

ETSI GS CIM 009 V1.7.1 (2023-06)

Context Information Management (CIM);
NGSI-LD API

Disclaimer

The present document has been produced and approved by the cross-cutting Context Information Management (CIM) ETSI
Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)2

Reference
RGS/CIM-009v171

Keywords
API, architecture, digital twins, GAP, information

model, interoperability, NGSI-LD, smart agriculture,
smart city, smart water, WoT

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2023.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)3

Contents

Intellectual Property Rights .. 17

Foreword ... 17

Modal verbs terminology .. 17

Executive summary .. 17

Introduction .. 18

1 Scope .. 19

2 References .. 19

2.1 Normative references ... 19

2.2 Informative references .. 20

3 Definition of terms, symbols and abbreviations ... 21

3.1 Terms .. 21

3.2 Symbols .. 24

3.3 Abbreviations ... 24

4 Context Information Management Framework .. 25

4.1 Introduction .. 25

4.2 NGSI-LD Information Model... 25

4.2.1 Introduction... 25

4.2.2 NGSI-LD Meta Model .. 26

4.2.3 Cross Domain Ontology ... 27

4.2.4 NGSI-LD domain-specific models and instantiation .. 28

4.2.5 UML representation .. 29

4.3 NGSI-LD Architectural Considerations ... 29

4.3.1 Introduction... 29

4.3.2 Centralized architecture .. 30

4.3.3 Distributed architecture ... 30

4.3.4 Federated architecture ... 31

4.3.5 NGSI-LD API Structure and Implementation Options ... 32

4.3.6 Distributed Operations .. 36

4.3.6.1 Introduction ... 36

4.3.6.2 Additive Registrations ... 36

4.3.6.3 Proxied Registrations .. 37

4.3.6.4 Limiting Cascading Distributed Operations .. 37

4.3.6.5 Extra information to provide when contacting Context Source .. 37

4.3.6.6 Additional pre- and post-processing of extra information when contacting Context Source 38

4.4 Core and user NGSI-LD @context .. 38

4.5 NGSI-LD Data Representation... 39

4.5.0 Introduction... 39

4.5.1 NGSI-LD Entity Representation ... 39

4.5.2 NGSI-LD Property Representations ... 40

4.5.2.1 Introduction ... 40

4.5.2.2 Normalized NGSI-LD Property .. 40

4.5.2.3 Concise NGSI-LD Property .. 41

4.5.3 NGSI-LD Relationship Representations ... 42

4.5.3.1 Introduction ... 42

4.5.3.2 Normalized NGSI-LD Relationship .. 42

4.5.3.3 Concise NGSI-LD Relationship .. 43

4.5.4 Simplified Representation ... 44

4.5.5 Multi-Attribute Support .. 45

4.5.6 Temporal Representation of an Entity .. 46

4.5.7 Temporal Representation of a Property .. 46

4.5.8 Temporal Representation of a Relationship .. 46

4.5.9 Simplified Temporal Representation of an Entity .. 46

4.5.10 Entity Type List Representation ... 48

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)4

4.5.11 Detailed Entity Type List Representation ... 48

4.5.12 Entity Type Information Representation... 49

4.5.13 Attribute List Representation .. 49

4.5.14 Detailed Attribute List Representation ... 49

4.5.15 Attribute Information Representation ... 49

4.5.16 GeoJSON Representation of Entities .. 50

4.5.16.0 Foreword ... 50

4.5.16.1 Top-level "geometry" field selection algorithm .. 50

4.5.16.2 GeoJSON Representation of an individual Entity ... 50

4.5.16.3 GeoJSON Representation of Multiple Entities ... 51

4.5.17 Simplified GeoJSON Representation of Entities .. 51

4.5.17.0 Foreword ... 51

4.5.17.1 Simplified GeoJSON Representation of an individual Entity ... 51

4.5.17.2 Simplified GeoJSON Representation of multiple Entities .. 52

4.5.18 NGSI-LD LanguageProperty Representations .. 52

4.5.18.1 Introduction ... 52

4.5.18.2 Normalized NGSI-LD LanguageProperty ... 52

4.5.18.3 Concise NGSI-LD LanguageProperty... 52

4.5.19 Aggregated Temporal Representation of an Entity ... 53

4.5.19.0 Foreword ... 53

4.5.19.1 Supported behaviours for aggregation functions ... 54

4.5.20 NGSI-LD VocabularyProperty Representations ... 56

4.5.20.1 Introduction ... 56

4.5.20.2 Normalized NGSI-LD VocabularyProperty .. 56

4.5.20.3 Concise NGSI-LD VocabularyProperty .. 56

4.6 Data Representation Restrictions ... 57

4.6.1 Supported text encodings .. 57

4.6.2 Supported names ... 57

4.6.3 Supported data types for Values ... 57

4.6.4 Supported Entity Content .. 58

4.6.5 Supported data types for LanguageMaps .. 59

4.6.6 Ordering of Entities in arrays having more than one instance of the same Entity 59

4.7 Geospatial Properties .. 59

4.7.1 GeoJSON Geometries ... 59

4.7.2 Representation of GeoJSON Geometries in JSON-LD .. 59

4.7.3 Concise NGSI-LD GeoProperty ... 60

4.8 Temporal Properties ... 60

4.9 NGSI-LD Query Language .. 61

4.10 NGSI-LD Geoquery Language ... 67

4.11 NGSI-LD Temporal Query Language .. 69

4.12 NGSI-LD Pagination .. 70

4.13 Counting the Number of Results .. 70

4.14 Supporting Multiple Tenants .. 71

4.15 NGSI-LD Language Filter .. 71

4.16 Supporting Multiple Entity Types .. 72

4.17 NGSI-LD Entity Type Selection Language .. 72

4.18 NGSI-LD Scopes .. 73

4.19 NGSI-LD Scope Query Language .. 73

4.20 NGSI-LD Distributed Operation Names .. 74

5 API Operation Definition ... 75

5.1 Introduction .. 75

5.2 Data Types.. 76

5.2.1 Introduction... 76

5.2.2 Common members .. 76

5.2.3 @context ... 76

5.2.4 Entity .. 77

5.2.5 Property .. 77

5.2.6 Relationship .. 78

5.2.7 GeoProperty .. 79

5.2.8 EntityInfo .. 79

5.2.9 CSourceRegistration ... 79

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)5

5.2.10 RegistrationInfo .. 83

5.2.11 TimeInterval ... 83

5.2.12 Subscription .. 83

5.2.13 GeoQuery .. 85

5.2.14 NotificationParams ... 85

5.2.14.1 NotificationParams data type definition .. 85

5.2.14.2 Additional members .. 86

5.2.15 Endpoint .. 87

5.2.16 BatchOperationResult ... 87

5.2.17 BatchEntityError ... 88

5.2.18 UpdateResult... 88

5.2.19 NotUpdatedDetails.. 88

5.2.20 EntityTemporal ... 88

5.2.21 TemporalQuery ... 89

5.2.22 KeyValuePair .. 89

5.2.23 Query .. 89

5.2.24 EntityTypeList .. 90

5.2.25 EntityType .. 90

5.2.26 EntityTypeInfo .. 91

5.2.27 AttributeList .. 91

5.2.28 Attribute .. 91

5.2.29 Feature .. 92

5.2.30 FeatureCollection .. 92

5.2.31 FeatureProperties .. 93

5.2.32 LanguageProperty ... 93

5.2.33 EntitySelector ... 94

5.2.34 RegistrationManagementInfo ... 94

5.2.35 VocabularyProperty .. 95

5.3 Notification data types .. 95

5.3.1 Notification ... 95

5.3.2 CSourceNotification ... 96

5.3.3 TriggerReasonEnumeration .. 97

5.4 NGSI-LD Fragments .. 97

5.5 Common Behaviours .. 98

5.5.1 Introduction... 98

5.5.2 Error types .. 98

5.5.3 Error response payload body .. 98

5.5.4 General NGSI-LD validation .. 98

5.5.5 Default @context assignment ... 99

5.5.6 Operation execution .. 99

5.5.7 Term to URI expansion or compaction ... 99

5.5.8 Partial Update Patch Behaviour .. 100

5.5.9 Pagination Behaviour .. 102

5.5.10 Multi-Tenant Behaviour ... 103

5.5.11 More than one instance of the same Entity in an Entity array .. 103

5.5.11.0 Foreword ... 103

5.5.11.1 Batch Entity Creation case .. 104

5.5.11.2 Batch Entity Creation or Update (Upsert) case ... 104

5.5.11.3 Batch Entity Update case .. 104

5.5.11.4 Batch Entity Delete case ... 104

5.5.11.5 Batch Entity Merge case ... 104

5.5.12 Merge Patch Behaviour .. 104

5.6 Context Information Provision ... 106

5.6.1 Create Entity ... 106

5.6.1.1 Description .. 106

5.6.1.2 Use case diagram .. 106

5.6.1.3 Input data .. 106

5.6.1.4 Behaviour .. 106

5.6.1.5 Output data .. 107

5.6.2 Update Attributes .. 107

5.6.2.1 Description .. 107

5.6.2.2 Use case diagram .. 107

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)6

5.6.2.3 Input data .. 108

5.6.2.4 Behaviour .. 108

5.6.2.5 Output data .. 109

5.6.3 Append Attributes ... 109

5.6.3.1 Description .. 109

5.6.3.2 Use case diagram .. 109

5.6.3.3 Input data .. 110

5.6.3.4 Behaviour .. 110

5.6.3.5 Output data .. 111

5.6.4 Partial Attribute update ... 111

5.6.4.1 Description .. 111

5.6.4.2 Use case diagram .. 111

5.6.4.3 Input data .. 112

5.6.4.4 Behaviour .. 112

5.6.4.5 Output data .. 113

5.6.5 Delete Attribute .. 113

5.6.5.1 Description .. 113

5.6.5.2 Use case diagram .. 113

5.6.5.3 Input data .. 113

5.6.5.4 Behaviour .. 114

5.6.5.5 Output data .. 114

5.6.6 Delete Entity ... 114

5.6.6.1 Description .. 114

5.6.6.2 Use case diagram .. 115

5.6.6.3 Input data .. 115

5.6.6.4 Behaviour .. 115

5.6.6.5 Output data .. 116

5.6.7 Batch Entity Creation.. 116

5.6.7.1 Description .. 116

5.6.7.2 Use case diagram .. 116

5.6.7.3 Input data .. 116

5.6.7.4 Behaviour .. 116

5.6.7.5 Output data .. 117

5.6.8 Batch Entity Creation or Update (Upsert) ... 117

5.6.8.1 Description .. 117

5.6.8.2 Use case diagram .. 117

5.6.8.3 Input data .. 118

5.6.8.4 Behaviour .. 118

5.6.8.5 Output data .. 120

5.6.9 Batch Entity Update .. 120

5.6.9.1 Description .. 120

5.6.9.2 Use case diagram .. 120

5.6.9.3 Input data .. 120

5.6.9.4 Behaviour .. 120

5.6.9.5 Output data .. 122

5.6.10 Batch Entity Delete ... 122

5.6.10.1 Description .. 122

5.6.10.2 Use case diagram .. 122

5.6.10.3 Input data .. 122

5.6.10.4 Behaviour .. 122

5.6.10.5 Output data .. 123

5.6.11 Create or Update (Upsert) Temporal Representation of an Entity .. 123

5.6.11.1 Description .. 123

5.6.11.2 Use case diagram .. 123

5.6.11.3 Input data .. 124

5.6.11.4 Behaviour .. 124

5.6.11.5 Output data .. 125

5.6.12 Add Attributes to Temporal Representation of an Entity ... 125

5.6.12.1 Description .. 125

5.6.12.2 Use case diagram .. 125

5.6.12.3 Input data .. 125

5.6.12.4 Behaviour .. 126

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)7

5.6.12.5 Output data .. 126

5.6.13 Delete Attribute from Temporal Representation of an Entity ... 126

5.6.13.1 Description .. 126

5.6.13.2 Use case diagram .. 126

5.6.13.3 Input data .. 127

5.6.13.4 Behaviour .. 127

5.6.13.5 Output data .. 128

5.6.14 Modify Attribute instance in Temporal Representation of an Entity .. 128

5.6.14.1 Description .. 128

5.6.14.2 Use case diagram .. 128

5.6.14.3 Input data .. 129

5.6.14.4 Behaviour .. 129

5.6.14.5 Output data .. 129

5.6.15 Delete Attribute instance from Temporal Representation of an Entity ... 130

5.6.15.1 Description .. 130

5.6.15.2 Use case diagram .. 130

5.6.15.3 Input data .. 130

5.6.15.4 Behaviour .. 130

5.6.15.5 Output data .. 131

5.6.16 Delete Temporal Representation of an Entity ... 131

5.6.16.1 Description .. 131

5.6.16.2 Use case diagram .. 131

5.6.16.3 Input data .. 132

5.6.16.4 Behaviour .. 132

5.6.16.5 Output data .. 132

5.6.17 Merge Entity ... 133

5.6.17.1 Description .. 133

5.6.17.2 Use case diagram .. 133

5.6.17.3 Input data .. 133

5.6.17.4 Behaviour .. 133

5.6.17.5 Output data .. 135

5.6.18 Replace Entity ... 135

5.6.18.1 Description .. 135

5.6.18.2 Use case diagram .. 135

5.6.18.3 Input data .. 135

5.6.18.4 Behaviour .. 136

5.6.18.5 Output data .. 136

5.6.19 Replace Attribute .. 136

5.6.19.1 Description .. 136

5.6.19.2 Use case diagram .. 136

5.6.19.3 Input data .. 137

5.6.19.4 Behaviour .. 137

5.6.19.5 Output data .. 138

5.6.20 Batch Entity Merge ... 138

5.6.20.1 Description .. 138

5.6.20.2 Use case diagram .. 138

5.6.20.3 Input data .. 138

5.6.20.4 Behaviour .. 139

5.6.20.5 Output data .. 140

5.7 Context Information Consumption ... 140

5.7.1 Retrieve Entity .. 140

5.7.1.1 Description .. 140

5.7.1.2 Use case diagram .. 140

5.7.1.3 Input data .. 140

5.7.1.4 Behaviour .. 141

5.7.1.5 Output data .. 141

5.7.2 Query Entities ... 141

5.7.2.1 Description .. 141

5.7.2.2 Use case diagram .. 142

5.7.2.3 Input data .. 142

5.7.2.4 Behaviour .. 143

5.7.2.5 Output data .. 144

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)8

5.7.3 Retrieve Temporal Evolution of an Entity .. 144

5.7.3.1 Description .. 144

5.7.3.2 Use case diagram .. 144

5.7.3.3 Input data .. 145

5.7.3.4 Behaviour .. 145

5.7.3.5 Output data .. 146

5.7.4 Query Temporal Evolution of Entities .. 146

5.7.4.1 Description .. 146

5.7.4.2 Use case diagram .. 146

5.7.4.3 Input data .. 147

5.7.4.4 Behaviour .. 147

5.7.4.5 Output Data ... 149

5.7.5 Retrieve Available Entity Types ... 149

5.7.5.1 Description .. 149

5.7.5.2 Use case diagram .. 149

5.7.5.3 Input data .. 149

5.7.5.4 Behaviour .. 149

5.7.5.5 Output data .. 149

5.7.6 Retrieve Details of Available Entity Types .. 150

5.7.6.1 Description .. 150

5.7.6.2 Use case diagram .. 150

5.7.6.3 Input data .. 150

5.7.6.4 Behaviour .. 150

5.7.6.5 Output data .. 150

5.7.7 Retrieve Available Entity Type Information .. 150

5.7.7.1 Description .. 150

5.7.7.2 Use case diagram .. 151

5.7.7.3 Input data .. 151

5.7.7.4 Behaviour .. 151

5.7.7.5 Output data .. 151

5.7.8 Retrieve Available Attributes ... 151

5.7.8.1 Description .. 151

5.7.8.2 Use case diagram .. 151

5.7.8.3 Input data .. 152

5.7.8.4 Behaviour .. 152

5.7.8.5 Output data .. 152

5.7.9 Retrieve Details of Available Attributes ... 152

5.7.9.1 Description .. 152

5.7.9.2 Use case diagram .. 152

5.7.9.3 Input data .. 153

5.7.9.4 Behaviour .. 153

5.7.9.5 Output data .. 153

5.7.10 Retrieve Available Attribute Information ... 153

5.7.10.1 Description .. 153

5.7.10.2 Use case diagram .. 153

5.7.10.3 Input data .. 154

5.7.10.4 Behaviour .. 154

5.7.10.5 Output data .. 154

5.7.11 Architecture-related aspects of retrieval of entity types and attributes ... 154

5.8 Context Information Subscription .. 155

5.8.1 Create Subscription ... 155

5.8.1.1 Description .. 155

5.8.1.2 Use case diagram .. 155

5.8.1.3 Input data .. 155

5.8.1.4 Behaviour .. 155

5.8.1.5 Output data .. 157

5.8.2 Update Subscription .. 157

5.8.2.1 Description .. 157

5.8.2.2 Use case diagram .. 157

5.8.2.3 Input data .. 157

5.8.2.4 Behaviour .. 157

5.8.2.5 Output data .. 158

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)9

5.8.3 Retrieve Subscription .. 158

5.8.3.1 Description .. 158

5.8.3.2 Use case diagram .. 158

5.8.3.3 Input data .. 159

5.8.3.4 Behaviour .. 159

5.8.3.5 Output data .. 159

5.8.4 Query Subscriptions .. 159

5.8.4.1 Description .. 159

5.8.4.2 Use case diagram .. 159

5.8.4.3 Input data .. 160

5.8.4.4 Behaviour .. 160

5.8.4.5 Output data .. 160

5.8.5 Delete Subscription ... 160

5.8.5.1 Description .. 160

5.8.5.2 Use case diagram .. 160

5.8.5.3 Input data .. 161

5.8.5.4 Behaviour .. 161

5.8.5.5 Output data .. 161

5.8.6 Notification behaviour .. 161

5.9 Context Source Registration ... 163

5.9.1 Introduction... 163

5.9.2 Register Context Source ... 163

5.9.2.1 Description .. 163

5.9.2.2 Use case diagram .. 163

5.9.2.3 Input data .. 163

5.9.2.4 Behaviour .. 164

5.9.2.5 Output data .. 164

5.9.3 Update Context Source Registration ... 164

5.9.3.1 Description .. 164

5.9.3.2 Use case diagram .. 165

5.9.3.3 Input data .. 165

5.9.3.4 Behaviour .. 165

5.9.3.5 Output data .. 166

5.9.4 Delete Context Source Registration .. 166

5.9.4.1 Description .. 166

5.9.4.2 Use case diagram .. 166

5.9.4.3 Input data .. 166

5.9.4.4 Behaviour .. 166

5.9.4.5 Output data .. 167

5.10 Context Source Discovery .. 167

5.10.1 Retrieve Context Source Registration ... 167

5.10.1.1 Description .. 167

5.10.1.2 Use case diagram .. 167

5.10.1.3 Input data .. 167

5.10.1.4 Behaviour .. 167

5.10.1.5 Output data .. 168

5.10.2 Query Context Source Registrations ... 168

5.10.2.1 Description .. 168

5.10.2.2 Use case diagram .. 168

5.10.2.3 Input data .. 168

5.10.2.4 Behaviour .. 169

5.10.2.5 Output data .. 170

5.11 Context Source Registration Subscription .. 170

5.11.1 Introduction... 170

5.11.2 Create Context Source Registration Subscription ... 170

5.11.2.1 Description .. 170

5.11.2.2 Use case diagram .. 170

5.11.2.3 Input data .. 171

5.11.2.4 Behaviour .. 171

5.11.2.5 Output data .. 172

5.11.3 Update Context Source Registration Subscription .. 172

5.11.3.1 Description .. 172

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)10

5.11.3.2 Use case diagram .. 172

5.11.3.3 Input data .. 173

5.11.3.4 Behaviour .. 173

5.11.3.5 Output data .. 173

5.11.4 Retrieve Context Source Registration Subscription .. 173

5.11.4.1 Description .. 173

5.11.4.2 Use case diagram .. 173

5.11.4.3 Input data .. 174

5.11.4.4 Behaviour .. 174

5.11.4.5 Output data .. 174

5.11.5 Query Context Source Registration Subscriptions .. 174

5.11.5.1 Description .. 174

5.11.5.2 Use case diagram .. 174

5.11.5.3 Input data .. 175

5.11.5.4 Behaviour .. 175

5.11.5.5 Output data .. 175

5.11.6 Delete Context Source Registration Subscription ... 175

5.11.6.1 Description .. 175

5.11.6.2 Use case diagram .. 175

5.11.6.3 Input data .. 176

5.11.6.4 Behaviour .. 176

5.11.6.5 Output data .. 176

5.11.7 Notification behaviour .. 176

5.12 Matching Context Source Registrations ... 177

5.13 Storing, Managing and Serving @contexts .. 178

5.13.1 Introduction... 178

5.13.2 Add @context ... 179

5.13.2.1 Description .. 179

5.13.2.2 Use case diagram .. 179

5.13.2.3 Input data .. 179

5.13.2.4 Behaviour .. 179

5.13.2.5 Output data .. 179

5.13.3 List @contexts .. 180

5.13.3.1 Description .. 180

5.13.3.2 Use case diagram .. 180

5.13.3.3 Input data .. 180

5.13.3.4 Behaviour .. 180

5.13.3.5 Output data .. 180

5.13.4 Serve @context ... 181

5.13.4.1 Description .. 181

5.13.4.2 Use case diagram .. 181

5.13.4.3 Input data .. 181

5.13.4.4 Behaviour .. 182

5.13.4.5 Output data .. 182

5.13.5 Delete and Reload @context... 182

5.13.5.1 Description .. 182

5.13.5.2 Use case diagram .. 182

5.13.5.3 Input data .. 182

5.13.5.4 Behaviour .. 183

5.13.5.5 Output data .. 183

6 API HTTP Binding ... 183

6.1 Introduction .. 183

6.2 Global Definitions and Resource Structure .. 183

6.3 Common Behaviours .. 186

6.3.1 Introduction... 186

6.3.2 Error Types ... 186

6.3.3 Reporting errors .. 187

6.3.4 HTTP request preconditions ... 187

6.3.5 JSON-LD @context resolution ... 188

6.3.6 HTTP response common requirements ... 188

6.3.7 Representation of Entities ... 189

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)11

6.3.8 Notification behaviour .. 189

6.3.9 CSource Notification behaviour ... 190

6.3.10 Pagination behaviour .. 190

6.3.11 Including system generated attributes ... 191

6.3.12 Simplified or aggregated temporal representation of entities ... 192

6.3.13 Counting number of results ... 192

6.3.14 Tenant specification .. 192

6.3.15 GeoJSON representation of spatially bound entities .. 192

6.3.16 Expiration time for cached @contexts .. 193

6.3.17 Distributed Operations Caching and Timeout Behaviour ... 193

6.3.18 Limiting Distributed Operations ... 194

6.3.19 Extra information to provide when contacting Context Source .. 194

6.3.20 Invalid parameters... 194

6.4 Resource: entities/ .. 194

6.4.1 Description .. 194

6.4.2 Resource definition ... 195

6.4.3 Resource methods ... 195

6.4.3.1 POST ... 195

6.4.3.2 GET ... 196

6.5 Resource: entities/{entityId} .. 198

6.5.1 Description .. 198

6.5.2 Resource definition ... 198

6.5.3 Resource methods ... 199

6.5.3.1 GET ... 199

6.5.3.2 DELETE ... 200

6.5.3.3 PUT ... 201

6.5.3.4 PATCH ... 202

6.6 Resource: entities/{entityId}/attrs/ ... 204

6.6.1 Description .. 204

6.6.2 Resource definition ... 204

6.6.3 Resource methods ... 204

6.6.3.1 POST ... 204

6.6.3.2 PATCH ... 205

6.7 Resource: entities/{entityId}/attrs/{attrId} ... 206

6.7.1 Description .. 206

6.7.2 Resource definition ... 206

6.7.3 Resource methods ... 207

6.7.3.1 PATCH ... 207

6.7.3.2 DELETE ... 208

6.7.3.3 PUT ... 209

6.8 Resource: csourceRegistrations/ ... 210

6.8.1 Description .. 210

6.8.2 Resource definition ... 210

6.8.3 Resource methods ... 210

6.8.3.1 POST ... 210

6.8.3.2 GET ... 211

6.9 Resource: csourceRegistrations/{registrationId} ... 213

6.9.1 Description .. 213

6.9.2 Resource definition ... 213

6.9.3 Resource methods ... 214

6.9.3.1 GET ... 214

6.9.3.2 PATCH ... 214

6.9.3.3 DELETE ... 215

6.10 Resource: subscriptions/ ... 216

6.10.1 Description .. 216

6.10.2 Resource definition ... 216

6.10.3 Resource methods ... 216

6.10.3.1 POST ... 216

6.10.3.2 GET ... 217

6.11 Resource: subscriptions/{subscriptionId} .. 218

6.11.1 Description .. 218

6.11.2 Resource definition ... 218

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)12

6.11.3 Resource methods ... 218

6.11.3.1 GET ... 218

6.11.3.2 PATCH ... 219

6.11.3.3 DELETE ... 219

6.12 Resource: csourceSubscriptions/ .. 220

6.12.1 Description .. 220

6.12.2 Resource definition ... 220

6.12.3 Resource methods ... 220

6.12.3.1 POST ... 220

6.12.3.2 GET ... 221

6.13 Resource: csourceSubscriptions/{subscriptionId}.. 222

6.13.1 Description .. 222

6.13.2 Resource definition ... 222

6.13.3 Resource methods ... 222

6.13.3.1 GET ... 222

6.13.3.2 PATCH ... 223

6.13.3.3 DELETE ... 224

6.14 Resource: entityOperations/create .. 224

6.14.1 Description .. 224

6.14.2 Resource definition ... 225

6.14.3 Resource methods ... 225

6.14.3.1 POST ... 225

6.15 Resource: entityOperations/upsert .. 226

6.15.1 Description .. 226

6.15.2 Resource definition ... 226

6.15.3 Resource methods ... 227

6.15.3.1 POST ... 227

6.16 Resource: entityOperations/update ... 228

6.16.1 Description .. 228

6.16.2 Resource definition ... 229

6.16.3 Resource methods ... 229

6.16.3.1 POST ... 229

6.17 Resource: entityOperations/delete .. 230

6.17.1 Description .. 230

6.17.2 Resource definition ... 230

6.17.3 Resource methods ... 231

6.17.3.1 POST ... 231

6.18 Resource: temporal/entities/ ... 232

6.18.1 Description .. 232

6.18.2 Resource definition ... 232

6.18.3 Resource methods ... 232

6.18.3.1 POST ... 232

6.18.3.2 GET ... 233

6.19 Resource: temporal/entities/{entityId} ... 235

6.19.1 Description .. 235

6.19.2 Resource definition ... 235

6.19.3 Resource methods ... 235

6.19.3.1 GET ... 235

6.19.3.2 DELETE ... 237

6.20 Resource: temporal/entities/{entityId}/attrs/ .. 237

6.20.1 Description .. 237

6.20.2 Resource definition ... 238

6.20.3 Resource methods ... 238

6.20.3.1 POST ... 238

6.21 Resource: temporal/entities/{entityId}/attrs/{attrId}.. 239

6.21.1 Description .. 239

6.21.2 Resource definition ... 239

6.21.3 Resource methods ... 239

6.21.3.1 DELETE ... 239

6.22 Resource: temporal/entities/{entityId}/attrs/{attrId}/ {instanceId} ... 240

6.22.1 Description .. 240

6.22.2 Resource definition ... 240

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)13

6.22.3 Resource methods ... 240

6.22.3.1 PATCH ... 240

6.22.3.2 DELETE ... 241

6.23 Resource: entityOperations/query .. 242

6.23.1 Description .. 242

6.23.2 Resource definition ... 242

6.23.3 Resource methods ... 242

6.23.3.1 POST ... 242

6.24 Resource: temporal/entityOperations/query ... 243

6.24.1 Description .. 243

6.24.2 Resource definition ... 243

6.24.3 Resource methods ... 243

6.24.3.1 POST ... 243

6.25 Resource: types/ ... 244

6.25.1 Description .. 244

6.25.2 Resource definition ... 244

6.25.3 Resource methods ... 244

6.25.3.1 GET ... 244

6.26 Resource: types/{type} ... 245

6.26.1 Description .. 245

6.26.2 Resource definition ... 245

6.26.3 Resource methods ... 246

6.26.3.1 GET ... 246

6.27 Resource: attributes/ ... 246

6.27.1 Description .. 246

6.27.2 Resource definition ... 247

6.27.3 Resource methods ... 247

6.27.3.1 GET ... 247

6.28 Resource: attributes/{attrId} ... 248

6.28.1 Description .. 248

6.28.2 Resource definition ... 248

6.28.3 Resource methods ... 248

6.28.3.1 GET ... 248

6.29 Resource: jsonldContexts/ .. 249

6.29.1 Description .. 249

6.29.2 Resource definition ... 249

6.29.3 Resource methods ... 249

6.29.3.1 POST ... 249

6.29.3.2 GET ... 249

6.30 Resource: jsonldContexts/{contextId} ... 250

6.30.1 Description .. 250

6.30.2 Resource definition ... 250

6.30.3 Resource methods ... 251

6.30.3.1 GET ... 251

6.30.3.2 DELETE ... 252

6.31 Resource: entityOperations/merge ... 253

6.31.1 Description .. 253

6.31.2 Resource definition ... 253

6.31.3 Resource methods ... 253

6.31.3.1 POST ... 253

7 API MQTT Notification Binding ... 254

7.1 Introduction .. 254

7.2 Notification behaviour .. 254

Annex A (normative): NGSI-LD identifier considerations .. 256

A.1 Introduction .. 256

A.2 Entity identifiers ... 256

A.3 NGSI-LD namespace ... 256

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)14

Annex B (normative): Core NGSI-LD @context definition ... 257

Annex C (informative): Examples of using the API .. 262

C.1 Introduction .. 262

C.2 Entity Representation ... 262

C.2.1 Property Graph ... 262

C.2.2 Vehicle Entity ... 263

C.2.3 Parking Entity ... 266

C.2.4 @context .. 272

C.3 Context Source Registration ... 273

C.4 Context Subscription .. 274

C.5 HTTP REST API Examples ... 274

C.5.1 Introduction .. 274

C.5.2 Create Entity of Type Vehicle .. 274

C.5.2.1 HTTP Request .. 274

C.5.2.2 HTTP Response .. 275

C.5.3 Query Entities ... 275

C.5.3.1 Introduction... 275

C.5.3.2 HTTP Request .. 275

C.5.3.3 HTTP Response .. 275

C.5.4 Query Entities (Pagination) .. 275

C.5.4.1 Introduction... 275

C.5.4.2 HTTP Request .. 275

C.5.4.3 HTTP Response .. 276

C.5.5 Temporal Query ... 276

C.5.5.1 Introduction... 276

C.5.5.2 HTTP Request #1 ... 276

C.5.5.3 HTTP Response #1 ... 276

C.5.5.2 HTTP Request #2 ... 277

C.5.5.3 HTTP Response #2 ... 277

C.5.6 Temporal Query (Simplified Representation) .. 278

C.5.6.1 Introduction... 278

C.5.6.2 HTTP Request .. 278

C.5.6.3 HTTP Response .. 278

C.5.7 Retrieve Available Entity Types .. 278

C.5.7.1 Introduction... 278

C.5.7.2 HTTP Request .. 279

C.5.7.3 HTTP Response .. 279

C.5.8 Retrieve Details of Available Entity Types .. 279

C.5.8.1 Introduction... 279

C.5.8.2 HTTP Request .. 279

C.5.8.3 HTTP Response .. 279

C.5.9 Retrieve Available Entity Type Information .. 280

C.5.9.1 Introduction... 280

C.5.9.2 HTTP Request .. 280

C.5.9.3 HTTP Response .. 280

C.5.10 Retrieve Available Attributes ... 281

C.5.10.1 Introduction... 281

C.5.10.2 HTTP Request .. 281

C.5.10.3 HTTP Response .. 281

C.5.11 Retrieve Details of Available Attributes .. 282

C.5.11.1 Introduction... 282

C.5.11.2 HTTP Request .. 282

C.5.11.3 HTTP Response .. 282

C.5.12 Retrieve Available Attribute Information ... 283

C.5.12.1 Introduction... 283

C.5.12.2 HTTP Request .. 283

C.5.12.3 HTTP Response .. 283

C.5.13 Query Entities (Natural Language Filtering) .. 283

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)15

C.5.13.1 Introduction... 283

C.5.13.2 HTTP Request .. 283

C.5.13.3 HTTP Response .. 284

C.5.14 Temporal Query (Aggregated Representation) .. 284

C.5.14.1 Introduction... 284

C.5.14.2 HTTP Request .. 284

C.5.14.3 HTTP Response .. 284

C.5.15 Scope Queries ... 285

C.5.15.1 Introduction... 285

C.5.15.2 HTTP Request .. 285

C.5.15.3 HTTP Response .. 285

C.5.16 Temporal Scope Queries .. 286

C.5.16.1 Introduction... 286

C.5.16.2 HTTP Request .. 286

C.5.16.3 HTTP Response .. 287

C.6 Date Representation ... 288

C.7 @context utilization clarifications ... 289

C.8 Link header utilization clarifications .. 290

C.9 @context processing clarifications ... 292

Annex D (informative): Transformation Algorithms .. 294

D.1 Introduction .. 294

D.2 Algorithm for transforming an NGSI-LD Entity into a JSON-LD document (ALG1) 294

D.3 Algorithm for transforming an NGSI-LD Property into JSON-LD (ALG1.1) 295

D.4 Algorithm for transforming an NGSI-LD Relationship into JSON-LD (ALG1.2) 296

Annex E (informative): RDF-compatible specification of NGSI-LD meta-model 297

Annex F (informative): Conventions and syntax guidelines... 298

Annex G (informative): Localization and Internationalization Support ... 299

G.0 Foreword .. 299

G.1 Introduction .. 299

G.1.0 Foreword .. 299

G.1.1 Associating an Entity with a Natural Language ... 299

G.1.2 Associating a Property with a Natural Language ... 299

G.1.3 Associating as equivalent entity ... 300

G.2 Natural Language Collation Support .. 300

G.2.0 Foreword .. 300

G.2.1 Maintain collations as metadata ... 301

G.2.2 Route language sensitive queries via a proxy ... 301

G.3 Localization of Dates, Currency formats, etc. .. 301

G.3.0 Foreword .. 301

G.3.1 Localizing Dates ... 301

Annex H (informative): Suggested actuation workflows ... 303

H.1 Actuators and feedback to the consumer .. 303

H.2 Architecture for actuation ... 303

H.3 Structure of Commands and additional Properties ... 304

H.3.0 Introduction .. 304

H.3.1 Property for listing available commands .. 305

H.3.2 Properties for command endpoints ... 305

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)16

H.4 Communication model ... 307

H.4.1 Possible communication models .. 307

H.4.2 Subscription/notification model ... 307

H.4.3 Forwarding model .. 308

H.5 Implementation of the subscription-based actuation workflow ... 309

H.6 Implementation of the registration-based actuation workflow ... 310

Annex I (informative): Change history ... 313

History .. 315

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)17

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) cross-cutting Context
Information Management (CIM).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The present document formally describes the Context Information Management API (NGSI-LD) Specification. The
Context Information Management API allows users to provide, consume and subscribe to context information in
multiple scenarios and involving multiple stakeholders. Context information is modelled as attributes (properties and
relationships) of context entities, also referred to as "digital twins", representing real-world assets. It enables close to
real-time access to information coming from many different sources (not only IoT data sources).

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)18

Introduction
The present document defines the NGSI-LD API Specification. This Context Information Management API allows
users to provide, consume and subscribe to context information in multiple scenarios and involving multiple
stakeholders. Context information is modelled as attributes of context entities, also referred to as "digital twins",
representing real-world assets (e.g. a bus in a city or a luggage claim ticket). Because of that, the NGSI-LD API is often
used to bring standardized access to digital twin data.

The ongoing status of the NGSI-LD API can be found in [i.17].

The ETSI ISG CIM has decided to give the name "NGSI-LD" to the Context Information Management API. The
rationale is to reinforce the fact that the present document leverages on the former OMA NGSI 9 and 10 interfaces [i.3]
and FIWARE® NGSIv2 [i.9] to incorporate the latest advances from Linked Data.

Most of the NGSI-LD API and the ETSI ISG CIM information model work referenced here was created with the
support of the following European Union Horizon 2020 research projects: No. 732851 (FI-NEXT), No. 723156
(WISE-IoT), No. 732240 (SynchroniCity) and No. 731993 (AutoPilot), No. 814918 (Fed4IoT), No. 779852
(IoTCrawler), No. 731884 (IoF2020), including many contributions from members of the FIWARE® Community.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)19

1 Scope
The purpose of the present document is the definition of a standard API for Context Information Management
(NGSI-LD API) enabling close to real-time (right-time) access to context/digital twin information coming from many
different sources (not only IoT data sources). The present document defines how such an API enables applications to
perform updates on context, register context providers which can be queried to get updates on context, query
information on current and historic context information and subscribe to receive notifications of context changes. The
criteria for choice of the API characteristics are based on requirements resulting from the Use Cases ETSI
GR CIM 002 [i.1] and other work items ETSI GR CIM 007 [i.2] and ETSI GS CIM 006 [i.8] on security and on the
information model. The present document supersedes prior versions, including ETSI GS CIM 004 [i.16].

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] W3C® Recommendation 25 February 2014: "RDF Schema 1.1".

[2] W3C® Recommendation 16 July 2020: "JSON-LD 1.1 - A JSON-based Serialization for Linked
Data".

[3] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".

[4] IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests".

[5] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[6] IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".

[7] IETF RFC 8288: "Web Linking".

[8] IETF RFC 7946: "The GeoJSON Format".

[9] IETF RFC 8141: "Uniform Resource Names (URNs)".

[10] IETF RFC 7807: "Problem Details for HTTP APIs".

[11] IEEE 1003.2™-1992: "IEEE Standard for Information Technology - Portable Operating System
Interfaces (POSIX™) - Part 2: Shell and Utilities".

[12] IETF RFC 5234: "Augmented BNF for Syntax Specifications: ABNF".

[13] Unicode® Technical Standard #10: "Unicode Collation Algorithm".

[14] Open Geospatial Consortium Inc. OGC 06-103r4: "OpenGIS® Implementation Standard for
Geographic information - Simple feature access - Part 1: Common architecture".

[15] UNECE/CEFACT Common Codes for specifying the unit of measurement.

[16] IETF RFC 7396: "JSON Merge Patch".

https://docbox.etsi.org/Reference/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc7946
https://www.rfc-editor.org/info/rfc8141
https://www.rfc-editor.org/info/rfc7807
https://standards.ieee.org/ieee/1003.2/1408/
https://www.rfc-editor.org/info/rfc5234
http://unicode.org/reports/tr10/
https://repository.oceanbestpractices.org/handle/11329/1104
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev9e_2014.xls
https://www.rfc-editor.org/info/rfc7396

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06) 20

[17] ISO 8601: 2004: "Data elements and interchange formats -- Information interchange --

Representation of dates and times".

[18] IETF RFC 2818: "HTTP Over TLS".

[19] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

[20] IANA Registry of Link Relation Types.

[21] ECMA 262 Specification: "ECMAScript® 2022 language specification".

[22] The Unicode Consortium: "The Unicode Standard".

[23] IETF RFC 3987: "Internationalized Resource Identifiers (IRIs)".

[24] OASIS Standard: "MQTT Version 3.1.1 Plus Errata 01". Edited by Andrew Banks and Rahul

Gupta. 10 December 2015.

[25] OASIS Standard: "MQTT Version 5.0". Edited by Andrew Banks, Ed Briggs, Ken Borgendale and

Rahul Gupta. 07 March 2019.

[26] IETF RFC 7240: "Prefer Header for HTTP".

[27] IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".

[28] IETF RFC 5646: "Tags for Identifying Languages".

[29] IETF RFC 3282: "Content Language Headers".

[30] IETF RFC 7234: "Hypertext Transfer Protocol (HTTP/1.1): Caching".

[31] IETF RFC 7233: "Hypertext Transfer Protocol (HTTP/1.1): Range Requests".

[32] IANA: "Hypertext Transfer Protocol (HTTP) Warn Codes".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee

their long-term validity.

The following referenced documents are not necessary for the application of the present document but they assist the

user with regard to a particular subject area.

[i.1] ETSI GR CIM 002 (V1.1.1): "Context Information Management (CIM); Use Cases (UC)".

[i.2] ETSI GR CIM 007: "Context Information Management (CIM); Security and Privacy".

[i.3] OMA-TS-NGSI_Context_Management-V1_0-20120529-A: "NGSI Context Management".

[i.4] ETSI TS 103 264 (V3.1.1): "SmartM2M; Smart Applications; Reference Ontology and oneM2M

Mapping".

[i.5] NGSI-LD Wrapper. Experimental proxy for adaptation between FIWARE® and NGSI-LD.

[i.6] Graph Databases: "New Opportunities for Connected Data". O'Reilly 2nd Edition. Webber,

Robinson, et al. ISBN:1491930896 9781491930892.

[i.7] JSON-LD Playground. Experimentation tool for JSON-LD.

[i.8] ETSI GS CIM 006: "Context Information Management (CIM); Information Model (MOD0)".

[i.9] FIWARE®-NGSI REST binding version 2.

https://www.iso.org/standard/40874.html
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc5246
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.unicode.org/versions/Unicode15.0.0/
https://www.rfc-editor.org/info/rfc3987
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.rfc-editor.org/info/rfc7240
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc3282
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7233
https://www.iana.org/assignments/http-warn-codes/http-warn-codes.xhtml
https://www.etsi.org/deliver/etsi_gr/CIM/001_099/002/01.01.01_60/gr_CIM002v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/CIM/001_099/007/
http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf
https://github.com/Fiware/NGSI-LD_Wrapper
https://json-ld.org/playground/
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/006/
http://fiware.github.io/specifications/ngsiv2/stable/

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)21

[i.10] IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

[i.11] JSON Schema Validation: A Vocabulary for Structural Validation of JSON.

[i.12] OpenAPI™ Specification.

[i.13] NGSI-LD JSON Schemas.

[i.14] NGSI-LD OpenAPI™ Specification.

[i.15] NGSI-LD Examples.

[i.16] ETSI GS CIM 004 (V1.1.2): "Context Information Management (CIM); Application Programming
Interface (API)".

[i.17] ETSI ISG CIM: "NGSI-LD Status".

[i.18] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).

[i.19] MQTT URI Scheme.

