

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)

Embedded Common Interface (ECI)
for exchangeable CA/DRM solutions;

Part 5: The Advanced Security System;
Sub-part 1: ECI specific functionalities

Disclaimer

The present document has been produced and approved by the Embedded Common Interface (ECI) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)2

Reference
DGS/ECI-001-5-1

Keywords
authentication, CA, DRM, encryption, swapping

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2017.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)3

Contents

Intellectual Property Rights .. 7

Foreword ... 7

Modal verbs terminology .. 7

Introduction .. 8

1 Scope .. 9

2 References .. 9

2.1 Normative references ... 9

2.2 Informative references .. 10

3 Definitions and abbreviations ... 10

3.1 Definitions .. 10

3.2 Abbreviations ... 12

4 Principles .. 12

4.1 Overview .. 12

4.2 System Robustness Model .. 14

4.3 Specification Principles .. 14

4.3.1 Implementation Freedom .. 14

4.3.2 Specification Style and relation to AS-API .. 15

5 Key Ladder Application and Associated Functions .. 15

5.1 General ... 15

5.2 AS System and client data authentication .. 15

5.3 Asymmetrical Micro Server mode .. 15

5.4 Interface to Content Processing System ... 16

5.5 AS Key Ladder Block input output definition .. 17

5.6 ACF definition .. 19

6 Advanced Security Slot .. 20

6.1 Advanced Security Slot introduction .. 20

6.2 AS Slot Definition .. 20

6.2.1 General .. 20

6.2.2 AS Slot state definition ... 21

6.2.2.1 Slot and session state ... 21

6.2.2.2 Decryption configuration .. 22

6.2.2.3 Encryption Configuration .. 23

6.2.2.4 Random session Key control ... 24

6.2.2.5 Total session configuration ... 24

6.2.2.6 Random Session Key state .. 25

6.2.2.7 Import Export state .. 25

6.2.3 Content Property Authentication .. 26

6.2.4 AS Slot functions .. 29

6.2.4.1 Overview ... 29

6.2.4.2 AS Slot initialization ... 30

6.2.4.3 AS Slot session and random key control... 30

6.2.4.4 AS Slot Export control .. 34

6.2.4.5 LK1 Key Ladder initialization ... 35

6.2.4.6 Encryption Control Word calculation ... 35

6.2.4.7 Decryption Control Word calculation ... 37

6.2.4.8 Computing akClient and its application .. 38

6.2.4.9 AS Slot Session Configuration Authentication ... 39

6.2.4.10 Loading a Micro Server secret key .. 41

6.2.4.11 Generating MinitLk1 for Micro Clients ... 42

6.2.4.12 Computing ECI Client image decryption key .. 42

6.2.4.13 Reading Advanced Security Information .. 43

6.2.4.14 Generating Client Random Numbers .. 44

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)4

6.2.4.15 Error codes .. 44

7 Scrambling/descrambling and Content Export ... 45

7.1 Basic Functionality ... 45

7.2 Scrambler and Descrambler specifications ... 45

7.3 Export Control .. 46

7.4 Output Control .. 46

7.5 Content Property Comparison on Coupled Sessions .. 46

7.6 Content Property Propagation on Export .. 46

7.7 Basic URI Enforcement on Export ... 47

7.8 Content Property Application on Industry Standard Outputs ... 47

7.9 Control Word Synchronization... 47

8 Certificate Processing Subsystem .. 49

8.1 Basic processing rules for Certificate Chains ... 49

8.2 Specific rules for Host Image Chains ... 50

8.3 Specific rules for Client Image Chains ... 50

8.4 Specific rules for Platform Operation Certificates ... 50

8.5 Specific rules for Export/Import chains.. 50

8.5.1 Export Authorization chain processing ... 50

8.5.2 Export Chain verification .. 51

8.5.3 Third Party Export Chain verification .. 51

8.5.4 Export System Certificate processing ... 51

8.5.5 Target Client Chain Processing Rules .. 52

8.6 CPS ECI Root Key initialization ... 52

9 Loader Core .. 52

9.1 Introduction .. 52

9.2 Host Loader Rules .. 52

9.3 Client Loader Rules .. 53

9.4 Revocation enforcement ... 53

9.5 Client Image decryption ... 54

10 Timing requirements .. 54

10.1 Introduction .. 54

10.2 Administrative Functions ... 54

10.3 Symmetrical Cryptography Functions .. 54

10.4 Asymmetrical Cryptography Functions .. 54

Annex A (normative): Cryptography Function Definitions ... 55

A.1 Hash Function .. 55

A.2 Asymmetrical Cryptography .. 55

A.3 Random Number Generation .. 55

Annex B (informative): Sample Micro DRM system application .. 56

B.1 Introduction .. 56

B.2 Application scenario ... 56

B.3 Assumptions and notation .. 57

B.4 Micro Server pseudo code .. 58

B.5 Micro Client pseudo code ... 61

B.6 Micro DRM system cascading effect on ECM pre-delay .. 62

B.7 Content property change timing interface convention ... 62

Annex C (informative): Authors & contributors ... 64

Annex D (informative): Change History .. 65

History .. 66

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)5

List of Figures
Figure 4.1-1: Block diagram of Advanced Security System ...13

Figure 4.2-1: System robustness premise for ECI ...14

Figure 5.3-1: Computation of the Asymmetrical Micro Server mode ...16

Figure B.2-1: Example of control word computation key hierarchy evolution ...56

Figure B.6-1: Temporal relations for pre-delay and optional delay compensation ...62

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)6

List of Tables
Table 5.5-1: C-variable naming convention for Key Ladder interface ..18

Table 5.6-1: ACF[0] for Key Ladder application ..19

Table 5.6-2: AkModeField definition for AcfAk1Mode ...19

Table 6.2-1: AS Slot state structure definition ..21

Table 6.2-2: DecryptConfig structure definition ...22

Table 6.2-3: EncryptConfig structure definition ...23

Table 6.2-4: CpCtrl definition ...23

Table 6.2-5: BasicUriTrfr values and description ...24

Table 6.2-6: Random Key structure for decryption and encryption session ..24

Table 6.2-7: EciRootState structure field description..25

Table 6.2-8: The RkState Random Key State field description ...25

Table 6.2-9: ImportExportState structure definition ...26

Table 6.2-10: field1 structure definition ..27

Table 6.2-11: FieldControl structure definition ...27

Table 6.2-12: largeProperty tag field values and meaning ..28

Table 6.2-13: Overview of Advanced Security Functions ..29

Table 6.2-14: Error return code definition ..45

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)7

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Embedded Common
Interface (ECI) for exchangeable CA/DRM solutions.

The present document is part 5, sub-part 1 of a multi-part deliverable covering the ECI specific functionalities of an
advanced security system, as identified below:

Part 1: "Architecture, Definitions and Overview";

Part 2: "Use cases and requirements";

Part 3: "CA/DRM Container, Loader, Interfaces, Revocation";

Part 4: "The Virtual Machine";

Part 5: "The Advanced Security System:

Sub-part 1: "ECI specific functionalities";

Sub-part 2: "Key Ladder Block".

Part 6: "Trust Environment".

The use of terms in bold and starting with capital characters in the present document shows that those terms are defined
with an ECI specific meaning which may deviate from the common use of those terms.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)8

Introduction
Service and content protection realized by Conditional Access (CA) and Digital Rights Management (DRM) are
essential in the rapidly developing area of digital Broadcast and Broadband, including content, services, networks and
customer premises equipment (CPE), to protect business models of content owners, network operators and
PayTVoperators. It is also essential for consumers that they are able to continue using the CPEs they bought e.g. after a
move or a change of network provider or even utilize devices for services of different commercial video portals. This
can be achieved by the implementation of interoperable CA and DRM mechanisms inside CPEs, based on an
appropriate security architecture.

As part of a security architecture the present document defines a security processing system for the authentication and
verification of protected media content and of software images to be processed inside an ECI-compliant CPE. The core
of the security architecture is built by a Key Ladder Block that supports secure processing with secret keys, targeting
of keys to specific chips and authentication of the origin of key material.

Clause 4 gives an overview about the system architecture, defines robustness rules to fight attacks and describes the
relation between the elements of the security architecture, ECI Host and ECI Clients.

Clause 5 describes the applications the Key Ladder Block can be used for, together with the associated functions.

For proper operations, the security processing system needs information about the state of each loaded ECI Client. This
state information, as some of it needs to be secret, is handled with the help of an advanced security slot. The ECI Host
assigns to each ECI Client such a slot that needs to be protected against malicious modifications. The definition of a
slot and its configuration for several operations like decrypting or exporting content is described in clause 6.

In an ECI-compliant CPE content can be decrypted, it can be forwarded to standard outputs if permitted and it can be
re-encrypted for export. The usage of an advanced security slot for these operations is specified in clause 7.

A Certificate Processing Subsystem that is realized as a special function of an advanced security slot is responsible for
the authentication of items. Clause 8 specifies the rules that are applied for authentication.

The ECI system uses a loader mechanism that permits ECI Clients to securely verify the version of the ECI Host and
ECI Client credentials that are loaded so as to detect any known security issue. The loader mechanism relies on
robustness principles that are described in clause 9.

Clause 10 contains timing constraints for the operations described in the present document.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)9

1 Scope
The present document defines a robust security processing subsystem for ECI called the Advanced Security System.
The Advanced Security System provides a secure basis for software elements to be authenticated and loaded, performs
security computations and verifications, manages the encryption and decryption of content and the exchange of content
with associated rights and obligations. As such the Advanced Security System is part of a "secure video path" as it is
referred to in contemporary specifications. The Advanced Security System applies the ECI Key Ladder Block [5] to
perform secure calculations.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non-
specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GS ECI 001-1: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 1: Architecture, Definitions and Overview".

[2] ETSI GS ECI 001-2: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 2: Use cases and requirements".

[3] ETSI GS ECI 001-3: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 3: CA/DRM Container, Loader, Interfaces, Revocation".

[4] ETSI GS ECI 001-4: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 4: The Virtual Machine".

[5] ETSI GS ECI 001-5-2: "Embedded Common Interface (ECI) for exchangeable CA/DRM
solutions; Part 5: The Advanced Security System; Sub-part 2: Key Ladder Block".

[6] ISO/IEC 9899:2011: "Information technology - Programming languages - C".

[7] NIST FIPS PUB 180-4: "Secure Hash Standard (SHS)".

[8] NIST Special Publication 800-90A revision 1: "Recommendation for Random Number Generation
Using Deterministic Random Bit Generators", June 2015.

NOTE: Available at http://dx.doi.org/10.6028/NIST.SP.800-90Ar1.

[9] ETSI ETR 289 (CSA1/2): "Digital Video Broadcasting (DVB); Support for use of scrambling and
Conditional Access (CA) within digital broadcasting systems".

[10] ETSI TS 100 289 (V1.2.1) (CSA3): "Digital Video Broadcasting (DVB); Support for use of the
DVB Scrambling Algorithm version 3 within digital broadcasting systems".

[11] ETSI TS 103 127 (V1.1.1) (CISSA): "Digital Video Broadcasting (DVB); Content Scrambling
Algorithms for DVB-IPTV Services using MPEG2 Transport Streams".

[12] ISO/IEC 23001-7 (2016) (CENC): "Information technology - MPEG systems technologies -
Part 7: Common encryption in ISO base media file format files".

https://docbox.etsi.org/Reference/
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)10

[13] ISO/IEC 23009-4 (2013): "Information technology - Dynamic adaptive streaming over HTTP
(DASH) - Part 4: Segment encryption and authentication".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non-
specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI: "Using the DVB CSA algorithm" (licencing arrangement).

NOTE: Available at http://www.etsi.org/about/what-we-do/security-algorithms-and-codes/csa-licences.

[i.2] ETSI: "Using the DVB CSA3 algorithm" (licensing conditions).

NOTE: Available at http://www.etsi.org/about/what-we-do/security-algorithms-and-codes/csa3-licences.

[i.3] ETSI GR ECI 004: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Guidelines for the implementation of ECI".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

Advanced Security System (AS System): robust secure processing system providing basic and highly secure
processing functions for ECI Clients

AS Slot: resources of the Advanced Security block provided exclusively to an ECI Client by the ECI Host

AS-API: application programming interface between the ECI Client and its ECI Host permitting the ECI Client to
exchange information with and perform operations on its AS Slot

Authentication Mechanism: Key Ladder Block function as defined in [5] that permits an AS Slot to provide secure
key applications for purposes other than content decryption and encryption, like authentication

certificate: data with a complementary secure digital signature that identifies an Entity

NOTE: The holder of the secret key of the signature attests to the correctness of the data - authenticates it - by
signing it with its secret key. Its public key can be used to verify the data.

certificate chain: sequence of Certificates where the next Certificate can be authenticated by the public key of the
preceding one

NOTE: Typically, in ECI Certificates are accompanied by a Revocation List that excludes Certificates that
cannot be validated.

Certificate Processing Subsystem (CPS): subsystem of the ECI Host that provides Certificate verification processing
and providing additional robustness against tampering

Content Properties (CP): properties of the content that provide information on rights and obligations associated with
subsequent applications or transformations of the content, like usage rights information, selective output control and
parental control information

http://www.etsi.org/about/what-we-do/security-algorithms-and-codes/csa-licences
http://www.etsi.org/about/what-we-do/security-algorithms-and-codes/csa3-licences

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)11

ECI (Embedded CI): architecture and the system specified in the ETSI ISG "Embedded CI", which allows the
development and implementation of software-based swappable ECI Clients in customer premises equipment and thus
provides interoperability of CPE devices with respect to this system

ECI Client (Embedded CI Client): implementation of a CA/DRM client which is compliant with the ECI
specifications

ECI Client Loader: functionality of the ECI Host that uses the AS system to exclusively provide the function , verify
and install a new ECI Client software image in an ECI container of the ECI Host

ECI Host: hardware and software system of a CPE, which covers ECI related functionalities and has interfaces to an
ECI Client

ECI Host Loader: CPE bootloading functionality that uses the AS system to exclusively provide the function to verify
and install ECI Host software into a CPE

ECI Root Key: public key providing the origin of authentication for ECI certified entities and Certificates

entity: organization (e.g. manufacturer, Operator or Security Vendor) or real world item (e.g. ECI Host, Platform
Operation or ECI Client) identified by an ID in a Certificate

export connection: relation between an AS Slot decrypting content and an AS Slot subsequently re-encrypting the
decrypted content indicating such re-encryption is permitted

Key Ladder: function of the Key Ladder Block as defined in ETSI GS ECI 001-5-2 [5] for computing control words
and associated control word usage information for application in the content decryption or re-encryption function of a
CPE

Key Ladder Block: robust secure mechanism to compute decryption, encryption and authentication keys as defined in
ETSI GS ECI 001-5-2 [5], both Key Ladder and Authentication Mechanism

micro client: ECI Client or non-ECI client that can decrypt content which was re-encrypted by a Micro Server

micro DRM system: content protection system that re-encrypts content on a CPE with a Micro Server and that
permits decoding of that re-encrypted content by authenticated Micro Clients

micro server: ECI Client that encrypts such that it can only be decoded by the targeted Micro Client or group of
Micro Clients

operator: organization providing Platform Operations that is enlisted with the ECI TA for signing the ECI eco
system

NOTE: An Operator may operate multiple Platform Operations.

Platform Operation (PO): specific instance of a technical service delivery operation having a single ECI identity with
respect to security

Provisioning Server: server, typically located in a secure back office location, that provisions keys and other secure
information to facilitate an encryption or decryption function through an AS Slot

revocation: status of exclusion of an entity in accordance with its enumeration in a Revocation List

Revocation List (RL): list of Certificates that have been revoked and therefore should no longer be used

robustness: property of the implementation of a specified secure function representing the effort and/or cost involved
to compromise the security of the implemented secure function

root certificate: trusted certificate that is the origin of authentication for a chain of certificates

security vendor: company providing ECI security systems including ECI Clients for Operators of ECI Platform
Operations

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)12

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ACF Advanced Security Control Field
AD Input of the Key Ladder Block
AES Advanced Encryption Standard
AK Authentication Key
API Application Programming Interface
ARK Advanced Security Random Key
AS Advanced Security
CA Conditional Access
CBC Cypher Block Chaining
CENC Common Encryption
CISSA Common IPTV Software-oriented Scrambling Algorithm
CP Content Properties
CPE Customer Premises Equipment
CPS Certificate Processing Subsystem
CSA Common Scrambling Algorithm
CTR Counter Mode
CW Control Word
DRM Digital Rights Management
EAC Export Authorization Certificate
EAOC Export Authorization Operator Certificate
ECI Embedded Common Interface
ECM Entitlement Control Message
EGC Export Group Certificate
ERC Export Revocation Certificate
ESC Export System Certificate
LK Link Key
MPEG Moving Picture Experts Group
MSCSK Micro Server Chipset Secret Key
PES Packetized Elementary Stream
PO Platform Operator
POC Platform Operation Certificate
POPK Platform Operation Public Key
REAOC Revocation Export Authentication Operator Certificate
RFU Reserved for Future Use
RK Random Key
RL Revocation List
SPK Sender Public Key
TA Trust Authority
TPEGC Third Party Export Group Certificate
TS MPEG 2 Transport Stream
URI Usage Rights Information
XT eXTension field

4 Principles

4.1 Overview
The present document is part of the Multipart ISG Group Specifications ECI 001, based on the ECI architecture ETSI
GS ECI 001-1 [1] and ECI basic requirements ETSI GS ECI 001-2 [2].

Figure 4.1-1 presents the main principles of the Advanced Security System. The core of the Advanced Security
System is formed by the Key Ladder Block as defined in [5], allowing secure processing with secret keys, targeting of
keys to specific chips and authentication of the origin of key material.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)13

The basis for loading images is embodied in the loader core. It uses the Certificate Processing Subsystem to verify
the ECI status of ECI Host images, ECI Client images and Platform Operator (PO) credentials using a recent ECI
Root Key and ECI root Revocation List. The version numbers of the ECI Root Key and ECI root Revocation List
used by the ECI Host and other ECI Clients can be checked by ECI Clients that are loaded. These can refuse to
descramble content on detecting unacceptable versions in accordance with the ECI revocation enforcement principle.
Encrypted ECI Client images are decrypted upon loading.

Each ECI Client uses an Advanced Security slot. The AS Slot is identified by the Platform Operation Public Key of
the ECI Client. The ECI Host ensures that ECI Client interactions through the AS-API are directed to the AS Slot
allocated to that ECI Client. Each AS Slot is described by a slot state and a session state per encryption/decryption
operation. The AS Slot can be used either for decryption purposes or for encryption purposes. The AS Slot session state
also includes a configuration (config) defining the details of the operation and how the session state should be
authenticated. The ECI Client provides the configuration information and input for other state information. The Key
Ladder Block is used to authenticate SPK, POPK and the configuration information. The AS Slot can supply random
numbers to selected Key Ladder Block inputs so as to generate random keys or to use as a nonce to ensure freshly
computed Key Ladder Block inputs. This mechanism can be used to prevent replay of encrypted content and to ensure
always online provisioning of an AS Slot by a Provisioning Server.

