO System or the Assisted System that affect functionality that NFV MANO does not currently have inits
published specifications. It may also send repository change notifications to the NFV MANO System.

9.4.25 Scenario 4: Active Assistance to the Assisted System

This scenario assumes that interaction between ENI and the Assisted System, including NFV MANO, shall be
permitted.

The ENI System may take on a further expanded role, assisting the NFV MANO System where appropriate as well as
providing functionality that the NFV MANO System does not offer to the rest of the Assisted System. In this option, the
ENI System sends recommendations and commands to the NFV MANO System for all functions that both the ENI and
NFV MANO Systems have as well as recommendations and commands to the Assisted System that are from functions
that only the ENI System has. This scenario shall use explicit communication, via ENI External Reference Points, to
ensure that the ENI System, the Assisted System, and the NFV MANO System shall agree on which contral,
management operations are done by the ENI System, and which are done by the NFV MANO System. Similarly, the
ENI System, the Assisted System, and the NFV MANO System shall agree on which operations require which type of
messaging protocol (e.g. request-response, or one-way notification, or something else).

ETSI

223 ETSI GS ENI 005 V3.1.1 (2023-06)

This scenario is applicable to situations where there is an evolution in the network that requires new functionalities that
NFV MANO does not currently address. As an example, this may happen for situations where future network resource
models will require more granular and multi-faceted analysis (mobile devices as cloud resource nodes, etc.), and will
require a complex management capability, which isideally augmented via ENI.

The ENI System may inform the NFV MANO System of recommendations and commands that it has made to other
portions of the Assisted System, as this may influence the decision process of the NFV MANO System. It may also
send repository change notifications to the NFV MANO System.

NOTE:

9.4.3

NOTE:

9.5

NOTE:

Work on how decisions based on the closed |oop architecture of ENI and the open loop architecture of
NFV MANO isfor study in Release 4 of the present document (see clause 9).

Interaction Scenarios for Assisted Policy Management in NFV
MANO

Thisisfor further study in Release 4 (see clause 9).

Interaction with the MEF LSO RA

Thisisfor further study in Release 4 (see clause 9).

10

10.1

Void.

10.2

Areas for Future Study

Open Issues for the Present Document

Issues for Future Study

From clause 6.3.2.3.7.4 (Semantic Annotation):

NOTE 1

Release 4 will compare vectorized representations based on word frequencies (e.g. bag-of-words), word
embeddings (e.g. words are mapped into a vector space where the distance between words in the space
isrelated to the syntactic ad semantic features of the words; and example is word2vec), and document-
level mechanisms (e.g. bi-directional encoder representations from transformers, or BERT) to determine
which (if any) of these approaches could be used effectively in active learning.

From clause 6.3.2.4.2.2 (Detecting Anomalies):

NOTE 2:

The following will be examined in Release 4 of the present document.

. Statistical. This uses historical datato model the expected behaviour of a system.

o Probabilistic. Similar to statistical, but uses probabilities or fuzzy algebrato do the comparison.

. Distance-based Metrics. This uses the distance between a newly measured datum and previous data, and
defines the datum as an anomaly if the distance is larger than a pre-defined value.

. Pattern Matching. This compares each hew measurement against a database of known anomalies, and
classifies measurements that are more similar to known anomalies than to correct data as anomalies.

e Structural Matching. This compares the structure of the data to known data fields from models and/or
ontologies. If the data matches correct or anomal ous data, then a corresponding decision is made.

e Clustering. This projects measured data into a multi-dimensional space. Measurements that do not belong to,
or aretoo far from acluster, are classified as anomalies.

ETSI

224 ETSI GS ENI 005 V3.1.1 (2023-06)
o Ensemble M atching. This approach uses a number of different algorithms to analyse each measurement, and
then defines a collective vote from each method.

. M achine L ear ning. Different types of machine learning algorithms can be used. For example, deep neural
networks (e.g. LSTM, or Long Short-Term Memory, which are a type of recurrent neural network capable of
learning order dependence in sequence prediction problems) could be compared against autoencoders (e.g. a
type of neural network that can be used to learn a compressed representation of raw data, which learns a
condensed representation of the input data).