[i.20] GeoJSON-LD 1.0: Base context for processing GeoJSON according to the JSON-LD processing
model.

[i.21] ETSI GR CIM 008: "Context Information Management (CIM); NGSI-LD Primer".

[i.22] IoT Agent Library.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

NOTE 1: The letters "NGSI-LD" were added to most terms to confirm that they are distinct from other terms of
similar/same name in use in other organizations, however, in the present document the letters "NGSI-LD"
are generally omitted for brevity.

NOTE 2: The use of URI in the context of the present document also includes the use of International Resource
Identifiers (IRIs) as defined in IETF RFC 3987 [23], which extends the use of characters to Unicode
characters [22] beyond the ASCII character set, enabling the support of languages other than English.

NGSI-LD Attribute: reference to both an NGSI-LD Property and to an NGSI-LD Relationship

NGSI-LD Attribute Instance (in case of temporal representation of NGSI-LD Entities): reference to an NGSI-LD
Attribute, at a specific moment in time of its temporal evolution, usually identified by its instanceId

NGSI-LD Central Broker: NGSI-LD Context Broker that only uses a local storage when serving NGSI-LD requests,
without involving any external Context Sources

NGSI-LD Context Broker: architectural component that implements all the NGSI-LD interfaces

NGSI-LD Context Consumer: agent that uses the query and subscription functionality of NGSI-LD to retrieve context
information

NGSI-LD Context Producer: agent that uses the NGSI-LD context provision and/or registration functionality to
provide or announce the availability of its context information to an NGSI-LD Context Broker

https://www.rfc-editor.org/info/rfc6902
https://json-schema.org/draft/2020-12/json-schema-validation.html
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.3.md
https://forge.etsi.org/rep/NGSI-LD/NGSI-LD/tree/master/schema
https://forge.etsi.org/rep/NGSI-LD/NGSI-LD/tree/master/spec
https://forge.etsi.org/rep/NGSI-LD/NGSI-LD/tree/master/examples
https://docbox.etsi.org/ISG/CIM/Open/NGSI-LD%20Status.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://github.com/mqtt/mqtt.github.io/wiki/URI-Schemes
http://geojson.org/geojson-ld/
https://www.etsi.org/deliver/etsi_gr/CIM/001_099/008/
https://github.com/telefonicaid/iotagent-node-lib

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)22

NGSI-LD Context Registry: software functional element where Context Sources register the information that they can
provide

NOTE: It is used by Distribution Brokers and Federation Brokers to find the appropriate Context Sources which
can provide the information required for serving an NGSI-LD request.

NGSI-LD Context Source: source of context information which implements the NGSI-LD consumption and
subscription (and possibly provision) interfaces defined by the present document

NOTE: It is usually registered with an NGSI-LD Registry so that it can announce what kind of information it can
provide, when requested, to Context Consumers and Brokers.

NGSI-LD Context Source Registrations: description of the information that can be provided by a Context Source,
which is used when registering the Context Source with the Context Registry

NGSI-LD Core API: core part of the NGSI-LD API that has to be implemented by all Brokers, including operations
for providing or managing Entities and Attributes, operations for consuming Entities and checking which Entity Types
and Attributes Entities are available in the system and operations for subscribing to Entities, receiving notifications and
managing subscriptions

NGSI-LD Distribution Broker: NGSI-LD Context Broker that uses both local context information and registration
information from an NGSI-LD Context Registry, to access matching context information from a set of distributed
Context Sources

NGSI-LD Element: any JSON element that is defined by the NGSI-LD API

NGSI-LD Entity: informational representative of something that is supposed to exist in the real world, physically or
conceptually

NOTE: In the NGSI-LD API, any instance of such an entity is uniquely identified by a URI, and characterized
by reference to one or more NGSI-LD Entity Type(s).

NGSI-LD Entity Type: categorization of an NGSI-LD Entity as belonging to a class of similar entities, or sharing a set
of characteristic properties

NOTE: In the NGSI-LD API, an NGSI-LD Entity Type is uniquely identified by a URI.

EXAMPLE 1: "Vehicle" is an NGSI-LD Entity Type and is identified with a proper URI.

EXAMPLE 2: Bob's private car whose plate number is "ABCD1234" is an NGSI-LD Entity whose NGSI-LD
Entity Type Name is "Vehicle".

EXAMPLE 3: Alice's motorhome has a unique URI as id, but can be assigned multiple NGSI-LD Entity types,
e.g. "Vehicle" and "Home".

NGSI-LD External Linked Entity: Linked Entity that is identified through a dereferenceable URI which does not
exist within the current NGSI-LD system

NOTE: It can exist within another NGSI-LD system or within a non-NGSI-LD system.

EXAMPLE: An NGSI-LD Entity, whose Entity Type Name is "Book", can be externally linked, through the
"wasWrittenBy" relationship, to a resource identified by the URI
"http://dbpedia.org/resource/Mark_Twain".

NGSI-LD Federation Broker: Distribution Broker that federates information from multiple underlying NGSI-LD
Context Brokers and across domains

NGSI-LD GeoProperty: subclass of NGSI-LD Property which is a description instance which associates a main
characteristic, i.e. an NGSI-LD Value, to either an NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD
Property, that uses the special hasValue property to define its target value and holds a geographic location in GeoJSON
format

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)23

NGSI-LD Internal Linked Entity: Linked Entity that exists within the current NGSI-LD system

EXAMPLE: An NGSI-LD Entity, whose Entity Type name is "Vehicle", can be internally linked, through the
"isParkedAt" relationship, to another NGSI-LD Entity, of Type Name "Parking", identified by the
URI "urn:ngsi-ld:Parking:Downtown1".

NGSI-LD LanguageProperty: subclass of NGSI-LD Property which is a description instance which associates a set of
strings in different natural languages as a defined main characteristic, i.e. an NGSI-LD Map, to an NGSI-LD Entity, an
NGSI-LD Relationship or another NGSI-LD Property and that uses the special hasLanguageMap (a subproperty of
hasValue) property to define its target value

NGSI-LD Linked Entity: NGSI-LD Entity referenced from another NGSI-LD Entity (the linking NGSI-LD Entity) via
an NGSI-LD Relationship

NGSI-LD Linking Entity: NGSI-LD Entity which is the subject of a Relationship to another NGSI-LD Entity (the
linked NGSI-LD Entity) or an external resource (identified by a URI)

NGSI-LD Map: JSON-LD language map in the form of key-value pairs holding the string representation of a main
characteristic in a series of natural languages

EXAMPLE: "Bob's vehicle is currently parked on a street which is known as 'Grand Place' in French and 'Grote
Markt' in Dutch" can be represented by an NGSI-LD LanguageProperty whose Name is "street"
which holds an NGSI-LD Map of two key-value pairs containing both the French ("fr") and Dutch
("nl") exonyms of the street name.

NGSI-LD Name: short-hand string (term) that locally identifies an NGSI-LD Entity Type, Property Type or
Relationship Type and which can be mapped to a URI which serves as a fully qualified identifier

EXAMPLE: "Bob's vehicle's speed is 40 km/h" can be represented by an NGSI-LD Property, whose Name is
"speed", and which characterizes an NGSI-LD Entity, which NGSI-LD Type Name is "Vehicle".
Such a name can be expanded to a fully qualified name in the form of a URI, for instance
"http://example.org/Vehicle" or "http://example.org/speed".

NGSI-LD Null: "urn:ngsi-ld:null" or {"@none": "urn:ngsi-ld:null"} used as an encoding for null values

NGSI-LD Property: description instance which associates a main characteristic, i.e. an NGSI-LD Value, to either an
NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD Property and that uses the special hasValue property
to define its target value

NGSI-LD Query: collection of criteria used to select a sub-set of NGSI-LD Entities, matching the criteria

NGSI-LD Registry API: part of the NGSI-LD API that is implemented by the Context Registry, including operations
for registering Context Sources and managing Context Source Registrations (CSRs), operations for retrieving and
discovering CSRs, and operations for subscribing to CSRs and receiving notifications

NGSI-LD Relationship: description of a directed link between a subject which is either an NGSI-LD Entity, an
NGSI-LD Property or another NGSI-LD Relationship on one hand, and an object, which is an NGSI-LD Entity, on the
other hand, and which uses the special hasObject property to define its target object

EXAMPLE: An NGSI-LD Entity of type (Type Name) "Vehicle" (when parked) can be the subject of an
NGSI-LD Relationship which object is an NGSI-LD Entity of type "Parking".

NGSI-LD Scope: enables putting Entities into a hierarchical structure and scoping queries and subscriptions according
to it

NGSI-LD Temporal API: part of the NGSI-LD API pertaining to the Temporal Evolution of Entities, including
operations for providing and managing the Temporal Evolution of Entities and Attributes, and operations for consuming
the Temporal Evolution of Entities

NGSI-LD Temporal Evolution of Entities: sequence of values attributed to them over time, i.e. their history or future
predictions

NGSI-LD Tenant: user or a group of users that utilize a single instance of a system implementing the NGSI-LD API
(NGSI-LD Context Source or NGSI-LD Broker) in isolation from other users or groups of users of the same instance.
Any information related to one tenant (e.g. Entities, Subscriptions, Context Source Registrations) are only visible to
users of the same tenant, but not to users of a different tenant

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)24

NGSI-LD Value: JSON value (i.e. a string, a number, true or false, an object, an array), or a JSON-LD typed value
(i.e. a string as the lexical form of the value together with a type, defined by an XSD base type or more generally an
IRI), or a JSON-LD structured value (i.e. a set, a list, a language-tagged string)

EXAMPLE: Bob's private car 'speed' NGSI-LD Value is the number 100 (kilometres per hour).

NGSI-LD VocabProperty: subclass of NGSI-LD Property which is a description instance which associates a string
value which can be coerced to a URI as a defined main characteristic, i.e. an NGSI-LD Vocabulary, to an NGSI-LD
Entity, an NGSI-LD Relationship or another NGSI-LD Property and that uses the special hasVocab (a subproperty of
hasValue) property to define its target value

NGSI-LD Vocabulary: string representation of a main characteristic which is explicitly defined to undergo JSON-LD
type coercion to a URI

EXAMPLE: "Bob's car is a non-commercial vehicle" can be represented by an NGSI-LD VocabProperty whose
Name is "category" which holds an NGSI-LD Vocabulary with the string value "non-commercial".
If the associated JSON-LD context defines the term "non-commercial" as "http://example.com/
non-commercial", then the returned value shall be the expanded using type coercion into the IRI
the http://example.com/ non-commercial.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ABNF Augmented Backus-Naur Form
ALG1 Algorithm for transforming an NGSI-LD Entity into a JSON-LD document
AM Ante Meridiem
API Application Programming Interface
ASCII American Standard Code for Information Interchange
BNF Backus Naur Form
CH Switzerland
CSR Context Source Registration
ECMA European Computer Manufacturers Association
EU European Union
FI Future Internet
FQN Fully Qualified Name
GB Great Britain
GDPR General Data Protection Regulation
GeoJSON Geographic JavaScript Object Notation
GeoJSON-LD Geographic JavaScript Object Notation - Linked Data
GIS Geographic Information System
GPS Global Positioning System
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IANA Internet Assigned Numbers Authority
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
IRI Internationalized Resource Identifier
ISG Industry Specification Group

ISO International Organization for Standardization
JSON JavaScript Object Notation
JSON-LD JSON Linked Data
LD Linked Data
LWM2M LightWeight Machine to Machine
M2M Machine to Machine

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)25

MIME Multi-purpose Internet Mail Extensions
MQTT Message Queuing Telemetry Transport
N/A Not Applicable
NGSI Next Generation Service Interfaces
NGSILD Next Generation Service Interfaces Linked Data (same as NGSI-LD)
NID Namespace Identifier
NSS Namespace Specific String
OAS Open API Specification
OMA Open Mobile Alliance
oneM2M oneM2M Partnership Project
PM Post Meridiem
POSIX Portable Operating System Interface
QoS Quality of Service
RDF Resource Description Format
REST Representational State Transfer
RFC Request For Comments
SAREF Smart Applications Reference ontology
TCP Transport Control Protocol
TLS Transport Layer Security
TS Technical Specification
UCA Unicode Collation Algorithm
UL Ultra Light
UML Unified Modelling Language
URI Uniform Resource Identifier
URL Universal Resource Locator
URN Uniform Resource Name

UTC Coordinated Universal Time
UTF Unicode (or Universal Coded Character Set) Transformation Format
XSD XML Schema Definition

4 Context Information Management Framework

4.1 Introduction
This clause describes the technical design principles behind the context information management framework supported
by NGSI-LD. As stated in clause 3.1, the letters "NGSI-LD" which are part of most terms, to confirm that they are
distinct from other terms of similar/same name in use in other organizations, are generally omitted in the present
document for brevity. In the present document, a number of rather obvious typographic conventions and syntax
guidelines are followed and the reader is referred to annex F for details.

4.2 NGSI-LD Information Model

4.2.1 Introduction

The NGSI-LD Information Model prescribes the structure of context information that shall be supported by an
NGSI-LD system. It specifies the data representation mechanisms that shall be used by the NGSI-LD API itself. In
addition, it specifies the structure of the Context Information Management vocabularies to be used in conjunction with
the API.

The NGSI-LD Information Model is defined at two levels (see figure 4.2.1-1): the foundation classes which correspond
to the Core Meta-model and the Cross-Domain Ontology. The former amounts to a formal specification of the "property
graph" model [i.6]. The latter is a set of generic, transversal classes which are aimed at avoiding conflicting or
redundant definitions of the same classes in each of the domain-specific ontologies. Below these two levels, domain-
specific ontologies or vocabularies can be devised. For instance, the SAREF Ontology ETSI TS 103 264 [i.4] can be
mapped to the NGSI-LD Information Model, so that smart home applications will benefit from this Context Information
Management API specification.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)26

The version of the cross-domain model proposed by the present document is a minimal one, aimed at defining the
classes used in this release of the API specification. It has been extended by other work items like ETSI
GS CIM 006 [i.8], with classes defining extra concepts such as mobile vs. stationary entities, instantaneous vs. static
properties, etc.

Figure 4.2.1-1: Overview of the NGSI-LD Information Model Structure

4.2.2 NGSI-LD Meta Model

Figure 4.2.2-1 provides a graphical representation of the NGSI-LD Meta-Model in terms of classes and their
relationships. To provide additional clarity an informal (non-normative) mapping to the Property Graph Model is also
presented.

Legend:

[With capital initial]. Used to refer to a class that is a subclass of Entity or Value

[With capital initial]. Used to refer to a class that is a subclass of Property or Relationship,
but which is not itself a property or a relationship. These classes serve as super-classes for
a set of properties or relationships in the same domain or aspect

 and
[With small initial]. Used to refer to a proper (direct) class of properties or relationships

[With small initial and underlined text]. Used to refer to the name of a property that is
considered to be "lite" in its informational representation since it shall not be reified, rather a
value is directly attached to it

[With small or capital initial]. Used to refer to a class or a vocabulary that is inherited from
another publicly available standard or ontology

Figure 4.2.2-1: NGSI-LD Core Meta-Model

Core

MetaModel

Cross-Domain Ontology

Domain-Specific Ontologies

PropertyEntity Relationship hasValuehasObject Value

Literal

(rdfs:Literal)

Resource

(rdfs:Resource)

Property

(rdf:Property)

rdfs:subClassOf a ardfs:subClassOf rdfs:subClassOf

a = rdf:type

rdfs:subClassOf

rdfs:domain

rdfs:range

N
G
S
I-
L
D

M
e
ta
-M
o
d
e
l

R
D
F
/
R
D
F
S

G
ro
u
n
d
in
g

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)27

Implementations shall support the NGSI-LD Meta-model as follows:

• An NGSI-LD Entity is a subclass of rdfs:Resource [1].

• An NGSI-LD Relationship is a subclass of rdfs:Resource [1].

• An NGSI-LD Property is a subclass of rdfs:Resource [1].

• An NGSI-LD Value shall be either a rdfs:Literal or a node object (in JSON-LD syntax) to represent complex
data structures [1].

• An NGSI-LD Property shall have a value, stated through hasValue, which is of type rdf:Property [1]. An
NGSI-LD Relationship shall have an object stated through hasObject which is of type rdf:Property [1].

4.2.3 Cross Domain Ontology

Legend:

[With capital initial]. Used to refer to a class that is a subclass of Entity or Value

[With capital initial]. Used to refer to a class that is a subclass of Property or Relationship,
but which is not itself a property or a relationship. These classes serve as super-classes for
a set of properties or relationships in the same domain or aspect

 and
[With small initial]. Used to refer to a proper (direct) class of properties or relationships

[With small initial and underlined text]. Used to refer to the name of a property that is
considered to be "lite" in its informational representation since it shall not be reified, rather a
value is directly attached to it

[With small or capital initial]. Used to refer to a class or a vocabulary that is inherited from
another publicly available standard or ontology

Figure 4.2.3-1: NGSI-LD Core Meta-Model plus the Cross-Domain Ontology

Figure 4.2.3-1 describes the concepts introduced by the NGSI-LD Cross-Domain Ontology, which shall be supported
by implementations as follows:

• Geo Properties: Are intended to convey geospatial information and implementations shall support them as
defined in clause 4.7.

• Temporal Properties: Are non-reified Properties (represented only by their Value) that convey temporal
information for capturing the time series evolution of other Properties; implementations shall support them as
defined in clause 4.8.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)28

• Language Properties: Are intended to convey different versions of the same textual values, whenever a
version for each language (for instance: English, Spanish) is needed.

• "unitCode" Property: Is a Property intended to provide the units of measurement of an NGSI-LD Value.
Implementations shall support it as defined in clause 4.5.2.

• "scope" Property: Is a Property that enables putting Entities into a hierarchical structure. Implementations
shall support it as defined in clause 4.18.

• LanguageMaps: Are a special type of NGSI-LD Value intended to convey the different values of Language
Properties, stated through an hasLanguageMap, which is of type rdf:Property [1] and is itself a subproperty of
hasValue.

• Geometry Values: Are a special type of NGSI-LD Value intended to convey geometries corresponding to
geospatial properties. Implementations shall support them as defined in clause 4.7.

• Time Values: Are a special type of NGSI-LD Value intended to convey time instants or intervals
representations. Implementations shall support them as defined in clause 4.6.3.

Clause 4.4 defines the Core JSON-LD @context which includes the URIs which correspond to the concepts introduced
above.

4.2.4 NGSI-LD domain-specific models and instantiation

This clause is informative and is intended to illustrate the relationship between the NGSI-LD Information Model and
NGSI-LD Domain-specific models.

Figure 4.2.4-1 shows an example of an NGSI-LD domain-specific model. Domain-specific models introduce the
specific entity types required for a particular domain. Figure 4.2.4-1 shows the types Car, Parking, Street, Gate. Entity
types can have further subtypes, e.g. OffStreetParking as subtype of Parking.

Figure 4.2.4-1: Cross-Domain Ontology and instantiation

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)29

In addition, two different NGSI-LD Properties are introduced ('hasState', 'reliability').

The 'adjacentTo' Relationship links entities of type 'Parking' with entities of type 'Street'.

4.2.5 UML representation

This clause is informative and is intended to show how the NGSI-LD information model could be described using UML
diagrams. The aim of this diagram is to help those readers less familiar with ontology representations or RDF [1] to
understand the NGSI-LD Information Model.

In figure 4.2.5-1 NGSI-LD Entity, Relationship, Property and Value are represented as UML classes. UML associations
are used to interrelate these classes while keeping the structure and semantics defined by the NGSI-LD Information
Model.

Figure 4.2.5-1: NGSI-LD information model as UML

4.3 NGSI-LD Architectural Considerations

4.3.1 Introduction

The NGSI-LD API is intended to be primarily an API and does not define a specific architecture. It is envisioned that
the NGSI-LD API can be used in different architectural settings and the architectural assumptions of the API are kept to
a minimum.

As it is not possible to elaborate all possible architectures in which the NGSI-LD API could be used, three prototypical
architectures are presented. The NGSI-LD API shall enable efficient support for all of them, i.e. the design decisions for
the NGSI-LD API take these prototypical architectures into consideration. A real system architecture utilizing the
NGSI-LD API can map to one, take elements from multiple or combine all of the prototypical architectures.

The NGSI-LD API implicitly defines two sets of Entities:

• the "current state";

• the "temporal evolution" (both the past and possibly future predictions).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)30

The NGSI-LD API is structured into a Core API and an optional Temporal API. The Core API manages the current
state of Entities. The Temporal API is optional and manages the Temporal Evolution of Entities. Brokers that intend to
implement the Temporal API should consider updating the Temporal Evolution of an Entity whenever the "current
state" is modified via the Core API.

4.3.2 Centralized architecture

Figure 4.3.2-1 shows a centralized architecture. In the centre is a Central Broker that stores all the context information.
There are Context Producers that use update operations to update the context information in the Central Broker and
there are Context Consumers that request context information from the Central Broker, either using synchronous
one-time query or asynchronous subscribe/notify operations. The Central Broker answers all requests from its storage.
Figure 4.3.2-1 shows one component that acts as both Context Producer and Context Consumer. The general
assumption is that components can have multiple roles, so such components are not explicitly shown in clause 4.3.3 and
clause 4.3.4.

Figure 4.3.2-1: Centralized architecture

4.3.3 Distributed architecture

Figure 4.3.3-1 shows a distributed architecture. The underlying idea here is that all information is stored by the Context
Sources. Context Sources implement the query and subscription part of the NGSI-LD API as a Context Broker does.
They register themselves with the Context Registry, providing information about what context information they can
provide, but not the context information itself, e.g. a certain Context Source registers that it can provide the indoor
temperature for Building A and Building B or that it can provide the speed of cars in a geographic region covering the
centre of a city.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)31

Figure 4.3.3-1: Distributed architecture

Context Consumers can query or subscribe to the Distribution Broker. On each request, the Distribution Broker
discovers or does a discovery subscription to the Registry for relevant Context Sources, i.e. those that may provide
context information relevant to the respective request from the Context Consumer. The Distribution Broker then queries
or subscribes to each relevant Context Source, if possible it aggregates the context information retrieved from the
Context Sources and provides them to the Context Consumer. In this mode of operation, it is not visible to the Context
Consumer, whether the Broker is a Central Broker or a Distribution Broker. Alternatively, the architecture allows that
Context Consumers can discover Context Sources through the Registry themselves and then directly request from
Context Sources. This is shown in figure 4.3.3-1 with the fine dashed arrows.

4.3.4 Federated architecture

The federated architecture shown in figure 4.3.4-1 is used in cases where existing domains are to be federated. For
example, different departments in a city operate their own Context Broker-based NGSI-LD infrastructure, but
applications should be able to easily access all available information using just one point of access. The architecture
works in the same way as the distributed architecture described in clause 4.3.3, except that instead of simple Context
Sources, whole domains are registered with the respective Context Broker as point of access. Typically, the domains
will be registered to the federation Context Registry on a more coarse-grained level, providing scopes, in particular
geographic scopes, that can then be matched to the scopes provided in the requests. For example, instead of registering
individual entities like buildings, the domain would be registered with having information about entities of type
building within a geographic area. Applications then query or subscribe for entities within a geographic scope,
e.g. buildings in a certain area of the city. The Federation Broker discovers the domain Context Brokers that can
provide relevant information, forwards the request to these Brokers and aggregates the results, so the application gets
the result in the same way as in the centralized and distributed cases.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)32

Figure 4.3.4-1: Federated architecture

A domain itself can use a centralized or distributed architecture, or could even utilize a federated architecture that
federates sub-domains.

As in the distributed case, it is also possible that applications discover relevant domains through the federation-level
Context Registry and directly contact the Context Brokers in the individual domains.

4.3.5 NGSI-LD API Structure and Implementation Options

As stated in clause 4.3.1, the NGSI-LD API is structured into a Core API and an optional Temporal API. In addition,
the Registry API consists of the operations to be implemented by the Context Registry. Furthermore, the JSON-LD
Context API provides functionality for storing, managing and serving JSON-LD @contexts. The APIs are structured
according to their functionalities, which is also reflected in how the operations are structured in clause 5. Table 4.3.5-1
introduces the API structure, the respective functionalities and lists the operations for each functionality, pointing to the
clauses in which they are defined.

Table 4.3.5-1: NGSI-LD API structure

API Functionality Operations
Core API Context Information Provision - operations for

providing or managing Entities and Attributes
5.6.1 Create Entity
5.6.2 Update Attributes
5.6.3 Append Attributes
5.6.4 Partial Attribute Update
5.6.5 Delete Attribute
5.6.6 Delete Entity
5.6.7 Batch Entity Creation
5.6.8 Batch Entity Upsert
5.6.9 Batch Entity Update
5.6.10 Batch Entity Delete
5.6.17 Merge Entity
5.6.18 Replace Entity
5.6.19 Attribute replace
5.6.20 Batch Entity Merge

Context Information Consumption - operations
for consuming Entities and checking for which
Entity Types and Attributes Entities are
available in the system

5.7.1 Retrieve Entity
5.7.2 Query Entities
5.7.5 Retrieve Available Entity Types
5.7.6 Retrieve Details of Available Entity Types
5.7.7 Retrieve Available Entity Type Information
5.7.8 Retrieve Available Attributes
5.7.9 Retrieve Details of Available Attributes
5.7.10 Retrieve Available Attribute Information

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)33

API Functionality Operations
Context Information Subscription - operations
for subscribing to Entities, receiving notifications
and managing subscriptions

5.8.1 Create Subscription
5.8.2 Update Subscription
5.8.3 Retrieve Subscription
5.8.4 Query Subscription
5.8.5 Delete Subscription
5.8.6 Notification

Temporal API Temporal Context Information Provision -
operations for providing or managing the
Temporal Evolution of Entities and Attributes

5.6.11 Upsert Temporal Representation
5.6.12 Add Attributes to Temporal Representation
5.6.13 Delete Attributes from Temporal
 Representation
5.6.14 Partial Update Attribute instance
5.6.15 Delete Attribute Instance
5.6.16 Delete Temporal Representation

Temporal Context Information Consumption -
operations for consuming the Temporal
Evolution of Entities

5.7.3 Retrieve Temporal Evolution of Entity
5.7.4 Query Temporal Evolution of Entities

Registry API Context Source Registration - operations for
registering Context Sources and managing
Context Source Registrations (CSRs)

5.9.2 Register Context Source
5.9.3 Update CSR
5.9.4 Delete CSR

Context Source Discovery - operations for
retrieving and discovering CSRs

5.7.1 Retrieve CSR
5.7.2 Query CSRs

Context Source Registration Subscription -
operations for subscribing to CSRs, receiving
notifications and managing CSRs

5.11.2 Create CSR Subscription
5.11.3 Update CSR Subscription
5.11.4 Retrieve CSR Subscription
5.11.5 Query CSR Subscription
5.11.6 Delete CSR Subscription
5.11.7 CSR Notification

JSON-LD
Context API

Storing, managing and serving @contexts 5.13.2 Add @context
5.13.3 List @contexts
5.13.4 Serve @context
5.13.5 Delete and Reload @context

All Brokers shall implement the Core API. Temporal API and Registry API can be implemented by a Broker or by a
separate temporal component and Context Registry respectively. Table 4.3.5-2 shows the possible implementation
configurations. A temporal component implementing the Temporal API can also be used completely independently of a
Broker. The JSON-LD Context API is optional. The managing and serving of @contexts can also be handled by an
independent, stand-alone component.

Table 4.3.5-2: Main implementation configurations

Description Temporal API Registry API
Central Broker without temporal support none none
Central Broker with integrated temporal component local none
Central Broker with separate temporal component separate none
Broker supporting distributed and federated deployments without temporal
support and with integrated Context Registry

none local

Broker supporting distributed and federated deployments with integrated
temporal component and integrated Context Registry

local local

Broker supporting distributed and federated deployments with separate
temporal component and integrated Context Registry

separate local

Broker supporting distributed and federated deployments without temporal
support and separate Context Registry

none separate

Broker supporting distributed and federated deployments with integrated
temporal component and separate Context Registry

local separate

Broker supporting distributed and federated deployments with separate
temporal component and separate Context Registry

separate separate

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)34

Table 4.3.5-3 shows which operations are implemented and used by the other architectural roles as introduced in
clause 4.3.2, clause 4.3.3 and clause 4.3.4. In addition, there are separate roles for the temporal API, i.e. Temporal
Context Producer, Temporal Context Source and Temporal Context Consumer. For completeness, the roles of Context
Repository and Temporal Context Repository have been introduced, implementing the Context Information Provision
and Temporal Context Information Provision functionalities, respectively. In practice, components implementing the
latter roles will also implement functionalities for consuming or processing the stored information. Actual components
can have multiple roles at the same time, e.g. a Broker can implement all roles at the same time. Context Consumers
typically only interact with Brokers, but in alternative setups, as shown in figure 4.3.3-1, they can also directly interact
with the Context Registry and then directly contact Context Sources.

Table 4.3.5-3: Operations implemented by the various NGSI-LD Roles

NGSI-LD
Role

Implements Uses

Context
Consumer

5.8.6 Notification - if supporting asynchronous
interactions

In case of direct interactions with Context Registry:
5.11.7 CSR Notification - if supporting
asynchronous interactions

5.7.1 Retrieve Entity
5.7.2 Query Entities
5.7.5 Retrieve Available Entity Types
5.7.6 Retrieve Details of Available Entity Types
5.7.7 Retrieve Available Entity Type Information
5.7.8 Retrieve Available Attributes
5.7.9 Retrieve Details of Available Attributes
5.7.10 Retrieve Available Attribute Information
5.8.1 Create Subscription
5.8.2 Update Subscription
5.8.3 Retrieve Subscription
5.8.4 Query Subscription
5.8.5 Delete Subscription

In case of direct interactions with Context Registry:
5.7.1 Retrieve CSR
5.7.2 Query CSRs
… if supporting asynchronous interactions
5.11.2 Create CSR Subscription
5.11.3 Update CSR Subscription
5.11.4 Retrieve CSR Subscription
5.11.5 Query CSR Subscription
5.11.6 Delete CSR Subscription

Context
Producer

none 5.6.1 Create Entity
5.6.2 Update Attributes
5.6.3 Append Attributes
5.6.4 Partial Attribute Update
5.6.5 Delete Attribute
5.6.6 Delete Entity
5.6.7 Batch Entity Creation
5.6.8 Batch Entity Upsert
5.6.9 Batch Entity Update
5.6.10 Batch Entity Delete
5.6.17 Merge Entity
5.6.18 Replace Entity
5.6.19 Attribute replace
5.6.20 Batch Entity Merge

Context
Source

5.7.1 Retrieve Entity
5.7.2 Query Entities
5.7.5 Retrieve Available Entity Types
5.7.6 Retrieve Details of Available Entity Types
5.7.7 Retrieve Available Entity Type Information
5.7.8 Retrieve Available Attributes
5.7.9 Retrieve Details of Available Attributes
5.7.10 Retrieve Available Attribute Information
5.8.1 Create Subscription
5.8.2 Update Subscription
5.8.3 Retrieve Subscription
5.8.4 Query Subscription
5.8.5 Delete Subscription

5.8.6 Notification
5.9.2 Register Context Source
5.9.3 Update CSR
5.9.4 Delete CSR

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)35

NGSI-LD
Role

Implements Uses

Context
Repository

5.6.1 Create Entity
5.6.2 Update Attributes
5.6.3 Append Attributes
5.6.4 Partial Attribute Update
5.6.5 Delete Attribute
5.6.6 Delete Entity
5.6.7 Batch Entity Creation
5.6.8 Batch Entity Upsert
5.6.9 Batch Entity Update
5.6.10 Batch Entity Delete
5.6.17 Merge Entity
5.6.18 Replace Entity
5.6.19 Attribute replace
5.6.20 Batch Entity Merge

none

Temporal
Context
Consumer

In case of direct interactions with Context Registry:
5.11.7 CSR Notification - if supporting
asynchronous interactions

5.7.3 Retrieve Temporal Evolution of Entity
5.7.4 Query Temporal Evolution of Entities

In case of direct interactions with Context Registry:
5.7.1 Retrieve CSR
5.7.2 Query CSRs
… if supporting asynchronous interactions
5.11.2 Create CSR Subscription
5.11.3 Update CSR Subscription
5.11.4 Retrieve CSR Subscription
5.11.5 Query CSR Subscription
5.11.6 Delete CSR Subscription

Temporal
Context
Producer

None 5.6.11 Upsert Temporal Representation
5.6.12 Add Attributes to Temporal Representation
5.6.13 Delete Attributes from Temporal
Representation
5.6.14 Partial Update Attribute instance
5.6.15 Delete Attribute Instance
5.6.16 Delete Temporal Representation

Temporal
Context
Source

5.7.3 Retrieve Temporal Evolution of Entity
5.7.4 Query Temporal Evolution of Entities

5.9.2 Register Context Source
5.9.3 Update CSR
5.9.4 Delete CSR

Temporal
Context
Repository

5.6.11 Upsert Temporal Representation
5.6.12 Add Attributes to Temporal Representation
5.6.13 Delete Attributes from Temporal
Representation
5.6.14 Partial Update Attribute instance
5.6.15 Delete Attribute Instance
5.6.16 Delete Temporal Representation

none

Context
Registry

5.9.2 Register Context Source
5.9.3 Update CSR
5.9.4 Delete CSR
5.7.1 Retrieve CSR
5.7.2 Query CSRs
5.11.2 Create CSR Subscription
5.11.3 Update CSR Subscription
5.11.4 Retrieve CSR Subscription
5.11.5 Query CSR Subscription
5.11.6 Delete CSR Subscription

5.11.7 CSR Notification

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)36

4.3.6 Distributed Operations

4.3.6.1 Introduction

One fundamental concept underpinning all of the prototypical architectures described above (clauses 4.3.2, 4.3.3 and
4.3.4) is the idea that Entity data does not need to be centralized within a single Context Broker. When reading context
information, a Context Broker can be used as a single point of access to retrieve Entity data found distributed across
multiple associated Context Brokers each receiving a Context Consumption request. Similarly, when modifying an
Entity, a single request to a Context Broker may result in the operation being distributed and different parts of that
Entity being updated across multiple Context Brokers each receiving a Context Provision request.

As long as there is only a centralized Context Broker, i.e. there are no Context Sources registered, all NGSI-LD
requests, with the exception of Update Attributes (see clause 5.6.2) and the batch operations (see clauses 5.6.7, 5.6.8,
5.6.9, 5.6.10, 5.6.20), can either be successfully executed completely, or result in an error. In the distributed case, all
requests can be partially successful. For the centralized case described above, only Update Attributes and the batch
operations can be partially successful.

When a Context Source is registered, an operation mode is selected. This defines the basis for distributed operations and
also defines whether or not the Context Broker is permitted to hold context data about the Entities and Attributes locally
itself.

If two registered Context Sources are providing context data for the same Attribute, the Attribute instances can be
distinguished by datasetId. The mechanism for determining which data shall be returned is defined in clause 4.5.5.

It is possible to restrict a registered Context Source to operate on a specific Entity type or list of Entity types. In order
for Context Broker hierarchies to support and restrict the distribution of such limited operations, the Entity type selector
(see clause 4.17) can be added as a filter on forwarded requests even where its presence initially seems redundant.

Furthermore, registered Context Sources may indicate that they are only willing to respond to a limited subset of API
operations. Context Brokers shall respect this, to avoid unnecessarily sending distributed operation requests which are
always guaranteed to fail. For example, a Context Source may consistently refuse certain API operations since it does
not support them. Alternatively, some Context Source endpoints (such as updates) may be protected for use by
authorized users only, and not accessible to a Context Broker without those rights. Limited access is likely to be the
case in extended data sharing scenarios, where a registered Context Source, and the data held within it, may belong to
an external third party.

For the endpoints served, all registered Context Sources shall support the normalized representation of Entities as
default. Support of additional representation formats is optional and will depend on the implementation. System
generated attributes such as modifiedAt and createdAt (see clause 4.8) should be supported by registered Context
Sources, at a minimum no error shall be returned if they are not available when requested.

4.3.6.2 Additive Registrations

For additive registrations, the Context Broker is permitted to hold context data about the Entities and Attributes locally
itself, and also obtain data from external sources. Context producing operations are serviced both locally by the Context
Broker itself, and also distributed on to the registered sources.

An inclusive Context Source Registration specifies that the Context Broker considers all registered Context Sources as
equals and will distribute operations to those Context Sources even if relevant context data is available directly within
the Context Broker itself (in which case, all results will be integrated in the final response). Data from every Context
Source registered by an inclusive Context Source Registration is requested with an equal priority. This is the default
mode of operation.

An auxiliary Context Source Registration never overrides data held directly within a Context Broker. Auxiliary
distributed operations are limited to context information consumption operations (see clause 5.7). Context data from
auxiliary context sources is only included if it is supplementary to the context data otherwise available to the Context
Broker. Auxiliary Context Source Registrations are always accepted as there can never be a conflict.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)37

4.3.6.3 Proxied Registrations

For proxied registrations, the Context Broker itself is not permitted to hold context data about the registered Entities and
Attributes locally (thus all registered context data is obtained from the external registered sources). Unregistered
Attributes of an Entity are permitted to be held locally; when Context producing operations are received, registered
Attributes are distributed on to the registered sources and never serviced directly by the Context Broker itself.

An exclusive Context Source Registration specifies that all of the registered context data is held in a single location
external to the Context Broker. The Context Broker itself holds no data locally about the registered Attributes and no
overlapping proxied Context Source Registrations shall be supported for the same combination of registered Attributes
on the Entity. An exclusive registration shall be fully specified and always relates to specific Attributes found on a
single Entity. Thus, the registration shall define both:

• An entity id (i.e. an id pattern or Entity type defining a group of entities is not supported for exclusive
registrations).

• Attributes.

Once an exclusive Context Source Registration has been created, no further exclusive or redirect Context Source
Registrations can be created for that same combination of Entity id and Attributes.

A redirect Context Source Registration also specifies that the registered context data is held in a location external to the
Context Broker. It is possible to register (any combination of):

• A whole Entity by id or id pattern (i.e. without specifying individual Attributes in the registration; in this case,
all Attributes are held externally).

• Entities by Entity type only (with or without specifying individual Attributes).

• Attributes only.

Potentially multiple distinct redirect registrations can apply at the same time. The Context Broker itself holds no data
locally in conflict to the registration. In the case that multiple overlapping redirect registrations are defined, operations
are distributed to all registered sources.

4.3.6.4 Limiting Cascading Distributed Operations

When creating a registration, it is unknown whether the requested data is held at the distributed endpoint, or it is in turn
distributed via further registrations. It is necessary to include a binding-specific mechanism to request operations only
on the registered endpoint itself to avoid cascades of an excessive lengths, duplicates or loops.

4.3.6.5 Extra information to provide when contacting Context Source

If the optional array (of KeyValuePair type, as defined by clause 5.2.22) "contextSourceInfo" of the
CSourceRegistration is present, it contains, whatever extra information the Broker shall convey when contacting the
Context Source. This can be information the Broker needs to successfully communicate with the Context Source (e.g.
Authorization material), or for the Context Source to correctly interpret the received content (e.g. the Link URL to fetch
an @context). The method for conveying this information is binding-specific, e.g. using headers in the case of HTTP.

Instead of providing the actual value, the special value "urn:ngsi-ld:request" can be used to indicate that the respective
value is to be taken from the request that triggered the given request, if present.

EXAMPLE: If the key value pair "user":"urn:ngsi-ld:request" is part of "contextSourceInfo" of the
CSourceRegistration, the Broker checks if "user" was conveyed in the triggering request. If this is
the case, e.g. "user":"abcd", "user":"abcd" is also conveyed when contacting the Context Source.

As tenant information, if applicable, is directly specified in the CSourceRegistration, it shall not be part of
"contextSourceInfo". Binding-specific information that is used for setting up the connection or is specific for an
interaction, e.g. Content-length in HTTP, cannot be overridden by "contextSourceInfo". If present, such information
shall be ignored.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)38

4.3.6.6 Additional pre- and post-processing of extra information when contacting
Context Source

The following key-values have a specific well-defined meaning when defined as elements within the optional array
"contextSourceInfo" of the CSourceRegistration.

• If the key "jsonldContext" is defined, the value shall correspond to a URL reference as defined by the
JSON-LD specification [2], section 3.1.

• The Context Broker shall apply a compaction operation as defined by the JSON-LD specification [2],
section 4.1.5 over both payload and query parameters using the JSON-LD Context supplied in the value of the
"jsonldContext" key-value pair, prior to distributing the request to the context source endpoint and forwarding
with this JSON-LD context using an appropriate binding. Additionally, if a payload is defined in the initial
request to the Context Broker, the "Content-Type" of the forwarded request shall be "application/json" and the
Context Broker shall remove any "@context" members from the payload prior to distributing the request to the
context source endpoint.

• If the key "accept" is defined, the value shall be a MIME type acceptable to the Context Broker (one of:
"application/json", "application/ld+json").

• The response from the distributed endpoint shall be returned in this defined format and if necessary, the
Context Broker shall be responsible for converting this to the desired content type when aggregating responses
to the initial request.

4.4 Core and user NGSI-LD @context
NGSI-LD serialization is based on JSON-LD [2], a JSON-based format to serialize Linked Data. The @context in
JSON-LD is used to expand terms, provided as short hand strings, to concepts, specified as URIs, and vice versa, to
compact URIs into terms. The Core NGSI-LD (JSON-LD) @context is defined as a JSON-LD @context which
contains:

• The core terms needed to uniquely represent the key concepts defined by the NGSI-LD Information Model, as
mandated by clause 4.2.

• The terms needed to uniquely represent all the members that define the API-related Data Types, as mandated
by clauses 5.2 and 5.3.

• A fallback @vocab rule to expand or compact user-defined terms to a default URI, in case there is no other
possible expansion or compaction as per the current @context.

• The core NGSI-LD @context defines the term "id", which is mapped to "@id", and term "type", which is
mapped to "@type". Since @id and @type are what is typically used in JSON-LD, they may also be used in
NGSI-LD requests instead of "id" and "type" respectively, wherever this is applicable. In NGSI-LD responses,
only "id" and "type" shall be used.

NGSI-LD compliant implementations shall support such Core @context, which shall be implicitly present when
processing or generating context information. Furthermore, the Core @context is protected and shall remain immutable
and invariant during expansion or compaction of terms. Therefore, and as per the JSON-LD processing rules [2], when
processing NGSI-LD content, implementations shall consider the Core @context as if it were in the last position of the
@context array. Nonetheless, for the sake of compatibility and cleanness, data providers should generate JSON-LD
content that conveys the Core @context in the last position.

For the avoidance of doubt, when rendering NGSI-LD Elements, the Core @context shall always be treated as if it had
been originally placed in the last position, so that, if needed, upstream JSON-LD processors can properly expand as
NGSI-LD or override the resulting JSON-LD documents provided by API implementations.