When decrypting content the Content Properties can be authenticated along with computing the control words, thus
creating a strong link with the decrypted content. Content Properties are forwarded with the content to any standard
output to ensure the proper setting of protection mechanisms for such an output. These properties are compared to those
with which the content is re-encrypted on an Export Connection. An Export Connection is permitted only through the
appropriate export/import Certificate Chains. These are verified by the Certificate Processing Subsystem on behalf
of the AS Slot. Standard outputs can be disabled through the output control mechanism.

Computed control words can be synchronized to MPEG Transport Stream formatted content using the alternating bit
protocol. For this purpose the content processing system uses a double buffering mechanism with a current/next control
word for stream processing.

Figure 4.1-1: Block diagram of Advanced Security System

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)14

4.2 System Robustness Model
The AS System requires a robust implementation. Robustness is typically measured in terms of the effort and/or cost
required to circumvent any security measures: i.e. observe secret values or manipulate state or values in a secure
system.

The present document does not define a specific Robustness regime for various ECI functions. Nevertheless, the ECI
Robustness architecture is based on the premise that some functions are more robust than others. This is illustrated in
Figure 4.2-1.

Figure 4.2-1: System robustness premise for ECI

The least robust environment is the outside world where any threat may exist. Data passing through that environment
should be protected against manipulation and unauthorized inspection using authentication and encryption techniques.
The rich operating system (typically including a browser) can be somewhat robust against manipulation and invasion,
but is typically not able to withstand user-assisted or aggressive external hacking attacks. The ECI Clients and ECI
Host security sensitive functions operate in an environment that is well protected from such attacks. In case the ECI
Host is compromised also ECI Clients are compromised. In addition to resilience towards outside attacks the ECI
Clients are sandboxed using the ECI virtual machine [4]: i.e. they neither can access information in the ECI Host nor
can access any other ECI Client, apart from through defined ECI API interfaces. The ECI Host also ensures the ECI
Clients have access to the Advanced Security System and the Key Ladder Block. At the core of the Key Ladder
Block is the Chip Set Secret Key with allows each ECI CPE to be addressed uniquely. Typically the Key Ladder
Block and major parts of the Advanced Security System are implemented in hardware and/or highly robust firmware.

4.3 Specification Principles

4.3.1 Implementation Freedom

The present document defines states and functions that operate on the AS System which results in a new state. The
specific representation of the state of an implementation is not defined by the present document and may be completely
defined by the implementation as long as the behaviour of the implementation can be reconstructed to states and state
transition sequences using the transition functions as defined in the present document.

NOTE: In many cases the Key Ladder function as defined in [5] is a substantial part of the state transition
function.

CPE

AS RootKeys
(incl. content property enforcement)

ECI Host

ECI Client

Rich OS, browser based App

Outside world

M
o
re
 ro
b
u
st

Key ladder CSSK

container container

ECI Client

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)15

For example, an AS implementation may have a fast CPS that can re-authenticate POPK from the Platform Operation
Certificate Chain for every application of the Key Ladder Block. The AS Slot in this case does not have to store
POPK as an authenticated value in a tamper proof way. Similarly, some implementations may decide to compute LK1

(the top level symmetrical key in the key ladder) once using two asymmetrical cryptography operations for an AS Slot,
while others, that can perform the asymmetrical cryptography operations sufficiently fast, may recompute LK1 from its

original inputs for every Key Ladder application.

4.3.2 Specification Style and relation to AS-API

There is no direct API between the ECI Client and the Advanced Security System. The ECI Host acts as a conduit.
Nevertheless, the definitions of the operations on an AS Slot map directly to the messages of the AS API as defined in
[3], with exception of the slotId parameter, which is not required for ECI Client AS API messages. The ECI Host
provides the slotId parameter to the AS system.

The transactions by the ECI Host (on behalf of an ECI Client) on an AS Slot are defined as C-functions declarations.
These describe an atomic transaction on the state of the AS Slot. This can result in a new slot state. The specific
representation of function parameters is not of direct consequence to functionality specified in the present document,
except when cryptography functions are concerned. However, the representation is significant for the definition of the
AS API in [3].

5 Key Ladder Application and Associated Functions

5.1 General
The Key Ladder and Authentication Mechanism defined in [5] play a central role in all robustly implemented secret
key computations in an ECI CPE. The Advanced Security System shall apply these functions as defined in [5] with
inputs and outputs as defined in the present document. All inputs to the Key Ladder Block shall be controlled by the
AS System; any observation or manipulation shall not be possible in accordance with applicable AS Robustness rules
and the Key Ladder Block specification [5].

5.2 AS System and client data authentication
The Advanced Security System can be provided with data from an ECI Client. The AS System provides a means to
verify the authenticity of this data using the AD input of the Key Ladder Block.

The AS System computes the AD input of the Key Ladder Block as the hash of additional data to be authenticated in
conjunction with a CW or AK computation. Following the bit-string notation of [5] AD shall be computed as:

 AD = hash(ACF || lm || ARK || P1 ||...|| Pm || C1 ||...|| Cm || XT)

Function hash is defined in clause A.1. lm is an 8 bit input containing the binary representation of m. The value of m
corresponds to the value of m in the Key Ladder Block definition. The length of each Pi is 2 048 bits for the purpose of

carrying public keys (POPK values). The length of Ci is defined as equal to the length of the SessionConfig structure in

clause 6.2.2.5, the length of XT is 256, and serves a general purpose extension mechanism. It shall be set to 0. ARK is a
128-bit number, intended to represent a random value or all 0's in case no random input is needed. ACF is a control value
defining the mode of operation.

5.3 Asymmetrical Micro Server mode
The AS System applies the Authentication Mechanism for the purpose of loading a Micro Server sender secret key
into an AS Slot for the purpose of asymmetrical authentication between Micro Servers and Micro Clients.

Figure 5.3-1 shows the basic principle of the overall computation of asymmetrical authentication mode.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)16

Figure 5.3-1: Computation of the Asymmetrical Micro Server mode

The Authentication Mechanism is used to compute the AS Slot authentication key AkSlot, using a.o. the ChipSet Key
here called MSCSK. AkSlot is used to load the Micro Server Secret Key uSSK. The Certificate Processing
Subsystem is used to authenticate the Chipset Public Key ClCPK of the target Micro Client using POPK as a root and
a Certificate Chain containing ClCPK in the last Certificate of the chain. A random key RK is generated and ClCPK
and uSSK are used to generate the Micro Client Key Ladder initialization message MinitLk. The random key is also

used as the top level symmetrical key of a Key Ladder with the same structure and hash function as defined in [5],
clause 5.1. The computed control word CW is used for encryption in by the Micro Server. The regular Key Ladder
can be used in a Micro Client to compute CW for the purpose of decryption.

Clause 6.2.4.10 defines the specifics of the uSSK computation (the ldUssk function).

The computation of MinitLk shall be as defined in the computation scheme below, using the specification conventions as

[5], clause 5.1:

• Mkey = cl-chipset-ID || E(ClCPK,LK)

• MinitLk =(Mkey || S(uSSK,Mkey))

• with || the bitwise concatenation function, cl-chipset-ID the chipset-ID of the client CPE, and with E() the
asymmetrical encryption function and S() the asymmetrical signature function as defined in [5], clause 5.2.

On loading uSSK the AS Slot shall generate a new RK in accordance with clause A.3.

The computation of CW from LK and its inputs shall be identical to the Key Ladder Mechanism defined in [5],
clause 5.2 with the same inputs as defined there and the same output (CW, CW-URI) but replacing the computation of
LK1 by the RK random session key generated by the Micro Server AS Slot.

5.4 Interface to Content Processing System
The Key Ladder including the asymmetrical Micro Server mode extension can compute control words with
complementary CW-URI. These shall be passed securely to a decryption or encryption resource in the content
processing subsystem which may (temporarily) store the CW and CW-URI information in association with key
synchronization information. For transport stream applications the key synchronization information consists of the
current/next bit, thus specifying two storage locations for CW values. For file based applications a single CW location
is available for the encryption and decryption resource.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)17

Other information accompanying control words from the AS Slot to the content processing system is:

• Application of CW as encryption or decryption control word.

NOTE: Together with CW-URI this is a permission to apply CW.

• Export authentication information.

• Content properties.

• Odd/even property of the control word for TS mode descrambling.

5.5 AS Key Ladder Block input output definition
This clause defines the mapping of C-style variables and structures as a representation for the inputs to the Key Ladder
and Authentication Mechanism and the extensions thereof as defined in clause 5.2 and clause 5.3. The symbols for the
input names are used in the rest of the present document to define the various applications.

The mapping of C-structures to an octet sequence is defined with the following (little endian based) rules:

• Bit-fields of structures are mapped first field first starting with the lowest bit (0) of the first octet.

• Structures of a length other than a multiple of 8-bit that are padded at the end to the next multiple of 8-bits
with reserved bits that shall be set to zero to the next multiple of 8-bit.

• 16-bit, 32-bit and 64-bit entities are mapped in little endian order (least significant byte first).

• Arrays are mapped in increasing index order.

Octet sequences are mapped to bit strings using the OS2BSP function as defined in ETSI GS ECI 001-5-2 [5].

NOTE: The above rules ensure that the bit numbering order as used for integer values represented by c-variables
is equal to that used in ETSI GS ECI 001-5-2 [5] for the corresponding inputs to the Key Ladder Block.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)18

The naming convention for the variables is listed in Table 5.5-1.

Table 5.5-1: C-variable naming convention for Key Ladder interface

Key Ladder
Block input or

output

Bits C-variable naming convention

CW-URI 64 ulong cwUri;
AD 256 uchar ad[32]; /* not used directly, see clause 5.2 */
SPK-URI 64 ulong spkUri;
SPKi, i=1..16 2 048 × 16 typdef uchar PubKey[256]; PubKey spk[16]; /* (spk[i-1] == SPKi) */

m uchar nSpk;
input to V 64+ 2 048 + 2 048 typedef struct InputV{

 ulong chipsetId;
 uchar elk1[256];
 uchar signature[256];
} InputV;
InputV inputV;

E(LKi,LKi+1),
i=1..24; LKt+1=r

256 × 24 typedef uchar SymKey[32]; Symkey elk[i]; /* (elk[i-1] == E(LKi,LKi+1))

*/
/* C-input == E(LKt-1,LKt1), i.e. the one but last input */

t uchar nElk;
τb value set to 0

Chipset-ID 64 ulong chipsetId;
Challenge 128 uchar challenge[16];
Response 128 uchar response[16];

Below the inputs and outputs defined in the present document are defined.
ACF 128-8 uchar acf[15]; /* operation mode */
ARK 128 uchar ark[16];
Pi 2 048 × 32 PubKey pk[32]; /* first m values are applied */

Ci sizeof(SessionConfig) ×
32

SessionConfig config[?]; /* SessionConfig is defined in clause 6.2.2.6
*/

XT 256 uchar XT[32]; /* value always set to 0 */
MinitLk 64+ 2 048 + 2 048 InputV mInitLk;

The following c-functions are defined using the above input variables to produce results.

SymKey blockV_blockC_KeyLadder(InputV inputV, SymKey spk)

Semantics:

This function computes the function of block V and block C in the Key Ladder to produce lk1.

In case of the asymmetrical server the following function computes the initialization message for the target Micro
Client as defined in clause 5.3:

InputV asymInitLk1(SymKey lk1, PrivKey ussk, PubKey spk);

Semantics:

This function computes the initialization message initLk1 in accordance to clause 5.3.

The remaining functions of the Key Ladder are performed by:

keyLadder(SymKey lk1, ulong cwUri, uchar acf[15], uchar ark[16],
 PubKey popk[16], SSCnfg clCnf[16], uchar XT[32], ulong spkUri, uint nSpk, PubKey spk[16],
 uchar nElk, SymKey elk[32])

Semantics:

This function computes the remainder of the Key Ladder using lk1 as the result of block D in the Key Ladder to
produce a CW result for the content processing system.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)19

The functions of the Authentication Mechanism to compute an AK key are performed by:

SymKey AuthMech(InputV inputV, uchar acf[15], uchar ark[16],
 PubKey pk[16], SSCnfg clCnf[16], char XT[32], ulong spkUri, uint nSpk,
 uint spkIndx, PubKey spk[16])

Semantics:

This function computes Authentication Mechanism up to AK and delivers the result.

In order to use the computed AK key the following function is defined using the challenge-response interface and the
function block d in the Authentication Mechanism of [5], clause 6.

uchar[16] AuthMechResponse(SymKey ak, uchar[16] challenge)

Semantics:

This function computes the response on a challenge input using AK as the authentication key as defined in the
Authentication Mechanism.

5.6 ACF definition
The ACF input to the Key Ladder Block serves to define the main modes of operation mode. The value for the acf[0]
parameter is defined in Table 5.6-1.

Table 5.6-1: ACF[0] for Key Ladder application

Acf[0] Value Description
AcfCw1Mode 0x11 Key Ladder operation as defined in the present document. acf

[1]..acf[14] shall be equal to 0x00.
AcfAk1Mode 0x12 Authentication Mechanism operation as defined in the present

document. The value of acf[1] is referred to as AkModeField. The
applicable values are defined in Table 5.6-2. Acf[2]..acf[14] shall be
equal to 0x00.

reserved Other Reserved for future use.

The complementary c-definition for this AcfCw1Mode for application as the Key Ladder parameter is:

const uchar acfCw1Mode= { AcfCw1Mode, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

The complementary c-definition for AcfAk1Mode mode for application as the Key Ladder parameter is:

const uchar acfAk1Mode= { AcfAk1Mode, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

Table 5.6-2: AkModeField definition for AcfAk1Mode

Register Bit Value Description
AkUseFlag 8 0b0 AkUseAS AK application for Advanced Security System only.

0b1 AkUseCl AK application for the ECI Client.
AkOnline 7 0b0 AkOffline AK is established in a unidirectional "offline" mode.

Challenge/responses can be pre-computed.
0b1 AkOnline AK is established using a random nonce AKRK which

will require a challenge response to be computed
"online".

AkAsAppl
only if AkUseFlag=
AkUseAS
reserved otherwise

0..3 0x0 AkConfigAuth Authenticate Configuration element of AS Slot.
0x1 AkLdUssk Use AK to decrypt and load a Micro Server uSSK key.
0x2 AkClImg Use AK to decrypt the key for decrypting the ECI Client

image to be loaded.
0x3..
0xF

reserved Reserved for future use.

RFU other 0 Reserved for future use. Value shall be set to zero.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)20

6 Advanced Security Slot

6.1 Advanced Security Slot introduction
The Advanced Security System contains state-information for each loaded ECI Client. The identification that binds
an ECI Client to an AS Slot is the Platform Operation Public Key (POPK) of the ECI Client. The ECI Host loads the
POPK of an ECI Client into an available AS Slot. From then on the state of an AS Slot is associated with this ECI
Client. Any meaningful operation of the AS Slot will use POPK as an input, thus making the result specific for the
bound ECI Client and meaningless for others.

ECI Host Robustness ensures an ECI Client can only access information of its designated slot: in case the ECI Host
functions correctly it will ensure that only the designated ECI Client will have access to its own AS Slot. In case the
ECI Host is somehow compromised the POPK "locking mechanism" ensures that only AS inputs to an AS Slot that
form a coherent set can produce meaningful results in the form of decryption keys (CW) and associated Content
Properties or an Authentication Key (AK).

In case the ECI Host would decide to repurpose an AS Slot for another ECI Client, any built up state of the previous
ECI Client (POPK) is erased.

6.2 AS Slot Definition

6.2.1 General

The AS Slot is defined in terms of state variables and input variables to state modification functions. The
representation of state, input and output values in this clause is chosen such that the operations performed on them are
defined in terms of the here defined binary representations. This is specifically relevant with respect to their
incorporation in cryptographic and Key Ladder computations. Actual implementations can select their own state
representations but have to translate any custom representation to the representation specified here for input to any
cryptographic operation.

All state variables of an AS Slot shall be robustly protected against any malicious modification. Some state variables
hold information that has to remain secret: such registers shall be robustly protected from unauthorized access. Such
variables are defined using "Secret" as part of the C-type definition. Any computation based on the value of a secret
variable shall be kept secret except when such a result is explicitly shared. Any storage location of a secret value and/or
computation with a secret value shall have the same Robustness as the one required for the Key Ladder Block [5].

The AS Slot has sessions. Each session operates in accordance with the settings of its configuration which is part of the
session state. The session configuration is set by the ECI Client and has to be authenticated before use by using the
Authentication Mechanism or by using the implicit authentication properties of the Key Ladder.

All state variables and functions are defined in terms of the C-language [6]. The sequence order of the C-language is not
strictly observed in the sense that items may be defined after their use. Arrays of fixed size are copied with a single
assignment statement (rather than copying the pointer value) as if they were contained in a "struct" structure.

Regarding errors, the code has been kept more readable by defining implicit error checking. Assigning a reserved value
to a state variable or field thereof (see definition of the field) shall be an error. If the right side of such an assignment
expression is based on a single function parameter an error is returned for that parameter: value -i for parameter i.

All default values for fields and variables are defined as 0, unless explicitly specified otherwise.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)21

6.2.2 AS Slot state definition

6.2.2.1 Slot and session state

The AS Slot state is defined as a common slot state and a session state per encryption or decryption session. The
structure for the slot state is defined below. In Table 6.2-1 the fields are defined.

#define NSLOTS /* (maximum) number of slots */
#define NSESSIONS /* (maximum) number of sessions */
#define MaxSpkEncr 4 /* maximum number of encryption SPK values */

typedef SessionState {
 bool active;
 uint configAuthMode:4;
 uint mh;
 SessionConfig config;
 PubKey spk;
 ulong spkUri;
 uchar spkIndx;
 int coupledSessionId;
 uint nEncr;
 PubKey encrSpk[MaxSpkEncr];
 PubKey encrPopk[MaxSpkEncr];
 ulong encrCwUri;
 Secret SymKey lk1;
 Secret PrivKey ussk;
 RkState rkState;
 importExportState ies;
} SessionState ;

typedef struct SlotState {
 uint version:4;
 uint slotMode:4;
 uint clientCheckFlag:1;
 uint reserved:3;
 uint POClRLVnr: 24;
 PubKey popk;
 SymKey slotRk;
 Secret SymKey akClient;
 SessionState se[NSESSIONS];
} FixedSlotState;

SlotState ss[NSLOTS]

Table 6.2-1: AS Slot state structure definition

Field Description
active True if session is active, false otherwise. Default state false.
configAuthMode Mode by which the configuration of the slot has been authenticated. The permitted values are:

ConfigAuthModeNone: 0x0, slot configuration has not been authenticated.
ConfigAuthModeAk1: 0x1, slot configuration has been authenticated using the AK mechanism
as defined in clause 6.2.4.8.
All other values are reserved.

