

ETSI GS ECI 001-4 V1.1.1 (2017-07)

Embedded Common Interface (ECI)
for exchangeable CA/DRM solutions;

Part 4: The Virtual Machine

Disclaimer

The present document has been produced and approved by the Embedded Common Interface (ECI) for exchangeable CA/DRM
solutions ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 2

Reference
DGS/ECI-001-4

Keywords
CA, DRM, VM

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2017.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 3

Contents

Intellectual Property Rights .. 7

Foreword ... 7

Modal verbs terminology .. 7

Introduction .. 8

1 Scope .. 9

2 References .. 9

2.1 Normative references ... 9

2.2 Informative references .. 9

3 Definitions and abbreviations ... 10

3.1 Definitions .. 10

3.2 Abbreviations ... 10

4 Conceptual principles ... 11

4.1 The Virtual Machine as a CPU ... 11

4.2 Characteristics of the Virtual Machine ... 11

4.3 Isolation of individual ECI Clients ... 11

4.4 Specifying the Virtual Machine .. 11

4.5 ECI Client loader .. 12

5 The Virtual Machine .. 12

5.1 Execution environment ... 12

5.2 Virtual Machine Architecture ... 13

5.2.1 CPU architecture ... 13

5.2.2 Registers ... 14

5.2.3 Data space ... 15

5.2.4 Code space .. 15

5.2.5 Stack ... 16

5.2.6 Endianness .. 16

5.2.7 Exceptions... 16

5.2.8 Calling convention .. 16

5.3 Virtual Machine instruction set .. 16

5.3.1 Notation .. 16

5.3.2 Arithmetic Instructions ... 17

5.3.2.1 Register operands .. 17

5.3.2.2 Register, immediate... 17

5.3.3 Short Forms .. 18

5.3.4 Control Flow ... 18

5.3.4.1 Common rules ... 18

5.3.4.2 Unconditional Branches and Function Calls ... 19

5.3.4.3 Conditional Branches .. 19

5.3.4.4 Conditional Branches Based on Memory Comparisons with Constant ... 19

5.3.4.5 Far Conditional Branches .. 19

5.3.5 Load and Store instructions .. 19

5.3.5.1 Register + offset .. 19

5.3.5.2 Register + short offset ... 20

5.3.5.3 Register Indexed ... 20

5.3.5.4 Absolute indexed ... 20

5.3.5.5 Dedicated Stack Access .. 20

5.3.5.6 Memory Transfer .. 20

5.3.6 Complex Instructions .. 20

5.3.7 Miscellaneous ... 21

5.3.7.1 System Calls .. 21

5.3.7.2 Pseudo Instructions ... 21

6 Interface between the ECI Client and the ECI Host .. 21

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 4

6.1 General principles... 21

6.2 Error value .. 22

6.3 SYS_EXIT ... 22

6.4 SYS_PUTMSG .. 23

6.5 SYS_GETMSG .. 23

6.6 SYS_HEAPSIZE .. 23

6.7 SYS_STACKSIZE ... 24

6.8 SYS_SYNCCALL.. 24

6.9 SYS_CLIB ... 24

7 bytecode lifecycle .. 25

7.1 Introduction .. 25

7.2 Loading a new ECI Client into the VM .. 25

7.3 Initialization of the VM .. 25

7.4 The Central Run Loop .. 25

Annex A (normative): VM System resources .. 27

Annex B (normative): Op codes for the VM .. 28

Annex C (normative): Standard C library routines .. 32

C.1 Introduction .. 32

C.2 memmove ... 32

C.3 strcpy .. 32

C.4 strncpy .. 33

C.5 strcat ... 33

C.6 strncat ... 33

C.7 memcmp ... 33

C.8 strcmp ... 33

C.9 strncmp ... 34

C.10 memchr ... 34

C.11 strchr ... 34

C.12 strcspn... 34

C.13 strpbrk... 35

C.14 strrchr ... 35

C.15 strspn .. 35

C.16 strstr .. 35

C.17 memset ... 35

Annex D (normative): ECI Client File Format .. 36

Annex E (informative): Authors & contributors ... 37

Annex F (informative): Change History .. 38

History .. 39

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 5

List of Figures
Figure 1: VM Host environment ...12

Figure 2: Virtual processor architecture ..13

Figure 3: Register file architecture ..14

Figure 4: VM data memory layout ..15

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 6

List of Tables
Table 1: Error values ...22

Table 2: SYS_EXIT reason values ..22

Table D.1: ECI-compliant e_ident settings ...36

Table D.2: ECI-compliant settings for ELF header members ...36

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 7

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Embedded Common
Interface (ECI) for exchangeable CA/DRM solutions.

The present document is part 4 of a multi-part deliverable covering the Virtual Machine for the Embedded Common
Interface for exchangeable CA/DRM solutions specification, as identified below:

Part 1: "Architecture, Definitions and Overview";

Part 2: "Use cases and requirements";

Part 3: "CA/DRM Container, Loader, Interfaces, Revocation";

Part 4: "The Virtual Machine";

Part 5: "The Advanced Security System";

Part 6: "Trust Environment".

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 8

Introduction
The present document describes the concept of a Virtual Machine that executes in a Sandbox and offers a range of
instructions and System Call functions. The VM is designed to work in a variety of environments. It interoperates with
other applications that exist on the same machine using well-defined interfaces and provides a combination of support
for its own instruction set and a modular mechanism for the execution of elements written in the native code of the ECI
Host CPU and interacting with the hardware and other elements of the ECI Host environment. This provides the VM
with the means to execute readily renewable code that can provide a wide range of potential secure applications,
including the implementation of CA/DRM clients.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 9

1 Scope
The present document specifies a Virtual Machine which is intended for inclusion in the implementation of digital
television receivers and Set Top Boxes, and which is able to provide a secured environment for executing Conditional
Access kernel or Digital Rights Management client applications. The intention is to provide a uniform execution
environment in which such clients can operate in the knowledge that minimum ECI Host performance requirements are
met, that a standard API is provided to be used for retrieval of essential security data from content (i.e. encapsulated
with content) or via external networks (e.g. the Internet) and where resources can be accessed from the ECI Host
environment in a standardized way.

The presence and use of the VM allows to exchange CA/DRM clients at will and to support multiple simultaneous
instances of such clients in ECI Hosts so that users and operators are not tied in to a particular content protection
provider and that they can use security solutions of different types to suit differing content types. For Content
Protection system providers, it ensures the availability of a known execution platform that does not require specific
integration with any and every vendor of ECI Host devices.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GS ECI 001-3: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Part 3: CA/DRM Container, Loader, Interfaces, Revocation".

[2] "Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification, version 1.2",
TIS Committee, 1995.

NOTE: Available at https://refspecs.linuxfoundation.org/elf/elf.pdf.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ISO/IEC 9899: "Information technology -- Programming Languages -- C", ISO/IEC JTC1/SC22
WG14.

[i.2] ETSI GR ECI 004: "Embedded Common Interface (ECI) for exchangeable CA/DRM solutions;
Guidelines for the implementation of ECI".

http://docbox.etsi.org/Reference
https://refspecs.linuxfoundation.org/elf/elf.pdf

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 10

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

bytecode: code of ECI Client (typically comprising a Conditional Access kernel or Digital Rights Management client)
that is executed by the VM

content protection system: system that uses cryptographic techniques to manage access to digital content

NOTE: Typically, a content protection system is either a conditional access system or a digital rights
management system.