The NGSI-LD Core @context is publicly available at https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld and
shall contain all the terms as mandated by annex B.

https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)39

In addition to the terms defined by the Core NGSI-LD @context (mandatory as per annex B), a user @context should
be provided and it should contain the following terms:

• One term associated to the Entity Type, mapping the Entity Type Name with its Type Identifier (URI).

• One term associated to the name of each Property or any of its subclasses mapping the Property Name with its
Property Identifier (URI). If the Property's range is a data type different than a native JSON type, then it shall
be conveyed explicitly under this term by using a nested JSON object in the form:

- "@type": <Datatype's URI>.

- "@id": <Property's URI>.

• One term associated to the name of each Relationship mapping the Relationship Name with the Relationship
Identifier (URI) in the form:

- "@type": "@id".

- "@id": <Relationship's URI>.

The user @context shall not contain JSON-LD Scoped Contexts (see [2], section 4.1.8), as described in clause 5.5.7.

Depending on the binding, the @context may not just be provided embedded with the rest of the JSON content, but
there could be other options. For example, in the HTTP binding, the @context can be made available through a Link
header (see clause 6.3.5).

4.5 NGSI-LD Data Representation

4.5.0 Introduction

All NGSI-LD elements are represented in JSON-LD [2]. For the use with the API, the compacted JSON-LD
representation is used, i.e. short terms are used, which are expanded by the component implementing the NGSI-LD API
using a JSON-LD @context, typically provided as part of the request. As described in clause 4.4, the NGSI-LD Core
@context is always considered to be part of the @context to be used.

The use of JSON-LD for NGSI-LD elements has some implications for the use of null values, as JSON-LD interprets
setting elements to null as elements to be removed when performing JSON-LD expansion. Thus, null cannot be used as
a value in NGSI-LD.

To nevertheless allow deletions as part of NGSI-LD operations that update NGSI-LD data, which is typically handled
by setting the respective JSON key to null (e.g. as in IETF RFC 7396 [16]), the URI "urn:ngsi-ld:null" is used as a
replacement for null in all places, where URI strings are valid JSON values. For languageMap, the JSON object
{"@none": "urn:ngsi-ld:null"} is to be used as explained in clause 4.5.18. These encodings of null are referred to as
NGSI-LD Null.

For representing deleted elements in notifications and in the temporal evolution, the URI "urn:ngsi-ld:null" is used as a
Property value or Relationship object and the JSON object {"@none": "urn:ngsi-ld:null"} for the languageMap of a
Language Property, respectively.

As null cannot be used as a value in JSON-LD, there is still the possibility of using a JSON null literal represented as
{"@type": "@json", "@value": null} in JSON-LD instead. JSON literals are not to be expanded in JSON-LD and thus
the respective element is not removed during JSON-LD expansion.

4.5.1 NGSI-LD Entity Representation

An NGSI-LD Entity shall be represented by an object encoded using JSON-LD [2]. The rules described below state the
encoding that shall be supported by implementations. Annex D provides a computational description of this process in
terms of an algorithm.

The JSON-LD object contains the following members:

• "id" whose value shall be a URI that identifies the Entity. Mandatory.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)40

• "type" whose value shall be equal to the Entity Type Name or an unordered JSON array with multiple Entity
Type Names in case of an Entity that has multiple Entity Types. Mandatory.

• "scope" whose value shall be a Scope as defined in clause 4.18 or an unordered JSON array with multiple
Scopes in case of an Entity that has multiple Scopes. Optional.

• "@context" a JSON-LD @context as described in clause 4.4. Optional.

• One member for each Property as per the rules stated in clause 4.5.2. In case of multiple Property instances
with the same Property Name as described in clause 4.5.5, all instances are provided as an unordered JSON
array.

• One member for each Relationship as per the rules stated in clause 4.5.3. In case of multiple Relationship
instances with the same Property Name as described in clause 4.5.5, all instances are provided as an unordered
JSON array.

NOTE 1: In the following, the term Attribute is used when referring in the text to both a Property and a
Relationship (see definition of NGSI-LD Attribute in clause 3.1).

NOTE 2: When GeoJSON representation is selected, the layout of the Entities changes, see clause 4.5.16 for
details.

Terms defined in the Core Context as non-reified Properties (such as "datasetId", "instanceId", etc.) shall not be
used as Attribute names.

Attributes shall not contain any embedded @context, as described in clause 5.5.7.

4.5.2 NGSI-LD Property Representations

4.5.2.1 Introduction

An NGSI-LD Property, its value and sub-attributes can be represented in two equally valid lossless formats. The
normalized representation is a JSON-LD document that is complete with respect to mandatory members. The concise
representation is a terser alternative, which makes various implicit assumptions against the payloads and removes
redundancy from them.

Both normalized and concise representation of Properties shall be supported by implementations and can be selected by
Context Consumers through specific request parameters. An example of this representation can be found in annex C,
clause C.2.2.

4.5.2.2 Normalized NGSI-LD Property

An NGSI-LD Property in normalized representation shall be represented by a member whose key is the Property Name
(a term) and whose value is a JSON-LD object (or JSON-LD array with such JSON-LD objects, if there are multiple
instances with the same Property Name, as described in clause 4.5.5), which includes the following members:

• "type": "Property". Mandatory.

• "value": the Property Value (see definition of NGSI-LD Value in clause 3.1). Mandatory.
If the Value's datatype is a native JSON data type it shall be encoded directly as the member's value, else the
member's value shall be a JSON object in the form:

- "@type": <Data Type URI>.

- "@value": Property Value.

An NGSI-LD Null (explained in clause 4.5.0 and defined in clause 3.1) can be used as the right-hand side of
the "value" during partial update patch and merge patch (see clauses 5.5.8 and 5.5.12) to indicate a deletion of
the Property, as well as in notifications and in temporal evolution (for encoding a deleted Property).

• "previousValue": only provided in case of notifications and if the showChanges option is explicitly requested.
It represents the previous Property Value, before the triggering change. The representation is the same as that
of "value". Optional.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)41

• "observedAt": a string as mandated by clause 4.8. Optional.

• "datasetId": a URI as mandated by clause 4.5.5. Optional.

• "instanceId": a URI uniquely identifying a Property instance, as mandated by (see clause 4.5.7). System
generated. Optional.

• "createdAt": a string as mandated by clause 4.8. System generated.

• "modifiedAt": a string as mandated by clause 4.8. System generated.

• "deletedAt": a string as mandated by clause 4.8. System generated.

• "unitCode": a string representing the measurement unit corresponding to the Property value. It shall be
encoded using the UNECE/CEFACT Common Codes for Units of Measurement [15]. Optional.

• "object" and "previousObject": shall never be present, as they define a Relationship's object URI. Prohibited.

• "languageMap" and "previousLanguageMap": shall never be present, as they define a LanguageProperty value.
Prohibited.

• "vocab" and "previousVocab": shall never be present, as they define a VocabularyProperty value. Prohibited.

• For each of the Properties this Property is associated with, a member whose key (a term) is the Property Name
and value is the result of serializing a Property (or any of its subclasses) in normalized representation (see
clause 4.5.2.2).

• For each of the Relationships this Property is associated with, a member whose key (a term) is the
Relationship Name and value is the result of serializing a Relationship in normalized representation (see
clause 4.5.3.2).

4.5.2.3 Concise NGSI-LD Property

An NGSI-LD Property without sub-attributes shall be represented in a concise but lossless representation by a member
whose key is the Property Name (a term) and whose value is the Property Value (see definition of NGSI-LD Value in
clause 3.1). In this case the concise representation is equivalent to simplified representation (see clause 4.5.4).

• "type": shall never be present, as "Property" can be inferred. An exception to this inference rule occurs for
geospatial Property Values, where the "GeoProperty" sub-type shall be inferred instead, if the Property Value
resolves to a supported GeoJSON geometry (see clause 4.7). Prohibited.

• "value": shall never be present, as it can be inferred. Prohibited.

During partial update patch and merge patch (see clauses 5.5.8 and 5.5.12), when deleting a Property without a
datasetId, as well as when notifying about a deleted Property without sub-attributes, the NGSI-LD Property should be
represented in a concise representation by a member whose key is the Property Name (a term) and whose value is
"urn:ngsi-ld:null".

An NGSI-LD Property which includes additional sub-attributes shall be represented in a concise but lossless
representation by a member whose key is the Property Name (a term) and whose value is a JSON-LD object (or
JSON-LD array with such JSON-LD objects if there are multiple instances with the same Property Name as described
in clause 4.5.5) including the following members:

• "type": Optional. If missing, "Property" can be inferred by the presence of the "value" attribute. An exception
to this inference rule occurs for geospatial Property Values, where the "GeoProperty" sub-type shall be
inferred instead, if the Property Value resolves to a supported GeoJSON geometry (see clause 4.7).

• "value": the Property Value (see definition of NGSI-LD Value in clause 3.1). Mandatory.
If the Value's datatype is a native JSON data type it shall be encoded directly as the member's value, else the
member's value shall be a JSON object in the form:

- "@type": <Data Type URI>.

- "@value": Property Value.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)42

An NGSI-LD Null (explained in clause 4.5.0 and defined in clause 3.1) can be used as the right-hand side of
the "value" during partial update patch and merge patch (see clauses 5.5.8 and 5.5.12) to indicate a deletion of
the Property, as well as in notifications and in temporal evolution (for encoding a deleted Property).

• "previousValue": only provided in case of notifications and if the showChanges option is explicitly requested.
It represents the previous Property Value, before the triggering change. The representation is the same as that
of "value". Optional.

• "observedAt": a string as mandated by clause 4.8. Optional.

• "datasetId": a URI as mandated by clause 4.5.5. Optional.

• "instanceId": a URI uniquely identifying a Property instance (see clause 4.5.7). System generated. Optional.

• "createdAt": a string as mandated by clause 4.8. System generated.

• "modifiedAt": a string as mandated by clause 4.8. System generated.

• "deletedAt": a string as mandated by clause 4.8. System generated.

• "unitCode": a string representing the measurement unit corresponding to the Property value. It shall be
encoded using the UNECE/CEFACT Common Codes for Units of Measurement [15]. Optional.

• "object" and "previousObject": shall never be present, as they define a Relationship's object URI. Prohibited.

• "languageMap" and "previousLanguageMap": shall never be present, as they define a LanguageProperty value.
Prohibited.

• "vocab" and "previousVocab": shall never be present, as they define a VocabularyProperty value. Prohibited.

• For each of the Properties this Property is associated with, a member whose key (a term) is the Property Name
and value is the result of serializing a Property (or any of its subclasses) in concise representation (see
clause 4.5.2.3).

• For each of the Relationships this Property is associated with, a member whose key (a term) is the
Relationship Name and value is the result of serializing a Relationship in concise representation (see
clause 4.5.3.3).

4.5.3 NGSI-LD Relationship Representations

4.5.3.1 Introduction

An NGSI-LD Relationship, its value and sub-attributes can be represented in two equally valid lossless formats. The
normalized representation is a JSON-LD document that is complete with respect to mandatory members. The concise
representation is a terser alternative, which makes various implicit assumptions against the payloads and removes
redundancy from them.

Both normalized and concise representation of Relationships shall be supported by implementations and can be selected
by Context Consumers through specific request parameters. An example of this representation can be found in annex C,
clause C.2.2.

4.5.3.2 Normalized NGSI-LD Relationship

An NGSI-LD Relationship in normalized representation shall be represented by a member whose key is the
Relationship Name (a term) and whose value is a JSON-LD object (or JSON-LD array with such JSON-LD objects, if
there are multiple instances with the same Relationship Name, as described in clause 4.5.5) with the following terms:

• "type": "Relationship". Mandatory.

• "object": the Relationship's object represented by a URI. Mandatory.
An NGSI-LD Null (explained in clause 4.5.0 and defined in clause 3.1) can be used as the right-hand side of
the "object" during partial update patch and merge patch (see clauses 5.5.8 and 5.5.12) to indicate a deletion of
the Relationship, as well as in notifications and in temporal evolution (for encoding a deleted Relationship).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)43

• "previousObject": only provided in case of notifications and if the showChanges option is explicitly requested.
It represents the previous Relationship object, before the triggering change. The representation is the same as
that of "object". Optional.

• "observedAt": a string as mandated by clause 4.8. Optional.

• "datasetId": a URI as mandated by clause 4.5.5. Optional.

• "instanceId": a URI uniquely identifying a Relationship instance (see clause 4.5.8). System generated.
Optional.

• "createdAt": a string as mandated by clause 4.8. System generated.

• "modifiedAt": a string as mandated by clause 4.8. System generated.

• "deletedAt": a string as mandated by clause 4.8. System generated.

• "value" and "previousValue": shall never be present, as they define a Property value. Prohibited.

• "languageMap" and "previousLanguageMap": shall never be present, as they define a LanguageProperty value.
Prohibited.

• "vocab" and "previousVocab": shall never be present, as they define a VocabularyProperty value. Prohibited.

• "unitCode": shall never be present, as Relationships are unitless. Prohibited.

• For each Relationship this Relationship is associated with, a member whose key is the Relationship Name (a
term) and whose value is the result of serializing a Relationship as per the rules of representation of a
Relationship in normalized representation (see clause 4.5.3.2).

• For each Property this Relationship is associated with, a member whose key is the Property Name (a term) and
whose value is the result of serializing a Property as per the rules of representation of a Property in
normalized representation (see clause 4.5.2.2).

4.5.3.3 Concise NGSI-LD Relationship

An NGSI-LD Relationship in shall be represented in a concise but lossless representation by a member whose key is the
Relationship Name (a term) and whose value is a JSON-LD object (or JSON-LD array with such JSON-LD objects if
there are multiple instances with the same Relationship Name as described in clause 4.5.5) with the following terms:

• "type": Optional. If missing, "Relationship" can be inferred by the presence of the "object" attribute.

• "object": the Relationship's object represented by a URI. Mandatory.
An NGSI-LD Null (explained in clause 4.5.0 and defined in clause 3.1) can be used as the right-hand side of
the "object" during partial update patch and merge patch (see clauses 5.5.8 and 5.5.12) to indicate a deletion of
the Relationship, as well as in notifications and in temporal evolution (for encoding a deleted Relationship).

• "previousObject": only provided in case of notifications and if the showChanges option is explicitly requested.
It represents the previous Relationship object, before the triggering change. The representation is the same as
that of "object". Optional.

• "observedAt": a string as mandated by clause 4.8. Optional.

• "datasetId": a URI as mandated by clause 4.5.5. Optional.

• "instanceId": a URI uniquely identifying a Relationship instance. System generated. Optional.

• "createdAt": a string as mandated by clause 4.8. System generated.

• "modifiedAt": a string as mandated by clause 4.8. System generated.

• "deletedAt": a string as mandated by clause 4.8. System generated.

• "value" and "previousValue": shall never be present, as they define a Property value. Prohibited.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)44

• "languageMap" and "previousLanguageMap": shall never be present, as they define a LanguageProperty value.
Prohibited.

• "vocab" and "previousVocab": shall never be present, as they define a VocabularyProperty value. Prohibited.

• "unitCode": shall never be present, as Relationships are unitless. Prohibited.

• For each Relationship this Relationship is associated with, a member whose key is the Relationship Name (a
term) and whose value is the result of serializing a Relationship as per the rules of representation of a
Relationship in concise representation (see clause 4.5.3.3).

• For each Property this Relationship is associated with, a member whose key is the Property Name (a term) and
whose value is the result of serializing a Property as per the rules of representation of a Property in concise
representation (see clause 4.5.2.3).

Notwithstanding the definition above, during partial update patch and merge patch (see clauses 5.5.8 and 5.5.12), an
NGSI-LD Relationship with a value of NGSI-LD Null and without a datasetId should be represented in a concise
representation by a member whose key is the Relationship name (a term) and whose value is "urn:ngsi-ld:null".

4.5.4 Simplified Representation

The NGSI-LD specification defines an abbreviated, lossy representation of Entities, which allows consuming only
entity data (the target object of each Relationship or the value of each Property) corresponding to the Properties or
Relationships whose subject is the Entity itself i.e. the own Attributes of the Entity. The simplified representation of
Entities shall be supported by implementations and can be selected by Context Consumers through specific request
parameters. An example of this representation can be found in annex C, clause C.2.2.

The simplified representation of an entity shall be a JSON-LD object containing the following members:

• "id" whose value shall be a URI that identifies the Entity. Mandatory.

• "type" whose value shall be equal to the Entity Type Name or an unordered JSON array with multiple Entity
Type Names in case of an Entity that has multiple Entity Types. Mandatory.

• "@context", a JSON-LD @context as described in clause 4.4. Optional.

• For each Property a member whose key is the Property Name (a term) and whose value is the Property Value.

EXAMPLE 1: "name": "David Robert Jones"

• In the multi-attribute case (see clause 4.5.5), the simplified representation of a Property (or any of its subtypes)
changes. Each Property consists of a key-value pair, the key being the Property Name (a term) and the value
being a JSON Object, which contains a single Attribute with a key called "dataset", and its value in turn is a
JSON Object holding a series of key-value pairs, one for each datasetId, where the value corresponds to the
simplified representation of the property value. The default datasetId (where present) is represented by the
JSON-LD keyword @none.

EXAMPLE 2:

"name": {
 "dataset": {
 "@none": "David Robert Jones",
 "urn:ngsi-ld:datasetId:001": "David Bowie",
 "urn:ngsi-ld:datasetId:002": "Ziggy Stardust"
 }
}

• For each GeoProperty, a member whose key is the Property Name (a term) and whose value is the Property
Value.

EXAMPLE 3: "location": {"type": "Point", "coordinates": [13.3986, 52.5547]}

• For each LanguageProperty, a member whose key is the Property Name (a term) and whose value is a JSON
Object containing a single Attribute with a key called "languageMap" where the value shall correspond to a
LanguageProperty languageMap.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)45

EXAMPLE 4: "says": {"languageMap": {"en": "yes", "fr": "oui"}

• For each VocabProperty, a member whose key is the Property Name (a term) and whose value is a JSON
Object containing a single Attribute with a key called "vocab" where the value shall correspond to a
VocabProperty vocab.

EXAMPLE 5: "gender": {"vocab": "Male"}

• For each Relationship a term whose key is the Relationship Name (a term) and whose value is the
Relationship's Object (represented as a URI)

EXAMPLE 6: "knows": "urn:ngsi-ld:Person:31415

• In the multi-attribute case (see clause 4.5.5), the simplified representation of a Relationship changes. Each
Relationship consists of a key-value pair, the key being the Relationship Name (a term) and the value being a
JSON Object containing a single Attribute with a key called "dataset" and its value in turn is a JSON Object
holding a series of key-value pairs, one for each datasetId where the value corresponds to the object of the
relationship. The default datasetId (where present) is represented by the JSON-LD keyword @none.

EXAMPLE 7:

"knows": {
 "dataset": {
 "@none": "urn:ngsi-ld:Person:31415",
 "urn:ngsi-ld:datasetId:001": "urn:ngsi-ld:Person:27182",
 "urn:ngsi-ld:datasetId:002": "urn:ngsi-ld:Person:14142"
 }
}

NOTE: When the simplified GeoJSON representation is selected, the layout of the Entities changes, see
clause 4.5.17 for details.

4.5.5 Multi-Attribute Support

For each Entity, there can be Attributes that simultaneously have more than one instance. In the case of Properties, there
may be more than one source at a time that provides a Property instance, e.g. based on independent sensor
measurements with different quality characteristics. For instance, take a speedometer and a GPS both providing the
current speed of a car. In the case of Relationships, there may be non-functional Relationships, e.g. for a room, there
may be multiple "contains" Relationships to all sorts of objects currently in the room that have been put there by
different people and which are dynamically changing over time.

To be able to explicitly manage such multi-attributes, the optional datasetId property is used, which is of datatype URI,
or equal to the JSON-LD keyword "@none". It is introduced for Properties and Relationships in clauses 4.5.2 and 4.5.3
respectively. If a datasetId is provided when creating, updating, appending or deleting Attributes, only instances with
the same datasetId are affected, leaving instances with another datasetId or an instance without a datasetId untouched.
If no datasetId is provided, or datasetId: "@none" is supplied, it is considered as the default Attribute instance. Thus,
the creation, updating, appending or deleting of Attributes without providing a datasetId only affects the default
Attribute instance. There can only be one default Attribute instance for an Attribute with a given Attribute Name in any
request or response. An example can be found in annex C, clause C.2.2.

When requesting Entity information, if there are multiple instances of matching Attributes these are returned as arrays
of Attributes, instead of a single Attribute element. The datasetId of the default Attribute instance is never explicitly
included in responses.

There is no multi-attribute support for non-reified Attributes, in particular this applies to the Temporal Properties
createdAt, modifiedAt, deletedAt and observedAt, and also the unitCode Property.

In case of conflicting information for an Attribute, where a datasetId is duplicated, but there are differences in the other
attribute data, the one with the most recent observedAt DateTime, if present, and otherwise the one with the most recent
modifiedAt DateTime shall be provided. If no other mechanism for determining the most current Attribute instance is
found, the NGSI-LD system shall choose the Attribute instance at random and the result is indeterminate.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)46

4.5.6 Temporal Representation of an Entity

The temporal representation of an Entity shall be as mandated by clause 4.5.1, but for each Property and Relationship
their temporal representation shall be provided as mandated by clauses 4.5.7 and 4.5.8 and the Scope (if present) shall
be represented as a Temporal Representation of a Property (clause 4.5.7) that can only have the non-reified Temporal
Properties createdAt, modifiedAt, deletedAt and observedAt as sub-Properties. This is required to represent the temporal
evolution of the Scope. In case the Temporal Representation of the Scope is updated as the result of a change from the
Core API, the observedAt sub-Property should be set as a copy of the modifiedAt sub-Property.

4.5.7 Temporal Representation of a Property

The temporal evolution of an NGSI-LD Property (for instance, its historical evolution) is composed of the sequence of
instances of the referred Property during a period of time within its lifetime.

The temporal evolution of an NGSI-LD Property shall be represented as an Array of JSON-LD objects, each one
representing an instance of the Property (as mandated by clause 4.5.2) at a particular point in time, which is recorded as
a Temporal Property of the instance (typically "observedAt"). See example in annex C, clause C.5.6. In case the
Property is deleted, an instance of the Property is recorded with its value set to the URI "urn:ngsi-ld:null" and the
deletedAt Temporal Property set.

Systems should maintain an instanceId for each such Property instance. Without such an instanceId, it is not possible to
selectively modify or delete temporal information via the NGSI-LD API. The consequences of this may be severe in the
case of modification or deletion requests for legal reasons, e.g. GDPR [i.18]. When implementing the NGSI-LD API on
storage systems that do NOT allow modification or deletion, similar problems may be encountered.

4.5.8 Temporal Representation of a Relationship

The temporal evolution of an NGSI-LD Relationship (for instance, its historical evolution) is composed of the sequence
of instances of the referred Relationship during a period of time within its lifetime.

The temporal evolution of an NGSI-LD Relationship shall be represented as an Array of JSON-LD objects, each one
representing an instance of the Relationship (as mandated by clause 4.5.3) at a particular point in time, which is
recorded as a Temporal Property of the instance (typically "observedAt"). See example in annex C, clause C.5.5. In case
the Relationship is deleted, an instance of the Relationship is recorded with its object set to the URI "urn:ngsi-ld:null"
and the deletedAt Temporal Property set.

Systems should maintain an instanceId for each such Relationship instance. Without such an instanceId, it is not
possible to selectively modify or delete temporal information via the NGSI-LD API. The consequences of this may be
severe in the case of modification or deletion requests for legal reasons, e.g. GDPR [i.18]. When implementing the
NGSI-LD API on storage systems that do NOT allow modification or deletion, similar problems may be encountered.

4.5.9 Simplified Temporal Representation of an Entity

The NGSI-LD specification defines an alternative, abbreviated temporal representation of Entities, which allows
consuming temporal Entity data in a more straightforward manner. The simplified temporal representation of Entities
shall be supported by implementations and can be selected by Context Consumers through specific request parameters.
An example can be found in annex C, clause C.5.6.

The simplified temporal representation of an Entity shall be a JSON-LD object containing the following members:

• "id" whose value shall be a URI that identifies the Entity. Mandatory.

• "type" whose value shall be equal to the Entity Type Name or an unordered JSON array with multiple Entity
Type Names in case of an Entity that has multiple Entity Types. Mandatory.

• "@context", a JSON-LD @context as described in clause 4.4. Optional.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)47

• For each Property, a member whose key is the Property Name (a term). The member value shall be a JSON-
LD object labelled with the type "Property". Such JSON-LD object shall only contain a member whose key
shall be "values". The value of the referred values member shall be a JSON-LD Array that shall contain as
many array elements as Property instances (i.e. data points of the concerned Property) being represented. Each
array element shall be another Array containing exactly two array elements: the first element shall be a
Property value and the second element shall correspond to the associated Temporal Property (for instance
"observedAt").

EXAMPLE 1:

"name": {
 "type": "Property",
 "values": [
 [
 "Joe Bloggs",
 "2022-08-09T18:25:02Z"
],
 [
 "Bill Smith",
 "2022-08-10T18:25:02Z"
]
]
}

• For each GeoProperty, a member whose key is the Property Name (a term). The member value shall be a
JSON-LD object labelled with the type "GeoProperty". Such JSON-LD object shall only contain a member
whose key shall be "values". The value of the referred values member shall be a JSON-LD Array that shall
contain as many array elements as GeoProperty instances (i.e. data points of the concerned GeoProperty) being
represented. Each array element shall be another Array containing exactly two array elements: the first element
shall be a GeoProperty value and the second element shall correspond to the associated Temporal Property (for
instance "observedAt").

• For each LanguageProperty, a member whose key is the Property Name (a term). The member value shall be
a JSON-LD object labelled with the type "LanguageProperty". Such JSON-LD object shall only contain a
member whose key shall be "languageMaps". The value of the referred languageMaps member shall be a
JSON-LD Array that shall contain as many array elements as LanguageProperty instances (i.e. data points of
the concerned LanguageProperty) being represented. Each array element shall be another Array containing
exactly two array elements: the first element shall be a JSON Object containing a single Attribute with a key
called "languageMap" where the value shall correspond to a LanguageProperty languageMap and the second
element shall correspond to the associated Temporal Property (for instance "observedAt").

EXAMPLE 2:

"says": {
 "type": "LanguageProperty",
 "languageMaps": [
 [
 {"languageMap": {"en": "yes", "fr": "oui"}},
 "2022-08-09T18:25:02Z"
],
 [
 {"languageMap": {"en": "no", "fr": "non"}},
 "2022-08-10T18:25:02Z"
]
]
}

• For each VocabularyProperty, a member whose key is the Property Name (a term). The member value shall
be a JSON-LD object labelled with the type "VocabularyProperty". Such JSON-LD object shall only contain a
member whose key shall be "vocabs". The value of the referred vocabs member shall be a JSON-LD Array
that shall contain as many array elements as VocabularyProperty instances (i.e. data points of the concerned
VocabularyProperty) being represented. Each array element shall be another Array containing exactly two
array elements: the first element shall be a JSON Object containing a single Attribute with a key called
"vocab", where the value shall correspond to a VocabularyProperty vocab and the second element shall
correspond to the associated Temporal Property (for instance "observedAt").

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)48

EXAMPLE 3:

"gender": {
 "type": "VocabularyProperty",
 "vocabs": [
 [
 {"vocab": "Male"},
 "2022-08-09T18:25:02Z"
],
 [
 {"vocab": "Female"},
 "2022-08-10T18:25:02Z"
]
]
}

• For each Relationship, a term whose key is the Relationship Name (a term). The member value shall be a
JSON-LD object labelled with the type "Relationship". Such JSON-LD object shall only contain a member
whose key shall be "objects". The value of the referred objects member shall be a JSON-LD Array that shall
contain as many array elements as Relationship instances (i.e. data points of the concerned Relationship) being
represented. Each array element shall be another array containing exactly two elements: the first element shall
be a Relationship object (a URI) and the second element shall correspond to the associated Temporal Property
(for instance "observedAt").

EXAMPLE 4:

"spouse": {
 "type": "Relationship",
 "objects": [
 [
 "urn:ngsi-ld:Person:123455",
 "2022-08-09T18:25:02Z"
],
 [
 "urn:ngsi-ld:Person:999999",
 "2022-08-10T18:25:02Z"
]
]
}

4.5.10 Entity Type List Representation

The entity type list representation is used to consume information about entity types. The entity type list representation
shall be a JSON-LD object containing the following members:

• "id" whose value shall be a URI that identifies the entity type list. Mandatory.

• "type": "EntityTypeList". Mandatory.

• "@context" a JSON-LD @context as described in clause 4.4. Optional.

• "typeList": JSON-LD array containing the entity type names. Mandatory.

4.5.11 Detailed Entity Type List Representation

The detailed entity type list representation is used to consume detailed information about entity types including the
names of attributes that instances of each entity type can have. The detailed entity type list representation shall be an
array of JSON-LD objects containing the following members:

• "id" whose value shall be the URI that identifies the entity type. Mandatory.

• "type": "EntityType". Mandatory.

• "@context" a JSON-LD @context as described in clause 4.4. Optional.

• "typeName": Name of entity type, short name if contained in @context. Mandatory.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)49

• "attributeNames": JSON-LD array containing the names of attributes that instances of the entity type can have.
Mandatory.

4.5.12 Entity Type Information Representation

The entity type information representation is used to consume detailed information about an entity type. The entity type
information representation shall be a JSON-LD object containing the following members:

• "id" whose value shall be the URI that identifies the entity type. Mandatory.

• "type": "EntityTypeInfo". Mandatory.

• "@context" a JSON-LD @context as described in clause 4.4. Optional.

• "typeName": the URI that identifies the entity type (short name in case of availability in @context).
Mandatory.

4.5.13 Attribute List Representation

The attribute list representation is used to consume information about attributes. The attribute list representation shall be
a JSON-LD object containing the following members:

• "id" whose value shall be a URI that identifies the attribute list. Mandatory.

• "type": "AttributeList". Mandatory.

• "@context" a JSON-LD @context as described in clause 4.4. Optional.

• "attributeList": JSON-LD array containing the attribute names. Mandatory.

4.5.14 Detailed Attribute List Representation

The detailed attribute list representation is used to consume detailed information about attributes including the names of
entity types that have instances with attributes, which have the respective attribute name. The detailed attribute list
representation shall be an array of JSON-LD objects containing the following members:

• "id" whose value shall be the URI that identifies the attribute. Mandatory.

• "type": "Attribute". Mandatory.

• "@context" a JSON-LD @context as described in clause 4.4. Optional.

• "attributeName": the URI that identifies the attribute (short name in case of availability in @context).
Mandatory.

• "typeNames": an array of the names of entity types that have instances with attributes, which have the
respective attribute name. Optional.

4.5.15 Attribute Information Representation

The attribute information representation is used to consume detailed information about an attribute. The attribute
information representation shall be a JSON-LD object containing the following members:

• "id" whose value shall be the URI that identifies the attribute. Mandatory.

• "type": "Attribute". Mandatory.

• "@context" a JSON-LD @context as described in clause 4.4. Optional.

• "attributeName": the URI that identifies the attribute (short name in case of availability in @context).
Mandatory.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)50

• "attributeCount": number of instances of this attribute. Optional.

• "attributeTypes": an array of attribute types (e.g. Property, Relationship, GeoProperty) for which instances
with the attribute name exist. Optional.

• "typeNames": an array of the names of entity types that have instances with attributes, which have the
respective attribute name. Optional.

4.5.16 GeoJSON Representation of Entities

4.5.16.0 Foreword

The NGSI-LD specification defines an alternative representation of Entities, to make NGSI-LD responses compatible
with GIS (Geographic Information System) applications which support the GeoJSON format [8] and/or
GeoJSON-LD [i.20].

Every NGSI-LD Entity can be represented as a GeoJSON Feature object, where a Feature object represents any
spatially bounded thing as defined by its geometry.

4.5.16.1 Top-level "geometry" field selection algorithm

A parameter of the request (named "geometryProperty") may be used to indicate the name of the GeoProperty to be
selected. If this parameter is not present, then the default name of "location" shall be used.

If the selected GeoProperty has multiple instances as described in clause 4.5.5, either a "datasetId" shall be specified,
in order to define which instance of the value is to be selected, or a default attribute instance exists, which is then
selected, if no "datasetId" was specified.

If an entity lacks the GeoProperty as specified or the value does not hold a valid GeoJSON geometry object then the
geometry shall be undefined and returned with a value of null - which is syntactically valid GeoJSON.

4.5.16.2 GeoJSON Representation of an individual Entity

The GeoJSON representation of a spatially bounded Entity is defined as a single GeoJSON Feature object including the
following members:

• "id": Mandatory - the Entity "id".

• "type": Mandatory - the fixed value "Feature".

• "geometry": Mandatory - The value of the selected GeoProperty (a GeoJSON geometry object) used to define
the spatial location of the Entity. Note that no sub-Attributes of the selected GeoProperty are present in the
representation.

• "properties": Mandatory - A JSON object containing the following members:

- "type": Mandatory - the Entity Type Name of the Entity or an unordered JSON array with the Entity
Type Names of the Entity.

- One member for each Property (including the selected GeoProperty) as per the rules stated in
clause 4.5.2. In case of multiple Property instances with the same Property Name as described in
clause 4.5.5, all instances are provided as an unordered JSON array.

- One member for each Relationship as per the rules stated in clause 4.5.3. In case of multiple
Relationship instances with the same Property Name as described in clause 4.5.5, all instances are
provided as an unordered JSON array.

• A JSON-LD @context as described in clause 4.4 if requested as part of the payload body.

This representation shall be fully compliant with Feature as defined within IETF RFC 7946 [8].

An example can be found in annex C, clause C.2.3.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)51

4.5.16.3 GeoJSON Representation of Multiple Entities

The GeoJSON representation of a list of spatially bounded Entities is defined as a single GeoJSON FeatureCollection
object containing an array of GeoJSON Feature objects as follows:

• "type": Mandatory - the fixed value "FeatureCollection".

• "features": a JSON array of GeoJSON Feature objects as defined in clause 4.5.16.2. Note that separate
@context elements for each Feature will not be present in the payload body.

• A JSON-LD @context as described in clause 4.4 if requested as part of the payload body.

This representation shall be fully compliant with FeatureCollection as defined within IETF RFC 7946 [8].

An example can be found in annex C, clause C.2.3.

4.5.17 Simplified GeoJSON Representation of Entities

4.5.17.0 Foreword

When both simplified (see clause 4.5.4) and GeoJSON representation is requested, the following simplified GeoJSON
representation compatible with GIS systems shall be returned.

4.5.17.1 Simplified GeoJSON Representation of an individual Entity

The simplified GeoJSON representation of a spatially bounded Entity is defined as a single GeoJSON Feature object as
follows:

• "id": Mandatory - the Entity "id".

• "type": Mandatory - the fixed value "Feature".

• "geometry": Mandatory - The value of the selected GeoProperty (a GeoJSON geometry object) used to define
the spatial location of the Entity.

• "properties": Mandatory - An array containing the following attributes:

- "type": Mandatory - the Entity Type Name of the Entity or an unordered JSON array with the Entity
Type Names of the Entity.

- For each Property (including the selected GeoProperty) a member whose key is the Property Name (a
term) and whose value is the Property Value. In the multi-attribute case, each Property consists of a key-
value pair, the key being the Property Name (a term) and the value being a JSON Object, which contains
a single Attribute with a key called "dataset", and its value in turn is a JSON Object holding a series of
key-value pairs, one for each datasetId, where the value corresponds to the simplified representation of
the property value. The default datasetId (where present) is represented by the JSON-LD keyword
@none.

- For each Relationship a term whose key is the Relationship Name (a term) and whose value is the
Relationship's Object (represented as a URI). In the multi-attribute case, each Relationship consists of a
key-value pair, the key being the Relationship Name (a term) and the value being a JSON Object
containing a single Attribute with a key called "dataset" and its value in turn is a JSON Object holding a
series of key-value pairs, one for each datasetId where the value corresponds to the object of the
relationship. The default datasetId (where present) is represented by the JSON-LD keyword @none.

• A JSON-LD @context as described in clause 4.4 if requested as part of the payload body.

The selection of the geometry field is defined in clause 4.5.16.1.

This representation shall be fully compliant with Feature as defined within IETF RFC 7946 [8].

An example can be found in annex C, clause C.2.3.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)52

4.5.17.2 Simplified GeoJSON Representation of multiple Entities

The simplified GeoJSON representation of a list of spatially bounded Entities is defined as a single GeoJSON
FeatureCollection object containing an array of GeoJSON Feature objects as follows:

• "type": Mandatory - the fixed value "FeatureCollection".

• "features": Mandatory - a JSON array of simplified GeoJSON Feature objects as defined in clause 4.5.17.1.
Note that separate @context elements for each Feature will not be present in the payload body.

• A JSON-LD @context as described in clause 4.4 if requested as part of the payload body.

This representation shall be fully compliant with FeatureCollection as defined within IETF RFC 7946 [8].

4.5.18 NGSI-LD LanguageProperty Representations

4.5.18.1 Introduction

NGSI-LD defines a specialized type of Property named LanguageProperty, defined by the NGSI-LD @context
described by the present document in clause 4.4.

When dealing with NGSI-LD Entities, implementations shall interpret the JSON-LD nodes of type LanguageProperty
as per clause 4.5.18.2 (when in normalized representation) or clause 4.5.18.3 (when in concise representation).

Both normalized and concise representation of LanguageProperties shall be supported by implementations and can be
selected by Context Consumers through specific request parameters. An example of this representation can be found in
annex C, clause C.2.2.

4.5.18.2 Normalized NGSI-LD LanguageProperty

An NGSI-LD LanguageProperty shall be represented in normalized representation by a member whose key is the
LanguageProperty Name (a term), whose value is the same as the JSON-LD object in NGSI-LD Property
Representation defined in clause 4.5.2.2, with the following differences:

• "type": "LanguageProperty". Mandatory.

• "languageMap": a JSON object consisting of a set of a non-empty language tags as defined by IETF
RFC 5646 [28] or the language tag "@none" which represents a default language, with each language tag
mapping to a single string or array of strings. It represents a more specialized "value". Mandatory.

• An NGSI-LD Null used during partial update patch and merge patch (see clauses 5.5.8 and 5.5.12) shall be
encoded as the JSON object {"@none": "urn:ngsi-ld:null"}. The same representation is also used to indicate a
deletion in notifications and in the temporal evolution for encoding a deleted LanguageProperty.

• "previousLanguageMap": only provided in case of notifications and if the showChanges option is explicitly
requested. It represents the previous Language Property languageMap, before the triggering change. Optional.
The representation is the same as that of "languageMap".

• "unitCode": shall never be present, as languageMaps are always strings and hence unitless. Prohibited.

• "value" and "previousValue": shall never be present, as value is a generalization of languageMap. Prohibited.

4.5.18.3 Concise NGSI-LD LanguageProperty

An NGSI-LD LanguageProperty shall be represented in concise but lossless representation by a member whose key is
the LanguageProperty Name (a term), whose value is the same as the JSON-LD object in NGSI-LD Property
Representation defined in clause 4.5.2.3, with the following differences:

• "type": Optional. If missing, "LanguageProperty" can be inferred by the presence of the "languageMap"
attribute.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)53

• "languageMap": a JSON object consisting of a set of a non-empty language tags as defined by IETF
RFC 5646 [28] or the language tag "@none" which represents a default language, with each language tag
mapping to a single string or array of strings. It represents a more specialized "value". Mandatory.

• An NGSI-LD Null used during partial update patch and merge patch (see clauses 5.5.8 and 5.5.12) shall be
encoded as the JSON object {"@none": "urn:ngsi-ld:null"}. The same representation is also used to indicate a
deletion in notifications and the temporal evolution for encoding a deleted LanguageProperty.

• "unitCode": shall never be present, as languageMaps are always strings and hence unitless. Prohibited.

• "value": shall never be present, as it is a generalization of languageMap. Prohibited.

Notwithstanding the definition above, during partial update patch and merge patch (see clauses 5.5.8 and 5.5.12), an
NGSI-LD LanguageProperty with a value of NGSI-LD Null without a datasetId should be represented in a concise
representation by a member whose key is the LanguageProperty name (a term) and whose value is "urn:ngsi-ld:null".

4.5.19 Aggregated Temporal Representation of an Entity

4.5.19.0 Foreword

The NGSI-LD specification defines an alternative temporal representation of Entities, called Aggregated Temporal
Representation, which allows consuming temporal Entity data after applying an aggregation function on the values of
the Attribute instances. The aggregated temporal representation of Entities shall be supported by implementations
supporting the Temporal Representation of Entities and can be selected by Context Consumers through specific request
parameters. An example can be found in annex C, clause C.5.14.

The aggregation function is applied according to the following principles:

• An aggregation method specifies the function used to aggregate the values (e.g. sum, mean, etc.). A Context
Consumer can ask for many aggregation methods in one request.

• The duration of an aggregation period specifies the duration of each period to be used when applying the
aggregation function on the values of a Temporal Entity.

The Aggregated Temporal Representation of an Entity shall include the following:

• A JSON-LD object containing the following members:

- id, type and @context as described in clause 4.5.1.

- For each Property a member whose key is the Property Name (a term). The member value shall be a
JSON-LD object labelled with the type "Property". Such JSON-LD object shall contain one member per
aggregation method requested by the Context Consumer. Each member uses the aggregation method
name as a key. The value of each member shall be a JSON-LD Array that shall contain as many array
elements as there are periods in the time range of the query. Each array element shall be another Array
containing exactly three array elements in the following order:

1) the value obtained after applying the aggregation method over the period;

2) the start DateTime of the corresponding period;

3) the end DateTime of the corresponding period.

- For each Relationship a term whose key is the Relationship Name (a term). The member value shall be a
JSON-LD object labelled with the type "Relationship". Such JSON-LD object shall contain one member
per aggregation method requested by the Context Consumer. Each member uses the aggregation method
name as a key. The value of each member shall be a JSON-LD Array that shall contain as many array
elements as there are periods in the time range of the query. Each array element shall be another array
containing exactly three array elements in the following order:

1) the value obtained after applying the aggregation method over the period;

2) the start DateTime of the corresponding period;

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)54

3) the end DateTime of the corresponding period.

An example of this Aggregated Temporal Representation can be found in annex C, clause C.5.14.

4.5.19.1 Supported behaviours for aggregation functions

In order to support such aggregation functions, two parameters are defined:

• aggrMethods, to express the aggregation methods to apply.

• aggrPeriodDuration to express the duration of the period to consider in each step of the aggregation.