From clause 6.3.7.4.4 (Architecture of a Cognitive Functional Block):
NOTE 3: Information processing is for further study in Release 4 of the present document.
From clause 6.3.9.6.3.4 (A Single Unified Policy Management Architecture):
NOTE 4: Thissubject isfor further study in Release 4 of the present document.
From clause 6.3.9.6.4 (Policy Management Federation):
NOTES5: Thisisfor further study in Release 4.
From clause 6.3.11.4.2 (Treating Output Generation as the Inverse of Normalization)
NOTE 6: Thisisfor further study in Release 4.
From clause 6.4.3 (Function of the API Broker):
NOTE 7: An API Broker can also be used for APl composition. Thisitemis for further study in Release 4.
From clause 6.5.4 (Recommended Communication Patterns to be Used Between ENI and External Systems):
NOTE 8: Thisisfor further study in Release 4.
From clause 7.3.6 (Reference Point Eapp-eni-kno):

NOTE9: These dataand information will require a special protocol to exchange their content. That protocol will
be defined in Release 4 of the present document.

From clause 9.2 (Generic Architecture):
NOTE 10: Thistopic will be further specified in Release 4 of the present document.
From clause 9.4.3 (Interaction Scenarios for Assisted Policy Management in NFV MANO):
NOTE 11: Thisisfor further study in Release 4.
From clause 9.5 (Interaction with the MEF LSO RA):
NOTE 12: Thisisfor further study in Release 4.
From clause A.1 (Integration with Other SDOs and Open Source Communities):

NOTE 13: The present document, along with work on other architectures (e.g. ZSM), isfor further study in
Release 4.

From clause A.2 (Integration with BBF CloudCO):

NOTE 14: Theinteraction between the ENI System and various open source communitiesis for further study in
Release 4.

ETSI

225 ETSI GS ENI 005 V3.1.1 (2023-06)

Annex A (informative):
SDO and Open Source Interactions

A.1 Integration with Other SDOs and Open Source
Communities

A.1.1 Introduction

Thisinformative annex describes preliminary thoughts on integrating ENI with MEF-LSO and the BBF CloudCO
architectures.

NOTE: The present document, along with work on other architectures (e.g. ZSM), isfor further study in
Release 4 (see clause 9).

A.1.2 Interaction with BBF CloudCO

The BBF CloudCO (Cloud Central Office) reference architecture is a Central Office Domain that is:
1) leveraging SDN and NFV techniques,
2) running on acloud-like infrastructure deployed at Central Offices; and

3) accessed through a Northbound API, allowing Operators, or third parties, to consume its functionality, while
hiding how the functionality is achieved from the API consumer.

Figure A-1 shows the interaction between the High-Level ENI Architecture and the BBF CloudCO architecture, see
BBF TR-384[i.39]. All the functional components that are shown in Figure A-1 are defined in BBF TR-384 [i.39] and
ETSI GSNFV-MAN 001 [1]. The reference point between the ENI System and the BBF CloudCO architecture is being
specified by ETSI 1SG ENI. All the other reference pointinterfaces are specified in BBF TR-384 [i.39] and ETS
GSNFV-MAN 001 [1].

ETSI

226 ETSI GS ENI 005 V3.1.1 (2023-06)

| | | Sarvice I E 3 r ()
Q loudCO North Bound APls) T0s-Ma-ccodo . =
') Context-Aware Management _§.
o T rchestrator %
3 o E . Situational Awareness F 3
SON i || FCAP |CCO State CrigOpt] - - Management 2
Management I'._ a | + .E
£ Control : Ve-Wwnim-em E | = Policy-based Management 5
— L_l - OccoNisan ot Oeco Nt |OccoNpian-d }l O 5
B 1k S| Cognition Framework E
ERAE (=) H MF S0 Mng Vi AT C L Minat 3
T 4 | ' & ol & Ol & Ctrl
| : M M,
! lm + M, L I ; . i
- | Jl[We-Vnfm-vnf
& WINF e : NFB
PNE i
I\II-‘.r.Jr -Z-' =
Wirt s virtual ¢ irtual - _-:_:
| I | ‘ torage ” Matword |] & ot
NFy Virtualization Layer] =
Ly
mipute torage Batwork
1 NF-V =
e P CloudCO Domain
A== Cloud CO s—a Circhastration = Managamant e==— [iats - Manassment

arvd AP & Control Plane Interfaces & Control Plana Intarfacs

Figure A-1: Interaction between the BBF CloudCO and ENI

In Figure A-1, the shown End to End Service Orchestrator coordinates all client interfaces with regard to their privileges
and views, and resolves any contentions that may arise. Furthermore, the E2E Service Orchestrator coordinates multiple
CloudCO Domain Orchestrators, deployed on specific hodes. The CloudCO Domain Orchestrator manages, controls
and orchestrates each CloudCO Domain that spans over portions of the whole access/edge network. Part of the E2E
Service Orchestrator function isto as well coordinate user plane handoffs when services cross domain boundaries.