Customer Premises Equipment (CPE): customer device that provides ECI specified decryption and encryption
functions

ECI (Embedded CI): architecture and the system specified in the ETSI ISG "Embedded CI", which allows the
development and implementation of software-based swappable ECI Clients in customer premises equipment (CPE)
and thus provides interoperability of CPE devices with respect to ECI

ECI Client (Embedded CI Client): implementation of a CA/DRM client which is compliant with the ECI
specifications

ECI Host: hardware and software system of a CPE, which covers ECI related functionalities and has interfaces to an
ECI Client

ecosystem: content and system environment in which the Virtual Machine described in the present document exists

NOTE: It takes into account the wider perspective of content preparation, delivery, authorization, etc. and is not
limited to a specific device or implementation.

interface specification: wrapper document that describes the extension, restrictions or any other modifications to the
present document that are required to meet the specific needs of a wider ecosystem in which the VM is required to
operate

native code: programmatic code written in the native executable instruction set of the ECI Host processor

sandbox: application execution environment limiting application access to only those resources defined by the sandbox
API

VM Instance: instantiation of VM established by an ECI Host that appears to an ECI Client as an execution
environment to run in

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
CA Conditional Access
CI Common Interface
CP Content Protection
CPU Central Processing Unit
DRM Digital Rights Management
ELF Executable and Linkable Format
EPG Electronic Programme Guide
ID Identification/Identity/Identifier
OS Operating System
PC Program Counter
POSIX Portable Operating System Interface
RISC Reduced Instruction Set Computer
VM Virtual Machine

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 11

4 Conceptual principles

4.1 The Virtual Machine as a CPU
In essence, the Virtual Machine (VM) comprises a virtual CPU with its own code and data memory and a set of system
interfaces that provide access to hardware features of the ECI Host machine. The emulated CPU executes code in the
manner of a virtual 32-bit CPU, and the code it executes is called bytecode in the present document. Since the VM is a
simulation of a general purpose RISC processor it is able to execute a variety of applications.

4.2 Characteristics of the Virtual Machine
The VM shall provide a single-process, single-threaded environment.

The interface to the ECI Host hardware and other functions is provided in the form of a standard library of calls,
termed SYSCALLs. The SYSCALL instruction is one of the customized instructions of the VM and it is generally
executed after preparing the parameters required by the library routine (i.e. passed in "registers" of the VM).

All interaction between the ECI Client and the ECI Host is achieved through this operation. No interrupt architecture
is defined and, once started, the ECI Client runs to completion. Therefore, there is no opportunity to invoke calls into
the VM. Whilst restricting flexibility to a certain extent, this is outweighed by the enhanced control of the VM
execution (ensuring robustness of operation), the avoidance of race conditions, interference with time-critical
operations, etc.

As a consequence, the only means of passing data or messages to the ECI Client executing in the VM is on the basis of
requests issued by the ECI Client by invoking the appropriate SYSCALLs.

4.3 Isolation of individual ECI Clients
The ECI Client executes in a Virtual Machine, which exists as an application running in the firmware of the ECI Host.
It shall be possible to invoke multiple instances of the Virtual Machine, each potentially running a different ECI Client.
This places three fundamental requirements on the ECI Host operating environment:

1) The Operating System shall allocate sufficient resource to each VM Instance such that the performance
requirements laid out in [i.2] are met by all instances running simultaneously.

2) The libraries defined in clause 6 and annex C shall be fully re-entrant or implemented separately for each
instance of the VM.

3) The Operating System and VM shall ensure no information can be exchanged between running ECI Clients
and the outside world, including other ECI Clients by means other than those explicitly specified for such
purpose as part of the SYSCALL interface. This among others implies that all memory mapped into the data
space of a VM Instance is wiped from its previous content beforehand, and any attempts to use exceptional
conditions in the VM to trigger unspecified behaviour shall be prevented. This also implies that there is no
means for an ECI Client to change its bytecode. It specifically implies that the ECI Host and VM shall make
all required checks to prevent an ECI Client inducing unintended behaviour in the ECI Host or VM
implementations that may for instance lead directly or indirectly lead to the ECI Client being able to
manipulate (hack) the ECI Host.

4.4 Specifying the Virtual Machine
In subsequent clauses of the present document, the following are explicitly detailed regarding the VM itself:

1) The technical architecture of the VM.

2) The instruction set of the VM.

3) The ECI Host interface.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 12

4.5 ECI Client loader
In order to execute the ECI Client, the bytecode shall first be loaded into the code space of the VM memory and the
data space initialized. In clause 7, the present document addresses some specific aspects of the format of the ECI Client
container and initialization of the VM.

5 The Virtual Machine

5.1 Execution environment

Figure 1: VM Host environment

As depicted in Figure 1, the VM shall be executed in a sandboxed environment that ensures isolation from the ECI
Host's operating system, other Virtual Machine instances and any other applications executing in the ECI Host.

The VM comprises a native application of the ECI Host, with associated memory, and interface library and a loader for
installing the bytecode forming an ECI Client. The interface library provides the ECI Client with access to features of
the ECI Host operating system and hardware and also to other applications that may be executing in the ECI Host and
with which the ECI Client may need to interact. A typical example would be interaction with an Electronic Programme
Guide (EPG) application that would require authorization status for specific content for display to the user.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 13

5.2 Virtual Machine Architecture

5.2.1 CPU architecture

Figure 2: Virtual processor architecture

Figure 2 shows architecture of the virtual machine CPU. The VM is a register machine with the following
characteristics.

• A register file with general purpose registers of 32 bits. The registers are organized in register windows. Each
register window contains 32 registers. The last 16 registers of each window overlap with the first 16 registers
of the next window. Two of these registers in each window serve as stack pointer and frame pointer. The total
number of registers in the register file is REGISTER_FILE_SIZE, specified in annex A.

• A Harvard CPU architecture. Data is stored in a 32-bit flat memory space. Code is stored in a read-only, non-
addressable memory space.

• A separate control stack keeps track of return addresses. The contents of this stack are inaccessible to the
bytecode or external applications. The stack can store up to CONTROL_STACK_SIZE return addresses
(see annex A).

• Load and store instructions for signed and unsigned byte, half-word and word data types, which are 8, 16 and
32 bits respectively.

• An instruction set with many data processing instructions tailored for the application domain.

• Native byte ordering for efficient load and store, independent of endianness. Natural alignment
(alignment = size) is used for the basic types to make the bytecode maximally portable. In other words, the
memory address of a half-word is always even, and the address of a word is always a multiple of four.

• A System Call instruction (SYSCALL) which can be used to implement system services. This also allows the
VM to be extended with built-in functions, e.g. to perform frequently occurring data processing natively.

VM RAM

Data

CodeALU

Program
Counter

D
at

a
bu

s

Core
logic

Control bus

Control
stack

StackRegister
file

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 14

• Paged memory supporting a fragmented memory space. It allows mapping of native memory into the VM's
memory space.

5.2.2 Registers

In each register window, 32 registers are visible, R0 through R31. Two registers are reserved for special treatment. R0
is the Frame Pointer and R16 is the Stack Pointer. The use of these registers is further detailed below.

At entry of a function, the ENTER instruction shifts the register window up by sixteen registers. This turns the old stack
pointer into the new frame pointer, and makes a new stack pointer and fifteen more registers available. The new stack
pointer is initialized by subtracting the frame size supplied by the ENTER instruction from the frame pointer.

The RETURN instruction reverses this process. It shifts the window down by sixteen registers, thus restoring the old
frame pointer and stack pointer.

Since the original R0 through R15 cannot be reached from the called routine, they are automatically callee-saved. Since
the return address is saved on a separate control stack, there is no data stack used for callee-saved registers and return
addresses.

The true number of registers is limited, so there is a maximum on the call depth of an ECI Client
(CONTROL_STACK_SIZE). Exceeding this depth will abort the VM program. The number of registers and the
corresponding depth of the control stack can be specified when creating the VM process.

Figure 3: Register file architecture

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 15

5.2.3 Data space

The base data address of the VM defined as DATA_BASE_ADDRESS (see annex A) shall be 0x1000000 (16 Mbyte).
The smallest address above the addressable memory that is not addressable is DATA_BASE_ADDRESS +
ADDRESSABLE_DATA_SIZE (see annex A). The base address of the stack shall be defined by the VM
implementation, but shall be towards the high end of the address space. The VM may reserve a maximum of
VM_RESEVED_SIZE (see annex A) for private purposes in the address space of the ECI Client "below" the bottom of
the stack (at a higher address). At VM initialization the stack pointer shall point to the first free stack location. The ECI
Client can assume that the top of the (empty) heap at initialization is equal to the size of the initialized data + size of the
uninitialized data segments, both rounded up to multiple of 4.

The data memory layout is sketched in Figure 4.

Figure 4: VM data memory layout

At ECI Client initialization, the ECI Client loader shall load the initialized and uninitialized data segments starting at
address DATA_BASE_ADDRESS. All bytes of the uninitialized data segment shall be set to zero. The initialized data
segment is not write protected.

NOTE 1: The stack size is initially restricted. Since local data structures defined in c-functions are typically
allocated to the stack the stack segment should be set by the ECI Client to an appropriate size in case
large local variables are used in the c-code.

NOTE 2: The ECI Host may map message buffers in the VM reserved memory below the base stack address.