The duration is expressed using the ISO 8601 [17] Duration Representation and in particular using the following format
and conventions:

• The duration shall be a string in the format P[n]Y[n]M[n]DT[n]H[n]M[n]S or P[n]W, where [n] is replaced by
the value for each of the date and time elements that follow the [n], P is the duration designator and T is the
time designator. For example, "P3Y6M4DT12H30M5S" represents a duration of "three years, six months, four
days, twelve hours, thirty minutes, and five seconds".

• Date and time elements including their designator may be omitted if their value is zero.

• Lower-order elements may be omitted for reduced precision.

• A duration of 0 second (e.g. expressed as "PT0S" or "P0D") is valid and is interpreted as a duration spanning
the whole time range specified by the temporal query.

• Alternative representations based on combined date and time representations are not allowed.

The values supported by the aggrMethods parameter are the following:

• aggrMethods = "totalCount" / "distinctCount" / "sum" / "avg" / "min" / "max" /
"stddev" / "sumsq"

The semantics of the different aggregation methods defined above is as follows, and shall be supported by compliant
implementations.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)55

Table 4.5.19.1-1: Semantics of aggregation methods for Properties on JSON native data types

Aggregation
Method

JSON String JSON Number JSON Object JSON Array JSON Boolean
(for the purpose

of the
aggregation, true
is considered as a
value of 1, false is
considered as a

value of 0)
totalCount Calculate the number of times the value has been updated inside the period

distinctCount Calculate the count of distinct values inside the period
sum N/A Calculate the

sum of the values
inside the period

N/A Calculate the sum
of the sizes of the
arrays inside the

period

Calculate the sum
of the values inside

the period

avg N/A Calculate the
average of the

values inside the
period

N/A Calculate the
average number of

the sizes of the
arrays inside the

period

Calculate the
average of the

values inside the
period

min Calculate the first
value in

lexicographical
order inside the

period

Calculate the
minimum value

inside the period

N/A Calculate the
minimum size of
the arrays inside

the period

Calculate the
minimum value

inside the period

max Calculate the last
value in

lexicographical
order inside the

period

Calculate the
maximum value
inside the period

N/A Calculate the
maximum size of
the arrays inside

the period

Calculate the
maximum value
inside the period

stddev N/A Calculate the
standard

deviation of the
values inside the

period

N/A N/A Calculate the
standard deviation
of the values inside

the period

sumsq N/A Calculate the
sum of the

square of the
values inside the

period

N/A N/A Calculate the sum
of the square of the

values inside the
period

Table 4.5.19.1-2: Semantics of aggregation methods for Properties on other supported data types

Aggregation Method DateTime Date Time URI
totalCount Calculate the number of times the value has been updated inside the period

distinctCount Calculate the count of distinct values inside the period
sum N/A N/A N/A N/A
avg N/A N/A Calculate the average

time inside the period
(e.g. to apply on an
event that occurs at
non fixed times, like

the time a car enters a
given parking)

N/A

min Calculate the minimum
value inside the period

Calculate the minimum
value inside the period

Calculate the minimum
value inside the period

N/A

max Calculate the
maximum value inside

the period

Calculate the
maximum value inside

the period

Calculate the
maximum value inside

the period

N/A

stddev N/A N/A N/A N/A
sumsq N/A N/A N/A N/A

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)56

Table 4.5.19.1-3: Semantics of aggregation methods for Relationships

Aggregation Method Relationship
totalCount Calculate the number of times the relationship has been updated inside the period

distinctCount Calculate the count of distinct relationships targets inside the period
sum N/A
avg N/A
min N/A
max N/A

stddev N/A
sumsq N/A

4.5.20 NGSI-LD VocabularyProperty Representations

4.5.20.1 Introduction

NGSI-LD defines a specialized type of Property named VocabularyProperty, defined by the NGSI-LD @context
described by the present document in clause 4.4.

When dealing with NGSI-LD Entities, implementations shall interpret the JSON-LD nodes of type VocabularyProperty
as per clause 4.5.20.2 (when in normalized representation) or clause 4.5.20.3 (when in concise representation).

Both normalized and concise representation of VocabularyProperties shall be supported by implementations and can be
selected by Context Consumers through specific request parameters. An example of this representation can be found in
annex C, clause C.2.2.

4.5.20.2 Normalized NGSI-LD VocabularyProperty

An NGSI-LD VocabularyProperty shall be represented in normalized representation by a member whose key is the
VocabularyProperty Name (a term), whose value is the same as the JSON-LD object in NGSI-LD Property
Representation defined in clause 4.5.2.2, with the following differences:

• "type": "VocabularyProperty". Mandatory.

• "vocab": a JSON object consisting of a single string or array of strings which can be type coerced into an IRI
or array of IRIs. It represents a more specialized "value". Mandatory.

• "previousVocab": only provided in case of notifications and if the showChanges option is explicitly requested.
It represents the previous VocabularyProperty vocab, before the triggering change. Optional. The
representation is the same as that of "vocab".

• "unitCode": shall never be present, as vocabs are always strings and hence unitless. Prohibited.

• "value" and "previousValue": shall never be present, as value is a generalization of vocab. Prohibited.

• "object" and "previousObject": shall never be present, as they define a Relationship's object URI. Prohibited.

4.5.20.3 Concise NGSI-LD VocabularyProperty

An NGSI-LD VocabularyProperty shall be represented in concise but lossless representation by a member whose key is
the VocabularyProperty Name (a term), whose value is the same as the JSON-LD object in NGSI-LD Property
Representation defined in clause 4.5.2.3, with the following differences:

• "type": Optional. If missing, "VocabularyProperty" can be inferred by the presence of the "vocab" attribute.

• "vocab": a JSON object consisting of a single string or array of strings which can be type coerced into an IRI
or array of IRIs. It represents a more specialized "value". Mandatory.

• "unitCode": shall never be present, as vocabs are always strings and hence unitless. Prohibited.

• "value": shall never be present, as it is a generalization of vocab. Prohibited.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)57

4.6 Data Representation Restrictions

4.6.1 Supported text encodings

NGSI-LD implementations shall support the UTF-8 text encoding format. To avoid interoperability problems,
applications shall provide JSON content encoded using UTF-8 and NGSI-LD systems shall also expose such JSON
content using UTF-8.

4.6.2 Supported names

Even though the JSON serialization format allows inclusion of any character in the Unicode space, NGSI-LD restricts
Entity Type Names, Property Names and Relationship Names to the following ABNF grammar:

nameChar = unicodeNumber / unicodeLetter
nameChar =/ %x5F ; _
name = unicodeLetter *nameChar

• unicodeNumber is any Unicode character that has Number as a Category [22]. With Unicode-capable regular
expression (RegEx) parsers, such a character may be matched by \p{N}.

• unicodeLetter is any Unicode character that has Letter as a Category [22]. With Unicode-capable regular
expression (RegEx) parsers, such a character may be matched by \p{L}.

In order to avoid name clashing, names can be prefixed as specified by the following BNF grammar:

prefix = unicodeLetter *nameChar
name =/ prefix %x3A unicodeLetter *nameChar ; prefix:name

When receiving a JSON-LD object with a Name (Type, Property, Relationship) including characters different than
those expressed above, implementations should raise an error of type BadRequestData.

4.6.3 Supported data types for Values

Compliant NGSI-LD implementations shall support the following data types for representing Values:

• All the JSON native data types as mandated by IETF RFC 8259 [6], section 3.

• All the GeoJSON Geometries [8] with the exception of GeometryCollection.

• DateTime string for encoding a timestamp, i.e. a calendar date together with a time of day, expressed in UTC,
using the ISO 8601 [17] Complete Representation and in particular using the 'Extended Format', as described
below:

- The timestamp shall be a string containing Year, Month, Day, Hours, Minutes, Seconds and time zone
components using the format YYYY-MM-DDThh:mm:ssZ as defined in ISO 8601 [17]. In this
representation, the character "-" is used to separate the calendar date components, the character "T" is
used to indicate the start of the time of day portion, the character ":" is used to separate the time of day
components, and the trailing character "Z" is used to convey the time zone.

- All the referred components shall appear in the string; reduced representations are not permitted.

- The Seconds component may optionally contain a decimal fraction. In this case the string shall contain
two integer digits, followed by a decimal point and then one or more fractional digits, up to a maximum
of six. For example, YYYY-MM-DDThh:mm:ss.ssssssZ. In requests, also a comma instead of a decimal
point may be used as separator for compatibility reasons.

NOTE 1: In previous versions of NGSI-LD, only the comma was supported as ISO 8601 [17] states that it is the
preferred option. However, in practice the decimal point is more commonly used.

- The trailing timestamp component shall contain the time zone related information and shall always be
equal to the character "Z". Therefore, all timestamps shall be expressed in UTC.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)58

• Date string for encoding a calendar date. It uses ISO 8601 [17] Complete Representation using the 'Extended
Format', as described below:

- It shall be a string containing Year, Month, Day components using the format YYYY-MM-DD as defined
in ISO 8601 [17]. In this representation, the character "-" is used to separate the calendar date
components.

- All the referred components shall appear in the string; reduced representations are not permitted.

• Time string for encoding a local time expressed in UTC. It uses ISO 8601 [17] Complete Representation using
the 'Extended Format', as described below:

- It shall be a string containing Hours, Minutes and Seconds components using the format hh:mm:ssZ as
defined in ISO 8601 [17]. In this representation, the character ":" is used to separate the local time
components.

- All the referred components shall appear in the string; reduced representations are not permitted.

- The Seconds component may optionally contain a decimal fraction. In this case the string shall contain
two integer digits, followed by a decimal point and then one or more fractional digits, up to a maximum
of six. For example, hh:mm:ss.ssssssZ. In requests, also a comma instead of a decimal point may be used
as separator for compatibility reasons.

NOTE 2: In previous versions of NGSI-LD, only the comma was supported as ISO 8601 [17] states that it is the
preferred option. However, in practice the decimal point is more commonly used.

- The string shall not contain expressions of the difference between local time and UTC. All
representations shall be interpreted as being expressed in UTC.

• URI as mandated by ISO 8601 [17], Appendix A, production rule named 'URI'.

Implementations may support additional data types different to those enumerated above, for instance:

• JSON-LD typed value (i.e. a string as the lexical form of the value together with a type, defined by an XSD
base type or more generally an IRI).

• JSON-LD structured value (e.g. a set, a list).

4.6.4 Supported Entity Content

In principle, context information providers can publish any kind of data serialized in JSON and encoded in UTF-8.
Nonetheless, to avoid security problems caused by script injection attacks or other attack vectors, the following
characters are prohibited and shall not be part of any value:

• %x3C ; <

• %x3E ; >

• %x22 ; "

• %x27 ; '

• %x3D ; =

• %x3B ; ;

• %x28 ; (

• %x29 ;)

When receiving entities (context information) encoded in JSON format and containing values that include the forbidden
characters implementations shall raise an error of type BadRequestData.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)59

4.6.5 Supported data types for LanguageMaps

Compliant NGSI-LD implementations shall support the following data types for representing LanguageMaps:

• A JSON object consisting of a series of key-value pairs where the keys shall be JSON strings representing
IETF RFC 5646 [28] language codes or the JSON-LD "@none" for representing default when no more
specific language is found. and the values shall be JSON strings or arrays of JSON strings. Additionally the
languageMap encoding {"@none": "urn:ngsi-ld:null"} shall be used to represent an NGSI-LD Null during
partial update patch and merge patch (see clauses 5.5.8 and 5.5.12) and for representing deleted Language
Properties in notifications and temporal evolutions.

4.6.6 Ordering of Entities in arrays having more than one instance of the
same Entity

Some services (batch operations, clauses 5.6.7, 5.6.8, 5.6.9 and 5.6.10) operate on an array of entities, as input, and if
this array contains more than one instance of the same entity, then these entity instances shall come in chronological
order, i.e. the first entity instance in the array shall be older than the second, the second shall be older than the third, etc.

Without this assumption, there is no way for the request to be treated correctly, as the entity instances are often used for
replacing or modifying the prior entity instance.

4.7 Geospatial Properties

4.7.1 GeoJSON Geometries

Geospatial Properties in NGSI-LD shall be represented using GeoJSON Geometries [8]. With the aim of highlighting
and encoding those Properties which convey geospatial characteristics, NGSI-LD defines a special type of Property
named GeoProperty, defined by the Core NGSI-LD @context described by the present document in clause 4.4.

When dealing with NGSI-LD Entities, implementations shall interpret JSON-LD nodes of type GeoProperty just as
conventional Properties but with the additional requirement that the Value corresponding to such Property shall be a
GeoJSON Geometry. All the Geometries defined by [8] are allowed except GeometryCollection. In addition,
implementations should take the necessary steps to create the corresponding geo-indexes so that information can be
properly returned when geo-queries are executed.

NGSI-LD defines the following Properties of type GeoProperty. Preferably these Properties should be used if they
semantically fit, but if necessary, additional Properties of type GeoProperty can be defined by Context Producers:

• location is defined as the geospatial Property representing the geographic location of the Entity, e.g. the
location of a building or the current location of a car.

• observationSpace is defined as the geospatial Property representing the geographic location that is being
observed, e.g. by a sensor. For example, in the case of a camera, the location of the camera and the observation
space are different and can be disjoint.

• operationSpace is defined as the geospatial Property representing the geographic location in which an Entity,
e.g. an actuator is active. For example, a crane can have a certain operation space.

The defined Properties can also be used as part of Context Source Registrations (see clause 5.2.9). In this case they
represent locations in which Entities with the respective geospatial Properties are contained. For example, a Context
Source that monitors the location of cars in a city may be represented by a Context Source Registration whose Property
location corresponds to the space of the city in which the location of cars is monitored.

4.7.2 Representation of GeoJSON Geometries in JSON-LD

There are certain types of GeoJSON geometries, for instance Polygon, whose coordinates are represented using nested
array structures (through the coordinates member). Such representation may introduce serialization problems when
transforming JSON-LD content into RDF graphs.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)60

Also, when using whole GeoJSON geometries (consisting of type and coordinates) in an NGSI-LD document, its JSON
syntax is only preserved in the regular JSON-LD representation (with separate @context), but not in an expanded
representation. To handle resulting problems, optionally, whole GeoJSON geometries can be represented as a JSON
string.

Implementations shall accept the referred encoded string value, if and only if, it can be parsed into a JSON Object, as
mandated by IETF RFC 8259 [6], meeting the syntax and restrictions mandated by IETF RFC 7946 [8] when
representing a valid Geometry of the type specified.

For the avoidance of doubt, regular encodings of GeoJSON geometries (as JSON Object) shall also be accepted by
implementations, but Context Producers should consider the implications in terms of RDF compatibility.

4.7.3 Concise NGSI-LD GeoProperty

Notwithstanding the restrictions defined in clause 4.5.2.3, an NGSI-LD GeoProperty without additional sub-attributes
shall be represented in a concise but lossless representation by a member whose key is the Property Name (a term) and
whose value is the Property Value (see definition of terms in clause 3.1) which itself is also a supported GeoJSON
geometry.

• "type": shall be a supported GeoJSON geometry type as defined in clause 4.7.1. Mandatory.

• "coordinates": shall be present, as defined by the relevant GeoJSON Geometry [8]. Mandatory.

When parsing a geospatial value submitted in the concise representation, it shall be possible for the NGSI-LD system to
infer the GeoProperty type. Error handing of the payload is left ambiguous if the NGSI-LD system is unable to
distinguish a payload as either a Property or a GeoProperty.

Furthermore, an NGSI-LD GeoProperty which includes additional Properties or Relationships shall be treated in the
same manner as an ordinary NGSI-LD Property (see clause 4.5.2.3) with the exception that if the Property Value
resolves to a supported GeoJSON geometry, the type "GeoProperty" shall be inferred.

4.8 Temporal Properties
NGSI-LD defines the following Properties of type TemporalProperty that shall be supported by implementations:

• observedAt is defined as the temporal Property at which a certain Property or Relationship became valid or
was observed. For example, a temperature Value was measured by the sensor at this point in time.

• createdAt is defined as the temporal Property at which the Entity, Property or Relationship was entered into
an NGSI-LD system.

• modifiedAt is defined as the temporal Property at which the Entity, Property or Relationship was last
modified in an NGSI-LD system, e.g. in order to correct a previously entered incorrect value.

• deletedAt is defined as the temporal Property at which the Entity, Property or Relationship was deleted from
an NGSI-LD system.

Temporal Properties in NGSI-LD shall be represented based on the DateTime data type as mandated by clause 4.6.3.

For simplicity reasons, a TemporalProperty is represented only by its Value, i.e. no Properties of TemporalProperty nor
Relationships of TemporalProperty can be conveyed. In more formal language, a TemporalProperty does not allow
reification.

It is important to remark that the term TemporalProperty has been reserved for the semantic tagging of non-reified
structural timestamps (observedAt, createdAt, modifiedAt, deletedAt), which capture the temporal evolution of
Attributes. Only such structural timestamps can be used as timeproperty in Temporal Queries as mandated by
clause 4.11.

User-defined Properties whose value is a time value (Date, DateTime or Time) are defined as Property, not as
TemporalProperty, and are serialized in NGSI-LD as shown in annex C, clause C.6.

Whenever a TemporalProperty value is unknown by a registered Context Source, the Property shall be omitted rather
than sending an error response.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)61

4.9 NGSI-LD Query Language
The NGSI-LD Query Language shall be supported by implementations. It is intended to:

• filter out Entities by Attribute Values (target is the "value" member of a Property, see table 5.2.5-1, or the
"object" member of a Relationship, see table 5.2.6-1);

• filter out Context Sources by the values of properties that describe them, defined when Context Sources are
registered (target is the name of a Context Source Property member of the CSourceRegistration, see
table 5.2.9-1).

In this clause, two string parameters are defined in order to fully specify an NGSI-LD Query:

• q, to express the desired query;

• expandValues, to define the list of attributes whose values should be expanded against the supplied @context
using JSON-LD type coercion prior to executing the query in the broker. Optional.

In case of HTTP binding, whenever the string acting as a filter is part of the HTTP binding's URI, then it shall be URI-
encoded (percent-encoded, as described in IETF RFC 3986 [5]).

The grammar that encodes the syntax of the q parameter, expressed in ABNF format [12], is the NGSI-LD Query
Language. It is described below (it has been validated using https://tools.ietf.org/tools/bap/abnf.cgi), and it shall be
supported by implementations:

Query = (QueryTerm / QueryTermAssoc) *(LogicalOp (QueryTerm / QueryTermAssoc))
QueryTermAssoc = %x28 QueryTerm *(LogicalOp QueryTerm) %x29 ; (QueryTerm)
QueryTerm = Attribute
QueryTerm =/ Attribute Operator ComparableValue
QueryTerm =/ Attribute equal CompEqualityValue
QueryTerm =/ Attribute unequal CompEqualityValue
QueryTerm =/ Attribute patternOp RegExp
QueryTerm =/ Attribute notPatternOp RegExp
DottedPath = AttrName *(%x2E AttrName) ; AttrName *(.AttrName)
Attribute = DottedPath *1(%x5B DottedPath %x5D) ; DottedPath *1([DottedPath])
Operator = equal / unequal / greaterEq / greater / lessEq / less
ComparableValue = Number / quotedStr / dateTime / date / time
OtherValue = false / true
Value = ComparableValue / OtherValue
Range = ComparableValue dots ComparableValue
ValueList = Value 1*(%x2C Value) ; Value 1*(, Value)
CompEqualityValue = OtherValue / ValueList / Range / URI
equal = %x3D %x3D ; ==
unequal = %x21 %x3D ; !=
greater = %x3E ; >
greaterEq = %x3E %x3D ; >=
less = %x3C ; <
lessEq = %x3C %x3D ; <=
patternOp = %x7E %x3D ; ~=
notPatternOp = %x21 %x7E %x3D ; !~=
dots = %x2E %x2E ; ..
AttrNameChar = unicodeNumber / unicodeLetter
AttrNameChar =/ %x5F ; _
AttrName = unicodeLetter *AttrNameChar
quotedStr = String ; "*char"
andOp = %x3B ; ;
orOp = %x7C ; |
LogicalOp = andOp / orOp

• unicodeNumber is any Unicode character that has Number as a Category [22]. With Unicode-capable regular
expression (RegEx) parsers, such a character may be matched by \p{N}.

• unicodeLetter is any Unicode character that has Letter as a Category [22]. With Unicode-capable regular
expression (RegEx) parsers, such a character may be matched by \p{L}.

• Number shall be a number as mandated by the JSON Specification, following the ABNF Grammar, production
rule named number, section 6 of IETF RFC 8259 [6].

• String shall be a text string as mandated by the JSON Specification, following the ABNF Grammar,
production rule named String, section 7 of IETF RFC 8259 [6].

https://tools.ietf.org/tools/bap/abnf.cgi

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)62

• char shall be a character as mandated by the JSON Specification, ABNF Grammar, production rule named
char, section 7 of IETF RFC 8259 [6].

• false shall be conformant with the JSON ABNF Grammar, production rule named false, section 3 of IETF
RFC 8259 [6]. It is intended to represent the Boolean value corresponding to "false".

• true shall be conformant with the JSON ABNF Grammar, production rule named true, section 3 of IETF
RFC 8259 [6]. It is intended to represent the Boolean value corresponding to "true".

• RegExp shall be a regular expression as mandated by IEEE 1003.2™ [11].

• dateTime shall be a DateTime value as mandated by clause 4.6.3.

• time shall be a Time value as mandated by clause 4.6.3.

• date shall be a Date value as mandated by clause 4.6.3.

• URI shall be a URI as mandated by IETF RFC 3986 [5] or an IRI as mandated by IETF RFC 3987 [23],
appendix A, production rule named URI.

A Query Term (production rule QueryTerm) defines a predicate which serves as a matching condition for Entities. The
constituent parts of a Query Term are:

• an attribute path (production rule named Attribute);

• an optional pair composed by an operator (production rule named Operator) and a value (production rule
named Value).

The attribute path (production rule Attribute) is a simple name AttrName, optionally followed by a dot-separated list of
more AttrName (see later Example 8), optionally followed by one trailing list of more dot-separated AttrNames enclosed
in one pair of square brackets (see later Example 9). The attribute path is always a composition of short hand names and
not a fully qualified ones, because, when the query language is used, an @context properly defining all the terms (as per
clause 5.5.7) shall be issued.

EXAMPLE 0: ?q=temperature. (checks for the existence of the attribute temperature).

EXAMPLE 1: ?q=temperature==20.

EXAMPLE 2: ?q=brandName!="Mercedes".

EXAMPLE 3: ?q=isParked=="urn:ngsi-ld:OffStreetParking:Downtown1".

EXAMPLE 4: A query encoded as an HTTP Query String. Note that this is HTTP binding specific, to be used via
GET method, as defined in clause 6.4.3.2. The NGSI-LD query language string is conveyed by
means of parameter q.

 ?q=speed>50;brandName!="Mercedes". Also note that (as stated above) URI-encoding
(percent-encoding) is required if the query string contains reserved characters (see IETF
RFC 3986 [5] and IETF RFC 3987 [23], for the exact list of them).

EXAMPLE 5: ?q=isMonitoredBy (to query Entities that have the Attribute isMonitoredBy).

Query Terms may be combined through logical operators that shall be supported by implementations as follows:

• The production rule andOp defines a logical AND operator conveying that the requested entities are those
which meet at the same time the conditions posed by all the Query Terms affected by such an operator.

• The production rule orOp defines a logical OR operator conveying that the requested entities are those which
meet any of the conditions posed by the Query Terms affected by such an operator.

• When evaluating logical conditions, and in the absence of specific Query Term associations (see below), the
logical AND operator shall take precedence over the logical OR operator.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)63

Association of Query Terms shall be supported by implementations as per the grammar included by the present clause
(production rule named QueryTermAssoc). An association of Query Terms is composed of the combination of different
Query Terms linked by logical operators (AND, OR) and delimited by parenthesis. The evaluation of an association of
Query Terms shall always take precedence over individual, non-associated Query Terms.

EXAMPLE 6: ?q=((speed>50|rpm>3000);brandName=="Mercedes").

EXAMPLE 7: ?q=(temperature>=20;temperature<=25)|capacity<=10.

The following Example 8 shows the syntax of an attribute path that is defined by the production rule Attribute, as a dot-
separated list of names. Such a list is intended to address a Property or Relationship included by the matching entities
subjacent graph, in accordance with the following rules:

• Every name in the list shall be expanded to a URI (fully qualified name) as mandated by clause 5.5.7.

• The first name shall refer to a Property or Relationship (top level element) whose subject shall be a matching
Entity. Strictly speaking, and as per the JSON-LD representation rules, such (fully qualified) name shall be
equal to the (fully qualified) name of the concerned Property or Relationship.

• Each other name (if present) represents a (sub)Property or (sub)Relationship, starting with the top-level
element as subject and continuing through the graph traversal. The element addressed by the last name in the
list is defined as the target element. If only one name is present in the attribute path, then the target element is
the top level one.

EXAMPLE 8: ?q=temperature.observedAt>=2017-12-24T12:00:00Z.

If the target element is a Property, the target value is defined as the Value associated to such Property. If a Property has
multiple instances (identified by its respective datasetId), and no datasetId is explicitly addressed, the target value shall
be any Value of such instances.

If the target element is a Relationship, the target object is defined as the object associated (represented as a URI) to
such Relationship. If a Relationship has multiple instances (identified by its respective datasetId), and no datasetId is
explicitly addressed, the target object shall be any object of such instances.

If the target element is a LanguageProperty, and no target language is specified, the target value is defined as a value
from any of the key-value pairs held within the languageMap associated to such LanguageProperty.

If the target element is a LanguageProperty and a target language is specified, the target value is defined as the Value
associated to the matching key-value pair held within the languageMap associated to such LanguageProperty where the
key matches the target language.

If the target element is a VocabularyProperty, the target value shall be expanded according to the @context.

When a Query Term only defines an attribute path (production rule named Attribute), the matching Entities shall be
those which define the target element (Property or a Relationship), regardless of any target value or object.

Lastly, implementations shall support queries involving specific data subitems belonging to a Property Value (seed
target value) represented by a JSON object structure (compound value). For that purpose, an attribute path may
additionally contain a trailing path (enclosed in a single pair of square brackets that signal that the overall path is now
entering the compound value) composed of a dot-concatenated list of JSON member names, and intended to address a
specific data subitem (member) within the seed target value. When such a trailing path is present, implementations
shall interpret and evaluate it (against the seed target value) as a MemberExpression of ECMA 262 [21], in dot notation,
as clarified therein at section Property Accessors). If the evaluation of such MemberExpression does not result in a
defined value, the target element shall be considered as non-existent for the purpose of query resolution.

EXAMPLE 9: ?q=address[city]=="Berlin". The trailing path is [city]. It is used to refer to a particular subitem
within the value of the "address" Property, which is a complex JSON object representing a postal
address. Refer to the following NGSI-LD Entity:

{

 "id":"urn:ngsi-ld:placedescription:123",

 "type":"PlaceDescription",

 "address": {

 "type":"Property",

 "value": {

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)64

 "city":"Berlin",

 "street":"Ulrich Strasse"

 }

 }

}

EXAMPLE 10: ?q=sensor.rawdata[airquality.particulate]==40. The trailing path is [airquality.particulate]. The
"particulate" property of the compound JSON object is targeted. Refer to the following NGSI-LD
Entity:

{

 "id":"urn:ngsi-ld:particulatemeasurement:345",

 "type":"ParticulateMeasurement",

 "sensor": {

 "type":"Property",

 "value": 40,

 "rawdata": {

 "type":"Property",

 "value": {

 "airquality": {

 "particulate": 40,

 "PM20": 85

 }

 }

 }

 }

}

EXAMPLE 11: ?q=gender==Male&expandValues=gender. The trailing path is gender. The "gender" property of
JSON object is targeted, but the target value is first expanded to a URI using the supplied
@context. Refer to the following NGSI-LD Entity:

{

 "id":"urn:ngsi-ld:Person:678",

 "type":"Person",

 "gender": {

 "type":"VocabularyProperty",

 "vocab": "Male",

 }

 },

 @context": {

 "Male": "http://example.org/Male",

 }

}

If the target element corresponds to a Relationship, the combination of such target element with any operator different
than equal or unequal shall result in not matching.

A Query Term value shall be any of the following (depending on the operator used):

• A literal value (string, number, date, etc.) (production rule named Value).

• A range of values (production rule named Range), specified as a minimum and a maximum value.

• A regular expression (production rule named RegExp).

• A URI (production rule named URI).

• A comma-separated list of literal values (production rule named ValueList).

When comparing dates or times, the order relation considered shall be a temporal one.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)65

When it comes to comparing text strings, implementations:

• Shall follow the recommendations defined by IETF RFC 8259 [6], section 8.3.

• Should support the Unicode Collation Algorithm (UCA), as defined by [13].

URI comparison should be performed so that the number of false negatives is minimized, as recommended by IETF
RFC 3986 [5], section 6.

The semantics of the different logical operators used by Query Terms are described as follows and shall be supported by
compliant implementations:

• Existence (only attribute is specified). A matching entity shall contain the target element.

• Equal operator (production rule named equal). A matching Entity shall contain the target element and meet
any of the following conditions:

- The Query Term value, e.g. color == "red":

 Is identical or equivalent to the target value (e.g. matches "red").

 Is included in the target value, if the latter is an array (e.g. matches ["blue","red","green"]).

- If the Query Term value is a list of values (production rule named ValueList), e.g. color=="black", "red":

 The target value is identical or equivalent to any of the list values (e.g. matches "red").

 The target value includes any of the Query Term values, if the target value is an array (e.g. matches
["red","blue"]).

- If the Query Term value is a range (production rule named Range), e.g. temperature==10..20:

 The target value is in the interval between the minimum and maximum of the range (both included)
(e.g. matches 15).

- The Query Term value target element corresponds to a LanguageProperty and a natural language is
specified e.g. color[en]=="red":

 a match is found as the value of the key-value pair corresponding to the specified natural
language of the languageMap (e.g. matches {"fr": "rouge", "en" : "red","de": "rot"} but not
{"fr": "red", "en" : "black","de": "blue"}).

 a match is found as a single element from the array of values of the key-value pair
corresponding to the specified natural language of the languageMap (e.g. matches {"fr":
["chat", "rouge"], "en" : ["red", "cat], "de": ["rote", "Katze"]} but not {"fr": ["chat",
"rouge"], "en" : ["coal", "black"],"de": ["blaue", "Engel"]}).

- The Query Term value target element corresponds to a LanguageProperty and no natural language is
specified e.g. color[*]=="red":

 any match is found in the values of the key-value pairs of the languageMap (e.g. matches
{"fr": "rouge", "en" : "red", "de": "rot"}.

 a match is found as a single element of the array of values of the key-value pairs of the
languageMap (e.g. matches {"fr": "chat", "rouge"], "en" : ["red", "cat"], "de": ["rote",
"Katze"]}).

- The Query Term value is a URI and the target element corresponds to a VocabularyProperty, e.g. color
== "http://example/red":

 Is identical to the target value (e.g. matches "http://example.com/red").

 Is included in the target value, if the latter is an array (e.g. matches ["http://example.com/blue","
http://example.com/red"," http://example.com/green"]).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)66

- If the Query Term value target element corresponds to a VocabularyProperty and is a list of URIs
(production rule named ValueList), e.g. color==" http://example/black", " http://example/red":

 The target value is identical to any of the list values (e.g. matches " http://example.com/red").

 The target value includes any of the Query Term values, if the target value is an array (e.g. matches
["http://example.com/red", "http://example.com/blue"]).

- If there is no equality between the target value data type and the Query Term value data type, then it shall
be considered as not matching.

• Unequal operator (production rule named unequal). A matching entity shall contain the target element and
meet any of the following conditions:

- The Query Term value, e.g. color!= "red":

 Is neither identical nor equivalent to the target value (e.g. matches "black").

 Is not included in the target value, if the latter is an array (e.g. matches ["blue","black","green"],
but not ["blue","red","green"]).

- If the Query Term value is a list of values (production rule named ValueList), e.g. color!= "black", "red":

 The target value is neither identical nor equivalent to any of the list values (e.g. matches "blue").

 The target value does not include any of the list values, if the target value is an array (e.g. matches
["blue","yellow","green"], but not ["blue","red","green"]).

- If the Query Term value is a range (production rule named Range), e.g. temperature!=10..20:

 The target value is not in the interval between the minimum and the maximum (both included)
(e.g. matches 9).

- The Query Term value target element corresponds to a LanguageProperty and a natural language is
specified e.g. color[en]!="red":

 no matching value is found as the value of the specified language key of a languageMap
where a language filter is specified. (e.g. matches {"fr": "noir", "en" : "black","de":
"schwarz"}) but not {"fr": "rouge", "en" : "red","de": "rot"}.

 no matching value is found as a single element from the array of values of the key-value pair
corresponding to the specified natural language of the languageMap (e.g. matches {"fr":
["chat", "rouge"], "en" : ["coal", "black"], "de": ["blaue", "Engel"]} but not {"fr": ["rouge",
"noir"], "en" : ["red", "black"],"de": ["rot", "schwarz"]}).

- The Query Term value target element corresponds to a LanguageProperty and no language filter is
specified e.g. color[*]!="red":

 no matching value is found in any of the values of the key-value pairs of a languageMap
(e.g. matches {"fr": "noir", "en" : "black","de": "schwarz"}) but not {"fr": "rouge", "en" :
"red","de": "rot"}.)

 no matching value is found as a single element from the array of values of the key-value pair
corresponding to the specified natural language of the languageMap (e.g. matches {"fr":
["chat", "rouge"], "en" : ["coal", "black"], "de": ["blaue", "Engel"]} but not {"fr": ["rouge",
"noir"], "en" : ["red", "black"],"de": ["rot", "schwartz"]}).

- The Query Term value is a URI and the target element corresponds to a VocabularyProperty, e.g. color!=
"http://example.com/red":

 Is not identical to the target value (e.g. matches "http:/example.com/black").

 Is not included in the target value, if the latter is an array (e.g. matches ["http:/example.com/blue","
http:/example.com/black"," http:/example.com/green"], but not ["http:/example.com/blue",
http:/example.com/"red"," http:/example.com/green"]).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)67

- If the Query Term value target element corresponds to a VocabularyProperty and is a list of URIs e.g.
color!= " http://example.com/black", " http://example.com/red":

 The target value is not identical to any of the list values (e.g. matches " http:/example.com/blue").

 The target value does not include any of the list values, if the target value is an array (e.g. matches
["http:/example.com/blue"," http:/example.com/yellow"," http:/example.com/green"], but not
["http:/example.com/blue"," http:/example.com/red"," http:/example.com/green"]).

- If the data type of the target value and the data type of the Query Term value are different, then they shall
be considered unequal.

• Greater than operator (production rule named greater). For an entity to match, it shall contain the target
element and the target value has to be strictly greater than the Query Term value:

- If there is no equality between the target value data type and the Query Term value data type then it shall
be considered as not matching.

• Less than operator (production rule named less). For an entity to match, it shall contain the target element and
the target value shall be strictly less than the value:

- If there is no equality between the target value data type and the Query Term value data type then it shall
be considered as not matching.

• Greater or equal than (production rule named greaterEq). A matching entity shall meet any of the Greater
than or the Equal conditions for single values.

• Less or equal than (production rule named lessEq). A matching entity shall meet any of the Less than or the
Equal conditions for single values.

• Match pattern (production rule named patternOp). A matching entity shall contain the target element and the
target value shall be in the L(R) of the regular pattern specified by the Query Term:

- If the target value data type is different than String then it shall be considered as not matching.

• Do not match pattern (production rule named notPatternOp). A matching entity shall contain the target
element and the target value shall not be in the L(R) of the regular pattern specified by the Query Term:

- If the target value data type is different than String then it shall be considered as not matching.

4.10 NGSI-LD Geoquery Language
The NGSI-LD Geoquery language shall be supported by implementations. It is intended to define predicates which
allow testing whether a specific topological spatial relationship exists between a pair of geometries: a target geometry
and a reference geometry. The target geometry represents a geospatial Property of an Entity, typically, the location of
the Entity.

A total of four parameters are defined in order to fully specify an NGSI-LD Geoquery:

• georel, to express the desired geospatial relationship;

• geometry, to express the type of the reference geometry;

• coordinates, to express the reference geometry;

• geoproperty, to express the target geometry of an Entity. This parameter is optional, location is the default.

The following grammar defines the syntax for the geospatial relationships (parameter name georel):

andOp = %x3B ; ;
equal = %x3D %x3D ; ==
georel = nearRel / withinRel / containsRel / overlapsRel / intersectsRel / equalsRel / disjointRel
nearRel = nearOp andOp distance equal PositiveNumber ; near;max(min)Distance==x (in meters)
distance = "maxDistance" / "minDistance"
nearOp = "near"
withinRel = "within"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)68

containsRel = "contains"
intersectsRel = "intersects"
equalsRel = "equals"
disjointRel = "disjoint"
overlapsRel = "overlaps"

PositiveNumber shall be a non-zero positive number as mandated by the JSON Specification. Thus, it shall follow the
ABNF Grammar, production rule named Number, section 6 of IETF RFC 8259 [6], excluding the 'minus' symbol and
excluding the number 0.

Reference geometries shall be specified by:

• A geometry type (parameter name geometry) as defined by the GeoJSON specification (IETF RFC 7946 [8],
section 1.4), except GeometryCollection.

• A coordinates (parameter name coordinates) element which shall represent the coordinates of the reference
geometry as mandated by IETF RFC 7946 [8], section 3.1.1.

Target geometry, i.e. the target Entity's GeoProperty to which the geoquery is to be applied, can be specified by an
extra parameter named geoproperty. The GeoProperty's name shall be specified as short hand name and not a fully
qualified one, because, when the query language is used, an @context properly defining all the terms (as per
clause 5.5.7) shall be issued. If no geoproperty is specified, the geoquery is applied to the default Property location (see
clause 4.7.1).

Note that proper URL encoding shall be used by HTTP binding API clients when using these examples.

EXAMPLE 1: georel=near;maxDistance==2000

geometry=Point

coordinates=[8,40]

geoproperty=observationSpace

EXAMPLE 2: georel=within

geometry=Polygon

coordinates=[[[100.0,0.0],[101.0,0.0],[101.0,1.0],[100.0,1.0],[100.0,0.0]]]

geoproperty=location

EXAMPLE 3: A query encoded as an HTTP Query String. Note that this is HTTP binding specific, to be used via
GET method, as defined in clause 6.4.3.2.

 ?georel=near;maxDistance==2000&geometry=Point&coordinates=[8,40]

The semantics of the different geospatial relationships defined above is as follows, and shall be supported by compliant
implementations:

• near statement (production rule named nearRel):

- maxDistance modifier. For an entity to match it has to be within the buffer geometric object (as defined
by [14]) given by the reference geometry, with distance (in meters) equal to the number conveyed
(production rule named PositiveNumber).

- minDistance modifier. For an entity to match it has to be disjoint with the buffer geometric object (as
defined by [14]) given by the reference geometry, with distance (in meters) equal to the number
conveyed (production rule named PositiveNumber).

• equals relationship (production rule named equalsRel). For an entity to match, the target geometry shall be
equal, as specified by [14], to the reference geometry.

• disjoint relationship (production rule named disjointRel). For an entity to match, the target geometry shall be
disjoint, as specified by [14], to the reference geometry.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)69

• intersects relationship (production rule named intersectsRel). For an entity to match, the target geometry shall
intersect, as specified by [14], with the reference geometry.

• within relationship (production rule named withinRel). For an entity to match, the target geometry shall be
within, as specified by [14], the reference geometry.

• contains relationship (production rule named containsRel). For an entity to match, the target geometry shall
contain, as specified by [14], the reference geometry.

• overlaps relationship (production rule named overlapsRel). For an entity to match, the target geometry shall
overlap, as specified by [14], the reference geometry.

When resolving geo-queries, Entities which do not convey the target GeoProperty of the query shall be considered as
non-matching.

4.11 NGSI-LD Temporal Query Language
The NGSI-LD Temporal Query language shall be supported by implementations. It is intended to define predicates
which allow testing whether Temporal Properties of NGSI-LD Entities, Properties and Relationships, are within certain
temporal constraints. In particular it can be used to request historic Property values and Relationships that were valid
within the specified timeframe.

The following grammar defines the syntax that shall be supported:

timerel = beforeRel / afterRel / betweenRel
beforeRel = "before"
afterRel = "after"
betweenRel = "between"

The points in time for comparison are defined as follows:

• A timeAt parameter, which shall represent the comparison point for the before and after relation and the
starting point for the between relation. It shall be represented as DateTime (mandated by clause 4.6.3).

• An endTimeAt parameter, which is only used for the between relation and shall represent the end point for
comparison. It shall be represented as DateTime (mandated by clause 4.6.3).

The Temporal Property (see clause 4.8) to which the temporal query is to be applied can be specified by timeproperty.
If no timeproperty is specified, the temporal query is applied to the default Temporal Property observedAt.

EXAMPLE 1: timerel=before

timeAt=2017-12-13T14:20:00Z

EXAMPLE 2: timerel=between

timeAt=2017-12-13T14:20:00Z

endTimeAt=2017-12-13T14:40:00Z

timeproperty=modifiedAt

EXAMPLE 3: Temporal query encoded as HTTP Query String, note that this is HTTP binding specific, to be
used via GET method, as defined in clause 6.18.3.2.

 ?timerel=between&timeAt=2017-12-13T14:20:00Z&timeproperty=observedAt

The semantics of the different temporal relations defined above is as follows, and shall be supported by compliant
implementations:

• before relationship (production rule named beforeRel). For a Temporal Property to match, the value of the
specified Temporal Property (or observedAt as default) has to be before the time specified by timeAt;

• after relationship (production rule named afterRel). For a Temporal Property to match, the value of the
specified Temporal Property (or observedAt as default) has to be after the time specified by timeAt;

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)70

• between relationship (production rule named betweenRel). For a Temporal Property to match, the value of the
specified Temporal Property (or observedAt as default) has to be after the time specified by timeAt and before
the time specified by endTimeAt.

When resolving temporal queries, Entities which do not convey the target Temporal Property of the query shall be
considered as non-matching.

4.12 NGSI-LD Pagination
NGSI-LD operations can potentially return a result set including a large number of NGSI-LD Elements, so that
pagination of query results shall be supported by compliant implementations.

The list of operations that incur this behaviour is as follows:

• Query Entities (clause 5.7.2)

• Query Subscriptions (clause 5.8.4)

• Query Context Source Registrations (clause 5.10.2)

• Query Context Source Registration Subscriptions (clause 5.11.5)

• Query Temporal Evolution of Entities (clause 5.7.4)

Nonetheless, the NGSI-LD API is agnostic about specific pagination mechanisms and only defines the behaviour that
shall be observed by NGSI-LD Systems.