In this scenario the ENI System interacts with the CloudCO End-to-End Service Orchestration/OSS/BSS/Portals
functional component via areference point that is being specified by 1ISG ENI. The ENI System collects the necessary
information from the CloudCo Domain Orchestrator on topics such as:

1) supported tenants,

2) supported use cases,

3) used and available resources per tenant and use case; and as well;

4) information related to lifecycle management of the virtual environment.

The output of the ENI System can be used for several purposes such as acting on the service/policy/resource module
and engineering rules, recipes for various actions, policies and processes.

A.2 Interaction with Open Source Communities

NOTE: Theinteraction between the ENI System and various open source communitiesis for further study in
Release 4.

ETSI

227 ETSI GS ENI 005 V3.1.1 (2023-06)

Annex B (informative):
ENI Architectural Evolution

B.1 ENI Architecture Evolution Motivation

Technology is evolving especially when it comes to Cognition, near natural language processing, deep reasoning and
even situation awareness and context awareness.

Industry agreement as to Policy semantics (not DSL) and data normalization and toolsis still work in progress, at best.

Multiple PoC are emerging at ETSI ENI and elsewhere in the industry. These PoC are using off the shelf technology
with limited use of afore mentioned advanced technologies.

Need to coordinate architecture with related SDOs and Industry Consortia.
Need to coordinate Reference Points with other SDOs before finalizing the model. Additional challenges.

Dataingestion: use different tools today, need to be normalized into one common and COORDINATED data with
agreed representation!

Infrastructure (as known as "Existing System™) is still silo'ed hard to accomplish coordinated configuration, control and
management of Network with Compute + Storage.

B.2 ENI Architecture Evolution Proposal

. Define few evolutional phases.

e Align PoC, Open Source and other SDO and industry consortiato ENI phases.
. Interact with open source communities!

o Update ENI Architecture based on industry progression.

e Theaboveisdesigned to make ENI the focal of ML/AI evolution for the Telco industry and for its use of
various Orchestration and Cloud Operation Environments (and network industry?) by ensuring tight coupling.

. Time Limit: limit evolution and publication of successive ENI phases, to no more than 18 months after the
first publication of the ENI Architecture.

B.3 Proposed Definition of the ENI Phases

An"ENI Phase" is defined as compliance with a set of ENI Reference Points and its specific version, as set by the ENI
WG from timeto time.

For clarity, it is expected that a Reference Point may be versioned as the ENI architecture evolves.

The architecture document (i.e. the present document) will continue as currently planned and will not slow down or
change course.

For each "ENI Phase", ENI will consider inputs from its documents and members, ongoing PoC, interaction and liaison
with SDO and collaboration with open source communities to determine the set of Reference Points required to be
supported.

An ENI implementation, MAY claim compliance for a given ENI Phase when it isin compliance with a set of
Reference Points set by the ENI WG, as aforementioned.

It is recommended that the Architecture WG will provide specific recommendation of the phases using Reference
Points.

ETSI

228 ETSI GS ENI 005 V3.1.1 (2023-06)

Annex C (informative):
Bibliography

° The Moral Machine.

ETSI

https://www.media.mit.edu/projects/moral-machine/overview/

229

ETSI GS ENI 005 V3.1.1 (2023-06)

History
Document history
V111 September 2019 | Publication
V211 December 2021 | Publication
V311 June 2023 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Overview of System Architecture (informative)
	4.1 Introduction
	4.2 Motivation for ENI
	4.3 Benefits of ENI
	4.4 High-Level Description of the ENI System Architecture
	4.4.1 Overall Description
	4.4.2 The Assisted System
	4.4.2.1 Introduction
	4.4.2.2 Communication Options for All Classes of Assisted Systems
	4.4.2.3 Class 1: An Assisted System that has No AI-based Capabilities
	4.4.2.4 Class 2: An Assisted System with AI that is Not in the Control Loop
	4.4.2.5 Class 3: An Assisted System with AI Capabilities in its Control Loop
	4.4.2.5.1 Introduction
	4.4.2.5.2 Class 3 Options

