ETSI GS ECI 001-5-1 vi.1.1 @oi7-o7)

i
< ..-.-_igd
—

GROUP SPECIFICATION

Embedded Common Interface (ECI)
for exchangeable CA/DRM solutions;
Part 5: The Advanced Security System;
Sub-part 1: ECI specific functionalities

Disclaimer

The present document has been produced and approved by the Embedded Common Interface (ECI) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.

2 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Reference
DGS/ECI-001-5-1

Keywords
authentication, CA, DRM, encryption, swapping

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.orq/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/Commitee SupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2017.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Contents

Intellectual Property RIGNES.... ..ot e e b e 7
01 Yo (o ST 7
MoOdal VErDS EMINOIOQYccveieeieieece sttt ettt e e e s re s aeeaesbeeaeesbesreensesaeensessesneenseseeeneensessens 7
gL [N o1 o] o PSSR 8
1 o0 o< TSP PP PP PRSI 9
2 REFEIBINCESccee ettt s bt bt s e et e e e e et et e st e be e bt sE e et e b e e et e neenenbenbeneens 9
21 NOFMBLIVE FEFEIEINCESccuteeeitiite ittt sttt ettt e se e be s bt b e bt eh e e ae e e e s bese e e ke sbeeb e e ne e s e besb e besaeebesneennennen 9
2.2 INFOrMELIVE FEFEIEINCES. ...ttt ke b ettt et et bt bt e a e et e b e s besheebeeneene e e enbe e 10
3 Definitions and aDbreVIBLIONS...........coeeieiieesi et te e aesre e e s teeneeeeseeeneeneeneeas 10
31 D= T 0T (1) 1 PRSI 10
3.2 F Y o] o= V7= 0] 12
4 PIINCIPIES. ...ttt bbbt e et a bt bRt b e e e e et e it e Rt e e e e et e e e e e e n e b n e 12
4.1 OVEBIVIBW ...ttt bbbkt e e bt bt e bt eh e s e e st e e £ E e bt e b e eE £ 2 a e ea e e e e R e e R e eh e eb e e Rt ehe e e en b e nbenheebeeneenee e annas 12
4.2 SySteM RODUSINESS MOUELooiiieiecie ettt ettt e e te e e e s e e saeesseeseenseenteenaeeneesneesneas 14
4.3 SPECITICATION PrINCIPIES......eeeeeeee et e ettt e et esaeesaeesaeesseeseenteenteeneeenaesnensrnas 14
431 IMPlEMENEALTON FrEEOOM ... ettt b et b e bt b e se et b e bt eb e b 14
4.3.2 Specification Style and relation t0 AS AP ..o 15
5 Key Ladder Application and AsSOCiated FUNCLIONS.............cceiiririerieieieesesie e e 15
51 GBNENEL ...ttt bbb b bR R e R Re R e R £ SR e e R £ e R e R e AR e AR eb e Rt R e e e e b e Rt eRe bt e Rt enee e ennas 15
5.2 AS System and client data aUtheNtiCaLIONcccvicee it e e e nreenrees 15
53 ASyMMELFCal MICIO SENVEr MOUE........iciiieieciesee et et e sttt e e st e st e e steenteenaesseesseasse e teenseentenneesneas 15
54 Interface to Content ProCESSING SYSIEMccuiiiiieere et eeeestee e e e sreesre e s e et e sraesreesseesreesseenseensesneennns 16
55 ASKey Ladder Block input OUtPUL efiNitioN..........ccviueiiiiieseese et sne s 17
5.6 A CE QEFTNTTION. ...ttt bt e e e bbb e st e e e e e se e b e saeeb e e ae e e e b e nbeebesbeene e e ennees 19
6 AAVANCED SECUN LY SIOL....uiitiitiieeiieieeei ettt b e sb b e s e ne e s s 20
6.1 Advanced Security SIOt INTOUCTION.........cciiiiiireriiiee ettt b e st sr e ere e 20
6.2 F NS o I T o o o T 20
6.2.1 (€71 PP 20
6.2.2 AS SOt SEAE AEFINITION.......eeiieieieeee bbbt e e bbbt ene e e e s 21
6.2.2.1 SIOt BN SESSION SEALE.cueeueeieeie sttt bttt e e e et b e b bt et et e st e e e beseesbesaeebe e e enneneen 21
6.2.2.2 (DTS einY/ o] 1Te g oo g1 T[N = 4 o o S 22
6.2.2.3 ENCryption CONfIQUIBLION.ccueeiieiesie et se st eteete et e st e e e teesteetesaesseesneesseenseenseessesnaesneesseesenns 23
6.2.2.4 RaNAOM SESSION KEY CONIOLuiiieiieiee e st esteete et et e e e e e e te e aesaesreesneesneenseenseensesseesseesseessens 24
6.2.25 Total SESSION CONFIGUIALTON ...ttt bbbttt b e 24
6.2.2.6 RANAOM SESSION KEY SLALE.......cueitiieieiteriet sttt sttt e b e e b e et se e e et sae e ebesbennenen 25
6.2.2.7 IMPOIt EXPOIT SEALE...... oo e s e s s 25
6.2.3 Content Property AULNENTICAIIONciiieeerieietereeet ettt s b e e eb e e ebesnesnenea 26
6.2.4 F NSRS) 10 Tox o] R 29
6.24.1 OVEBIVIEW ...ttt ettt ettt st e bt et e s e e et e st e ebeeeeeaeeme e e eneeseeabeaaeeseemeeneensensenseneeseeseesneeneeneenseseens 29
6.2.4.2 AS SOt INITTAIIZAHON.......eceeieeeeeeee e e b et b et se e bbb sbeeaeene e e eneas 30
6.2.4.3 AS Slot session and random KEY COMNLIOL...........c.eiuiiieriesieeeee e see e sre et e e e e sneeneenee e 30
6.2.4.4 W NSRS Lo oo A oo o 34
6.2.4.5 LK1 Key Ladder iNitialiZalioN...........ccoeueiieiieiiese e seesee st eteetesae e stae e e sseessesnaesnnssneesseanseensenns 35
6.2.4.6 Encryption Control Word CalCUIBLIONcceieeieeieeie e ettt see e e e sae et snaesnaesreesnees 35
6.2.4.7 Decryption Control Word CalCUIBLIONcoceiiieieeeeece et ste ettt e e sreenneas 37
6.2.4.8 Computing akClient and itS apPliCaLION.........cc.ceiirieiiieer e 38
6.2.4.9 AS Slot Session Configuration AUTNENEICALION...........coeiiiriirr e 39
6.2.4.10 Loading aMiCro SErVEr SECIEL KEYoouciiiiieieie ettt 41
6.24.11 Generating MinitLKL for MiCro CHENES........cviirieiiicrereer et 42
6.2.4.12 Computing ECI Client image deCryplion KEYcooireiiiieie et 42
6.2.4.13 Reading Advanced SeCurity INfOrMaLIONocieiieiiee et neees 43
6.2.4.14 Generating Client RaNdOmM NUMDEIScoiiiiiie et e s e s e nnees 44

ETSI

4 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

6.2.4.15 ETOF COOBS......e ettt ettt e bbbt e e e b s bt eb e heeb e et et e nbeebeebeeneese e e e b e 44
7 Scrambling/descrambling and CoNntent EXPOIT...........ccceiiiiiiieieiiese e e et 45
7.1 = o Vo o= Y 45
7.2 Scrambler and Descrambler SPECIfiCaLIONS...........oieiiirieiier e 45
7.3 EXPOIT CONIOL ...ttt bbbt b et b bbb b bt e bt bt s st bt e et b et e e eb b e ens 46
74 OULPUL CONEIOL ...ttt ettt sttt b et b e et b e s et b e s e e st b e s e e st e b s e e Rt e b e s b e he e bt e e e neebese e st eb e s b et ebenneneeee 46
7.5 Content Property Comparison 0N COUPIEd SESSIONS..........cruririerieirieriee sttt 46
7.6 Content Property Propagation 0N EXPOIT.........c.ciiirieiiireenereee sttt sttt 46
7.7 Basic URI ENfOrCeMENt ON EXPOIT.........ceiiieiiiiieieniesieiest sttt sttt se e s e sne s ens 47
7.8 Content Property Application on Industry Standard OULPULS............cccereereereereeie e e seese e eee e seeas 47
7.9 Control Word SYNCHIONIZBLION...........ccveriieieeiesiesee st e sieesteete et e e e e s te e te e e estesseesaeesseesseeseenssenseenseeneesseessenssns 47
8 Certificate ProCeSSING SUDSYSIEIMoiiiiiiieieieese st sr e 49
8.1 Basic processing rules for Certificate Chains..........cciieiiineicee s 49
8.2 Specific rulesfor HOost IMage ChaiNS.........c.cci ittt 50
8.3 Specific rulesfor Client IMage ChaiNS..........cccoi ittt eb e 50
8.4 Specific rules for Platform Operation CertifiCateSo 50
8.5 Specific rules for EXPort/IMport ChaINS...........cooieiiiiiereese et 50
851 Export Authorization Chain PrOCESSING.........ceiirieiiie ettt b e 50
8.5.2 (oL @ =TT IV g o= (o] TP 51
8.5.3 Third Party EXport Chain VEITTICEHIONccuieiiiieiie ettt ee e s sreenae e e e e sneenseenneens 51
854 Export System CertifiCale PrOCESSINGcveiieieieeieeesteesee e etesteseesee s e e seeeeeseesseesreesseenteesseeseesesnsesneesnes 51
8.5.5 Target Client Chain ProCeSSING RUIEScui ettt s seesneesneenneenne e 52
8.6 CPS ECI ROOt K&Y INItTAlIZBLIONeeveeiieiecie et se et ete et te s et e e teesteste s e e sneesneenseenseenseeseesnaessensnens 52
9 0= (< O o =SSP 52
9.1 011 0o 1 o o PSSRSO 52
9.2 (01 R =T L= g (U =S 52
9.3 ClHENt LOAOEN RUIES..... .ottt ettt s et e e se et e s aeeseeneeseeseeneenseseeseeseeeneeneeneeneas 53
94 REVOCALTON EBNFOICEIMENTeeitiiteeee ettt bbbt e e et et b e ae bt e e e e et sheebesaeene e e enrees 53
9.5 (O Y= F 7= o T< N0 (=0 Y/ o) o] o ISR 54
10 TimMiNG FEOUITEMENTSoueiuieieeiieterieste st ste et e ettt st e b et e e e e e e e seeseebesbessesbene e e e s eneeseeneebenaeabeseensenseneas 54
101 Fp Lo o (W 1ol o BTSSP PP USTOSPP 54
10.2 AdMINISEIAtIVE FUNCHIONS ...ttt sttt e et e e e te s besaeeseeneenee e e eesbeseesneeneeneeeeneenes 54
10.3 Symmetrical Cryptography FUNCLIONS.ccoiiiiiieietnie ettt sttt st st ne e 54
104 Asymmetrical Cryptography FUNCHIONS..........couciiiieiiirenseere e 54
Annex A (normative): Cryptography Function Definitions.........ccccoeciiiieevesecce e 55
Nt R o = o N W o o o PP 55
A2 ASyMMELTICal CrypPtOGraPYcooieiririerierierieiee ettt st sr e et be s bt e ss e s e e e e eseesenbeanenre s e 55
A.3 RaNdom NUMDEN GENEIGHON........c.evereeirieeiesiesesie et st se et be st e sse st e neeseesenbesseseenseneens 55
Annex B (informative): Sample Micro DRM system applicationccccceeveeveiieeveieece e 56
= 700 R 111 0o (1 (oo OSSPSR 56
B.2 APPIICAION SCENAIO.c.uivieiteteiee ettt ettt b b s s e e e se e bt bt b e b e nbese e st e b e nn e b e b e s e e 56
B.3 ASSUMPLIONS @GN NOLELIONeuiitiriieieitesiet ettt b b st nn e e bbb nnenn e 57
B.4 MiCro Server PSEUOD COUE ..ottt ettt ettt sttt e b e e s resae e besreeasesbeeaeestesneensesreennens 58
B.5 Micro Client PSEUAO COUEuiiuiiieiiieieie sttt sttt st s re e e sseeeeseesneenteseeensesaesneeeenneens 61
B.6 Micro DRM system cascading effect on ECM pre-delayccooeieiiiiieninines e 62
B.7 Content property change timing interface CONVENLIONccoiiireieieenenese e 62
Annex C (informative): AULhOrS & CONLIIDULOIS.....oceieeceee e 64
Annex D (informative): (O T 0 TSN o T o RSP S 65
L 11 (TSP PT PR PRPRPRPRON 66

ETSI

5 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

List of Figures

Figure 4.1-1: Block diagram of Advanced SECUMLY SYSIEM ..ottt 13
Figure 4.2-1: System robustness PremiSE fOr ECI ...t et aeseesneesneenaeenreens 14
Figure 5.3-1: Computation of the Asymmetrical MiCro SErVEr MOE.........cceiiirieiirireere e 16
Figure B.2-1: Example of control word computation key hierarchy evolution.............cccccveeeienieesieece e 56
Figure B.6-1: Temporal relations for pre-delay and optional delay COMPENSALioNcorererererereneseie e 62

ETSI

6 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

List of Tables

Table 5.5-1: C-variable naming convention for Key Ladder iNterface....... ..o 18
Table5.6-1: ACF[O] for Key Ladder appliCaliON...........cceiceeiiereerieeiesiesieseeseesiee e esaeseesseesseesseessessaessaesseesseessesnsesneesnns 19
Table 5.6-2: AkModeField definition for ACFAKLIMOUE.........couioieiriiieirieeeree e 19
Table6.2-1: AS Slot state StrUCtUre defiNITIONcoeeiiieeirie e 21
Table 6.2-2: DecryptConfig StrUCUIre defiNItIONc.ooeeiriiieirie bbb 22
Table 6.2-3: EncryptConfig Structure defiNitionoceo et e e e e 23
LI o LT I @ o[o =T 11 o) o 23
Table 6.2-5: BasicUri Trr values and deSCriPLIONooceiirieiiireeirieseeest st 24
Table 6.2-6: Random Key structure for decryption and encryption SESSION..........ccecveevereeieeseerieeeeseeseesee e eseesneeseesnes 24
Table 6.2-7: EciRootState structure field deSCriPLioN...........oireirireeeeeee e 25
Table 6.2-8: The RkState Random Key State field deSCriptioN.........cocverieieiieee et 25
Table 6.2-9: ImportExportState Structure defiNITIONc.ccveiiece e reeae e enes 26
Table 6.2-10: field1 StruCture defiNitioN..........c..coeiiiiee bbb ens 27
Table 6.2-11: FieldControl Structure definitioN......... ... 27
Table 6.2-12: largeProperty tag field values and MEANINGccciireiiiieirieeest e 28
Table 6.2-13: Overview of Advanced SECUrity FUNCLIONScocieiiiiecie et 29
Table 6.2-14: Error return COOE AEfiNITIONcoiieiiireieet ettt b e enas 45

ETSI

7 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Intellectual Property Rights

Essential patents

IPRs essential or potentialy essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org).

Pursuant to the ETSI IPR Palicy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not congtitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Embedded Common
Interface (ECI) for exchangeable CA/DRM solutions.

The present document is part 5, sub-part 1 of a multi-part deliverable covering the ECI specific functionalities of an
advanced security system, asidentified below:

Part 1: "Architecture, Definitions and Overview";
Part2: "Use cases and requirements’;
Part 3: "CA/DRM Container, Loader, Interfaces, Revocation";
Part4: "The Virtual Machine";
Part5: "TheAdvanced Security System:
Sub-part 1. " ECI specific functionalities;
Sub-part2: "Key Ladder Block".
Part 6: "Trust Environment”.

The use of termsin bold and starting with capital characters in the present document shows that those terms are defined
with an ECI specific meaning which may deviate from the common use of those terms.

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

8 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Introduction

Service and content protection realized by Conditional Access (CA) and Digital Rights Management (DRM) are
essential in the rapidly developing area of digital Broadcast and Broadband, including content, services, networks and
customer premises equipment (CPE), to protect business models of content owners, network operators and
PayTVoperators. It isalso essential for consumers that they are able to continue using the CPEs they bought e.g. after a
move or a change of network provider or even utilize devices for services of different commercial video portals. This
can be achieved by the implementation of interoperable CA and DRM mechanisms inside CPEs, based on an
appropriate security architecture.

As part of a security architecture the present document defines a security processing system for the authentication and
verification of protected media content and of software images to be processed inside an ECI-compliant CPE. The core
of the security architectureis built by aKey Ladder Block that supports secure processing with secret keys, targeting
of keys to specific chips and authentication of the origin of key material.

Clause 4 gives an overview about the system architecture, defines robustness rules to fight attacks and describes the
relation between the elements of the security architecture, ECI Host and ECI Clients.

Clause 5 describes the applications the Key Ladder Block can be used for, together with the associated functions.

For proper operations, the security processing system needs information about the state of each loaded ECI Client. This
state information, as some of it needs to be secret, is handled with the help of an advanced security slot. The ECI Host
assignsto each ECI Client such a slot that needs to be protected against malicious modifications. The definition of a
slot and its configuration for several operations like decrypting or exporting content is described in clause 6.

In an ECI-compliant CPE content can be decrypted, it can be forwarded to standard outputs if permitted and it can be
re-encrypted for export. The usage of an advanced security slot for these operationsis specified in clause 7.

A Certificate Processing Subsystem that isrealized as a special function of an advanced security slot is responsible for
the authentication of items. Clause 8 specifies the rules that are applied for authentication.

The ECI system uses aloader mechanism that permits ECI Clients to securely verify the version of the ECI Host and
ECI Client credentials that are loaded so as to detect any known security issue. The loader mechanism relies on
robustness principles that are described in clause 9.

Clause 10 contains timing constraints for the operations described in the present document.

ETSI

9 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

1 Scope

The present document defines a robust security processing subsystem for ECI called the Advanced Security System.
The Advanced Security System provides a secure basis for software elements to be authenticated and loaded, performs
security computations and verifications, manages the encryption and decryption of content and the exchange of content
with associated rights and obligations. As such the Advanced Security System is part of a"secure video path" asitis
referred to in contemporary specifications. The Advanced Security System appliesthe ECI Key Ladder Block [5] to
perform secure calculations.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-
specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GS ECI 001-1: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 1: Architecture, Definitions and Overview".

2] ETSI GS ECI 001-2: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 2: Use cases and requirements’.

[3] ETSI GS ECI 001-3: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 3: CA/DRM Container, Loader, Interfaces, Revocation”.

[4] ETSI GS ECI 001-4: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 4: The Virtual Machine".

[5] ETSI GS ECI 001-5-2: "Embedded Common Interface (ECI) for exchangeable CA/DRM
solutions; Part 5: The Advanced Security System; Sub-part 2: Key Ladder Block™.

[6] ISO/IEC 9899:2011.: "Information technology - Programming languages - C".

[7] NIST FIPS PUB 180-4: "Secure Hash Standard (SHS)".

[8] NIST Specia Publication 800-90A revision 1: "Recommendation for Random Number Generation

Using Deterministic Random Bit Generators', June 2015.
NOTE: Available at http://dx.doi.org/10.6028/NI1ST.SP.800-90Ar1.

[9] ETSI ETR 289 (CSA1/2): "Digital Video Broadcasting (DV B); Support for use of scrambling and
Conditional Access (CA) within digital broadcasting systems".

[10] ETSI TS 100 289 (V1.2.1) (CSA3): "Digita Video Broadcasting (DVB); Support for use of the
DVB Scrambling Algorithm version 3 within digital broadcasting systems".

[11] ETSI TS103 127 (V1.1.1) (CISSA): "Digital Video Broadcasting (DVB); Content Scrambling
Algorithms for DVB-IPTV Services using MPEG2 Transport Streams”.

[12] I SO/IEC 23001-7 (2016) (CENC): "Information technology - MPEG systems technologies -
Part 7: Common encryption in SO base mediafile format files".

ETSI

https://docbox.etsi.org/Reference/
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

10 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

[13] I SO/IEC 23009-4 (2013): "Information technology - Dynamic adaptive streaming over HTTP
(DASH) - Part 4: Segment encryption and authentication”.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-
specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI: "Using the DVB CSA algorithm” (licencing arrangement).

NOTE: Available at http://www.ets .org/about/what-we-do/security-algorithms-and-codes/csa-licences.

[i.2] ETSI: "Using the DVB CSA3 agorithm” (licensing conditions).

NOTE: Available at http://www.ets .org/about/what-we-do/security-al gorithms-and-codes/csa3-licences.