For each operation above, NGSI-LD Systems shall:

• provide a mechanism to iterate through the NGSI-LD Elements of a result set without exhausting NGSI-LD
Client or Broker resources;

• provide a mechanism to flag NGSI-LD Clients when there are remaining NGSI-LD Elements to be traversed
as part of a result set;

• allow NGSI-LD Clients specifying a limit (page size), as a parameter of API operations, to the number of
NGSI-LD Elements (at a maximum) retrieved by the implementation for each pagination iteration;

• define a default limit (default page size) to the number of NGSI-LD Elements retrieved per pagination
iteration;

• allow NGSI-LD Clients iterating forwards and backwards through a result set.

NGSI-LD implementations should:

• avoid Denial of Service attacks or other potential security risks, by defining a hard limit to the size of
generated response payload body while paginating. For instance, certain queries can be rejected by issuing an
error of type TooManyResults.

NGSI-LD implementations may:

• warn NGSI-LD Clients when result sets become invalid due to dynamic changes in NGSI-LD Elements
(additions, deletions) occurred while iterating over pages.

The concrete realization of the features described above might depend on each API binding. Nonetheless, NGSI-LD
Systems shall implement pagination features as mandated by the present clause, for any API binding.

4.13 Counting the Number of Results
Given that NGSI-LD Query operations can potentially return a result set including a large number of NGSI-LD
Elements and that pagination of query results shall be supported (see clause 4.12), compliant implementations shall also
support a mechanism for relaying to the client the number of expected resulting elements, when a query is executed.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)71

A specific field (e.g. a custom header in the response in case of HTTP binding, see clause 6.3.13) shall be returned
within the response of a query, whenever this is requested by the client.

Mechanisms for limiting the number of returned NGSI-LD Elements are independent of the counting mechanism, so
that, potentially, a client can issue a query that limits to zero the number of desired results but asks for the count to be
present.

This is useful for client-side planning and fine-tuning of subsequent queries and their parameters.

4.14 Supporting Multiple Tenants
The concept of a tenant is that a user or group of users utilizes a single instance of an NGSI-LD system (Context Source
or Context Broker) in isolation from other users or groups of users of the same instance, which are considered to be
different tenants. Thus a multi-tenant NGSI-LD system is a system where a single software instance is used by different
users or groups of users, the tenants, where any information related to one tenant (e.g. Entities, Subscriptions, Context
Source Registrations) are only visible to users of the same tenant, but not to users of a different tenant. Typically, multi-
tenancy is used together with an access control mechanism, enforcing the isolation of tenants, however access control
and other security-related aspects are out-of-scope of the present document.

The NGSI-LD API optionally enables multi-tenant systems. To support this, tenant information can be optionally
specified in NGSI-LD API operations. The operation then only applies to the targeted tenant. As all information of one
tenant is isolated from other tenants, the NGSI-LD API operations for managing, retrieving and subscribing to entity
information, but also any context source related operations only apply to the information of the specified tenant in
isolation and never have any effect on the information of other tenants.

As the support and use of tenants is optional, any operation not explicitly specifying a tenant targets a default tenant,
which always exists. NGSI-LD systems not supporting multiple tenants should raise an error of type
NoMultiTenantSupport if a tenant is specified. To enable Context Sources to be part of tenant-based distributed or
federated systems, tenant information can optionally be specified in Context Source Registrations. When contacting the
respective Context Sources, the tenant information from the Context Source Registration has to be used. If no tenant
information is present in the Context Source Registration, no tenant information is to be used and thus the default tenant
is targeted on the registered Context Source. This enables integrating Context Sources not supporting multi-tenancy in a
distributed system with a tenant-based Context Broker or integrating local tenants in a federated system using a
different tenant.

4.15 NGSI-LD Language Filter
The NGSI-LD Language Filter shall be supported by implementations. It is intended to form a mechanism which allows
just one matching string value of LanguageProperties of NGSI-LD Entities to be converted to an NGSI-LD Property,
where the value will be a string for the specified natural language.

The following grammar defines the syntax that shall be supported by the filter:

lang = langtag

Where the langtag is defined according to the rules as mandated by IETF RFC 5646 [28], and IETF RFC 3282 [29]. If
the broker cannot serve any matching language, it shall default to any supported language. This behavior can be
triggered by specifying lang="*" in the filter (see example 3).

In any case, the attribute in question shall be augmented with an additional non-reified subproperty lang indicating the
actual language returned.

EXAMPLE 1: Specified natural language - return LanguageProperties as strings in English only.

 lang="en"

EXAMPLE 2: Multiple natural languages with no ranked preference - return LanguageProperties as strings in
either Swiss French or French.

 lang="fr-CH,fr"

EXAMPLE 3: Wildcard - return LanguageProperties as a string in any supported language.

 lang="*"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)72

EXAMPLE 4: Quality value ranking - return all LanguageProperties as a string in Swiss French or French with
no ranked preference, fallback to English as a second choice and finally fallback to any other
supported language.

 lang="fr-CH,fr;q=0.9,en;q=0.8,*;q=0.5"

4.16 Supporting Multiple Entity Types
From NGSI-LD API version 1.5.1 onwards, multiple Entity Types for any Entity are supported. An Entity is uniquely
identified by its id, so whenever information is provided for an Entity with a given id, it is considered part of the same
Entity, regardless of the Entity Type(s) specified. To avoid unexpected behaviour, Entity Types can be implicitly added
by all operations that update or append attributes. There is no operation to remove Entity Types from an Entity. The
philosophy here is to assume that an Entity always had all Entity Types, but possibly not all Entity Types have
previously been known in the system. The only option to remove an Entity Type is to delete the Entity and re-create it
with the same id. Alternatively, a batch upsert with 'replace' update mode can be used, as described in clause 5.6.8.

4.17 NGSI-LD Entity Type Selection Language
The NGSI-LD Entity Type Selection Language shall be supported by implementations. It is intended to select only
those Entities that have the specified Entity Type(s), possibly among others. Entity Types are specified as a disjunction
of elements, where each element can either directly be an Entity Type or a conjunction of multiple Entity Types. The
logical operators are the same as in the NGSI-LD Query Language specified in clause 4.9. As a disjunction of Entity
Types can also be seen as a list, and to be compatible with previous versions of the NGSI-LD API, a comma can be
used as an alternative representation of the or operator. For logical and grouping parenthesis are needed.

EntityTypes = OrEntityType *(orOp OrEntityType) ; OrEntityType|OrEntityType
OrEntityType = %x28 EntityType *(andOp EntityType) %x29 ; (EntityType;EntityType)
OrEntityType = EntityType ; EntityType
andOp = %x3B ; ;
orOp = %x7C / %x2C ; | ,

EntityType is either a valid name as specified in clause 4.6.2 or a URI.

EXAMPLE 1: Entities of type Building or House:

Building|House

Alternative Representation:

Building,House

EXAMPLE 2: Entities of type Home and Vehicle:

(Home;Vehicle)

EXAMPLE 3: Entities of type (Home and Vehicle) or Motorhome:

(Home;Vehicle)|Motorhome

Alternative Representation:

(Home;Vehicle),Motorhome

NOTE: The special characters ",", ";", "(" and ")" used in the Entity Type Selection Language are allowed
characters in URIs. The use of short names is recommended.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)73

4.18 NGSI-LD Scopes
An NGSI-LD Scope enables putting Entities into a hierarchical structure and scoping queries and subscriptions
according to it. The hierarchical structure is user-defined, e.g. according to (logical) location or organization. The use of
Scopes is optional and an Entity can be assigned to one or more Scopes at the same time. The Scope is represented as a
special scope Property that is non-reified in the normalized NGSI-LD Entity representation and reified in the Temporal
Representation. In the latter case, it is restricted to having the non-reified Temporal Properties createdAt, modifiedAt
and deletedAt as sub-Properties. There shall at most be one instance of the scope property per Entity. In case multiple
representations of the same Entity have to be merged, e.g. when combining the results of distributed queries, the values
of scope are merged. The value of scope is represented as a JSON array in case there is more than one Scope. For the
Temporal Evolution a given Scope is considered valid from the time it has been set until the time it has been explicitly
removed by an update or delete operation (for an example see annex C, clause C.5.16).

The grammar that encodes the syntax of the Scope is expressed in ABNF format [12]. It is described below (it has been
validated using https://tools.ietf.org/tools/bap/abnf.cgi), and it shall be supported by implementations:

Scope = [%x2F] ScopeLevel *(%x2F ScopeLevel) ; [/] ScopeLevel *(/ScopeLevel)
ScopeLevel = unicodeLetter *ScopeLevelChar
ScopeLevelChar = unicodeNumber / unicodeLetter
ScopeLevelChar =/ %x5F ; _

EXAMPLE 1: /Madrid

EXAMPLE 2: Madrid

EXAMPLE 3: /Madrid/Gardens/ParqueNorte

EXAMPLE 4: /CompanyA/OrganizationB/UnitC

4.19 NGSI-LD Scope Query Language
The NGSI-LD Scope Query Language shall be supported by implementations. It is intended to select only those Entities
that are within the specified Scope(s). Scopes are specified as a disjunction of elements, where each element can either
directly be a Scope or a conjunction of multiple Scopes. The "+" can be used as a wildcard to match a single scope level
within a Scope. The "#" that can be added at the end of a Scope specification serves as a wildcard, which matches the
given scope and the whole hierarchy of scopes below. The "/#" matches any non-empty scope, i.e. only explicitly
specified scopes. The logical operators are the same as in the NGSI-LD Query Language specified in clause 4.9. As a
disjunction of Scopes can also be seen as a list, a comma can be used as an alternative representation of the or operator.
For logical and grouping parenthesis are needed.

ScopesQ = OrScopeQ *(orOp OrScopeQ) ; OrScopeQ|OrScopeQ
ScopesQ =/ %x2F %23 ; / #
OrScopeQ = %x28 ScopeQ *(andOp ScopeQ) %x29 ; (ScopeQ;ScopeQ)
OrScopeQ =/ ScopeQ *1(%x2F %23) ; ScopeQ / #
andOp = %x3B ; ;
orOp = %x7C / %x2C ; | ,
ScopeQ = %x2F ScopeQLevel *(%x2F ScopeQLevel) ; /ScopeQLevel *(/ScopeQLevel)
ScopeQLevel = unicodeLetter *ScopeQLevelChar
ScopeQLevel =/ %x2B ; +
ScopeQLevelChar = unicodeNumber / unicodeLetter
ScopeQLevelChar =/ %x5F ; _

EXAMPLE 1: Scope /Madrid:

/Madrid

EXAMPLE 2: Scope /Madrid/Gardens and the whole scope tree below:

/Madrid/Gardens/#, e.g. matches the following Scopes:

/Madrid/Gardens, /Madrid/Gardens/ParqueNorte,
/Madrid/Gardens/ParqueNorte/Parterre1, /Madrid/Gardens/ParqueSur

https://tools.ietf.org/tools/bap/abnf.cgi

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)74

EXAMPLE 3: Scopes /Madrid/Gardens/ParqueNorte and /Madrid/Sights/ParqueNorte, or any other Scope with
Madrid as first scope level and ParqueNorte as third scope level:

/Madrid/+/ParqueNorte

EXAMPLE 4: Scope /Madrid/Districts and /CompanyA:

(/Madrid/Districts;/CompanyA)

EXAMPLE 5: Scope (/Madrid/Districts and /CompanyA) or /CompanyB:

(/Madrid/Districts;/CompanyA)|CompanyB

Alternative Representation:

(/Madrid/Districts;/CompanyA),CompanyB

4.20 NGSI-LD Distributed Operation Names
When registering Context Sources (see clause 5.2.9), the registrant NGSI-LD interface endpoint may optionally offer a
subset of NGSI-LD operations which it accepts. Table 4.20-1 defines a list of names for each of these operations.

Table 4.20-1: Names of implemented Operations

 Operation name Implements
Context
Information
Provision

createEntity 5.6.1 Create Entity
updateEntity 5.6.2 Update Attributes
appendAttrs 5.6.3 Append Attributes
updateAttrs 5.6.4 Partial Attribute update
deleteAttrs 5.6.5 Delete Attribute
deleteEntity 5.6.6 Delete Entity
createBatch 5.6.7 Batch Entity Creation
upsertBatch 5.6.8 Batch Entity Creation or Update (Upsert)
updateBatch 5.6.9 Batch Entity Update
deleteBatch 5.6.10 Batch Entity Delete
upsertTemporal 5.6.11 Create or Update Temporal Representation of an Entity
appendAttrsTemporal 5.6.12 Add Attributes to Temporal Representation of an Entity
deleteAttrsTemporal 5.6.13 Delete Attributes from Temporal Representation of an

Entity
updateAttrInstanceTemporal 5.6.14 Partial Update Attribute instance in Temporal

Representation of an Entity
deleteAttrInstanceTemporal 5.6.15 Delete Attribute Instance from Temporal Representation

of an Entity
deleteTemporal 5.6.16 Delete Temporal Representation of an Entity
mergeEntity 5.6.17 Merge Entity
replaceEntity 5.6.18 Replace Entity
replaceAttrs 5.6.19 Attribute Replace
mergeBatch 5.6.20 Batch Entity Merge

Context
Information
Consumption

retrieveEntity 5.7.1 Retrieve Entity
queryEntity 5.7.2 Query Entities (excluding batch entity queries)
queryBatch 5.7.2 Query Entities (batch entity queries only)
retrieveTemporal 5.7.3 Retrieve Temporal Evolution of an Entity
queryTemporal 5.7.4 Query Temporal Evolution of Entities
retrieveEntityTypes 5.7.5 Retrieve Available Entity Types
retrieveEntityTypeDetails 5.7.6 Retrieve Details of Available Entity Types
retrieveEntityTypeInfo 5.7.7 Retrieve Available Entity Type Information
retrieveAttrTypes 5.7.8 Retrieve Available Attributes
retrieveAttrTypeDetails 5.7.9 Retrieve Details of Available Attributes
retrieveAttrTypeInfo 5.7.10 Retrieve Available Attribute Information

Context
Information
Subscription

createSubscription 5.8.1 Create Subscription
updateSubscription 5.8.2 Update Subscription
retrieveSubscription 5.8.3 Retrieve Subscription
querySubscription 5.8.4 Query Subscription
deleteSubscription 5.8.5 Delete Subscription

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)75

In addition to these individual operations, a series of names for common groups of operations have also been defined.
Table 4.20-2 defines a list of names for each of these operation groups.

Table 4.20-2: Named Operation Groups

Operation Group name Implements
federationOps • retrieveEntity

• queryEntity
• queryBatch
• retrieveEntityTypes
• retrieveEntityTypeDetails
• retrieveEntityTypeInfo
• retrieveAttrTypes
• retrieveAttrTypeDetails
• retrieveAttrTypeInfo
• createSubscription
• updateSubscription
• retrieveSubscription
• querySubscription
• deleteSubscription

updateOps • updateEntity
• updateAttrs
• replaceEntity
• replaceAttrs

retrieveOps • retrieveEntity
• queryEntity

redirectionOps • createEntity
• updateEntity
• appendAttrs
• updateAttrs
• deleteAttrs
• deleteEntity
• mergeEntity
• replaceEntity
• replaceAttrs
• retrieveEntity
• queryEntity
• retrieveEntityTypes
• retrieveEntityTypeDetails
• retrieveEntityTypeInfo
• retrieveAttrTypes
• retrieveAttrTypeDetails
• retrieveAttrTypeInfo

If no specific subset of operations is defined for a Context Source Registration, the default set of operations matches the
group defined as "federationOps".

5 API Operation Definition

5.1 Introduction
This clause defines data structures and operations of the NGSI-LD API. No specific binding is assumed. Clause 6 maps
these operations and data types to the HTTP REST binding.

NOTE: In UML diagrams dotted arrows denote a response to a request.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)76

5.2 Data Types

5.2.1 Introduction

Implementations shall support the data types defined by the clauses below. For each member defined by each data type
(including nested ones) a term shall be added to the Core @context, as mandated by clause 4.5.

None of the members described admit a null value directly, as when a JSON-LD processor encounters null, the
associated entry or value is always removed when expanding the JSON-LD document.

However, in the context of a partial update or merge operation (see clauses 5.5.8 and 5.5.12), an NGSI-LD Null shall be
used to indicate the removal of a target member. Thus, for representing deleted elements in notifications and in the
temporal evolution, the URI "urn:ngsi-ld:null" is used as a Property value or Relationship object and the JSON object
{"@none": "urn:ngsi-ld:null"} for the languageMap of a Language Property, respectively. In all other cases,
implementations shall raise an error of type BadRequestData if an NGSI-LD Null value is encountered.

As null cannot be used as a value in JSON-LD, there is still the possibility of using a JSON null literal {"@type":
"@json", "@value": null} instead. JSON literals are not to be expanded in JSON-LD and thus the respective element is
not removed during JSON-LD expansion.

Non-normative JSON Schema [i.11] definitions of the referred data types are also available at [i.13].

The use of URI in the context of the present document also includes the use of International Resource Identifiers (IRIs)
as defined in IETF RFC 3987 [23], which extends the use of characters to Unicode characters [22] beyond the ASCII
character set, enabling the support of languages other than English.

5.2.2 Common members

The JSON-LD representation of NGSI-LD Entity, Property, Relationship, Context Source Registration and Subscription
can include the common members described by table 5.2.2-1.

Those members are read-only, and shall be automatically generated by NGSI-LD implementations. They shall not be
provided by Context Producers. In the event that they are provided (in update or create operations) NGSI-LD
implementations shall ignore them.

In query or retrieve operations implementations shall only generate common members (table 5.2.2-1) when the Context
Consumer explicitly asks for their inclusion. Clause 6.3.11 defines the mechanism offered by the HTTP binding for
such purpose.

Table 5.2.2-1: Common members of NGSI-LD elements

Name Data Type Restriction Cardinality Description
createdAt string DateTime (clause 4.6.3) 0..1 Entity creation timestamp. See clause 4.8
modifiedAt string DateTime (clause 4.6.3) 0..1 Entity last modification timestamp. See clause 4.8
deletedAt string DateTime (clause 4.6.3) 0..1 Entity deletion timestamp. See clause 4.8

It is only used in notifications reporting deletions
and in the Temporal Representation of Entities
(clause 4.5.6), Properties (clause 4.5.7),
Relationships (clause 4.5.8) and
LanguageProperties (clause 5.2.32) and
VocabularyProperties (clause 5.2.35)

5.2.3 @context

When encoding NGSI-LD Entities, Context Source Registrations, Subscriptions and Notifications, as pure JSON-LD
(MIME type "application/ld+json"), a user @context (as described in clause 4.4) shall be included as a special member
of the corresponding JSON-LD Object. Table 5.2.3-1 gives a precise definition of this special member.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)77

Table 5.2.3-1: JSON-LD @context tagged member

Name Data Type Restriction Cardinality Description
@context URI, JSON Object, or JSON Array See [2], section 5.1. 0..1 JSON-LD @context.

5.2.4 Entity

This type represents the data needed to define an NGSI-LD entity as mandated by clause 4.5.1.

The supported JSON members shall follow the requirements provided in table 5.2.4-1.

Table 5.2.4-1: NGSI-LD Entity data type definition

Name Data Type Restriction Cardinality Description
id String Valid URI 1 Entity id
type String or String[] 1 Entity Type(s). Both short hand

string(s) (type name) or URI(s)
are allowed

scope String or String[] See clause 4.18 0..1 Scope
location GeoProperty See datatype definition in

clause 5.2.7
0..1 Default geospatial Property of

an entity. See clause 4.7
observationSpace GeoProperty See datatype definition in

clause 5.2.7
0..1 See clause 4.7

operationSpace GeoProperty See datatype definition in
clause 5.2.7

0..1 See clause 4.7

<Property Name> Property or
Property[]

See datatype definitions
in clauses 5.2.5, 5.2.7
and 5.2.32

0..N Property as mandated by
clause 4.5.1. For each Property
identified by the same Property
Name, there can be one or
more instances

<Relationship Name> Relationship or
Relationship[]

See datatype definition in
clause 5.2.6

0..N Relationship as mandated by
clause 4.5.2. For each
Relationship identified by the
same Relationship Name, there
can be one or more instances

5.2.5 Property

This type represents the data needed to define a Property as mandated by clause 4.5.2.

The supported JSON members shall follow the requirements provided in table 5.2.5-1 below. The datatype definition
defines all the required attributes for the normalized representation. In the concise representation, the Attribute "type"
member can be omitted as type="Property" can be inferred from the presence of the "value" member. Furthermore, in
the concise representation of a Property, the "value" member cannot be a GeoJSON Object (as defined in clause 4.7) as
it would be interpreted as a GeoProperty (see clause 5.2.7).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)78

Table 5.2.5-1: NGSI-LD Property data type definition

Name Data Type Restriction Cardinality Description
type String It shall be equal to

"Property"
1 Node type

value Any JSON value
as defined by IETF
RFC 8259 [6]

See NGSI-LD Value
definition in clause 3.1

1 Property Value

previousValue Any JSON value
as defined by IETF
RFC 8259 [6]

Only used in Notifications, if
the showChanges option is
explicitly requested

0..1 Previous Property Value

observedAt String DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
unitCode String As mandated by [15] 0..1 Property Value's unit code
datasetId String Valid URI 0..1 It allows identifying a set or

group of property values
<Property Name> Property or

Property[]
See datatype definitions in
clauses 5.2.5, 5.2.7 and
5.2.32

0..N Properties of Property. For
each Property identified by
the same Property Name,
there can be one or more
instances

<Relationship Name> Relationship or
Relationship[]

See datatype definition in
clause 5.2.6

0..N Relationships of Property.
For each Relationship
identified by the same
Relationship Name, there
can be one or more
instances

5.2.6 Relationship

This type represents the data needed to define a Relationship as mandated by clause 4.5.3.

The supported JSON members shall follow the requirements provided in table 5.2.6-1 below. The datatype definition
defines all the required attributes for the normalized representation. In the concise representation, the Attribute "type"
member can be omitted as type="Relationship" can be inferred from the presence of the "object" member.

Table 5.2.6-1: NGSI-LD Relationship data type definition

Name Data Type Restriction Cardinality Description
type String It shall be equal to

"Relationship"
1 Node type

object String Valid URI 1 Relationship's target object
previousObject String Valid URI. Only used in

Notifications, if the
showChanges option is
explicitly requested

0..1 Previous Relationship's
target object

observedAt String DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
datasetId String Valid URI 0..1 It allows identifying a set or

group of target relationship
objects

<Property Name> Property or
Property[]

See datatype definitions in
clauses 5.2.5, 5.2.7 and
5.2.32

0..N Properties of the
Relationship. For each
Property identified by the
same Property Name,
there can be one or more
instances

<Relationship Name> Relationship or
Relationship[]

See datatype definition in
clause 5.2.6

0..N Relationships of the
Relationship. For each
Relationship identified by
the same Relationship
Name, there can be one or
more instances

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)79

5.2.7 GeoProperty

This type represents the data needed to define a GeoProperty.

The supported JSON members shall follow the requirements provided in table 5.2.7-1 below. The datatype definition
defines all the required attributes for the normalized representation. In the concise representation, the Attribute "type"
member can be omitted as "GeoProperty" can be inferred from the presence of the "value" member holding a GeoJSON
Geometry as mandated by clause 4.7.

Table 5.2.7-1: NGSI-LD GeoProperty data type definition

Name Data Type Restriction Cardinality Description
type String It shall be equal to

"GeoProperty"
1 Node type

value JSON Object As mandated by clause 4.7 1 Geolocation encoded as
GeoJSON [8]

previousValue Any JSON value
as defined by IETF
RFC 8259 [6]

Only used in Notifications, if the
showChanges option is
explicitly requested

0..1 Previous GeoProperty Value

observedAt String DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
datasetId String Valid URI 0..1 It allows identifying a set or

group of property values
<Property Name> Property or

Property[]
See datatype definitions in
clauses 5.2.5, 5.2.7 and 5.2.32

0..N Properties of Property For
each Property identified by
the same Property Name,
there can be one or more
instances

<Relationship
Name>

Relationship or
Relationship[]

See datatype definition in
clause 5.2.6

0..N Relationships of Property.
For each Relationship
identified by the same
Relationship Name, there
can be one or more
instances

5.2.8 EntityInfo

This type represents what Entities, Entity Types or group of Entity ids (as a regular expression pattern mandated by
IEEE 1003.2™ [11]) can be provided (by Context Sources).

The JSON members shall follow the indications provided in table 5.2.8-1. id takes precedence over idPattern.

Notice that Cardinality of "type" being 1 implies that it is not possible to register what Entities can be provided by a
Context Source just by their id or idPattern (i.e. without specifying their type).

Table 5.2.8-1: EntityInfo data type definition

Name Data Type Restrictions Cardinality Description
id String Valid URI 0..1 Entity identifier
idPattern String Regular expression as per

IEEE 1003.2™ [11]
0..1 A regular expression which denotes a

pattern that shall be matched by the
provided or subscribed Entities

type String or
String[]

Fully Qualified Name of an Entity
Type or the Entity Type Name as
a short-hand string. See
clause 4.6.2

1 Entity Type (or JSON array, in case of
Entities with multiple Entity Types)

5.2.9 CSourceRegistration

This type represents the data needed to register a new Context Source.

The supported JSON members shall follow the indications provided in table 5.2.9-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)80

Table 5.2.9-1: CSourceRegistration data type definition

Name Data Type Restriction Cardinality Description
id String Valid URI.

Unique registration identifier.
(JSON-LD @id).

0..1 At creation time, if it is not
provided, it will be assigned
during registration process and
returned to client.
It cannot be later modified in
update operations

type String It shall be equal to
"ContextSourceRegistration"

1 JSON-LD @type
Use reserved type for
identifying Context Source
Registration

registrationName String Non-empty string 0..1 A name given to this Context
Source Registration

description String Non-empty string 0..1 A description of this Context
Source Registration

information RegistrationInfo[] See data type definition in
clause 5.2.10. Empty array
(0 length) is not allowed

1 Describes the Entities,
Properties and Relationships
for which the Context Source
may be able to provide
information

tenant String 0..1 Identifies the tenant that has to
be specified in all requests to
the Context Source that are
related to the information
registered in this Context
Source Registration. If not
present, the default tenant is
assumed. Should only be
present in systems supporting
multi-tenancy

observationInterval TimeInterval See data type definition in
clause 5.2.11

0..1 If present, the Context Source
can be queried for Temporal
Entity Representations. (If
latest Entity information is also
provided, a separate Context
Registration is needed for this
purpose). The
observationInterval specifies
the time interval for which the
Context Source can provide
Entity information as specified
by the observedAt Temporal
Property. A temporal query
based on the observedAt
Temporal Property, which is
the default, is matched against
the observationInterval for
overlap

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)81

Name Data Type Restriction Cardinality Description
managementInterval TimeInterval See data type definition in

clause 5.2.11
0..1 If present, the Context Source

can be queried for Temporal
Entity Representations. (If
latest Entity information is also
provided, a separate Context
Registration is needed for this
purpose). The
managementInterval specifies
the time interval for which the
Context Source can provide
Entity information as specified
by the createdAt, modifiedAt
and deletedAt Temporal
Properties. A temporal query
based on the createdAt,
modifiedAt or deletedAt
Temporal Property is matched
against the
managementInterval for
overlap

location GeoJSON
Geometry as
mandated by
clause 4.7

 0..1 Location for which the Context
Source may be able to provide
information

observationSpace GeoJSON
Geometry as
mandated by
clause 4.7

 0..1 Geographic location that
includes the observation
spaces of all entities as
specified by their respective
observationSpace
GeoProperty for which the
Context Source may be able to
provide information

operationSpace GeoJSON
Geometry as
mandated by
clause 4.7

 0..1 Geographic location that
includes the operation spaces
of all entities as specified by
their respective
operationSpace GeoProperty
for which the Context Source
may be able to provide
information

expiresAt String DateTime (clause 4.6.3) 0..1 Provides an expiration date.
When passed the Context
Source Registration will
become invalid and the
Context Source might no
longer be available

endpoint String It shall be a dereferenceable
URI

1 Endpoint expressed as
dereferenceable URI through
which the Context Source
exposes its NGSI-LD interface

contextSourceInfo KeyValuePair[] 0..1 Generic {key, value} array to
convey optional information to
provide when contacting the
registered Context Source

scope String or
String[]

Scope(s) 0..1 Scopes (see clause 4.18) for
which the Context Source has
Entities

mode String It shall be one of:
"inclusive", "exclusive",
"redirect" or "auxiliary"

The mode is assumed to be
"inclusive" if not explicitly
defined

0..1 The definition of the mode of
distributed operation (see
clause 4.3.6) supported by the
registered Context Source

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)82

Name Data Type Restriction Cardinality Description
operations String[] Entries are limited to the

named API operations and
named operation groups (see
clause 4.20)

0..1 The definition limited subset of
API operations supported by
the registered Context Source

If undefined, the default set of
operations is "federationOps"
(see clause 4.20)

refreshRate String String representing a duration
in ISO 8601 format [17]

0..1 An indication of the likely
period of time to elapse
between updates at this
registered endpoint.

Brokers may optionally use
this information to help
implement caching.

management Registration
Management
Info

See data type definition in
clause 5.2.34

0..1 Holds additional optional
registration management
information that can be used to
limit unnecessary distributed
operation requests.

<CSource Property
Name>

Any JSON value
as defined by
IETF
RFC 8259 [6]

 0..N Each Context Source Property
pertains to a characteristic of
the Context Source the
Context Source Registration
describes

The members (defined by table 5.2.9-2) of the CSourceRegistration data structure are also defined. They are read-only
and shall be automatically generated by NGSI-LD implementations. In the event that they are provided (in update or
create operations) NGSI-LD implementations shall ignore them.

Table 5.2.9-2: Additional members of the CSourceRegistration data type

Name Data Type Restrictions Cardinality Description
status string Allowed values:

"ok"
"failed"

0..1 Read-only., Status of the
Registration. It shall be "ok" if the
last attempt to perform a
distributed operation succeeded.
It shall be "failed" if the last
attempt to perform a distributed
operation failed.

timesSent Number 0 or greater value 0..1 Number of times that the
registration triggered a
distributed operation, including
failed attempts.

timesFailed Number 0 or greater value 0..1 Number of times that the
registration triggered a
distributed operation request that
failed.

lastSuccess string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the
instant when the last successfully
distributed operation was sent.
Created on first successful
operation.

lastFailure string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the
instant when the last distributed
operation resulting in a failure
(for instance, in the HTTP
binding, an HTTP response code
other than 2xx) was returned.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)83

5.2.10 RegistrationInfo

The supported JSON members shall follow the requirements provided in table 5.2.10-1.

Table 5.2.10-1: RegistrationInfo data type definition

Name Data Type Restrictions Cardinality Description
entities EntityInfo [] See data type definition in

clause 5.2.8. Empty array
(0 length) is not allowed.
Restrictions in clause 4.3.6
apply as well

0..1 Describes the entities for which the
CSource may be able to provide
information

propertyNames string [] Property Names as short-
hand strings. Empty array is
not allowed. Restrictions in
clause 4.3.6 apply as well

0..1 Describes the Properties that the
CSource may be able to provide

relationshipNames string [] Relationship
Names as short-hand
strings. Empty array is not
allowed. Restrictions in
clause 4.3.6 apply as well

0..1 Describes the Relationships that the
CSource may be able to provide

At least one element of RegistrationInfo shall be present.

5.2.11 TimeInterval

The supported JSON members shall follow the requirements provided in table 5.2.11-1.

Table 5.2.11-1: TimeInterval data type definition

Name Data Type Restrictions Cardinality Description
startAt string DateTime (clause 4.6.3) 1 Describes the start of the time interval
endAt string DateTime (clause 4.6.3) 0..1 Describes the end of the time interval. If not present

the interval is open

5.2.12 Subscription

This datatype represents a Context Subscription.

The supported JSON members shall follow the requirements provided in table 5.2.12-1.

Table 5.2.12-1: Subscription data type definition

Name Data Type Restrictions Cardinality Description
id String Valid URI 0..1 Subscription identifier (JSON-LD

@id). At creation time, If it is not
provided, it will be assigned during
subscription process and returned to
client
It cannot be later modified in update
operations

type String It shall be equal to
"Subscription"

1 JSON-LD @type

subscriptionName String 0..1 A (short) name given to this
Subscription

description String 0..1 Subscription description
entities EntitySelector[] See data type definition

in clause 5.2.33. Empty
array (0 length) is not
allowed

0..1 Entities subscribed

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)84

Name Data Type Restrictions Cardinality Description
watchedAttributes String[] Attribute Name as

short-hand string.
if timeInterval is present
it shall not appear (0
cardinality). Empty array
(0 length) is not allowed

0..1 Watched Attributes (Properties or
Relationships). If not defined it
means any Attribute

notificationTrigger String[] Valid notification triggers
are entityCreated,
entityUpdated,
entityDeleted,
attributeCreated,
attributeUpdated,
attributeDeleted

0..1 The notification triggers listed
indicate what kind of changes shall
trigger a notification. If not present,
the default is the combination
attributeCreated and
attributeUpdated. entityUpdated is
equivalent to the combination
attributeCreated, attributeUpdated
and attributeDeleted

timeInterval Number Greater than 0
if watchedAttributes is
present it shall not
appear (0 cardinality)

0..1 Indicates that a notification shall be
delivered periodically regardless of
attribute changes. Actually, when the
time interval (in seconds) specified in
this value field is reached

q String A valid query string as
per clause 4.9

0..1 Query that shall be met by
subscribed entities in order to trigger
the notification

geoQ GeoQuery See data type definition
in clause 5.2.13

0..1 Geoquery that shall be met by
subscribed entities in order to trigger
the notification

csf String A valid query string as
per clause 4.9

0..1 Context source filter that shall be met
by Context Source Registrations
describing Context Sources to be
used for Entity Subscriptions

isActive Boolean true by default 0..1 Allows clients to temporarily pause
the subscription by making it
inactive. true indicates that the
Subscription is under operation. false
indicates that the subscription is
paused and notifications shall not be
delivered

notification NotificationParams See data type definition
in clause 5.2.14

1 Notification details

expiresAt String DateTime (see
clause 4.6.3)

0..1 Expiration date for the subscription

throttling Number Greater than 0. If
timeInterval is present it
shall not appear (0
cardinality)

0..1 Minimal period of time in seconds
which shall elapse between two
consecutive notifications

temporalQ TemporalQuery See data type definition
in clause 5.2.21

0..1 Temporal Query to be used only in
Context Registration Subscriptions
for matching Context Source
Registrations of Context Sources
providing temporal information

scopeQ String See clause 4.19 0..1 Scope query
lang String A natural language filter

in the form of a IETF
RFC 5646 [28] language
code

0..1 Language filter to be applied to the
query (clause 4.15)

jsonldContext String Dereferenceable URI The dereferenceable URI of the
JSON-LD @context to be used when
sending a notification resulting from
the subscription. If not provided, the
@context used for the subscription
shall be used as a default

At least one of (a) entities or (b) watchedAttributes shall be present.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)85

The members (defined by table 5.2.12-2) of the Subscription data structure are also defined. They are read-only and
shall be automatically generated by NGSI-LD implementations. They shall not be provided by Context Subscribers. In
the event that they are provided (in update or create operations) NGSI-LD implementations shall ignore them.

Table 5.2.12-2: Additional members of the Subscription data type

Name Data Type Restrictions Cardinality Description
status String Allowed values:

"active"
"paused"
"expired"

0..1 Read-only. Provided by the
system when querying the details
of a subscription

5.2.13 GeoQuery

This datatype represents a geoquery used for Subscriptions.

The supported JSON members shall follow the requirements provided in table 5.2.13-1.

Table 5.2.13-1: GeoQuery data type definition

Name Data Type Restrictions Cardinality Description
geometry string A valid GeoJSON [8] geometry

type excepting
GeometryCollection

1 Type of the reference geometry

coordinates JSON Array or string A JSON Array coherent with
the geometry type as per IETF
RFC 7946 [8]

1 Coordinates of the reference
geometry. For the sake of
JSON-LD compatibility It can be
encoded as a string as described
in clause 4.7.1

georel string A valid geo-relationship as
defined by clause 4.10

1 Geo-relationship (near, within,
etc.)

geoproperty string Attribute Name as short-hand
string

0..1 Specifies the GeoProperty to
which the GeoQuery is to be
applied. If not present, the
default GeoProperty is location

5.2.14 NotificationParams

5.2.14.1 NotificationParams data type definition

This datatype represents the parameters that allow to convey the details of a notification.

The supported JSON members shall follow the requirements provided in table 5.2.14.1-1.

Table 5.2.14.1-1: NotificationParams data type definition

Name Data
Type

Restrictions Cardinality Description

attributes string[] Attribute name as short-hand string.
Empty array (0 length) is not allowed

0..1 Attribute Names (Properties or
Relationships) to be included in the
notification payload body. If
undefined it will mean all Attributes

sysAttrs boolean false by default 0..1 If true, the system generated
attributes createdAt and modifiedAt
are included in the response
payload body, in the case of a
deletion also deletedAt

format string It shall be one of: "normalized",
"concise", "keyValues" (or its synonym
"simplified")

0..1 Conveys the representation format
of the entities delivered at
notification time. By default, it will
be in the normalized format

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)86

Name Data
Type

Restrictions Cardinality Description

showChanges boolean false by default 0..1 If true the previous value
(previousValue) of Properties or
languageMap
(previousLanguageMap) of
Language Properties or object
(previousObject) of Relationships is
provided in addition to the current
one. This requires that it exists, i.e.
in case of modifications and
deletions, but not in the case of
creations.
showChanges cannot be true in
case format is "keyValues"

endpoint Endpoint See data type definition in
clause 5.2.15

1 Notification endpoint details

status string Allowed values:
"ok", "failed"

0..1 Status of the Notification. It shall be
"ok" if the last attempt to notify the
subscriber succeeded. It shall be
"failed" if the last attempt to notify
the subscriber failed

5.2.14.2 Additional members

The members (defined by table 5.2.14.2-1) of the NotificationParams data structure are also defined. They are read-
only, and shall be automatically generated by NGSI-LD implementations. They shall not be provided by Context
Subscribers. In the event that they are provided (in update or create operations) NGSI-LD implementations shall ignore
them.

In query or retrieve operations involving Subscriptions, implementations shall generate them as part of their
representation.

Table 5.2.14.2-1: Additional members of the NotificationParams data structure

Name Data Type Restrictions Cardinality Description
timesSent Number Greater than 0 0..1 Number of times that the notification has been

sent. Provided by the system when querying
the details of a subscription

timesFailed Number Greater than 0 0..1 Number of times an unsuccessful response
(or timeout) has been received when notified
the notification. Provided by the system when
querying the details of a subscription

lastNotification string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last notification has been sent. Provided
by the system when querying the details of a
subscription

lastFailure string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last notification resulting in failure (for
instance, in the HTTP binding, an HTTP
response code different than 200) has been
sent. Provided by the system when querying
the details of a subscription

lastSuccess string DateTime (clause 4.6.3) 0..1 Timestamp corresponding to the instant when
the last successful (200 OK response)
notification has been sent. Provided by the
system when querying the details of a
subscription

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)87

5.2.15 Endpoint

This datatype represents the parameters that are required in order to define an endpoint for notifications. This can
include, in addition the endpoint's URI, a generic{key, value} array, named receiverInfo, which contains, in a
generalized form, whatever extra information the broker shall convey to the receiver in order for the broker to
successfully communicate with receiver (e.g. Authorization material), or for the receiver to correctly interpret the
received content (e.g. the Link URL to fetch an @context). Additionally, it can include another generic{key, value}
array, named notifierInfo, which contains the configuration that the broker needs to know in order to correctly set up the
communication channel towards the receiver (e.g. MQTT-Version, MQTT-QoS, in case of MQTT binding, as defined
in clause 7.2).

The supported JSON members shall follow the indications provided in table 5.2.15-1.

Table 5.2.15-1: Endpoint data type definition

Name Data Type Restrictions Cardinality Description
uri String Dereferenceable URI 1 URI which conveys the endpoint

which will receive the notification.
accept String MIME type. It shall be one

of:
"application/json"
"application/ld+json"
"application/geo+json"

0..1 Intended to convey the MIME type
of the notification payload body
(JSON, or JSON-LD, or
GeoJSON). If not present, default
is "application/json".

timeout Number Greater than 0 0..1 Maximum period of time in
milliseconds which may elapse
before a notification is assumed to
have failed. The NGSI-LD system
can override this value. This only
applies if the binding protocol
always returns a response.

cooldown Number Greater than 0 0..1 Once a failure has occurred,
minimum period of time in
milliseconds which shall elapse
before attempting to make a
subsequent notification to the
same endpoint after failure.

If requests are received before the
cooldown period has expired, no
notification is sent.

receiverInfo KeyValuePair[] 0..1 Generic {key, value} array to
convey optional information to the
receiver.

notifierInfo KeyValuePair[] 0..1 Generic {key, value} array to set
up the communication channel.

5.2.16 BatchOperationResult

This datatype represents the result of a batch operation.

The supported JSON members shall follow the indications provided in table 5.2.16-1.

Table 5.2.16-1: BatchOperationResult data type definition

Name Data Type Restrictions Cardinality Description
success String[] Array of valid URIs 1 Array of Entity Ids corresponding to the Entities

that were successfully treated by the concerned
operation. Empty Array if no Entity was
successfully treated

errors BatchEntityError[] 1 One array item per Entity in error. Empty Array
if no errors happened

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)88

5.2.17 BatchEntityError

This datatype represents an error raised (associated to a particular Entity) during the execution of a batch or distributed
operation.

The supported JSON members shall follow the indications provided in table 5.2.17-1.

Table 5.2.17-1: BatchEntityError data type definition

Name Data Type Restrictions Cardinality Description
entityId String Valid URI 1 Entity Id corresponding to the Entity in error
registrationId String Valid URI 0..1 Registration Id corresponding to a failed

distributed operation (optional)
error ProblemDetails

(see IETF
RFC 7807 [10])

 1 One instance per Entity in error

5.2.18 UpdateResult

This datatype represents the result of Attribute update (append or update) operations in the NGSI-LD API regardless of
whether local or distributed.

The supported JSON members shall follow the indications provided in table 5.2.18-1.

Table 5.2.18-1: UpdateResult data type definition

Name Data Type Restrictions Cardinality Description
updated String[] 1 List of Attributes (represented by their Name)

that were appended or updated.
notUpdated NotUpdatedDetails[] See clause 5.2.19 1 List which contains the Attributes (represented

by their Name) that were not updated, together
with the reason for not being updated.