	4.4.2.6 Summary of Interaction between the Assisted System and ENI

	4.4.3 Communication and Interaction with Other External Systems
	4.4.4 Mode of Operation
	4.4.4.1 Allowed Modes of Operation
	4.4.4.2 Setting the Mode of Operation
	4.4.4.3 Interaction with the Assisted System
	4.4.4.4 Selecting a Mode of Operation for a Class of Decisions
	4.4.4.5 Communication of Mode of Operation
	4.4.4.6 Normal Operation of the Selected Mode of Operation
	4.4.4.6.1 Overview
	4.4.4.6.2 Case 1: ENI Indirectly Instructs the Assisted System to Switch Modes
	4.4.4.6.3 Case 2: ENI Directly Instructs the Assisted System to Switch Modes

	4.4.4.7 Normal Operation of the Selected Mode of Operation
	4.4.4.8 Exception Handling for the Selected Mode of Operation

	4.4.5 Functional Concepts
	4.4.5.1 Functional Concepts for Modular System Operation
	4.4.5.2 Overview of Prominent Control Loop Architectures

	4.4.6 ENI Reference Points
	4.4.6.1 Definition of an ENI Reference Point
	4.4.6.2 Definition of an ENI External Reference Point
	4.4.6.3 Definition of an ENI Internal Reference Point

	4.4.7 ENI Interfaces
	4.4.7.1 Definition of an ENI Interface
	4.4.7.2 Definition of an ENI Hardware Interface
	4.4.7.3 Definition of an ENI Software Interface
	4.4.7.4 Definition of an ENI Application Programming Interface
	4.4.7.5 Comparison of ENI Software Interfaces with ENI APIs
	4.4.7.6 Interaction between ENI Hardware and Software Interfaces
	4.4.7.7 Interaction between ENI Hardware and Software APIs

	4.5 Functional Architecture
	4.5.1 Functional Block Diagram of the ENI System
	4.5.2 API Broker
	4.5.2.1 Introduction
	4.5.2.2 Definition of the ENI API Broker
	4.5.2.3 Use of an API Broker in ENI
	4.5.2.4 Alternatives to Using an API Broker

	4.5.3 ENI System Functional Blocks
	4.5.3.1 Introduction
	4.5.3.2 Input Processing
	4.5.3.2.1 Overview
	4.5.3.2.2 Data Ingestion Functional Block
	4.5.3.2.3 Normalization Functional Block

	4.5.3.3 Analysis
	4.5.3.3.1 Knowledge Management and Processing

	4.5.3.4 Situation-based, Model-driven, Policy Generation
	4.5.3.4.1 Overview
	4.5.3.4.2 Situation Awareness Functional Block
	4.5.3.4.3 Model Driven Engineering Functional Block
	4.5.3.4.4 Policy Management Functional Block

	4.5.3.5 Output Generation
	4.5.3.5.1 Overview
	4.5.3.5.2 Denormalization Functional Block
	4.5.3.5.3 Output Generation Functional Block

	4.5.4 Decision-Making
	4.5.4.1 Overview
	4.5.4.2 Decision-Making using Hindsight
	4.5.4.3 Decision-Making using Deterministic Processing
	4.5.4.4 Decision-Making using Predictive Processing
	4.5.4.5 Decision-Making using Cognitive Processing

	4.5.5 Introduction to Artificial Intelligence Mechanisms for Modular Systems

	5 ENI Architectural Requirements
	5.1 Introduction
	5.2 Functional Architectural Requirements for ENI Operation
	5.3 Architectural Requirements for Mode of Operation
	5.4 Non-Functional Architectural Requirements for ENI Operation
	5.5 Reference Point Requirements
	5.6 Knowledge Modeling Requirements
	5.7 Control Loop Processing Requirements
	5.8 Functional Block Processing Requirements
	5.8.1 Context Processing Requirements
	5.8.2 Cognition Requirements
	5.8.3 Policy Management Requirements