Mh Media handle to which the AS Slot session is associated.
clientCheckFlag A new ECI Client has been loaded. Verification of POClRLVnr shall proceed on session

initialization. Default value is 0b1.
Reserved Field is reserved; it shall be set to zero.
POClRLVnr Version number of Platform Operation Client Revocation List that was used to verify the ECI

Client before loading. Will be checked at each ECI Client session initialization against the
minimum version that the ECI Client expects.

slotConfig Slot configuration.
spk Public key used to compute LK1 and AK.
spkUri SPK vector usage rules information register used to compute LK1.
spkIndx Index selecting SPK register location in SPK vector for LK1 calculation.
coupledSessionId Only applicable if the AS Slot session is in decryption mode. Second (decryption) session

coupled to this one. Decoded content streams are joined and Content Properties are compared.
The default value is -1.

nEncr Number of SPK/POPK input values used for encryption (excluding slot's spk).
encrSpk SPK values for encrypting content with Key Ladder.
encrPopk POPK values for encrypting content with Key Ladder.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)22

Field Description
encrCwUri CwUri value for encrypting content with Key Ladder.
lk1 Top level link key for computing control words using the Key Ladder.

Ussk Micro Server secret key (for Micro Server applications).
rkState Random Key state of the session.
ies Import/export state of the session.
version Version of the slot state. The permitted values are:

0x1: version 1.
All other values are reserved.

slotMode Mode in which the slot operates. The permitted values are:
SlotModeDecr: 0x1, slot operated in decryption mode.
SlotModeEncr: 0x2, slot operates in encryption mode.
All other values are reserved.

popk Public Key of ECI Client using this slot.
slotRK Random number used in online challenge response protocols, e.g. with a Provisioning Server.

The value is set on slot initialization.
akClient Authentication Key for Client processing purposes.
se Session state (for all sessions in an AS Slot).
ss AS Slot State (for all slots).

Unless stated otherwise the default value of each state element at initialization is zero.

6.2.2.2 Decryption configuration

The applicable configuration state for an AS Slot session in decryption mode is defined in the c-code below and its
description is given in Table 6.2-2. It defines the details of the AS-slot session operation when operating in decryption
mode. This data can be authenticated by applying suitable Authentication Mechanism or Key Ladder calculations.

typedef struct DecryptConfig {
 uint configVersion:4;
 uint reserved1:4;
 uint klModeAuth:1;
 uint akModeAuth:1;
 uint rkKlMode:1;
 uint spk0NoDecrypt:1;
 uint reserved2:6;
 RKMode rkDecrMode;
 EciRootState minEciRootState;
 uint minClientVersion:24;
} DecryptConfig;

Table 6.2-2: DecryptConfig structure definition

Field Description
configVersion Version of the decryption configuration. Defined value is 0x1: version 1. All other values are

reserved. An AS Slot session shall refuse to execute any state transition function if this field does
not have a permitted value.

reserved1 Reserved field; shall be set to 0.
klModeAuth If this bit is set the AS Slot session shall apply the ClientConfig for authentication with all Key

Ladder calculations. This bit itself is authenticated on all Key Ladder calculations.
akModeAuth If this bit is set the AS Slot session shall verify that the configAuthMode is set to

ConfigAuthModeAk1 before permitting any Key Ladder calculation. This bit itself is authenticated
on all Key Ladder calculations.

rkKlMode If this flag is set, slotRK shall be applied in all Key Ladder calculations for the AS Slot.
spk0NoDecrypt When set it is not permitted to use spk[0] (spkIndx==0 as input to Key Ladder function) for

authentication of the slot LK1 when in decryption mode.
reserved2 Reserved field; shall be set to 0.
rkDecrMode Defines the application of a random session key for the Key Ladder calculations. See

clause 6.2.2.5.
minEciRootState Minimal value for ECI root version and root Revocation List version. If the CPS has applied an

ECI Root Key or a root Revocation List for ECI authentication purposes less than the values in
this structure no Key Ladder computation shall be permitted for the session.

minClientVersion Version of the ECI Client. Used to verify Revocation List version numbers for POPK.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)23

6.2.2.3 Encryption Configuration

The applicable configuration state for an AS Slot session in encryption mode is defined in the c-code below and its
description is given in Table 6.2-3.

typedef struct EncryptConfig {
 uint configVersion:4;
 uint reserved1:4;
 uint microServerVersion:24;
 uint asymKlMode:1;
 unit rkKlMode:1;
 uint reserved2:22;
 RkMode rkEncrMode;
 uchar basicUriTrfr;
 uint contPropControl;
 ContProp defaultCP;
 EciRootState minEciRootState;
} EncryptConfig;

Table 6.2-3: EncryptConfig structure definition

Field Description
configVersion Version of the encryption configuration. Defined value is 0x1: version 1. All other values are

reserved. An AS Slot shall not execute any state transition function if this field does not have a
permitted value.

Reserved1 Reserved field; shall be set to 0.
microServerVersion Version number of the Micro Server configuration. Also used as minimum Revocation List

version number for Micro Client authentication in asymmetrical Micro Server mode.
asymKlMode If this flag is set the Key Ladder shall operate in accordance with the asymmetrical client

Authentication Mechanism defined in clause 5.3.
rkKlMode If this flag is set slotRK shall be applied in any Key Ladder calculation.
Reserved2 Reserved field; shall be set to 0.
rkEncrMode Defines the application of a random key for the Key Ladder calculations. See clause 6.2.2.5.
basicUriTrfr Defines state transformations of the basic URI from the import connection before applying the

basic URI as content property of the encrypted content. See Table 6.2-5 for the values.
contPropControl Defines how the Content Properties of the encrypted content are computed. See Table 6.2-4.
defaultCP A default value for all content property fields. Application in the Key Ladder calculation is

under control of the contPropControl field.
minEciRootState Minimal value for ECI root version and root Revocation List version. If the CPS has applied an

ECI Root Key or a root Revocation List for ECI authentication purposes less than the values
in this structure, no Key Ladder computation shall be permitted.

The contPropControlFields field is an array of 16 2-bit fields. The 2-bit fields indicate how the Field1 Content
Properties for the encrypted output is controlled. The decription is given in Table 6.2-4. CpControlFlag bit-2n and bit
2n+1 shall correspond to Field1-byte n.

Table 6.2-4: CpCtrl definition

Flag name Value Description
CpCtrlCopy 0b00 CP Field1 content property byte shall be copied from import connection
CpCtrlDef 0b01 CP Field1 content property byte shall be set to the value of the corresponding defaultCP byte
CpCtrlMS 0b10 CP Field1 content property byte is set by Micro Server
Reserved 0b11 Value is reserved

The basicUriTrfr field modifies the above behaviour of CPControlFlags for the BasicUri field when the state of its
CPControlFlag equals CPCopy. Table 6.2-5 defines the alternate behaviour.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)24

Table 6.2-5: BasicUriTrfr values and description

Flag name Value Description
JustCopy 0x00 Field1 content property byte is copied from import connection
NoMoreCopy 0x01 A basicURI state of RedistributionProtected shall be transformed into a ViewOnly state
Reserved Other Reserved for future use
NOTE: By setting the BasicUriTrfr state to NoMoreCopy the Micro Client system will only permit streaming for

any protected content input to the Micro Server.

6.2.2.4 Random session Key control

The RKMode structure as defined in the c-code below and Table 6.2-6 defines the mode in which the random session
key has to be applied in the Key Ladder.

typedef struct RKMode {
 uint mode:2;
 uint limit:6;
} DecryptConfig;

Table 6.2-6: Random Key structure for decryption and encryption session

Field Description
mode Defines the mode of application of the random session key. The values are:

• 0b00: RKModeNone, No Random session key inserted.
• 0b10: RKModeDataLimit Random session key applied with data limit.
• 0x11: RKModeTimeLimit Random session key applied with time limit.
• 0b01: value reserved.

limit The value defines the applicable limit in terms of real time seconds or kbytes of data that is
decrypted or encrypted since the initialization of the random key. The function limitValue() defines
the actual limit value that applies. Value 63 is reserved.

uint limitValue(uint limit) {
 uint val;

 if (limit==0) return 1;
 limit -=1;
 if (limit&0b1 == 0b0) val=2 else val=3;
 return val * (1<<(limit>>1));
}

6.2.2.5 Total session configuration

The complete configuration control information for an AS Slot session in encryption or decryption mode is defined in
the SessionConfig structure defined below. In case of the AS Slot being in encryption mode it includes the
configuration information for subsequent decryption.

typedef struct SessionConfig {
 EncryptConfig encryptConfig; /* configuration for encryption */
 DecryptConfig decryptConfig; /* configuration for decryption */
} SessionConfig;

The structure cpsEciRootState defining the ECI Root State for validating ECI Certificate Chains is defined in the c-
code below and in Table 6.2-7.

typedef struct EciRootState {
 uchar rootVersion;
 uint rlVersion:24;
} EciRootState;

EciRootState cpsEciRootState; /* contains the minimum value from the CPS */

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)25

Table 6.2-7: EciRootState structure field description

Field Description
rootVersion Version of the ECI Root Certificate
rlVersion Version of the Revocation List applied with the Root Certificate
NOTE: EciRootState is typically applied as an under bound (minimum value) that is permissible for the ECI

root version and Revocation List version when loading ECI Host and ECI Client information.

The following function is defined that checks if the cpsEciRootState is sufficient to proceed with computing a key:

bool cpsEciRootStateOk(uint slotId, uint sessionId) {
 if (ss[slotId].slotMode == SlotModeDecr)
 return
 (cpsEciRootState.rootVersion >=
 ss[slotId].se[sessionId].config.decryptConfig.minEciRootState.rootVersion)
 && (cpsEciRootState.rlVersion >=
 ss[slotId].se[sessionId].config.decryptConfig.minEciRootState.rlVersion);

 if (ss[slotId].slotMode == SlotModeEncr)
 return
 (cpsEciRootState.rootVersion >=
 ss[slotId].se[sessionId].config.encryptConfig.minEciRootState.rootVersion)
 && (cpsEciRootState.rlVersion >=
 ss[slotId].se[sessionId].config.encryptConfig.minEciRootState.rlVersion);

 /* following should not occur */
 return false;
}

Preconditions:

• AS-slot slotId is initialized.

6.2.2.6 Random Session Key state

For each decryption or encryption session associated with an AS Slot, the AS Slot stores random key state information
as defined in the c-code below and described in Table 6.2-8.

typedef struct RkState {
 SymKey rkCurrent;
 SymKey rkNext;
 ulong limitCounter;
} RkState;

Table 6.2-8: The RkState Random Key State field description

Field Description
rkCurrent Current random key used for insertion in Key Ladder to compute CW.
rkNext Next value of the random key to be inserted in the Key Ladder to compute CW.
limitCounter Counter indicating the usage state of the current key in units related to the limit value applying to

the key. The value counts the remaining units that can still be encrypted or decrypted based on
a CW computed with the rkCurrent.

The limitCounter field shall be incremented on application of the CW.

NOTE: Implementations may effectively implement the counter as part of the content processing system.

6.2.2.7 Import Export state

Each encryption session has one decryption session associated with it from which it imports the content to be re-
encrypted. Import shall be possible simultaneously for (at least) two export groups of the exporting sessions, permitting
seamless changeover.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)26

Two decryption sessions can be coupled. This permits different sub-streams that require other control words (computed
by the same AS Slot) to be merged into one compound stream with one set of Content Properties before forwarding to
industry standard outputs or export. As part of merging the AS system checks that the Content Properties of the
merged streams are equal.

NOTE: Comparing Content Properties can also involve the export group id, which ensures that export chain
processing is required for both coupled sessions are equal.

In conjunction with the random key state this is the session bound state in the AS Slot. The session state 'se' is defined
below in the c-code; the field descriptions are listed in Table 6.2-9.

#define MaxExpGroupIds 2

typedef struct ImportExportState {
 int importSlotId;
 int importSession;
 uchar expGrpId[MaxExpGrpId];
 bool importPermitted[MaxExpGrpId];
 RkState rkState;
} ImportExportState;

#define ImportNone -1

Table 6.2-9: ImportExportState structure definition

Field Description
importSlotId Only applicable if the AS Slot is in encryption mode. The value is the slot number from

which content is imported ('import slot'). The default value is -1.
importSession Only applicable if the AS Slot is in encryption mode. The value is the session number in

the import slot from which content is imported. The default value is -1.
expGrpId[eid] Only applicable if the AS Slot is in encryption mode. The export group id of the exporting

AS Slot from which the content can be imported. Value 0x00 is reserved.
importPermitted[eid] Only applicable if the AS Slot is in encryption mode. Set to true if the for expGrpId[eid] is

permitted by the exporting AS Slot; false otherwise. The default value is false.
rkState State of the random session key for this session.

The AS System shall remove an import session (set corresponding ImportPermitted field to false) if the corresponding
decryption session is reset or re-initialized. The AS System shall reset all the sessions of an AS Slot on the reset or re-
initialization of an AS Slot.

6.2.3 Content Property Authentication

ECI Clients that perform decryption functions provide the ECI Host with the Content Property values through the
respective content property API. The ECI Host shall input these values to the Advanced Security System in
combination with the data required to compute the control word for the applicable content. The Advanced Security
System shall ensure the proper enforcement of the Content Properties and validate the Content Properties by using
them to compute the C-input to the AS Key Ladder Block.

Micro Servers use the Content Properties passed on and/or processed by the AS System or the ECI Client using the
same mechanism as above for computing in process of computing the C-input to the Key Ladder. AS Slots used in
encryption mode verify the Content Properties supplied by the Micro Server against those forwarded by the
decryption resource in accordance with the Micro Server configuration settings. Encryption is halted on detection of a
mismatch.

For the purpose of authentication and verification Content Properties are combined into a byte-sequence in two stages.
The first stage combines smaller fixed length content property fields into field1. The fieldControl byte controls the
presence of byte-size content property fields for authentication. In the second stage longer content property fields are
composed into a byte sequence field2. Field1 and field2 are concatenated and are input to a hash function which
condenses all fields into a 128-bit value for the C-input of the key ladder. Table 6.2-10 presents the field1 structure.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)27

Table 6.2-10: field1 structure definition

Name Type Byte number Description
fieldControl FieldControl 0,1 This field defines a 16-bit value with the least significant bits in

byte 0. See Table 6.2-11.
basicUri byte 2 The value of this field shall correspond to BasicUri type

specification, ETSI GS ECI 001-3 [3], table 9.8.2.5.1-1.
outputControl byte 3 The value of this field shall correspond to Output Control Vector

specification ETSI GS ECI 001-3 [3], table 9.8.2.6.1-1.
standardUri byte [3] 4-6 The value of this field shall correspond to the Standard URI

specification ETSI GS ECI 001-3 [3], table 9.8.2.3.1-1.
exportGroup byte 7 Interpreted as unsigned integer representing the export group id that

applies to the content. Value equal 0 shall be interpreted by the ECI
Host as no export is permitted; values 0x80 - 0xFF are reserved.

parentalAuth byte 8 Corresponds ParCond.basicCondition as defined in ETSI
GS ECI 001-3 [3], clause 9.8.1.7.7-1, with bit [0..5] set to 0b000000.

Reserved byte[7] 9-15 Bytes shall be set to 0x00 by ECI Hosts complying with the present
document.

Table 6.2-11: FieldControl structure definition

Name Bit(s) Description
bit-<n> 2-16 This bit controls the validation of byte-<n> of field1. If the value is 0b1 it shall

indicate that the value of bye-<n> shall be validated and be equal to the
indicated field, if the value is 0b0 it shall indicate that byte-<n> shall not be
validated and the value 0x00 shall be used instead for byte-<n> in field1.
Bit-2 shall be set to 0b1 when used as input to compute a decryption control
word. This ensures the basicUri is always authenticated against the value
used at the time of encryption of the content.

Field2ctrl 0-1 Value 0b00 indicates field2 is not present. Value 0b01 indicates field present
and uses the encoding as defined below. Values 0b10 and 0b11 are
reserved and shall not be used.

Field2 definition uses a tag/length/value structure with an overall length field to ensure overall integrity. Field2
structure is defined below in this clause.

The function computeField1Decrypt computes the selection logic for the next step in the authentication:

 void computeField1Decrypt(uchar field1[16], uchar result1[16]) {
 int i;
 ushort fieldControl = field1[0] + field1[1]<<8;

 result1[0] = field1[0];
 result1[1] = field1[1];
 for (i=2; i<16; i++)
 if (fieldControl>>i & 0b1)
 result1[i] = field[i];
 else
 result1[i] = 0x00;
 }

An AS Slot in encryption mode shall compute the input to the content property authentication denoted as result1 and a
cpMask field for comparing field1 bytes to field1 belonging to content of the importing session as:

 void computeField1Encrypt(
 uchar msField1[16],/* field1 for CP from Micro Server Client */
result1[16], /* result CP for authentication in computing CW */
 ushort cpMask, /* result mask for comparing msField1 to client's
 version of CP field1 */
 EncryptConfig ssEncrypt /* encryption configuration of the AS slot */
) {
 int i;
 uchar cp[16]; /* CP value to be computed */

 /* set control bytes of content properties */
 cp[0] = ssEncrypt.defaultCp[0];
 cp[1] = ssEncrypt.defaultCp[1];
 mask = 0x0000;

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)28

 /* process the contPropControl rules to compute cp */
 for (i=2; i<16; i++) {
 switch (ssEncrypt.contPropControl>>(2*i) && 0b11) {
 case CpCtrlCopy: /* shall be copied from import Client */
 if (i==2) { /* basic URI byte */
 /* process basicUriTrfr */
 switch (ssEncrypt.basicUriTrfr) {
 case BasicUriTrfrNoChange:
 cp[i]= msField1[i];
 break;
 case BasicUriTrfrNoMoreCopy:
 if ((clField1[2]&0b11) == RedistributionProtected)
 cp[i]= (msField1[1] & 0xFC) + ViewOnly;
 else
 cp[i]= msField1[i];
 break;
 } else { /* all other CP bytes */
 cp[i]= msField1[i];
 }
 cpMask += 1<<i; /* msField1 byte i to be compared to imp client */
. break ;
 case CpCtrlDef: /* shall be set to default CP from configuration *?
 cp[i] = ssEncrypt.defaultCP[i] ;
 break ;
 case CpCtrlMS: /* shall be defined my software Micro Client */
 cp[i] = msField1[i];
 break;
 }
 }

 /* compute input to authentication function same was as for decryption */
 computeField1Decrypt(cp, result1);
 }

Field2 is a structured byte sequence as defined below:

typdef struct Field2 {
 uint length; /* number of bytes in content, shall be a multiple of 4 */
 byte content[]; /* content defined below */
} Field2;

The content field of the Field2 structure shall contain a sequence of LargeProperty structures each with a unique tag.
The LargeProperty is defined by the c-code below. :

typdef struct LargeProperty {
 uint propertyTag; /* see Table 6.2-12 */
 uint length; /* length of property field in bytes
 byte property[]; /* contains the actual property value */
 byte padding[]; /* additional bytes set to 0x00 to make LargeProperty a
 multiple of 4 bytes large */
} LargeProperty;

The largeProperty propertyTag field values and corresponding property field definitions are defined in Table 6.2-12.