5.2.19 NotUpdatedDetails

This datatype represents additional information provided by an implementation when an Attribute update did not
happen. See also clause 5.2.18.

The supported JSON members shall follow the indications provided in table 5.2.19-1.

Table 5.2.19-1: NotUpdatedDetails data type definition

Name Data Type Restrictions Cardinality Description
attributeName String 1 Attribute name
reason String 1 Reason for not having changed such Attribute
registrationId String Valid URI 0..1 Registration Id corresponding to a failed

distributed operation (optional)

5.2.20 EntityTemporal

This is the same data type as mandated by clause 5.2.4 with the only deviation that the representation of Properties and
Relationships shall be the temporal one (arrays of (Property or Relationship) instances represented by JSON-LD
objects) as defined in clauses 4.5.7 and 4.5.8. Alternatively it is possible to specify the EntityTemporal by using the
"Simplified Temporal Representation of an Entity", as defined in clause 4.5.9.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)89

5.2.21 TemporalQuery

This datatype represents a temporal query.

The supported JSON members shall follow the requirements provided in table 5.2.21-1.

Table 5.2.21-1: TemporalQuery data type definition

Name Data Type Restrictions Cardinality Description
timerel String Allowed values: "before",

"after" and "between"
1 Represents the

temporal relationship
as defined by
clause 4.11

timeAt String representing the timeAt
parameter as defined by
clause 4.11

It shall be a DateTime 1

endTimeAt String representing the
endTimeAt parameter as defined
by clause 4.11

It shall be a DateTime.
Cardinality shall be 1 if timerel
is equal to "between"

0..1

timeproperty String representing a Temporal
Property name

Allowed values: "observedAt",
"createdAt", "modifiedAt" and
"deletedAt". If not specified,
the default is "observedAt".
(See clause 4.8)

0..1

5.2.22 KeyValuePair

This datatype represents the optional information that is required when contacting an endpoint for notifications.

The supported members shall follow the indications provided in table 5.2.22-1. They are intended to represent a
key/value pair.

Example optional information includes additional HTTP Headers such as:

• The HTTP Authentication Header.

• The HTTP Prefer Header (IETF RFC 7240 [26]) used when notifying the GeoJSON Endpoint.

Table 5.2.22-1: KeyValuePair data type definition

Name Data Type Restrictions Cardinality Description
key String Binding-dependent 1 The key of the key/value pair
value String Binding-dependent 1 The value of the key/value pair

5.2.23 Query

This datatype represents the information that is required in order to convey a query when a "Query Entities" operation
or a "Query Temporal Evolution of Entities" operation is to be performed (as per clauses 5.7.2 and 5.7.4, respectively).

The supported JSON members shall follow the requirements provided in table 5.2.23-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)90

Table 5.2.23-1: Query data type definition

Name Data Type Restrictions Cardinality Description
type string It shall be equal to

"Query"
1 JSON-LD @type

entities EntitySelector[] See data type definition
in clause 5.2.33. Empty
array (0 length) is not
allowed

0..1 Entity ids, id pattern and Entity types
that shall be matched by Entities in
order to be retrieved

attrs string[] Attribute Name as
short-hand string.
Empty array (0 length) is
not allowed

0..1 List of Attributes that shall be
matched by Entities in order to be
retrieved. If not present all Attributes
will be retrieved

q string A valid query string as
per clause 4.9

0..1 Query that shall be matched by
Entities in order to be retrieved

geoQ GeoQuery See data type definition
in clause 5.2.13

0..1 Geoquery that shall be matched by
Entities in order be retrieved

csf string A valid query string as
per clause 4.9

0..1 Context source filter that shall be
matched by Context Source
Registrations describing Context
Sources to be used for retrieving
Entities

temporalQ TemporalQuery See data type definition
in clause 5.2.21

0..1 Temporal Query to be present only
for "Query Temporal Evolution of
Entities" operation (clause 5.7.4)

scopeQ String See clause 4.19 0..1 Scope query
lang string A natural language filter

in the form of a IETF
RFC 5646 [28] language
code

0..1 Language filter to be applied to the
query (clause 4.15)

5.2.24 EntityTypeList

This type represents the data needed to define the entity type list representation as mandated by clause 4.5.10.

The supported JSON members shall follow the requirements provided in table 5.2.24-1.

Table 5.2.24-1: NGSI-LD EntityTypeList data type definition

Name Data Type Restriction Cardinality Description
id String Valid URI 1 URI that is unique within the system

scope. Identifier for the entity type list
type String It shall be equal to "EntityTypeList" 1 JSON-LD @type
typeList String[] 1 List containing the entity type names

5.2.25 EntityType

This type represents the data needed to define the elements of the detailed entity type list representation as mandated by
clause 4.5.11.

The supported JSON members shall follow the requirements provided in table 5.2.25-1.

Table 5.2.25-1: NGSI-LD EntityType data type definition

Name Data Type Restriction Cardinality Description
id String Valid URI 1 Fully Qualified Name (FQN) of the

entity type being described
type String It shall be equal to "EntityType" 1 JSON-LD @type
typeName String 1 Name of the entity type, short name if

contained in @context
attributeNames String[] 1 List containing the names of attributes

that instances of the entity type can
have

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)91

5.2.26 EntityTypeInfo

This type represents the data needed to define the detailed entity type information representation as mandated by
clause 4.5.12.

The supported JSON members shall follow the requirements provided in table 5.2.26-1.

Table 5.2.26-1: NGSI-LD EntityTypeInfo data type definition

Name Data Type Restriction Cardinality Description
id String Valid URI 1 Fully Qualified Name (FQN) of the entity

type being described
type String It shall be equal to

"EntityTypeInfo"
1 JSON-LD @type

typeName String 1 Name of the entity type, short name if
contained in @context

entityCount Number Unsigned integer 1 Number of entity instances of this entity
type

attributeDetails Attribute[] See data type definition in
clause 5.2.28. Attribute with only
the elements "id", "type",
"attributeName" and
"attributeTypes"

1 List of attributes that entity instances
with the specified entity type can have

5.2.27 AttributeList

This type represents the data needed to define the attribute list representation as mandated by clause 4.5.13.

The supported JSON members shall follow the requirements provided in table 5.2.27-1.

Table 5.2.27-1: NGSI-LD AttributeList data type definition

Name Data Type Restriction Cardinality Description
id String Valid URI 1 URI that is unique within the

system scope. Identifier for the
attribute list

type String It shall be equal to "AttributeList" 1 JSON-LD @type
attributeList String[] 1 List containing the attribute names

5.2.28 Attribute

This type represents the data needed to define the attribute information needed as:

• part of the entity type information representation as mandated by clause 4.5.12;

• the detailed attribute list representation as mandated by clause 4.5.14;

• the attribute information representation as mandated by clause 4.5.15.

The supported JSON members shall follow the requirements provided in table 5.2.28-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)92

Table 5.2.28-1: NGSI-LD Attribute data type definition

Name Data Type Restriction Cardinality Description
id String Valid URI 1 Full URI of attribute name
type String It shall be equal to

"Attribute"
1 JSON-LD @type

attributeName String 1 Name of the attribute, short name if
contained in @context

attributeCount Number Unsigned integer 0..1 Number of attribute instances with this
attribute name

attributeTypes String[] 0..1 List of attribute types (e.g. Property,
Relationship, GeoProperty) for which
entity instances exist, which contain an
attribute with this name

typeNames String[] 0..1 List of entity type names for which entity
instances exist containing attributes that
have the respective name

5.2.29 Feature

This data type represents a spatially bounded Entity in GeoJSON format, as mandated by IETF RFC 7946 [8]. The
supported JSON members shall follow the requirements provided in table 5.2.29-1.

Table 5.2.29-1: Feature data type definition

Name Data Type Restriction Cardinality Description
id String Valid URI 1 Entity id
type String It shall be equal to "Feature" 1 GeoJSON Type
geometry GeoJSON Object The value field from the

matching GeoProperty (as
specified in clause 4.5.16) or
null

1 Null if no matching GeoProperty

properties FeatureProperties See data type definition 1 List of attributes as mandated by
clause 5.2.31

@context URI, JSON Object,
or JSON Array

See [2], section 5.1 0..1 JSON-LD @context. This field is only
present if requested in the payload
by the HTTP Prefer Header (IETF
RFC 7240 [26])

5.2.30 FeatureCollection

This data type represents a list of spatially bounded Entities in GeoJSON format, as mandated by IETF RFC 7946 [8].
The supported JSON members shall follow the requirements provided in table 5.2.30-1.

Table 5.2.30-1: FeatureCollection data type definition

Name Data Type Restriction Cardinality Description
type String It shall be equal to

"FeatureCollection"
1 GeoJSON Type

features Feature[] See data type definition 1..N In the case that no matches are found,
"features" will be an empty array

@context URI, JSON
Object, or JSON
Array

See [2], section 5.1 0..1 JSON-LD @context. This field is only
present if requested in the payload by
the HTTP Prefer Header (IETF
RFC 7240 [26])

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)93

5.2.31 FeatureProperties

This data type represents the type and the associated attributes (Properties and Relationships) of an Entity in GeoJSON
format.

Table 5.2.31-1: NGSI-LD Entity data type definition

Name Data Type Restriction Cardinality Description
type String or

String[]
Entity Type 1 Entity Type (or JSON array, in

case of Entities with multiple
Entity Types). Both short hand
string (type name) or URI are
allowed.

<Property Name> Property or
Property[]

See data type definition 0..N Property as mandated by
clause 4.5.1. For each Property
identified by the same Property
Name, there can be one or more
instances.

<Relationship Name> Relationship or
Relationship []

See data type definition 0..N Relationship as mandated by
clause 4.5.2. For each
Relationship identified by the
same Relationship Name, there
can be one or more instances.

5.2.32 LanguageProperty

This type represents the data needed to define a LanguageProperty as mandated by clause 4.5.18. Note that in case of
concise representation, the type can be omitted (see clause 4.5.18.3).

The supported JSON members shall follow the requirements provided in table 5.2.32-1.

Table 5.2.32-1: NGSI-LD LanguageProperty data type definition

Name Data Type Restriction Cardinality Description
type string It shall be equal to

"LanguageProperty"
1 Node type

languageMap JSON object A set of key-value pairs whose
keys shall be strings
representing IETF
RFC 5646 [28] language codes
and whose values shall be
JSON strings or arrays of
JSON strings

1 String Property Values
defined in multiple natural
languages

previousLanguageMap JSON object A set of key-value pairs whose
keys shall be strings
representing IETF
RFC 5646 [28] language codes
and whose values shall be
JSON strings.
Only used in Notifications, if the
showChanges option is
explicitly requested

0..1 Previous Language
Property's languageMap

observedAt String DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
datasetId String Valid URI 0..1 It allows identifying a set or

group of property values
<Property Name> Property or

Property[]
See datatype definitions in
clauses 5.2.5, 5.2.7 and 5.2.32

0..N Properties of Property. For
each Property identified by
the same Property Name,
there can be one or more
instances

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)94

Name Data Type Restriction Cardinality Description
<Relationship Name> Relationship or

Relationship[]
See datatype definition in
clause 5.2.6

0..N Relationships of Property.
For each Relationship
identified by the same
Relationship Name, there
can be one or more
instances

5.2.33 EntitySelector

This type selects which entity or group of entities are queried or subscribed to by Context Consumers. Entities can be
specified by their id, Entity Types or group of Entity ids (as a regular expression pattern mandated by
IEEE POSIX 1003.2™ [11]).

The JSON members shall follow the indications provided in table 5.2.33-1. id takes precedence over idPattern.

Table 5.2.33-1: EntitySelector data type definition

Name Data Type Restrictions Cardinality Description
id String Valid URI 0..1 Entity identifier
idPattern String Regular expression as per

IEEE POSIX 1003.2™ [11]
0..1 A regular expression which denotes a

pattern that shall be matched by the
provided or subscribed Entities

type String A valid type selection string as
per clause 4.17

1 Selector of Entity Type(s)

5.2.34 RegistrationManagementInfo

This type represents the data to alter the default behaviour of a Context Broker when making a distributed operation
request to a registered Context Source. The supported JSON members shall follow the indications provided in
table 5.2.34-1. Brokers may override these recommendations.

Table 5.2.34-1: RegistrationManagementInfo data type definition

Name Data Type Restrictions Cardinality Description
localOnly Boolean 0..1 If localOnly=true then distributed

operations associated to this Context
Source Registration will act only on data
held directly by the registered Context
Source itself (see clause 4.3.6.4).

cacheDuration String String representing
a duration in
ISO 8601
format [17]

0..1 Minimal period of time which shall
elapse between two consecutive context
information consumption operations (as
defined in clause 5.7) related to the
same context data will occur.

If the cacheDuration latency period has
not been reached, a cached value for
the entity or its attributes shall be
returned where available.

timeout Number Greater than 0 0..1 Maximum period of time in milliseconds
which may elapse before a forwarded
request is assumed to have failed.

cooldown Number Greater than 0 0..1 Minimum period of time in milliseconds
which shall elapse before attempting to
make a subsequent forwarded request
to the same endpoint after failure.

If requests are received before the
cooldown period has expired, a timeout
error response for the registration is
automatically returned.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)95

5.2.35 VocabularyProperty

This type represents the data needed to define a VocabularyProperty as mandated by clause 4.5.20.In case of concise
representation, the type can be omitted (see clause 4.5.20.3).

The supported JSON members shall follow the requirements provided in table 5.2.35-1.

Table 5.2.35-1: NGSI-LD VocabularyProperty data type definition

Name Data Type Restriction Cardinality Description
type String It shall be equal to

"VocabularyProperty"
1 Node type

vocab String or string[] 1 String Values which shall be
type coerced to URIs based
on the supplied @context

previousVocab String or String[] Only used in Notifications, if
the showChanges option is
explicitly requested

0..1 Previous Vocabulary
Property's vocab

observedAt String DateTime (clause 4.6.3) 0..1 Timestamp. See clause 4.8
datasetId String Valid URI 0..1 It allows identifying a set or

group of property values
<Property Name> Property or

Property[]
See datatype definitions in
clauses 5.2.5, 5.2.7 and
5.2.32

0..N Properties of Property. For
each Property identified by
the same Property Name,
there can be one or more
instances

<Relationship Name> Relationship or
Relationship[]

See datatype definition in
clause 5.2.6

0..N Relationships of Property.
For each Relationship
identified by the same
Relationship Name, there
can be one or more
instances

5.3 Notification data types

5.3.1 Notification

This datatype represents the parameters that allow building a notification to be sent to a subscriber. How to build this
notification is detailed in clause 5.8.6.

The supported JSON members shall follow the indications provided in table 5.3.1-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)96

Table 5.3.1-1: Notification data type definition

Name Data Type Restrictions Cardinality Description
id String Valid URI 1 Notification identifier (JSON-LD

@id). It shall be automatically
generated by the implementation.

type String It shall be equal to
"Notification"

1 JSON-LD @type.

subscriptionId String Valid URI 1 Identifier of the subscription that
originated the notification.

notifiedAt String DateTime (clause 4.6.3) 1 Timestamp corresponding to the
instant when the notification was
generated by the system.

data NGSI-LD Entity[]
or
FeatureCollection

 1 The content of the notification as
NGSI-LD Entities.
See clause 5.2.4.

If the notification has been
triggered from a Subscription that
has the notification.
endpoint.accept field set to
application/geo+json then
data is returned as a
FeatureCollection. In this case, if
the
notification.endpoint.rece
iverInfo contains the key
"Prefer" and it is set to the value
"body=json", then the
FeatureCollection will not contain
an @context field.

If endpoint.accept is not set or
holds another value then Entity[] is
returned.

5.3.2 CSourceNotification

This datatype represents the parameters that allow building a Context Source Notification to be sent to a subscriber.
How to build this notification is detailed in clause 5.11.7.

The supported JSON members shall follow the indications provided in table 5.3.2-1.

Table 5.3.2-1: CSourceNotification data type definition

Name Data Type Restrictions Cardinality Description
id String Valid URI 1 CSource notification identifier

(JSON-LD @id)
type String It shall be equal to

"ContextSourceNotification"
1 JSON-LD @type

subscriptionId String Valid URI 1 Identifier of the subscription that
originated the notification

notifiedAt String DateTime (see clause 4.6.3) 1 Timestamp corresponding to the
instant when the notification was
generated by the system

data CSource
Registration[]

 1 The content of the notification as
NGSI-LD CSourceRegistrations.
See clause 5.2.9

triggerReason String TriggerReasonEnumeration (see
clause 5.3.3)

1 Indicates whether the CSources in
the CSourceRegistration(s) in data
are newly matching (initial
notification or creation), have been
updated (but still match) or do not
match any longer

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)97

5.3.3 TriggerReasonEnumeration

The enumeration can take one of the following values:

• "newlyMatching" - describes the case that the notified Context Source Registration(s) newly match(es) the
identified subscription. This value is used in the first notification and whenever a new Context Source
Registration matching the Subscription has been registered, or an existing Context Source Registration that did
not match before has been updated in such a way that it matches now.

• "updated" - describes the case that the notified Context Source Registration that was part of a previous
notification has been updated, but still matches the Subscription.

• "noLongerMatching" - describes the case that the notified Context Source Registration that was part of a
previous notification no longer matches the Subscription, i.e. as a result of an update or because it was deleted.

5.4 NGSI-LD Fragments
When updating NGSI-LD elements (Entities, Attributes, Context Source Registrations or Subscriptions) it is necessary
to have a means of describing a set of modifications to their content.

An NGSI-LD Fragment is a JSON Merge Patch document [16] and [i.10] which describes changes to be made to a
target JSON-LD document using a syntax that closely mimics the document being modified.

An NGSI-LD Fragment is a JSON-LD Object which shall include the following members:

• id (optional for certain bindings where it can be determined from the operation signature). It shall be equal to
the id of the target (mutated) NGSI-LD element. Attribute Fragments do not contain explicit ids.

• type (optional for certain bindings where it can be determined from the operation signature). It shall contain
the Type Name(s) of the target NGSI-LD element.

• A member (following the same data representation and nesting structure) for each new member to be added to
the target NGSI-LD element.

• A member (following the same data representation and nesting structure) for each new member to be modified
in the target NGSI-LD element, which value shall correspond to the new member value to be given.

EXAMPLE 1: The following Subscription Fragment allows the modification of a Subscription by changing its
endpoint's URI:

{
 "id": "urn:ngsi-ld:Subscription:MySubscription",
 "type": "Subscription",
 "endpoint": {
 "uri": "http://example.org/newNotificationEndPoint"
 }
}

• A member (following the same data representation and nesting structure) with value equal to an NGSI-LD
Null shall cause for the member to be removed from the target NGSI-LD element.

EXAMPLE 2: The following NGSI-LD Fragment allows the modification of an Entity by changing its

"batteryLevel" Attribute, updating the "observedAt" sub-Attribute, removing the "providedBy"
sub-Attribute and removing the "uncharged" Attribute from the Entity:

{
 "id": "urn:ngsi-ld:TemperatureSensor:001",
 "type": "TemperatureSensor",
 "batteryLevel": {
 "type": "Property",
 "value": 7,
 "observedAt": "2022-03-14T12:51:02.000Z",
 "providedBy": "urn:ngsi-ld:null"
 },
 "uncharged" : {
 "type": "Property",
 "value": "urn:ngsi-ld:null"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)98

 }
}

5.5 Common Behaviours

5.5.1 Introduction

This clause defines common behaviours for the API operations.

When comparing URIs, implementations shall follow the recommendations of IETF RFC 3986 [5], section 6.

5.5.2 Error types

Table 5.5.2-1 details a list of error types defined by NGSI-LD. The particular conditions under which error type shall be
raised are defined when describing each operation supported by the API.

Table 5.5.2-1: Error types in NGSI-LD

Error Type Description
https://uri.etsi.org/ngsi-ld/errors/InvalidRequest The request associated to the operation is syntactically

invalid or includes wrong content
https://uri.etsi.org/ngsi-ld/errors/BadRequestData The request includes input data which does not meet the

requirements of the operation
https://uri.etsi.org/ngsi-ld/errors/AlreadyExists The referred element already exists
https://uri.etsi.org/ngsi-ld/errors/OperationNotSupported The operation is not supported
https://uri.etsi.org/ngsi-ld/errors/ResourceNotFound The referred resource has not been found
https://uri.etsi.org/ngsi-ld/errors/InternalError There has been an error during the operation execution
https://uri.etsi.org/ngsi-ld/errors/TooComplexQuery The query associated to the operation is too complex and

cannot be resolved
https://uri.etsi.org/ngsi-ld/errors/TooManyResults The query associated to the operation is producing so many

results that can exhaust client or server resources. It should
be made more restrictive

https://uri.etsi.org/ngsi-ld/errors/LdContextNotAvailable A remote JSON-LD @context referenced in a request cannot
be retrieved by the NGSI-LD Broker and expansion or
compaction cannot be performed

https://uri.etsi.org/ngsi-ld/errors/NoMultiTenantSupport The NGSI-LD API implementation does not support multiple
tenants

https://uri.etsi.org/ngsi-ld/errors/NonexistentTenant The addressed tenant does not exist

5.5.3 Error response payload body

When reporting errors back to clients, NGSI-LD implementations shall generate a JSON object in accordance with
IETF RFC 7807 [10], section 3.1, including, at least the following terms:

• type: Error type as per clause 5.5.2.

• title: Error title which shall be a short string summarizing the error.

• detail: A detailed message that should convey enough information about the error.

Even though IETF RFC 7807 [10] defines a specific MIME type for error payloads, NGSI-LD implementations shall
use the standard JSON MIME type ("application/json") when reporting errors, so that old clients or existing tools are
not broken.

5.5.4 General NGSI-LD validation

All the operations that take a JSON-LD document as input shall process such JSON-LD document as follows:

• If the request payload body is not a valid JSON document then an error of type InvalidRequest shall be raised.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)99

• If the data included by the JSON-LD document is not syntactically correct, according to the @context or the
API data type definitions, then an error of type BadRequestData shall be raised.

• Any attempt to use "urn:ngsi-ld:null" as a first level member value ("<key>":"urn:ngsi-ld:null"), with the
exception of NGSI-LD Fragments (see clause 5.4) used in partial update and merge operations (as mandated
by clause 5.5.8 and clause 5.5.12) or to represent deleted Properties in concise representation as part of
notifications, shall result in an error of type BadRequestData.

• Any attempt to use "urn:ngsi-ld:null" as the right-hand side of value in a Property, as the right-hand side of
object in a Relationship or to use {"@none": "urn:ngsi-ld:null"} as the right-hand side of languageMap, with
the exception of NGSI-LD Fragments (see clause 5.4) used in update and merge operations (as mandated by
clause 5.5.8 and clause 5.5.12) and the representation of deleted Properties, Relationships or Language
Properties in notifications and the temporal evolution, shall result in an error of type BadRequestData.

• Any attempt to use "urn:ngsi-ld:null" as the value of a key value pair within a JSON object, which is the right-
hand side of the value of a Property, with the exception of NGSI-LD Fragments used in merge operations (see
clause 5.5.12), shall result in an error of type BadRequestData.

5.5.5 Default @context assignment

If the input provided by an API client does not include any @context, then the implementation shall at minimum assign
the Core @context to such an input. In addition, the Context Broker implementation may allow configuring a default
user @context (with default terms), to be used when no user @context is provided. The Core @context shall always
take precedence.

5.5.6 Operation execution

When executing an operation if an unexpected error happens and the operation cannot be completed, implementations
shall raise an error of type InternalError. This includes, as well, situations such as database timeouts, etc.

If the NGSI-LD endpoint is not capable of executing the requested operation, an error of type OperationNotSupported
shall be raised. This may happen in a distributed architecture where a Context Broker might not be able to store Entities
(only to forward queries to Context Sources), and as a result, certain operations such as "Create Entity" might not be
supported.

When a query operation is so complex that cannot be resolved by an NGSI-LD system, implementations shall raise an
error of type TooComplexQuery.

When a query operation is producing so many results that can potentially exhaust client or server resources, or it can be
just impractical to be managed, implementations shall raise an error of type TooManyResults. The threshold conditions
used as criteria to raise such error is up to each implementation.

When a remote JSON-LD @context referenced by an incoming request is not available, implementations shall raise an
error of type LdContextNotAvailable. If the remote JSON-LD @context is invalid, implementations shall raise an error
of type BadRequestData.

5.5.7 Term to URI expansion or compaction

NGSI-LD API operations allow clients to use short-hand strings as non-qualified names, particularly for Property,
Relationship or Type Names and VocabularyProperty values. For instance, an API client can refer to the term "Vehicle"
as a non-qualified type name. When executing API update-related operations, NGSI-LD systems shall expand terms to
URIs, in order to obtain and store Fully Qualified Names. Likewise, when executing query-related operations, NGSI-
LD systems shall compact URIs (Fully Qualified Names) to short terms in order to provide short-hand strings to context
consumers.

The term to URI expansion or compaction shall be performed using a @context as described by the JSON-LD
specification [2] (section 5.1), and in clause 4.4. In the absence of a user @context, the term expansion or
compaction shall be performed according to clause 5.5.5.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)100

For the avoidance of doubt, the @context used to perform compaction or expansion of terms shall be the one provided
by each API call (or the default @context in its absence), and not any other @context which might have been supplied
previously. For instance, when performing "Query Entity" operations (clause 5.7.2), the @context used to perform URI
expansion and compaction shall be the one provided by the request.

In case of HTTP binding via GET (clause 6.4.3.2) of the "Query Entity" operation, this means using the JSON-LD Link
Header as described by the JSON-LD specification [2], section 6.2. In case of HTTP binding via POST
(clause 6.23.3.1), of the "Query Entity" operation, this means giving the @context either via Link Header or within the
payload body, depending on the Content-Type Header being application/json or application/ld+json, respectively.

It is important to warn users that updating a @context could lead to behaviour that might be perceived as inconsistent.
If, for instance, a fully qualified name that qualified a given short-hand name is changed, from that moment onwards,
the short-hand name is referencing a different Attribute. This will effectively change the results of queries that use the
given short name, possibly not giving back anymore the expected set of results.

Moreover, this user @context shall not:

• Contain JSON-LD Scoped Contexts (see [2], section 4.1.8).

• Be embedded into NGSI-LD Attributes, i.e. there cannot be parts of the user @context other than at the top
level of the NGSI-LD document.

Parts of user @context that are not following the two points above should result in an error of type BadRequestData,
because JSON-LD Scoped Contexts and nested embedded @context could be used to modify terms defined in the Core
@context or to reshape NGSI-LD Elements during the expansion of terms.

As the Core @context is protected and cannot be overridden, when performing term to URI expansion or compaction,
implementations shall always consider the Core @context as having absolute precedence, regardless of the position
of the Core @context in the @context array of elements. Nonetheless, NGSI-LD data providers may use appropriate
term prefixing to ensure that a proper term to URI expansion or compaction is performed.

At compaction time, in the event that no matching term is found in the current @context, implementations shall render
Fully Qualified Names.

EXAMPLE: An entity of type "Vehicle" bound to a certain @context, C, will match a query by "Vehicle" type
if and only if the supplied query @context, Q, maps the term "Vehicle" to the same URI as C.

5.5.8 Partial Update Patch Behaviour

The Partial Update Patch procedure modifies an existing NGSI-LD element by overwriting the data at the Attribute
level, replacing it with the data provided in the NGSI-LD Fragment.

When updating NGSI-LD elements (Entities, Context Source Registrations or Context Subscriptions) using NGSI-LD
Fragments, implementations shall determine the exact set of changes being requested by comparing the content of the
provided Fragment (patch) against the current content (a JSON-LD object) of the target element.

With respect to update operations, implementations shall perform an algorithm equivalent to the one described below
(adapted from IETF RFC 7396 [16]), in order to observe the name to URI expansion rules and the JSON-LD null
processing):

• For each member of the Fragment perform the term to URI expansion.

• If the provided Fragment (a JSON Merge Patch document) contains members that do not appear within the
target (their URIs do not match), those members are added to the target.

• For each member of the Fragment contained by the target, the target member value is replaced by the value
given in the Fragment. In the case of a member representing a reified Property or Relationship including a
datasetId, such member is only replaced if the datasetId is the same, otherwise the member of the Fragment is
added as a new instance to the target. If no datasetId is present, the default Attribute instance is targeted and
replaced if present and otherwise added. In case of a member type (of an entity) in Entity Fragments, all
included Entity Types are added, if they are not already contained in the type member of the target.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)101

• For each member of the Fragment, whose value is an NGSI-LD Null, contained by the target, the target
member is deleted. In the case of deleting a specific Attribute instance with a datasetId, the handling shall be
in accordance with the description found in clause 5.6.5. A datasetId cannot be deleted by setting it to the
value "urn:ngsi-ld:null".

EXAMPLE 1: Given an Entity containing the following Property:

{
 "temperature": {
 "type" : "Property",
 "value" : 25,
 "unitCode": "CEL"
 "observedAt": "2022-03-14T01:59:26.535Z"
 }
}

 Applying partial attribute update operation (as defined in clause 5.6.4) at the Attribute level
onto the "temperature" Attribute, with the following Attribute Fragment payload:

{
 "type" : "Property",
 "value" : 100,
 "observedAt": "2022-03-14T13:00:00.000Z"
}

 Results in an overwrite of the "value" and "observedAt" sub-Attributes, leaving the "unitCode"
sub-Attribute untouched as shown:

{
 "temperature": {
 "type" : "Property",
 "value" : 100,
 "unitCode": "CEL"
 "observedAt": "2022-03-14T13:00:00.000Z"
 }
}

EXAMPLE 2: Given an Entity containing the following Property:

{
 "temperature": {
 "type" : "Property",
 "value" : 25,
 "unitCode": "CEL"
 "observedAt": "2022-03-14T01:59:26.535Z"
 }
}

 Applying an update attributes operation (as defined in clause 5.6.2) onto the Entity as a whole
with the following Entity Fragment payload:

{
 "temperature": {
 "type" : "Property",
 "value" : 100,
 "observedAt": "2022-03-14T13:00:00.000Z"
 }
}

 Results in an overwrite of the whole "temperature" Attribute – other Attributes would remain
untouched. The result is that the "value" and "observedAt" sub-Attributes are updated and the
"unitCode" sub-Attribute is removed as shown:

{
 "temperature": {
 "type" : "Property",
 "value" : 100,
 "observedAt": "2022-03-14T13:00:00.000Z"
 }
}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)102

EXAMPLE 3: Given an Entity containing the following Property:

{
 "temperature": {
 "type" : "Property",
 "value" : 25,
 "unitCode": "CEL"
 "observedAt": "2022-03-14T01:59:26.535Z"
 }
}

 Applying an update attributes operation (as defined in clause 5.6.2) onto the Entity as a whole,
with the following Entity Fragment payload:

{
 "temperature": {
 "type" : "Property",
 "value" : "urn:ngsi-ld:null"
 }
}

 Results in the deletion of the whole "temperature" Attribute – all other Attributes remain
untouched.

5.5.9 Pagination Behaviour

When resolving NGSI-LD Query operations, NGSI-LD Systems shall exhibit the behaviour described by the present
clause:

• Let Md be equal to the default maximum number of NGSI-LD Elements to be retrieved by the API during
each query pagination iteration, as defined by the NGSI-LD implementation.

• Let Mc be equal to the maximum number of NGSI-LD Elements to be retrieved as requested by the NGSI-LD
Client. If Mc is undefined then it shall be equal to Md.

• Let L be the maximum number of NGSI-LD Elements to be retrieved by the API during each query pagination
iteration. L shall be equal to Mc.

• During query execution and for each pagination iteration, the query resolution mechanisms of the NGSI-LD
System shall ensure that only up to a maximum of L NGSI-LD Elements are retrieved and returned to the
NGSI-LD client, i.e. the maximum page size per iteration shall not overpass L. Nonetheless, implementations
shall take care of not overpassing a maximum size of response payload body, which, in practice, implies that,
under certain circumstances, the number of Elements retrieved per page can be lower than L.

• After the retrieval of each page (containing at most L NGSI-LD Elements) implementations shall check
whether there are pending NGSI-LD Elements to be retrieved in the context of the current query. If that is the
case, implementations shall flag NGSI-LD Clients of the existence of such NGSI-LD Elements. Ultimately,
the flagging mechanisms used shall depend on each API binding but shall be present as mandated by the
present clause.

• When flagging the existence of additional NGSI-LD Elements (pages) pending to be retrieved, generally,
implementations shall provide NGSI-LD Clients pointers to get access to both the following page of NGSI-LD
Elements and the previous one, according to the current pagination iteration.

• The pointer to the previous page of NGSI-LD Elements shall be included for all pagination iterations
excepting the first one, as, obviously, there will be no previous NGSI-LD Elements.

• When the last page of NGSI-LD Elements is reached, only the pointer to the previous page shall be provided
to NGSI-LD Clients, so that they can detect that no more NGSI-LD Elements are available.

• The pointers to NGSI-LD Elements shall contain all the parameters needed to allow NGSI-LD Clients to
retrieve the next and previous page, without further interactions with the API.

While iterating over a set of pages, there might be changes in the target result set, due to additions or removals of
NGSI-LD Elements occurring in between. Implementations may detect those situations and may warn NGSI-LD Clients
appropriately.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)103

5.5.10 Multi-Tenant Behaviour

If a tenant is specified for an NGSI-LD operation, the operation shall only be applied to information related to the
specified tenant. If no tenant is specified, the operation shall apply to the implicitly existing default tenant. If a tenant is
explicitly specified, but the system implementing the NGSI-LD API does not support multi-tenancy, an error of type
NoMultiTenantSupport should be raised.

In case an operation applies to a tenant, this information shall also be provided in the response to the operation. This
also applies to notifications sent as a result of subscriptions (clauses 5.8 and 5.11).

A tenant is represented in form of a String. How the tenant is specified for an API operation is protocol binding specific.
How tenants are created, is implementation-specific.

One implementation option is to support the implicit creation of tenants. This means that a tenant is implicitly created
when an NGSI-LD operation for creating information targets a new tenant; this is the case for:

• Create Entity (clause 5.6.1).

• Batch Entity Creation (clause 5.6.7).

• Create or Update Temporal Representation of an Entity (clause 5.6.11).

• Create Subscription (clause 5.8.1).

• Register Context Source (clause 5.9.2).

• Create Context Source Registration (clause 5.11.2).

All other NGSI-LD operations, e.g. for retrieving, updating, appending or deleting information that target a non-existing
tenant should raise an error of type NonexistentTenant.

If the system implementing the NGSI-LD API does not support multiple tenants, the attempt to register a Context
Source with tenant information in the Context Source Registration should also result in an error of type
NoMultiTenantSupport.

5.5.11 More than one instance of the same Entity in an Entity array

5.5.11.0 Foreword

The following operations operate on an array of entities (as input payload):

• Batch Entity Creation (clause 5.6.7)

• Batch Entity Creation or Update (Upsert) (clause 5.6.8)

• Batch Entity Update (clause 5.6.9)

• Batch Entity Delete (clause 5.6.10)

• Batch Entity Merge (clause 5.6.20)

It is allowed for such an input Entity array to contain more than one instance of the same entity (those instances have
identical ids).

In order for such a request to be correctly handled, those instances that have the same id are processed by the Broker in
the order they have in the array: the higher the index in the array, the later it will be processed. If the order is altered, the
outcome may be altered.

All Entities and Attributes in the batch will get the same "modifiedAt" timestamp, so it makes sense to distinguish them
via the "observedAt" temporal property.

Implementations shall treat the entity instances as if they had all arrived in separate requests.

The following clauses specify the behaviour in each case.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)104

5.5.11.1 Batch Entity Creation case

The first occurrence of an entity in the input array (the oldest one) is used for the creation of the entity. Any subsequent
instance of the same entity is reported as an error (entity already exists) in the response.

5.5.11.2 Batch Entity Creation or Update (Upsert) case

This operation has two modes of operation, with an optional flag to select between the two. The default behaviour is to
replace any already existing entities, while the optional behaviour is to update already existing entities. Non existing
entities are created in both modes.

If the entity does not yet exist, the first occurrence of an entity is used to create the entity, and subsequent instances of
that same entity are used to either replace (default behaviour) or to update (optional behaviour) the entity. These replace
or update operations shall be done in chronological order.

Only the entity resulting from merging all of the entity instances, in the correct order, is maintained in the current state
(as defined in clause 4.3.1). For temporal evolution (as defined in clause 4.3.1) of Entities, all entity instances shall be
taken into account, in the correct order.

5.5.11.3 Batch Entity Update case

This operation has two modes of operation, with an optional flag to select between the two. The default behaviour is to
replace any already existing attributes of the entities, while the optional behaviour is to preserve already existing
attributes of the entities.

Brokers shall send separate notifications for each individual update, taking throttling into account.

5.5.11.4 Batch Entity Delete case

The Batch Entity Delete operation has as input an array of Entity IDs, for the entities to be deleted. If an Entity ID is
replicated in the array, the first occurrence will delete the entity, while subsequent occurrences of the same Entity ID
will provoke an error in the response (entity does not exist).

5.5.11.5 Batch Entity Merge case

The Batch Entity Merge operation has as input an array of Entity IDs, for the entities to be merged. If an Entity ID is
replicated in the array, these merge operations shall be done in chronological order. Only the entity resulting from
merging all of the entity instances, in the correct order, is maintained in the current state (as defined in clause 4.3.1). For
temporal evolution (as defined in clause 4.3.1) of Entities, all entity instances shall be taken into account, in the correct
order.

5.5.12 Merge Patch Behaviour

The merge patch procedure modifies an existing NGSI-LD element by applying the set of changes found in an NGSI-
LD Fragment data to the target resource. Unlike the partial update patch behaviour (described in clause 5.5.8), which
replaces the complete element on the first level, e.g. a whole Attribute, the procedure described in this clause merges the
provided information with the existing information up to an arbitrary depth, e.g. including going into JSON objects
representing a Property value.

When merging NGSI-LD Entities using NGSI-LD Fragments, implementations shall determine the exact set of changes
being requested by comparing the content of the provided Fragment (patch) against the current content (a JSON-LD
object) of the target element.

With respect to merge operations, implementations shall perform an algorithm equivalent to the one described below
(adapted from IETF RFC 7396 [16], in order to observe the name to URI expansion rules and JSON-LD null
processing):

• For each member of the Fragment perform the term to URI expansion.

• If the provided Fragment (a JSON Merge Patch document) contains members that do not appear within the
target (their URIs do not match), those members are added to the target.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)105

• For each member of the Fragment contained by the target, the target member value is merged with the value
given in the Fragment. NGSI-LD Nulls within the Fragment are given special meaning to indicate the removal
of existing values within the target member value. In the case of a member representing a reified Property or
Relationship including a datasetId, such member is only updated if the datasetId is the same, otherwise the
member of the Fragment is added as a new instance to the target. If no datasetId is present, the default
Attribute instance is targeted and merged if present and otherwise added. In case of a member type (of an
Entity) in Entity Fragments, all included Entity Types are added, if they are not already contained in the type
member of the target.

• For each member of the Fragment, whose value is an NGSI-LD Null, contained by the target, the target
member is removed. In the case of deleting a specific Attribute instance with a datasetId, the handling shall be
according to the description in clause 5.6.5. A datasetId cannot be deleted by setting it to the value "urn:ngsi-
ld:null".

EXAMPLE 1: Given an Entity containing the following Property:

{
 "temperature": {
 "type" : "Property",
 "value" : 25,
 "unitCode": "CEL"
 "observedAt": "2022-03-14T01:59:26.535Z"
 }
}

 Applying a merge entity operation (as defined in clause 5.6.17) onto the Entity as a whole, with
the following Entity Fragment payload:

{
 "temperature": {
 "type" : "Property",
 "value" : 100,
 "observedAt": "2022-03-14T13:00:00.000Z"
 }
}

 Results in the update of the "value" and "observedAt" sub-Attributes and leaves the "unitCode"
sub-Attribute untouched, as shown:

{
 "temperature": {
 "type" : "Property",
 "value" : 100,
 "unitCode": "CEL",
 "observedAt": "2022-03-14T13:00:00.000Z"
 }
}

EXAMPLE 2: Given an Entity containing the following Property:

{
 "address": {
 "type" : "Property",
 "value" : {
 "street": "Straße des 17. Juni",
 "city": "Berlin",
 "country": "Germany"
 }
 }
}

 Applying a merge entity operation (as defined in clause 5.6.17) onto the Entity as a whole with
the following Entity Fragment payload:

{
 "address": {
 "type" : "Property",
 "value" : {
 "street": "Pariser Platz",
 "country": "urn:ngsi-ld:null"
 }
 }
}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)106

 Results in the updating of the "address" Attribute value applying the JSON Merge Patch
processing rules as defined in IETF RFC 7396 [16], updating "street" and removing "country"
resulting as shown:

{
 "address": {
 "type" : "Property",
 "value": {
 "street": "Pariser Platz",
 "city": "Berlin"
 }
}

5.6 Context Information Provision

5.6.1 Create Entity

5.6.1.1 Description

This operation allows creating a new NGSI-LD Entity.

5.6.1.2 Use case diagram

A Context Producer can create an Entity within an NGSI-LD system as shown in figure 5.6.1.2-1.

Figure 5.6.1.2-1: Create entity use case

5.6.1.3 Input data

A JSON-LD document representing an NGSI-LD Entity as mandated by clause 5.2.4.

5.6.1.4 Behaviour

Implementations shall exhibit the following behaviour:

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)107

• If an exclusive Context Source Registration already exists for this id (URI), Attributes from matching input
data are forwarded for remote processing:

- For matching Registrations where the Create Entity operation is supported, the operation is forwarded to
the registration endpoint. If the endpoint then raises an error, this shall result in an error in case the
complete create failed or in a partial success if some parts of the create succeeded.

- For matching Registrations where the Create Entity operation is not supported, this shall result in an
error of type Conflict if the complete Create Entity operation failed or in a partial success if some parts of
it succeeded.

 The matching Attributes are then removed from the Fragment and not processed further.

• If any redirect Context Source Registrations exist that match against the input data, that input data is
forwarded for remote processing by one or more matching endpoints:

- For matching Registrations where the Create Entity operation is supported, matching input data is
forwarded. If any such endpoint then raises an error, this shall result in an error in case the complete
create has failed or in a partial success if some parts of the create has succeeded.

- For matching redirect Registrations where the Create Entity operation is not supported, this shall result
in an error of type Conflict if the complete Create Entity operation failed or in a partial success if some
parts of it succeeded.

 The matching Attributes are then removed from the Fragment and not processed further.

• For any inclusive Context Source Registrations that exist and match against the remaining input data, that
input data is also forwarded for remote processing by matching endpoints in case the Create Entity operation is
supported.