	5.9 AI Modelling and Training Model Requirements
	5.10 API Requirements

	6 ENI Reference Architectural Framework
	6.1 Introduction
	6.2 Design Principles of the ENI System architecture
	6.2.1 Overview
	6.2.2 Nesting of Functional Blocks
	6.2.3 Communication and Interaction
	6.2.3.1 Introduction
	6.2.3.2 Discovery
	6.2.3.3 Direct Communication
	6.2.3.4 Indirect Communication
	6.2.3.5 Negotiation
	6.2.3.5.1 Introduction
	6.2.3.5.2 Distributive Negotiation
	6.2.3.5.3 Integrative Negotiation
	6.2.3.5.4 Functional Model: an Informative Example
	6.2.3.5.5 Usage

	6.2.4 Administrative and Management Domains
	6.2.4.1 Introduction
	6.2.4.2 Domain Operations
	6.2.4.3 Interaction between Hierarchical Domains
	6.2.4.4 Interaction between Distributed Administrative Domains
	6.2.4.5 Interaction between Federated Administrative Domains

	6.2.5 Modelled Knowledge
	6.2.6 Bias
	6.2.6.1 Introduction
	6.2.6.2 Protection Against Bias
	6.2.6.3 Adherence to Applicable Standards to Mitigate Bias

	6.2.7 Ethics
	6.2.7.1 Introduction
	6.2.7.2 Methods to Ensure Ethical Decision-Making
	6.2.7.3 Adherence to Applicable Standards and Initiatives

	6.2.8 The Assisted System
	6.2.8.1 Overview
	6.2.8.2 Class 1 and 2 Assisted Systems
	6.2.8.3 Class 3 Assisted Systems
	6.2.8.3.1 Single Class 3 Assisted Systems
	6.2.8.3.2 Multiple Class 3 Assisted Systems

	6.3 Architectural Functional Blocks of the ENI System
	6.3.1 ENI Functional Architecture with Reference Points
	6.3.1.1 Introduction
	6.3.1.2 ENI Functional Architecture with External Reference Points
	6.3.1.3 ENI Functional Architecture with Internal Reference Points
	6.3.1.4 ENI Functional Architecture with Administrative and Management Domains
	6.3.1.5 ENI Functional Architecture with Control Loops
	6.3.1.6 ENI Functional Architecture with Domains and Control Loops

	6.3.2 Data Ingestion Functional Block
	6.3.2.1 Introduction
	6.3.2.2 Motivation
	6.3.2.3 Function of the Data Ingestion Functional Block
	6.3.2.3.1 Introduction
	6.3.2.3.2 Data Filtering
	6.3.2.3.3 Data Correlation
	6.3.2.3.4 Data Cleansing
	6.3.2.3.5 Data Anonymization and Pseudonymization
	6.3.2.3.6 Data Augmentation
	6.3.2.3.7 Data Labelling and Annotation

	6.3.2.4 Operation of the Data Ingestion Functional Block
	6.3.2.4.1 Introduction
	6.3.2.4.2 Telemetry Processing
	6.3.2.4.3 Use of Metadata
	6.3.2.4.4 Use of Structure, Pattern, and Feature Matching
	6.3.2.4.5 Use of AI-based Mechanisms
	6.3.2.4.6 Use of Formal Logic and Ontologies

	6.3.3 Data Normalization Functional Block
	6.3.3.1 Introduction
	6.3.3.2 Motivation
	6.3.3.3 Function of the Data Normalization Functional Block
	6.3.3.4 Operation of the Data Normalization Functional Block
	6.3.3.4.1 Introduction
	6.3.3.4.2 Database Design Analogy (informative)
	6.3.3.4.3 Normalization for Machine Learning
	6.3.3.4.4 Applying Normalization to ENI
	6.3.3.4.5 Storing Normalized Telemetry Information
	6.3.3.4.6 Changing Telemetry Gathering using Policies
	6.3.3.4.7 Cognitive and Situation-Aware Directed Normalized Telemetry Gathering
	6.3.3.4.8 Use of Metadata
	6.3.3.4.9 Use of Structure, Pattern, and Feature Matching
	6.3.3.4.10 Use of AI-based Mechanisms
	6.3.3.4.11 Use of Formal Logic and Ontologies