[1.3] ETSI GR ECI 004: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Guidelines for the implementation of ECI".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

Advanced Security System (AS System): robust secure processing system providing basic and highly secure
processing functions for ECI Clients

AS Slot: resources of the Advanced Security block provided exclusively to an ECI Client by the ECI Host

AS-API: application programming interface between the ECI Client and its ECI Host permitting the ECI Client to
exchange information with and perform operations on its AS Slot

Authentication M echanism: Key Ladder Block function as defined in [5] that permits an AS Slot to provide secure
key applications for purposes other than content decryption and encryption, like authentication

certificate: data with acomplementary secure digital signature that identifies an Entity

NOTE: Theholder of the secret key of the signature attests to the correctness of the data - authenticatesit - by
signing it with its secret key. Its public key can be used to verify the data.

certificate chain: sequence of Certificates where the next Certificate can be authenticated by the public key of the
preceding one

NOTE: Typicaly, in ECI Certificates are accompanied by a Revocation List that excludes Certificates that
cannot be validated.

Certificate Processing Subsystem (CPS): subsystem of the ECI Host that provides Certificate verification processing
and providing additional robustness against tampering

Content Properties (CP): properties of the content that provide information on rights and obligations associated with
subsequent applications or transformations of the content, like usage rights information, selective output control and
parental control information

ETSI

http://www.etsi.org/about/what-we-do/security-algorithms-and-codes/csa-licences
http://www.etsi.org/about/what-we-do/security-algorithms-and-codes/csa3-licences

11 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

ECI (Embedded Cl): architecture and the system specified in the ETSI ISG "Embedded CI", which allows the
development and implementation of software-based swappable ECI Clientsin customer premises equipment and thus
provides interoperability of CPE devices with respect to this system

ECI Client (Embedded CI Client): implementation of a CA/DRM client which is compliant with the ECI
specifications

ECI Client Loader: functionality of the ECI Host that usesthe AS system to exclusively provide the function , verify
and install anew ECI Client softwareimagein an ECI container of the ECI Host

ECI Host: hardware and software system of a CPE, which covers ECI related functionalities and has interfaces to an
ECI Client

ECI Host Loader: CPE bootloading functionality that uses the AS system to exclusively provide the function to verify
and install ECI Host software into a CPE

ECI Root Key: public key providing the origin of authentication for ECI certified entities and Certificates

entity: organization (e.g. manufacturer, Operator or Security Vendor) or real world item (e.g. ECI Host, Platform
Operation or ECI Client) identified by an ID in aCertificate

export connection: relation between an AS Slot decrypting content and an AS Slot subsequently re-encrypting the
decrypted content indicating such re-encryption is permitted

Key Ladder: function of the Key Ladder Block as defined in ETSI GS ECI 001-5-2 [5] for computing control words
and associated control word usage information for application in the content decryption or re-encryption function of a
CPE

Key Ladder Block: robust secure mechanism to compute decryption, encryption and authentication keys as defined in
ETSI GS ECI 001-5-2 [5], both Key Ladder and Authentication M echanism

micro client: ECI Client or non-ECI client that can decrypt content which was re-encrypted by aMicro Server

micro DRM system: content protection system that re-encrypts content on a CPE with aMicro Server and that
permits decoding of that re-encrypted content by authenticated Micro Clients

micro server: ECI Client that encrypts such that it can only be decoded by the targeted Micro Client or group of
Micro Clients

operator: organization providing Platform Operationsthat is enlisted with the ECI TA for signing the ECI eco
system

NOTE: An Operator may operate multiple Platform Operations.

Platform Operation (PO): specific instance of atechnical service delivery operation having asingle ECI identity with
respect to security

Provisioning Server: server, typically located in a secure back office location, that provisions keys and other secure
information to facilitate an encryption or decryption function through an AS Slot

revocation: status of exclusion of an entity in accordance with its enumeration in a Revocation List
Revocation List (RL): list of Certificates that have been revoked and therefore should no longer be used

robustness: property of the implementation of a specified secure function representing the effort and/or cost involved
to compromise the security of the implemented secure function

root certificate: trusted certificate that is the origin of authentication for a chain of certificates

security vendor: company providing ECI security systems including ECI Clients for Operatorsof ECI Platform
Operations

ETSI

3.2

12

Abbreviations

For the purposes of the present document, the following abbreviations apply:

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

ACF Advanced Security Control Field
AD Input of the Key Ladder Block
AES Advanced Encryption Standard
AK Authentication Key
AP Application Programming Interface
ARK Advanced Security Random Key
AS Advanced Security
CA Conditional Access
CBC Cypher Block Chaining
CENC Common Encryption
CISSA Common IPTV Software-oriented Scrambling Algorithm
CP Content Properties
CPE Customer Premises Equipment
CPS Certificate Processing Subsystem
CSA Common Scrambling Algorithm
CTR Counter Mode
CW Control Word
DRM Digital Rights Management
EAC Export Authorization Certificate
EAOC Export Authorization Operator Certificate
ECI Embedded Common Interface
ECM Entitlement Control Message
EGC Export Group Certificate
ERC Export Revocation Certificate
ESC Export System Certificate
LK Link Key
MPEG Moving Picture Experts Group
MSCSK Micro Server Chipset Secret Key
PES Packetized Elementary Stream
PO Platform Operator
POC Platform Operation Certificate
POPK Platform Operation Public Key
REAOC Revocation Export Authentication Operator Certificate
RFU Reserved for Future Use
RK Random Key
RL Revocation List
SPK Sender Public Key
TA Trust Authority
TPEGC Third Party Export Group Certificate
TS MPEG 2 Transport Stream
URI Usage Rights Information
XT eXTension field

4 Principles

4.1 Overview

The present document is part of the Multipart 1SG Group Specifications ECI 001, based on the ECI architecture ETSI
GSECI 001-1 [1] and ECI basic requirements ETSI GS ECI 001-2 [2].

Figure 4.1-1 presents the main principles of the Advanced Security System. The core of the Advanced Security
System isformed by the Key Ladder Block as defined in [5], allowing secure processing with secret keys, targeting of
keys to specific chips and authentication of the origin of key material.

ETSI

13 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

The basis for loading images is embodied in the loader core. It uses the Certificate Processing Subsystem to verify
the ECI status of ECI Host images, ECI Client images and Platform Operator (PO) credentials using arecent ECI
Root Key and ECI root Revocation List. The version numbers of the ECI Root Key and ECI root Revocation List
used by the ECI Host and other ECI Clients can be checked by ECI Clientsthat are loaded. These can refuse to
descramble content on detecting unacceptable versionsin accordance with the ECI revocation enforcement principle.
Encrypted ECI Client images are decrypted upon loading.

Each ECI Client uses an Advanced Security slot. The AS Slot isidentified by the Platform Operation Public Key of
the ECI Client. The ECI Host ensuresthat ECI Client interactions through the AS-API are directed to the AS Slot
allocated to that ECI Client. Each AS Slot is described by a slot state and a session state per encryption/decryption
operation. The AS Slot can be used either for decryption purposes or for encryption purposes. The AS Slot session state
also includes a configuration (config) defining the details of the operation and how the session state should be
authenticated. The ECI Client provides the configuration information and input for other state information. The Key
Ladder Block is used to authenticate SPK, POPK and the configuration information. The AS Slot can supply random
numbers to selected Key Ladder Block inputs so as to generate random keys or to use as a honce to ensure freshly
computed Key Ladder Block inputs. This mechanism can be used to prevent replay of encrypted content and to ensure
always online provisioning of an AS Slot by a Provisioning Server.

When decrypting content the Content Properties can be authenticated along with computing the control words, thus
creating a strong link with the decrypted content. Content Properties are forwarded with the content to any standard
output to ensure the proper setting of protection mechanisms for such an output. These properties are compared to those
with which the content is re-encrypted on an Export Connection. An Export Connection is permitted only through the
appropriate export/import Certificate Chains. These are verified by the Certificate Processing Subsystem on behalf

of the AS Slot. Standard outputs can be disabled through the output control mechanism.

Computed control words can be synchronized to MPEG Transport Stream formatted content using the alternating bit
protocol. For this purpose the content processing system uses a double buffering mechanism with a current/next control
word for stream processing.

ECl Host ECI Client (via ci Host) Micro Server (via ECl Host)
| 1 Decryption slot Encryption slot {, 1
DOP =f SPK m M SPK
E g

Content
Properties

1

1

1

i Content
—>! Properties

1

Host Image + credentials
Client Image + credentials

PO Certificate + credentials

POPK Initialisation

ECl Host
revocation state

Certificate
. Processing

Subsystem
{ole)all ECIClient Image

Exp+Imp chain
Client Authenticdtion chain

Loader
Core

Challlengg/response I

Challlengg/respeorise

=
S
§ KEYS delcrypuon key
8 Certificate : >
= p . Contentin Contentout
2 Client rocessing
% image Subsystem &
= Loader Core Content
Processing Contentout
Host image System

Figure 4.1-1: Block diagram of Advanced Security System

ETSI

14 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

4.2 System Robustness Model

The AS System requires arobust implementation. Robustnessis typically measured in terms of the effort and/or cost
required to circumvent any security measures: i.e. observe secret values or manipulate state or valuesin a secure
system.

The present document does not define a specific Robustness regime for various ECI functions. Nevertheless, the ECI
Robustness architecture is based on the premise that some functions are more robust than others. Thisisillustrated in

Figure 4.2-1.
Outside world

CPE
Rich OS, browser based App

ECIClient ECI Client

container container

1SNQOJ 2J0N

ECI Host

AS RootKeys

(incl. content property enforcement)

Keyladder

Figure 4.2-1: System robustness premise for ECI

The least robust environment is the outside world where any threat may exist. Data passing through that environment
should be protected against manipulation and unauthorized inspection using authentication and encryption techniques.
The rich operating system (typically including a browser) can be somewhat robust against manipulation and invasion,
but istypically not able to withstand user-assisted or aggressive externa hacking attacks. The ECI Clientsand ECI
Host security sensitive functions operate in an environment that is well protected from such attacks. In case the ECI
Host is compromised also ECI Clients are compromised. In addition to resilience towards outside attacks the ECI
Clients are sandboxed using the ECI virtual machine [4]: i.e. they neither can accessinformation in the ECI Host nor
can access any other ECI Client, apart from through defined ECI API interfaces. The ECI Host aso ensuresthe ECI
Clients have access to the Advanced Security System and the Key Ladder Block. At the core of the Key Ladder
Block isthe Chip Set Secret Key with allows each ECI CPE to be addressed uniquely. Typically the Key Ladder
Block and mgjor parts of the Advanced Security System are implemented in hardware and/or highly robust firmware.

4.3 Specification Principles

4.3.1 Implementation Freedom

The present document defines states and functions that operate on the AS System which resultsin anew state. The
specific representation of the state of an implementation is not defined by the present document and may be completely
defined by the implementation as long as the behaviour of the implementation can be reconstructed to states and state
transition sequences using the transition functions as defined in the present document.

NOTE: Inmany casesthe Key Ladder function asdefined in [5] isasubstantial part of the state transition
function.

ETSI

15 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

For example, an AS implementation may have a fast CPS that can re-authenticate POPK from the Platform Operation
Certificate Chain for every application of the Key Ladder Block. The AS Slot in this case does not have to store
POPK as an authenticated value in atamper proof way. Similarly, some implementations may decide to compute LK

(the top level symmetrical key in the key ladder) once using two asymmetrical cryptography operations for an AS Slot,
while others, that can perform the asymmetrical cryptography operations sufficiently fast, may recompute LK fromits

original inputs for every Key Ladder application.

4.3.2 Specification Style and relation to AS-API

Thereisno direct API between the ECI Client and the Advanced Security System. The ECI Host acts as a conduit.
Nevertheless, the definitions of the operations on an AS Slot map directly to the messages of the AS API asdefined in
[3], with exception of the dotld parameter, which is not required for ECI Client AS APl messages. The ECI Host
provides the slotld parameter to the AS system.

The transactions by the ECI Host (on behalf of an ECI Client) onan AS Slot are defined as C-functions declarations.
These describe an atomic transaction on the state of the AS Slot. This can result in anew dlot state. The specific
representation of function parametersis not of direct consequence to functionality specified in the present document,
except when cryptography functions are concerned. However, the representation is significant for the definition of the
ASAPI in[3].

5 Key Ladder Application and Associated Functions

5.1 General

The Key Ladder and Authentication M echanism defined in [5] play a central rolein al robustly implemented secret
key computationsin an ECI CPE. The Advanced Security System shall apply these functions as defined in [5] with
inputs and outputs as defined in the present document. All inputsto the Key Ladder Block shall be controlled by the
AS System; any observation or manipulation shall not be possible in accordance with applicable AS Robustness rules
and the Key Ladder Block specification [5].

5.2 AS System and client data authentication

The Advanced Security System can be provided with datafrom an ECI Client. The AS System provides a means to
verify the authenticity of this data using the AD input of the Key Ladder Block.

The AS System computes the AD input of the Key Ladder Block as the hash of additional data to be authenticated in
conjunction with a CW or AK computation. Following the bit-string notation of [5] AD shall be computed as:

AD = hash(ACF [[Im || ARK || Py [l..] Py | Cq |-l Cy | XT)

Function hash is defined in clause A.1. Imis an 8 bit input containing the binary representation of m. The value of m
corresponds to the value of minthe Key Ladder Block definition. The length of each P, is 2 048 bits for the purpose of

carrying public keys (POPK values). The length of C; is defined as equal to the length of the SessionConfig structure in

clause 6.2.2.5, the length of XT is 256, and serves a general purpose extension mechanism. It shall be set to 0. ARK isa
128-bit number, intended to represent arandom value or al 0'sin case no random input is needed. ACF is a control value
defining the mode of operation.

5.3 Asymmetrical Micro Server mode

The AS System applies the Authentication M echanism for the purpose of loading aMicro Server sender secret key
into an AS Slot for the purpose of asymmetrical authentication between Micro Serversand Micro Clients.

Figure 5.3-1 shows the basic principle of the overall computation of asymmetrical authentication mode.

ETSI

16 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

s(ssk,e(MSCPK,r))

Auth.

SPK,
Mechanism

uSPK,
POPK,

Legend

° signing of data

° verification of signature or chain

o decryption

Mostly ° encryption
random W hash
inputs

P - public data
I secretdata

I certificate chain
CW m random key generation

Myssk =
€..p(AkSlot,uSSK)

Minith

Advanced
Security

Figure 5.3-1: Computation of the Asymmetrical Micro Server mode

The Authentication M echanism is used to compute the AS Slot authentication key AkSlot, using a.o. the ChipSet Key
here called MSCSK. AkSlot is used to load the Micro Server Secret Key uSSK. The Certificate Processing
Subsystem is used to authenticate the Chipset Public Key CICPK of the target Micro Client using POPK as aroot and
a Certificate Chain containing CICPK in the last Certificate of the chain. A random key RK is generated and CICPK
and uSSK are used to generate the Micro Client Key Ladder initialization message M; iy - The random key isalso
used asthe top level symmetrical key of aKey Ladder with the same structure and hash function as defined in [5],
clause 5.1. The computed control word CW is used for encryption in by the Micro Server. Theregular Key Ladder
can be used in aMicro Client to compute CW for the purpose of decryption.

Clause 6.2.4.10 defines the specifics of the uSSK computation (the IdUssk function).

The computation of M,y shall be as defined in the computation scheme below, using the specification conventions as
[5], clause 5.1:

e Mkey = cl-chipset-ID || E(CICPK LK)
* Mtk =(Mkey || S(uSSK,Mkey))

. with || the bitwise concatenation function, cl-chipset-ID the chipset-1D of the client CPE, and with E() the
asymmetrical encryption function and () the asymmetrical signature function as defined in [5], clause 5.2.

On loading uSSK the AS Slot shall generate a new RK in accordance with clause A.3.

The computation of CW from LK and itsinputs shall be identical to the Key Ladder Mechanism defined in [5],
clause 5.2 with the same inputs as defined there and the same output (CW, CW-URI) but replacing the computation of
LK1 by the RK random session key generated by the Micro Server AS Slot.

54 Interface to Content Processing System

The Key Ladder including the asymmetrical Micro Server mode extension can compute control words with
complementary CW-URI. These shall be passed securely to a decryption or encryption resource in the content
processing subsystem which may (temporarily) store the CW and CW-URI information in association with key
synchronization information. For transport stream applications the key synchronization information consists of the
current/next bit, thus specifying two storage locations for CW values. For file based applications asingle CW location
isavailable for the encryption and decryption resource.

ETSI

17 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Other information accompanying control words from the AS Slot to the content processing systemis:
e Application of CW as encryption or decryption control word.
NOTE: Together with CW-URI thisis apermission to apply CW.
J Export authentication information.
. Content properties.

. Odd/even property of the control word for TS mode descrambling.

5.5 AS Key Ladder Block input output definition

This clause defines the mapping of C-style variables and structures as a representation for the inputs to the Key L adder
and Authentication M echanism and the extensions thereof as defined in clause 5.2 and clause 5.3. The symbols for the
input names are used in the rest of the present document to define the various applications.

The mapping of C-structures to an octet sequence is defined with the following (little endian based) rules:
. Bit-fields of structures are mapped first field first starting with the lowest bit (0) of the first octet.

. Structures of alength other than a multiple of 8-bit that are padded at the end to the next multiple of 8-bits
with reserved bits that shall be set to zero to the next multiple of 8-hit.

e 16-hit, 32-bit and 64-bit entities are mapped in little endian order (least significant byte first).
. Arrays are mapped in increasing index order.
Octet sequences are mapped to hit strings using the OS2BSP function as defined in ETSI GS ECI 001-5-2 [5].

NOTE: The above rules ensure that the bit numbering order as used for integer val ues represented by c-variables
isequal to that used in ETSI GS ECI 001-5-2 [5] for the corresponding inputs to the Key Ladder Block.

ETSI

18 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

The naming convention for the variablesislisted in Table 5.5-1.

Table 5.5-1: C-variable naming convention for Key Ladder interface

Key Ladder Bits C-variable naming convention
Block input or
output
CW-URI 64 ulong cwUri;
AD 256 uchar ad[32]; /* not used directly, see clause 5.2 */
SPK-URI 64 ulong spkUri;
SPK,, i=1..16 2 048 x 16 typdef uchar PubKey[256]; PubKey spk[16]; /* (spk[i-1] == SPK;) */
m uchar nSpk;
input to V 64+ 2 048 + 2 048 typedef struct InputV{
ulong chipsetld;
uchar elk1[256];
uchar signature[256];
} InputV;
InputV inputV;
E(LK,,LK 1), 256 x 24 typedef uchar SymKey([32]; Symkey elK[i]; /* (elk[i-1] == E(LK;,LK;,,))
i=1..24; LK 4=r */
[* C-input == E(LK,_1,LK};), i.e. the one but last input */
t uchar nElk;
T, value setto 0
Chipset-ID 64 ulong chipsetld;
Challenge 128 uchar challenge[16];
Response 128 uchar response[16];
Below the inputs and outputs defined in the present document are defined.
ACF 128-8 uchar acf[15]; /* operation mode */
ARK 128 uchar ark[16];
P, 2048 x 32 PubKey pk[32]; /* first m values are applied */
C sizeof(SessionConfig) x |SessionConfig config[?]; /* SessionConfig is defined in clause 6.2.2.6
32 */
XT 256 uchar XT[32]; /* value always set to 0 */
MinitLk 64+ 2048 + 2 048 InputV minitLk;

The following c-functions are defined using the above input variables to produce results.

SynKey bl ockV_bl ockC KeyLadder (I nputV i nputV, SynKey spk)

Semantics:

This function computes the function of block V and block C in the Key Ladder to produce Ik1.

In case of the asymmetrical server the following function computes the initialization message for the target Micro
Client as defined in clause 5.3:

I nput V asym ni t Lk1(SynKey | k1, PrivKey ussk,

Semantics:

PubKey spk);

This function computes the initialization message initLk1 in accordance to clause 5.3.

The remaining functions of the Key Ladder are performed by:

keyLadder (SynKey | k1,
PubKey popk[16],

ul ong cwlri,

uchar nEl k, SynKey el k[32])

Semantics:

uchar acf[15],

SSCnfg cl Cnf[16], uchar XT[32],

uchar ark[16],

ul ong spkUri, uint nSpk, PubKey spk[16],

This function computes the remainder of the Key Ladder using Ikl asthe result of block D inthe Key Ladder to
produce a CW result for the content processing system.

ETSI

19 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

The functions of the Authentication M echanism to compute an AK key are performed by:

SynKey Aut hMech(I nputV inputV, uchar acf[15], uchar ark[16],
PubKey pk[16], SSCnfg clCnf[16], char XT[32], ulong spkUri, uint nSpk,
ui nt spkl ndx, PubKey spk[16])

Semantics:
This function computes Authentication M echanism up to AK and delivers the result.