Table 6.2-12: largeProperty tag field values and meaning

propertyTag value Property
0x00000000 Reserved
0x00000001 Corresponds to parameter data of the setDcrMarkBasic message as defined in ETSI

GS ECI 001-3 [3], clause 9.8.1.7.5
0x00000002 Corresponds to parameter data of the setDcrMarkExt message as defined in ETSI

GS ECI 001-3 [3], clause 9.8.1.7.6
0x00000003 Corresponds to the parameter custURI of setDcrCustUri message as defined in ETSI

GS ECI 001-3 [3], clause 9.8.1.4.1
Other Reserved for future use

The AS System may refuse any data exceeding its processing capacity for field2.

The AS System shall check the consistency of any Field2 data parameter using the following checks:

• Length of the constituent LargeProperty structures is equal to the length field of the Field2 structure.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)29

• The padding bytes of all constituent LargeProperty structures are 0x00.

The associated data input C for the Key Ladder shall be computed from result1 and field2 according to the following c-
code:

void computeInputC(uchar result1[16], unchar *field2, uchar input_C[16])
{
 uchar hash2[16], hashIn[32];
 uint i, length;

 if (result1[0] & 0b11 == 0x00) {
 /* no field2 to be included */
 for (i=0; i<16; i++) hashIn[i] = result1[i];
 asHash(hashIn, 16, 128, input_C);
 } else if result[0] & 0b11 = 0x01) {
 /* field2 to be included for input-C */
 length = (Field2 *)field2->length + 4;
 asHash(field2, length, 256, hash2);
 for (i=0; i<16; i++) hashIn[i] = result1[i];
 for (i=0; i<32; i++) hashIn[16+i] = hash2[i];
 asHash(hashIn, 48, 128, input_C);
 }
}

asHash is the hash function defined in clause A.1 of a byte sequence in the first parameter, the length of the byte
sequence in the second parameter, a bit-length of the result in the third parameter and the result in the last parameter.

Robustness of the outer Hash computation (directly computing shall be at least as high as that of the Hash computation
of the inner Hash. The measure of Robustness of a hash reflects the effort required for creating a discrepancy between
any of the inputs of the hash function and their application of these inputs as content property as well as manipulating
the hash function and/or its output.

An example of different levels of Robustness of the two hash computations is that the outer hash can be conducted by a
robust hardware block whereas the inner hash can be conducted by a robust software implementation.

6.2.4 AS Slot functions

6.2.4.1 Overview

The AS System can perform various functions on behalf of ECI Clients by acting through the ECI Host. These
functions form the basis for the Advanced Security API in [3]. An "event" reports an asynchronously occurring event
back to the ECI Client. No response is possible. All other functions are designated to be either asynchronous or
synchronous messages initiated by the ECI Client; their return values indicate the response status. The functions are
listed in Table 6.2-13.

Table 6.2-13: Overview of Advanced Security Functions

Function name Description Clause
reqAsInitSlot Initialize an AS Slot 6.2.4.2
reqAsAStartDecryptSession Start a decryption session in an AS Slot 6.2.4.3
reqAsCoupleDecryptSession Couple two decryption sessions into one 6.2.4.3
reqAsDecoupleDecryptSession Decouple two coupled decryption sessions 6.2.4.3
reqAsStartEncryptSession Start an encryption session 6.2.4.3
callAsNextKeySession Change to the next random key 6.2.4.3
reqAsStopSession Stop a session 6.2.4.3
reqAsExportConnSetup Setup an Export Connection from decryption to

encryption session
6.2.4.4

reqAsExportConnEnd Terminate existing export session 6.2.4.4
reqAsLoadLk1 Load top level link key in Key Ladder for a session 6.2.4.5
reqAsComputeEncrCw Compute encryption control word 6.2.4.6
reqAsComputeDecrCw Compute decryption control word 6.2.4.7
reqAsComputeAkClient Compute authentication key for use by the ECI Client 6.2.4.8
reqAsClientChalResp Use authentication key on behalf of ECI Client 6.2.4.8
reqAsAuthDecrConfig Authenticate the session configuration with

Authentication Mechanisms (decryption mode)
6.2.4.9

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)30

Function name Description Clause
reqAsAuthEncrConfig Authenticate the session configuration and encryption

parameters with Authentication Mechanisms (encryption
mode)

6.2.4.9

reqAsLdUssk Load Micro Server secret key 6.2.4.10
reqAsMInikLk1 Compute asymmetrical Micro Client initialization message 6.2.4.11
reqAsClientImageDecrKey Compute decryption key for ECI Client image 6.2.4.12
getAsSlotRk Read slot random key 6.2.4.13
getAsSessionRk Read session random key 6.2.4.13
getAsSessionLimitCounter Read remaining units of session random key 6.2.4.13
setAsSessionLimitEvent On reaching a limit value for remaining units send event 6.2.4.13
reqAsEventSessionLimit Event message on reaching limit value 6.2.4.13
getAsClientRnd Get a new random number for ECI Client applications 6.2.4.13
getAsSC Get current Scrambling Control field status of content in a

session
7.9

reqAsEventCpChange Event message on content property change in imported
content in an encryption session

7.9

setAsPermitCPChange Enable/disable imported content property CP changes
taking effect on control word selection for encryption in an
encryption session

7.9

setAsSC Set scrambling control field of encrypted content of an
encryption session

7.9

reqAsEventSC Event message on change of scrambling control field in
session

7.9

The pseudo code in the sub-clauses of this clause contains error codes as return value of functions. The Error code
values are defined in clause 6.2.4.15 including a verbal description.

6.2.4.2 AS Slot initialization

At loading time the ECI Host shall reserve an AS Slot in the Advanced Security System on behalf of each ECI Client
to be loaded. The ECI Host will invoke the reqAsInitSlot function as defined below. All state information of the AS
Slot shall be set to its default state; any Export Connection shall be reset. The ECI Host shall load the ECI Client
using the loader core (see clause 9). The AS Slot's POClRLVnr shall reflect the minimum version number of the POC
Revocation List used to validate the client image. This value will be verified when the ECI Client initiates a session.

int reqAsInitSlot(uint slotId, ECI_Certificate_Chain popkChain,
 uint slotVersion, slotMode)

Semantics:

All state information of AS Slot slotId shall be set to the default state; any Export Connection shall be reset.

Loading of POPK requires providing the chain for processing to the CPS system. The rules for processing of POPK
chains are defined in clause 8.4. ECI_Certificate_Chain is defined in [3], clause 5.4.1. Once successfully validated the
following c-code shall be executed:

/* initialise the slot state */
ss[slotId].popk = /* validated value of popk returned by CPS */;
ss[slotId].POClRLVnr = /* value used for client image verification */;
ss[slotId].version = slotVersion;
ss[slotId].slotMode = slotMode;
ss[slotId].configAuthMode = ConfigAuthModeNone;
ss[slotId].rkSlot = rnd128();
return ErrOk;

The function rnd128() returns a random 128 bit number as defined in clause A.3 as an array of 16 uchar's.

6.2.4.3 AS Slot session and random key control

An AS Slot supports different session states for different concurrent sessions. The following functions start and stop
sessions for a slot:

int reqAsAStartDecryptSession(uint slotId, ushort mh, PubKey spk,
 SessionConfig config, uint *sessionId)

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)31

Semantics:

The following c-code shall be executed:

if (ss[slotId].slotMode != slotModeDecr) return ErrSlotMode;

/* check if a valid client revocation list was used */
if (config.decryptConfig.clientVersion >
 ss[slotId].clientPOClRLVnr) return ErrRevocEnforce;

/* locate any free sessionId; any algorithm is ok */
int i=0;
while (i<NSESSIONS && ss[slotId].se[i].active) i++;
if (i==NSESSIONS) return ErrNoMoreSessions;
/* i contains a non-active session administration block */
*sessionId = i;

/* initialise session state */
ss[slotId].se[i].active = true;
ss[slotId].se[i].mh = mh;
ss[slotId].se[i].coupledSessionId = -1;
ss[slotId].se[i].importPermitted = false;
ss[slotId].se[i].spk = spk;
ss[slotId].se[i].config = config;
ss[slotId].se[i].rkState.rkCurrent = rnd128();
ss[slotId].se[i].rkState.rkNext = rnd128();
ss[slotId].se[i].rkState.limitCounter =
 limitValue(config.decryptConfig.rkDecrMode.limit);

if (!cpsEciRootStateOk(sdlotId,i)){
 ss[slotId].se[i].active = false;
 return ErrRevocEnforce;
}

return ErrOk;

Preconditions:

• AS Slot was successfully initialized.

NOTE: The mh (media handle) parameter permits the ECI Host to identify the AS decryption session associated
to the content decryption session it started. It is not used by the AS system itself.

In order to couple two initialized sessions the coupleDecrypSessions function is provided. The second session is
coupled to the first; the first becoming the main handle for the combined content.

int reqAsCoupleDecryptSession(uint slotId, uint sId1, uint sId2)

Semantics:

The following c-code shall be executed:

if (ss[slotId].slotMode != slotModeDecr) return ErrSlotMode;
if (!ss[slotId].se[sId1].active) return ErrParam2;
if (!ss[slotId].se[sId2].active) return ErrParam3;
if (ss[slotId].se[sId1].coupledSessionId != -1) return ErrSession1Coupled;
if (ss[slotId].se[sId2].coupledSessionId != -1) return ErrSession2Coupled;

se[slotId][sId1] = sId2;
/* the content processing system is informed on the session coupling &/

return ErrOk;

Preconditions:

• Both AS Slot sessions were successfully initialized.

The following function can be called to decouple a coupled session:

int reqAsDecoupleDecryptSession(uint slotId, uint sessionId)

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)32

Semantics:

The following c-code shall be executed:

if (ss[slotId].slotMode != slotModeDecr) return ErrSlotMode;
if (!ss[slotId].se[sessionId].active) return ErrParam2;
if (se[slotId][sessionId].coupledSessionId == -1)
 return ErrSessionNotCoupled;

ss[slotId].se[sessionId].ies.coupledSessionId = -1;
/* the content processing system is informed on the session decoupling */

return ErrOk;

Preconditions:

• The sessions were previously coupled.

The function to initiate an encryption session is:

int reqAsStartEncryptSession(uint slotId, ushort mh, uint importSlotId,
 int importSessionId, PubKey spk, SessionConfig config,
 uint nEncr, PubKey encrSpk[MaxSpkEncr],
 PubKey encrPopk[MaxSpkEncr], ulong encrCwUri, uint *sessionId)

Semantics:

The following c-code shall be executed:

If (ss[slotId].slotMode != slotModeEncr) return ErrSlotMode;
if (0 > nEncr || nEncr >= MaxEncr) return ErrParam4;

/* locate free sessionId; any algorithm is ok */
int i=0;
while (i<NSESSIONS && ss[slotId].se[i].active) i++;
if (i==NSESSIONS) return ErrNoMoreSessions;
/* i contains a non-active session administration block */

/* check if a valid client revocation list was used */
if (config.encryptConfig.microServerVersion >
 ss[slotId].clientPOClRLVnr) return ErrRevocEnforce;

*sessionId = i;

/* initialise session state information */
ss[slotId].se[i].active=true;
ss[slotId].se[i].mh = mh;
ss[slotId].se[i].spk = spk;
ss[slotId].se[i].config = config;
ss[slotId].se[i].encrCwUri = encrCwUri;

int j;
for (j=0; j<nEncr; j++) {
 ss[slotId].se[i].encrSpk[j] = encrSpk[j];
 ss[slotId].se[i].encrPopk[j] = encrPopk[j];
}

/* initialise random key state */
ss[slotId].se[i].rkState.rkCurrent = rnd128();
ss[slotId].se[i].rkState.rkNext = rnd128();
ss[slotId].se[i].rkState.limitCounter =
 limitValue(config.encryptConfig.rkEncrMode.limit);

/* initialise import state */
ss[slotId].se[i].importSlotId = importSlotId;
ss[slotId].se[i].importSession = importSessionId;

if (!cpsEciRootStateOk(sdlotId,i)){
 ss[slotId].se[i].active = false;
 return ErrRevocEnforce;
}

return i;

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)33

Preconditions:

• AS Slot was successfully initialized.

The ECI Host can move forward the random key state (moving next to current) of a session using the following
function:

int callAsNextKeySession(uint slotId, uint sessionId)

Semantics:

The following c-code shall be executed:

if (!ss[slotId].se[sessionId].active) return ErrNoSuchSession;

ss[slotId].se[sessionId].rkCurrent = ss[slotId].se[sessionId].rkNext;
ss[slotId].se[sessionId].rkNext = rnd128();
if (ss[slotId].slotMode == SlotModeEncr)
 se[slotId][sessionId].limitCounter =
 limitValue(
 ss[slotId].se[sessionId].config.encryptConfig.rkEncrMode.limit)
else if (ss[slotId].slotMode == SlotModeDecr)
 se[slotId][sessionId].limitCounter =
 limitValue(
 ss[slotId].se[sessionId].config.decryptConfig.rkDecrMode.limit);

return ErrOk;

Preconditions:

• AS Slot session was successfully initialized.

When operating in TS-mode the content processing system will signal the changeover of current/next control word to
the associated ECI Client (see [3]). The ECI Client can use this message to trigger the computation of the next control
word.

The ECI Host can stop the session and, as a consequence, terminate any pending Export Connections from that
session using the following function:

int reqAsStopSession(uint slotId, uint sessionId)

Semantics:

The following c-code shall be executed:

int i, j;

ss[slotId].se[sessionId].active = false;

/* decouple from any coupled decryption sessions */
for (j=0; j<NSESSESIONS; j++)
 if (ss[slotId].se[j].coupledSessionId == sessionId)
 ss[slotId].se[j].coupledSessionId = -1;
 /* the content processing system is informed of decoupling */

/* cancel all export sessions */
if (ss[slotId].slotMode == SlotModeDecr)
 for (i=0; i<NSLOTS; i++)
 for (j=0; j<NSESSIONS; j++)
 if (ss[i].se[j].importSlot == slotId &&
 ss[i].se[j].importSession == sessionId)
 {
 for (k=0; k<MaxExpGrpId; k++)
 ss[i].se[j].importPermitted[k]= false;
 ss[i].se[j].importSlotId= -1;
 ss[i].se[j].importSession= -1;
 }

return ErrOk;

Preconditions:

• AS Slot session was successfully initialized.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)34

6.2.4.4 AS Slot Export control

The export Authentication Mechanism permits the ECI Host to create an Export Connection from an AS Slot
session in a decrypting ECI Client to an AS Slot session of a Micro Server, thus permitting the transfer of content
from decrypting ECI Client to Micro Server. The AS System uses the Certificate Processing Subsystem to process
the required export, import and export authentication chains using the exporting AS Slot sessions POPK and
minClientVersion as a base for validating the export and subsequent import chain. The end result is that the Export
Connection element for an export group ID is positively validated, or the connection refused. The actual connection is
created from an (export) session to an import session.

int reqAsExportConnSetup(uint slotId, uint sessId, uint impSlotId,
 uint impSessId, uint grpIndx, CertSerialChain expCh,
 CertSerialChain impCh, CertSerialChain auth[])

Semantics:

expCh is the export chain from POPK to TPEGC or ESC Certificate. ImpCh is the import chain from TPEGC the ESC.

NOTE: impCh can be empty. auth[] is the sequence of export authentication chains required to co-authenticate
sections of the import chain.

The CertSerialChain structure definition is defined in [3], clause 9.7.1.3.3.

The AS Slot first verifies the impCh using the auth[] export authentication chains and using the installed ECI Root Key
and Revocation List version number.

The AS Slot then requests the Certificate Processing Subsystem to process the export plus import chain using the
POPK and the AS State registers POPK and ExportRlVersion as root. The id of the first certificate in the export chain
shall be stored in expGrpId.

On successful authentication, an export element is added to the AS Slot session state, containing the export group id and
the slot id plus session id of the authenticated export ECI Client. The following c-code shall be executed to process to
create the import connection. The authentication can be computed for two export group ids so as to permit a seamless
changeover from one to the next export group in the content properties.

/* the CPS delivers the following variables on successful processing of the
 Export import chains */
PubKey impSpk; /* the spk of the importing system */
uint impConfigVersion; /* the config. Version nr of the export system */
uint expGrpId; /* the export group for which the export connection is valid */

/* check if potential import slot is in decent state */
if (!(ss[impSlotId].slotMode == SlotModeEncr &&
 ss[impSlotId].se[impSessId].active &&
 ss[impSlotid].se[impSessId].spk == impSpk
 ss[impSlotId].se[impSessId].encryptConfig.microServerVersion >=
 impConfigVersion
)) return ErrExportSlotBadState;
}

/* check if another import connection already exists */
if (ss[impSlotId].se[impSessId].ies.importSlotId != ImportNone)
 return ErrExportOngoing;
/* Set the import/export state of the import-session to reflect the export connection */
ss[impSlotId].se[impSessId].ies.importSlotId = slotId;
ss[impSlotId].se[impSessId].ies.importSession = sessId;
ss[impSlotId].se[impSessId].ies.expGrpId[grpIndx] = expGrpId;
ss[impSlotId].se[impSessId].ies.importPermitted[grpIndx] = true;
return ErrOk;

Preconditions:

• AS Slot session was successfully initialized.

After setting up an Export Connection it can also be terminated by the importing side (which will effectively halt the
encryption session):

int reqAsExportConnEnd(uint slotId, uint sessionId)

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)35

Semantics:

The following c-code will be executed:

if (!(ss[slotId] != SlotModeEncr)) return ErrImportSlotBadState;
if (!(ss[slotId].se[sessionId].active)) return ErrParam2;
if (ss[slotId].se[sessionId].ies.slotId == -1) return ErrNoExport;

ss[slotId].se[sessionId].ies.importSlotId = -1;
ss[slotId].se[sessionId].ies.importSession = -1;
for (int i=0; i< MaxExpGrpId; i++)
 ss[slotId].se[sessionId].ies.importPermitted[i] = false;
return ErrOk;

Preconditions:

• AS Slot session was set up for import.

6.2.4.5 LK1 Key Ladder initialization

In order to perform Key Ladder mechanism operations in an AS Slot, the ECI Host can load the top level link key
LK1 for subsequent Key Ladder output computations.

int reqAsLoadLk1(uint slotId, uint sessId, InputV inputV,
 ulong spkUri, uchar spkIndx)

Semantics:

The following c-code shall be executed:

if (ss[slotId].slotMode == SlotModeEncr) spkIndx = 0;
if (spkIndx >= 16) return ErrParam5;
/* check if spkUri in set_1 */
if ((spkUri>>spkIndx & 0b1) != 0b1) return ErrSpkUriViolation;
if (!ss[slotId].se[sessId].active) return ErrParam2;
if (spkIndx==0 && ss[slotId].slotMode==SlotModeDecr &&
 ss[slotId].se[sessId].config.decryptConfig.spk0NoDecrypt)
 return ErrSpk0NoDecrypt;

ss[slotId].se[sessId].spkUri = spkUri;
ss[slotId].se[sessId].spkIndx = spkIndx;

if (ss[slotId].slotMode == slotModeEncr &&
 ss[slotId].se[sessId].config.encryptConfig.asymKlMode
){
 ss[slotId].lk1= rnd128();
 return ErrOk;
}

ss[slotId].se[sessId].lk1 =
 blockV_blockC_keyladder(inputV,ss[slotId].se[sessId].spk);
return ErrOk;

Preconditions:

• AS Slot session was initialized.