	6.3.4 Knowledge Management Functional Block
	6.3.4.1 Introduction
	6.3.4.2 Inferencing
	6.3.4.3 Motivation
	6.3.4.4 Knowledge Processing
	6.3.4.4.1 Knowledge Representation and Enhancement
	6.3.4.4.2 Knowledge Normalization
	6.3.4.4.3 Transforming Data, Information, and Knowledge into Wisdom
	6.3.4.4.4 Semantic Bus

	6.3.4.5 Repositories
	6.3.4.5.1 Overview
	6.3.4.5.2 Data Repository
	6.3.4.5.3 Model Repositories
	6.3.4.5.4 Knowledge Repositories
	6.3.4.5.5 Blackboard Repositories
	6.3.4.5.6 Repository Operation
	6.3.4.5.7 Semantically Augmented Query and Learning

	6.3.4.6 Function of the Knowledge Management Functional Block
	6.3.4.6.1 Introduction
	6.3.4.6.2 Grounding Knowledge Using Semantics
	6.3.4.6.3 Resolving Knowledge Conflicts
	6.3.4.6.4 Knowledge Distribution

	6.3.4.7 Operation of the Knowledge Management Functional Block
	6.3.4.7.1 Introduction
	6.3.4.7.2 Observe Functionality
	6.3.4.7.3 Orient Functionality
	6.3.4.7.4 Decide Functionality
	6.3.4.7.5 Model-Driven-Enhanced Decide Functionality
	6.3.4.7.6 Act Functionality
	6.3.4.7.7 Model-Driven-Enhanced Act Functionality
	6.3.4.7.8 Learning-Enhanced OODA
	6.3.4.7.9 Reasoning-Enhanced OODA

	6.3.5 Context-Aware Management Functional Block
	6.3.5.1 Introduction
	6.3.5.2 Motivation
	6.3.5.3 Function of the Context-Aware Management Functional Block
	6.3.5.3.1 Introduction
	6.3.5.3.2 Modelling and Representation of Context Awareness
	6.3.5.3.3 Processing Contextual Updates

	6.3.5.4 Operation of the Context-Aware Management Functional Block

	6.3.6 Cognition Management Functional Block
	6.3.6.1 Introduction
	6.3.6.2 Motivation
	6.3.6.3 Function of the Cognition Management Functional Block
	6.3.6.3.1 Introduction (informative)
	6.3.6.3.2 The Symbolic Approach (informative)
	6.3.6.3.3 The Connectionist Approach (informative)
	6.3.6.3.4 Cognitive System
	6.3.6.3.5 Cognition Model

	6.3.6.4 Operation of the Cognition Management Functional Block

	6.3.7 Situational Awareness Functional Block
	6.3.7.1 Introduction
	6.3.7.2 Motivation
	6.3.7.3 Function of Situational Awareness
	6.3.7.4 Operation of the Situational Awareness Functional Block
	6.3.7.4.1 Introduction
	6.3.7.4.2 Use of Memory and the Cognition Model
	6.3.7.4.3 Definition and Management of Goals to be Achieved
	6.3.7.4.4 Architecture of a Cognitive Functional Block
	6.3.7.4.5 Leveraging Historical Situation Information

	6.3.7.5 Difference between Context Awareness and Situational Awareness
	6.3.7.6 Difference between Cognition Management and Situational Awareness

	6.3.8 Model Driven Engineering Functional Block
	6.3.8.1 Introduction
	6.3.8.2 Motivation
	6.3.8.3 Function of the Model Driven Engineering Functional Block
	6.3.8.4 Operation of the Model Driven Engineering Functional Block
	6.3.8.4.1 Introduction
	6.3.8.4.2 Knowledge Data Fusion, Transformation, and Processing
	6.3.8.4.3 Knowledge Transformation into Policy Information

	6.3.9 Policy Management Functional Block
	6.3.9.1 Introduction
	6.3.9.2 Motivation
	6.3.9.3 Modelling and Representing Types of Policies
	6.3.9.3.1 Introduction
	6.3.9.3.2 Reuse of the MEF Policy Model
	6.3.9.3.3 Reuse of the MEF Core Model
	6.3.9.3.4 Types of Policies Used in ENI
	6.3.9.3.5 Overview of a Unified Policy Information Model

	6.3.9.4 Processing Policies
	6.3.9.4.1 Introduction
	6.3.9.4.2 Constructing Policies: Parsers vs. Compilers vs. Interpreters
	6.3.9.4.3 Policy Languages
	6.3.9.4.4 Policy Scope