Future VM versions might reserve more addressable memory for ECI Clients; i.e. might have a larger
ADDRESSABLE_DATA_SIZE. For backward compatibility purposes ECI Clients shall not depend on the specific
value or value range of the stack pointer presently defined, but simply use the stack pointer as passed on initialization.

The ECI Client Loader shall not load any image files that do not adhere to the above memory layout convention for the
initialized and uninitialized data segments.

5.2.4 Code space

Code cannot be directly accessed by the program. The program may obtain 32-bit opaque references to static code
objects (e.g. routine entry point, jump target) called code references (see MOVF instruction). code references may only
be used with indirect control flow instructions (JMPR and CALLR). code references are not pointers to code memory
space, and no pointer arithmetic shall take place with them.

The start address of the code segment in the code address space shall be 0x00000000. The maximum size of the code
segment is defined as CODE_SIZE (see annex A).

Initialized

data

Uninitialized

data

VM reserved

stack

heap

Address:

DATA_BASE_ADDRESS

= 0x1000000

DATA_BASE_ADDRESS +

ADDRESSABLE_DATA_SIZE

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 16

5.2.5 Stack

The stack is conventionally defined to be located in data memory, to contain words only, to grow toward lower
addresses, and to have its tip (word that was pushed last) always pointed to by the R16 register (stack pointer) of the
current register window.

R0, the frame pointer, is used as a pointer into the callee's stack so that parameters or other data pushed onto the stack
may be accessed by a called routine (see clause 5.2.8).

5.2.6 Endianness

Multi-byte data (half-words and words) are represented in system memory in little-endian format. The ECI Client
software shall use little-endian.

5.2.7 Exceptions

The VM CPU does not issue any exception during execution. If an instruction operates under conditions outside those
outlined in the present document (e.g. unaligned access to a half-word or word in memory, access to any memory
address which has no corresponding memory, a branch to an unknown code reference), the behaviour is undefined. The
VM may choose to terminate the kernel. The VM shall ensure that under no circumstances may an ECI Client
operating outside the present document gain access to unauthorized data or to influence any other application.

5.2.8 Calling convention

The calling conventions pass the first seven scalar parameters (pointers and integers) in R17 through R23. The callee
will see these as R1 through R7.

Scalar parameters beyond the seventh are passed on the stack by the caller in a right-to-left order. Because of the
register window mechanism, the callee will always find the eighth parameter (if present) pointed to by R0. R0 is
therefore the frame pointer. Structure parameters are always passed on the stack, or by reference. Pointers always refer
to the VM memory space.

NOTE: All SYSCALLs pass any structures and arrays by reference only. This approach should be used for other
calls, too.

The callee leaves the return value in R1, which will be seen as R17 by the caller. Types smaller than 32 bits are passed
(and returned) as 32 bit values.

Structure return is implemented by passing an implicit first parameter which is a pointer to the memory area where the
return type is expected to be stored (passed by reference). The callee writes its result to the location to which this
parameter points. This return pointer is treated like a normal argument (passed in R17 � R1), which implies that the
regular arguments of a function, which returns a structure, shift to other calling convention registers
(R18..R23 � R2..R7) or via the stack.

5.3 Virtual Machine instruction set

5.3.1 Notation

The following notation is used:

rx Register x.
uimm5 5 bit unsigned immediate.
uimms9 9 bit unsigned immediate. Always a multiple of two.
uimms10 10 bit unsigned immediate. Always a multiple of four.
simm11 11 bit signed immediate.
simm16 16 bit signed immediate.
uimm16 16 bit unsigned immediate.
pcr16 16 bit signed PC-relative
pcr24 24 bit signed PC-relative
imm32 32 bit immediate.
low8(x) The least significant 8 bits of x.
low16(x) The least significant 16 bits of x.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 17

The functional descriptions use C-semantics on 32 bit integer types. The ability of the operation to support signed or
unsigned data types is indicated as comments. Memory access is given by MEM1(), MEM2() and MEM4(), accessing
1, 2 or 4 bytes of memory, respectively. The operand of these is an offset into the data segment. When relevant, MEM is
prefixed by U for unsigned operations or S for sign-extended operations.

5.3.2 Arithmetic Instructions

5.3.2.1 Register operands

ADD r1,r2,rd ; rd = r1 + r2;
SUB r1,r2,rd ; rd = r1 - r2;
OR r1,r2,rd ; rd = r1 | r2;
AND r1,r2,rd ; rd = r1 & r2;
XOR r1,r2,rd ; rd = r1 ^ r2;
SRA r1,r2,rd ; rd = r1 >> r2; signed shift right
SRL r1,r2,rd ; rd = r1 >> r2; logic shift right
SLL r1,r2,rd ; rd = r1 << r2;
MUL r1,r2,rd ; rd = r1 * r2;
SDIV r1,r2,rd ; rd = r1 / r2; signed divide
SMOD r1,r2,rd ; rd = r1 % r2; signed remainder
UDIV r1,r2,rd ; rd = r1 / r2; unsigned divide
UMOD r1,r2,rd ; rd = r1 % r2; unsigned remainder
EQ r1,r2,rd ; rd = r1 == r2;
NE r1,r2,rd ; rd = r1 != r2;
LT r1,r2,rd ; rd = r1 < r2; signed less than
GE r1,r2,rd ; rd = r1 >= r2; signed greater or equal
LTU r1,r2,rd ; rd = r1 < r2; unsigned less than
GEU r1,r2,rd ; rd = r1 >= r2; unsigned greater or equal
NOT r1,rd ; rd = ~r1;
NEG r1,rd ; rd = -r1;
ABS r1,rd ; rd = abs(r1);
MOV r1,rd ; rd = r1;
EXTB r1,rd ; rd = (int8_t) r1; sign-extend from 8 bits
EXTH r1,rd ; rd = (int16_t) r1; sign-extend from 16 bits
ZEXTB r1,rd ; rd = (uint8_t) r1; zero-extend from 8 bits
ZEXTH r1,rd ; rd = (uint16_t) r1; zero-extend from 16 bits
MASKHI r1,rd ; rd = ~(-1) >> r1; logic shift right

5.3.2.2 Register, immediate

ADDI r1,imm32,rd ; rd = r1 + imm32;
RSUBI r1,imm32,rd ; rd = imm32 - r1;
ORI r1,imm32,rd ; rd = r1 | imm32;
NORI r1,imm32,rd ; rd = ~(r1 | imm32);
ANDI r1,imm32,rd ; rd = r1 & imm32;
NANDI r1,imm32,rd ; rd = ~(r1 & imm32);
XORI r1,imm32,rd ; rd = r1 ^ imm32;
XNORI r1,imm32,rd ; rd = ~(r1 ^ imm32);
SRAI r1,uimm5,rd ; rd = r1 >> uimm5; signed
SRLI r1,uimm5,rd ; rd = r1 >> uimm5; logic
SLLI r1,uimm5,rd ; rd = r1 << uimm5;
MULI r1,imm32,rd ; rd = r1 * imm32;
MACI r1,imm32,rd ; rd += r1 * imm32;
SMODI r1,imm32,rd ; rd = r1 % imm32; signed
SDIVI r1,imm32,rd ; rd = r1 / imm32; signed
UMODI r1,imm32,rd ; rd = r1 % imm32; unsigned
UDIVI r1,imm32,rd ; rd = r1 / imm32; unsigned
EQI r1,imm32,rd ; rd = r1 == imm32;
NEI r1,imm32,rd ; rd = r1 != imm32;
LTI r1,imm32,rd ; rd = r1 < imm32; signed
GTI r1,imm32,rd ; rd = r1 > imm32; signed
GEI r1,imm32,rd ; rd = r1 >= imm32; signed
LEI r1,imm32,rd ; rd = r1 <= imm32; signed
LTUI r1,imm32,rd ; rd = r1 < imm32; unsigned
GTUI r1,imm32,rd ; rd = r1 > imm32; unsigned
GEUI r1,imm32,rd ; rd = r1 >= imm32; unsigned
LEUI r1,imm32,rd ; rd = r1 <= imm32; unsigned
ADDMXI r1,imm32,rd ; rd = (r1 + imm32) % 0x7fffffff;
MOVC simm16,rd ; rd = simm16;
MOVI imm32,rd ; rd = imm32;
MOVF caddr,rd ; rd = caddr; load code reference
CLR rd ; rd = 0;

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 18

INC rd ; rd = rd + 1;
DEC rd ; rd = rd – 1;

The signed divide and remainder operations follow the C99 definition: Division truncates the mathematical result
toward zero; the remainder respects the relation:

 a=bab
b

a
%+×

Where % represents the remainder function, or modulus.