• If the Entity already exists locally this shall result in an error of type AlreadyExists, if the complete Create
Entity operation has failed or in a partial success if some parts of it has succeeded.

• Any remaining input data shall be used to create the Entity locally.

5.6.1.5 Output data

None.

5.6.2 Update Attributes

5.6.2.1 Description

This operation allows modifying an existing NGSI-LD Entity by updating already existing Attributes (Properties or
Relationships).

5.6.2.2 Use case diagram

A Context Producer can update Attributes within an NGSI-LD system as shown in figure 5.6.2.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)108

Figure 5.6.2.2-1: Update Attributes use case

5.6.2.3 Input data

• A URI representing the id of the Entity to be updated (target Entity).

• A selector of Entity types as specified by clause 4.17 (optional).

• A JSON-LD document representing an NGSI-LD Entity Fragment.

5.6.2.4 Behaviour

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI), and where specified type, is equivalent to the target entity held locally, and no matching registrations
apply, an error of type ResourceNotFound shall be raised.

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation. NGSI-LD Nulls should be supported by
this operation. If NGSI-LD Nulls are found in the payload, but are not supported, an error of type
OperationNotSupported shall be raised.

• If an exclusive or redirect Context Source Registration matches against the input data, Attributes from
matching input data are forwarded for remote processing. For each matching registration:

- If the Update Attributes operation is supported by the matched registration, matching input data is
forwarded to the Registration endpoint.

- If the Update Attributes operation is not supported by the matched registration, this shall result in an
error of type Conflict if the complete update failed or in a partial success if some parts of the update
succeeded.

 The matching Attributes are then removed from the Fragment and not processed further.

• If there are remaining Attributes, for any inclusive Context Source Registrations that exist and match against
the remaining input data, that input data is also forwarded for remote processing to matching endpoints in case
the Update Attributes operation is supported by the matched registration.

• Then, implementations shall perform a partial update patch operation over the remains of the target Entity as
mandated by clause 5.5.8, using the following procedure:

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)109

• For each Attribute (Property or Relationship) included by the Entity Fragment at root level:

- If the target Entity does not include a matching Attribute (considering term expansion rules as mandated
by clause 5.5.7) then such Attribute shall be appended to the target Entity.

- If the target Entity already includes a matching Attribute (considering term expansion rules as mandated
by clause 5.5.7):

 If a datasetId is present in the Attribute included by the Entity Fragment:

- If an Attribute instance in the target Entity has the same datasetId and the Attribute value is
not NGSI-LD Null, then the existing Attribute instance with the specified datasetId in the
target Entity shall be replaced by the new one supplied.

- If an Attribute instance in the target Entity has the same datasetId and the Attribute value is
NGSI-LD Null then the existing Attribute instance with the specified datasetId in the target
Entity shall be deleted.

- Otherwise the Attribute instance with the specified datasetId shall be appended to the target
Entity.

 If no datasetId is present in the Attribute included by the Entity Fragment, the default Attribute
instance is targeted:

- If the default Attribute instance is present and the Attribute value is not NGSI-LD Null, then
the existing Attribute in the target Entity shall be replaced by the new one supplied.

- If the default Attribute instance is present and the Attribute value is NGSI-LD Null, then the
existing Attribute in the target Entity shall be deleted.

- Otherwise the default Attribute instance shall be appended to the target Entity.

• If type is included in the Fragment and it includes Entity Type Names that are not yet in the target Entity, add
them to the list of Entity Type Names of the target Entity.

• If scope is included in the Fragment and the target entity includes scope, replace the scope by the one included
in the Fragment, otherwise ignore it.

5.6.2.5 Output data

• A status code indicating whether all the new Attributes were updated or only some of them.

• List of Attributes (Properties or Relationships) actually updated.

5.6.3 Append Attributes

5.6.3.1 Description

This operation allows modifying an NGSI-LD Entity by adding new attributes (Properties or Relationships).

5.6.3.2 Use case diagram

A Context Producer can append new Attributes to an existing Entity within an NGSI-LD system as shown in
figure 5.6.3.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)110

Figure 5.6.3.2-1: Append Attributes use case

5.6.3.3 Input data

• A URI representing the id of the E to be modified (target Entity).

• A selector of Entity types as specified by clause 4.17 (optional).

• A JSON-LD document representing an NGSI-LD Entity Fragment.

• An optional flag indicating whether overwriting existing Attributes within the append operation should be
permitted or denied. By default, Attribute overwrites are permitted.

5.6.3.4 Behaviour

The following behaviour shall be exhibited by compliant implementations:

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about this Entity, because there is no existing Entity which id (URI),
and where specified type, is equivalent held locally to the one passed as parameter, and no matching
registrations apply, an error of type ResourceNotFound shall be raised.

• The behaviour defined in clause 5.5.4 on JSON-LD validation.

• If an exclusive or redirect Context Source Registration matches against the input data, the Attributes from
matching input data are forwarded for remote processing. For each matching registration:

- If the Append Attributes operation is supported by the matched registration, matching input data is
forwarded to the Registration endpoint.

- If the Append Attributes operation is not supported by the matched registration, this shall result in an
error of type Conflict if the complete append failed or in a partial success if some parts of the append
succeeded.

 The matching Attributes are then removed from the Fragment and not processed further.

• For any inclusive Context Source Registrations that exist and match against the remaining input data, that
input data is also forwarded for remote processing to matching endpoints in case the Append Attributes
operation is supported.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)111

• Then, implementations shall perform an Append Attributes operation over the remains of the target Entity as
using the following procedure.

• For each Attribute (Property or Relationship) included by the Entity Fragment at root level:

- If a datasetId is present in the Attribute included by the Entity Fragment:

 If no Attribute instance of the same target Entity exists that has the same datasetId, then such an
Attribute shall be appended to the target Entity.

 If an Attribute instance of the same target Entity exists that has the same datasetId:

- If overwrite is allowed, then the existing Attribute with the specified datasetId in the target
Entity shall be replaced by the new one supplied.

- If overwrite is not allowed, the existing Attribute with the specified datasetId in the target
Entity shall be left untouched.

- If no datasetId is present in the Attribute included by the Entity Fragment:

 If no default Attribute instance of the same target Entity exists, then such Attribute shall be
appended to the target Entity.

 If a default Attribute instance of the same target Entity exists:

- If overwrite is allowed, then the existing default Attribute in the target Entity shall be
replaced by the new one supplied.

- If overwrite is not allowed the existing default Attribute in the target Entity shall be left
untouched.

• If type is included in the Fragment and it includes Entity Type Names that are not yet in the target Entity, add
them to the list of Entity Type Names of the target Entity.

• If scope is included in the Fragment and overwrite is allowed, the scope of the target Entity will become the
one included in the Fragment. Otherwise, the Scopes in the Fragment that are not part of the value of scope of
the target Entity will be appended to the value of the scope of the target Entity. If there is more than one
Scope, the value of scope is represented as a JSON array containing all Scopes.

5.6.3.5 Output data

• A status code indicating whether all the new Attributes were appended or only some of them.

• List of Attributes (Properties and/or Relationships) actually appended.

5.6.4 Partial Attribute update

5.6.4.1 Description

This operation allows performing a partial update on an NGSI-LD Entity's Attribute (Property or Relationship).
A partial update only changes the elements provided in an Entity Fragment, leaving the rest as they are. This operation
supports the deletion of sub-Attributes but not the deletion of the whole Attribute itself.

5.6.4.2 Use case diagram

A Context Producer can carry out a partial Attribute update of an Entity within an NGSI-LD System as shown in
figure 5.6.4.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)112

Figure 5.6.4.2-1: Partial Attribute update use case

5.6.4.3 Input data

• Entity Id (URI) of the concerned Entity, the target Entity.

• A selector of Entity types as specified by clause 4.17 (optional).

• Target Attribute (Property or Relationship) to be modified, identified by a name.

• A JSON-LD document representing an NGSI-LD Attribute Fragment.

5.6.4.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute Name is not valid or it is not present, then an error of type BadRequestData shall be
raised.

• The behaviour defined in clause 5.5.4 on JSON-LD validation. NGSI-LD Nulls should be supported by this
operation. If NGSI-LD Nulls are found in the payload, but are not supported, an error of type
OperationNotSupported shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI), and where specified type, is equivalent held locally, and no matching registrations apply, then an error
of type ResourceNotFound shall be raised.

• If an exclusive or redirect Context Source Registration matches against the input data, the Attributes from
matching input data are forwarded for remote processing. For each matching registration:

- If the Partial Attribute update operation is supported by the matched registration, matching input data is
forwarded to the Registration endpoint.

- If the Partial Attribute update operation is not supported by the matched registration an, this shall result
in an error of type Conflict in case the complete partial Attribute update failed, or in a partial success if
some parts of the partial Attribute update succeeded.

 No further processing is required.

• For any inclusive Context Source Registrations that exist and match against the input data, that input data is
also forwarded for remote processing to matching endpoints.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)113

• Apply term expansion as mandated by clause 5.5.7, so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Attribute is scope, replace scope in the target Entity.

• If the target Entity does not contain the target Attribute:

- as a default instance in case no datasetId is present;

- as an instance with the specified datasetId if present;

then an error of type ResourceNotFound shall be raised.

• Perform a partial update patch operation on the target Attribute following the algorithm mandated by
clause 5.5.8. If present in the provided NGSI-LD Entity Fragment, the type of the Attribute has to be the same
as the type of the targeted Attribute fragment, i.e. it is not allowed to change the type of an Attribute.

5.6.4.5 Output data

None.

5.6.5 Delete Attribute

5.6.5.1 Description

This operation allows deleting an NGSI-LD Attribute (Property or Relationship). The Attribute itself and all its children
shall be deleted.

5.6.5.2 Use case diagram

A Context Producer can delete a specific Attribute within an NGSI-LD system as shown in figure 5.6.5.2-1.

Figure 5.6.5.2-1: Delete Attribute use case

5.6.5.3 Input data

• Entity id (URI) of the concerned Entity, the target Entity.

• A selector of Entity types as specified by clause 4.17 (optional).

• Target Attribute (Property or Relationship) to be deleted, identified by a Name.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)114

• An optional parameter identifying the datasetId of the target Attribute instance to be deleted. Otherwise the
default Attribute instance is targeted.

• An optional flag "deleteAll" indicating whether also all target Attribute instances with a datasetId are to be
deleted.

• An optional JSON-LD @context.

5.6.5.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute name is not a valid Name or it is not present, then an error of type BadRequestData shall
be raised.

• If an exclusive or redirect Context Source Registration matches against the input data, the input data is
forwarded. For each matching registration:

- If the Delete Attribute operation is supported by the matched registration, matching input data is
forwarded to the Registration endpoint.

- If the Delete Attribute update operation is not supported by the matched registration, this shall result in
an error of type Conflict in case the complete delete Attribute failed, or in a partial success if some parts
of the delete Attribute succeeded.

No further processing is required.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI), and where specified type, is equivalent held locally, and no matching registrations apply, then an error
of type ResourceNotFound shall be raised.

• For any inclusive Context Source Registrations that exist and match against the input data, that input data is
also forwarded for remote processing to matching endpoints.

• Apply term expansion as mandated by clause 5.5.7 so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute then an error of type ResourceNotFound shall be
raised.

• If the target Attribute is scope, remove the scope Attribute from the target Entity.

• If the deleteAll flag is set, remove all target Attribute instances from the target Entity.

• Otherwise:

- if a datasetId parameter is provided, remove only the target Attribute instance from the given dataset
whose datasetId matches the parameter;

- if no datasetId parameter is provided, remove the default target Attribute instance from the target Entity.

5.6.5.5 Output data

None.

5.6.6 Delete Entity

5.6.6.1 Description

This operation allows deleting an NGSI-LD Entity.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)115

5.6.6.2 Use case diagram

A Context Producer can completely delete an Entity within an NGSI-LD system as shown in figure 5.6.6.2-1.

Figure 5.6.6.2-1: Delete Entity use case

5.6.6.3 Input data

• Entity Id (URI) of the Entity to be deleted, the target Entity.

• A selector of Entity types as specified by clause 4.17 (optional).

5.6.6.4 Behaviour

• If the target Entity id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI), and where specified type, is equivalent held locally, and no matching registrations apply, then an error
of type ResourceNotFound shall be raised.

• If an exclusive or Context Source Registration matches against the id, the request is forwarded for remote
processing. For each matching registration:

- If the Delete Entity operation is supported by the matched registration, matching input data is forwarded
to the Registration endpoint.

- If the Delete Entity update operation is not supported by the matched registration, this shall result in an
error of type Conflict in case the complete delete Entity failed, or in a partial success if some parts of the
delete Entity succeeded.

• If any redirect Context Source Registrations exist that match against the input data, that input data is
forwarded for remote processing by one or more matching endpoints:

- For matching Registrations where the Create Entity operation is supported, matching input data is
forwarded. If any such endpoint then raises an error, the implementation shall return with the error(s)
raised.

- For matching redirect Registrations where the Create Entity operation is not supported, this shall result
in an error of type Conflict in case the complete delete Entity failed, or in a partial success if some parts
of the delete Entity succeeded.

• For any inclusive Context Source Registrations that exist and match against the remaining input data, that
input data is also forwarded for remote processing by matching endpoints.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)116

• The input data shall be used to remove the entity locally if it exists.

5.6.6.5 Output data

None.

5.6.7 Batch Entity Creation

5.6.7.1 Description

This operation allows creating a batch of NGSI-LD Entities.

5.6.7.2 Use case diagram

A Context Producer can create a batch of NGSI-LD Entities within an NGSI-LD system as shown in figure 5.6.7.2-1.

Figure 5.6.7.2-1: Create a batch of Entities use case

5.6.7.3 Input data

• A JSON-LD Array containing one or more JSON-LD documents each one representing an NGSI-LD Entity as
mandated by clause 5.2.4. See clause 5.5.11.1 for information on behaviour when there is more than one
instance of the same entity in the input Array.

5.6.7.4 Behaviour

Implementations shall exhibit the following behaviour:

• If the input Array is empty or contains a null value in any of its items an error of type BadRequestData shall be
raised.

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity successfully created.
S shall be initialized to the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized to the empty array.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)117

• For each Context Source Registration CSR in the Context Registry:

- Let IN be a copy of the original input array.

- Remove from IN all Entities not matched by CSR and remove non-matching Attributes from the
remaining Entities.

- Remove all Attributes from the remaining Entities in IN for which there is a matching exclusive Context
Source Registration, which is not CSR itself.

- Remove all Attributes from the remaining Entities in IN for which there is a matching redirect Context
Source Registration, unless CSR is a redirect Context Source Registration itself.

- If IN is empty, continue with the next Context Source Registration if there is any.

- If the Batch Entity Creation operation is supported by CSR:

 Forward the Batch Entity Creation request with IN as input Array.

 Merge the returned list of Entities successfully created with S.

 Merge the returned list of Entities in Error with E.

- Otherwise, if the Create Entity operation (clause 5.6.1) is supported by CSR:

 For each Entity EN in the input array:

- Forward a Create Entity request for Entity EN.

- Merge any successful result(s) for Entity EN created with S.

- Merge any error result(s) for Entity EN created with E.

- Otherwise:

 In case CSR is an exclusive or redirect Context Source Registration, add an Error of type Conflict
for each Entity in IN to E.

• For each of the NGSI-LD Entities included in the input Array execute the behaviour defined by clause 5.6.1,
but limited to a local operation, as follows:

- If the Entity was successfully created, then add the corresponding Entity Id to the S array.

- If the Entity creation failed, then a new BatchEntityError shall be added to E containing the failed Entity
Id and the related ProblemDetails.

5.6.7.5 Output data

• the list of Entities successfully created (S Array), if all Entities were created correctly; or

• the list of Entities successfully created (S Array) and the list of Entities in error (E Array), if only some or
none of the Entities were created.

5.6.8 Batch Entity Creation or Update (Upsert)

5.6.8.1 Description

This operation allows creating a batch of NGSI-LD Entities, updating each of them if they already existed. In some
database jargon this kind of operation is known as "upsert".

5.6.8.2 Use case diagram

A Context Producer can create or update a batch of Entities within an NGSI-LD system as shown in figure 5.6.8.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)118

Figure 5.6.8.2-1: Upsert a batch of Entities use case

5.6.8.3 Input data

• A JSON-LD Array containing one or more JSON-LD documents each one representing an Entity as mandated
by clause 5.2.4. See clause 5.5.11.2 for information on behaviour when there is more than one instance of the
same entity in the input Array.

• An optional flag indicating the update mode (only applies in case the Entity already exists):

- Replace. All the existing Entity content shall be replaced (default mode).

- Update. Existing Entity content shall be updated.

5.6.8.4 Behaviour

Implementations shall exhibit the following behaviour:

• If the input Array is empty or contains a null value in any of its items, an error of type BadRequestData shall
be raised.

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity which was successfully
processed. S shall be initialized to the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized to the empty array.

• For each Context Source Registration CSR in the Context Registry:

- Let IN be a copy of the original input array.

- Remove from IN all Entities not matched by CSR and remove non-matching Attributes from the
remaining Entities.

- Remove all Attributes from the remaining Entities in IN for which there is a matching exclusive Context
Source Registration, which is not CSR itself.

- Remove all Attributes from the remaining Entities in IN for which there is a matching redirect Context
Source Registration, unless CSR is a redirect Context Source Registration itself.

- If IN is empty, continue with the next Context Source Registration if there is any.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)119

- If the Batch Entity Creation or Update (Upsert) operation is supported by CSR:

 Forward the Batch Entity Creation or Update (Upsert) request with IN as input Array.

 Merge the returned list of Entities successfully created with S.

 Merge the returned list of Entities in Error with E.

- Otherwise, if the Create Entity operation (clause 5.6.1) is supported by CSR:

 For each Entity EN in the input array:

- Forward a Create Entity request for Entity EN.

- If an error of type AlreadyExists is returned:

- If the Replace Entity operation (clause 5.6.18) is supported by CSR and the value of the
update mode flag is Replace or the flag is not set, forward a Replace Entity request for
Entity EN.

- Otherwise, if the Update Attributes operation (clause 5.6.2) is supported by CSR and
the value of the update mode flag is Update, forward an Update Attributes request for
Entity EN.

- Otherwise add an OperationNotSupported Error for Entity EN related to CSR to E.

- Merge any successful result(s) for Entity EN created or updated with S.

- Merge any error result(s) for Entity EN created or updated with E.

- Otherwise, if the Replace Entity operation (clause 5.6.18) is supported by CSR and the value of the
update mode flag is Replace or the flag is not set:

 Forward a Replace Entity request for Entity EN.

 Merge any successful result(s) for Entity EN updated with S.

 Merge any error result(s) for Entity EN updated with E.

- Otherwise, if the Update Attributes operation (clause 5.6.2) is supported by CSR and the value of the
update mode flag is Update:

 Forward an Update Attributes request for Entity EN.

 Merge any successful result(s) for Entity EN updated with S.

 Merge any error result(s) for Entity EN updated with E.

- Otherwise:

 In case CSR is an exclusive or redirect Context Source Registration, add an Error of type Conflict
for each Entity in IN to E.

• For each of the NGSI-LD Entities included in the input Array implementations shall:

- Create the Entity locally if it does not exist (i.e. no Entity with the same Entity Id is present) executing
the behaviour defined by clause 5.6.1, but limited to a local operation.

- If there were an existing Entity with the same Entity Id, it shall be completely replaced by the new Entity
content provided, if the requested update mode is 'replace'.

- If there were an existing Entity with the same Entity Id, the behaviour defined by clause 5.6.3 shall be
executed, but limited to a local operation, if the requested update mode is 'update'.

• If successful, the local creation or update shall be added to S. If while processing an Entity there is any kind of
error or abnormal situation, a BatchEntityError shall be added to E containing the failed Entity Id and the
related ProblemDetails.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)120

5.6.8.5 Output data

• none (if all Entities already existed and are successfully updated); or

• the list of Entities successfully created (S Array), if all Entities not existing prior to this request have been
successfully created and the others have been successfully updated; or

• the list of Entities successfully created or updated (S Array), and the list of Entities in error (E Array), if only
some or none of the Entities have been successfully created or updated.

5.6.9 Batch Entity Update

5.6.9.1 Description

This operation allows updating a batch of NGSI-LD Entities.

5.6.9.2 Use case diagram

A Context Producer can update a batch of Entities within an NGSI-LD system as shown in figure 5.6.9.2-1.

Figure 5.6.9.2-1: Update a batch of Entities use case

5.6.9.3 Input data

• A JSON-LD Array containing one or more JSON-LD documents each one representing an Entity as mandated
by clause 5.2.4. See clause 5.5.11.3 for information on behaviour when there is more than one instance of the
same entity in the input Array.

• An optional flag indicating whether Attributes shall be overwritten or not. By default, Attributes will be
overwritten.

5.6.9.4 Behaviour

Implementations shall exhibit the following behaviour:

• If the input Array is empty or contains a null value in any of its items, an error of type BadRequestData shall
be raised.

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)121

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity which was successfully
processed. S shall be initialized as the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized as the empty array.

• For each Context Source Registration CSR in the Context Registry:

- Let IN be a copy of the original input array.

- Remove from IN all Entities not matched by CSR and remove non-matching Attributes from the
remaining Entities.

- Remove all Attributes from the remaining Entities in IN for which there is a matching exclusive Context
Source Registration, which is not CSR itself.

- Remove all Attributes from the remaining Entities in IN for which there is a matching redirect Context
Source Registration, unless CSR is a redirect Context Source Registration itself.

- Remove all Entities without Attributes from IN.

- If IN is empty, continue with the next Context Source Registration if there is any.

- If the Batch Entity Update operation is supported by CSR:

 Forward the Batch Entity Update request with IN as input Array.

 Merge the returned list of Entities successfully created with S.

 Merge the returned list of Entities in Error with E.

- Otherwise, if the Update Attributes operation (clause 5.6.2) is supported by CSR and Attribute overwrite
is permitted:

 For each Entity EN in the input array:

- Forward an Update Attributes request for Entity EN.

- Merge any successful result(s) for Entity EN updated with S.

- Merge any error result(s) for Entity EN updated with E.

- Otherwise, if the Append Attributes operation (clause 5.6.3) is supported by CSR and Attribute overwrite
is not permitted:

 For each Entity EN in the input array:

- Forward an Append Attributes request for Entity EN with Attribute overwrite disabled.

- Merge any successful result(s) for Entity EN updated with S.

- Merge any error result(s) for Entity EN updated with E.

- Otherwise:

 In case CSR is an exclusive or redirect Context Source Registration, add an Error of type Conflict
for each Entity in IN to E.

• For each of the NGSI-LD Entities included in the input Array execute the behaviour defined by clause 5.6.3,
but limited to a local operation, as follows:

- If the Entity was successfully updated (Attributes appended), then add the corresponding Entity Id to the
S array.

- If the Entity update failed, then a new BatchEntityError shall be added to E containing the failed Entity
Id and the ProblemDetails associated.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)122

5.6.9.5 Output data

• none (if all Entities are successfully updated); or

• the list of Entities successfully updated (S Array), and the list of Entities in error (E Array), if only some or
none of the Entities have been successfully updated.

5.6.10 Batch Entity Delete

5.6.10.1 Description

This operation allows deleting a batch of NGSI-LD Entities.

5.6.10.2 Use case diagram

A Context Producer can delete a batch of Entities within an NGSI-LD system as shown in figure 5.6.10.2-1.

Figure 5.6.10.2-1: Delete a batch of Entities use case

5.6.10.3 Input data

• A JSON-LD Array containing a list of Entity Ids (URIs) that are requested to be deleted. See clause 5.5.11.4
for information on behaviour when there is more than one instance of the same Entity Id in the input Array.

5.6.10.4 Behaviour

Implementations shall exhibit the following behaviour:

• If the input Array is empty or contains a null value in any of its items, an error of type BadRequestData shall
be raised.

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity which was successfully
processed. S shall be initialized to the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized to the empty array.

• For each Context Source Registration CSR in the Context Registry:

- Let IN be a copy of the original input array.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)123

- Remove from IN all Entities not matched by CSR and remove non-matching Attributes from the
remaining Entities.

- Remove all Attributes from the remaining Entities in IN for which there is a matching exclusive Context
Source Registration, which is not CSR itself.

- Remove all Attributes from the remaining Entities in IN for which there is a matching redirect Context
Source Registration, unless CSR is a redirect Context Source Registration itself.

- Remove all Entities without Attributes from IN.

- If IN is empty, continue with the next Context Source Registration if there is any.

- If the Batch Entity Delete operation is supported by CSR:

 Forward the Batch Entity Delete request with IN as input Array.

 Merge the returned list of Entities successfully created with S.

 Merge the returned list of Entities in Error with E.

- Otherwise, if the Delete Entity operation (clause 5.6.6) is supported by CSR:

 For each Entity EN in the input array:

- Forward a Delete Entity request for Entity EN.

- Merge any successful result(s) for Entity EN deleted with S.

- Merge any error result(s) for Entity EN deleted with E.

- Otherwise:

 In case CSR is an exclusive or redirect Context Source Registration, add an Error of type Conflict
for each Entity in IN to E.

• For each of the NGSI-LD Entity Ids included in the input Array execute the behaviour defined by clause 5.6.6,
but limited to a local operation, as follows:

- If the Entity corresponding to an Entity Id was successfully deleted, then add such Entity Id to the S
array.

- If the Entity deletion failed, then a new BatchEntityError shall be added to E containing the failed Entity
Id and the related ProblemDetails.

5.6.10.5 Output data

• none (if all Entities that already existed are successfully deleted); or

• the list of Entities successfully deleted (S Array), and the list of Entities in error (E Array), if some or all of the
Entities have not been successfully deleted.

5.6.11 Create or Update (Upsert) Temporal Representation of an Entity

5.6.11.1 Description

This operation allows creating or updating (by adding new Attribute instances) a Temporal Representation of an Entity.

5.6.11.2 Use case diagram

A Context Producer can create a Temporal Representation of an Entity within an NGSI-LD system as shown in
figure 5.6.11.2-1.

Similarly, if the Entity already exists then an Update scenario will be in place.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)124

Figure 5.6.11.2-1: Create or Update (Upsert) Temporal Representation of Entity use case

5.6.11.3 Input data

A JSON-LD document representing a Temporal Representation of an Entity as mandated by clause 5.2.20.

5.6.11.4 Behaviour

Implementations shall exhibit the following behaviour:

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• If an exclusive Context Source Registration already exists for this id (URI), Attributes from matching input
data are forwarded for remote processing:

- For matching Registrations where the Create or Update (Upsert) Temporal Representation of Entity
operation is supported, the operation is forwarded to the registration endpoint. If the endpoint then raises
an error, this shall result in an error in case the complete Create or Update (Upsert) Temporal
Representation of Entity operation failed or in a partial success if some parts of it succeeded.

- For matching Registrations where the Create Entity operation is not supported, this shall result in an
error of type Conflict in case the complete Create or Update (Upsert) Temporal Representation of Entity
operation failed or in a partial success if some parts of it succeeded.

 The matching Attributes are then removed from the Fragment and not processed further.

• If any redirect Context Source Registrations exist that match against the input data, that input data is
forwarded for remote processing by one or more matching endpoints:

- For matching Registrations where the Create or Update (Upsert) Temporal Representation of Entity
operation is supported, matching input data is forwarded. If any such endpoint then raises an error, this
shall result in an error in case the complete Create or Update (Upsert) Temporal Representation of Entity
operation failed or in a partial success if some parts of it succeeded.

- For matching redirect Registrations where the Create or Update (Upsert) Temporal Representation of
Entity operation is not supported, this shall result in an error of type Conflict in case the complete Create
or Update (Upsert) Temporal Representation of Entity operation failed or in a partial success if some
parts of it succeeded.

 The matching Attributes are then removed from the Fragment and not processed further.

• For any inclusive Context Source Registrations that exist and match against the remaining input data, that
input data is also forwarded for remote processing by matching endpoints.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)125

• If the NGSI-LD endpoint already knows about this Temporal Representation of an Entity, because there is an
existing Temporal Representation of an Entity whose id (URI) is the same, then all the Attribute instances
included by the Temporal Representation shall be added to the existing Entity as mandated by clause 5.6.12. If
type is included in the EntityTemporal Fragment and it includes Entity Type Names that are not yet in the
target Temporal Representation of an Entity, add them to the list of Entity Type Names of the target Temporal
Representation of an Entity.

• Otherwise, implementations shall create the provided Temporal Representation of an Entity.

5.6.11.5 Output data

None.

5.6.12 Add Attributes to Temporal Representation of an Entity

5.6.12.1 Description

This operation allows modifying a Temporal Representation of an Entity by adding new Attribute instances.

5.6.12.2 Use case diagram

A Context Producer can add new Attributes or Attribute instances to an existing Temporal Representation of an Entity
within an NGSI-LD system as shown in figure 5.6.12.2-1.

Figure 5.6.12.2-1: Add Attributes to Temporal Representation of Entity use case

5.6.12.3 Input data

• Entity id (URI) which Temporal Representation is to be modified with additional Attributes (target Entity).

• A JSON-LD document representing an NGSI-LD Fragment of EntityTemporal, including only the new
Attribute instance(s), and contained by an Array.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)126

5.6.12.4 Behaviour

The following behaviour shall be exhibited by compliant implementations:

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the Temporal Representation of the target Entity, because there
is no existing Temporal Representation of an Entity whose id (URI) is equivalent to the one passed as
parameter held locally and no matching registrations apply, an error of type ResourceNotFound shall be raised.

• The behaviour defined in clause 5.5.4 on JSON-LD validation.

• If an exclusive or redirect Context Source Registration matches against the input data, the Attributes from
matching input data are forwarded for remote processing. For each matching registration:

- If the Add Attributes to Temporal Representation of an Entity operation is supported by the matched
registration, matching input data is forwarded to the Registration endpoint.

- If the Add Attributes to Temporal Representation of an Entity operation is not supported by the matched
registration, this shall result in an error of type Conflict if the complete Add Attributes to Temporal
Representation of an Entity operation failed or in a partial success if some parts of it succeeded.

 The matching Attributes are then removed from the Fragment and not processed further.

• For any inclusive Context Source Registrations that exist and match against the remaining input data, that
input data is also forwarded for remote processing to matching endpoints.

• If the target Entity exists locally and matches against the remaining input data, implementations shall do the
following:

- For each Attribute (Property or Relationship) instance included by the EntityTemporal Fragment at root
level:

 The Attribute (considering term expansion rules as mandated by clause 5.5.7) instance(s) shall be
added to the target Entity.

• If type is included in the EntityTemporal Fragment and it includes Entity Type Names that are not yet in the
target Temporal Representation of an Entity, add them to the list of Entity Type Names of the target Temporal
Representation of an Entity.

5.6.12.5 Output data

None.

5.6.13 Delete Attribute from Temporal Representation of an Entity

5.6.13.1 Description

This operation allows deleting an Attribute (Property or Relationship) of the Temporal Representation of an Entity. The
Attribute itself and all its child NGSI-LD elements shall be deleted.

5.6.13.2 Use case diagram

A Context Producer can delete a specific Attribute of a Temporal Representation of an Entity within an NGSI-LD
system as shown in figure 5.6.13.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)127

Figure 5.6.13.2-1: Delete Attribute from Temporal Representation of Entity use case

5.6.13.3 Input data

• Entity id (URI) of the target Entity which Temporal Representation is to be modified.

• Target Attribute (Property or Relationship) to be deleted, identified by a Name.

• An optional parameter identifying the dataset (datasetId) of the target Attribute instance to be deleted.

• An optional parameter, a flag, (deleteAll) indicating whether all target Attribute instances are to be deleted,
regardless of datasetId.

• An optional JSON-LD @context.

5.6.13.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute name is not a valid Name, then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Temporal
Representation of an Entity whose id (URI) is equivalent held locally and no matching registrations apply,
then an error of type ResourceNotFound shall be raised.

• If an exclusive or redirect Context Source Registration matches against the input data, the input data is
forwarded. For each matching registration:

- If the Delete Attribute from Temporal Representation of an Entity operation is supported by the matched
registration, matching input data is forwarded to the Registration endpoint.

- If the Delete Attribute from Temporal Representation of an Entity operation is not supported by the
matched registration, this shall result in an error of type Conflict in case the complete Delete Attribute
from Temporal Representation of an Entity failed, or in a partial success if some parts of it succeeded.

No further processing is required.

• For any inclusive Context Source Registrations that exist and match against the input data, that input data is
also forwarded for remote processing to matching endpoints.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)128

• If the target Entity exists locally, implementations shall do the following:

- Apply term expansion as mandated by clause 5.5.7 so that the fully qualified name (URI) associated to
the target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute then an error of type ResourceNotFound shall be
raised.

• If the deleteAll flag is set, remove all target Attribute instances from the target Entity.

• Otherwise:

- if a datasetId parameter is provided, remove only any target Attribute instance from the given dataset;

- if no datasetId parameter is provided, remove only the default target Attribute instance datasetId from
the target Entity.

5.6.13.5 Output data

None.

5.6.14 Modify Attribute instance in Temporal Representation of an Entity

5.6.14.1 Description

This operation allows modifying a specific Attribute (Property or Relationship) instance, identified by its instanceId, of
a Temporal Representation of an Entity.

This operation enables the correction of wrong information that could have been previously added to the Temporal
Representation of an Entity.

5.6.14.2 Use case diagram

A Context Producer can modify a specific Attribute instance, identified by a given instanceId, of the Temporal
Representation of an Entity within an NGSI-LD system as shown in figure 5.6.14.2-1.

Figure 5.6.14.2-1: Modify Attribute Instance in Temporal Representation of Entity use case

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)129

5.6.14.3 Input data

• Entity id (URI) of the target Entity whose Temporal Representation is to be modified.

• Target Attribute (Property or Relationship) to be modified, identified by a Name.

• Attribute instance to be modified, identified by its instanceId.

• A JSON-LD document representing an NGSI-LD Fragment of EntityTemporal, including only the new
Attribute instance, contained by an Array of exactly one item.

• An optional JSON-LD @context.

5.6.14.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute name is not a valid Name or it is not present, then an error of type BadRequestData shall
be raised.

• If the target instanceId is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent held locally and no matching registrations apply, then an error of type ResourceNotFound
shall be raised.

• If an exclusive or redirect Context Source Registration matches against the input data, the input data is
forwarded. For each matching registration:

- If the Modify Attribute instance in Temporal Representation of an Entity operation is supported by the
matched registration, matching input data is forwarded to the Registration endpoint.

- If the Modify Attribute instance in Temporal Representation of an Entity operation is not supported by
the matched registration, this shall result in an error of type Conflict in case the complete Modify
Attribute instance in Temporal Representation of an Entity operation failed, or in a partial success if
some parts of it succeeded.

No further processing is required.

• For any inclusive Context Source Registrations that exist and match against the input data, that input data is
also forwarded for remote processing to matching endpoints.

• If the target Entity exists locally, implementations shall do the following:

- Apply term expansion as mandated by clause 5.5.7 so that the fully qualified name (URI) associated to
the target Attribute is properly obtained.

• If the target Entity does not contain the target Attribute then an error of type ResourceNotFound shall be
raised.

• If for the target Attribute no instance with the specified instanceId exists, an error of type ResourceNotFound
shall be raised.

• Replace the target Attribute instance identified by the instanceId with the Attribute instance in the
EntityTemporal Fragment. The createdAt property of the concerned instance shall remain unchanged, but the
modifiedAt property shall be set to the timestamp corresponding to this modification.

5.6.14.5 Output data

None.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)130

5.6.15 Delete Attribute instance from Temporal Representation of an Entity

5.6.15.1 Description

This operation allows deleting one Attribute instance (Property or Relationship), identified by its instanceId, of a
Temporal Representation of an Entity. The Attribute itself and all its child elements shall be deleted. This operation
enables the removal of individual Attribute instances that could have been previously added to the Temporal
Representation of an Entity.

5.6.15.2 Use case diagram

A Context Producer can delete an Attribute instance, identified by a given instanceId, of the Temporal Representation
of an Entity within an NGSI-LD system as shown in figure 5.6.15.2-1.

Figure 5.6.15.2-1: Delete Attribute Instance from Temporal Representation
of Entity use case

5.6.15.3 Input data

• Entity id (URI) of the Entity whose Temporal Representation is to be modified, the target Entity.

• Target Attribute (Property or Relationship) to be deleted, identified by a Name.

• Attribute instance to be deleted, identified by its instanceId.

• An optional JSON-LD @context.

5.6.15.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the target Attribute name is not a valid Name or it is not present, then an error of type BadRequestData shall
be raised.

• If the target instanceId is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent held locally and no matching registrations apply, then an error of type ResourceNotFound
shall be raised.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)131

• If an exclusive or redirect Context Source Registration matches against the input data, the input data is
forwarded. For each matching registration:

- If the Delete Attribute instance from Temporal Representation of an Entity operation is supported by the
matched registration, matching input data is forwarded to the Registration endpoint.

- If the Delete Attribute instance from Temporal Representation of an Entity operation is not supported by
the matched registration, this shall result in an error of type Conflict in case the complete Delete
Attribute instance from Temporal Representation of an Entity failed, or in a partial success if some parts
of it succeeded.

No further processing is required.

• For any inclusive Context Source Registrations that exist and match against the input data, that input data is
also forwarded for remote processing to matching endpoints.

• If the target Entity exists locally, implementations shall do the following:

- Apply term expansion as mandated by clause 5.5.7 so that the fully qualified name (URI) associated to
the target Attribute is properly obtained.

• If the Temporal Representation of the target Entity does not contain the target Attribute then an error of type
ResourceNotFound shall be raised.

• If for the target Attribute no instance with the specified instanceId exists, an error of type ResourceNotFound
shall be raised.

• Remove the instance, with the specified instanceId, of the target Attribute from the target Entity.

5.6.15.5 Output data

None.

5.6.16 Delete Temporal Representation of an Entity

5.6.16.1 Description

This operation allows deleting the Temporal Representation of an Entity.

5.6.16.2 Use case diagram

A Context Producer can completely delete the Temporal Representation of an Entity within an NGSI-LD system as
shown in figure 5.6.16.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)132

Figure 5.6.16.2-1: Delete Temporal Representation of Entity use case

5.6.16.3 Input data

• Entity Id (URI) of the target Entity, whose Temporal Representation is to be deleted.

5.6.16.4 Behaviour

• If the target Entity id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity because there is no existing Entity whose id
(URI) is equivalent held locally and no matching registrations apply, then an error of type ResourceNotFound
shall be raised.

• If an exclusive or redirect Context Source Registration matches against the input data, the input data is
forwarded. For each matching registration:

- If the Delete Temporal Representation of Entity operation is supported by the matched registration,
matching input data is forwarded to the Registration endpoint.

- If the Delete Temporal Representation of Entity operation is not supported by the matched registration,
this shall result in an error of type Conflict in case the complete Delete Temporal Representation of
Entity failed, or in a partial success if some parts of it succeeded.

No further processing is required.

• For any inclusive Context Source Registrations that exist and match against the input data, that input data is
also forwarded for remote processing to matching endpoints.

• If the target Entity exists locally, the entire Temporal Representation of the Entity shall be removed.

5.6.16.5 Output data

None.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)133

5.6.17 Merge Entity

5.6.17.1 Description

This operation allows modification of an existing NGSI-LD Entity aligning to the JSON Merge Patch processing rules
defined in IETF RFC 7396 [16] by adding new Attributes (Properties or Relationships) or modifying or deleting
existing Attributes associated with an existing Entity.

5.6.17.2 Use case diagram

A Context Producer can perform a merge on an Entity within an NGSI-LD system as shown in figure 5.6.17.2-1.

Figure 5.6.17.2-1: Merge Entity use case

5.6.17.3 Input data

• A URI representing the id of the Entity to be merged (target Entity).

• A selector of Entity types as specified by clause 4.17 (optional).

• A JSON-LD document representing an NGSI-LD Entity Fragment.

• An optional flag indicating whether the JSON-LD document contains a simplified representation of the entity.

• An optional parameter indicating a common "observedAt" timestamp to use across merged Attributes.

• An optional parameter representing a common IETF RFC 5646 [28] language tag to use across merged
LanguageMap Attributes.

5.6.17.4 Behaviour

The following behaviour shall be exhibited by compliant implementations:

• If the Entity Id is not present or it is not a valid URI then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI), and where specified type, is equivalent held locally, and no matching registrations apply, then an error
of type ResourceNotFound shall be raised.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)134

• If an exclusive or redirect Context Source Registration matches against the input data, Attributes from
matching input data are forwarded. For each matching registration:

- If the Merge Entity operation is supported by the matched registration, matching input data is forwarded
to the Registration endpoint.

- If the Merge Entity operation is not supported by the matched registration, this shall result in an error of
type Conflict in case the complete Merge Entity operation failed, or in a partial success if some parts of it
succeeded.

 The matching Attributes are then removed from the Fragment and not processed further.

• For any inclusive Context Source Registrations that exist and match against the remaining input data, that
input data is also forwarded for remote processing to matching endpoints.

• The behaviour defined in clause 5.5.4 on JSON-LD validation. NGSI-LD Nulls should be supported by this
operation. If NGSI-LD Nulls are found in the payload, but are not supported, an error of type
OperationNotSupported shall be raised.

 Then, implementations shall perform a merge operation over the target Entity as mandated by clause 5.5.12,
using the following procedure:

 For each Attribute (Property or Relationship) included by the Entity Fragment:

- If the target Entity does not include a matching Attribute (considering term expansion rules as mandated
by clause 5.5.7), then such Attribute shall be appended to the target Entity.

- If the target Entity already includes a matching Attribute (considering term expansion rules as mandated
by clause 5.5.7):

 If the Attribute (Property or Relationship) to be merged is represented in a simplified
representation, the type of any pre-existing Attribute in the target entity shall be preserved.

 If a common language tag is defined and a LanguageProperty Attribute to be merged is represented
as a string, the pre-existing languageMap JSON object shall be preserved. The string value shall
only replace the value associated to the language tag key found within the languageMap.

 If a common "observedAt" timestamp is defined and an existing Attribute to be merged previously
contained an "observedAt" sub-Attribute, the "observedAt" sub-Attribute is also updated using the
common timestamp, unless the Entity Fragment itself contains an explicit updated value for the
"observedAt" sub-Attribute.

 If a datasetId is present in the Attribute included by the Entity Fragment:

- If an Attribute instance in the target Entity has the same datasetId:

- If overwrite is allowed and the Attribute value is not NGSI-LD Null, then the existing
Attribute with the specified datasetId in the target Entity shall be merged with the new
one supplied.