	6.3.9.5 Function of the Policy Management Functional Block
	6.3.9.6 Operation of the Policy Management Functional Block
	6.3.9.6.1 Introduction
	6.3.9.6.2 The Policy Continuum
	6.3.9.6.3 Policy Management Architecture
	6.3.9.6.4 Policy Management Federation
	6.3.9.6.5 Constructing, Deploying, and Activating Policies
	6.3.9.6.6 Managing Policies
	6.3.9.6.7 Deactivating and Removing Policies

	6.3.10 Denormalization Functional Block
	6.3.10.1 Introduction
	6.3.10.2 Motivation
	6.3.10.3 Function of the Denormalization Functional Block
	6.3.10.4 Operation of the Denormalization Functional Block

	6.3.11 Output Generation Functional Block
	6.3.11.1 Introduction
	6.3.11.2 Motivation
	6.3.11.3 Function of the Output Generation Functional Block
	6.3.11.4 Operation of the Output Generation Functional Block
	6.3.11.4.1 Introduction
	6.3.11.4.2 Treating Output Generation as the Inverse of Normalization

	6.4 API Broker
	6.4.1 Introduction
	6.4.2 Motivation
	6.4.3 Function of the API Broker
	6.4.4 Operation of the API Broker

	6.5 Communication Between Functional Blocks
	6.5.1 Introduction
	6.5.2 Common Communication Requirements
	6.5.3 Recommended Communication Patterns to be Used Within ENI
	6.5.3.1 Introduction
	6.5.3.2 Remote Procedure Calls and Remote Method Invocations
	6.5.3.3 Batch File Exchange
	6.5.3.4 Shared Database
	6.5.3.5 Messaging
	6.5.3.5.1 Introduction
	6.5.3.5.2 Common Requirements of Messaging Systems
	6.5.3.5.3 Messaging Functionality

	6.5.4 Recommended Communication Patterns to be Used Between ENI and External Systems

	6.6 Security Considerations

	7 Reference Points
	7.1 Introduction
	7.2 External Reference Point Overview
	7.3 External Reference Point Definitions
	7.3.1 Reference Point Eoss-eni-dat
	7.3.2 Reference Point Eoss-eni-cmd
	7.3.3 Reference Point Eoss-eni-pol
	7.3.4 Reference Point Eapp-eni-ctx
	7.3.5 Reference Point Eapp-eni-oth
	7.3.6 Reference Point Eapp-eni-kno
	7.3.7 Reference Point Eapp-eni-pol
	7.3.8 Reference Point Ebss-eni-dat
	7.3.9 Reference Point Ebss-eni-cmd
	7.3.10 Reference Point Ebss-eni-pol
	7.3.11 Reference Point Eusr-eni-pol
	7.3.12 Reference Point Eor-eni-dat
	7.3.13 Reference Point Eor-eni-cmd
	7.3.14 Reference Point Eor-eni-pol
	7.3.15 Reference Point Einf-eni-dat
	7.3.16 Reference Point Einf-eni-cmd
	7.3.17 Reference Point Eeni-api-in
	7.3.18 Reference Point Eeni-api-out
	7.3.19 Reference Point Eeni-api-dev
	7.3.20 Reference Point Eeni-api-run
	7.3.21 Reference Point Eeni-api-dmg
	7.3.22 Reference Point Eeni-api-emg

	7.4 External Reference Points Protocol Specification
	7.4.1 Introduction
	7.4.2 Generic Protocols for use with External Reference Points
	7.4.3 Specific Protocols for use with External Reference Points
	7.4.3.1 gRPC and HTTP/2
	7.4.3.2 GraphQL and HTTP/1.1
	7.4.3.3 HATEOAS and HTTP/1.1
	7.4.3.4 REST and HTTP/1.1

	7.5 ENI API Overview
	7.5.1 Introduction
	7.5.2 API Architectural Styles
	7.5.2.1 Introduction
	7.5.2.2 Challenges in API Architectures
	7.5.2.3 REST API Style
	7.5.2.4 HATEOAS API Style
	7.5.2.5 GraphQL API Style
	7.5.2.6 gRPC API Style
	7.5.2.7 ENI API Architectural Style Recommendations