The right operand of the shift instructions shall be in range of [0, 31], otherwise the behaviour is undefined. The signed
shift right copies the original most-significant bit into the vacated positions. Arithmetically, this corresponds to division
with a power of two, rounding the mathematical result to minus infinity (floor rounding).

5.3.3 Short Forms

Many occurrences of the three operand instructions use one of the operands also as the result. Since these can be coded
more compactly, special opcodes for these are available:

ADD2 r1,rd ; rd += r1;
SUB2 r1,rd ; rd -= r1;
MUL2 r1,rd ; rd *= r1;
AND2 r1,rd ; rd &= r1;
OR2 r1,rd ; rd |= r1;
XOR2 r1,rd ; rd ^= r1;
XNOR2 r1,rd ; rd = ~(rd ^ r1);
NE2 r1,rd ; rd = r1 != rd;
EQ2 r1,rd ; rd = r1 == rd;
SLL2 r1,rd ; rd <<= r1;
SRA2 r1,rd ; rd >>= r1; signed
SRL2 r1,rd ; rd >>= r1; logical

Bitwise immediate operations test or modify a single bit. Those immediates can be coded using 5 bits giving the bit
position.

ANDB r1,uimm5,rd ; rd = r1 & (1 << uimm5);
ORB r1,uimm5,rd ; rd = r1 | (1 << uimm5);
XORB r1,uimm5,rd ; rd = r1 ^ (1 << uimm5);
TESTB r1,uimm5,rd ; rd = (r1 >> uimm5) & 1;
TESTBC r1,uimm5,rd ; rd = ! ((r1 >> uimm5) & 1);

Many comparisons are against zero. This saves an immediate operand and will be cheaper to emulate.

EQZ r1,rd ; rd = r1 == 0;
NEZ r1,rd ; rd = r1 != 0;
LTZ r1,rd ; rd = r1 < 0;
GTZ r1,rd ; rd = r1 > 0;
LEZ r1,rd ; rd = r1 <= 0;
GEZ r1,rd ; rd = r1 >= 0;

Unsigned versions of these do not make sense. They are either true or false or can be expressed using EQZ or NEZ.

5.3.4 Control Flow

5.3.4.1 Common rules

Control flow instructions with direct operands code their targets relative to the end address of the instruction. In
register-based control flow, the register holds a function pointer index.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 19

5.3.4.2 Unconditional Branches and Function Calls

JMP pcr24 ; goto PC+pcr24;
JMPR rd ; goto rd (shall be code reference);
CALL pcr24 ; push PC; goto PC+pcr24;
CALLR rd ; push program counter; goto rd (code reference);
ENTER uimm16 ; shift register file by 16 (new r0 is old r16);
 ; r16 = r0 - 4 * uimm16;
ENTER0 ; equivalent to ENTER 0
ENTERC uimms10 ; equivalent to ENTER uimms10
LEAVE ; unshift register file
RETURN ; unshift register file;
 ; goto popped program counter;
RETURNL ; goto popped program counter;

SWITCH r1,uimm16 ; goto PC + MIN(r1, uimm16)
 ; advance to r1th CASE statement below
CASE pcr24 ; goto PC + pcr24
 ; add a case in the previous SWITCH. The first
 ; entry is case value zero, each next one adds
 ; one to the case value.

5.3.4.3 Conditional Branches

JEQ r1,r2,pcr16 ; if (r1 == r2) goto PC+pcr16;
JNE r1,r2,pcr16 ; if (r1 != r2) goto PC+pcr16;
JLT r1,r2,pcr16 ; if (r1 < r2) goto PC+pcr16;
JGE r1,r2,pcr16 ; if (r1 >= r2) goto PC+pcr16;
JLTU r1,r2,pcr16 ; if ((unsigned)r1 < (unsigned)r2) goto PC+pcr16;
JGEU r1,r2,pcr16 ; if ((unsigned)r1 >= (unsigned)r2) goto PC+pcr16;

JEQC r1,simm11,pcr16 ; if (r1 == simm11) goto PC+pcr16;
JNEC r1,simm11,pcr16 ; if (r1 != simm11) goto PC+pcr16;
JLTC r1,simm11,pcr16 ; if (r1 < simm11) goto PC+pcr16;
JGEC r1,simm11,pcr16 ; if (r1 >= simm11) goto PC+pcr16;
JLTUC r1,uimm11,pcr16 ; if ((unsigned) r1 < uimm11) goto PC+pcr16;
JGEUC r1,uimm11,pcr16 ; if ((unsigned) r1 >= uimm11) goto PC+pcr16;
JGTC r1,simm11,pcr16 ; if (r1 > simm11) goto PC+pcr16;
JLEC r1,simm11,pcr16 ; if (r1 <= simm11) goto PC+pcr16;
JGTUC r1,uimm11,pcr16 ; if ((unsigned) r1 > uimm11) goto PC+pcr16;
JLEUC r1,uimm11,pcr16 ; if ((unsigned) r1 <= uimm11) goto PC+pcr16;

5.3.4.4 Conditional Branches Based on Memory Comparisons with Constant

JWEQC r1,simm11,pcr16 ; if (MEM4(r1) == simm11) goto PC+pcr16;
JWNEC r1,simm11,pcr16 ; if (MEM4(r1) != simm11) goto PC+pcr16;

These read a word from memory and compare it with a constant.

5.3.4.5 Far Conditional Branches

For each of the conditional branches described above, there is a far version, which has a 24 bit offset. The assembler
should choose the shortest version that fits.

5.3.5 Load and Store instructions

5.3.5.1 Register + offset

LDSBI r1,imm32,rd ; rd = SMEM1(r1 + imm32);
LDUBI r1,imm32,rd ; rd = UMEM1(r1 + imm32);
LDSHI r1,imm32,rd ; rd = SMEM2(r1 + imm32);
LDUHI r1,imm32,rd ; rd = UMEM2(r1 + imm32);
LDWI r1,imm32,rd ; rd = MEM4 (r1 + imm32);

STBI rd,r1,imm32 ; MEM1(r1 + imm32) = low8(rd);
STHI rd,r1,imm32 ; MEM2(r1 + imm32) = low16(rd);
STWI rd,r1,imm32 ; MEM4(r1 + imm32) = rd;

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 20

5.3.5.2 Register + short offset

LDSBC r1,uimm8,rd ; rd = SMEM1(r1 + uimm8);
LDUBC r1,uimm8,rd ; rd = UMEM1(r1 + uimm8);
LDSHC r1,uimms9,rd ; rd = SMEM2(r1 + uimms9);
LDUHC r1,uimms9,rd ; rd = UMEM2(r1 + uimms9);
LDWC r1,uimms10,rd ; rd = MEM4 (r1 + uimms10);

STBC rd,r1,uimm8 ; MEM1(r1 + uimm8) = low8(rd);
STHC rd,r1,uimms9 ; MEM2(r1 + uimms9) = low16(rd);
STWC rd,r1,uimms10 ; MEM4(r1 + uimms10) = rd;

5.3.5.3 Register Indexed

LDUB r1,r2,rd ; rd = UMEM1(r1 + r2);
LDSB r1,r2,rd ; rd = SMEM1(r1 + r2);
LDUH r1,r2,rd ; rd = UMEM2(r1 + 2 * r2);
LDSH r1,r2,rd ; rd = SMEM2(r1 + 2 * r2);
LDW r1,r2,rd ; rd = MEM4(r1 + 4 * r2);

STB rd,r1,r2 ; MEM1(r1 + r2) = rd;
STH rd,r1,r2 ; MEM2(r1 + 2 * r2) = rd;
STW rd,r1,r2 ; MEM4(r1 + 4 * r2) = rd;

LDW1 r1,r2,rd ; rd = MEM4(r1 + r2);
STW1 rd,r1,r2 ; MEM4(r1 + r2) = rd;

5.3.5.4 Absolute indexed

LDSHAX imm32,r1,rd ; rd = SMEM2(imm32 + 2 * r1);
LDUHAX imm32,r1,rd ; rd = UMEM2(imm32 + 2 * r1);
LDWAX imm32,r1,rd ; rd = MEM4(imm32 + 4 * r1);
STHAX rd,imm32,r1 ; MEM2(imm32 + 2 * r1)= rd;
STWAX rd,imm32,r1 ; MEM4(imm32 + 4 * r1)= rd;

It should be noted that no absolute indexed byte loads are needed. For instance, LDSBAX is equivalent to LDSBI.