In order to use the computed AK key the following function is defined using the challenge-response interface and the
function block d in the Authentication M echanism of [5], clause 6.

uchar[16] Aut hMechResponse(SynKey ak, uchar[16] challenge)
Semantics:

This function computes the response on a challenge input using AK as the authentication key as defined in the
Authentication M echanism.

5.6 ACF definition

The ACF input to the Key Ladder Block serves to define the main modes of operation mode. The value for the acf[0]
parameter is defined in Table 5.6-1.

Table 5.6-1: ACF[0] for Key Ladder application

Acf[0] Value Description
AcfCw1Mode 0x11 Key Ladder operation as defined in the present document. acf
[1]..acf[14] shall be equal to 0x00.
AcfAk1lMode 0x12 Authentication Mechanism operation as defined in the present

document. The value of acf[1] is referred to as AkModeField. The
applicable values are defined in Table 5.6-2. Acf[2]..acf[14] shall be
equal to 0x00.

reserved Other Reserved for future use.

The complementary c-definition for this AcfCw1Mode for application asthe Key Ladder parameter is:
const uchar acf CwlMode= { AcfCOmlMode, O, O, O, O, O, O, O, O, O, O, O, O, O, O };
The complementary c-definition for AcfAk1Mode mode for application asthe Key Ladder parameter is:

const uchar acfAkiMvbde= { AcfAkliMvde, 0, O, O, O, 0, 0, 0, O, O, O, O, O, 0, 0 };

Table 5.6-2: AkModeField definition for AcfAk1Mode

Register Bit Value Description
AkUseFlag 8 0b0 AkUseAS AK application for Advanced Security System only.
0Ob1 AkUseCl AK application for the ECI Client.
AkOnline 7 0b0 AkOffline AK is established in a unidirectional "offline" mode.
Challenge/responses can be pre-computed.
Ob1 AkOnline AK is established using a random nonce AKRK which
will require a challenge response to be computed
"online".
AKAsAppl 0..3 0x0 AkConfigAuth |Authenticate Configuration element of AS Slot.
only if AkUseFlag= 0x1 AkLdUssk Use AK to decrypt and load a Micro Server uSSK key.
AkUseAS 0x2 AKClimg Use AK to decrypt the key for decrypting the ECI Client
reserved otherwise image to be loaded.
0x3.. reserved Reserved for future use.
OxF
RFU other [0 Reserved for future use. Value shall be set to zero.

ETSI

20 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

6 Advanced Security Slot

6.1 Advanced Security Slot introduction

The Advanced Security System contains state-information for each loaded ECI Client. The identification that binds
an ECI Client to an AS Slot isthe Platform Operation Public Key (POPK) of the ECI Client. The ECI Host loads the
POPK of an ECI Client into an available AS Slot. From then on the state of an AS Slot is associated with this ECI
Client. Any meaningful operation of the AS Slot will use POPK as an input, thus making the result specific for the
bound ECI Client and meaningless for others.

ECI Host Robustness ensures an ECI Client can only access information of its designated slot: in case the ECI Host
functions correctly it will ensure that only the designated ECI Client will have accessto itsown AS Slot. In case the
ECI Host is somehow compromised the POPK "locking mechanism” ensures that only ASinputsto an AS Slot that
form a coherent set can produce meaningful resultsin the form of decryption keys (CW) and associated Content
Properties or an Authentication Key (AK).

In case the ECI Host would decide to repurpose an AS Slot for another ECI Client, any built up state of the previous
ECI Client (POPK) is erased.

6.2 AS Slot Definition

6.2.1 General

The AS Slot is defined in terms of state variables and input variables to state modification functions. The
representation of state, input and output values in this clause is chosen such that the operations performed on them are
defined in terms of the here defined binary representations. Thisis specifically relevant with respect to their
incorporation in cryptographic and Key Ladder computations. Actual implementations can select their own state
representations but have to tranglate any custom representation to the representation specified here for input to any
cryptographic operation.

All state variables of an AS Slot shall be robustly protected against any malicious modification. Some state variables
hold information that has to remain secret: such registers shall be robustly protected from unauthorized access. Such
variables are defined using " Secret" as part of the C-type definition. Any computation based on the value of a secret
variable shall be kept secret except when such aresult is explicitly shared. Any storage location of a secret value and/or
computation with a secret value shall have the sasme Robustness as the one required for the Key Ladder Block [5].

The AS Slot has sessions. Each session operates in accordance with the settings of its configuration which is part of the
session state. The session configuration is set by the ECI Client and has to be authenticated before use by using the
Authentication M echanism or by using the implicit authentication properties of the Key Ladder.

All state variables and functions are defined in terms of the C-language [6]. The sequence order of the C-language is not
strictly observed in the sense that items may be defined after their use. Arrays of fixed size are copied with asingle
assignment statement (rather than copying the pointer value) asif they were contained in a"struct" structure.

Regarding errors, the code has been kept more readable by defining implicit error checking. Assigning areserved value
to a state variable or field thereof (see definition of the field) shall be an error. If the right side of such an assignment
expression is based on a single function parameter an error isreturned for that parameter: value -i for parameter i.

All default values for fields and variables are defined as 0, unless explicitly specified otherwise.

ETSI

6.2.2

6.2.2.1

21 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

AS Slot state definition

Slot and session state

The AS Slot state is defined as a common dlot state and a session state per encryption or decryption session. The
structure for the dot state is defined below. In Table 6.2-1 the fields are defined.

#defi ne NSLOTS
#def i ne NSESSI ONS
#def i ne MaxSpkEncr

/* (maxi mum) nunber of slots */
/* (maxi mum) nunber of sessions */
4 /* maxi mum nunber of encryption SPK val ues */

typedef SessionState {

bool

ui nt

ui nt

Sessi onConfi g
PubKey

ul ong

uchar

int

ui nt

PubKey

PubKey

ul ong

Secret SynKey
Secret PrivKey

active;
confi gAut hvbde: 4;
mh;
config;
spk;
spkUri ;
spkl ndx;
coupl edSessi onl d;
nEncr;
encr Spk[MaxSpkEncr] ;
encr Popk[MaxSpkEncr] ;
encrOmJri ;
I k1;
ussk;

RkSt ate rkState;
i mport Export State ies;

} SessionState ;

typedef struct SlotState {

ui nt

ui nt

ui nt

ui nt

ui nt

PubKey

SynKey

Secret SynKey

Sessi onSt at e
} Fi xedSl ot St at e;

versi on: 4;

sl ot Mode: 4;

cl i ent CheckFl ag: 1;
reserved: 3;
POCI RLVNr :
popk;

sl ot Rk;
akd ient;
se[NSESSI ONS] ;

24,

Sl ot St at e ss[NSLOTS]

Table 6.2-1: AS Slot state structure definition

Field

Description

active

True if session is active, false otherwise. Default state false.

configAuthMode

Mode by which the configuration of the slot has been authenticated. The permitted values are:
ConfigAuthModeNone: 0x0, slot configuration has not been authenticated.
ConfigAuthModeAk1: 0x1, slot configuration has been authenticated using the AK mechanism
as defined in clause 6.2.4.8.

All other values are reserved.

Mh

Media handle to which the AS Slot session is associated.

clientCheckFlag

A new ECI Client has been loaded. Verification of POCIRLVnr shall proceed on session
initialization. Default value is 0b1.

Reserved Field is reserved, it shall be set to zero.

POCIRLVnNr Version number of Platform Operation Client Revocation List that was used to verify the ECI
Client before loading. Will be checked at each ECI Client session initialization against the
minimum version that the ECI Client expects.

slotConfig Slot configuration.

spk Public key used to compute LK1 and AK.

spkUri SPK vector usage rules information register used to compute LK1.

spkindx Index selecting SPK register location in SPK vector for LK1 calculation.

coupledSessionld

Only applicable if the AS Slot session is in decryption mode. Second (decryption) session
coupled to this one. Decoded content streams are joined and Content Properties are compared.
The default value is -1.

nEncr Number of SPK/POPK input values used for encryption (excluding slot's spk).
encrSpk SPK values for encrypting content with Key Ladder.
encrPopk POPK values for encrypting content with Key Ladder.

ETSI

22 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Field Description

encrCwUri CwUri value for encrypting content with Key Ladder.

k1 Top level link key for computing control words using the Key Ladder.

Ussk Micro Server secret key (for Micro Server applications).

rkState Random Key state of the session.

ies Import/export state of the session.

version Version of the slot state. The permitted values are:
0x1: version 1.
All other values are reserved.

slotMode Mode in which the slot operates. The permitted values are:
SlotModeDecr: 0x1, slot operated in decryption mode.
SlotModeEncr: 0x2, slot operates in encryption mode.
All other values are reserved.

popk Public Key of ECI Client using this slot.

slotRK Random number used in online challenge response protocols, e.g. with a Provisioning Server.
The value is set on slot initialization.

akClient Authentication Key for Client processing purposes.

se Session state (for all sessions in an AS Slot).

Ss AS Slot State (for all slots).

Unless stated otherwise the default value of each state element at initialization is zero.

6.2.2.2

Decryption configuration

The applicable configuration state for an AS Slot session in decryption mode is defined in the c-code below and its
description isgiven in Table 6.2-2. It defines the details of the AS-dlot session operation when operating in decryption
mode. This data can be authenticated by applying suitable Authentication M echanism or Key Ladder calculations.

typedef struct DecryptConfig {

ui nt
ui nt
ui nt
ui nt
ui nt
ui nt
ui nt
RKMbde
Eci Root St at e
ui nt
} Decrypt Confi g;

confi gVersion: 4;
reservedl: 4;

kl ModeAut h: 1;
akModeAut h: 1;

r kKl Mbde: 1;
spkONoDecrypt : 1;
reserved2: 6;

rkDecr Mode;

m nEci Root St at e;

m nd i ent Ver si on: 24;

Table 6.2-2: DecryptConfig structure definition

Field

Description

configVersion

Version of the decryption configuration. Defined value is Ox1: version 1. All other values are
reserved. An AS Slot session shall refuse to execute any state transition function if this field does
not have a permitted value.

reservedl Reserved field; shall be set to 0.

kIModeAuth If this bit is set the AS Slot session shall apply the ClientConfig for authentication with all Key
Ladder calculations. This bit itself is authenticated on all Key Ladder calculations.

akModeAuth If this bit is set the AS Slot session shall verify that the configAuthMode is set to
ConfigAuthModeAk1 before permitting any Key Ladder calculation. This bit itself is authenticated
on all Key Ladder calculations.

rkKIMode If this flag is set, slotRK shall be applied in all Key Ladder calculations for the AS Slot.

spkONoDecrypt When set it is not permitted to use spk[0] (spkindx==0 as input to Key Ladder function) for
authentication of the slot LK1 when in decryption mode.

reserved2 Reserved field; shall be set to 0.

rkDecrMode Defines the application of a random session key for the Key Ladder calculations. See

clause 6.2.2.5.

minEciRootState

Minimal value for ECI root version and root Revocation List version. If the CPS has applied an
ECI Root Key or a root Revocation List for ECI authentication purposes less than the values in
this structure no Key Ladder computation shall be permitted for the session.

minClientVersion

Version of the ECI Client. Used to verify Revocation List version numbers for POPK.

ETSI

6.2.2.3

23 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Encryption Configuration

The applicable configuration state for an AS Slot session in encryption mode is defined in the c-code below and its
description isgiven in Table 6.2-3.

typedef struct EncryptConfig {

ui nt

ui nt

ui nt

ui nt

uni t

ui nt

RkMode

uchar

ui nt

Cont Prop

Eci Root State
} Encrypt Confi g;

confi gVersion: 4;
reservedl: 4;

m croSer ver Ver si on: 24;
asynKl Mode: 1;

r kKl Mbde: 1;
reserved2: 22;

r kEncr Mode;

basi cUri Trfr;
cont PropControl ;
def aul t CP;

m nEci Root St at e;

Table 6.2-3: EncryptConfig structure definition

Field

Description

configVersion

Version of the encryption configuration. Defined value is 0x1: version 1. All other values are
reserved. An AS Slot shall not execute any state transition function if this field does not have a
permitted value.

Reservedl

Reserved field; shall be set to 0.

microServerVersion

Version number of the Micro Server configuration. Also used as minimum Revocation List
version number for Micro Client authentication in asymmetrical Micro Server mode.

asymKIMode If this flag is set the Key Ladder shall operate in accordance with the asymmetrical client
Authentication Mechanism defined in clause 5.3.

rkKIMode If this flag is set slotRK shall be applied in any Key Ladder calculation.

Reserved?2 Reserved field; shall be set to 0.

rkEncrMode Defines the application of a random key for the Key Ladder calculations. See clause 6.2.2.5.

basicUriTrfr

Defines state transformations of the basic URI from the import connection before applying the
basic URI as content property of the encrypted content. See Table 6.2-5 for the values.

contPropControl

Defines how the Content Properties of the encrypted content are computed. See Table 6.2-4.

defaultCP

A default value for all content property fields. Application in the Key Ladder calculation is
under control of the contPropControl field.

minEciRootState

Minimal value for ECI root version and root Revocation List version. If the CPS has applied an
ECI Root Key or a root Revocation List for ECI authentication purposes less than the values
in this structure, no Key Ladder computation shall be permitted.

The contPropControl Fields field is an array of 16 2-bit fields. The 2-bit fields indicate how the Field1 Content
Propertiesfor the encrypted output is controlled. The decription is given in Table 6.2-4. CpControlFlag bit-2n and bit
2n+1 shall correspond to Field1-byte n.

Table 6.2-4: CpCitrl definition

Flag name | Value Description
CpCtriCopy [0b0O0 CP Fieldl content property byte shall be copied from import connection
CpCtrIDef 0b01 |CP Fieldl content property byte shall be set to the value of the corresponding defaultCP byte
CpCtrIMS 0b10 |CP Fieldl content property byte is set by Micro Server
Reserved 0b11 |Value is reserved

The basicUriTrfr field modifies the above behaviour of CPControl Flags for the BasicUri field when the state of its
CPControlFlag equals CPCopy. Table 6.2-5 defines the alternate behaviour.

ETSI

24 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Table 6.2-5: BasicUriTrfr values and description

Flag name Value Description
JustCopy 0x00 Field1 content property byte is copied from import connection
NoMoreCopy |0x01 A basicURI state of RedistributionProtected shall be transformed into a ViewOnly state
Reserved Other |Reserved for future use
NOTE: By setting the BasicUriTrfr state to NoMoreCopy the Micro Client system will only permit streaming for
any protected content input to the Micro Server.

6.2.2.4 Random session Key control

The RKMode structure as defined in the c-code below and Table 6.2-6 defines the mode in which the random session
key hasto be applied in the Key Ladder.

typedef struct RKMbde {
ui nt node: 2;
ui nt limt:6;

} Decrypt Confi g;

Table 6.2-6: Random Key structure for decryption and encryption session

Field Description

mode Defines the mode of application of the random session key. The values are:

e 0b00: RKModeNone, No Random session key inserted.

e 0b10: RKModeDataLimit Random session key applied with data limit.
e 0x11: RKModeTimeLimit Random session key applied with time limit.
e 0bO01: value reserved.

limit The value defines the applicable limit in terms of real time seconds or kbytes of data that is
decrypted or encrypted since the initialization of the random key. The function limitValue() defines
the actual limit value that applies. Value 63 is reserved.

uint limtValue(uint limt) {
uint val;

if (limt==0) return 1,

limt -=1;

if (limt&Dbl == 0b0) val =2 el se val =3;
return val * (1<<(limt>>1));

6.2.2.5 Total session configuration

The complete configuration control information for an AS Slot session in encryption or decryption mode is defined in
the SessionConfig structure defined below. In case of the AS Slot being in encryption mode it includes the
configuration information for subseguent decryption.

typedef struct SessionConfig {
Encrypt Confi g encryptConfig; /* configuration for encryption */
Decrypt Config decrypt Config; /* configuration for decryption */
} SessionConfi g;

The structure cpsEciRootState defining the ECI Root State for validating ECI Certificate Chainsis defined in the c-
code below and in Table 6.2-7.
typedef struct Eci RootState {
uchar r oot Ver si on;
ui nt rl Versi on: 24;
} Eci Root St at e;

Eci Root St at e cpsEci Root State; /* contains the mini numvalue fromthe CPS */

ETSI

25 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Table 6.2-7: EciRootState structure field description

Field Description

rootVersion Version of the ECI Root Certificate

riVersion Version of the Revocation List applied with the Root Certificate

NOTE: EciRootState is typically applied as an under bound (minimum value) that is permissible for the ECI
root version and Revocation List version when loading ECI Host and ECI Client information.

The following function is defined that checks if the cpsEciRootState is sufficient to proceed with computing a key:

bool cpsEci Root StateCk(uint slotld, uint sessionld) {
if (ss[slotld].slotMde == Sl otMdeDecr)
return
(cpsEci Root St at e. r oot Ver si on >=
ss[slotld].se[sessionld].config.decryptConfig.m nEci Root St at e. r oot Ver si on)
&& (cpsEci Root State. rl Version >=
ss[slotld].se[sessionld].config.decryptConfig.mnEci RootState.rl Version);

if (ss[slotld].slotMde == Sl ot MdeEncr)
return
(cpsEci Root St at e. root Ver si on >=
ss[slotld].se[sessionld].config.encryptConfig.mnEci Root St ate. root Versi on)
&& (cpsEci Root State. rl Versi on >=
ss[slotld].se[sessionld].config.encryptConfig.mnEci Root State.rl Version);

/* follow ng should not occur */
return fal se;

}

Preconditions:

. AS-dot dotld isinitialized.

6.2.2.6 Random Session Key state

For each decryption or encryption session associated with an AS Slot, the AS Slot stores random key state information
as defined in the c-code below and described in Table 6.2-8.

typedef struct RkState {
SynKey rkCurrent;
SynKey rkNext;
ul ong I'imtCounter;
} RkState;

Table 6.2-8: The RkState Random Key State field description

Field Description
rkCurrent Current random key used for insertion in Key Ladder to compute CW.
rkNext Next value of the random key to be inserted in the Key Ladder to compute CW.
limitCounter Counter indicating the usage state of the current key in units related to the limit value applying to
the key. The value counts the remaining units that can still be encrypted or decrypted based on
a CW computed with the rkCurrent.

The limitCounter field shall be incremented on application of the CW.

NOTE: Implementations may effectively implement the counter as part of the content processing system.

6.2.2.7 Import Export state
Each encryption session has one decryption session associated with it from which it imports the content to be re-

encrypted. Import shall be possible simultaneously for (at least) two export groups of the exporting sessions, permitting
seamless changeover.

ETSI

26 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Two decryption sessions can be coupled. This permits different sub-streams that require other control words (computed
by the same AS Slot) to be merged into one compound stream with one set of Content Properties before forwarding to
industry standard outputs or export. As part of merging the AS system checks that the Content Properties of the
merged streams are equal.

NOTE: Comparing Content Properties can also involve the export group id, which ensures that export chain
processing is required for both coupled sessions are equal .

In conjunction with the random key state thisis the session bound state in the AS Slot. The session state 'se' is defined
below in the c-code; the field descriptions are listed in Table 6.2-9.

#def i ne MaxExpG ouplds 2

typedef struct |nportExportState {

int i mport Sl otld;

int i nport Sessi on;

uchar expG pl d[MaxExpG pl d] ;

bool i mport Permitted] MaxExpG pl d];

RkState rkState;
} InportExport State;

#define I nportNone -1

Table 6.2-9: ImportExportState structure definition

Field Description
importSlotid Only applicable if the AS Slot is in encryption mode. The value is the slot number from
which content is imported ('import slot"). The default value is -1.
importSession Only applicable if the AS Slot is in encryption mode. The value is the session number in
the import slot from which content is imported. The default value is -1.
expGrpld[eid] Only applicable if the AS Slot is in encryption mode. The export group id of the exporting

AS Slot from which the content can be imported. Value 0x00 is reserved.
importPermitted[eid] Only applicable if the AS Slot is in encryption mode. Set to true if the for expGrpld[eid] is
permitted by the exporting AS Slot; false otherwise. The default value is false.

rkState State of the random session key for this session.

The AS System shall remove an import session (set corresponding ImportPermitted field to false) if the corresponding
decryption session is reset or re-initialized. The AS System shall reset al the sessions of an AS Slot on the reset or re-
initialization of an AS Slot.

6.2.3 Content Property Authentication

ECI Clientsthat perform decryption functions provide the ECI Host with the Content Property values through the
respective content property API. The ECI Host shall input these values to the Advanced Security System in
combination with the data required to compute the control word for the applicable content. The Advanced Security
System shall ensure the proper enforcement of the Content Properties and validate the Content Properties by using
them to compute the C-input to the AS Key Ladder Block.