	7.5.3 ENI API Functional Blocks
	7.5.3.1 ENI API Development Functional Block
	7.5.3.1.1 Introduction
	7.5.3.1.2 ENI Broker API Orchestration Layer
	7.5.3.1.3 ENI Broker API Management Functional Blocks

	7.5.3.2 ENI API Runtime Functional Block
	7.5.3.3 ENI Management Services Functional Block
	7.5.3.4 ENI Security Services Functional Block
	7.5.3.5 ENI Analytic Services Functional Block

	7.5.4 ENI API System Deployment Models
	7.5.4.1 On Premise vs. Cloud-Based Deployment
	7.5.4.2 ENI API Architecture Environment
	7.5.4.3 Securing the ENI API Broker from the Internet
	7.5.4.4 Scaling the ENI API Broker

	7.6 Internal Reference Point Overview
	7.7 Internal Reference Point Definitions
	7.7.1 Reference Point Iing-norm
	7.7.2 Reference Point Inorm-sem
	7.7.3 Reference Point Isem-km
	7.7.4 Reference Point Isem-ca
	7.7.5 Reference Point Isem-cog
	7.7.6 Reference Point Isem-sa
	7.7.7 Reference Point Isem-mde
	7.7.8 Reference Point Isem-pm
	7.7.9 Reference Point Isem-denorm
	7.7.10 Reference Point Idenorm-out

	7.8 Internal Reference Point Protocol Specification
	7.8.1 Introduction
	7.8.2 Generic Protocols for use with Internal Reference Points
	7.8.3 Specific Protocols for use with Internal Reference Points

	8 ENI API Design
	8.1 Introduction
	8.2 Design Goals
	8.3 Methodology for Constructing APIs
	8.3.1 Introduction
	8.3.2 Common API Paradigms
	8.3.3 gRPC API Construction
	8.3.4 gRPC Integration

	8.4 Overview of API Functionality
	8.4.1 Introduction
	8.4.2 External Reference Point Eoss-eni-dat
	8.4.3 External Reference Point Eoss-eni-cmd
	8.4.4 External Reference Point Eoss-eni-pol
	8.4.5 External Reference Point Eapp-eni-ctx
	8.4.6 External Reference Point Eapp-eni-oth
	8.4.7 External Reference Point Eapp-eni-kno
	8.4.8 External Reference Point Eapp-eni-pol
	8.4.9 External Reference Point Ebss-eni-dat
	8.4.10 External Reference Point Ebss-eni-cmd
	8.4.11 External Reference Point Ebss-eni-pol
	8.4.12 External Reference Point Eusr-eni-pol
	8.4.13 External Reference Point Eor-eni-dat
	8.4.14 External Reference Point Eor-eni-cmd
	8.4.15 External Reference Point Eor-eni-pol
	8.4.16 External Reference Point Einf-eni-dat
	8.4.17 External Reference Point Einf-eni-cmd

	9 Interacting with Other Standardized Architectures
	9.1 Introduction
	9.2 Generic Architecture
	9.3 Generic SDO Interaction Architecture
	9.3.1 Introduction

	9.4 Interaction with NFV MANO
	9.4.1 High Level description of the NFV MANO - ENI Interaction
	9.4.2 Initial proposals for interaction scenarios
	9.4.2.1 Introduction
	9.4.2.2 Scenario 1: Passive Notification to NFV MANO
	9.4.2.3 Scenario 2: Active Data Analysis for NFV MANO
	9.4.2.4 Scenario 3: Active Assistance to the NFV MANO System
	9.4.2.5 Scenario 4: Active Assistance to the Assisted System

	9.4.3 Interaction Scenarios for Assisted Policy Management in NFV MANO

	9.5 Interaction with the MEF LSO RA

	10 Areas for Future Study
	10.1 Open Issues for the Present Document
	10.2 Issues for Future Study

	Annex A (informative): SDO and Open Source Interactions
	A.1 Integration with Other SDOs and Open Source Communities
	A.1.1 Introduction
	A.1.2 Interaction with BBF CloudCO

	A.2 Interaction with Open Source Communities

	Annex B (informative): ENI Architectural Evolution
	B.1 ENI Architecture Evolution Motivation
	B.2 ENI Architecture Evolution Proposal
	B.3 Proposed Definition of the ENI Phases

	Annex C (informative): Bibliography
	History