5.3.5.5 Dedicated Stack Access

These are word loads and stores that use the frame pointer implicitly.

LDFP simm16,r1 ; r1 = MEM4(FP + simm16);
STFP r1,simm16 ; MEM4(FP + simm16) = r1;

5.3.5.6 Memory Transfer

A block copy instruction used for compiler-generated block copies.

COPY r1,s:uimm32,r2,o:uimm32 ; copy s bytes from r1 to r2+o

5.3.6 Complex Instructions

These are instructions that perform a combination of operations, usually with immediate operands. In this summary
each operand designated as i1, i2, etc. is a 32 bit immediate (imm32).

ADDANDI2 r1,i1,i2,rd ; rd = (r1 + i1) & i2;
ADDMULI2 r1,i1,i2,rd ; rd = (r1 + i1) * i2;
ADDORI2 r1,i1,i2,rd ; rd = (r1 + i1) | i2;
ADDXORI2 r1,i1,i2,rd ; rd = (r1 + i1) ^ i2;

MULADDI2 r1,i1,i2,rd ; rd = (r1 * i1) + i2;
MULANDI2 r1,i1,i2,rd ; rd = (r1 * i1) & i2;
MULORI2 r1,i1,i2,rd ; rd = (r1 * i1) | i2;
MULXORI2 r1,i1,i2rd ; rd = (r1 * i1) ^ i2;

RSUBANDI2 r1,i1,i2,rd ; rd = (i1 – r1) & i2;
RSUBORI2 r1,i1,i2,rd ; rd = (i1 – r1) | i2;
RSUBXORI2 r1,i1,i2,rd ; rd = (i1 – r1) ^ i2;

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 21

ORADDI2 r1,i1,i2,rd ; rd = (r1 | i1) + i2;
ORMULI2 r1,i1,i2,rd ; rd = (r1 | i1) * i2;

SLLADDI2 r1,s1:uimm5,i2,rd ; rd = (r1 << s1) + i2;
SLLANDI2 r1,s1:uimm5,i2,rd ; rd = (r1 << s1) & i2;
SLLORI2 r1,s1:uimm5,i2,rd ; rd = (r1 << s1) | i2;
SLLRSUBI2 r1,s1:uimm5,i2,rd ; rd = i2 - (r1 << s1);

ANDSLLI2 r1,i1,s2:uimm5,rd ; rd = (r1 & i1) << s2;

MAMI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) & i2) * i3;
MPMI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) + i2) * i3;
MOMI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) | i2) * i3;

MPAI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) + i2) & i3;
MPOI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) + i2) | i3;
RORI3 r1,i1,i2,i3,rd ; rd = i3 - ((i1 – r1) | i2);
AMPI3 r1,i1,i2,i3,rd ; rd = ((r1 & i1) * i2) + i3;

LPAI3 r1,s1:uimm5,i2,i3,rd ; rd = ((r1 << s1) + i2) & i3;

MPMPI4 r1,i1,i2,i3,i4,rd ; rd = (((r1 * i1) + i2) * i3) + i4;
MPOMI4 r1,i1,i2,i3,i4,rd ; rd = (((r1 * i1) + i2) | i3) * i4;

5.3.7 Miscellaneous

5.3.7.1 System Calls

A variety of services are implemented by System Calls.

SYSCALL uimm16 ; system service uimm16

A minimal set of POSIX System Calls is implemented that are mapped directly to the underlying OS. These are used for
testing purposes. Some others perform more dedicated VM services, like malloc()and free(). More application-
specific services may be added.

5.3.7.2 Pseudo Instructions

Some operations can be expressed in terms of other ones. The following pseudo opcodes are available:

SUBI r1,imm32,rd = ADDI r1,-imm32,rd
GT r1,r2,rd = LT r2,r1,rd
LE r1,r2,rd = GE r2,r1,rd
GTU r1,r2,rd = LTU r2,r1,rd
LEU r1,r2,rd = GEU r2,r1,rd

6 Interface between the ECI Client and the ECI Host

6.1 General principles
System Calls arise when the SYSCALL instruction is executed. The instruction contains an immediate operand that
identifies the System Call. System Calls are effectively calls to a standard library, passing the parameters as described
in clause 5.2.8.

The first 7 parameters (words or pointers) are passed in registers R1..R8. They are all sign extended to 32-bit values if
the actual parameter type is an 8 or 16 bit scalar. Return values (words or pointers) shall be placed in R1.

Unless otherwise stated, all memory addresses refer to the VM memory space.

For future compatibility reasons, the ECI Client shall clear to zero all registers R1..R8 not used for passing parameters.
The content of all registers may be trashed by the library function.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 22

The mandatory library System Calls that all compliant implementations shall support are listed below. The format used
provides:

• The SYSCALL ID used as the immediate operand (SYSCALL imm32).

• A description of the library function.

• A declaration in C syntax.

• A description of the parameters and return value.

• Any additional notes.

Parameters and return values are typed using the following convention:

• uintnn represents an unsigned integer of nn bits (nn being one of 8, 16 or 32). Values of less than 32 bits shall
be zero-extended to 32 bits when placing them in the registers.

• intnn represents a signed integer. Values of less than 32 bits shall be sign-extended when placing them in the
registers.

• void * represents a generic pointer.

• [u]intnn * represents a pointer to one value of type [u]intnn or an array of them.

• struct struct_type * refers to a pointer to a structure (or an array of structures) in memory - structures are
always passed by reference using this convention.

6.2 Error value
Most SYSCALLs return a negative word to indicate an error condition was detected. Table 1 lists the error values.

Table 1: Error values

value Symbolic name Meaning
-49 EPERM A call was made to a non-existent SYSCALL or CLIB function.
-50 EINVAL One of the parameters is incorrect.
-51 ERRSYSCALLMSGQUEUE Number of messages sent the ECI Host exceeds its buffering capacity.
-52 ERRHEAPSIZE An inappropriate value for heap size was requested.
-53 ERRSTACKSIZE An inappropriate value for stack size was requested.

6.3 SYS_EXIT
SYSCALL ID: 0x0001

Description: Terminates the VM, providing a reason code.

Declaration: void SYS_EXIT(uint32 reason)

Operands: The reason for termination

Returns: nothing

Notes: reason takes one of the values listed in Table 2.

Table 2: SYS_EXIT reason values

reason Meaning
0 Normal termination
0x00000001..0x7FFFFFFF Error condition, ECI Client provider specific
0x80000000..0xFFFFFFFF Reserved for future use

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 23

6.4 SYS_PUTMSG
SYSCALL ID: 0x0003

Description: Sends an asynchronous message (request or response).

Declaration: int32 SYS_PUTMSG(MessageBuffer *msg_buffer)

Operands: msg_buffer is a pointer to a message buffer block.

Returns: The id of the message as assigned by the ECI Host (non-negative 16 bit value) or any of the error
values below (negative):
ERRSYSCALLMSGQUEUE (Table 1).

Notes: The call shall not block in normal ECI Host operating conditions.
The format of MessageBuffer is defined in [1].
The msg_buffer content is copied by the ECI Host and can be reused immediately by the ECI
Client following the return of the SYSCALL.

6.5 SYS_GETMSG
SYSCALL ID: 0x0004

Description: Retrieves the next message (be it a request or a result) from the ECI Host. The SYSCALL blocks
if no message is available.

Declaration: (MessageBuffer *) SYS_GETMSG()

Operands: none.

Returns: The pointer to the buffer containing the next message from the ECI Host or any of the error values
listed in Table 1.

Notes: The call will block in case the ECI Host has no messages queued for the ECI Client.
The format of MessageBuffer is defined in [1].
The message buffer content will not be changed by the ECI Host until the next SYS_GETMSG
SYSCALL. ECI Clients that wish to have access to message data after the next SYS_GETMSG
call need to copy this data.

6.6 SYS_HEAPSIZE
SYSCALL ID: 0x0100

Description: A request to ECI Host to change heap size to the provided parameter.