6.2.4.6 Encryption Control Word calculation

Once AS Slot state field lk1 is set control words can be computed. cwIndx indicates the odd or even control word that is
computed. The value can be 0 (even) or 1 (odd), and shall always be 0 for file based decryption.

int reqAsComputeEncrCw(uint slotId, uint sessId, ulong cwUri, uint nElk,
 SymKey elk[24], uchar XT[32], uint rkIndx, Field2 field2,
 uint cwIndx)

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)36

Semantics:

The following c-code shall be executed:

PubKey spk[MaxSpkEncr+1], popk[MaxSpkEncr+1]; /* temporary variables */
SessionConfig config[MaxSpkEncr+1]; /* temporary variable */

/* basic consistency checks */
if (!ss[slotId].se[sessId].active) return ErrParam2;
if (ss[slotId].slotMode != SlotModeEncr) return ErrSlotMode;
if (ss[slotId].se[sessId].config.encryptConfig.rkEncrMode.mode==0b00) {
 if (nElk<2) return ErrParam4;
} else {
 If (nElk<3) return ErrParam4;
}

/* verify if the slot configuration has been authenticated */
if (ss[slotId].se[sessId].configAuthMode != ConfigAuthModeAk1)
 return ErrNoConfigAuth;

/* verify if the CPS ECI Host Root state is sufficient to proceed */
if (!cpsEciRootStateOk(slotId,sessId)) return ErrRevocEnforce;

/* check if random slot-session key has to be applied */
SymKey rkAppl; /* random key that may have to be applied */
if (rkIndx == 0) {
 rkAppl = ss[slotId].se[sessId].rkState.rkCurrent;
} else if (rkIndx == 1) {
 rkAppl = ss[slotId].se[sessId].rkState.rkNext;
} else {
 return ErrParam7;
}

/* insert random slot key and random session key if required */
if (ss[slotId].se[sessId].config.encryptConfig.rkKlMode) {
 elk[0] = ss[slotId].slotRk;
}
if (ss[slotId].se[sessId].config.encryptConfig.rkEncrMode.mode != RKModeNone) {
 if (nSpk < 3) return ErrNoSlotRkInsert;
 elk[nSpk-1] = rkAppl;
}

/* compute input-C, insert in key ladder */
uchar result1[16], seField1[16];
ushort cpMask;

computeField1Encrypt(elk[nElk-2], result1, cpMask,
ss[slotId].se[sessId].config.encryptConfig);
computeInputC(result1, field2, elk[nElk-2]);

/* use ARK with value 0 */
uchar ark[16] = (uchar){0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

/* define spk, popk and config inputs to key ladder; using slot's spk/popk in position 0 and a
replication of the slot configuration */

spk[0] = ss[slotId].se[sessId].spk;
popk[0] = ss[slotId].popk;
config[0] = ss[slotId]. se[sessId].config;
int i;
int nSpk = slot[slotId]. se[sessId].config.EncryptConfig.nEncr + 1;
for (i=0; i<nSpk-1; i++) {
 spk[i+1] = ss[SlotId]. se[sessId].encrSpk[i];
 popk[i+1] = ss[SlotId]. se[sessId].decrSpk[i];
 config[i+1] = ss[slotId]. se[sessId].config;
}

/* define spkUri values */
ulong spkUri = (0x1<<(nSpk+1)) - 1; /* all SPKs can be used for decoding
 keys */

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)37

/* perform the key ladder calculation */
bool asym = ss[slotId].se[sessId].config.encryptConfig.asymKlMode;
Secret SymKey cw =
 KeyLadder(ss[slotId].se[sessId].lk1, ss[slotId].se[sessId].encrCwUri,
 AcfCw1Mode, ark, popk, config XT, ss[slotId].spkUri, nSpk, spk,
 nElk, elk, asym);

/* cw is sent to the encryption resource along with cwUri, msField1, cpMask and cwIndx */

return ErrOk;

Preconditions:

• Session's LK1 was loaded.

• AS Slot session was authenticated if required.

6.2.4.7 Decryption Control Word calculation

Once AS Slot state field lk1 is set control words can be computed. cwIndx indicates the odd or even control word that is
computed. The value can be 0 (even) or 1 (odd), and shall always be 0 for file based decryption.

int reqAsComputeDecrCw(uint slotId, sessionId, ulong cwUri, uint nSpk,
 uint nElk, SymKey elk[24], PubKey spk[16], PubKey popk[16], SSConflig config[16], uchar
 XT[32], uint rkIndx, Field2 field2, uint cwIndx)

Semantics:

The following c-code shall be executed:

/* basic consistency checks */
if (!ss[slotId].se[sessionId].active) return ErrParam2;
if (ss[slotId].slotMode != SlotModeDecr) return ErrSlotMode;
if (ss[slotId].se[sessionId].spkIndx >= nSpk) return ErrParam4;
if (ss[slotId].se[sessionId].config.decryptConfig.rkDecrMode.mode==0b00) {
 if (nElk<2) return ErrParam5;
} else {
 if (nElk<3) return ErrParam5;
}
uint si = ss[slotId].se[sessionId].spkIndx ;

/* verify if the slot configuration has been authenticated if so required */
if (ss[slotId].se[sessionId].config.decryptConfig.akModeAuth &&
 ss[slotId].se[sessionId].configAuthMode != ConfigAuthModeAk1
) return ErrNoConfigAuth;

/* verify if the CPS ECI Host Root state is sufficient to proceed */
if (!cpsEciRootStateOk(slotId,sessionId)) return ErrRevocEnforce ;

/* ensure proper slot spk, popk and slotConfig are applied */
spk[si]= ss[slotId].se[sessionId].spk;
popk[si] = ss[slotId].se[sessionId].popk;

/* only authenticate the slot's decrypt configuration if required */
if (ss[slotId].se[sessionId].config.decryptConfig.klModeAuth)
 ssConfig[si].decryptConfig = ss[slotId].ssConfig.decryptConfig;

/* in all cases authenticate the klModeAuth and akModeAuth fields */
config[si].decryptConfig.klModeAuth=
 ss[slotId].se[sessionId].config.decryptConfig.klModeAuth;
config[si].decryptConfig.akModeAuth =
 ss[slotId].se[sessionId].config.decryptConfig.akModeAuth;

/* check if random slot-session key may have to be applied */
SymKey rpAppl; /* random key that may have to be applied */
if (rkIndx == 0) {
 rpAppl = ss[slotId].se[sessionId].rkState.rkCurrent;
} else if (rkIndx == 1) {
 rpAppl = ss[slotId].se[sessionId].rkState.rkNext;
} else {
 return ErrParam11;
}

/* insert random slot key and random session key if required */
if (ss[slotId].se[sessionId].config.decryptConfig.rkKlMode) {

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)38

 elk[0] = ss[slotId].slotRk;
}
if (ss[slotId].se[sessionId].config.decryptConfig.rkDecrMode.mode != RKModeNone) {
 if (nSpk < 2) return ErrNoSlotRkInsert;
 elk[nSpk-2] = rpAppl;
}

/* compute input-C, i.e. elk[nElk-1] for content Property authentication */
/* veryfy basicUri control bit is set */
if (((elk[nElk-1][0]>>2)&0b1) != 0b1) return ErrBasicUriCtrl;
uchar result1[16];
computeField1Decrypt(elk[nElk-2],result1);
computeInputC(result1, field2, elk[nElk-2]);

/* use ARK with value 0 */
uchar ark[16] = (uchar){0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

/* perform the key ladder calculation */
Secret SymKey cw =
 KeyLadder(ss[slotId].se[sessionId].lk1, cwUri, AcfCw1Mode, ark,
 popk, ssConfig, XT, ss[slotId].se[sessionId].spkUri, nSpk,
 spk, nElk, elk, false);

/* cw is passed to the decryption resource session along with cwUri, result1 and cwIndx and the
sessions states media handle value */

return ErrOk;

Preconditions:

• Session's LK1 was loaded.

• AS Slot session was authenticated if required.

6.2.4.8 Computing akClient and its application

The Key Ladder Block's Authentication Mechanism permits the secure calculation of secure keys for use by the ECI
Client using the Authentication Mechanism:

int reqAsComputeAkClient(uint slotId, InputV inputV, uint nSpk,
 uchar spkIndx, PubKey spk[16], PubKey popk[16], SessionConfig akCnf[16],
 ulong spkUri,uchar XT[32], bool online)

Semantics:

The following c-code shall be executed:

/* basic consistency checks */
if (ss[slotId].slotMode==SlotModeEncr) spkIndx = 0;
if (spkIndx >= 16) return ErrParam4;
/* check if spkUri in set_1 */
if ((spkUri>>spkIndx & 0b1) != 0b1) return ErrSpkUriViolation;
if (ss[slotId].slotMode == SlotModeEncr) {
 if (akCnf[spkIndx].encryptConfig.configVersion != 0x1) return ErrParam7;
 if (akCnf.encryptConfig.microServerVersion >
 ss[slotId].clientPOClRLVnr) return ErrRevocEnforce;
 if ((cpsEciRootState.rootVersion <
 akCnf[spkIndx].encryptConfig.minEciRootState.rootVersion)
 || (cpsEciRootState.rlVersion <
 akCnf[spkIndx].encryptConfig.minEciRootState.rlVersion))
 return ErrRevocEnforce;
}
if (ss[slotId].slotMode == SlotModeDecr) {
 if (akCnf[spkIndx].decryptConfig.configVersion != 0x1) return ErrParam7;
 if (akCnf.decryptConfig.minClientVersion >
 ss[slotId].clientPOClRLVnr) return ErrRevocEnforce;
 if ((cpsEciRootState.rootVersion <
 akCnf[spkIndx].decryptConfig.minEciRootState.rootVersion)
 || (cpsEciRootState.rlVersion <
 akCnf[spkIndx].decryptConfig.minEciRootState.rlVersion))
 return ErrRevocEnforce;
}
/* ensure proper slot spk and popk are applied */
popk[spkIndx] = ss[slotId].popk;

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)39

/* ensure proper ACF and ARK are applied */
uchar ark[16] ;
uchar acf[15] = acfAk1Mode ;
acf[1] = AkUseCl;
if (online) {
acf[1] += AkOnline;
ark = ss[slotId].slotRk;
} else {
 acf[1] += AlOffline;
 ark = {0} ;
}

/* perform the authentication mechanism */
ss[slotId].akClient =
 AuthMech(inputV,acf,ark,popk,akCnf,XT,spkUri,nSpk,spkIndx,spk);
return ErrOk;

Preconditions:

• The slot has been be initialized.

In order to use the computed ECI Client AK key the following function is defined:

int reqAsClientChalResp(int slotId, uchar challenge[16],
 uchar *(response[16]));

Semantics:

The following c-code shall be executed:

*response = AuthMechResponse(ss[slotId].akClient, challenge);
return ErrOk;

Preconditions:

• The slot was initialized.

• The slot's AkClient has been successfully computed.

6.2.4.9 AS Slot Session Configuration Authentication

The Key Ladder Block's Authentication Mechanism permits the authentication of the slot's session configuration by
the Provisioning Server. The Provisioning Server can issue offline authentication information or require online
authentication to take place by setting AkOnline in ACF. Two separate functions are available for authentication of a
decryption and an encryption slot.

int reqAsAuthDecrConfig(uint slotId, uint sessId, InputV inputV,
 uint nSpk, uchar spkIndx, PubKey spk[16], PubKey popk[16], SSCnfg clCnf[16],
 ulong spkUri, uchar XT[32], bool online, uchar verifier[16])

Semantics:

The following c-code shall be executed:

/* basic consistency checks */
if (!ss[slotId].se[sessionId].active) return ErrParam2;
if (ss[slotId].slotMode!=SlotModeDecr) return ErrSlotMode;
if (spkIndx >= 16) return ErrParam5;
/* check if spkUri in set_1 */
if ((spkUri>>spkIndx & 0b1) != 0b1) return ErrSpkUriViolation;
if (spkIndx==0 && ss[slotId].slotMode==SlotModeDecr &&
 ss[slotId].se[sessId].config.decryptConfig.spk0NoDecrypt) return ErrSpk0NoDecrypt;

/* verify if the CPS ECI Host Root state is sufficient to proceed */
if (!cpsEciRootStateOk(slotId)) return ErrRevocEnforce;

/* ensure proper slot spk, popk and config are applied */
popk[spkIndx] = ss[slotId].popk;
spk[spkIndx] = ss[slotId].se[sessId].spk;
clCnf[spkIndx] = ss[slotId].se[sessId].config;

uchar ark[16];
uchar acf[15] = acfAk1Mode;

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)40

acf[1] = AkUseAS + AkConfigAuth;
if (online) {
 acf[1] = AkOnline;
 ark = ss[slotId].slotRk;
} else {
 acf[1] = AkOffline;
 ark = {0};
}

/* perform the authentication mechanism */
Secret SymKey ak =
 AuthMech(inputV,acf,ark,popk,clCnf,XT,spkUri,nSpk,spkIndx,spk);

uchar response[16] = AuthMechResponse(ak, verifier);

if (response == {0}) {
 ss[slotId].se[sessId].configAuthMode = ConfigAuthModeAk1;
 return ErrOk;
} else {
 ss[slotId].se[sessId].configAuthMode = ConfigAuthModeNone;
 return ErrSlotConfigAuthFail;
}

Preconditions:

• AS Slot session's LK1 was loaded.

The authentication for encryption includes verifying the encryption specific state.

int reqAsAuthEncrConfig(uint slotId, uint sessId, InputV inputV,
 uchar XT[32], bool online, uchar verifier[16])

Semantics:

The following c-code shall be executed:

PubKey spk[MaxSpkEncr+1], popk[MaxSpkEncr+1]; /* temporary variables */
SessionConfig config[MaxSpkEncr+1]; /* temporary variable */

/* basic consistency checks */
if ((ss[slotId.SlotMode != SlotModeEncr) return ErrSlotMode;

/* verify if the CPS ECI Host Root state is sufficient to proceed */
if (!cpsEciRootStateOk(slotId,sessId)) return ErrRevocEnforce;

/* define spk, popk and config inputs to key ladder; using slot's spk/popk in position 0 and a
replication of the slot configuration */

spk[0] = ss[slotId].se[sessId].spk;
popk[0] = ss[slotId].popk;
config[0] = ss[slotId].se[sessId].config;
int i;
int nSpk = slot[slotId]. config.EncryptConfig.nEncr + 1;
for (i=0; i<nSpk-1; i++) {
 spk[i+1] = ss[SlotId].encrSpk[i];
 popk[i+1] = ss[SlotId].encrPopk [i];
 config[i+1] = ss[slotId].se[sessId].slotConfig;
}

/* define spkUri values */
ulong spkUri = (0x1<<(nSpk)) - 1;
 /* all SPKs can be used for decoding content */

uchar ark[16];
uchar acf[15] = acfAk1Mode;
acf[1] = AkUseAS + AkConfigAuth;
if (online) {
 acf[1] = AkOnline;
 ark = ss[slotId].slotRk;
} else {
 acf[1] = AkOffline;
 ark = {0};
}

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)41

/* perform the authentication mechanism */
Secret SymKey ak =
 AuthMech(inputV,acf,ark,popk,clCnf,XT,spkUri,nSpk,spkIndx,spk);

uchar response[16] = AuthMechResponse(ak, verifier);

if (response == {0}) {
 ss[slotId].se[sessId].configAuthMode = ConfigAuthModeAk1;
 return ErrOk;
} else {
 ss[slotId].se[sessId].configAuthMode = ConfigAuthModeNone;
 return ErrSlotConfigAuthFail;
}

Preconditions:

• AS Slot session's LK1 was loaded.

6.2.4.10 Loading a Micro Server secret key

A Micro Server client can use the AS Slot operating in asymmetrical server mode and load a Micro Server Secret Key
value ussk for subsequent establishment of a secure connection to a Micro Client chipset:

int reqAsLdUssk(uint slotId, uint sessId, InputV inputV,
 uchar XT[32], bool online, uchar mUssk[NUSSK])

Semantics:

The following c-code shall be executed:

PubKey spk[MaxSpkEncr], popk[MaxSpkEncr];
SessionConfig config[MaxSpkEncr];

/* basic consistency checks */
if (ss[slotId].slotMode!=SlotModeEncr) return ErrSlotMode;
if (!ss[slotId].se[sessId].config.encryptConfig.asymKlMode)
 return ErrSlotModeUndefined;

/* verify if the CPS ECI Host Root state is sufficient to proceed */
if (!cpsEciRootStateOk(slotId,sessId)) return ErrRevocEnforce;

spk[0] = ss[slotId].se[sessId].spk;
popk[0] = ss[slotId].popk;
config[0] = ss[slotId]. se[sessId].config;
int i;
int nSpk = slot[slotId]. se[sessId].config.EncryptConfig.nEncr + 1;
for (i=0; i<nSpk-1; i++) {
 spk[i+1] = ss[SlotId]. se[sessId].encrSpk[i];
 popk[i+1] = ss[SlotId]. se[sessId].decrSpk[i];
 config[i+1] = ss[slotId]. se[sessId].config;
}
/* define spkUri values */
ulong spkUri = (0x1<<(nSpk+1)) - 1; /* all SPKs can be used for decoding
 keys */

uchar ark[16];
uchar acf[15] = acfAk1Mode;
acf[1] = AkUseAS + AkLdUssk;
if (online) {
 acf[1] = AkOnline;
 ark = ss[slotId].slotRk;
} else {
 acf[1] = AkOffline;
 ark = {0};
}

/* perform the authentication mechanism */
Secret SymKey ak =
 AuthMech(inputV,acf,ark,popk,config,XT,spkUri,nSpk,0,spk);

/* perform AES ECB decoding of ussk */
int i,j;
uchar response[32];
for (i=0; i<NUSSK; i+=32){
response = AuthMechResponse(ak, &(mUssk[i]));
for (j=0; j<32; j++) ss[slotId].se[sessId].ussk[i+j] = response[j];

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)42

}
return ErrOk;

Preconditions:

• The session configuration was authenticated.

6.2.4.11 Generating MinitLk1 for Micro Clients

In asymmetrical Micro Server mode the AS Slot can generate Key Ladder Block initialization messages for Micro
Clients:

InputV reqAsMInikLk1(uint slotId, uint sessId, ECI_Certificate_Chain ClCPK)

Semantics:

ECI_Certificate_Chain is defined in [3], clause 5.4.1 and contains the Certificate Chain for validating a Micro Client.
This function first uses the CPS to validate ClCPK using slot[slotId] with POPK as father certificate and using
ss[SlotId].se[sessId]. config.encryptConfig.microServerVersion as the minimum Revocation List version number for
the first certificate in the chain. If this validation is successful the variable clcpk contains the client chipset public key,
and the following c-code shall be executed:

return asymInitLk1(ss[slotId].lk1, slot[slotId].ussk, clcpk);

Preconditions:

• Ussk is initialized.

• Session is in asymmetrical encryption mode.