Micro Servers use the Content Properties passed on and/or processed by the AS System or the ECI Client using the
same mechanism as above for computing in process of computing the C-input to the Key Ladder. AS Slots used in
encryption mode verify the Content Properties supplied by the Micro Server against those forwarded by the
decryption resource in accordance with the Micro Server configuration settings. Encryption is halted on detection of a
mismatch.

For the purpose of authentication and verification Content Properties are combined into a byte-sequence in two stages.
The first stage combines smaller fixed length content property fieldsinto field1. The fieldControl byte controls the
presence of byte-size content property fields for authentication. In the second stage longer content property fields are
composed into a byte sequence field2. Field1 and field2 are concatenated and are input to a hash function which
condenses al fieldsinto a 128-bit value for the C-input of the key ladder. Table 6.2-10 presents the field1 structure.

ETSI

27 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Table 6.2-10: field1 structure definition

Name Type Byte number Description
fieldControl FieldControl (0,1 This field defines a 16-bit value with the least significant bits in
byte 0. See Table 6.2-11.
basicUri byte 2 The value of this field shall correspond to BasicUri type
specification, ETSI GS ECI 001-3 [3], table 9.8.2.5.1-1.
outputControl [byte 3 The value of this field shall correspond to Output Control Vector
specification ETSI GS ECI 001-3 [3], table 9.8.2.6.1-1.
standardUri byte [3] 4-6 The value of this field shall correspond to the Standard URI
specification ETSI GS ECI 001-3 [3], table 9.8.2.3.1-1.
exportGroup byte 7 Interpreted as unsigned integer representing the export group id that
applies to the content. Value equal 0 shall be interpreted by the ECI
Host as no export is permitted; values 0x80 - OxFF are reserved.
parentalAuth byte 8 Corresponds ParCond.basicCondition as defined in ETSI
GS ECI 001-3 [3], clause 9.8.1.7.7-1, with bit [0..5] set to 0b000000.
Reserved byte[7] 9-15 Bytes shall be set to 0x00 by ECI Hosts complying with the present
document.
Table 6.2-11: FieldControl structure definition
Name Bit(s) Description
bit-<n> 2-16 This bit controls the validation of byte-<n> of field1. If the value is 0b1 it shall
indicate that the value of bye-<n> shall be validated and be equal to the
indicated field, if the value is Ob0 it shall indicate that byte-<n> shall not be
validated and the value 0x00 shall be used instead for byte-<n> in field1.
Bit-2 shall be set to Ob1 when used as input to compute a decryption control
word. This ensures the basicUri is always authenticated against the value
used at the time of encryption of the content.
Field2ctrl 0-1 Value 0b0O0 indicates field2 is not present. Value 0Ob01 indicates field present
and uses the encoding as defined below. Values 0b10 and 0b11 are
reserved and shall not be used.

Field2 definition uses a tag/length/value structure with an overall length field to ensure overall integrity. Field2
structure is defined below in this clause.

The function computeField1Decrypt computes the selection logic for the next step in the authentication:

voi d conput eFi el d1Decrypt (uchar fieldl[16],
int i;

ushort fieldControl

uchar result1[16]) {

= field1[0] + fiel d1[1] <<8;

result1[0] = fieldl[O0];
result1[1] = fieldl[1];
for (i=2; i<16; i++)

if (fieldControl>>i

& 0bl)

result1[i] = field[i];

el se

}

result1l[i] = 0xO00;

An AS Slot in encryption mode shall compute the input to the content property authentication denoted as resultl and a
cpMask field for comparing field1 bytes to field1 belonging to content of the importing session as:

voi d conput eFi el d1Encrypt (

uchar nsField1[16],/* fieldl for CP fromMcro Server Client */
/* result CP for authentication in computing CW*/

ushort cpMask,

resul t 1] 16],

) {

int i;
uchar cp[16];

/* set control

/* result mask for conparing nsFieldl to client's
version of CP fieldl */

Encrypt Config ssEncrypt /* encryption configuration of the AS slot */

cp[0] = ssEncrypt.defaultCp[0];
cp[1l] = ssEncrypt.defaultCp[1];
mask = 0x0000;

/* CP value to be conputed */

bytes of content properties */

ETSI

28 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

/* process the contPropControl rules to conpute cp */
for (i=2; i<16; i++) {
switch (ssEncrypt.contPropControl >>(2*i) &% 0bl1) {
case CpCtrl Copy: /* shall be copied frominport Cient */
if (i==2) { /* basic URl byte */
/* process basicUiTrfr */
switch (ssEncrypt.basicUiTrfr) {
case Basi cUri Tr f r NoChange:
cp[i]l= msFieldl[i];

br eak;
case Basi cUri Trfr NoMor eCopy:
if ((clFieldl[2] &b11l) == Redi stri butionProtected)
cp[i]l= (nsFieldl[1l] & OxFC) + ViewOnly;
el se
cp[i]= msFieldl[i];
br eak;

} else { /* all other CP bytes */
cp[i]= msFieldl[i];

cpMask += 1<<i; /* msFieldl byte i to be conpared to inp client */
break ;

case CpCtrlDef: /* shall be set to default CP fromconfiguration *?
cp[i] = ssEncrypt.defaul tCP[i] ;
break ;

case CpCrIMs: /* shall be defined ny software Mcro dient */
cp[i] = msFieldl[i];
br eak;

}

/* conpute input to authentication function same was as for decryption */
conput eFi el d1Decrypt (cp, resultl);
}
Field2 is a structured byte sequence as defined below:

typdef struct Field2 {

uint |ength; /* nunber of bytes in content, shall be a nultiple of 4 */
byte content[]; /* content defined bel ow */
} Field2;

The content field of the Field2 structure shall contain a sequence of LargeProperty structures each with a unique tag.
The LargeProperty is defined by the c-code below. :

typdef struct LargeProperty {
uint propertyTag; /* see Table 6.2-12 */
uint |ength; /* length of property field in bytes
byte property[]; /* contains the actual property value */
byte padding[]; /* additional bytes set to 0x00 to make LargeProperty a
mul tiple of 4 bytes large */
} LargeProperty;

The largeProperty propertyTag field values and corresponding property field definitions are defined in Table 6.2-12.

Table 6.2-12: largeProperty tag field values and meaning

propertyTag value Property

0x00000000 Reserved

0x00000001 Corresponds to parameter data of the setDcrMarkBasic message as defined in ETSI
GS ECI 001-3 [3], clause 9.8.1.7.5

0x00000002 Corresponds to parameter data of the setDcrMarkExt message as defined in ETSI
GS ECI 001-3 [3], clause 9.8.1.7.6

0x00000003 Corresponds to the parameter custURI of setDcrCustUri message as defined in ETSI
GS ECI 001-3 [3], clause 9.8.1.4.1

Other Reserved for future use

The AS System may refuse any data exceeding its processing capacity for field2.
The AS System shall check the consistency of any Field2 data parameter using the following checks:

. Length of the constituent LargeProperty structuresis equal to the length field of the Field2 structure.

ETSI

29 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

. The padding bytes of al constituent LargeProperty structures are 0x00.

The associated data input C for the Key Ladder shall be computed from result1 and field2 according to the following c-
code:

voi d conput el nput C(uchar resul t1[16], unchar *fiel d2, uchar input_(16])

{
uchar hash2[16], hashln[32];
uint i, length;

if (resultl[0] & Obll == 0x00) {
/* no field2 to be included */
for (i=0; i<16; i++) hashin[i] = resultl[i];
asHash(hashln, 16, 128, input_O);

} else if result[0] & Obl11l = 0x01) {
/* field2 to be included for input-C */
length = (Field2 *)field2->length + 4;
asHash(fiel d2, |length, 256, hash2);
for (i=0; i<16; i++) hashin[i] = resultl[i];
for (i=0; i<32; i++) hashln[16+i] = hash2[i];
asHash(hashln, 48, 128, input_O);

}

asHash is the hash function defined in clause A.1 of abyte sequencein the first parameter, the length of the byte
sequence in the second parameter, a bit-length of the result in the third parameter and the result in the last parameter.

Robustness of the outer Hash computation (directly computing shall be at |east as high as that of the Hash computation
of the inner Hash. The measure of Robustness of a hash reflects the effort required for creating a discrepancy between
any of the inputs of the hash function and their application of these inputs as content property as well as manipulating
the hash function and/or its output.

An example of different levels of Robustness of the two hash computations is that the outer hash can be conducted by a
robust hardware block whereas the inner hash can be conducted by a robust software implementation.

6.2.4 AS Slot functions

6.2.4.1 Overview

The AS System can perform various functions on behalf of ECI Clients by acting through the ECI Host. These
functions form the basis for the Advanced Security APl in [3]. An"event" reports an asynchronously occurring event
back to the ECI Client. No response is possible. All other functions are designated to be either asynchronous or
synchronous messages initiated by the ECI Client; their return values indicate the response status. The functions are
listed in Table 6.2-13.

Table 6.2-13: Overview of Advanced Security Functions

Function name Description Clause
reqAsinitSlot Initialize an AS Slot 6.2.4.2
reqAsAStartDecryptSession Start a decryption session in an AS Slot 6.2.4.3
regAsCoupleDecryptSession Couple two decryption sessions into one 6.2.4.3
reqAsDecoupleDecryptSession [Decouple two coupled decryption sessions 6.2.4.3
reqAsStartEncryptSession Start an encryption session 6.2.4.3
callAsNextKeySession Change to the next random key 6.2.4.3
regAsStopSession Stop a session 6.2.4.3
regAsExportConnSetup Setup an Export Connection from decryption to 6.2.4.4

encryption session
reqAsExportConnEnd Terminate existing export session 6.2.4.4
reqAsLoadlLkl Load top level link key in Key Ladder for a session 6.2.4.5
reqAsComputeEncrCw Compute encryption control word 6.2.4.6
regAsComputeDecrCw Compute decryption control word 6.2.4.7
reqAsComputeAkClient Compute authentication key for use by the ECI Client 6.2.4.8
reqAsClientChalResp Use authentication key on behalf of ECI Client 6.2.4.8
regAsAuthDecrConfig Authenticate the session configuration with 6.2.4.9

Authentication Mechanisms (decryption mode)

ETSI

30 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Function name Description Clause
regAsAuthEncrConfig Authenticate the session configuration and encryption 6.2.4.9
parameters with Authentication Mechanisms (encryption
mode)
regAsLdUssk Load Micro Server secret key 6.2.4.10
reqAsMinikLk1 Compute asymmetrical Micro Client initialization message [6.2.4.11
reqAsClientimageDecrKey Compute decryption key for ECI Client image 6.2.4.12
getAsSlotRk Read slot random key 6.2.4.13
getAsSessionRk Read session random key 6.2.4.13
getAsSessionLimitCounter Read remaining units of session random key 6.2.4.13
setAsSessionLimitEvent On reaching a limit value for remaining units send event 6.2.4.13
reqAsEventSessionLimit Event message on reaching limit value 6.2.4.13
getAsClientRnd Get a new random number for ECI Client applications 6.2.4.13
getAsSC Get current Scrambling Control field status of contentina (7.9
session
regAsEventCpChange Event message on content property change in imported 7.9
content in an encryption session
setAsPermitCPChange Enable/disable imported content property CP changes 7.9
taking effect on control word selection for encryption in an
encryption session
setAsSC Set scrambling control field of encrypted content of an 7.9
encryption session
reqAsEventSC Event message on change of scrambling control field in 7.9
session

The pseudo code in the sub-clauses of this clause contains error codes as return value of functions. The Error code
values are defined in clause 6.2.4.15 including a verbal description.

6.2.4.2 AS Slot initialization

At loading time the ECI Host shall reserve an AS Slot in the Advanced Security System on behalf of each ECI Client
to be loaded. The ECI Host will invoke the regAslinitSlot function as defined below. All state information of the AS
Slot shall be set to its default state; any Export Connection shall be reset. The ECI Host shall load the ECI Client
using the loader core (see clause 9). The AS Slot's POCIRLVnr shall reflect the minimum version number of the POC
Revocation List used to validate the client image. This value will be verified when the ECI Client initiates a session.

int regAslnitSlot(uint slotld, ECl _Certificate_Chain popkChain,
ui nt sl ot Version, slotMde)

Semantics:
All state information of AS Slot slotld shall be set to the default state; any Export Connection shall be reset.

Loading of POPK requires providing the chain for processing to the CPS system. The rules for processing of POPK
chains are defined in clause 8.4. ECI_Certificate_Chainis defined in [3], clause 5.4.1. Once successfully validated the
following c-code shall be executed:

/* initialise the slot state */

ss[slotld].popk = /* validated val ue of popk returned by CPS */;
ss[slotld].POd RLVnr = /* value used for client image verification */;
ss[slotld].version = slotVersion;

ss[slotld].slotMde = sl ot Mde;

ss[slotld].configAuthMde = Confi gAut hModeNone;

ss[slotld].rkSl ot = rnd128();

return ErrCk;

The function rnd128() returns a random 128 bit number as defined in clause A.3 as an array of 16 uchar's.

6.2.4.3 AS Slot session and random key control

An AS Slot supports different session states for different concurrent sessions. The following functions start and stop
sessions for adot:

int reqgAsAStartDecrypt Session(uint slotld, ushort mh, PubKey spk,
SessionConfig config, uint *sessionld)

ETSI

31 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Semantics:

The following c-code shall be executed:
if (ss[slotld].slotMde != slotMdeDecr) return ErrSl ot Mode;

/* check if a valid client revocation |list was used */
if (config.decryptConfig.clientVersion >
ss[slotld].clientPOd RLVnr) return ErrRevocEnforce;

/* locate any free sessionld; any algorithmis ok */

int i=0;

whil e (i <NSESSI ONS && ss[slotld].se[i].active) i++

if (i==NSESSIONS) return ErrNoMreSessions;

/* i contains a non-active session adm nistration block */
*sessionld = i;

/* initialise session state */
ss[slotld].se[i].active = true;
ss[slotld].se[i].mh = nh;
ss[slotld].se[i].coupledSessionld = -1;
ss[slotld].se[i].inmportPermtted = fal se;
ss[slotld].se[i].spk = spk;
ss[slotld].se[i].config = config;
ss[slotld].se[i].rkState.rkCurrent = rndl128();
ss[slotld].se[i].rkState.rkNext = rnd128();
ss[slotld].se[i].rkState.limtCounter =

I'i mtVal ue(config.decryptConfig.rkDecrMde.lint);

if (!cpsEci RootStateCk(sdlotld,i)){
ss[slotld].se[i].active = fal se;
return ErrRevocEnforce;

}

return ErrCK;
Preconditions:
. AS Slot was successfully initialized.

NOTE: The mh (media handle) parameter permits the ECI Host to identify the AS decryption session associated
to the content decryption session it started. It is not used by the AS system itself.

In order to couple two initialized sessions the coupleDecrypSessions function is provided. The second session is
coupled to the first; the first becoming the main handle for the combined content.

int reqAsCoupl eDecrypt Session(uint slotld, uint sldl, uint sld2)
Semantics:

The following c-code shall be executed:

if (ss[slotld].slotMde != slotMdeDecr) return ErrSl ot Mode;

if (!ss[slotld].se[sldl].active) return ErrParang;

if (!ss[slotld].se[sld2].active) return ErrParans,;

if (ss[slotld].se[sldl].coupledSessionld != -1) return ErrSessi onlCoupl ed;
if (ss[slotld].se[sld2].coupledSessionld != -1) return ErrSessi on2Coupl ed;

se[slotld][sldl] = sld2z;
/* the content processing systemis informed on the session coupling &

return ErrCk;
Preconditions:
. Both AS Slot sessions were successfully initialized.

The following function can be called to decouple a coupled session:

int reqgAsDecoupl eDecrypt Sessi on(uint slotld, uint sessionld)

ETSI

32 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Semantics:

The following c-code shall be executed:

if (ss[slotld].slotMde != slotMdeDecr) return ErrSl ot Mode;
if (!ss[slotld].se[sessionld].active) return ErrParang;
if (se[slotld][sessionld].coupledSessionld == -1)

return ErrSessi onNot Coupl ed;

ss[slotld].se[sessionld].ies.coupledSessionld = -1;
/* the content processing systemis informed on the session decoupling */

return ErrCk;
Preconditions:
. The sessions were previously coupled.

The function to initiate an encryption session is:

int regAsStartEncrypt Session(uint slotld, ushort mh, uint inportSlotld,
int inportSessionld, PubKey spk, SessionConfig config,
uint nEncr, PubKey encr Spk[MaxSpkEncr],
PubKey encr Popk[MaxSpkEncr], ulong encrOmJri, uint *sessionld)

Semantics:

The following c-code shall be executed:

If (ss[slotld].slotMde != slotMdeEncr) return ErrSl ot Mode;
if (0 > nEncr || nEncr >= MaxEncr) return ErrParand,

/* locate free sessionld; any algorithmis ok */

int i=0;

while (i <NSESSIONS && ss[slotld].se[i].active) i++;

if (i==NSESSIONS) return ErrNoMreSessions;

/* i contains a non-active session administration block */

/* check if a valid client revocation |list was used */
if (config.encryptConfig.mncroServerVersion >
ss[slotld].clientPOO RLVnr) return ErrRevocEnforce;

*sessionld = i;

/* initialise session state information */
ss[slotld].se[i].active=true;
ss[slotld].se[i].mh = nh;
ss[slotld].se[i].spk = spk;
ss[slotld].se[i].config = config;
ss[slotld].se[i].encrOaMJi = encrOwJri;

int j;

for (j=0; j<nEncr; j++) {
ss[slotld].se[i].encrSpk[j] = encrSpk[j];
ss[slotld].se[i].encrPopk[j] = encrPopk[j];

}

/* initialise randomkey state */
ss[slotld].se[i].rkState.rkCurrent = rnd128();
ss[slotld].se[i].rkState.rkNext = rnd128();
ss[slotld].se[i].rkState.limtCounter =

I'i mtVal ue(config.encryptConfig.rkEncrMde.linmt);

/* initialise inport state */
ss[slotld].se[i].inmportSlotld = inmportSlotld,
ss[slotld].se[i].inportSession = inportSessionld;

if (!cpsEci Root StateCk(sdlotld,i)){
ss[slotld].se[i].active = fal se;
return ErrRevocEnforce;

}

return i;

ETSI

33 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Preconditions:
e ASSot was successfully initialized.

The ECI Host can move forward the random key state (moving next to current) of a session using the following
function:

int cal | AsNext KeySession(uint slotld, uint sessionld)
Semantics:

The following c-code shall be executed:
if (!ss[slotld].se[sessionld].active) return ErrNoSuchSessi on;

ss[slotld].se[sessionld].rkCurrent = ss[slotld].se[sessionld].rkNext;
ss[slotld].se[sessionld].rkNext = rnd128();
if (ss[slotld].slotMde == S| ot ModeEncr)
se[slotld][sessionld].limtCounter =
i mtVal ue(
ss[slotld].se[sessionld].config.encryptConfig.rkEncrMde.lint)
else if (ss[slotld].slotMde == Sl ot MdeDecr)
se[slotld][sessionld].limtCounter =
i mtVal ue(
ss[slotld].se[sessionld].config.decryptConfig.rkDecrMde.limt);

return Errc;
Preconditions:
e ASSot session was successfully initialized.

When operating in TS-mode the content processing system will signal the changeover of current/next control word to
the associated ECI Client (see[3]). The ECI Client can use this message to trigger the computation of the next control
word.

The ECI Host can stop the session and, as a conseguence, terminate any pending Export Connections from that
session using the following function:

int regAsStopSession(uint slotld, uint sessionld)
Semantics:

The following c-code shall be executed:
int i, j;
ss[slotld].se[sessionld].active = fal se;

/* decoupl e fromany coupl ed decrypti on sessions */
for (j=0; j<NSESSESIONS; j++)
if (ss[slotld].se[j].coupledSessionld == sessionld)
ss[slotld].se[j].coupledSessionld = -1;
/* the content processing systemis informed of decoupling */

/* cancel all export sessions */
if (ss[slotld].slotMde == Sl ot MdeDecr)
for (i=0; i<NSLOTS; i++)
for (j=0; j<NSESSIONS; j++)
if (ss[i].se[j].inportSlot == slotld &&

ss[i].se[j].inportSession == sessionld)
{
for (k=0; k<MaxExpG pld; k++)
ss[i].se[j].inmportPernmtted[k]= fal se;
ss[i].se[j].importSlotld= -1;
ss[i].se[j].inmportSession= -1;
}

return Errcx;
Preconditions:

e ASSot session was successfully initialized.