Declaration: int32 SYS_HEAPSIZE(uint32 heapsize)

Operands: heapsize: size to set the heap of the ECI Client to. It shall be non-negative, a multiple of 4 and not
cause an overrun of the heap in the stack segment.

Returns: The memory location offset in bytes from DATA_BASE_ADDRESS that is the lowest non-heap
memory address in addressable memory, or any error value (negative) below:
ERRHEAPSIZE (Table 1).

Notes: The call will block in case the ECI Host has no messages queued for the ECI Client.
At ECI Client initialization SYS_HEAPSIZE(0) will return the offset of the start of the heap
segment (zero size at that time).

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 24

6.7 SYS_STACKSIZE
SYSCALL ID: 0x0200

Description: A request to ECI Host to change stack size to the provided parameter.

Declaration: int32 SYS_STACKSIZE(uint32 stacksize)

Operands: stacksize: size to set the heap of the ECI Client to; it shall be non-negative and a multiple of 4
and not cause an overrun of the stack in the heap segment.

Returns: The memory location offset in bytes from DATA_BASE_ADDRESS that is the lowest stack
memory address in addressable memory, or any error value (negative) below:
ERRSTACKSIZE (Table 1).

Notes: The call will block in case the ECI Host has no messages queued for the ECI Client.

6.8 SYS_SYNCCALL
SYSCALL ID: 0x1000

Description: the ECI Client sends a synchronous message to the ECI Host and suspends execution till the
return of the System Call.

Declaration: int32 SYS_SYNCCALL(uint32 tag, p1, p2, p3, …, pn)

Operands: tag: same definition as the MsgTag field of the MessageBuffer structure. The MsgFlags field shall
be set to zero and shall be ignored by the ECI Host.
p1…pn: parameters of the synchronous call. For get-messages with a result larger than a 32-bit
entity p1 is the start address of the memory location where the result shall be returned, and p2.. pn
are the parameters of the set message. All regular parameters including structs and arrays are
passed by reference.

Returns: For get-messages returning a result fitting in 32-bit the result is returned. Otherwise there is no
return result. All errors are ignored; erroneous parameter configurations simply produce no result
and/or have no effect.
Call messages return a status code as defined by their specific semantics.
Results can be returned at the location of pointer parameters to the SYSCALL as defined by the
specific message semantics.

Notes: This SYSCALL will not block.

6.9 SYS_CLIB
SYSCALL ID: 0x0300

Description: This SYSCALL acts as an API to allow standard C library functions to be used by the ECI Client.
The set of functions supported is detailed in annex C.

Declaration: SYS_CLIB(uint32 clibfunc, etc.)

Operands: clibfunc identifies the C library function to be called, as described in annex C.
All other operands are defined in the list of C function calls.

Returns: A returned value as detailed in the library in annex C or any of the error values listed in Table 1.

Notes: As different C library functions take different numbers and types of parameters, these are not
explicitly described here. The annex details the format of all operands. All operands to SYS_CLIB
are scalar values, or pointers to non-scalar values in the VM memory. Since some C library
functions may take non-scalar parameters, the VM shall make the conversion from parameters
passed by reference to parameters passed by value before passing the execution to the library.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 25

7 bytecode lifecycle

7.1 Introduction
The VM is implemented as a part of the ECI Host firmware. It is dynamically loaded/executed by the ECI Host
operating system when an ECI Client needs to execute. Multiple instances can be made available for different ECI
Clients, if they are required to be simultaneously available.

The ECI Client is written in the instruction set of the VM as described above. It is prepared by a CP system vendor
(CA provider or DRM operator) and made available to the ECI Host as a logical code image. Locally, it is transformed
to suit the specific design of the ECI Host and its operating environment and loaded into the VM when required. It
executes within the VM until it is deliberately terminated (or an error condition occurs) and then the execution of the
ECI Client is halted and the VM terminates.

7.2 Loading a new ECI Client into the VM
VM acts as an intermediate host for an externally provided ECI Client, exactly as if the ECI Client were a native
application executing on the ECI Host device. The only difference is that the ECI Client is installed by the ECI Host
device Operating System into the VM, rather than as a native application.

In order to load the ECI Client, the VM sub-system first creates a virtual processor context. For loading purposes, this
entails allocating the VM memory and installing the code and data segment contents into it as if they were native
applications, but where the code and initialized data provided in the ELF [2] file (see annex D for details) are
transferred to the memory allocated for the VM.

Since the code segment is not accessible from the program, the implementation may choose to carry out any form of
pre-processing on the code (e.g. optimization) at load time. In fact, the present document purely describes the format of
the program in the image. The internal representation is fully implementation specific. The only condition is that all
code references remain usable by the program with the same semantics.

Alternatively, the ECI Client image can be pre-processed when it is first retrieved for the ECI Host device and stored
in a form that is ready to be loaded on demand. This is a more efficient manner of retaining and launching ECI Clients
if they are regularly unloaded and reloaded.

7.3 Initialization of the VM
The general CPU context of the VM needs to be created - that is the register file, the control stack, the data and stack
areas, and the Program Counter, plus any control/status logic and flags. These are not detailed in the present document,
as they are implementation dependent.

The register file is set up so that R0 is located at the start of the register file space. All registers are set to 0. Thus the
Frame Pointer and Stack Pointer registers (R0 and R16, respectively) in the first window are set such that when the first
word is pushed onto the stack, the Stack Pointer is pre-decremented to -4 (0xFFFFFFFC) and the word is stored there.

The Program Counter is initialized to the start of the code segment unless e_entry member of ELF header [2] in the ECI
Client image file has a non-zero value, in which case the Program Counter is set to the value (virtual address) specified
by e_entry member. Control is then handed over to the execution component of the VM, termed "The Central Run
Loop".

7.4 The Central Run Loop
The essence of the VM is in the central execution loop, which reads and translates each sequential instruction into an
appropriate set of actions on registers, VM memory and/or in calls to the library. The loop executes instructions until an
exception occurs. Program termination may be part of normal execution practice, for instance if the program executes
the SYS_EXIT System Call, or it may arise as the result of an error situation, for instance if the control stack
overflows.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 26

If the "The Central Run Loop" is terminated, then the VM is shut down and will need to be re-instantiated if the ECI
Client is required at any point in the future.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 27

Annex A (normative):
VM System resources
The following parameters are used in the present document to define performance of the VM. The recommended values
for the parameters can be found in [i.2].

• REGISTER_FILE_SIZE

• CONTROL_STACK_SIZE = REGISTER_FILE_SIZE/16

• DATA_BASE_ADDRESS

• ADDRESSABLE_DATA_SIZE

• VM_RESERVED_SIZE

• CODE_SIZE

• DEFAULT_STACK_SIZE

• MIN_RAM

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 28

Annex B (normative):
Op codes for the VM
The coding below specifies how the instructions are coded in the binary image. The overview below shows the different
formats. The summary line presents a comma separated list of the fields that make up the instruction. These are either
explicit bits, or a field name followed by a field width indicator. Different opcodes in the same formats are enumerated
with the corresponding pattern that occupies the 'op' field. The bits are listed in big-endian order.

As an example, SUB R3,R5,R17 is coded as:

1011 00001 00011 00101 10001

or, in nibbles:

1011 0000 1000 1100 1011 0001

or, in bytes:

0xB0, 0x8C, 0xB1

Each instruction name is followed by a number, which is the defined opcode number of that instruction. This number
shall be the same for all future versions of the VM's instruction set.

Fields in opcodes shall not span more than four bytes. Consequently, 32 bit fields shall start at a byte boundary. No field
exceeds 32 bits.