6.2.4.12 Computing ECI Client image decryption key

In order to perform loading of an encrypted image the AS Slot can provide an authentication key with which the key to
decode the image can be decrypted. This function has to be executed before slot initialization:

int reqAsComputeImageKey(uint slotId, InputV inputV,
 symKey eKey , bool online, ECIRootState min_root_state)

Semantics:

The following c-code shall be executed:

/* a default slot configuration state is used */
SessionConfig config = {
 .decryptConfig = {
 .configVersion = 0x1,
 .reserved1 = 0x0,
 .klModeAuth = 0x0,
 .akModeAuth = 0x0,
 .rkKlMode = 0x0,
 .spk0NoDecrypt = false,
 .reserved2 = 0b000000,
 .rkDecrMode = { 0 },
 .minEciRootState = min_root_state,
 .expRlVersion = 0x0
 },
 .encryptConfig = { 0 }
} ;

if (!(cpsEciRootState.rootVersion >= min_root_state.rootVersion &&
 (cpsEciRootState.rlVersion >= min_root_state.rlVersion))
 return ErrRevocEnforce;

/* create straightforward popk/spk, XT, clCnf, */
PubKey popkArr[1]; /* also used for spk */
popkArr[0] = ss[slotId].popk;
SessionConfig cnf[1];
cnf[0] = config;
uchar XT[32] = {0};
ulong spkUri= 0x1;

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)43

uchar ark[16];
uchar acf[15] = acfAk1Mode;
acf[1] = AkUseAS + AkClImg;
if (online) {
 acf[1] = AkOnline;
 ark = ss[slotId].slotRk;
} else {
 acf[1] = AkOffline;
 ark = {0} ;
}

/* perform the authentication mechanism */
Secret SymKey ak =
 AuthMech(inputV,acf,ark,popkArr,cnf,XT,spkUri,1,0,popkArr);

Secret SymKey dImgKey = AuthMechResponse(ak, eImgKey);
/* dImgKey is subsequently used by the client loader to decrypt the client image using AES CBC mode
with IV=0 */

return ErrOk;

Preconditions:

• The slot is set to default state; slotRk is set to new random value.

NOTE: This function is not executed on request of the ECI Client.

6.2.4.13 Reading Advanced Security Information

The AS System provides the ECI Client access to data it generates and provides a general purpose random key
function for the ECI Client.

NOTE 1: "get" and "set" functions defined in this clause do not generate automatic errors on undefined parameter
values, but in case of get functions simply return an undefined value and in case of set functions do not
have any effect.

The following function reads the AS Slot's random key (typically used as a nonce for sessions):

SymKey getAsSlotRk(uint slotId)

Semantics:

The following c-code is executed:

return ss[slotId].slotRk;

In case the slot is not initialized a number is returned.

The following function reads the random key state of the session:

SymKey getAsSessionRk(uint slotId, uint sessionId, uint rkIndx)

Semantics:

The following c-code is executed:

if (rkIndx == 0)
 return se[slotId][sessionId].rkState.rkCurrent;
else
 return se[slotId][sessionId].rkState.rkNext;

In case the slot is not initialized a number is returned.

The limit counter of the session's random key can be read:

ulong getAsSessionLimitCounter (uint slotId, uint sessionId)

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)44

Semantics:

The following c-code is executed:

return se[slotId][sessionId].rkState.limitCounter;

In case the slot is not initialized a number is returned.

A limit counter value can be set on which an event is raised (e.g. to renew the random key sufficiently in time):

ulong setAsSessionLimitEvent(uint slotId, uint sessionId, ulong eventLimit)

Semantics:

An eventSessionLimitCounter event is raised once when the following condition is true after calling this function:

se[slotId][sessionId].rkState.limitCounter <= eventLimit;

NOTE 2: A second call overrides a previous call. Calling this function the second time with a very large value for
eventLimit effectively cancels the event (except when the event was already raised).

The following event is raised on reaching an event limit for a session:

reqAsEventSessionLimit(uint slotId, uint sessionId)

NOTE 3: This event translated into an asynchronous message without corresponding response in ETSI
GS ECI 001-3 [3].

6.2.4.14 Generating Client Random Numbers

The ECI Client can request a 128bit random number generated by the AS System by calling the following function:

SymKey getAsClientRnd()

Semantics:

The following c-code is executed:

return rnd128();

6.2.4.15 Error codes

The error codes values returned by the function defined in clause 6.2.4 are defined in Table 6.2-14.

These error codes follow the convention of error codes of messages between an ECI Host and an ECI Client as defined
in ETSI GS ECI 001-3 [3], clause 9.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)45

Table 6.2-14: Error return code definition

Error return code Value Description
ErrSlotMode -256 AS Slot is not in proper mode for this operation
ErrNoMoreSessions -257 No more sessions available
ErrSession1Coupled -258 First session is already coupled
ErrSession2Coupled -259 Second session is already coupled
ErrSessionNotCoupled -260 Session is not coupled
ErrNoSuchSession -261 Session does not exist
ErrExportNoSlot -262 Export slot unknown
ErrExportSlotBadState -263 Export slot in improper state
ErrExportOngoing -264 Export session already has an Export Connection
ErrImportSlotBadState -265 Importing slot not in encryption mode.
ErrNoExport -266 No export ongoing to session
ErrSpkUriViolation -267 SpkUri for slot SPK has improper value for slot mode.
ErrSlotModeUndefined -268 Slot Mode has improper value for this operation
ErrRevocEnforce -269 ECI Revocation does not permit slot to operate
ErrNoConfigAuth -270 Slot configuration has not been properly authenticated
ErrNoSlotRkInsert -271 ELK vector not sufficiently long to insert random key
ErrSpk0NoDecrypt -272 spk[0] cannot be used to generate decryption control words
ErrBasicUriCtrl -273 Basic URI field1 control bit not set
ErrOk 0 Successful call
ErrSlotConfigAuthFail -274 Authentication of the slot's session configuration failed
ErrParam<N> -<N> Error in input parameter N (ErrParam1 has value -1 and signals an

error in parameter 1)
 1..MaxInt Successful call, value defined by message definitions

7 Scrambling/descrambling and Content Export

7.1 Basic Functionality
The content processing system can decrypt content. This content is accompanied by Content Properties and Export
Connections. Content can be forwarded to standard outputs if Content Properties permit this, and can be re-encrypted
by a Micro Server in case of a matching Export Connection.

For the purpose of resource management ECI defines decryption and encryption resources. A resource is used to
decrypt or encrypt content from a single media session encrypted or to be encrypted with a single CW at a time, and a
decryption or encryption resource is connected to a single decryption or encryption AS Slot. For TS stream decryption
the decryption resource has a dual buffer for an odd and an even CW. The odd or even CW is selected by the stream to
be decoded. This can accommodate the need to change the control word on the fly in case the Content Properties of
the content to be encrypted change. For file-based decryption and encryption the ECI Host provides the
synchronization between CW and the content to be decrypted, which can be substantially faster than real-time.
File-based decryption and re-encryption resources require only a single CW buffer.

NOTE: TS streams requiring two or more control words for descrambling of different elementary streams require
multiple descrambling resources and thus multiple sessions.

ECI does not specify any specifics regarding buffering or (possibly extensive) intermediate processing like transcoding
or watermarking that may be performed on the decrypted content passing from decryption to encryption resource. Such
processes may cause significant delays. CPE manufacturers may select appropriate implementations causing a
time-offset between decryption resource and a connected re-encryption resource. The re-encryption slot and ECI Client
synchronize with the encryption of content.

7.2 Scrambler and Descrambler specifications
The descrambling function of an ECI CPE shall support the following descrambling algorithms in TS mode:

• CSA1/2, both PES and TS mode as defined in ETSI ETR 289 [9] and [i.1].

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)46

• CSA3, both PES and TS-mode ETSI TS 100 289 [10] and [i.2].

• DVB-CISSA PES and TS-mode ETSI TS 103 127 [11].

The descrambling function of an ECI CPE shall support the following descrambling algorithms in File mode:

• CENC AES128 CTR mode and AES128-CBC mode (both full sample and subsample encryption) as defined
in ISO/IEC 23001-7 [12]. CENC and ISO/IEC 23009-4 [13] for MPEG-DASH.

The scrambling function of an ECI CPE shall support the following scrambling algorithms in TS mode:

• DVB-CISSA PES and TS-mode [11].

The scrambling function of an ECI CPE shall support the following scrambling algorithms in File mode:

• CENC AES128 CTR and CBC mode (both full sample and subsample encryption) as defined in [12] and [13].
The content processing system shall generate a unique initialization vector for content encrypted with a single
CW for AES-CTR mode and follow rules for IV definition for AES-CBC mode as defined in [13].
Initialization vectors are accessible to the ECI Host for use to package content.

7.3 Export Control
Authenticated Export Connections are used by the decryption AS Slot sessions as tickets to authorize import and
export by the decryption resource. A decryption resource shall permit export of decrypted content to an encryption
resource if the Export Connection provided by the associated AS Slot session permits this for an export group ID and
the Content Properties of the decrypted content signal the corresponding export group ID as defined in clause 6.2.4.4.
A decryption resource shall not permit export of decrypted content to an encryption resource if the Export Connection
of the export group selected by the export group ID's in the Content Properties is not a validated Export Connection
provided by the associated AS Slot.

7.4 Output Control
Output control Content Properties are used to disable or to enable content export under protection of industry standard
protection technologies on output connections of the CPE. A decryption resource shall permit export of decrypted
content to an output if the output control information from the associated AS Slot session permits this. A decryption
resource shall not permit export of decrypted content to an output if there is no permission in the output control
information from the associated AS Slot session.

7.5 Content Property Comparison on Coupled Sessions
The content processing system shall verify that the Content Properties as defined in field1 of a session excluding the
first two bytes are equal to the Content Properties of any coupled session. Export and Output of content of a coupled
session with equal Content Properties shall be permitted. The combined streams shall be treated as one session from
an ECI protection perspective from there on. Combining of a coupled stream shall be inhibited if the Content
Properties of field1 excluding the first two bytes are not equal.

7.6 Content Property Propagation on Export
The decryption resource session shall propagate the field1 Content Properties set by the client and (partially)
implicitly authenticated by the Key Ladder along with the content to the re-encryption session resources importing the
decrypted content as defined in clause 6.2.4.6. The encryption sessions receiving the decrypted content check the
designated field1 bytes against the value set for field1 for encrypting the content while applying a mask to select the
fields that require propagation as defined by the function, thus ensuring that the designated decrypting client field1
bytes are propagated to the encrypted content.

The following c-code shall be executed by the encryption resource session on every change of the input values
impField1, expField1 and cpMask:

uchar impField1[16]; /* field1 values for the imported content */
uchar expField1[16]; /* field1 values from the encryption CW computation */

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)47

ushort cpMask; /* comparison mask */

bool propOk = true; /* indicates if propagation of imported content is Ok */
int i;

for (i=2; i<16; i++)
 propOk &&= !(cpMask>>I & 0b1) || (impField1[i] == expField1[i]);

if (propOk) /* re-encrypt content */
else /* do not re-encrypt content */

7.7 Basic URI Enforcement on Export
The basic URI propagation from the decryption AS Slot session to the re-encryption AS Slot session is controlled
through the following mechanisms, with slotId the ID of the encrypting slot and sessionId the ID of the encryption
session therein:

1) The rights assigned to the content for the basic URI by the encryption AS Slot are not more liberal than those
associated with the propagated content.

2) The Micro Server is authenticated: ss[slotId].se[sessionId].config.decryptConfig,akModeAuth is equal to 0b1.

3) If the basic URI does not permit replay of content (i.e. streaming mode) the following is checked on export:

- ss[slotId].se[sessionId].config.decryptConfig.rkDecrMode.mode shall be unequal to RKModeNone
(i.e. a random nonce is applied preventing replay of previously encoded content on a system restart); and

- ss[slotId].se[sessionId].klModeAuth shall be set (value 0b1) ensuring the decryptConfig used by the
server, including the random key insertion at the Micro Client, is authenticated and used by the Micro
Client based on the Key Ladder computation.

7.8 Content Property Application on Industry Standard Outputs
A standard output, which typically is a physical output in combination with an industry standard protection system,
shall use the Content Properties to select the appropriate output protection setting or to disable the output if no
appropriate setting is possible. The precise rules thereto are defined in compliance rules.

The Robustness of the basic URI and Output Control Content Properties implementation shall be of a similar level as
the Content Processing system.

The Robustness of the standard URI enforcement shall be at least as high as that of the ECI Host implementation, with
due exception for functions with complex implementation requirements.

7.9 Control Word Synchronization
For processing TS streams the content processing system provides the following functions permitting control over
control word changes (for encryption) and provides notifications on scrambling control field changes. The functions and
events in this session adhere to the conventions defined in clause 6.2.4.

The AS Slot session can provide both an "odd" and an "even" control word to be applied for encryption or decryption of
content.

In case of decryption the scrambling control field ETSI TS 100 289 [10] informs the decryption function which control
word to use. No control word is used in case the content is signalled as unscrambled. The value of the result is equal to
the scrambling control field, values as defined in [10], clause 5.1.

The following function reads the current status of the scrambling control field in the stream:

uint getAsSC(uint slotId, uint sessionId)

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)48

In case of encryption the applied control word can change on the basis of two events:

1) A change in the Content Properties of the imported content, which shall trigger a change in the control word
applied for encryption. This change can be delayed by the AS Slot in order to complete an ongoing change in
control word triggered by the following event.

2) A signal from the AS Slot session that the applied control word has to change.

In case the imported content is not scrambled, no scrambling shall be applied for encryption and the content scrambling
control field shall be set to 0b00 at the first possible change location. Vice versa, in case the imported content is
switching from not scrambled to scrambled, the content shall be scrambled with the next control word; the opposite key
will be selected as compared to the content that was scrambled before the clear section of content.

The event signalling the imported content property change is defined as:

reqAsEventCpChange(uint slotId, uint sessionId)

Semantics:

The event signals a change in the Content Properties of the imported content if such content requires encryption.

The content processing system shall not permit a discrepancy between the encryption parameters and imported Content
Properties for a longer period than the one specified in clause 4.5 of [i.3].

NOTE 1: On a change from encrypted to non-encrypted imported content this event will not be raised. Content
Properties do not apply to non-encrypted content.

The content processing system permits the AS system to hold off any automatic change to an eventCpChange of the
Content Properties on the following command:

setAsPermitCPChange(uint slotId, uint sessionId, bool permit)

Semantics:

This function sets the permission to allow an automatic change in control properties of the imported content to trigger a
change in the control word on the encrypted content.

NOTE 2: This function should precede any next control word not computed on the basis of the forthcoming
Content Properties, e.g. only reflecting a nonce or a random key change.

NOTE 3: If the change permission is disabled (permit==false) it should be restored within the permitted time
for a discrepancy with the Content Properties of the imported content so as not to create a "blackout" in
the re-encrypted stream.

The following function allows setting the scrambling control field of encryption to a certain status.

setAsSC(uint slotId, uint sessionId, uint scramblingControlField)

Semantics:

The value of the scrambling control field is set to the value of scramblingControlField on the first possible point of
change in the stream. Only values 0b10 and 0b11 (scrambling with even and odd key respectively) are permitted for
scramblingControlField.

The scrambling control field of the encrypted stream will be set to 0b00 (no scrambling) in case the imported content
has a non-encrypted status.

The following event function is defined for decryption and encryption sessions:

reqAsEventSC(uint slotId, uint sessionId, uint scramblingControlField)

Semantics:

The event is raised on a change of the scrambling control field status.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)49

8 Certificate Processing Subsystem

8.1 Basic processing rules for Certificate Chains
The Certificate Processing Subsystem can process certificate chains to authenticate items, based on an initial public
key and a minimum Revocation List number. Most certificate chain processing is generic. This clause defines the
generic processing rules for Certificate Chains. The following clauses define processing rules specific for various
types of chains.

The Certificate Chains below are defined in [3], clause 5.4.

The CPS rule definition uses a stepwise approach for processing Certificate Chains starting at the start of the chain
(the first Revocation List) using initial public key and the minimum Revocation List number. The first step is
verification of the Revocation List. The second step verifies the next certificate in the chain. After once performing
step 1 and 2, a new public key and Revocation List number are defined for processing the remainder of the chain. Step
1 and 2 are repeated until the whole chain is processed. In general, it is recommended that software functions offering
chains pre-validate these chains so as to avoid that the CPS fails on processing a chain unexpectedly.

The generic processing steps for a Certificate Chain are:

1) The CPS shall perform the following verification on a Revocation List:

a) The CPS shall check the Revocation List format_version field to match a version that it can interpret
(see specific processing rules for chains) and the rl_id.type and rl_id.rl_indicator field to match the
expected values.

b) In case the Father is a Root Certificate (root_version_indicator=1) the ECI Host shall select the Root
Certificate with root_version to be the Father, otherwise the preloaded or preceding certificate is used.

c) The CPS shall verify the signature of the Revocation List with the last validated public key.

d) The CPS shall verify whether the length of the Revocation List corresponds to its field values and that
any variable length field has the appropriate length.

e) The CPS shall verify if the version number of the Revocation List has not been invalidated by the
minimum Revocation List number.

2) The CPS shall perform the following verification on a Certificate:

a) The CPS shall verify if the next <type, entity_ id, version> of the Certificate in the chain is not revoked
according to the last Revocation List and establish the minimum Revocation List version to accompany
that Certificate according to the base_rl_version and min_rl_version fields of the last Revocation List.

b) The CPS shall check the Revocation List format_version field to match a version that it is permitted to
interpret.

c) The CPS shall verify whether the length of the Certificate corresponds to its field values and that any
variable length field has the appropriate length.

d) The CPS shall verify the signature of the Certificate with the public key.

After processing step 1 and step 2 the public key and minimum Revocation List are updated. The public key will be
equal to the public key field of the Certificate processed in step 2, the minimum Revocation List version that found in
step 2a.

Not all Certificates require being accompanied by a revocation list. If the most significant bit of the type field of a
certificate-id equals zero the Certificate Processing Subsystem shall require revocation list to accompany a
Certificate for further chain processing. Any processing of revocation list and version number and revocation list
version numbers in the above steps shall not apply in case no revocation list is required.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)50

8.2 Specific rules for Host Image Chains
The CPS shall apply to the specific validation for Host Image chains:

1) First Revocation List is of type 0x1 (Manufacturer Revocation List).

2) First Certificate is of type 0x1 (Manufacturer Certificate).

3) Second Revocation List is of type 0x0 (Host Revocation List).

4) Second Certificate is of type 0x0 (Host Certificate).

5) A possible third Certificate is of type 0x98 (Host Image Series Certificate).

The public key of the last Certificate (either Host Certificate or Host Image Series Certificate) shall be used to validate
the actual ECI Host image.

8.3 Specific rules for Client Image Chains
The CPS shall apply to the specific validation for Client Image chains:

1) First Revocation List is of type 0x2 (Vendor Revocation List).

2) First Certificate is of type 0x2 (Vendor Certificate).

3) Second Revocation List is of type 0x0 (Client Revocation List).

4) A possible second Certificate is of type 0x1 (Client Series Certificate).

The public key of the last Certificate (either Vendor Certificate or Client Series Certificate) shall be used to validate the
actual ECI Host image, taking into account the last version number of the Client Revocation List for verifying the
image version in case the last Certificate is the Vendor Certificate.