ETSI

34 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

6.2.4.4 AS Slot Export control

The export Authentication M echanism permits the ECI Host to create an Export Connection froman AS Slot
session in adecrypting ECI Client to an AS Slot session of aMicro Server, thus permitting the transfer of content
from decrypting ECI Client to Micro Server. The AS System uses the Certificate Processing Subsystem to process
the required export, import and export authentication chains using the exporting AS Slot sessions POPK and
minClientVersion as a base for validating the export and subsequent import chain. The end result is that the Export
Connection element for an export group 1D is positively validated, or the connection refused. The actual connectionis
created from an (export) session to an import session.

int reqgAsExport ConnSetup(uint slotld, uint sessld, uint inpSlotld,
uint i npSessld, uint grplndx, CertSerial Chain expCh,
Cert Serial Chain inpCh, CertSerial Chain auth[])

Semantics:
expCh is the export chain from POPK to TPEGC or ESC Certificate. ImpCh is the import chain from TPEGC the ESC.

NOTE: impCh can be empty. auth[] is the sequence of export authentication chains required to co-authenticate
sections of the import chain.

The CertSerial Chain structure definition is defined in [3], clause 9.7.1.3.3.

The AS Slot first verifies the impCh using the auth[] export authentication chains and using the installed ECI Root K ey
and Revocation List version number.

The AS Slot then reguests the Certificate Processing Subsystem to process the export plusimport chain using the
POPK and the AS State registers POPK and ExportRIVersion asroot. Theid of the first certificate in the export chain
shall be stored in expGrpld.

On successful authentication, an export element is added to the AS Slot session state, containing the export group id and
the slot id plus session id of the authenticated export ECI Client. The following c-code shall be executed to processto
create the import connection. The authentication can be computed for two export group ids so as to permit a seamless
changeover from one to the next export group in the content properties.

/* the CPS delivers the follow ng variables on successful processing of the
Export inport chains */

PubKey i npSpk; /* the spk of the inporting system*/
ui nt i npConfigVersion; /* the config. Version nr of the export system*/
ui nt expG pl d; /* the export group for which the export connection is valid */

/* check if potential inmport slot is in decent state */
if (!(ss[inpSlotld].slotMde == S| ot ModeEncr &&
ss[impSlot1d].se[inmSessld].active &&
ss[inmpSlotid].se[inpSessld].spk == i mpSpk
ss[inmpSlotld].se[inmpSessld].encryptConfig.mcroServerVersion >=
i mpConfi gVersi on
)) return ErrExport Sl ot BadSt at e;

/* check if another inport connection already exists */
if (ss[inmpSlotld].se[inmpSessld].ies.inportSlotld != I|nportNone)

return ErrExportOngoing;
/* Set the inport/export state of the inport-session to reflect the export connection */
ss[inmpSlotld].se[inmpSessld].ies.inmportSlotld = slotld;
ss[inmpSlotld].se[inmpSessld].ies.inmportSession = sessld;
ss[inmpSlotld].se[inpSessld].ies.expGpld[grplndx] = expGpld;
ss[inpSlotld].se[inpSessld].ies.inmportPermtted[grplndx] = true;
return ErrCk;

Preconditions:
e ASSot session was successfully initialized.

After setting up an Export Connection it can a so be terminated by the importing side (which will effectively halt the
encryption session):

int regAsExport ConnEnd(uint slotld, uint sessionld)

ETSI

35 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Semantics:

The following c-code will be executed:

if (!(ss[slotld] != SlotMdeEncr)) return ErrlnportSl ot BadSt at e;
if (!(ss[slotld].se[sessionld].active)) return ErrParang;
if (ss[slotld].se[sessionld].ies.slotld == -1) return ErrNoExport;

ss[slotld].se[sessionld].ies.inmportSlotld = -1;

ss[slotld].se[sessionld].ies.inmportSession = -1;

for (int i=0; i< MaxExpGpld; i++)
ss[slotld].se[sessionld].ies.inportPermtted[i] = fal se;

return ErrcCx;

Preconditions:

. AS Slot session was set up for import.

6.2.4.5 LK1 Key Ladder initialization

In order to perform Key Ladder mechanism operationsin an AS Slot, the ECI Host can load the top level link key
LK1 for subsequent Key Ladder output computations.

int regAsLoadLkl(uint slotld, uint sessld, InputV inputV,
ul ong spkUri, uchar spkl ndx)

Semantics:

The following c-code shall be executed:

(ss[slotld].slotMde == Sl ot ModeEncr) spkl ndx = 0;
(spklndx >= 16) return ErrParanb;
check if spkUi in set_1 */

if
if
*
f ((spkUri>>spklndx & Obl) != Obl) return ErrSpkUriViolation;
f
f

/

(!ss[slotld].se[sessld].active) return ErrParang;
(spkl ndx==0 && ss[slotld].sl ot de==SI ot ModeDecr &&
ss[slotld].se[sessld].config.decryptConfig.spkONoDecrypt)
return ErrSpkONoDecrypt;

ss[slotld].se[sessld].spkUi = spkUri;
ss[slotld].se[sessld].spklndx = spklndx;

if (ss[slotld].slotMde == sl ot MbdeEncr &&
ss[slotld].se[sessld].config.encryptConfig.asynKl Mde
)

ss[slotld].lkl= rnd128();
return Errcx;
}

ss[slotld].se[sessld].lkl =
bl ockV_bl ockC _keyl adder (i nputV, ss[sl ot1d].se[sessld].spk);
return ErrCk;

Preconditions:

° AS Slot session was initialized.

6.2.4.6 Encryption Control Word calculation

Once AS Slot state field Ik1 is set control words can be computed. cwlndx indicates the odd or even control word that is
computed. The value can be 0 (even) or 1 (odd), and shall always be O for file based decryption.

int regAsConput eEncrOmM uint slotld, uint sessld, ulong cwlUi, uint nEl Kk,

SynKey el k[24], uchar XT[32], uint rkindx, Field2 field2,
ui nt cw ndx)

ETSI

36 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Semantics:

The following c-code shall be executed:

PubKey spk[MaxSpkEncr+1], popk[MaxSpkEncr+1]; /* tenporary variables */
Sessi onConfig config[MaxSpkEncr+1]; /* tenporary variable */

/* basic consistency checks */

if (!ss[slotld].se[sessld].active) return ErrParang;

if (ss[slotld].slotMde != SlotMdeEncr) return ErrSl ot Mode;

if (ss[slotld].se[sessld].config.encryptConfig.rkEncrMde. mode==0b00) {
if (nEl k<2) return ErrParang;

} else {
If (nEl k<3) return ErrParany;

}

/* verify if the slot configuration has been authenticated */
if (ss[slotld].se[sessld].configAuthMde != Confi gAut hMbdeAkl)
return ErrNoConfi gAut h;

/* verify if the CPS ECl Host Root state is sufficient to proceed */
if (!cpsEci Root StateOk(slotld, sessld)) return ErrRevocEnforce;

/* check if random sl ot-session key has to be applied */
SynKey rkAppl; /* random key that may have to be applied */
if (rklndx == 0) {

rkAppl = ss[slotld].se[sessld].rkState.rkCurrent;
} elseif (rklndx == 1) {

rkAppl = ss[slotld].se[sessld].rkState.rkNext;
} else {

return ErrParanv;
}

/* insert random sl ot key and random session key if required */
if (ss[slotld].se[sessld].config.encryptConfig.rkKl Mde) {
el k[0] = ss[slotld].slotRk;

}

if (ss[slotld].se[sessld].config.encryptConfig.rkEncrMde. node != RKMbdeNone) {
if (nSpk < 3) return ErrNoSl ot Rkl nsert;
el k[nSpk-1] = rkAppl;

}

/* conpute input-C, insert in key |adder */
uchar result1[16], seFieldl[16];
ushort cpMask;

conput eFi el d1Encrypt (el k[nEl k-2], resultl, cpMask,
ss[slotld].se[sessld].config.encryptConfig);
computel nput C(resul t1, field2, elk[nEl k-2]);

/* use ARK with value 0 */
uchar ark[16] = (uchar){0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

/* define spk, popk and config inputs to key | adder; using slot's spk/popk in position 0 and a
replication of the slot configuration */

spk[0] ss[slotld].se[sessld].spk;
popk[0] ss[slotld]. popk;
config[0] = ss[slotld]. se[sessld].config;
int i;
int nSpk = slot[slotld]. se[sessld].config.EncryptConfig.nEncr + 1;
for (i=0; i<nSpk-1; i++) {
spk[i+1] = ss[Slotld]. se[sessld].encrSpk[i];
popk[i+1] = ss[Slotld]. se[sessld].decrSpk[i];
config[i+1l] = ss[slotld]. se[sessld].config;

/* define spkUri val ues */
ul ong spkUri = (0Oxl<<(nSpk+1)) - 1; /* all SPKs can be used for decoding
keys */

ETSI

37 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

/* performthe key | adder cal cul ation */
bool asym = ss[slotld].se[sessld].config.encryptConfig.asynkl Mde;
Secret SynKey cw =
KeyLadder (ss[slot1d].se[sessld].lkl, ss[slotld].se[sessld].encrOmri,
Acf OwlMbde, ark, popk, config XT, ss[slotld].spkUi, nSpk, spk,
nEl k, elk, asym;

/* cwis sent to the encryption resource along with cwlri, nsFieldl, cpMask and cw ndx */

return ErrCk;
Preconditions:
. Session's LK1 was loaded.

e ASSlot session was authenticated if required.

6.2.4.7 Decryption Control Word calculation

Once AS Slot state field Ik1 is set control words can be computed. cwlndx indicates the odd or even control word that is
computed. The value can be 0 (even) or 1 (odd), and shall always be O for file based decryption.

int regAsConputeDecrOM ui nt slotld, sessionld, ulong cwUri, uint nSpk,
uint nEl k, SynKey el k[24], PubKey spk[16], PubKey popk[16], SSConflig config[16], uchar
XT[32], uint rklndx, Field2 field2, uint cw ndx)

Semantics:

The following c-code shall be executed:

/* basic consistency checks */

if (!ss[slotld].se[sessionld].active) return ErrParang;

if (ss[slotld].slotMde != SlotMdeDecr) return ErrSl ot Mde;

if (ss[slotld].se[sessionld].spklndx >= nSpk) return ErrParand,

if (ss[slotld].se[sessionld].config.decryptConfig.rkDecrMde. nnde==0b00) {
if (nEl k<2) return ErrParanb;

} else {
if (nEl k<3) return ErrParanb;

uint si = ss[slotld].se[sessionld].spklndx ;

/* verify if the slot configuration has been authenticated if so required */
if (ss[slotld].se[sessionld].config.decryptConfig.akMdeAuth &%
ss[slotld].se[sessionld].configAuthMde != Confi gAut hMbdeAkl
) return ErrNoConfi gAut h;

/* verify if the CPS ECl Host Root state is sufficient to proceed */
if (!cpsEci Root StateCk(slotld, sessionld)) return ErrRevocEnforce ;

/* ensure proper slot spk, popk and slotConfig are applied */
spk[si]= ss[slotld].se[sessionld].spk;
popk[si] = ss[slotld].se[sessionld].popk;

/* only authenticate the slot's decrypt configuration if required */
if (ss[slotld].se[sessionld].config.decryptConfig.kl MdeAuth)
ssConfig[si].decryptConfig = ss[slotld].ssConfig.decryptConfig;

/* in all cases authenticate the kl ModeAuth and akMbdeAuth fields */

config[si].decryptConfig.kl MbdeAut h=
ss[slotld].se[sessionld].config.decryptConfig.kl MbdeAut h;

config[si].decryptConfig. akMbdeAuth =
ss[slotld].se[sessionld].config.decryptConfig.akMdeAut h;

/* check if random sl ot-session key may have to be applied */
SynKey rpAppl; /* random key that may have to be applied */
if (rklndx == 0) {

rpAppl = ss[slotld].se[sessionld].rkState.rkCurrent;
} elseif (rklndx == 1) {

rpAppl = ss[slotld].se[sessionld].rkState.rkNext;
} else {

return ErrParanll;
}

/* insert random sl ot key and random session key if required */
if (ss[slotld].se[sessionld].config.decryptConfig.rkKl Mde) {

ETSI

38 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

el k[0] = ss[slotld].slotRk;

}

if (ss[slotld].se[sessionld].config.decryptConfig.rkDecrMde. node != RKMbdeNone) {
if (nSpk < 2) return ErrNoSl ot Rkl nsert;
el K[nSpk-2] = rpAppl;

}

/* compute input-C, i.e. elk[nEl k-1] for content Property authentication */
/* veryfy basicUi control bit is set */

if (((el k[nEl k-1][0]>>2)&0bl) != 0bl) return ErrBasicUiCrl;

uchar result1[16];

conput eFi el d1Decrypt (el k[nEl k-2],resul t1);

conputelnputC(resultl, field2, elk[nEl k-2]);

/* use ARK with value 0 */
uchar ark[16] = (uchar){O0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

/* performthe key | adder cal cul ation */
Secret SynKey cw =
KeyLadder (ss[slotld].se[sessionld].lkl, cwJ)i, AcfCwlMde, ark,
popk, ssConfig, XT, ss[slotld].se[sessionld].spkUi, nSpk,
spk, nElk, elk, false);

/* cwis passed to the decryption resource session along with cwkri, resultl and cw ndx and the
sessions states nedia handl e val ue */

return ErrCk;
Preconditions:
) Session's LK1 was loaded.

e ASSlot session was authenticated if required.

6.2.4.8 Computing akClient and its application

The Key Ladder Block's Authentication M echanism permits the secure calculation of secure keys for use by the ECI
Client using the Authentication M echanism:

int reqgAsConputeAkC ient(uint slotld, InputV inputV, uint nSpk,
uchar spkl ndx, PubKey spk[16], PubKey popk[16], SessionConfig akCnf[16],
ul ong spkUri,uchar XT[32], bool online)

Semantics:

The following c-code shall be executed:

/* basic consistency checks */
if (ss[slotld].slotMde==S| ot MdeEncr) spklndx = 0;
if (spklndx >= 16) return ErrParand,
/* check if spkUri in set_1 */
if ((spkUri>>spklndx & 0Obl) != 0bl) return ErrSpkUriViolation;
if (ss[slotld].slotMde == S| ot ModeEncr) {
i f (akCnf[spklndx].encryptConfig.configVersion != 0x1) return ErrParanv;
if (akCnf.encryptConfig. mcroServerVersion >
ss[slotld].clientPOd RLVnr) return ErrRevocEnforce;
if ((cpsEci Root State. rootVersion <
akCnf [spkl ndx] . encrypt Confi g. m nEci Root St at e. r oot Ver si on)
|| (cpsEci Root State.rl Version <
akCnf [spkl ndx] . encrypt Confi g. m nEci Root State. rl Version))
return ErrRevocEnforce;
}
if (ss[slotld].slotMde == S| ot ModeDecr) {
i f (akCnf[spklndx].decryptConfig.configVersion != 0x1) return ErrParanv;
i f (akCnf.decryptConfig.mndientVersion >
ss[slotld].clientPOC RLVnr) return ErrRevocEnforce,;
if ((cpsEci Root State. rootVersion <
akCnf [spkl ndx] . decrypt Confi g. m nEci Root St at e. r oot Ver si on)
|| (cpsEci Root State.rl Version <
akCnf [spkl ndx] . decrypt Confi g. m nEci Root St at e. rl Ver si on))
return ErrRevocEnforce;
}
/* ensure proper slot spk and popk are applied */
popk[spkl ndx] = ss[slotld]. popk;

ETSI

39 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

/* ensure proper ACF and ARK are applied */
uchar ark[16] ;

uchar acf[15] = acfAklMbde ;

acf[1] = AkUsed ;

if (online) {

acf[1] += AkOnli ne;

ark = ss[slotld].slotRk;

} else {
acf[1] += AIOfline;
ark = {0} ;

/* performthe authentication mechani sm*/
ss[slotld].akOient =

Aut hMech(i nput V, acf, ar k, popk, akCnf , XT, spkUri , nSpk, spkl ndx, spk) ;
return ErrCk;

Preconditions:
° The slot has been be initiaized.

In order to use the computed ECI Client AK key the following function is defined:

int reqgAsC ient Chal Resp(int slotld, uchar challenge[16],
uchar *(response[16]));

Semantics:

The following c-code shall be executed:

*response = Aut hMechResponse(ss[slotld].akd ient, challenge);
return Errck;

Preconditions:
. The dlot was initialized.

e Thedot's AkClient has been successfully computed.

6.2.4.9 AS Slot Session Configuration Authentication

The Key Ladder Block's Authentication M echanism permits the authentication of the slot's session configuration by
the Provisioning Server. The Provisioning Server can issue offline authentication information or require online
authentication to take place by setting AkOnline in ACF. Two separate functions are available for authentication of a
decryption and an encryption slot.

int regAsAut hDecrConfig(uint slotld, uint sessld, |InputV inputV,
ui nt nSpk, uchar spklndx, PubKey spk[16], PubKey popk[16], SSCnfg cl Cnf[16],
ul ong spkUri, uchar XT[32], bool online, uchar verifier[16])

Semantics:

The following c-code shall be executed:

/* basic consistency checks */

if (!ss[slotld].se[sessionld].active) return ErrParang;

if (ss[slotld].slotMde!=SlotMdeDecr) return ErrSl ot Mde;

if (spklndx >= 16) return ErrParanb;

/* check if spkUri in set_1 */

if ((spkUri>>spklndx & 0bl) != 0bl) return ErrSpkUriViolation;

if (spklndx==0 && ss[slotld].slotMde==S| ot ModeDecr &&
ss[slotld].se[sessld].config.decryptConfig.spkONoDecrypt) return Err SpkONoDecrypt;

/* verify if the CPS ECl Host Root state is sufficient to proceed */
if (!cpsEci Root StateCk(slotld)) return ErrRevocEnforce;

/* ensure proper slot spk, popk and config are applied */
popk[spkl ndx] = ss[slotld]. popk;

spk[spkl ndx] = ss[slotld].se[sessld].spk;

cl Cnf[spklndx] = ss[slotld].se[sessld].config;

uchar ark[16];
uchar acf[15] = acfAklMode;

ETSI

acf[1] = AkUseAS + AkConfi gAut h;
if (online) {

acf[1] = AkOnline;

ark = ss[slotld].slotRk;
} else {

acf[1] = AKOfline;

ark = {0};
}

/* performthe authentication mechani sm*/

Secret SynKey ak =

40

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Aut hMech(ii nput V, acf, ar k, popk, cl Cnf, XT, spkUri, nSpk, spkl ndx, spk) ;

uchar response[16] = Aut hMechResponse(ak,

if (response == {0}) {

ss[slotld].se[sessld].configAut hMdde

return ErrCK;
} else {

ss[slotld].se[sessld].configAut hMdde
return Err Sl ot Confi gAut hFai | ;

}

Preconditions:

° AS Slot session's LK1 was loaded.

The authentication for encryption includes verifying the encryption specific state.

int regAsAut hEncr Config(uint slotld,
uchar XT[32], bool online,

Semantics:

The following c-code shall be executed:

PubKey spk[MaxSpkEncr+1], popk[MaxSpkEncr +1];
Sessi onConfi g config[MaxSpkEncr +1] ;

/* basic consistency checks */

if ((ss[slotld.SlotMde != SlotMdeEncr)

/* verify if the CPS ECl Host Root state is sufficient to proceed */
if (!cpsEci Root StateOk(slotld, sessld))

/* define spk, popk and config inputs to key | adder;
replication of the slot configuration */

spk[0]
popk(0]

ss[sl otld]. popk;

config[0] = ss[slotld].se[sessld].config;

int i;

ss[slotld].se[sessld].spk;

verifier);

Conf i gAut hMbdeAk1;

Conf i gAut hMbdeNone;

uint sessld, InputV inputV,
uchar verifier[16])

/* tenporary variables */

/* tenporary variable */

return Err Sl ot Mode;

return ErrRevocEnforce;

int nSpk = slot[slotld]. config.EncryptConfig.nEncr + 1;

for (i=0; i<nSpk-1; i++) {

spk[i+1] = ss[Slotld].encrSpk[i];
popk[i+1] = ss[Slotld].encrPopk [i];

config[i+1l] = ss[slotld].se[sessld].slotConfig;

/* define spkUri val ues */

ul ong spkUri = (0x1l<<(nSpk)) - 1,
/* all SPKs can be used for decodi ng content

uchar ark[16];
uchar acf[15] = acf AklMode;
acf[1] = AkUseAS + AkConfi gAut h;
if (online) {

acf[1] = AkOnline;

ark = ss[slotld].slotRk;
} else {

acf[1] = AKOfline;

ark = {0};

ETSI

using slot's spk/popk in position O and a

*/

41 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

/* performthe authentication mechani sm*/
Secret SynKey ak =
Aut hMech(i nput V, acf, ark, popk, cl Cnf, XT, spkUri, nSpk, spkl ndx, spk) ;

uchar response[16] = Aut hMechResponse(ak, verifier);

if (response == {0})
ss[slotld].se[sessld].configAut hMbde = Confi gAut hMbdeAk1;
return ErrCk;

} else {
ss[slotld].se[sessld].configAut hMdde = Confi gAut hModeNone;
return Err Sl ot Confi gAut hFai | ;

}

Preconditions:

° AS Slot session's LK1 was loaded.