0, op:5, r1:5, rd:5
 00000 MOV 16
 00001 ADD2 17
 00010 SUB2 18
 00011 MUL2 19
 00100 AND2 20
 00101 OR2 21
 00110 XOR2 22
 00111 SLL2 23
 01000 SRL2 24
 01001 SRA2 25
 01010 NE2 26
 01011 EQ2 27
 01100 NEZ 28
 01101 EQZ 29
 01110 LTZ 30
 01111 GEZ 31
 10000 GTZ 32
 10001 LEZ 33
 10010 EXTB 34
 10011 EXTH 35
 10100 ZEXTB 36
 10101 ZEXTH 37
 10110 ABS 38
 10111 NEG 39
 11000 NOT 40
 11001 XNOR2 41
 11010 MASKHI 42

100, op:3, r1:5, rd:5, imm:32
 000 ADDI 136
 001 RSUBI 137
 010 ANDI 138
 011 ORI 139
 100 XORI 140
 101 MULI 141
 110 MACI 142
 111 ADDMXI 143

101000, op:2
 00 ENTER0 0
 01 RETURN 1
 10 RETURNL 2
 11 LEAVE 3

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 29

10100100, op:3, rd:5
 000 INC 8
 001 DEC 9
 010 JMPR 10
 011 CALLR 11
 100 CLR 12

1010010100000, op:4, r1:5, r2:5, rd:5
 0000 SDIV 80
 0001 SMOD 81
 0010 UDIV 82
 0011 UMOD 83
 0100 TESTBC 84

101001010001, op:4, r1:5, imm:11, pcr:24
 0000 JFNEC 560
 0001 JFEQC 561
 0010 JFLTC 562
 0011 JFGEC 563
 0100 JFGTC 564
 0101 JFLEC 565
 0110 JFLTUC 566
 0111 JFGEUC 567
 1000 JFLEUC 568
 1001 JFGTUC 569
 1010 JFWNEC 570
 1011 JFWEQC 571

10101000, op:3, r1:5, imm:16
 000 STFP 96
 001 LDFP 97
 010 MOVC 98
 011 SWITCH 99

1011, op:5, r1:5, r2:5, rd:5
 00000 ADD 48
 00001 SUB 49
 00010 MUL 50
 00011 AND 51
 00100 OR 52
 00101 XOR 53
 00110 SLL 54
 00111 SRA 55
 01000 SRL 56
 01001 SLLI 57
 01010 SRAI 58
 01011 SRLI 59
 01100 NE 60
 01101 EQ 61
 01110 LT 62
 01111 GE 63
 10000 LTU 64
 10001 GEU 65
 10010 ANDB 66
 10011 ORB 67
 10100 XORB 68
 10101 LDSB 69
 10110 LDUB 70
 10111 LDSH 71
 11000 LDUH 72
 11001 LDW 73
 11010 LDW1 74
 11011 STB 75
 11100 STH 76
 11101 STW 77
 11110 STW1 78
 11111 TESTB 79

110000, op:2, imm:24
 00 JMP 104
 01 CALL 105
 10 CASE 106

110001000, op:2, rd:5, imm:32
 00 MOVI 108
 01 MOVF 109

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 30

110001001, op:5, r1:5, rd:5, imm:32
 00000 NANDI 144
 00001 NORI 145
 00010 XNORI 146
 00011 NEI 147
 00100 EQI 148
 00101 LTI 149
 00110 GEI 150
 00111 GTI 151
 01000 LEI 152
 01001 LTUI 153
 01010 GEUI 154
 01011 GTUI 155
 01100 LEUI 156
 01101 SMODI 157
 01110 SDIVI 158
 01111 UMODI 159
 10000 UDIVI 160
 10001 STBI 161
 10010 STHI 162
 10011 STWI 163
 10100 LDSBI 164
 10101 LDUBI 165
 10110 LDSHI 166
 10111 LDUHI 167
 11000 LDWI 168
 11001 LDSHAX 169
 11010 LDUHAX 170
 11011 LDWAX 171
 11100 STHAX 172
 11101 STWAX 173

11001000000, op:3, r1:5, rd:5, imm:24
 000 JFNE 576
 001 JFEQ 577
 010 JFLT 578
 011 JFGE 579
 100 JFLTU 580
 101 JFGEU 581

11001000110, op:3, r1:5, r2:5, imm:16
 000 JNE 120
 001 JEQ 121
 010 JLT 122
 011 JGE 123
 100 JLTU 124
 101 JGEU 125

11001000111000, r1:5, r2:5, s:32, o:32
 COPY 112

11001001000, op:3, r1:5, r2:5, imm:8
 000 STBC 128
 001 STHC 129
 010 STWC 130
 011 LDSBC 131
 100 LDUBC 132
 101 LDSHC 133
 110 LDUHC 134
 111 LDWC 135

11001100000000000, op:5, r1:5, rd:5, imm1:32, imm2:32
 00000 ADDANDI2 200
 00001 ADDMULI2 201
 00010 ADDORI2 202
 00011 ADDXORI2 203
 00100 MULADDI2 204
 00101 MULANDI2 205
 00110 MULORI2 206
 00111 MULXORI2 207
 01000 RSUBANDI2 208
 01001 RSUBORI2 209
 01010 RSUBXORI2 210
 01011 ORADDI2 211
 01100 ORMULI2 212

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 31

11001100000000010000, op:5, r1:5, imm1:5, rd:5, imm2:32
 00000 SLLADDI2 232
 00001 SLLANDI2 233
 00010 SLLORI2 234
 00011 SLLRSUBI2 235
 00100 ANDSLLI2 236

11001100000000010001, op:5, r1:5, imm1:5, rd:5, imm2:32, imm3:32
 00000 LPAI3 392

110011000000001, op:7, r1:5, rd:5, imm1:32, imm2:32, imm3:32
 0000000 MAMI3 264
 0000001 MPMI3 265
 0000010 MOMI3 266
 0000011 MPAI3 267
 0000100 MPOI3 268
 0000101 RORI3 269
 0000110 AMPI3 270

110011000000010, op:7, r1:5, rd:5, imm1:32, imm2:32, imm3:32, imm4:32
 0000000 MPMPI4 424
 0000001 MPOMI4 425

1101, op:4, r1:5, imm:11, imm:16
 0000 JNEC 1
84
 0001 JEQC 185
 0010 JLTC 186
 0011 JGEC 187
 0100 JGTC 188
 0101 JLEC 189
 0110 JLTUC 190
 0111 JGEUC 191
 1000 JLEUC 192
 1001 JGTUC 193
 1010 JWNEC 194
 1011 JWEQC 195

11100000, uimm:8 ENTERC 5

1110001, op:1, uimm:16
 0 ENTER 6
 1 SYSCALL 7

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 32

Annex C (normative):
Standard C library routines

C.1 Introduction
This annex details a set of standard C99 library routines [i.1] that shall be available for use by the ECI Client. For each
function, the details of the operands passed by the ECI Client are defined and the return value.

Note that "string" means a sequence of non-zero bytes terminated by a zero byte.

The functions detailed below are shown as standard C library calls. In all cases, the first parameter will go into R2 (as
R1 will contain the function ID, clibfunc). The declaration will assume all values are passed as scalar values or pointers
to non-scalar values. If a library function calls for a non-scalar parameter to be passed by value, then the SYSCALL
will pass it by reference and the VM will be required to convert the parameter as required by the library.

Return values are always scalar values or pointers returned in R1.

NOTE: The value selected for clibfunc is made up as follows:

((clibfunc >> 8) & 0x000000FF) = The sub-chapter number of the C standard chapter dealing with
library functions, coded as binary coded decimal. (For C99, the
chapter is 7 and the <string.h> library is in sub-chapter 21.)

((clibfunc >> 4) & 0x0000000F) = The function type in the library - the number following the
sub-chapter number.

(clibfunc & 0x0000000F) = The function number of a particular type in the library - the
number following the function type number.

For example, memmove() is described under the heading 7.21.2.2 in [i.1]. Therefore, clibfunc is coded as 0x00002122.

C.2 memmove
clibfunc: 0x00002122

Description: Copy n bytes from the memory pointed by s2 into the memory pointer by s1. Memory may
overlap.

Declaration: uint8 * memmove(uint8 * s1, uint8 * s2, uint32 n)

Returns: s1

C.3 strcpy
clibfunc: 0x00002123

Description: Copy the string (including terminating character) pointed by s2 into the memory pointed by s1.
Results are undefined if memory areas overlap.

Declaration: uint8 * strcpy(uint8 * s1, uint8 * s2)

Returns: s1

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 33

C.4 strncpy
clibfunc: 0x00002124

Description: As for strcpy(), but at most n bytes are copied. If the length of s2 is greater than n, then a null byte
will be appended (at s1[n]).

Declaration: uint8 * strncpy(uint8 * s1, uint8 * s2, uint32 n)

Returns: s1

C.5 strcat
clibfunc: 0x00002131

Description: Append a copy of the string pointed by s2 (including terminating character) at the end of the string
pointed by s1. Results are undefined if memory areas overlap.