8.4 Specific rules for Platform Operation Certificates
The CPS shall apply to the specific validation for Platform Operation Certificate Chains:

1) First Revocation List is of type 0x3 (Operator Revocation List).

2) First Certificate is of type 0x3 (Operator Certificate).

3) Second Revocation List is of type 0x0 (Platform Operation Revocation List).

4) Second Certificate is of type 0x0 (Platform Operation Certificate).

8.5 Specific rules for Export/Import chains

8.5.1 Export Authorization chain processing

The export authentication chain and the corresponding section of the third party export chain shall be provided to the
CPS.

The CPS shall commence with the minimum root version and Revocation List version as defined in
ss[slotId].se[sessionId].config.decryptConfig.minEciRootState. It shall process the chain of EAOC and EAC
Certificates and associated Revocation Lists verifying the following specific rules for this chain:

• The id of the root RL is 0x4 (Export Authorization Operator Revocation List).

• The id of the next Certificate (EAOC) is 0x4.

• The id of the next Revocation List (REAOC RL) is 0x0.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)51

• The id of the following Certificates (EAC) in the chain is 0x0.

• The content of the extension field of the Certificate shall be equal to the corresponding export chain
Certificate in the export chain.

• The id of the following Revocation List (EAC-RL) in the chain is 0x0.

• All Certificates of the export chain shall be sequentially validated by the Export Authorization chain.

• The first Certificate of a third party export chain section shall be a TPEGC (certificate id equal 0x5).

• The last Certificate of a third party export chain section shall be a TPEGC, ESC or ERC (certificate id equal
0x5, 0xE, 0xF respectively).

• The intermediate Certificates shall all be EGC (certificate id equal 0x4).

• If the last Certificate is a TPEGC, this shall be the start of a next export chain section. The above verification
process shall be repeated for all subsequent sections of export authentication chains and third party export
chain sections until a fully validated third party export chain results (ending in a ESC or an ERC).

8.5.2 Export Chain verification

The CPS shall commence with the POC public key, the export group index for which the export is to be established and
the minimum Revocation List version number that should apply to the POC Revocation List as found in the AS Slot
state ss[slotId].se[sessionId]. config.decryptConfig.minClientVersion field.

NOTE: Such validation relies on suitable authentication of the POPK and Revocation List version. This should
be established using either AK mode authentication or implicit authentication using the Key Ladder (see
clause 6.2.2.2, klModeAuth and akModeAuth fields).

The CPS shall process the POC-RL, EGC and EGC-RL and subsequent TPEGC or ESC as a regular Certificate Chain.
The following additional rules shall be verified:

• The type of the EGC is 0x4.

• The export_group_id field of the EGC shall be equal to the export group index.

• The type of the EGC Revocation List is 0x4.

• The type of the EGC-RL is 0x4.

• The type of the TPEGC or ESC corresponds to the value in [3], table 5.2-2.

The processing of a TPEGC is specified in clause 8.5.3.
The processing of an ESC is specified in clause 8.5.4.

8.5.3 Third Party Export Chain verification

Processing of a third party export chain commences with the validation of the leading TPEGC and the minimum
Revocation List version number for its Revocation List. Processing shall end with an ESC.

8.5.4 Export System Certificate processing

The ESC Certificate SPK (public key of the ESC) and minimum Revocation List version number of the father of the
ESC are used to validate the Export Connection. The Certificate SPK shall match to the ss[slotId].spk field of the
designated export slot. The minimum Revocation List version number shall be larger than the export
ss[slotId].ssConfig.microServerVersion.

NOTE: The export slot SPK and microServerVersion have to be authenticated by the AS Slot's AK
Authentication Mechanism to ensure meaningful authentication.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)52

8.5.5 Target Client Chain Processing Rules

Target Client Chain processing started with the POPK and the minimum Revocation List of a Micro Server
MSConfig state. Target Client chains processing by the CPS shall follow the generic rules as defined in clause 8.1. In
addition Target Client Chain processing by the CPS shall follow these specific rules:

1) First Revocation List is of type 0x0 (Target Revocation List).

2) First Certificate is of type 0x0 (Target Group Certificate) or 0x8 (Micro Client Certificate).

3) Step 1 and 2 are repeated in case the Certificate in step 2 is a Target Group Certificate.

The resulting Micro Client certificate public key is the Chipset Public Key that shall be used according to the
mechanism described in clause 5.3.

8.6 CPS ECI Root Key initialization
At initialization time of the AS System the ECI Host loads the CPS with the latest information on the applicable root
key and the Revocation List number.

 function InitCPSEciRoot(uchar minRootKeyVersion, uint minRevListNr)

Semantics:

The following c-code shall be executed:

cpsEciRootState.rootVersion = minRootKeyVersion;
cpsEciRootState.rlVersion = minRevListNr;

CPS will apply rootKeyVersion as the ECI Root Key version number and will apply minRevListNr to all chains
provided to it for loading ECI credentials.

All other states of the AS System will be reset.

Note that the setting of both parameters by the ECI Host should ensure that all ECI Clients can be loaded and that the
ECI Host is not revoked, yet none of the ECI Clients suffers Revocation.

9 Loader Core

9.1 Introduction
The ECI system uses a loader mechanism that permits ECI Clients to securely verify the version of the ECI Host and
ECI Client credentials that are loaded so as to detect any known security issue. This permits the ECI Host and ECI
Clients (both images and POPK) to be updated as a regular system operation function.

The loader for ECI Host and ECI Client images relies on certain Robustness principles defined as rules which are
defined in the following clauses. The Robustness of implementation of these rules shall be defined by a suitable
document outside the scope of the ECI Specification, but in general the rules are to have equal Robustness of
implementation. Some rules are deemed to be implemented with a higher (prime) Robustness and are to be
substantially more robust than the implementation of the ECI Host.

9.2 Host Loader Rules
The ECI Host Loader shall comply with the following rules:

1) The ECI Host Loader shall ensure the ECI Root version and ECI Root Revocation List version number
used to validate the ECI Host Images is stored on power-on initialization and it shall not be possible to change
this number from there on. This rule requires prime Robustness.

2) It shall not be possible to modify the ECI Host Loader itself. This rule requires prime Robustness.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)53

3) It shall not be possible to modify or observe an ECI Host image once loaded in as far as this is required to
prevent manipulation sensitive information or observation of secret information.

4) Any subsequent ECI Host Image verification (in case of a staged loader) performed by software stemming
from a previous image shall use the same host certificate public key and Revocation List for verification.

It is recommended that staged loaders use a single secure mechanism for validating ECI Host images also used for
validating the first loaded ECI Host image.

9.3 Client Loader Rules
The ECI Client Loader exists in the context of the ECI Host. The ECI Host sets the minimum ECI Root version and
ECI Root Revocation List version it uses to validate Certificate Chains before loading any client related item. The
ECI Client Loader shall comply with the following rules:

1) The ECI Client image shall be decrypted first if so required as defined in clause 9.5.

2) The ECI Client Image and POPK shall be validated using CPS processed chains as defined in clause 8. This
rule requires prime Robustness.

3) The ECI Client Image or Client Series Image Certificate (as applicable) shall be co-verified with POPK and
the Platform Operation Client Revocation List. The adequacy of the version number of this Revocation List
is verified later on AS Slot session initialization by the ECI Client.

4) It shall not be possible to modify or observe an ECI Client image once loaded.

5) ECI Clients shall not be able to "break their sand-box" and observe or modify the ECI Host or ECI Client
behaviour.

9.4 Revocation enforcement
ECI uses a robust enforcement mechanism for the verification of the ECI Host and ECI Client image credentials. This
operates under the following rules:

1) The descrambler shall stop operating in case the ECI Root version and the minimum root Revocation List
version number for verifying the ECI Host Certificate Chain were lower than the ones loaded by the ECI
Host at initialization. This rule requires prime Robustness.

NOTE 1: This should be atypical since Host Root Revocation Lists should be updated regularly through channels
of all operators, and the ECI Host Loader can use the latest ECI Host Root Revocation List.

2) The AS System will refuse to load any ECI Client whose Certificate Chain cannot be validated using the
ECI Root version and minimum ECI Root Revocation List number set by the ECI Host on initialization as
defined in clause 9.2. This rule requires prime Robustness.

3) The AS Slot will refuse to compute keys in case the minimum root version number and minimum root
Revocation List version numbers required by the ECI Client are lower than the ones loaded by the ECI Host
at initialization. This is defined in the computation rules for client image, encryption and decryption keys in
clause 6.2.4. This rule requires prime Robustness.

NOTE 2: These rules ensure content security systems can require a minimal ECI Root state is be applied to the
verification of all items loaded in an ECI Host before proceeding with any security sensitive operation.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)54

9.5 Client Image decryption
For the purpose of decrypting an ECI Client image the Advanced Security System can decrypt the encrypted image
decryption key provided by the ECI Client's operator and decrypting an ECI Client image as defined in ETSI
GS ECI 001-3 [3], clause 7.8. ECI Client image decryption shall be performed before ECI Client image signature
checking. The AS function used to compute the image decryption key is reqAsComputeImageKey as defined in
clause 6.2.4.12. The ECI Host receives the required encrypted key information inputV (input message to the
Authentication Mechanism from which to compute an authentication key), eKey (image decryption key encrypted
with the authentication key) and "online" and "min_root_state" parameters as defined by ETSI GS ECI 001-3 [3],
clause 7.8 from the operator and uses the AS Slot later provided to the Client to perform the decryption (see ETSI
GS EC 001-3 [3], clause 7.8). Any nonce used for the image decryption key exchange session shall be fresh (value from
the re-initialized AS Slot).

10 Timing requirements

10.1 Introduction
ECI Clients need to perform within certain timing constraints in order to meet the requirements of the security system
they are a part of. For this, ECI Clients depend on certain performance characteristics of the functions the AS System
offers (through the ECI Host). This clause defines the timing characterization of the AS system functions.

The AS System timing characterization divides the functions into four categories:

1) Functions requiring merely administrative functions in the AS Slot.

2) Functions requiring only symmetrical cryptography operations, like Key Ladder computations or decryptions
with AK.

3) Functions requiring one to four asymmetrical cryptography operations in either the Key Ladder Block or
CPS, like loading of LK1 and performing functions involving the computation of AK.

4) Functions requiring processing of potentially longer Certificate Chains like Import/Export chains and Micro
Client authentication chains.

The ECI Client can invoke function of the last three categories through asynchronous messages. Functions in the first
category can be either synchronous or asynchronous.

Asymmetrical cryptography operations take more time. Any ongoing asymmetrical cryptography operation shall not
stall functions of first two categories. In case a function in category 1 or 2 requires a result from an operation in function
3 or 4 the ECI Client is responsible for synchronization of the result of the a function in category 3 or 4. I.e. it has to
wait until the result of the asymmetrical operation is available (i.e. the result message is received) before invoking a
function dependent on the result.

10.2 Administrative Functions
For the functions in category 1), the general criteria for symmetrical and asymmetrical messages shall apply.

10.3 Symmetrical Cryptography Functions
Functions invoking symmetrical cryptography operations shall be performed by the AS System under the conditions
described in clause 4.5 of ETSI GR ECI 004 [i.3].

10.4 Asymmetrical Cryptography Functions
Functions invoking asymmetrical cryptography operations (e.g. involving the Key Ladder symmetrical key
computations or using the result of the Authentication Mechanism) shall be performed by the AS System under the
conditions described in clause 4.5 of ETSI GR ECI 004 [i.3].

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)55

Annex A (normative):
Cryptography Function Definitions

A.1 Hash Function
The hash functions in the present document are all based on SHA256 as defined in NIST FIPS PUB 180-4 [7].

Function hash clause 5.2 is equal to SHA-256() as defined in NIST FIPS PUB 180-4 [7].

The c-function asHash(uchar *data, uint datalength, resultLength, uchar *result) uses the octets starting at data of length
dataLength as dataIn octetstring and computes the octetestring resultOut as a resultLength/8 octet string, and stores it at
result in accordance with:

 resultOut = BS2OSP(truncate(SHA-256(OS2BSP(dataIn)),resultLength)))

resultLength shall be a multiple of 8. truncate shall be the function that is the left truncation of a bitstring (parameter 1)
to the length (parameter 2) bits.

BS2OSP and OS2BSP are functions that convert a bit string to an octet string and vice versa as defined in ETSI
GS ECI 001-5-2 [5], clause 7.

A.2 Asymmetrical Cryptography
The asymmetrical encryption and decryption operations shall be defined by ETSI GS ECI 001-5-2 [5], clauses 8.2 and
8.3.

A.3 Random Number Generation
Random number generation as defined in the present document shall comply with NIST Special
Publication 800-90A [8] and satisfy the following rules:

• At minimum at system start (reboot of a chip's AS System) a new secret unique random seed number shall be
generated. The process depends on physics (noise) or other properties of the chip or its environment that are
not replicable and cannot be manipulated. The entropy of the generated number shall be at least 128 bit.

• Any random numbers shall be generated with a deterministic pseudo random number generator based on the
above random seed number in accordance with NIST Special Publication 800-90A [8]. The chip may reseed
the generator regularly and/or increase the entropy as defined in [8], clause 8.7 using internal (noise) or
external inputs that are hard to manipulate. At minimum the chip-id shall be used at a personalization string.

NOTE: In many AS applications the actual randomness of the random number generator is not critical, only the
uniqueness over time is. These are typical nonce applications: e.g. random number for online
authentication for replay prevention at decryption and insertion of a random number at encryption of
content. Exception is the random key generated as LK1 in an encryption AS Slot in asymmetrical Micro
Server mode.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)56

Annex B (informative):
Sample Micro DRM system application

B.1 Introduction
This annex provides a realistic example of an application of the AS System for the implementation of a Micro DRM
system operating on a TS stream. The example operation of both encryption as well as decryption ECI Clients are
presented. The focus of the presentation is on the concurrency of various actions and the sequence of control words and
associated Micro DRM messages (from Micro Server to Micro Client and vice versa) that need to be generated. The
Micro DRM system uses both random key generation at encryption as well as nonce generation at decryption (to
prevent replay). It assumes both random keys have a limit.

B.2 Application scenario
The application scenario in Figure B.2-1 shows the state of the Key Ladder at the encryption side. LKn is the third but

lowest key in the key hierarchy. Below that are the nonce (N1 or N2) from the Micro Client, the Content Properties
CP1 and CP2 (processed into input-C for the Key Ladder in stage n+2) and the random key seed R1 and R2 that input
to Key Ladder stage n+3. From these Key Ladder inputs the control words CW1..CW4 are computed and applied to
the content in conjunction with their associated Content Properties.

Figure B.2-1: Example of control word computation key hierarchy evolution

The starting state of the lowest three stages of the Micro Server key hierarchy is N1, CP1, and R1. From these CW1 is
computed to encrypt the content. The initial state of the toggle bit is t1. In this example the Micro Server first receives
a new nonce and decides it is time to apply it to future content in the form of CW2. It first sends an ECM-type message
to the Micro Client with the new toggle bit t2 and the set of encrypted keys (t2, N2, CP1, R1), it waits for some time to
make sure the Micro Client can receive and precompute the new control word CW2 and be ready for the forthcoming
change. It then computes the new control word CW2 itself and commits to application, triggering a change in the toggle
bit of the associated encrypted TS stream.

CW1 CW2 CW3 CW4

LKn

CP1 CP2

Content property

change is conveyed

on new CW

association

Micro Server needs a certain prewarning period

for a forthcoming Content Property change in a

live stream:

at least as much time as it needs to generate a

new CW/CP pair and forwand the information

for this computation to the Micro Client

CP1

N1

R1

CP1

N2

R1

CP2

R1 R2

Content �

CP

change

Nonce

change

RK

change

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)57

The next event in Figure B.2-1 shows a change in the Content Properties of the content to be encrypted. The Micro
Server receives a message from the ECI Host that the Content Properties will change to CP2. The Micro Server
sends an ECM-type message to its Micro Client with the new set of encrypted keys (t3,N2,CP2,R1) and precomputes
CW3 from this new sequence of keys. At the moment the new Content Properties apply, the toggle bit on the
encrypted content changes automatically and the new encryption control word CW3 and its associated Content
Properties CP2 are effectively applied.

The last event is the Micro Server deciding to change the Random Key R1 to R2. The process is practically identical to
that of changing a nonce. The Micro Server sends an ECM-type message with (t4,N2,CP2,R2) to the Micro Client
permitting it to precompute CW4, and uses a delay to ensure the Micro Client has enough time to be ready. It then uses
the Key Ladder to compute CW4, and applies it to the content, causing the state of the content toggle bit to become t4.

B.3 Assumptions and notation
The content is delivered by an exporting client plus associated decryption AS Slot to the import connection of the
encryption AS Slot. The exporting client generates messages to the ECI Host signalling any changes in Content
Properties ahead of the actual occurrence in the imported content. This uses the AS API in [3].

The following notation is used:

<event-name>(parameters) -> <pseudo-code statement> ; indicates that on event event-name (a
message reception)with the following pseudo-code is executed.

The following events are defined:

• e_cp(cp): new content properties cp will be used on a forthcoming event (CW change) in the content to be
encrypted. Preceds e_cpe().

• e_cpe(): content property change is eminent (due within a limited time).

• e_cpch(): the content properties of the imported content just changed, in case the control word currently
used is not reflecting that it will require an urgent change. On an automatic change of control word due to a
control property change this events preceds e_cw().

• e_nn(nonce): a new nonce message from the Micro Client has arrived at the Micro Server or is sent from
the Micro Client.

• e_cw(): the toggle bit changed on the re-encrypted content, and the (previously computed) new CW is
applied to the content.

• e_ecm(<parameters>): reception of a message with new parameters of the next control word to be used.

• Events can be raised by timers.

cw(toggle_bit,random_key,nonce,content_properties) performs the generation of a control word
for encrypting or decrypting content using the designated parameters. At the Micro Server first a message is generated
with the same parameters which is forwarded to the Micro Client, there received there as e_ecm(…).

block_cpch() and unblock_cpch() use the message setAsPermitCPChange(…) to block or unblock
automatic changes in the encryption control word due to changes in the content properties of the imported content.

changeCw(toggleBit) forces a changeover of the control word (toggle bit in the scrambling control field) at the
encryption side using the message setAsSC() as defined in clause 7.9.

startTimer(timerHandle) starts a timer.

For variables and pseudo code a c-style notation is used.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)58

B.4 Micro Server pseudo code
A key complication in the Micro Server means that it has to handle several concurrent and unsynchronized events that
may trigger a change in control word:

• the arrival of content requiring new content properties (demarcated by a new control word application by the
exporting client to content being decrypted);

• the forthcoming expiry of the nonce; and

• the forthcoming expiry of the random key.

The processing of a change in Content Properties needs to have priority since there is typically a limited time before
the corresponding control word change in the decryption process triggers the new content property application. So the
nonce and random key expirations should be set sufficiently conservatively since they may have to be postponed by the
duration it takes to process a content property change (typically a few seconds). This assumes that the time between
content property changes is always sufficient to permit the processing required for at least a nonce or random key
change to a control word.