6.2.4.10 Loading a Micro Server secret key

A Micro Server client can usethe AS Slot operating in asymmetrical server mode and load aMicro Server Secret Key
value ussk for subsequent establishment of a secure connection to aMicro Client chipset:

int regAsLdUssk(uint slotld, uint sessld, InputV inputV,
uchar XT[32], bool online, uchar mJssk[NUSSK])

Semantics:

The following c-code shall be executed:

PubKey spk[MaxSpkEncr], popk[MaxSpkEncr];
Sessi onConfi g confi g[MaxSpkEncr];

/* basic consistency checks */

if (ss[slotld].slotMde!=SlotMdeEncr) return ErrSl ot Mode;

if (!ss[slotld].se[sessld].config.encryptConfig.asynKl Mde)
return ErrSl ot ModeUndefi ned;

/* verify if the CPS ECl Host Root state is sufficient to proceed */
if (!cpsEci Root StateCk(slotld,sessld)) return ErrRevocEnforce;

spk[0] ss[slotld].se[sessld].spk;
popk][0] ss[sl otld]. popk;
config[0] = ss[slotld]. se[sessld].config;
int i;
int nSpk = slot[slotld]. se[sessld].config.EncryptConfig.nEncr + 1;
for (i=0; i<nSpk-1; i++) {
spk[i+1] = ss[Slotld]. se[sessld].encrSpk[i];
popk[i+1] = ss[Slotld]. se[sessld].decrSpk[i];
config[i+1l] = ss[slotld]. se[sessld].config;

/* define spkUri val ues */
ul ong spkUri = (0Oxl<<(nSpk+1)) - 1; /* all SPKs can be used for decoding
keys */

uchar ark[16];
uchar acf[15] = acfAklMode;
acf[1] = AkUseAS + AkLdUssk;
if (online) {

acf[1] = AkOnli ne;

ark = ss[slotld].slotRk;
} else {

acf[1] = AKOfline;

ark = {0};
}

/* performthe authentication mechani sm*/
Secret SynKey ak =
Aut hMech(ii nput V, acf, ar k, popk, confi g, XT, spkUri, nSpk, 0, spk) ;

/* perform AES ECB decodi ng of ussk */

int i,j;

uchar response[32];

for (i=0; i<NUSSK; i+=32)({

response = Aut hMechResponse(ak, &(mssk[i]));

for (j=0; j<32; j++) ss[slotld].se[sessld].ussk[i+j] = response[j];

ETSI

42 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

return Errdk;
Preconditions:

. The session configuration was authenticated.

6.2.4.11 Generating MinitLk1 for Micro Clients

In asymmetrical Micro Server mode the AS Slot can generate Key Ladder Block initialization messages for Micro
Clients:

I nputV reqAsM ni KLk1(uint slotld, uint sessld, EClI_Certificate_Chain O CPK)
Semantics:

ECI_Certificate Chainisdefined in [3], clause 5.4.1 and contains the Certificate Chain for validating aMicro Client.
This function first uses the CPS to validate CICPK using slot[dlotld] with POPK as father certificate and using

sq Slotld].se[sessld]. config.encryptConfig.microServerVersion as the minimum Revocation List version number for
the first certificate in the chain. If this validation is successful the variable clcpk contains the client chipset public key,
and the following c-code shall be executed:

return asymnitLkl(ss[slotld].lkl, slot[slotld].ussk, clcpk);
Preconditions:
. Ussk isinitialized.

. Session isin asymmetrical encryption mode.

6.2.4.12 Computing ECI Client image decryption key

In order to perform loading of an encrypted image the AS Slot can provide an authentication key with which the key to
decode the image can be decrypted. This function hasto be executed before dlot initialization:

int reqgAsConput el mageKey(uint slotld, InputV inputV,
synKey eKey , bool online, ECl RootState min_root_state)

Semantics:

The following c-code shall be executed:

/* a default slot configuration state is used */
SessionConfig config = {
.decryptConfig = {
.configVersion = 0x1,
.reservedl = 0xO0,
. kl ModeAut h = 0x0,
. akModeAut h = 0x0,
. rkKI Mode = 0x0,
. spkONoDecrypt = fal se,
.reserved2 = 0b000000,
.rkDecrMde = { 0 },
.m nEci Root State = min_root_state,
. expRl Version = 0x0
b
.encryptConfig ={ 0}

if (!(cpsEciRoot State.rootVersion >= mn_root_state. rootVersion &
(cpsEci Root State.rl Version >= nmin_root_state.rl Version))
return ErrRevocEnforce;

/* create straightforward popk/spk, XT, clCnf, */
PubKey popkArr[1]; /* also used for spk */
popkArr[0] = ss[slotld].popk;

SessionConfig cnf[1];

cnf[0] = config;

uchar XT[32] = {0};

ul ong spkUri= 0x1;

ETSI

43 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

uchar ark[16];
uchar acf[15] = acfAklMode;
acf[1] = AkUseAS + Akd | ng;
if (online) {

acf[1] = AkOnli ne;

ark = ss[slotld].slotRk;
} else {

acf[1] = AKOfli ne;

ark = {0} ;
}

/* performthe authentication mechani sm*/
Secret SynKey ak =
Aut hMech(i nput V, acf, ar k, popkArr, cnf, XT, spkUri, 1, 0, popkArr);

Secret SynKey dl ngKey = Aut hMechResponse(ak, el ngKey);
/* dlmgKey is subsequently used by the client |oader to decrypt the client image using AES CBC node
with IvV=0 */

return Errc;
Preconditions:
. The dot is set to default state; SlotRk is set to new random value.

NOTE: Thisfunction is not executed on request of the ECI Client.

6.2.4.13 Reading Advanced Security Information

The AS System provides the ECI Client accessto data it generates and provides a general purpose random key
function for the ECI Client.

NOTE 1: "get" and "set" functions defined in this clause do not generate automatic errors on undefined parameter
values, but in case of get functions simply return an undefined value and in case of set functions do not
have any effect.

The following function reads the AS Slot's random key (typically used as a nonce for sessions):
SynKey get AsSl ot Rk(ui nt slotld)

Semantics:

The following c-code is executed:

return ss[slotld].slotRK;

In case the slot is not initialized a number is returned.

The following function reads the random key state of the session:

SynKey get AsSessi onRk(uint slotld, uint sessionld, uint rklndx)

Semantics:

The following c-code is executed:

if (rklndx == 0)

return se[slotld][sessionld].rkState.rkCurrent;
el se

return se[slotld][sessionld].rkState.rkNext;

In case the slot is not initialized a number is returned.

The limit counter of the session's random key can be read:

ul ong get AsSessi onLi mtCounter (uint slotld, uint sessionld)

ETSI

44 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Semantics:

The following c-code is executed:

return se[slotld][sessionld].rkState.limtCounter;
In case the slot is not initialized a number is returned.

A limit counter value can be set on which an event israised (e.g. to renew the random key sufficiently in time):

ul ong set AsSessionLimtEvent(uint slotld, uint sessionld, ulong eventLinit)
Semantics:

An eventSessionLimitCounter event is raised once when the following condition is true after calling this function:

se[slotld][sessionld].rkState.limtCounter <= eventLinit;

NOTE 2: A second call overrides a previous call. Calling this function the second time with a very large value for
eventLimit effectively cancels the event (except when the event was already raised).

The following event is raised on reaching an event limit for a session:

regAsEvent SessionLimt(uint slotld, uint sessionld)

NOTE 3: Thisevent trandated into an asynchronous message without corresponding responsein ETSI
GSECI 001-3[3].

6.2.4.14 Generating Client Random Numbers

The ECI Client can request a 128bit random number generated by the AS System by calling the following function:

SynKey get AsCl i ent Rnd()
Semantics:

The following c-code is executed:

return rnd128();

6.2.4.15 Error codes
The error codes values returned by the function defined in clause 6.2.4 are defined in Table 6.2-14.

These error codes follow the convention of error codes of messages between an ECI Host and an ECI Client as defined
in ETSI GS ECI 001-3[3], clause 9.

ETSI

45 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Table 6.2-14: Error return code definition

Error return code Value Description
ErrSlotMode -256 AS Slot is not in proper mode for this operation
ErrNoMoreSessions -257 No more sessions available
ErrSession1Coupled -258 First session is already coupled
ErrSession2Coupled -259 Second session is already coupled
ErrSessionNotCoupled -260 Session is not coupled
ErrNoSuchSession -261 Session does not exist
ErrExportNoSlot -262 Export slot unknown
ErrExportSlotBadState -263 Export slot in improper state
ErrExportOngoing -264 Export session already has an Export Connection
ErrimportSlotBadState -265 Importing slot not in encryption mode.
ErrNoExport -266 No export ongoing to session
ErrSpkUriViolation -267 SpkUri for slot SPK has improper value for slot mode.
ErrSlotModeUndefined -268 Slot Mode has improper value for this operation
ErrRevocEnforce -269 ECI Revocation does not permit slot to operate
ErrNoConfigAuth -270 Slot configuration has not been properly authenticated
ErrNoSlotRkInsert -271 ELK vector not sufficiently long to insert random key
ErrSpkONoDecrypt -272 spk[0] cannot be used to generate decryption control words
ErrBasicUriCtrl -273 Basic URI field1 control bit not set
ErrOk 0 Successful call
ErrSlotConfigAuthFail -274 Authentication of the slot's session configuration failed
ErrParam<N> -<N> Error in input parameter N (ErrParaml has value -1 and signals an
error in parameter 1)
1..MaxInt |Successful call, value defined by message definitions

7 Scrambling/descrambling and Content Export

7.1 Basic Functionality

The content processing system can decrypt content. This content is accompanied by Content Properties and Export
Connections. Content can be forwarded to standard outputs if Content Properties permit this, and can be re-encrypted
by aMicro Server in case of amatching Export Connection.

For the purpose of resource management ECI defines decryption and encryption resources. A resource is used to
decrypt or encrypt content from a single media session encrypted or to be encrypted with asingle CW at atime, and a
decryption or encryption resource is connected to a single decryption or encryption AS Slot. For TS stream decryption
the decryption resource has a dual buffer for an odd and an even CW. The odd or even CW is selected by the stream to
be decoded. This can accommodate the need to change the control word on the fly in case the Content Properties of
the content to be encrypted change. For file-based decryption and encryption the ECI Host provides the
synchronization between CW and the content to be decrypted, which can be substantially faster than real-time.
File-based decryption and re-encryption resources require only asingle CW buffer.

NOTE: TS streams requiring two or more control words for descrambling of different elementary streams require
multiple descrambling resources and thus multiple sessions.

ECI does not specify any specifics regarding buffering or (possibly extensive) intermediate processing like transcoding
or watermarking that may be performed on the decrypted content passing from decryption to encryption resource. Such
processes may cause significant delays. CPE manufacturers may select appropriate implementations causing a

time-offset between decryption resource and a connected re-encryption resource. The re-encryption slot and ECI Client
synchronize with the encryption of content.

7.2 Scrambler and Descrambler specifications

The descrambling function of an ECI CPE shall support the following descrambling algorithmsin TS mode:

e CSAL2, both PESand TS mode as defined in ETSI ETR 289 [9] and [i.1].

ETSI

46 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

e CSAS3, both PESand TS-mode ETSI TS 100 289 [10] and [i.2].
. DVB-CISSA PES and TS-mode ETSI TS 103 127 [11].
The descrambling function of an ECI CPE shall support the following descrambling algorithmsin File mode:

. CENC AES128 CTR mode and AES128-CBC mode (both full sample and subsample encryption) as defined
in ISO/IEC 23001-7 [12]. CENC and I SO/IEC 23009-4 [13] for MPEG-DASH.

The scrambling function of an ECI CPE shall support the following scrambling algorithmsin TS mode:
e DVB-CISSA PESand TS-mode[11].
The scrambling function of an ECI CPE shall support the following scrambling algorithmsin File mode:

. CENC AES128 CTR and CBC mode (both full sample and subsample encryption) as defined in [12] and [13].
The content processing system shall generate a unique initialization vector for content encrypted with asingle
CW for AES-CTR mode and follow rules for IV definition for AES-CBC mode as defined in [13].
Initialization vectors are accessible to the ECI Host for use to package content.

7.3 Export Control

Authenticated Export Connections are used by the decryption AS Slot sessions as tickets to authorize import and
export by the decryption resource. A decryption resource shall permit export of decrypted content to an encryption
resource if the Export Connection provided by the associated AS Slot session permits this for an export group 1D and
the Content Properties of the decrypted content signal the corresponding export group 1D as defined in clause 6.2.4.4.
A decryption resource shall not permit export of decrypted content to an encryption resource if the Export Connection
of the export group selected by the export group ID'sin the Content Propertiesis not avalidated Export Connection
provided by the associated AS Slot.

7.4 Output Control

Output control Content Properties are used to disable or to enable content export under protection of industry standard
protection technol ogies on output connections of the CPE. A decryption resource shall permit export of decrypted
content to an output if the output control information from the associated AS Slot session permits this. A decryption
resource shall not permit export of decrypted content to an output if there is no permission in the output control
information from the associated AS Slot session.

7.5 Content Property Comparison on Coupled Sessions

The content processing system shall verify that the Content Properties as defined in field1 of a session excluding the
first two bytes are equal to the Content Properties of any coupled session. Export and Output of content of a coupled
session with equal Content Properties shall be permitted. The combined streams shall be treated as one session from
an ECI protection perspective from there on. Combining of a coupled stream shall be inhibited if the Content
Properties of fieldl excluding the first two bytes are not equal.

7.6 Content Property Propagation on Export

The decryption resource session shall propagate the field1l Content Properties set by the client and (partialy)
implicitly authenticated by the Key Ladder along with the content to the re-encryption session resources importing the
decrypted content as defined in clause 6.2.4.6. The encryption sessions receiving the decrypted content check the
designated fieldl bytes against the value set for field1 for encrypting the content while applying a mask to select the
fields that require propagation as defined by the function, thus ensuring that the designated decrypting client field1
bytes are propagated to the encrypted content.

The following c-code shall be executed by the encryption resource session on every change of the input values
impFieldl, expFieldl and cpMask:

uchar inpFieldl[16]; /* fieldl values for the inported content */
uchar expField1l[16]; /* fieldl values fromthe encrypti on CWconputation */

ETSI

a7 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

ushort cpMask; /* conparison mask */

bool propOk = true; /* indicates if propagation of inported content is Ok */
int i;

for (i=2; i<16; i++)
propCk &&= ! (cpMask>>l & 0bl) || (inpFieldl[i] == expFieldl[i]);

if (propxk) /* re-encrypt content */
else /* do not re-encrypt content */

7.7 Basic URI Enforcement on Export

The basic URI propagation from the decryption AS Slot session to the re-encryption AS Slot session is controlled
through the following mechanisms, with slotld the ID of the encrypting slot and sessionld the ID of the encryption
session therein:

1) Therights assigned to the content for the basic URI by the encryption AS Slot are not more liberal than those
associated with the propagated content.

2) TheMicro Server isauthenticated: sg[dotld].se[sessionld].config.decryptConfig,akModeAuth is equal to Obl.
3) If thebasic URI does not permit replay of content (i.e. streaming mode) the following is checked on export:

- sq slotld].se] sessionl d] .config.decryptConfig.rkDecrM ode.mode shall be unequal to RKModeNone
(i.e. arandom nonce is applied preventing replay of previously encoded content on a system restart); and

- sq[dlotld].sefsessionld].kiIModeAuth shall be set (value Obl) ensuring the decryptConfig used by the
server, including the random key insertion at the Micro Client, is authenticated and used by the Micro
Client based on the Key Ladder computation.

7.8 Content Property Application on Industry Standard Outputs

A standard output, which typically isaphysical output in combination with an industry standard protection system,
shall use the Content Propertiesto select the appropriate output protection setting or to disable the output if no
appropriate setting is possible. The precise rules thereto are defined in compliance rules.

The Robustness of the basic URI and Output Control Content Propertiesimplementation shall be of asimilar level as
the Content Processing system.

The Robustness of the standard URI enforcement shall be at least as high as that of the ECI Host implementation, with
due exception for functions with complex implementation requirements.

7.9 Control Word Synchronization

For processing TS streams the content processing system provides the following functions permitting control over
control word changes (for encryption) and provides notifications on scrambling control field changes. The functions and
events in this session adhere to the conventions defined in clause 6.2.4.

The AS Slot session can provide both an "odd" and an "even" control word to be applied for encryption or decryption of
content.

In case of decryption the scrambling control field ETSI TS 100 289 [10] informs the decryption function which control
word to use. No control word is used in case the content is signalled as unscrambled. The value of the result is equal to
the scrambling control field, values as defined in [10], clause 5.1.

The following function reads the current status of the scrambling control field in the stream:

uint get AsSC(uint slotld, uint sessionld)

ETSI

48 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

In case of encryption the applied control word can change on the basis of two events:

1) A changein the Content Properties of the imported content, which shall trigger a change in the control word
applied for encryption. This change can be delayed by the AS Slot in order to complete an ongoing changein
control word triggered by the following event.

2) A signa fromthe AS Slot session that the applied control word hasto change.

In case the imported content is not scrambled, no scrambling shall be applied for encryption and the content scrambling
control field shall be set to 0b0O at the first possible change location. Vice versa, in case the imported content is
switching from not scrambled to scrambled, the content shall be scrambled with the next control word; the opposite key
will be selected as compared to the content that was scrambled before the clear section of content.

The event signalling the imported content property change is defined as:

reqgAsEvent CpChange(ui nt slotld, uint sessionld)

Semantics:

The event signals a change in the Content Properties of the imported content if such content requires encryption.

The content processing system shall not permit a discrepancy between the encryption parameters and imported Content
Propertiesfor alonger period than the one specified in clause 4.5 of [i.3].

NOTE 1: On achange from encrypted to non-encrypted imported content this event will not be raised. Content
Properties do not apply to non-encrypted content.

The content processing system permits the AS system to hold off any automatic change to an eventCpChange of the
Content Properties on the following command:

set AsPer mi t CPChange(uint slotld, uint sessionld, bool pernmt)
Semantics:

This function sets the permission to allow an automatic change in control properties of the imported content to trigger a
change in the control word on the encrypted content.

NOTE 2: This function should precede any next control word not computed on the basis of the forthcoming
Content Properties, e.g. only reflecting a nonce or arandom key change.

NOTE 3: If the change permissionisdisabled (per mi t ==f al se) it should be restored within the permitted time
for a discrepancy with the Content Properties of the imported content so as not to create a "blackout” in
the re-encrypted stream.

The following function allows setting the scrambling control field of encryption to a certain status.

set AsSC(uint slotld, uint sessionld, uint scranblingControlField)
Semantics:

The value of the scrambling control field is set to the value of scramblingControlField on the first possible point of
change in the stream. Only values 0b10 and Ob11 (scrambling with even and odd key respectively) are permitted for
scramblingControl Field.

The scrambling control field of the encrypted stream will be set to 0b00 (no scrambling) in case the imported content
has a non-encrypted status.

The following event function is defined for decryption and encryption sessions:

regAsEvent SC(ui nt slotld, uint sessionld, uint scranblingControlField)
Semantics:

The event israised on a change of the scrambling control field status.

ETSI

49 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

8 Certificate Processing Subsystem

8.1 Basic processing rules for Certificate Chains

The Certificate Processing Subsystem can process certificate chains to authenticate items, based on an initial public
key and a minimum Revocation List number. Most certificate chain processing is generic. This clause defines the
generic processing rules for Certificate Chains. The following clauses define processing rules specific for various
types of chains.

The Certificate Chains below are defined in [3], clause 5.4.

The CPS rule definition uses a stepwise approach for processing Certificate Chains starting at the start of the chain
(thefirst Revocation List) using initial public key and the minimum Revocation List number. Thefirst stepis
verification of the Revocation List. The second step verifies the next certificate in the chain. After once performing
step 1 and 2, anew public key and Revocation List number are defined for processing the remainder of the chain. Step
1 and 2 are repeated until the whole chain is processed. In generd, it is recommended that software functions offering
chains pre-validate these chains so as to avoid that the CPS fails on processing a chain unexpectedly.