Declaration: uint8 * strcat(uint8 * s1, uint8 * s2)

Returns: s1

C.6 strncat
clibfunc: 0x00002132

Description: Append a copy of the string pointed by s2 (including terminating character) at the end of the string
pointed by s1, but at most n bytes are copied. If the length of s2 is greater than n, then a null byte
will be appended (at n+1 bytes after the last non-null byte of the original s1). Results are undefined
if memory areas overlap.

Declaration: uint8 * strncat(uint8 * s1, uint8 * s2, uint32 n)

Returns: s1

C.7 memcmp
clibfunc: 0x00002141

Description: Compare the first n bytes pointed by s1 with the first n bytes pointed by s2.

Declaration: uint32 memcmp(uint8 *s1, uint8 *s2, uint32 n)

Returns: R1==0 if they all match, , otherwise R1 depends on the first position from the left for which values
do not match.
R1>0 if the byte of s1 at that position is greater than the byte of s2.
R1<0 if the byte of s1 at that position is greater than the byte of s2.

C.8 strcmp
clibfunc: 0x00002142

Description: Compare the strings pointed to by s1 and s2.

Declaration: uint32 strcmp(uint8 * s1, uint8 * s2)

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 34

Returns: R1==0 if they match, otherwise R1 depends on the first position from the left for which values do
not match.
R1>0 if the byte of s1 at that position is greater than the byte of s2.
R1<0 if the byte of s1 at that position is greater than the byte of s2.

C.9 strncmp
clibfunc: 0x00002144

Description: Compare the strings pointed to by s1 and s2, but only up to n bytes.

Declaration: uint32 strncmp(uint8 * s1, uint8 * s2, uint32 n)

Returns: R1==0 if they match, otherwise R1 depends on the first position from the left for which values do
not match.
R1>0 if the byte of s1 at that position is greater than the byte of s2.
R1<0 if the byte of s1 at that position is greater than the byte of s2.

C.10 memchr
clibfunc: 0x00002151

Description: Find the first occurrence of the byte in c within the n bytes pointed to by s.

Declaration: uint8 * memchr(uint8 *s, uint8 c, uint32 n)

Returns: A pointer to the located byte, or 0 if no byte was found.

C.11 strchr
clibfunc: 0x00002152

Description: Find the first occurrence of the byte in c within the string pointed to by s, up to and including the
terminating (null) byte.

Declaration: uint8 * strchr(uint8 * s, uint8 c)

Returns: A pointer to the located byte, or 0 if no byte was found.

C.12 strcspn
clibfunc: 0x00002153

Description: Compute the length of the maximum initial segment of the string pointed by s1 which consists
entirely of bytes not belonging to the string pointed by s2.

Declaration: uint32 strcspn(uint8 * s1, uint8 * s2)

Returns: The length computed.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 35

C.13 strpbrk
clibfunc: 0x00002154

Description: Find the first occurrence in the string pointed by s1 of any byte in the string pointed by s2.

Declaration: uint32 strpbrk(uint8 * s1, uint8 * s2)

Returns: The location of the first byte fulfilling the condition, or 0 if no such bytes are found.

C.14 strrchr
clibfunc: 0x00002155

Description: Find the last occurrence of the byte in c within the string pointed to by s, up to and including the
terminating (null) byte.

Declaration: uint8 * strrchr(uint8 * s, uint8 c)

Returns: A pointer to the located byte, or 0 if no byte was found.

C.15 strspn
clibfunc: 0x00002156

Description: Compute the length of the maximum initial segment of the string pointed by s1 which consists
entirely of bytes belonging to the string pointed by s2.

Declaration: uint32 strspn(uint8 * s1, uint8 * s2)

Returns: The computed value.

C.16 strstr
clibfunc: 0x00002157

Description: Find the first occurrence of the string pointed by s1 (terminating byte excluded) in the string
pointed by s2.

Declaration: uint8 strstr(uint8 * s1, uint8 * s2)

Returns: A pointer to the located position, or 0 if it was not found.

C.17 memset
clibfunc: 0x00002161

Description: Copy the least significant byte of c into the memory pointed by s n times.

Declaration: uint8 * memset(uint8 * s, uint8 c, uint32 n)

Returns: s

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 36

Annex D (normative):
ECI Client File Format
The ECI Client image file shall conform to ELF object file format specification [2]. This annex describes the specific
information necessary to comply with the VM specification. Since the VM supports 32-bit architecture and little-endian,
ELF file identification in e_ident [2] shall use the values in Table D.1.

Table D.1: ECI-compliant e_ident settings

Name Value
e_ident[EI_CLASS] ELFCLASS32
e_ident[EI_DATA] ELFDATA2LSB

Table D.2 lists values that shall be used for some ELF header members.

Table D.2: ECI-compliant settings for ELF header members

Name Value
e_type ET_EXEC
e_machine ET_NONE
e_version EV_CURRENT

The loader shall reject any ECI Client image file with values that are different from the ones presented in this annex.

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 37

Annex E (informative):
Authors & contributors
The following people have contributed to the present document:

Rapporteur:
dr. Dmitri Jarnikov, Irdeto

Other contributors:
Marnix Vlot, Vodafone Kabel Deutschland

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 38

Annex F (informative):
Change History

Date Version Information about changes
2016-10-20 V0.0.1 First draft
2016-11-01 V0.0.2 Updated after WEBECI10
2016-11-15 V0.0.3 Updated after ECI13
2016-12-01 V0.0.4 Updated after additional reviews
2016-12-01 V0.0.5 Update for approval
2016-12-15 V0.0.6 Updated after WEBECI11. Text is approved
2017-01-23 V0.0.7 Editorial changes based on multiple reviews

ETSI

ETSI GS ECI 001-4 V1.1.1 (2017-07) 39

History

Document history

V1.1.1 July 2017 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Conceptual principles
	4.1 The Virtual Machine as a CPU
	4.2 Characteristics of the Virtual Machine
	4.3 Isolation of individual ECI Clients
	4.4 Specifying the Virtual Machine
	4.5 ECI Client loader

	5 The Virtual Machine
	5.1 Execution environment
	5.2 Virtual Machine Architecture
	5.2.1 CPU architecture
	5.2.2 Registers
	5.2.3 Data space
	5.2.4 Code space
	5.2.5 Stack
	5.2.6 Endianness
	5.2.7 Exceptions
	5.2.8 Calling convention

	5.3 Virtual Machine instruction set
	5.3.1 Notation
	5.3.2 Arithmetic Instructions
	5.3.2.1 Register operands
	5.3.2.2 Register, immediate

	5.3.3 Short Forms
	5.3.4 Control Flow
	5.3.4.1 Common rules
	5.3.4.2 Unconditional Branches and Function Calls
	5.3.4.3 Conditional Branches
	5.3.4.4 Conditional Branches Based on Memory Comparisons with Constant
	5.3.4.5 Far Conditional Branches

	5.3.5 Load and Store instructions
	5.3.5.1 Register + offset
	5.3.5.2 Register + short offset
	5.3.5.3 Register Indexed
	5.3.5.4 Absolute indexed
	5.3.5.5 Dedicated Stack Access
	5.3.5.6 Memory Transfer

	5.3.6 Complex Instructions
	5.3.7 Miscellaneous
	5.3.7.1 System Calls
	5.3.7.2 Pseudo Instructions

	6 Interface between the ECI Client and the ECI Host
	6.1 General principles
	6.2 Error value
	6.3 SYS_EXIT
	6.4 SYS_PUTMSG
	6.5 SYS_GETMSG
	6.6 SYS_HEAPSIZE
	6.7 SYS_STACKSIZE
	6.8 SYS_SYNCCALL
	6.9 SYS_CLIB

	7 bytecode lifecycle
	7.1 Introduction
	7.2 Loading a new ECI Client into the VM
	7.3 Initialization of the VM
	7.4 The Central Run Loop

	Annex A (normative): VM System resources
	Annex B (normative): Op codes for the VM
	Annex C (normative): Standard C library routines
	C.1 Introduction
	C.2 memmove
	C.3 strcpy
	C.4 strncpy
	C.5 strcat
	C.6 strncat
	C.7 memcmp
	C.8 strcmp
	C.9 strncmp
	C.10 memchr
	C.11 strchr
	C.12 strcspn
	C.13 strpbrk
	C.14 strrchr
	C.15 strspn
	C.16 strstr
	C.17 memset

	Annex D (normative): ECI Client File Format
	Annex E (informative): Authors & contributors
	Annex F (informative): Change History
	History