The processing of eminent changes in nonce or random key has two priorities. First a timer is set for a low priority. In
case there is no pending change in Content Properties the change in nonce or random key is made, otherwise a timer is
set for a high priority change. A high priority change in nonce or random key may overrule an eminent content property
change. But the Micro Server may come to a wrong conclusion. In case this happens the content property change
occurred before the nonce or random key change was applied to the content. In that case it has to recompute a new
control word that also includes the new Content Properties. Also a content property change may occur almost
immediately after a high priority nonce or random key change is applied. In that case the CW reflecting the new
Content Properties and ECM that the Micro Server computes will be late.

If the TNONCEURGENT and TRKURGENT timer values can be set to a value of more than 10 seconds plus TECM
and the maximum time between e_cpch() and e_cw(CPCHANGE) is less than 10 seconds such collisions can occur,
since either any RK and nonce change can be scheduled before the period between e_cpch() and e_cw(CPCHANGE) of
after such a period without the priority requiring to be raised.

Note that the manipulation of variables rc and rn as presented below cannot be done directly by the client but has to
be performed using functions of the AS System.

/*
 four priority processing model with small shift of CP change time
 in case priority 4 is required (here & now non-anticipated change in CP):
 1) low priority nonce/rk change
 2) low priority CP change (cp eminent but e_cpch() did not occur)
 adopts any previous nonce or rk changes
 3) high priority nonce or rk change; reverts to old CP value
 4) high priority CP change; adopts pending nonce/rk changes and new cp;
 queues new changes

 Optimization may be possible to try to schedule pending nonce and rk changes
 immediately after a CP change; provides modest performance improvement

 State variable invariants/meanings:
 <x> = cp (content property), n (nonce) or r (random key)
 Invariant: p<x> = change in <x> in next CW (p = pending)
 (not for low priority <n> or <r>)
 q<x> = queud change for <x>, not pending for next CW
 hpcp = high priority content property change (pcp || qcp)
 During a brief time between changeCw() and e_cw() all changes are queued.
 This temporary state is indicated with dhp==true;
 */

#define TECM 3000 /* delay between sending ecm message and changing CW */
#define TNONCEURGENT (2*TEMC + 1000)
#define TRKURGENT (2*TECM + 1000)
#define TNONCE /* some value; may be dynamically determined*/
#define TRK /* some value; may be dynamically determined*/

toggle(bool t) { return !t }; /* toggles between true and false */

encryptionSession()

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)59

/* case rk & nonce change and cp change; unreliable warning cp change (priority with nonce/RK
change) */
/* first priority on nonce/rk lower than cp, but if urgent it is higher */
{
 SymKey nc, nn; /* current and next nonce */
 SymKey rc, rn; /* current and next Random Key */
 SymKey cpc, cpn; /* current and next CP value */
 SymKey nt, rt; /* temporary value for nonce, random key */
 TimerHandle t_lpn, t_lpr;
 /* timers for low priority scheduling of nonce and rk change */
 TimerHandle t_n, t_r;
 /* timers for high priority scheduling of nonce and rk change */
 TimerHandle t_ecm_n1, t_ecm_r1;
 /* ecm timers for low priority (1) nonce and rk ecm */
 Timerhandle t_ecm0, t_ecm1 t_ecm2, t_ecm3;
 TimerHandle t_ecm[4] = {t_ecm0, t_ecm1, t_ecm2, t_ecm3 };
 /* four level 2/3/4 priority level ecm timer pool */
 int t_ecm_cnt = 0; /* counter for above timer pool allocation */
 bool pn, pr, pcp; /* true if current CW reflects a change in nonce (nn),
 random key (rn) or cp (cpn) value */
 bool qn, qr, qcp; /* true if a queued change in nonce, random-key or cp change */
 bool dhp; /* delay (queue) any new events */
 book hpcp; /* true if priority 4: high priority CP change */
 int tCnt1, tCnt234; /* tCnt<n> is the counter for number of timers
 in priority <n> that are fired but not yet expired */
 bool t; /* toggle bit */

/* some macro's are defined to permit reuse of code for processing events */

.* event for next random key */
#define next_r() { rc = rn; rn = rnd128(); startTimer(t_lpr,TRK); }

/* force changeCw on last cascaded higher priority timer unless it is a level 2
 priority cp change in which case the change of CW will be triggered by a CP
 change event */
#define process_emc2_timer(){\
 if (--tCnt234 == 0)\
 if (pn || pr || hpcp){\
 dhp = true; changeCw(toggle(t));\
 } else {\
 /* pcp == true, pn, pr, hpcp == false */\
 unblock_cpch();\
 };\
}

/* on cw-change update state with all processed changes */
#define end_pending() {\
 t = toggle(t);\
 if (pcp) { cpc = cpn; pcp = false };\
 if (pn) { nc = nn; pn = false };\
 if (pr) { next_r(); pr = false };\
}

/* move queued events to pending */
#define queued_to_pending() {\
 if (qcp && (!(qn || qr) || cphp)) {
 /* if priority 2 or 4 */\
 pcp = true; qcp = false\
 };\
 /* priority 3 events can be folded with priority 4 */
 if (qn) { pn = true; qn = false };\
 if (qr) { pr = true; qr = false };\
}

/* start cw/ecm for pending changes to cw */
#define start_pending() {\
 cnt = 0;\
 if (pcp) { cpt = cpn; cnt++ } else cpt = cpc;\
 if (pn) { nt = nn ; cnt++ } else nt = nc;\
 if (pr) { rt = rn ; cnt++ } else rt = rc;\
 if (cnt > 0) {\
 block_cpch();\
 cw(t,rt,nt,cpt);\
 tCnt234++;\
 startTimer(t_ecm[t_ecm_cnt++],TECM);\
 if (t_ecm_cnt >=4) t_ecm_cnt = 0 ;\
 }\

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)60

}

 /* only permit auto-changes of toggle bit when prepared */
 block_cpch();

 /* receive first cp and nonce values */
 for (int i=0; i<2;) {
 ->e_nn(&nc): i++;
 ->e_cp(&cpc): i++;
 }

 /* initialise state */
 pn = pr = pcp = hpcp = false;
 dhp = false;
 tCnt1 = tCnt2 = 0;
 rc = rnd128(); rn = rnd128() ;
 t = false; /* should be initialised to first value in content */
 cw(t,rc,nc,cpc) ; /* will start to be used automatically */

 while (!end_session) {
 ->e_nn(&nn) : startTimer(t_lpn,TNONCE) ;
 /* should occur before nonce limit runs out */
 ->e_cp(&cpn): /* e.g. compute new export licenses */ ;
 ->t_lpn() : { /* low priority nonce change */
 if (pcp || pn || pr || cphp) {
 /* delay new nonce till urgent */
 startTimer(t_n,TNONCEURGENT);
 } else {
 nc = nn;
 cw(t,rc,nc,cpc);
 startTimer(t_ecm_n1,TECM) ;
 tCnt1++;
 }
 };
 ->t_lpr() : { /* low priority rk change */
 if (pcp || pn || pr || cphp) {
 /* delay RK till urgent */
 startTimer(t_r,TRKURGENT);
 } else {
 next_r();
 cw(t,rc,nc,cpc);
 startTimer(t_emc_r1,TEMC);
 tCnt1++;
 }
 };
 ->t_emc_n1() : /* low priority nonce ecm timer expiry */
 ->t_emc_r1() : { /* low priority rk ecm timer expiry */
 if (--tCnt1 == 0 && tCnt234 == 0) {
 changeCw();
 dhp = true;
 }
 };
 ->e_cpe() : { /* cp change may occur from now on */
 if (dhp || (pn || qn)) qcp = true; /* assert(!hpcp) */
 else { pcp = true; start_pending() };
 };
 ->t_n() : { /* urgent nonce change due */
 if (dhp || cphp) qn = true;
 else { pn = true; start_pending() };
 };
 ->t_r() : { /* urgent random key change due */
 if (dhp || cphp) qr = true;
 else { pr = true; start_pending() };
 };
 ->e_cpch() : { /* high priority change of CP needed */
 cphp = true;
 if (dhp) qcp = true;
 else {
 pcp = true;
 start_pending();
 }
 };
 ->t_ecm0() :
 ->t_ecm1() :
 ->t_ecm2() :
 ->t_emc3() : {
 process_timer();

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)61

 };
 ->e_cw() : { /* assert(pcp && !pn && !pr && !cphp) */
 end_pending();
 queued_to_pending();
 start_pending();
 };
 }
}

NOTE 1: In the Micro Server example presented above the Micro Server can generate and the Micro Client can
receive multiple successive but different ECM messages with the same toggle bit. An extreme example is
that first e_n() occurs, then within TDELAY e_r() occurs and then with TDELAY thereafter
e_cp(..) occurs. In this case three successive ECM messages are sent, with the same toggle bit, with
only the last once leading to a control word that is actually applied to the content.

NOTE 2: The above code assumes that a content property change e_cp() is always followed relatively quickly by
an actual toggle bit change. It the new cp value is available much sooner this is of no benefit to the
Micro Server. The key trigger point for it to generate a new CW is the event that a cp-change in the
incoming content is eminent. That triggers that the old value of cp is replaced by the new value for all
forthcoming CW calculations.

The minimum pre-warning time for triggering e_n() or e_r() in the above sample code is the worst case delay
between an e_cp() event and the actual change of the subsequent control word e_cw(), plus 2 × TDELAY plus a
minor amount of event delays and processing time.

B.5 Micro Client pseudo code
The Micro Client starts a session by generating two successive nonce messages (for current and next nonce). If it
receives an ECM message, it simply computes the corresponding control word. It continues to generate a new nonce
and send a new nonce message once it sees the last nonce it sent being applied in an ECM.

NOTE 1: Secure nonces cannot be generated directly by the ECI Client code but have to use the appropriate
function of the AS System.

decryptionSession()
{
 Symkey nc, nn, ln; /* current, next and last nonce */
 SymKey cp, cpp; /* received and previous cp */
 SymKey r; /* received random key */
 bool t; /* received toggle bit */
 SymKey n; /* received nonce */
 bool end_session; /* end of session reached */

 /* initialise and send nonces */
 nn = rnd128();
 e_nn(nn);
 cpp = Reserved; /* undefined value */
 ln = Reserved;

 while (!end_session) {
 ->e_ecm(&t,&r&n&cp): {
 if (cp!=cpp) { /* new CP; send event to all export connections via host */
 e_cp(cp);
 cpp = cp;
 }
 cw(t,r,n,cp);
 };
 ->e_cw(): { /* also triggered on first cw application */
 if (n != ln) { /* new nonce actually used; move nonce forward */
 nc= nn; nn= rnd128();
 e_nn(nn);
 ln = n;
 }
 };
 } /* end while loop */
} /* end decryption session */

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)62

NOTE 2: It is not necessary to send the full nonce values back from Micro Server to Micro Client. An alternating
bit can be used instead as an indirect reference. In addition it is not strictly necessary to send all
parameters in all ECMs: only the changes need to be communicated to the Micro Client, with due note
that in some cases all three Key Ladder inputs nonce, Content Properties and random key can change at
once (see note 2 in clause B.4). Sending the toggle bit along is useful for synchronization and it avoids
that any (deliberately or not deliberately) repeated ECM message is interpreted as a message for
computing a next control word.

B.6 Micro DRM system cascading effect on ECM
pre-delay

The Micro DRM server relies on a pre-warning period (pre-delay) of a forthcoming content property change from the
Micro Client it imports content from to permit it to pre-calculate an ECM message and send it to its peer Micro Client.
The time it takes to do the required processing (which can be relatively short: typically no significant computation is
required) plus time to forward this ECM message to the Micro Client may be longer than the path used to convey the
newly re-encrypted content to the Micro Client. That means that any pre-delay for the new ECM that the Micro Client
experiences is correspondingly shorter than that experienced by the ECI Client that the content was originally imported
from.

Figure B.6-1: Temporal relations for pre-delay and optional delay compensation

The content processing system can introduce a delay in the transfer of content to compensate for the delay in forwarding
ECM messages as shown in Figure B.6-1. This delay can then be selected to be roughly equal to the delay difference. In
case ECMs are inserted Decm and Dcontent are closely matched. But the processing delays in the decrypting ECI
Client and those in the Micro Server to the point of actual insertion of the ECM in the TS stream should be
compensated.

B.7 Content property change timing interface convention
As demonstrated in clause B.4 the Micro Server requires a pre-warning of a forthcoming content property change in its
imported content. The convention for the minimum time period required to process the change and to send an ECM
message to the Micro Client is referred to as TECM: in the following paragraphs of this annex an example is given. For
this example the value of TECM is set to 3 s.

The convention for the minimum prewarning delay of a first decryption ECI Client in a chain of cascaded ECI Clients
is TECM + TCASCADE. TCASCADE reflects the maximum cumulative delay of processing ECMs by ECI Clients in
a cascaded chain of Micro DRM Systems. In this example TCASCADE is set to 2 s.

NOTE 1: In cases the content is also delayed this compensates for ECM processing delays. This is not desirable in
streaming mode however.

Dcl1 Dms Decm

Dcontent

Pre - delay1 Pre - delay2 CPS- delay

Dcl1 = Delay ECI Client 1

Dms = Delay Micro Server

Decm = Delay ECM

CPS- Delay = content processing system delay

Dcontent = Delay Content transfer to Micro Client

Pre- delay1 = Predelay ECM at Decryption ECI Client #1

Pre- delay2 = Predelay ECM at Decryption ECI Client #2

ECM &

processing

Content &

processing

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)63

The maximum for the ECI Client ECM processing delay (uncompensated Dcl1 + Dms as in clause B.6) is referred to
as TDELAY, set in this example to 0,3 s. The values in this example permit 6 cascaded Micro DRM Systems to
operate within the TCASCADE (2s), leaving TECM minimum pre-warning period for a Micro Server.

As demonstrated in clause B.4, in order to process a content property change in the incoming content without causing
shift of the content property change Micro Servers require not only a pre-warning of a forthcoming content change but
also require an upper limit to such a pre-warning period so that it can process other control word changes (e.g. nonce
and random key changes) safely. In this example the upper limit pre-warning period TMAXWARN could be safely set
to 10 s.

NOTE 2: In case these conventions are not followed, the effect may be a maximum TECM shift in the location for
a content property change in re-encrypted content in one Micro DRM System and a maximum of
TECM+6*TCASCADE shift in a cascade of 6 Micro DRM Systems.

It is highly recommended to design the nonce and random key low priority warnings (t_lpn and t_lpr in clause B.4)
sufficiently early so as to permit one (or even a few) changes in the content properties to delay the processing of nonce
and random key changes. If content property changes are sufficiently spaced in time (and TMAXWARN is observed)
this should prevent any overruns in processing for nonce or random key changes.

The selection of timing parameters is important for the seamless handover of content between ECI Clients. Specific
recommendations as to the values of the delay parameters TECM, TCASCADE, TDELAY and TMAXWARN are
provided in [i.3].

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)64

Annex C (informative):
Authors & contributors
The following people have contributed to the present document:

Rapporteur:
Dr. Jens Johann, Deutsche Telekom

Other contributors:
Dr. Dmitri Jarnikov, Irdeto

Peter Mann, BNetzA

Msc Marnix Vlot, UC-Connect (on behalf of Vodafone)

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)65

Annex D (informative):
Change History

Date Version Information about changes
April 2017 0.0.1 As approved at ECI#15.

ETSI

ETSI GS ECI 001-5-1 V1.1.1 (2017-07)66

History

Document history

V1.1.1 July 2017 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Principles
	4.1 Overview
	4.2 System Robustness Model
	4.3 Specification Principles
	4.3.1 Implementation Freedom
	4.3.2 Specification Style and relation to AS-API

	5 Key Ladder Application and Associated Functions
	5.1 General
	5.2 AS System and client data authentication
	5.3 Asymmetrical Micro Server mode
	5.4 Interface to Content Processing System
	5.5 AS Key Ladder Block input output definition
	5.6 ACF definition

	6 Advanced Security Slot
	6.1 Advanced Security Slot introduction
	6.2 AS Slot Definition
	6.2.1 General
	6.2.2 AS Slot state definition
	6.2.2.1 Slot and session state
	6.2.2.2 Decryption configuration
	6.2.2.3 Encryption Configuration
	6.2.2.4 Random session Key control
	6.2.2.5 Total session configuration
	6.2.2.6 Random Session Key state
	6.2.2.7 Import Export state

	6.2.3 Content Property Authentication
	6.2.4 AS Slot functions
	6.2.4.1 Overview
	6.2.4.2 AS Slot initialization
	6.2.4.3 AS Slot session and random key control
	6.2.4.4 AS Slot Export control
	6.2.4.5 LK1 Key Ladder initialization
	6.2.4.6 Encryption Control Word calculation
	6.2.4.7 Decryption Control Word calculation
	6.2.4.8 Computing akClient and its application
	6.2.4.9 AS Slot Session Configuration Authentication
	6.2.4.10 Loading a Micro Server secret key
	6.2.4.11 Generating MinitLk1 for Micro Clients
	6.2.4.12 Computing ECI Client image decryption key
	6.2.4.13 Reading Advanced Security Information
	6.2.4.14 Generating Client Random Numbers
	6.2.4.15 Error codes

	7 Scrambling/descrambling and Content Export
	7.1 Basic Functionality
	7.2 Scrambler and Descrambler specifications
	7.3 Export Control
	7.4 Output Control
	7.5 Content Property Comparison on Coupled Sessions
	7.6 Content Property Propagation on Export
	7.7 Basic URI Enforcement on Export
	7.8 Content Property Application on Industry Standard Outputs
	7.9 Control Word Synchronization

	8 Certificate Processing Subsystem
	8.1 Basic processing rules for Certificate Chains
	8.2 Specific rules for Host Image Chains
	8.3 Specific rules for Client Image Chains
	8.4 Specific rules for Platform Operation Certificates
	8.5 Specific rules for Export/Import chains
	8.5.1 Export Authorization chain processing
	8.5.2 Export Chain verification
	8.5.3 Third Party Export Chain verification
	8.5.4 Export System Certificate processing
	8.5.5 Target Client Chain Processing Rules

	8.6 CPS ECI Root Key initialization

	9 Loader Core
	9.1 Introduction
	9.2 Host Loader Rules
	9.3 Client Loader Rules
	9.4 Revocation enforcement
	9.5 Client Image decryption

	10 Timing requirements
	10.1 Introduction
	10.2 Administrative Functions
	10.3 Symmetrical Cryptography Functions
	10.4 Asymmetrical Cryptography Functions

	Annex A (normative): Cryptography Function Definitions
	A.1 Hash Function
	A.2 Asymmetrical Cryptography
	A.3 Random Number Generation

	Annex B (informative): Sample Micro DRM system application
	B.1 Introduction
	B.2 Application scenario
	B.3 Assumptions and notation
	B.4 Micro Server pseudo code
	B.5 Micro Client pseudo code
	B.6 Micro DRM system cascading effect on ECM pre-delay
	B.7 Content property change timing interface convention

	Annex C (informative): Authors & contributors
	Annex D (informative): Change History
	History