The generic processing steps for a Certificate Chain are:
1) The CPS shall perform the following verification on a Revocation List:

a) TheCPSshall check the Revocation List format_version field to match aversion that it can interpret
(see specific processing rules for chains) and therl_id.typeand rl_id.rl_indicator field to match the
expected values.

b) Incasethe Father isaRoot Certificate (root_version_indicator=1) the ECI Host shall select the Root
Certificate with root_version to be the Father, otherwise the preloaded or preceding certificate is used.

¢) TheCPSshal verify the signature of the Revocation List with the last validated public key.

d) TheCPSshall verify whether the length of the Revocation List correspondsto its field values and that
any variable length field has the appropriate length.

€) The CPSshal verify if the version number of the Revocation List has not been invalidated by the
minimum Revocation List number.

2) The CPS shall perform the following verification on a Certificate:

a) The CPSshall verify if the next <type, entity _id, version> of the Certificatein the chain is not revoked
according to the last Revocation List and establish the minimum Revocation List version to accompany
that Certificate according to the base rl_version and min_rl_version fields of the last Revocation List.

b) The CPS shall check the Revocation List format_version field to match aversion that it is permitted to
interpret.

¢) The CPS shall verify whether the length of the Certificate corresponds to its field values and that any
variable length field has the appropriate length.

d) The CPS shall verify the signature of the Certificate with the public key.

After processing step 1 and step 2 the public key and minimum Revocation List are updated. The public key will be
equal to the public key field of the Certificate processed in step 2, the minimum Revocation List version that found in
step 2a.

Not all Certificates require being accompanied by arevocation list. If the most significant bit of the type field of a
certificate-id equals zero the Certificate Processing Subsystem shall require revocation list to accompany a
Certificate for further chain processing. Any processing of revocation list and version number and revocation list
version numbers in the above steps shall not apply in case no revocation list is required.

ETSI

50 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

8.2 Specific rules for Host Image Chains

The CPS shall apply to the specific validation for Host Image chains:
1) First Revocation List is of type Ox1 (Manufacturer Revocation List).
2) First Certificateis of type Ox1 (Manufacturer Certificate).
3) Second Revocation List isof type 0x0 (Host Revocation List).
4) Second Certificateis of type Ox0 (Host Certificate).
5) A possiblethird Certificate is of type 0x98 (Host Image Series Certificate).

The public key of the last Certificate (either Host Certificate or Host Image Series Certificate) shall be used to validate
the actual ECI Host image.

8.3 Specific rules for Client Image Chains
The CPS shall apply to the specific validation for Client Image chains:

1) First Revocation List is of type Ox2 (Vendor Revocation List).

2) Firg Certificateis of type 0x2 (Vendor Certificate).

3) Second Revocation List isof type 0x0 (Client Revocation List).

4) A possible second Certificateis of type Ox1 (Client Series Certificate).

The public key of the last Certificate (either Vendor Certificate or Client Series Certificate) shall be used to validate the
actual ECI Host image, taking into account the last version number of the Client Revocation List for verifying the
image version in case the last Certificate is the Vendor Certificate.

8.4 Specific rules for Platform Operation Certificates
The CPS shall apply to the specific validation for Platform Operation Certificate Chains:

1) First Revocation List is of type Ox3 (Operator Revocation List).

2) First Certificateis of type 0x3 (Operator Certificate).

3) Second Revocation List isof type 0x0 (Platform Operation Revocation List).

4) Second Certificateis of type 0x0 (Platform Operation Certificate).

8.5 Specific rules for Export/Import chains

8.5.1 Export Authorization chain processing

The export authentication chain and the corresponding section of the third party export chain shall be provided to the
CPS.

The CPS shall commence with the minimum root version and Revocation List version as defined in
sq slotld].se] sessionl d] .config.decryptConfig.minEciRootState. It shall process the chain of EAOC and EAC
Certificates and associated Revocation Lists verifying the following specific rules for this chain:

e Theidof theroot RL is0x4 (Export Authorization Operator Revocation List).
. Theid of the next Certificate (EAOC) is 0x4.

e Theid of the next Revocation List (REAOC RL) is 0xO0.

ETSI

51 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

. Theid of the following Certificates (EAC) in the chainis 0xO0.

e The content of the extension field of the Certificate shall be equal to the corresponding export chain
Certificate in the export chain.

. Theid of the following Revocation List (EAC-RL) in the chain is 0x0.
e All Certificates of the export chain shall be sequentially validated by the Export Authorization chain.
e Thefirst Certificate of athird party export chain section shall be a TPEGC (certificate id equal 0x5).

. Thelast Certificate of athird party export chain section shall be a TPEGC, ESC or ERC (certificate id equal
0x5, OXE, OxF respectively).

e Theintermediate Certificates shal all be EGC (certificate id equal 0x4).

. If the last Certificateisa TPEGC, this shall be the start of a next export chain section. The above verification
process shall be repeated for all subsequent sections of export authentication chains and third party export
chain sections until afully validated third party export chain results (ending in a ESC or an ERC).

8.5.2 Export Chain verification

The CPS shall commence with the POC public key, the export group index for which the export is to be established and
the minimum Revocation List version number that should apply to the POC Revocation List asfound in the AS Slot
state sq slotld].se[sessionld]. config.decryptConfig.minClientVersion field.

NOTE: Such validation relies on suitable authentication of the POPK and Revocation List version. This should
be established using either AK mode authentication or implicit authentication using the Key Ladder (see
clause 6.2.2.2, kiModeAuth and akModeA uth fields).

The CPS shall process the POC-RL, EGC and EGC-RL and subsequent TPEGC or ESC as aregular Certificate Chain.
The following additional rules shall be verified:

e Thetype of the EGC is 0x4.
. The export_group_id field of the EGC shall be equal to the export group index.
e Thetype of the EGC Revocation List is 0x4.
e Thetype of the EGC-RL is 0x4.
. The type of the TPEGC or ESC corresponds to the value in [3], table 5.2-2.
The processing of a TPEGC is specified in clause 8.5.3.
The processing of an ESC is specified in clause 8.5.4.
8.5.3 Third Party Export Chain verification

Processing of athird party export chain commences with the validation of the leading TPEGC and the minimum
Revocation List version number for its Revocation List. Processing shall end with an ESC.

8.5.4 Export System Certificate processing

The ESC Certificate SPK (public key of the ESC) and minimum Revocation List version number of the father of the
ESC are used to validate the Export Connection. The Certificate SPK shall match to the sq[slotld].spk field of the
designated export slot. The minimum Revocation List version number shall be larger than the export
sq[dlotld].ssConfig.microServerVersion.

NOTE: Theexport slot SPK and microServerVersion have to be authenticated by the AS Slot's AK
Authentication M echanism to ensure meaningful authentication.

ETSI

52 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

8.5.5 Target Client Chain Processing Rules

Target Client Chain processing started with the POPK and the minimum Revocation List of aMicro Server
M SConfig state. Target Client chains processing by the CPS shall follow the generic rules as defined in clause 8.1. In
addition Target Client Chain processing by the CPS shall follow these specific rules:

1) First Revocation List is of type Ox0 (Target Revocation List).
2) Firgt Certificateis of type Ox0 (Target Group Certificate) or 0x8 (Micro Client Certificate).
3) Step 1 and 2 arerepeated in case the Certificatein step 2 isa Target Group Certificate.

Theresulting Micro Client certificate public key isthe Chipset Public Key that shall be used according to the
mechanism described in clause 5.3.

8.6 CPS ECI Root Key initialization

At initialization time of the AS System the ECI Host loads the CPS with the latest information on the applicable root
key and the Revocation List number.

function I nitCPSEci Root (uchar mi nRoot KeyVersion, uint mnRevListNr)
Semantics:

The following c-code shall be executed:

m nRoot KeyVer si on;
m nRevLi st Nr;

cpsEci Root St at e. r oot Ver si on
cpsEci Root State. rl Version

CPS will apply rootK eyVersion asthe ECI Root Key version number and will apply minRevListNr to all chains
provided to it for loading ECI credentials.

All other states of the AS System will be reset.

Note that the setting of both parameters by the ECI Host should ensure that all ECI Clients can be loaded and that the
ECI Host is not revoked, yet none of the ECI Clients suffers Revocation.

9 Loader Core

9.1 Introduction

The ECI system uses aloader mechanism that permits ECI Clients to securely verify the version of the ECI Host and
ECI Client credentials that are loaded so as to detect any known security issue. This permitsthe ECI Host and ECI
Clients (both images and POPK) to be updated as aregular system operation function.

Theloader for ECI Host and ECI Client images relies on certain Robustness principles defined as rules which are
defined in the following clauses. The Robustness of implementation of these rules shall be defined by a suitable
document outside the scope of the ECI Specification, but in general the rules are to have equal Robustness of
implementation. Some rules are deemed to be implemented with a higher (prime) Robustness and are to be
substantially more robust than the implementation of the ECI Host.

9.2 Host Loader Rules

The ECI Host Loader shall comply with the following rules:

1) TheECI Host Loader shal ensure the ECI Root version and ECI Root Revocation List version number
used to validate the ECI Host Images is stored on power-on initialization and it shall not be possible to change
this number from there on. This rule requires prime Robustness.

2) It shadl not be possible to modify the ECI Host L oader itself. This rule requires prime Robustness.

ETSI

3)

4)

53 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)
It shall not be possible to modify or observe an ECI Host image once loaded in as far as thisis required to
prevent manipulation sensitive information or observation of secret information.

Any subsequent ECI Host Image verification (in case of a staged loader) performed by software stemming
from a previous image shall use the same host certificate public key and Revocation List for verification.

It is recommended that staged |oaders use a single secure mechanism for validating ECI Host images also used for
validating the first loaded ECI Host image.

9.3

Client Loader Rules

The ECI Client Loader existsin the context of the ECI Host. The ECI Host sets the minimum ECI Root version and
ECI Root Revocation List version it usesto validate Certificate Chains before loading any client related item. The
ECI Client Loader shall comply with the following rules:

1)
2)

3)

4)
5)

9.4

The ECI Client image shall be decrypted first if so required as defined in clause 9.5.

The ECI Client Image and POPK shall be validated using CPS processed chains as defined in clause 8. This
rule requires prime Robustness.

The ECI Client Image or Client Series Image Certificate (as applicable) shall be co-verified with POPK and
the Platform Operation Client Revocation List. The adequacy of the version number of this Revocation List
isverified later on AS Slot session initialization by the ECI Client.

It shall not be possible to modify or observe an ECI Client image once loaded.

ECI Clients shall not be able to "break their sand-box" and observe or modify the ECI Host or ECI Client
behaviour.

Revocation enforcement

ECI uses arobust enforcement mechanism for the verification of the ECI Host and ECI Client image credentials. This
operates under the following rules:

1)

The descrambler shall stop operating in case the ECI Root version and the minimum root Revocation List
version number for verifying the ECI Host Certificate Chain were lower than the ones loaded by the ECI
Host at initialization. This rule reguires prime Robustness.

NOTE 1: Thisshould be atypical since Host Root Revocation Lists should be updated regularly through channels

2)

3)

of all operators, and the ECI Host L oader can usethe latest ECI Host Root Revocation List.

The AS System will refuseto load any ECI Client whose Certificate Chain cannot be validated using the
ECI Root version and minimum ECI Root Revocation List number set by the ECI Host oninitialization as
defined in clause 9.2. Thisrule requires prime Robustness.

The AS Slot will refuse to compute keysin case the minimum root version number and minimum root
Revocation List version numbers required by the ECI Client are lower than the ones loaded by the ECI Host
at initialization. Thisis defined in the computation rules for client image, encryption and decryption keysin
clause 6.2.4. Thisrule requires prime Robustness.

NOTE 2: These rules ensure content security systems can require aminimal ECI Root state is be applied to the

verification of all itemsloaded in an ECI Host before proceeding with any security sensitive operation.

ETSI

54 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

9.5 Client Image decryption

For the purpose of decrypting an ECI Client image the Advanced Security System can decrypt the encrypted image
decryption key provided by the ECI Client's operator and decrypting an ECI Client image as defined in ETS|

GSECI 001-3[3], clause 7.8. ECI Client image decryption shall be performed before ECI Client image signature
checking. The AS function used to compute the image decryption key is regAsComputel mageK ey as defined in

clause 6.2.4.12. The ECI Host receives the required encrypted key information inputV (input message to the
Authentication M echanism from which to compute an authentication key), eKey (image decryption key encrypted
with the authentication key) and "online" and "min_root_state" parameters as defined by ETSI GS ECI 001-3 [3],
clause 7.8 from the operator and usesthe AS Slot later provided to the Client to perform the decryption (see ETSI
GSEC 001-3[3], clause 7.8). Any nonce used for the image decryption key exchange session shall be fresh (value from
there-initialized AS Slot).

10 Timing requirements

10.1 Introduction

ECI Clients need to perform within certain timing constraints in order to meet the requirements of the security system
they are a part of. For this, ECI Clients depend on certain performance characteristics of the functionsthe AS System
offers (through the ECI Host). This clause defines the timing characterization of the AS system functions.

The AS System timing characterization divides the functionsinto four categories:
1) Functions requiring merely administrative functionsin the AS Slot.

2) Functions requiring only symmetrical cryptography operations, like Key Ladder computations or decryptions
with AK.

3) Functions requiring one to four asymmetrical cryptography operationsin either the Key Ladder Block or
CPS, like loading of LK1 and performing functions involving the computation of AK.

4) Functionsrequiring processing of potentially longer Certificate Chains like Import/Export chainsand Micro
Client authentication chains.

The ECI Client can invoke function of the last three categories through asynchronous messages. Functionsin the first
category can be either synchronous or asynchronous.

Asymmetrical cryptography operations take more time. Any ongoing asymmetrical cryptography operation shall not
stall functions of first two categories. In case afunction in category 1 or 2 requires aresult from an operation in function
3 or 4 the ECI Client isresponsible for synchronization of the result of the afunction in category 3 or 4. |.e. it hasto
wait until the result of the asymmetrical operation is available (i.e. the result message is received) before invoking a
function dependent on the resuilt.

10.2 Administrative Functions

For the functionsin category 1), the general criteriafor symmetrical and asymmetrical messages shall apply.

10.3 Symmetrical Cryptography Functions

Functions invoking symmetrical cryptography operations shall be performed by the AS System under the conditions
described in clause 4.5 of ETSI GR ECI 004 [i.3].

10.4 Asymmetrical Cryptography Functions

Functions invoking asymmetrical cryptography operations (e.g. involving the Key Ladder symmetrical key
computations or using the result of the Authentication M echanism) shall be performed by the AS System under the
conditions described in clause 4.5 of ETSI GR ECI 004 [i.3].

ETSI

55 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Annex A (normative):
Cryptography Function Definitions

Al Hash Function

The hash functions in the present document are all based on SHA256 as defined in NIST FIPS PUB 180-4 [7].
Function hash clause 5.2 is equal to SHA-256() as defined in NIST FIPS PUB 180-4 [7].

The c-function asHash(uchar *data, uint datalength, resultLength, uchar *result) uses the octets starting at data of length
datal_ength as dataln octetstring and computes the octetestring resultOut as a resultL ength/8 octet string, and storesiit at
result in accordance with:

resultOut = BS20SP(truncate(SHA-256(OS2BSP(dataln)),resultLength)))

resultLength shall be a multiple of 8. truncate shall be the function that is the left truncation of a bitstring (parameter 1)
to the length (parameter 2) bits.

BS20SP and OS2BSP are functions that convert a bit string to an octet string and vice versa as defined in ETS
GSECI 001-5-2[5], clause 7.

A.2 Asymmetrical Cryptography

The asymmetrical encryption and decryption operations shall be defined by ETSI GS ECI 001-5-2 [5], clauses 8.2 and
8.3.

A.3 Random Number Generation

Random number generation as defined in the present document shall comply with NIST Special
Publication 800-90A [8] and satisfy the following rules:

e At minimum at system start (reboot of a chip's AS System) a hew secret unique random seed number shall be
generated. The process depends on physics (noise) or other properties of the chip or its environment that are
not replicable and cannot be manipulated. The entropy of the generated number shall be at least 128 bit.

e Any random numbers shall be generated with a deterministic pseudo random number generator based on the
above random seed number in accordance with NIST Specia Publication 800-90A [8]. The chip may reseed
the generator regularly and/or increase the entropy as defined in [8], clause 8.7 using internal (noise) or
external inputs that are hard to manipulate. At minimum the chip-id shall be used at a personalization string.

NOTE: Inmany AS applications the actual randomness of the random number generator is not critical, only the
uniqueness over timeis. These are typical nonce applications: e.g. random number for online
authentication for replay prevention at decryption and insertion of a random number at encryption of
content. Exception is the random key generated as LK1 in an encryption AS Slot in asymmetrical Micro
Server mode.

ETSI

56 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Annex B (informative):
Sample Micro DRM system application

B.1 Introduction

This annex provides arealistic example of an application of the AS System for the implementation of aMicro DRM
system operating on a TS stream. The example operation of both encryption as well as decryption ECI Clientsare
presented. The focus of the presentation is on the concurrency of various actions and the sequence of control words and
associated Micro DRM messages (from Micro Server to Micro Client and vice versa) that need to be generated. The
Micro DRM system uses both random key generation at encryption as well as nonce generation at decryption (to
prevent replay). It assumes both random keys have alimit.

B.2 Application scenario

The application scenario in Figure B.2-1 shows the state of the Key Ladder at the encryption side. LK, isthe third but
lowest key in the key hierarchy. Below that are the nonce (N1 or N2) from the Micro Client, the Content Properties
CP1 and CP2 (processed into input-C for the Key Ladder in stage n+2) and the random key seed R1 and R2 that input
to Key Ladder stage n+3. From these Key Ladder inputs the control words CW1..CW4 are computed and applied to
the content in conjunction with their associated Content Properties.

Nonce

Content—>
Micro Server needs a certain prewarning period
Conten.t property for aforthcoming Content Property change in a
changeis conveyed [N eSteanm:
onnew (.:W atleast as much time as it needs to generate a
association new CW/CP pair and forwand the information
for this computation to the Micro Client

Figure B.2-1: Example of control word computation key hierarchy evolution

The starting state of the lowest three stages of the Micro Server key hierarchy isN1, CP1, and R1. From these CW1is
computed to encrypt the content. The initial state of the toggle bit istl. In this example the Micro Server first receives
anew nonce and decides it is time to apply it to future content in the form of CW2. It first sends an ECM-type message
to the Micro Client with the new toggle bit t2 and the set of encrypted keys (t2, N2, CP1, R1), it waits for some time to
make sure the Micro Client can receive and precompute the new control word CW2 and be ready for the forthcoming
change. It then computes the new control word CW?2 itself and commits to application, triggering a change in the toggle
bit of the associated encrypted TS stream.

ETSI

57 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

The next event in Figure B.2-1 shows a change in the Content Properties of the content to be encrypted. The Micro
Server receives a message from the ECI Host that the Content Properties will change to CP2. The Micro Server
sends an ECM-type message to its Micro Client with the new set of encrypted keys (t3,N2,CP2,R1) and precomputes
CW3 from this new sequence of keys. At the moment the new Content Properties apply, the toggle bit on the
encrypted content changes automatically and the new encryption control word CW3 and its associated Content
Properties CP2 are effectively applied.

Thelast event isthe Micro Server deciding to change the Random Key R1 to R2. The processis practically identical to
that of changing anonce. The Micro Server sends an ECM-type message with (t4,N2,CP2,R2) to the Micro Client
permitting it to precompute CW4, and uses a delay to ensure the Micro Client has enough time to be ready. It then uses
the Key Ladder to compute CW4, and appliesit to the content, causing the state of the content toggle bit to become t4.

B.3 Assumptions and notation

The content is delivered by an exporting client plus associated decryption AS Slot to the import connection of the
encryption AS Slot. The exporting client generates messages to the ECI Host signalling any changes in Content
Properties ahead of the actual occurrence in the imported content. This usesthe AS APl in [3].

The following notation is used:

<event - nane>(par aneters) -> <pseudo-code statenent> ; indicatesthat on event event-name (a
message reception)with the following pseudo-code is executed.

The following events are defined:

. e_cp(cp) : new content properties cp will be used on a forthcoming event (CW change) in the content to be
encrypted. Precedse_cpe() .

. e_cpe() : content property change is eminent (due within alimited time).

. e_cpch() : the content properties of the imported content just changed, in case the control word currently
used is not reflecting that it will require an urgent change. On an automatic change of control word dueto a
control property change this events precedse_cw() .

. e_nn(nonce) : anew nonce message from the Micro Client has arrived at the Micro Server or is sent from
the Micro Client.

. e_cw() : thetoggle bit changed on the re-encrypted content, and the (previously computed) new CW is
applied to the content.

. e_ecmn(<par anet er s>) : reception of a message with new parameters of the next control word to be used.
. Events can be raised by timers.

cw(toggl e_bit, random key, nonce, cont ent _properti es) performsthe generation of a control word
for encrypting or decrypting content using the designated parameters. At the Micro Server first amessage is generated
with the same parameters which is forwarded to the Micro Client, there received therease_ecnt ..) .

bl ock_cpch() and unbl ock_cpch() usethe message setAsPermitCPChange(...) to block or unblock
automatic changesin the encryption control word due to changesin the content properties of the imported content.

changeOwmt oggl eBi t) forcesachangeover of the control word (toggle bit in the scrambling control field) at the
encryption side using the message setAsSC() as defined in clause 7.9.

startTimer(ti mer Handl e) startsatimer.

For variables and pseudo code a c-style notation is used.

ETSI

58 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

B.4 Micro Server pseudo code

A key complication in the Micro Server meansthat it has to handle several concurrent and unsynchronized events that
may trigger a change in control word:

. the arrival of content requiring new content properties (demarcated by a new control word application by the
exporting client to content being decrypted);

e theforthcoming expiry of the nonce; and
e theforthcoming expiry of the random key.

The processing of a change in Content Properties needs to have priority since thereistypically alimited time before
the corresponding control word change in the decryption process triggers the new content property application. So the
nonce and random key expirations should be set sufficiently conservatively since they may have to be postponed by the
duration it takes to process a content property change (typically afew seconds). This assumes that the time between
content property changes is always sufficient to permit the processing required for at least a nonce or random key
change to a control word.

The processing of eminent changes in nonce or random key has two priorities. First atimer is set for alow priority. In
case there is no pending change in Content Properties the change in nonce or random key is made, otherwise atimer is
set for ahigh priority change. A high priority change in nonce or random key may overrule an eminent content property
change. But the Micro Server may come to a wrong conclusion. In case this happens the content property change
occurred before the nonce or random key change was applied to the content. In that case it has to recompute a new
control word that a so includes the new Content Properties. Also a content property change may occur almost
immediately after a high priority nonce or random key change is applied. In that case the CW reflecting the new
Content Propertiesand ECM that the Micro Server computes will be late.

If the TNONCEURGENT and TRKURGENT timer values can be set to a value of more than 10 seconds plus TECM
and the maximum time between e_cpch() and e_cw(CPCHANGE) is less than 10 seconds such collisions can occur,
since either any RK and nonce change can be scheduled before the period between e_cpch() and e_cw(CPCHANGE) of
after such a period without the priority requiring to be rai sed.

Note that the manipulation of variablesr ¢ and r n as presented below cannot be done directly by the client but has to
be performed using functions of the AS System.

/*

four priority processing nodel with snall shift of CP change tine

in case priority 4 is required (here & now non-anticipated change in CP):

1) low priority noncel/rk change

2) low priority CP change (cp em nent but e_cpch() did not occur)
adopts any previous nonce or rk changes

3) high priority nonce or rk change; reverts to old CP val ue

4) high priority CP change; adopts pendi ng nonce/ rk changes and new cp;
gueues new changes

Optimzation may be possible to try to schedul e pendi ng nonce and rk changes
imredi ately after a CP change; provides nodest performance inprovenent

State variabl e invariants/ nmeani ngs:
<x> = cp (content property), n (nonce) or r (random key)
Invariant: p<x> = change in <x> in next CW(p = pending)
(not for low priority <n> or <r>)
gq<x> = queud change for <x>, not pending for next CW
hpcp = high priority content property change (pcp || qcp)
During a brief time between changeOM) and e_cw() all changes are queued.
This tenporary state is indicated with dhp==true;
*/
#define TECM 3000 /* del ay between sendi ng ecm nessage and changi ng CW*/
#def i ne TNONCEURGENT (2* TEMC + 1000)
#def i ne TRKURGENT (2*TECM + 1000)
#define TNONCE /* sone val ue; may be dynanmically determ ned*/
#define TRK /* some val ue; may be dynamically determ ned*/
toggl e(bool t) { return !t }; /* toggles between true and fal se */

encryptionSession()

ETSI

59 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

/* case rk & nonce change and cp change; unreliable warning cp change (priority w th nonce/ RK

change) */
/* first priority on nonce/rk |lower than cp, but if urgent it is higher */
{

SynKey nc, nn; /* current and next nonce */

SynKey rc, rn; /* current and next Random Key */
SynKey cpc, cpn; /* current and next CP value */
SynKey nt, rt; /* tenporary val ue for nonce, random key */
TinerHandle t_lpn, t_Ipr

/* timers for low priority scheduling of nonce and rk change */
TinmerHandle t_n, t_r;

/* timers for high priority scheduling of nonce and rk change */
TinmerHandle t_ecmnl, t_ecmrl

/* ecmtiners for lowpriority (1) nonce and rk ecm */
Tinerhandle t_ecnD, t_ecnml t_ecn2, t_ecnB;
TinmerHandl e t_ecn{4] = {t_ecnD, t_ecnl, t_ecn2, t_ecn8 };

/* four level 2/3/4 priority level ecmtiner pool */
int t_ecmcnt = 0; /* counter for above tiner pool allocation */
bool pn, pr, pcp; /* true if current CWreflects a change in nonce (nn),

random key (rn) or cp (cpn) value */
bool qgn, qr, qcp; /* true if a queued change in nonce, randomkey or cp change */
bool dhp; /* delay (queue) any new events */
book hpcp; /* true if priority 4. high priority CP change */
int tCntl, tCnt234; /* tCnt<n> is the counter for nunber of tiners
in priority <n> that are fired but not yet expired */

bool t; /* toggle bit */

/* some macro's are defined to permt reuse of code for processing events */

.* event for next random key */
#define next r() { rc =rn; rn = rnd128(); startTimer(t_lpr, TRK); }

/* force changeCw on | ast cascaded higher priority tiner unless it is a level 2
priority cp change in which case the change of CWwill be triggered by a CP
change event */

#define process_ent2_tiner(){\

if (--tCnt234 == 0)\

if (pn [pr || hpcp){\
dhp = true; changeOwtoggle(t));\

} else {\
/* pcp == true, pn, pr, hpcp == false */\
unbl ock_cpch();\

Fi\

}

/* on cwchange update state with all processed changes */
#define end_pendi ng() {\

t = toggle(t);\

if (pcp) { cpc = cpn; pcp = false };\

if (pn) { nc =nn; pn = false };\

if (pr) { next_r(); pr = false };\

/* nove queued events to pending */
#defi ne queued_t o_pendi ng() {\
if (qep & (I(an || ar) || cphp)) {
/* if priority 2 or 4 */\
pcp = true; qcp = fal se\

B

/* priority 3 events can be folded with priority 4 */
if (gn) { pn =true; gn = false };\

if (qr) { pr =true; gqr = false };\

/* start cw ecmfor pending changes to cw */
#define start_pendi ng() {\

cnt = 0;\

if (pcp) { cpt = cpn; cnt++ } else cpt = cpc;\
if (pn) { nt =nn; cnt++ } else nt = nc;\
if (pr) {rt =rn; cnt++ } elsert =rc;\

if (cnt > 0) {\
bl ock_cpch();\
cw(t,rt,nt,cpt);\
t Cnt 234++; \
startTinmer(t_ecn{t_ecmcnt++], TECM; \
if (t_ecmecnt >=4) t_ecmecnt = 0 ;\

n

ETSI

/* only permt auto-changes of toggle bit when prepared */

bl ock_cpch();

60

/* receive first cp and nonce val ues */

for (int i=0;

->e_nn(&nc):
->e_cp(&cpc): i ++;

i<2;) {
i ++;

/* initialise state */
pn = pr = pcp = hpcp = fal se;

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

dhp = fal se;

tCntl =tCnt2 = O;

rc = rnd128(); rn = rnd128() ;

t = fal se; /* should be initialised to first value in content */
cw(t, rc, nc,cpe) ; /* will start to be used automatically */

while (!end_session) {

->e_nn(&nn)

->e_cp(&cpn):
->t _Ipn() :
if (pcp |

start Ti mer (t_| pn, TNONCE) ;

/* should occur before nonce limt runs out

/* e.g. conmpute new export |icenses */
{ /* lowpriority nonce change */
pn || pr || cphp) {

/* delay new nonce till urgent */
start Ti mer (t_n, TNONCEURGENT) ;

} else {

nc = nn;
cw(t, rc, nc, cpc);
start Timer (t_ecmnl, TECM ;

t Cnt 1++;
}
s
->t_lpr() c { /* lowpriority rk change */
if (pcp [| pn || pr || cphp) {
/* delay RK till urgent */
start Ti mer (t_r, TRKURGENT) ;
} else {
next _r();
cwt, rc, nc, cpc);
start Timer(t_enc_r1, TEMO);
tCnt 1++;
}
H

->t _enc_nl()
->t_enc_r1()

/* low priority nonce ecmtiner expiry */
{ /* lowpriority rk ecmtiner expiry */

if (--tOntl == 0 && tOnt234 == 0) {

changeCOw() ;
dhp = true;
}

->e_cpe() : { I* cp change nay occur from now on */
if (dhp || (pn || gn)) gcp = true; /* assert(!hpcp) */
el se { pcp = true; start_pending() };

->t_n() : { /* urgent nonce change due */
if (dhp || cphp) gn = true;
else { pn = true; start_pending() };

b

->t () . { /* urgent random key change due */
if (dhp || cphp) gr = true;
else { pr = true; start_pending() };

s

->e_cpch() { /* high priority change of CP needed */
cphp = true;
if (dhp) qcp = true;
el se {

pcp = true;
start_pending();
}
H

->t _ecnD()

->t _ecml()

->t_ecn®()

->t_ent3() :

process_timer();

ETSI

61 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

H
->e_cwW) : { /* assert(pcp & !pn && !'pr && !'cphp) */
end_pendi ng();
queued_t o_pendi ng();
start_pendi ng();
H
}
}

NOTE 1: IntheMicro Server example presented above the Micro Server can generate and the Micro Client can
receive multiple successive but different ECM messages with the same toggle bit. An extreme exampleis
that firste_n() occurs, then within TDELAY e_r () occursand then with TDELAY thereafter
e_cp(..) occurs. Inthis case three successive ECM messages are sent, with the same toggle bit, with
only the last once leading to a control word that is actually applied to the content.

NOTE 2: The above code assumes that a content property changee_cp() isaways followed relatively quickly by
an actual toggle bit change. It the new cp value is available much sooner thisis of no benefit to the
Micro Server. The key trigger point for it to generate anew CW isthe event that acp-changein the
incoming content is eminent. That triggers that the old value of cp is replaced by the new value for all
forthcoming CW calculations.

The minimum pre-warning time for triggeringe_n() ore_r () inthe above sample code isthe worst case delay
betweenane_cp() event and the actua change of the subsequent control word e_cw() , plus 2 x TDELAY plusa
minor amount of event delays and processing time.

B.5 Micro Client pseudo code

TheMicro Client starts a session by generating two successive nonce messages (for current and next nonce). If it
receives an ECM message, it simply computes the corresponding control word. It continues to generate a new nonce
and send a new nonce message once it sees the last nonce it sent being applied in an ECM.

NOTE 1: Secure nonces cannot be generated directly by the ECI Client code but have to use the appropriate
function of the AS System.

decryptionSession()

Synkey nc, nn, In; /* current, next and |ast nonce */
SynKey cp, cpp; /* received and previous cp */

SynKey r; /* received random key */

bool t; /* received toggle bit */

SynKey n; /* received nonce */

bool end_session; /* end of session reached */

/* initialise and send nonces */
nn = rnd128();

e_nn(nn);
cpp = Reserved; /* undefined value */
In = Reserved

while (!end_session) {
->e_ecm(&, & &né&cp): {
if (cp'=cpp) { /* new CP; send event to all export connections via host */

e_cp(cp);

) cpp = ¢€p;

cw(t,r,n, cp);

—>e;cm(): { /* also triggered on first cw application */

if (n!=1n) { /* new nonce actually used; nmove nonce forward */
nc= nn; nn= rnd128();
e_nn(nn);
In = n;

}

3
} /* end while loop */
} /* end decryption session */

ETSI

62 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

NOTE 2: It isnot necessary to send the full nonce values back from Micro Server to Micro Client. An aternating
bit can be used instead as an indirect reference. In addition it is not strictly necessary to send al
parametersin al ECMs:. only the changes need to be communicated to the Micro Client, with due note
that in some cases all three Key Ladder inputs nonce, Content Properties and random key can change at
once (see hote 2 in clause B.4). Sending the toggle bit along is useful for synchronization and it avoids
that any (deliberately or not deliberately) repeated ECM message is interpreted as a message for
computing a next control word.

B.6 Micro DRM system cascading effect on ECM
pre-delay

TheMicro DRM server relies on apre-warning period (pre-delay) of a forthcoming content property change from the
Micro Client it imports content from to permit it to pre-calculate an ECM message and send it to its peer Micro Client.
Thetimeit takes to do the required processing (which can be relatively short: typically no significant computation is
required) plustime to forward this ECM message to the Micro Client may be longer than the path used to convey the
newly re-encrypted content to the Micro Client. That means that any pre-delay for the new ECM that the Micro Client
experiencesis correspondingly shorter than that experienced by the ECI Client that the content was originally imported
from.

ECM & Dcll Dms Decm
processing ;
Content & Dcontent
: i >r > i)
processing | Pre-delayl \CPS-delay ! Pre-delay2 |
Dcl1 = Delay ECI Client 1 CPS-Delay = content processing system delay
Dms = Delay Micro Server Dcontent = Delay Content transfer to Micro Client
Decm = Delay ECM Pre-delayl = Predelay ECM at Decryption ECI Client #1
Pre-delay2 = Predelay ECM at Decryption ECI Client #2

Figure B.6-1: Temporal relations for pre-delay and optional delay compensation

The content processing system can introduce a delay in the transfer of content to compensate for the delay in forwarding
ECM messages as shown in Figure B.6-1. This delay can then be selected to be roughly equal to the delay difference. In
case ECMs are inserted Decm and Dcontent are closely matched. But the processing delays in the decrypting ECI
Client and thosein the Micro Server to the point of actual insertion of the ECM in the TS stream should be
compensated.

B.7 Content property change timing interface convention

Asdemonstrated in clause B.4 the Micro Server requires a pre-warning of aforthcoming content property changein its
imported content. The convention for the minimum time period required to process the change and to send an ECM
message to the Micro Client isreferred to as TECM: in the following paragraphs of this annex an exampleis given. For
this example the value of TECM issetto 3s.

The convention for the minimum prewarning delay of afirst decryption ECI Client in achain of cascaded ECI Clients
iSTECM + TCASCADE. TCASCADE reflects the maximum cumulative delay of processing ECMs by ECI Clientsin
a cascaded chain of Micro DRM Systems. In this example TCASCADE issetto 2 s.

NOTE 1: In casesthe content is also delayed this compensates for ECM processing delays. Thisis not desirablein
streaming mode however.

ETSI

63 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

The maximum for the ECI Client ECM processing delay (uncompensated Dcll + Dmsasin clause B.6) isreferred to
as TDELAY, setinthisexampleto 0,3 s. The valuesin this example permit 6 cascaded Micro DRM Systemsto
operate within the TCASCADE (2s), leaving TECM minimum pre-warning period for aMicro Server.

Asdemonstrated in clause B.4, in order to process a content property change in the incoming content without causing
shift of the content property change Micro Serversrequire not only a pre-warning of aforthcoming content change but
also require an upper limit to such a pre-warning period so that it can process other control word changes (e.g. nhonce
and random key changes) safely. In this example the upper limit pre-warning period TMAXWARN could be safely set
to10s.

NOTE 2: In case these conventions are not followed, the effect may be a maximum TECM shift in the location for
a content property change in re-encrypted content in one Micro DRM System and a maximum of
TECM+6* TCASCADE shift in a cascade of 6 Micro DRM Systems.

Itishighly recommended to design the nonce and random key low priority warnings (t_Ipn and t_Ipr in clause B.4)
sufficiently early so asto permit one (or even a few) changesin the content properties to delay the processing of nonce
and random key changes. If content property changes are sufficiently spaced in time (and TMAXWARN is observed)
this should prevent any overrunsin processing for nonce or random key changes.

The selection of timing parametersisimportant for the seamless handover of content between ECI Clients. Specific
recommendations as to the val ues of the delay parameters TECM, TCASCADE, TDELAY and TMAXWARN are
provided in [i.3].

ETSI

64

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Annex C (informative):
Authors & contributors

The following people have contributed to the present document:

Rapporteur:
Dr. Jens Johann, Deutsche Telekom

Other contributors:
Dr. Dmitri Jarnikov, Irdeto

Peter Mann, BNetzA

Msc Marnix Vlot, UC-Connect (on behalf of Vodafone)

ETSI

65 ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Annex D (informative):
Change History

Date

Version

Information about changes

April 2017

0.0.1

As approved at ECI#15.

ETSI

66

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

History

Document history

V111

July 2017

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Principles
	4.1 Overview
	4.2 System Robustness Model
	4.3 Specification Principles
	4.3.1 Implementation Freedom
	4.3.2 Specification Style and relation to AS-API

	5 Key Ladder Application and Associated Functions
	5.1 General
	5.2 AS System and client data authentication
	5.3 Asymmetrical Micro Server mode
	5.4 Interface to Content Processing System
	5.5 AS Key Ladder Block input output definition
	5.6 ACF definition

	6 Advanced Security Slot
	6.1 Advanced Security Slot introduction
	6.2 AS Slot Definition
	6.2.1 General
	6.2.2 AS Slot state definition
	6.2.2.1 Slot and session state
	6.2.2.2 Decryption configuration
	6.2.2.3 Encryption Configuration
	6.2.2.4 Random session Key control
	6.2.2.5 Total session configuration
	6.2.2.6 Random Session Key state
	6.2.2.7 Import Export state

	6.2.3 Content Property Authentication
	6.2.4 AS Slot functions
	6.2.4.1 Overview
	6.2.4.2 AS Slot initialization
	6.2.4.3 AS Slot session and random key control
	6.2.4.4 AS Slot Export control
	6.2.4.5 LK1 Key Ladder initialization
	6.2.4.6 Encryption Control Word calculation
	6.2.4.7 Decryption Control Word calculation
	6.2.4.8 Computing akClient and its application
	6.2.4.9 AS Slot Session Configuration Authentication
	6.2.4.10 Loading a Micro Server secret key
	6.2.4.11 Generating MinitLk1 for Micro Clients
	6.2.4.12 Computing ECI Client image decryption key
	6.2.4.13 Reading Advanced Security Information
	6.2.4.14 Generating Client Random Numbers
	6.2.4.15 Error codes

	7 Scrambling/descrambling and Content Export
	7.1 Basic Functionality
	7.2 Scrambler and Descrambler specifications
	7.3 Export Control
	7.4 Output Control
	7.5 Content Property Comparison on Coupled Sessions
	7.6 Content Property Propagation on Export
	7.7 Basic URI Enforcement on Export
	7.8 Content Property Application on Industry Standard Outputs
	7.9 Control Word Synchronization

	8 Certificate Processing Subsystem
	8.1 Basic processing rules for Certificate Chains
	8.2 Specific rules for Host Image Chains
	8.3 Specific rules for Client Image Chains
	8.4 Specific rules for Platform Operation Certificates
	8.5 Specific rules for Export/Import chains
	8.5.1 Export Authorization chain processing
	8.5.2 Export Chain verification
	8.5.3 Third Party Export Chain verification
	8.5.4 Export System Certificate processing
	8.5.5 Target Client Chain Processing Rules

	8.6 CPS ECI Root Key initialization

	9 Loader Core
	9.1 Introduction
	9.2 Host Loader Rules
	9.3 Client Loader Rules
	9.4 Revocation enforcement
	9.5 Client Image decryption

	10 Timing requirements
	10.1 Introduction
	10.2 Administrative Functions
	10.3 Symmetrical Cryptography Functions
	10.4 Asymmetrical Cryptography Functions

	Annex A (normative): Cryptography Function Definitions
	A.1 Hash Function
	A.2 Asymmetrical Cryptography
	A.3 Random Number Generation

	Annex B (informative): Sample Micro DRM system application
	B.1 Introduction
	B.2 Application scenario
	B.3 Assumptions and notation
	B.4 Micro Server pseudo code
	B.5 Micro Client pseudo code
	B.6 Micro DRM system cascading effect on ECM pre-delay
	B.7 Content property change timing interface convention

	Annex C (informative): Authors & contributors
	Annex D (informative): Change History
	History