- If overwrite is allowed and the Attribute value is NGSI-LD Null, then the existing
Attribute with the specified datasetId in the target Entity shall be deleted.

- If overwrite is not allowed, the existing Attribute with the specified datasetId in the
target Entity shall be left untouched.

- Otherwise the Attribute instance with the specified datasetId shall be appended to the target
Entity.

 If no datasetId is present in the Attribute included by the Entity Fragment, the default Attribute
instance is targeted:

- If the default Attribute instance is present:

- If overwrite is allowed and the Attribute value is not NGSI-LD Null, then the existing
Attribute in the target Entity shall be merged with the new one supplied.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)135

- If overwrite is allowed and the Attribute value is NGSI-LD Null, then the existing
Attribute with the specified datasetId in the target Entity shall be deleted.

- If overwrite is not allowed, the existing Attribute in the target Entity shall be left
untouched.

- Otherwise if value is not NGSI-LD Null, the default Attribute instance shall be appended to
the target Entity.

• If type is included in the Fragment and it includes Entity Type Names that are not yet in the target Entity, add
them to the list of Entity Type Names of the target Entity.

• If scope is included in the Fragment and overwrite is allowed, the scope of the target Entity will become the
one included in the Fragment. Otherwise, the Scopes in the Fragment that are not part of the value of scope of
the target Entity will be appended to the value of the scope of the target Entity. If there is more than one
Scope, the value of scope is represented as a JSON array containing all Scopes.

5.6.17.5 Output data

• A status code indicating whether all the Attributes were merged successfully.

• List of Attributes (Properties and/or Relationships) actually merged.

5.6.18 Replace Entity

5.6.18.1 Description

This operation allows the modification of an existing NGSI-LD Entity by replacing all of the Attributes (Properties or
Relationships).

5.6.18.2 Use case diagram

A Context Producer can replace an entire Entity within an NGSI-LD system as shown in figure 5.6.18.2-1.

Figure 5.6.18.2-1: Replace Entity use case

5.6.18.3 Input data

• A URI representing the id of the Entity to be replaced (target Entity).

• A selector of Entity types as specified by clause 4.17 (optional).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)136

• A JSON-LD document representing an NGSI-LD Entity.

5.6.18.4 Behaviour

• If the target Entity id is not a valid URI or it is not present, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI), and where specified type, is equivalent held locally, and no matching registrations apply, then an error
of type ResourceNotFound shall be raised.

• The behaviour defined in clause 5.5.4 on JSON-LD validation. NGSI-LD Nulls are not supported by this
operation.

• If an exclusive or redirect Context Source Registration matches against the input data, Attributes from
matching input data are forwarded. For each matching registration:

- If the Replace Entity operation is supported by the matched registration, matching input data is
forwarded to the Registration endpoint.

- If the Replace Entity operation is not supported by the matched registration, this shall result in an error of
type Conflict in case the complete Replace Entity operation failed, or in a partial success if some parts of
it succeeded.

• The matching Attributes are then removed from the Fragment and not processed further.

• For any inclusive Context Source Registrations that exist and match against the remaining input data, that
input data is also forwarded for remote processing to matching endpoints.

• If the target Entity exists locally, completely replace the existing Entity with the same Entity id with the new
Entity content provided. The system generated "createdAt" Temporal Properties of the Entity as defined in
clause 4.8 remain unchanged.

5.6.18.5 Output data

• A status code indicating whether the Entity was replaced successfully.

5.6.19 Replace Attribute

5.6.19.1 Description

This operation allows the replacement of a single Attribute (Property or Relationship) within an NGSI-LD Entity.

5.6.19.2 Use case diagram

A Context Producer can carry out a replacement of an Attribute within an Entity within an NGSI-LD System as shown
in figure 5.6.19.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)137

Figure 5.6.19.2-1: Attribute replace use case

5.6.19.3 Input data

• Entity Id (URI) of the concerned Entity, the target Entity.

• A selector of Entity types as specified by clause 4.17 (optional).

• Target Attribute (Property or Relationship) to be replaced, identified by a name.

• A JSON-LD document representing an NGSI-LD Attribute Fragment.

5.6.19.4 Behaviour

• If the target Entity id is not a valid URI, then an error of type BadRequestData shall be raised.

• If the target Attribute Name is not valid, then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI), and where specified type, is equivalent held locally, and no matching registrations apply, then an error
of type ResourceNotFound shall be raised.

• The behaviour defined in clause 5.5.4 on JSON-LD validation.

• If an exclusive or redirect Context Source Registration matches against the input data, the input data is
forwarded. For each matching registration:

- If the Attribute Replace operation is supported by the matched registration, matching input data is
forwarded to the Registration endpoint.

- If the Attribute Replace operation is not supported by the matched registration, this shall result in an
error of type Conflict in case the complete Attribute Replace operation failed, or in a partial success if
some parts of it succeeded.

No further processing is required.

• For any inclusive Context Source Registrations that exist and match against the remaining input data, that
input data is also forwarded for remote processing to matching endpoints.

• Apply term expansion as mandated by clause 5.5.7, so that the fully qualified name (URI) associated to the
target Attribute is properly obtained.

• If the target Attribute is scope, replace scope in the target Entity.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)138

• If the target Entity does not contain the target Attribute:

- as a default instance in case no datasetId is present;

- as an instance with the specified datasetId if present;

 then this shall result in an error of type ResourceNotFound in case the complete Attribute Replace operation
failed, or in a partial success if some parts of it succeeded.

• Completely replace the existing Attribute with the new Attribute content provided. The system generated
"createdAt" Temporal Property as defined in clause 4.8 remains unchanged.

5.6.19.5 Output data

None.

5.6.20 Batch Entity Merge

5.6.20.1 Description

This operation allows modification of a batch of NGSI-LD Entities according to the JSON Merge Patch processing
rules defined in IETF RFC 7396 [16] by adding new attributes (Properties or Relationships) or modifying or deleting
existing attributes associated with an existing Entity.

5.6.20.2 Use case diagram

A Context Producer can merge a batch of Entities within an NGSI-LD system as shown in figure 5.6.20.2-1.

Figure 5.6.20.2-1: Merge a batch of Entities use case

5.6.20.3 Input data

• A JSON-LD Array containing one or more JSON-LD documents each one representing an Entity as mandated
by clause 5.2.4. See clause 5.5.11.5 for information on behaviour when there is more than one instance of the
same entity in the input Array.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)139

5.6.20.4 Behaviour

Implementations shall exhibit the following behaviour:

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• Let S be an array which shall contain a list of Entity ids, one for each NGSI-LD Entity which was successfully
processed. S shall be initialized as the empty array.

• Let E be an array which shall contain a list of BatchEntityError as defined by clause 5.2.17, one for each
NGSI-LD Entity which resulted in error. E shall be initialized as the empty array.

• For each Context Source Registration CSR in the Context Registry:

- Let IN be a copy of the original input array.

- Remove from IN all Entities not matched by CSR and remove non-matching Attributes from the
remaining Entities.

- Remove all Attributes from the remaining Entities in IN for which there is a matching exclusive Context
Source Registration, which is not CSR itself.

- Remove all Attributes from the remaining Entities in IN for which there is a matching redirect Context
Source Registration, unless CSR is a redirect Context Source Registration itself.

- Remove all Entities without Attributes from IN.

- If IN is empty, continue with the next Context Source Registration if there is any.

- If the Batch Entity Merge operation is supported by CSR:

 Forward the Batch Entity Merge request with IN as input Array.

 Merge the returned list of Entities successfully created with S.

 Merge the returned list of Entities in Error with E.

- Otherwise, if the Merge Entity operation (clause 5.6.17) is supported by CSR:

 For each Entity EN in the input array:

- Forward a Merge Entity request for Entity EN.

- Merge any successful result(s) for Entity EN merged with S.

- Merge any error result(s) for Entity EN merged with E.

- Otherwise:

 In case CSR is an exclusive or redirect Context Source Registration, add an Error of type Conflict
for each Entity in IN to E.

• For each of the NGSI-LD Entities included in the input Array execute the behaviour defined by clause 5.6.17,
but limited to a local operation, as follows:

- If the Entity was successfully merged (Attributes updated, appended or deleted), then add the
corresponding Entity Id to the S array.

- If the Entity merge failed, then a new BatchEntityError shall be added to E containing the failed Entity
Id and the ProblemDetails associated.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)140

5.6.20.5 Output data

• none (if all Entities already existed and are successfully merged); or

• the list of Entities successfully merged (S Array), and the list of Entities in error (E Array), if only some or
none of the Entities have been successfully merged.

5.7 Context Information Consumption

5.7.1 Retrieve Entity

5.7.1.1 Description

This operation allows retrieving an NGSI-LD Entity.

5.7.1.2 Use case diagram

A context consumer can retrieve a specific Entity from an NGSI-LD system as shown in figure 5.7.1.2-1.

Figure 5.7.1.2-1: Retrieve Entity use case

5.7.1.3 Input data

• Entity Id (URI) of the Entity to be retrieved (target Entity).

• A selector of Entity types as specified by clause 4.17 (optional).

• List of Attribute (Properties or Relationships) Names to be retrieved (projection attributes) (optional).

• A language filter as defined by clause 4.15 (optional).

• An optional JSON-LD context.

• In the case of a GeoJSON representation:

- The name of the GeoProperty attribute to use as the geometry for the GeoJSON representation as
mandated by clause 4.5.16 (optional).

- A datasetId specifying which instance of the value is to be selected if the GeoProperty value has
multiple instances as defined by clause 4.5.5 (optional).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)141

5.7.1.4 Behaviour

• If the Entity Id is not present or it is not a valid URI, then an error of type BadRequestData shall be raised.

• If geometryProperty parameter is present and the Accept Header is not set to "application/geo+json", then an
error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI), and where specified type, is equivalent held locally and no matching registrations apply, then an error
of type ResourceNotFound shall be raised.

• The implementation shall retrieve any Attribute data held locally which is associated with the Entity defined
by the Entity Id.

• For Context Source Registrations that match the Entity Id and support the retrieveEntity operation (see
operations and operation groups in clause 4.20), implementations shall do the following:

- For any exclusive, redirect and inclusive Context Source, the request is forwarded for remote retrieval
by matching endpoints. and remote Attribute data for the Entity is received. It is then merged together
according to the algorithm defined in clause 4.5.5.

- For any auxiliary Context Source Registrations the remote Attribute data received is added to the
payload only when an Attribute is not present in any of the Attribute data received elsewhere.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• If the optional Attribute list is present and the NGSI-LD endpoint does know about a matching Entity for the
Entity Id, but this Entity does not have any of the Attributes in the Attribute list, then an error of type
ResourceNotFound shall be raised.

• If the Accept Header is set to "application/json" or "application/ld+json, return a JSON-LD object representing
the Entity as mandated by clause 5.2.4 and containing only the Attributes requested (if present).

• If the Accept Header is set to "application/geo+json", a GeoJSON Feature object representing the entity as
mandated by clause 5.2.29 and containing only the Attributes requested (if present):

- If the Prefer Header is omitted or set to "body=ld+json" then the Feature object will also contain an
@context field.

- If the Prefer Header is set to "body=json" the @context is set as a Link Header and removed from the
Feature object.

5.7.1.5 Output data

A JSON-LD object representing the target Entity as mandated by clause 5.2.4 or a GeoJSON Feature as mandated by
clause 5.2.29.

If any of the returned Attributes corresponds to a VocabularyProperty, the returned value shall be compacted according
to the supplied @context.

If a language filter is specified and any of the returned Attributes corresponds to a LanguageProperty, the
LanguageProperty in question shall be converted into a Property. The value of this Property shall correspond to the
value of the string or strings from the matching key-value pair of the languageMap where the key matches the language
filter. A non-reified subproperty lang shall be included in the response indicating the chosen language.

If no match can be made for a LanguageProperty then a single language shall be chosen, up to the implementation.

5.7.2 Query Entities

5.7.2.1 Description

This operation allows querying an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)142

5.7.2.2 Use case diagram

A context consumer can retrieve a set of entities which matches a specific query from an NGSI-LD system as shown in
figure 5.7.2.2-1.

Figure 5.7.2.2-1: Query Entities use case

5.7.2.3 Input data

• A reference to a JSON-LD @context (optional).

• A selector of Entity types as specified by clause 4.17 (optional).
Both type names (short hand string) and fully qualified type names (URI) are allowed in the selector.

• A list (one or more) of Entity identifiers (optional).

• A list (one or more) of Attribute names (called query projection attributes) (optional).

• An id pattern as a regular expression (optional).

• An NGSI-LD query (to filter out Entities by Attribute values) as per clause 4.9 (optional).

• An NGSI-LD geoquery (to filter out Entities by spatial relationships) as mandated by clause 4.10 (optional).

• In the case of GeoJSON representation:

- The name of the GeoProperty attribute to use as the geometry for the GeoJSON representation as
mandated by clause 4.5.16 (optional).

- A datasetId specifying which instance of the value is to be selected if the GeoProperty value has
multiple instances as defined by clause 4.5.5 (optional).

• A NGSI-LD Scope query (to filter out Entities based on their Scope) as mandated by clause 4.19 (optional).

• An NGSI-LD query (called context source filter, to filter out Context Sources by the values of properties that
describe them) as per clause 4.9 (optional).

• A limit to the number of Entities to be retrieved. See clause 5.5.9.

• A specified language filter as per clause 4.15 (optional).

• A list (one or more) of Attribute names whose values shall be expanded to URIs prior to executing a query
(optional).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)143

It is not possible to retrieve a set of entities by only specifying desired Entity identifiers, without further specifying
restrictions on the entities' types or attributes, either explicitly, via selector of Entity types or of Attribute names, or
implicitly, within an NGSI-LD query or geoquery.

5.7.2.4 Behaviour

• At least one of the following input data shall be provided:

a) selector of Entity Types;

b) list of Attribute names;

c) NGSI-LD query;

d) NGSI-LD geoquery.

If none of them is provided, then an error of type BadRequestData shall be raised (too wide query).

• If the list of Entity identifiers includes a URI which it is not valid, or the query, geoquery or context source
filter are not syntactically valid (as per the referred clauses 4.9 and 4.10) an error of type BadRequestData
shall be raised.

• If geometryProperty parameter is present and the Accept Header is not set to "application/geo+json", then an
error of type BadRequestData shall be raised.

• Term to URI expansion of type and Attribute names shall be performed, as mandated by clause 5.5.7.

• If a list of Attribute names whose values shall be expanded to URIs has been supplied, the type coercion of
those values to URIs shall be performed, as mandated by clause 5.5.7.

• Otherwise, implementations shall run a query that shall return an Entity Array containing all the Entities found
locally, that meet all of the following conditions (given the respective parameter is provided):

- id is equal to any of the id(s) passed as parameter;

- the Entity Type Names match the selector of Entity Types (expanded) that is passed as parameter;

- attribute matches any of the expanded attribute(s) in the list that is passed as parameter;

- id matches the id pattern passed as parameter;

- the filter conditions specified by the query are met (as mandated by clause 4.9);

- the geospatial restrictions imposed by the geoquery are met (as mandated by clause 4.10); if there are
multiple instances of the GeoProperty on which the geoquery is based, it is sufficient if any of these
instances meets the geospatial restrictions;

- if the Scope query is present, it shall match a present Entity Scope (as mandated by clause 4.19, for an
example see annex C, clause C.5.15);

- if the Attribute list is present, in order for an Entity to match, it shall contain at least one of the Attributes
in the projection Attribute list.

• For Context Source Registrations that match the query and support the "queryEntity" operation (see operations
and operation groups in clause 4.20), implementations shall do the following:

- For any exclusive, redirect and inclusive Context Source Registrations, the request is forwarded for
remote querying by matching endpoints. The result of each remote query is an Entity Array. The Entity
Arrays are then merged together with the locally queried result according to the algorithm defined in
clause 4.5.5.

- For any auxiliary Context Source Registrations, the request is forwarded for remote querying by
matching endpoints. Data from the Entity Array received is added to the payload only when an Attribute
is not already present in the merged Entity Arrays are received elsewhere.

• Pagination logic shall be in place as mandated by clause 5.5.9.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)144

• If in the process of obtaining the query result it is necessary to issue a Context Source discovery operation, the
same Context Source filter input parameter (if present) shall be propagated.

• If the Accept Header is set to "application/json" or "application/ld+json, a JSON-LD array is returned,
representing the Entities as mandated by clause 5.2.4 and containing only the Attributes requested (if present).

• If the Accept Header is set to "application/geo+json", the response shall be a GeoJSON FeatureCollection as
mandated by clause 5.2.30, with each Feature within the FeatureCollection containing only the Attributes
requested (if present):

- If the Prefer Header is omitted or set to "body=ld+json" then the FeatureCollection will also contain an
@context field.

- If the Prefer Header is set to "body=json" the @context is sent as a Link Header and removed from the
FeatureCollection object.

5.7.2.5 Output data

A JSON-LD array representing the matching entities as defined by clause 5.2.4 or in the case of GeoJSON requests a
FeatureCollection as mandated by clause 5.2.30. For each matching Entity, only the Attributes specified by the
Attribute list parameter shall be included. If such parameter is not present, then all Attributes shall be included.

If any of the returned Attributes corresponds to a VocabularyProperty, the returned value shall be compacted according
to the supplied @context.

If a language filter is specified and any of the returned Attributes corresponds to a LanguageProperty, the
LanguageProperty in question shall be converted into a Property. The value of this Property shall correspond to the
value of the string or strings from matching key-value pair of the languageMap where the key matches the language
filter. A non-reified subproperty lang shall be included in the response indicating the chosen language.

If no match can be made for a LanguageProperty, then the default identified by the JSON-LD "@none shall be chosen if
present, otherwise the choice of a single language is up to the implementation.

5.7.3 Retrieve Temporal Evolution of an Entity

5.7.3.1 Description

This operation allows retrieving the temporal evolution of an NGSI-LD Entity.

5.7.3.2 Use case diagram

A Context Consumer can retrieve the temporal evolution of an Entity (in the form of a Temporal Representation) from
an NGSI-LD system as shown in figure 5.7.3.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)145

Figure 5.7.3.2-1: Retrieve temporal evolution of Entity use case

5.7.3.3 Input data

• Entity Id (URI) of the Entity, whose temporal evolution is to be retrieved (target Entity).

• List of Attribute (Properties or Relationships) Names to be retrieved (projection attributes) (optional).

• An NGSI-LD temporal query as mandated by clause 4.11 (optional).

• A parameter (lastN) conveying that only the last N instances (per Attribute) within the concerned temporal
interval shall be retrieved (optional).

• An optional JSON-LD context.

5.7.3.4 Behaviour

• If the Entity Id is not present or it is not a valid URI, then an error of type BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target Entity, because there is no existing Entity whose id
(URI) is equivalent held locally, and no matching registrations apply, then an error of type ResourceNotFound
shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• The lastN parameter refers to a number, n, of Attribute instances which shall correspond to the last n
timestamps (in descending ordering) of the temporal property (by default observedAt) within the concerned
temporal interval.

• Let S be the Temporal Representation of the Entity as mandated by clause 5.2.20 with the specified Entity Id
as it is available locally. S is empty in case no Temporal Representation of the Entity is available locally.

• From S, select only those Attribute instances (corresponding to the Attributes specified by the query or all if
none are specified) match the temporal restrictions imposed by the temporal query (as mandated by
clause 4.11), i.e. if the time series, for all the concerned Attributes of an Entity, does not include data
corresponding to the temporal query interval, then such Entity shall be removed from S, thus it shall not appear
in the final result set. Let S1 be this new subset.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)146

• For Context Source Registrations that match the Entity Id and support the retrieveTemporal operation (see
operations and operation groups in clause 4.20), implementations shall do the following:

- For any exclusive, redirect and inclusive Context Source, the request is forwarded for remote retrieval
by matching endpoints. and remote Attribute data for the Entity is received. The result is then merged
together with S1 according to the algorithm defined in clause 4.5.5.

- For any auxiliary Context Source Registrations the remote Attribute data received is added to S1 only
when the Attribute instance, whose value of the timeproperty, which is used for the temporal query
(observedAt as default), is not present in any of the Attribute instances received from elsewhere.

• From the set of Attribute Instances that are in S1, include in their temporal representation only the Attribute
instances (up to lastN) corresponding to the query's projection Attributes, or aggregated values of Attribute
instances (if aggregated temporal representation is requested).

 If an aggregated temporal representation is requested and any of the requested Attributes is not eligible for at
least one of the aggregation methods specified in the request parameters, then an error of type InvalidRequest
shall be raised.

5.7.3.5 Output data

A JSON-LD object representing the Temporal Representation of the target Entity as mandated by clause 5.2.20.

5.7.4 Query Temporal Evolution of Entities

5.7.4.1 Description

This operation allows querying the temporal evolution of Entities present in an NGSI-LD system. It is similar to the
operation defined by clause 5.7.2 (Query Entities) with the addition of a temporal query.

5.7.4.2 Use case diagram

A Context Consumer can retrieve the temporal evolution of a set of NGSI-LD Entities which matches a specific query
from an NGSI-LD system as shown in figure 5.7.4.2-1.

Figure 5.7.4.2-1: Temporal query use case

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)147

5.7.4.3 Input data

• An NGSI-LD temporal query as mandated by clause 4.11.

• A reference to a JSON-LD @context (optional).

• A selector of Entity types as specified by clause 4.17 (optional).
Both type name (short hand string) and fully qualified type name (URI) are allowed.

• A list (one or more) of Entity identifiers (optional).

• A list (one or more) of Attribute names (called query projection attributes) (optional).

• An id pattern as a regular expression (optional).

• An NGSI-LD query (to filter out Entities by Attribute values) as per clause 4.9 (optional).

• An NGSI-LD geoquery (to filter out Entities by spatial relationships) as mandated by clause 4.10 (optional).

• A NGSI-LD Scope query (to filter out Entities based on their Scope) as mandated by clause 4.19 (optional).

• An NGSI-LD query (called context source filter, to filter out Context Sources by the values of properties that
describe them) as per clause 4.9 (optional).

• A limit to the number of Entities to be retrieved. See clause 5.5.9.

• A parameter (lastN) conveying that only the last N instances (per Attribute) within the concerned temporal
interval shall be retrieved (optional).

• A specified language filter as per clause 4.15 (optional).

• A list (one or more) of Attribute names whose values shall be expanded to URIs prior to executing a query
(optional).

It is not possible to retrieve a set of entities by only specifying desired Entity identifiers, without further specifying
restrictions on the entities' types or attributes, either explicitly, via selector of Entity types or of Attribute names, or
implicitly, within an NGSI-LD query or geoquery.

5.7.4.4 Behaviour

• If a temporal query is not provided then an error of type BadRequestData shall be raised.

• At least one of the following input data shall be provided:

a) selector of Entity Types;

b) list of Attribute names;

c) NGSI-LD query;

d) NGSI-LD geoquery.

If none of them is provided, then an error of type BadRequestData shall be raised (too wide query).

• If the list of Entity identifiers includes a URI which it is not valid, or the query, geoquery or context source
filter are not syntactically valid (as per the referred clauses 4.9 and 4.10) an error of type BadRequestData
shall be raised.

• Term to URI expansion of type and Attribute names shall be observed mandated by clause 5.5.7.

• If a list of Attribute names whose values shall be expanded to URIs has been supplied, the type coercion of
those values to URIs shall be performed, as mandated by clause 5.5.7.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)148

• The lastN parameter refers to a number, n, of Attribute instances which shall correspond to the last n
timestamps (in descending ordering) of the temporal property (by default observedAt) within the concerned
temporal interval.

• Otherwise, implementations shall run a query that shall return the temporal evolution of the matching Entities;
the logical steps to select the final result set of Entities, and the Attribute instances included as part of their
temporal representation, are enumerated as follows:

- Let S be the set of selected Entities i.e. the query result set.

- If id(s) is provided, keep in S only those Entities whose id is equivalent to any of the id(s) passed as
parameter.

- If an id pattern is provided, keep in S only those Entities whose id matches the id pattern.

- If a selector of Entity Types is provided, keep in S only those Entities whose Entity Type Names match
the selector of Entity Types.

- From S, select only those Entities any of whose Attribute instances (corresponding to the Attributes
specified by the query or all if none are specified) match the temporal restrictions imposed by the
temporal query (as mandated by clause 4.11); i.e. if the time series, for all the concerned Attributes of an
Entity, does not include data corresponding to the temporal query interval, then such Entity shall be
removed from S, thus it shall not appear in the final result set. Let S1 be this new subset.

- If a values filter query is provided, from S1, select those Entities whose Attribute instances (during the
interval defined by the temporal query) meet the matching conditions specified by the query (as
mandated by clause 4.9), i.e. the values filter query shall be checked against all the Attribute instances
resulting from the initial filtering performed by the temporal query. Let S2 be this new subset.

- If no values filter query is provided, then S2 is equal to S1.

- If geoquery is present, from S2, select those Entities whose GeoProperty instances meet the geospatial
restrictions imposed by the geoquery (as mandated by clause 4.10); those geospatial restrictions shall be
checked against the GeoProperty instances that are within the interval defined by the temporal query. Let
S3 be this new subset.

- If no geoquery is provided, then S3 is equal to S2.

- If the Scope query is present, from S3, select those Entities whose Entity Scope instances match the
Scope query (as mandated by clause 4.19, for an example see annex C, clause C.5.16). Let S4 be the new
subset.

- If no Scope query is provided, then S4 is equal to S3.

• For Context Source Registrations that match the query and support the "queryTemporal" operation (see
operations and operation groups in clause 4.20), implementations shall do the following:

- For any exclusive, redirect and inclusive Context Source Registrations that match against the query, the
request is forwarded for remote querying by matching endpoints. The result of each remote query is an
Entity Array. The returned result is then merged into S4 according to the algorithm defined in
clause 4.5.5.

- For any auxiliary Context Source Registrations that match against the query, the request is forwarded for
remote querying by matching endpoints. Data from the Entity Array received is merged only into S4
when an Attribute instance, whose value of the timeproperty used for the temporal query, is not already
present in S4.

• From the set of Entities that are in S4, include in their temporal representation only the Attribute instances (up
to lastN) corresponding to the query's projection Attributes, or aggregated values of Attribute instances (if
aggregated temporal representation is requested), and which meet the temporal, query and geoquery
restrictions.

If an aggregated temporal representation is requested and any of the requested Attributes is not eligible for at
least one of the aggregation methods specified in the request parameters, then an error of type InvalidRequest
shall be raised.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)149

• Pagination logic shall be in place as mandated by clause 5.5.9.

• If in the process of obtaining the query result it is necessary to issue a Context Source discovery operation, the
same Context Source filter input parameter (if present) shall be propagated.

5.7.4.5 Output Data

A JSON-LD array representing the matching entities as defined by clause 5.2.21 and selected according to the
behaviour described by clause 5.7.4.4.

5.7.5 Retrieve Available Entity Types

5.7.5.1 Description

This operation allows retrieving a list of NGSI-LD entity types for which entity instances exist within the NGSI-LD
system.

5.7.5.2 Use case diagram

A context consumer can retrieve a list of NGSI-LD entity types from the system as shown in figure 5.7.5.2-1.

Figure 5.7.5.2-1: Retrieve Available Entity Types use case

5.7.5.3 Input data

• An optional JSON-LD context.

5.7.5.4 Behaviour

• Return a JSON-LD object representing the list of entity types, as mandated by clause 5.2.24, for which entity
instances exist within the NGSI-LD system. See clause 5.7.11 for architecture-related implementation aspects.

5.7.5.5 Output data

A JSON-LD object representing the list of available entity types, as mandated by clause 5.2.24.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)150

5.7.6 Retrieve Details of Available Entity Types

5.7.6.1 Description

This operation allows retrieving a list with a detailed representation of NGSI-LD entity types for which entity instances
exist within the NGSI-LD system. The detailed representation includes the type name (as short name if available in the
provided @context) and the attribute names that existing instances of this entity type have.

5.7.6.2 Use case diagram

A context consumer can retrieve a list with a detailed representation of NGSI-LD entity types from the system as shown
in figure 5.7.6.2-1.

Figure 5.7.6.2-1: Retrieve Details of Available Entity Types use case

5.7.6.3 Input data

• An optional JSON-LD context.

5.7.6.4 Behaviour

• Return a list of JSON-LD objects representing the details of available entity types as mandated by
clause 5.2.25 for which entity instances exist within the NGSI-LD system. See clause 5.7.11 for
architecture-related implementation aspects.

5.7.6.5 Output data

A list of JSON-LD objects representing the details of available entity types as mandated by clause 5.2.25.

5.7.7 Retrieve Available Entity Type Information

5.7.7.1 Description

This operation allows retrieving detailed entity type information about a specified NGSI-LD entity type for which entity
instances exist within the NGSI-LD system. The detailed representation includes the type name (as short name if
available in the provided @context), the count of available entity instances and details about attributes that existing
instances of this entity type have, including their name (as short name if available in the provided @context) and a list
of types the attribute can have (e.g. Property, Relationship or GeoProperty).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)151

5.7.7.2 Use case diagram

A context consumer can retrieve a detailed representation of a specified NGSI-LD entity type from the system as shown
in figure 5.7.7.2-1.

Figure 5.7.7.2-1: Retrieve Available Entity Type Information use case

5.7.7.3 Input data

• Entity type name for which detailed information is to be retrieved.

• An optional JSON-LD context.

5.7.7.4 Behaviour

• Return a JSON-LD object representing the details of the specified entity type as mandated by clause 5.2.26, for
which instances exist within the NGSI-LD system. See clause 5.7.11 for architecture-related implementation
aspects.

5.7.7.5 Output data

A JSON-LD object representing the details of the specified entity type as mandated by clause 5.2.26.

5.7.8 Retrieve Available Attributes

5.7.8.1 Description

This operation allows retrieving a list of NGSI-LD attributes that belong to entity instances existing within the
NGSI-LD system.

5.7.8.2 Use case diagram

A context consumer can retrieve a list of NGSI-LD attributes from the system as shown in figure 5.7.8.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)152

Figure 5.7.8.2-1: Retrieve Available Attributes use case

5.7.8.3 Input data

• An optional JSON-LD context.

5.7.8.4 Behaviour

• Return a JSON-LD object representing the list of attributes as mandated by clause 5.2.27 that belong to entity
instances existing within the NGSI-LD system. See clause 5.7.11 for architecture-related implementation
aspects.

5.7.8.5 Output data

A JSON-LD object representing the list of available attributes as mandated by clause 5.2.27.

5.7.9 Retrieve Details of Available Attributes

5.7.9.1 Description

This operation allows retrieving a list with a detailed representation of NGSI-LD attributes that belong to entity
instances existing within the NGSI-LD system. The detailed representation includes the attribute name (as short name if
available in the provided @context) and the type names for which entity instances exist that have the respective
attribute.

5.7.9.2 Use case diagram

A context consumer can retrieve a list with a detailed representation of NGSI-LD attributes from the system as shown in
figure 5.7.9.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)153

Figure 5.7.9.2-1: Retrieve Details of Available Attributes use case

5.7.9.3 Input data

• An optional JSON-LD context.

5.7.9.4 Behaviour

• Return a list of JSON-LD objects representing the details of available attributes as mandated by clause 5.2.28
(restricted to the elements id, type, attributeName and typeNames) that belong to entity instances existing
within the NGSI-LD system. See clause 5.7.11 for architecture-related implementation aspects.

5.7.9.5 Output data

A list of JSON-LD objects representing the details of available attributes as mandated by clause 5.2.28 (restricted to the
elements id, type, attributeName and typeNames).

5.7.10 Retrieve Available Attribute Information

5.7.10.1 Description

This operation allows retrieving detailed attribute information about a specified NGSI-LD attribute that belongs to
entity instances existing within the NGSI-LD system. The detailed representation includes the attribute name (as short
name if available in the provided @context) and the type names for which entity instances exist that have the respective
attribute, a count of available attribute instances and a list of types the attribute can have (e.g. Property, Relationship or
GeoProperty).

5.7.10.2 Use case diagram

A context consumer can retrieve a list with a detailed representation of NGSI-LD attributes from the system as shown in
figure 5.7.10.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)154

Figure 5.7.10.2-1: Retrieve Available Attribute Information use case

5.7.10.3 Input data

• Name of the attribute for which detailed information is to be retrieved.

• An optional JSON-LD context.

5.7.10.4 Behaviour

• Return a JSON-LD object representing the details of available attributes as mandated by clause 5.2.28 that
belong to entity instances existing within the NGSI-LD system. See clause 5.7.11 for architecture-related
implementation aspects.

5.7.10.5 Output data

A JSON-LD object representing the details of available attributes as mandated by clause 5.2.28.

5.7.11 Architecture-related aspects of retrieval of entity types and attributes

Retrieving information about available types or attributes can be an expensive operation depending on the scale and
architectural design decisions of the NGSI-LD system. This is in particular the case for retrieving the information about
all available entity types and attributes related to all entity information available in an NGSI-LD system. Especially in
the case of distributed architecture (clause 4.3.3) and federated architecture (clause 4.3.4) checking all entities can be so
expensive that it can become practically infeasible.

Therefore, implementations may only take into account only information that is available or can be derived from a local
datastore and the Context Registry, when implementing the retrieval of available entity types and attributes, as
described in clauses 5.7.5, 5.7.6, 5.7.7, 5.7.8, 5.7.9 and 5.7.10. Context registrations do not always reflect which entity
instances are actually available from a Context Source at a particular point in time, but only which entity instances are
possibly available from a Context Source, thus in this case the information about available entity types and attributes is
to be interpreted as "possibly available". Also, context registrations can have different granularities, i.e. they possibly
only contain entity type or attribute information, and thus the provided information about available entity types and
attributes is possibly incomplete as a result. In particular the attributeNames in the EntityType data structure
(clause 5.2.25), the attributeDetails in the EntityTypeInfo data structure (clause 5.2.26), and the attributeTypes and
typeNames in the Attribute data structure (clause 5.2.27) may be provided as empty arrays if the information is not
included in the respective context registration. Implementations may also provide estimates for the entity count or
attribute count instead of the accurate count.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)155

As an alternative to relying on local information only, the request can be forwarded to all Context Sources which
support the respective operation according to the Context Source Registration describing them. In this case the returned
lists are merged with the local list of entity types before returning them. This approach is more expensive but leads to a
more accurate result.

5.8 Context Information Subscription

5.8.1 Create Subscription

5.8.1.1 Description

This operation allows creating a new subscription.

5.8.1.2 Use case diagram

A context subscriber can create a subscription to receive context updates within an NGSI-LD system as shown in
figure 5.8.1.2-1.

Figure 5.8.1.2-1: Create subscription use case

5.8.1.3 Input data

• A data structure (represented in JSON-LD) conforming to the Subscription data type as mandated by
clause 5.2.12.

5.8.1.4 Behaviour

• If the data types, cardinalities and restrictions expressed by clause 5.2.12 are not met, then an error of type
BadRequestData shall be raised.

• If the NGSI-LD endpoint already knows about this Subscription, as there is an existing Subscription whose id
(URI) is equivalent, an error of type AlreadyExists shall be raised.

• If the subscription document does not include a Subscription identifier, a new identifier (URI) shall be
automatically generated by the implementation.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)156

• Then, implementations shall add a new Subscription. The parameters of the created Subscription shall be
configured as follows:

- The Subscription expiration date shall be equal to the value of the expiresAt member. If the expiration
timestamp provided represents a moment before the current date and time, then an error of type
BadRequestData shall be raised. If there is no expiresAt member the Subscription shall be considered as
perpetual.

- If the value of the isActive field is not included or is true then the initial status of the Subscription shall
be set to "active".

- If the value of the isActive field is false, then the initial status of the Subscription shall be set to "paused".

- If present, the subscribed entities shall be those matching the conditions expressed under the
EntitySelector, as defined in clause 5.2.33.

- Watched Attributes shall be those Attributes (subject to clause 5.5.7 Term to URI expansion) pertaining
to the subscribed entities (if present) and conveyed through the watchedAttributes member. Watched
Attributes are those that trigger a new notification when they are changed. A non-present
watchedAttributes member means that all Attributes shall be watched. If no subscribed entities have been
specified, all entities with attributes matching at least one member of watchedAttributes are subscribed
to.

- The @context to be used for sending Notifications related to this Subscription shall be the one specified
in the jsonldContext field. If not present, the jsonldContext field shall be initialized with the @context
applicable for the Subscription (if @context is also not present in the Subscription, see clause 5.5.5).
When the remote JSON-LD @context referenced by the jsonldContext field is not available
implementations shall raise an error of type LdContextNotAvailable. If the remote JSON-LD @context
referenced by the jsonldContext field is invalid, implementations shall raise an error of type
BadRequestData.

- Based on the content of the Subscription, a Context Source Registration Subscription shall be created
(clause 5.11.2). The mapping of the id of the Subscription to the returned subscriptionId of the Context
Source Registration Subscription shall be stored to enable updating or deleting the Context Source
Registration Subscription in case of changes to the Subscription.

• If the subscription defines a timeInterval member, a Notification shall be sent periodically, when the time
interval (in seconds) specified in such value field is reached, regardless of Attribute changes.

• If timeInterval is not defined, whenever there is a change in the watched Attribute nodes (Properties or
Relationships) of the concerned Entities, implementations shall post a new Notification as per the rules defined
by clause 5.8.6.

• Each time a Context Source Notification with the subscriptionId of the previously created Context Source
Registration Subscription is received, implementations shall do the following:

- For any exclusive, redirect and inclusive Context Source Registration received as part of the
notification, implementation shall do the following depending on the triggerReason:

 If the triggerReason is "newlyMatching" and the Context Source Registration indicates support for
the Create Subscription operation, a copy of the original Subscription shall be reduced to what is
matched by the registration information and forwarded to the Context Source as a new Subscription
where the notification endpoint is set to that of the local Broker. The mapping of the received
subscriptionId with the own Subscription identifier is stored to enable forwarding received
notifications to the original subscriber. In addition, a mapping of the id of the Context Source
Registration to the received subscriptionId is stored, to enable updating or deleting the subscription
in case of changes.

 If the triggerReason is "updated" and the Context Source Registration indicates support for the
Update Subscription operation, an update of the original Subscription, reduced to what is matched
by the registration information, shall be forwarded to the Context Source with the subscriptionId
related to the Context Source Registration. As an optimization, an implementation may keep the
originally forwarded Context Source Registration and compare with the new one to only forward
the update, if there was a relevant change.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)157

 If the triggerReason is "noLongerMatching" and the Context Source Registration indicates support
for the delete Subscription operation, a delete Subscription shall be forwarded to the Context
Source with the subscriptionId related to the Context Source Registration.

• Implementations shall ensure that, when the Subscription expiration date is due, the status of the Subscription
changes automatically to expired, so that notifications will no longer be sent.

5.8.1.5 Output data

• One subscription identifier (id) of type string, representing a URI. Implementations shall ensure that
subscription identifiers are unique within an NGSI-LD system.

5.8.2 Update Subscription

5.8.2.1 Description

This operation allows updating an existing subscription.

5.8.2.2 Use case diagram

A context subscriber can update an existing subscription within an NGSI-LD system as shown in figure 5.8.2.2-1.

Figure 5.8.2.2-1: Update subscription use case

5.8.2.3 Input data

• Subscription identifier (URI), the target subscription.

• A JSON-LD document representing a Subscription Fragment.

5.8.2.4 Behaviour

• If the Subscription id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the NGSI-LD System does not know about the target Subscription, because there is no existing Subscription
whose id (URI) is equivalent, an error of type ResourceNotFound shall be raised.

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)158

• If the data types and restrictions expressed by clause 5.2.12 are not met by the Subscription Fragment, then an
error of type BadRequestData shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• If the jsonldContext field is present and the referenced JSON-LD @context is not available, implementations
shall raise an error of type LdContextNotAvailable. If the referenced JSON-LD @context is invalid,
implementations shall raise an error of type BadRequestData.

• Then, implementations shall modify the target Subscription as mandated by clause 5.5.8.

• Finally, the following extra behaviour shall be observed when updating Subscriptions:

- If isActive is equal to true and expiresAt is not present, then status shall be updated to "active", if and
only if, the previous value of status was different than "expired".

- If isActive is equal to true and expiresAt corresponds to a DateTime in the future, then status shall be
updated to "active".

- If isActive is equal to false and expiresAt is not present, then status shall be updated to "paused", if and
only if, the previous value of status was different than "expired".

- If only expiresAt is included and refers to a DateTime in the future, then status shall be updated to
"active", if and only if the previous value of status was "expired".

- If expiresAt is included but referring to a DateTime in the past, then a BadRequestData error shall be
raised, regardless the value of isActive.

- Based on the mapping of the Subscription to its respective Context Source Registration Subscription (see
clause 5.8.1.4), that Context Source Registration Subscription shall be updated (clause 5.11.3).

5.8.2.5 Output data

None.

5.8.3 Retrieve Subscription

5.8.3.1 Description

This operation allows retrieving an existing subscription.

5.8.3.2 Use case diagram

A Context Subscriber can retrieve a specific subscription from an NGSI-LD system as shown in figure 5.8.3.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)159

Figure 5.8.3.2-1: Retrieve subscription use case

5.8.3.3 Input data

• Id (URI) of the subscription to be retrieved (target subscription).

5.8.3.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the identifier provided does not correspond to any existing subscription in the system then an error of type
ResourceNotFound shall be raised.

• Otherwise implementations shall query the subscriptions and obtain the subscription data to be returned to the
caller.

5.8.3.5 Output data

A JSON-LD object representing the subscription details as mandated by clause 5.2.12.

5.8.4 Query Subscriptions

5.8.4.1 Description

This operation allows querying existing Subscriptions.

5.8.4.2 Use case diagram

A Context Consumer can query the existent Subscriptions from an NGSI-LD system as shown in figure 5.8.4.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)160

Figure 5.8.4.2-1: Query subscriptions use case

5.8.4.3 Input data

• A limit to the number of subscriptions to be retrieved. See clause 5.5.9.

5.8.4.4 Behaviour

• The NGSI-LD system shall list all the existing subscriptions up to the limit specified as input data. If no limit
is specified the number of subscriptions retrieved may depend on the implementation.

• Pagination logic shall be in place as mandated by clause 5.5.9.

5.8.4.5 Output data

A list (represented as a JSON array) of JSON-LD objects each one representing subscription details as mandated by
clause 5.2.12.

5.8.5 Delete Subscription

5.8.5.1 Description

This operation allows deleting an existing subscription.

5.8.5.2 Use case diagram

A context subscriber can delete a subscription within an NGSI-LD system as shown in figure 5.8.5.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)161

Figure 5.8.5.2-1: Delete subscription use case

5.8.5.3 Input data

• A subscription identifier (URI).

5.8.5.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the subscription id provided does not correspond to any existing subscription in the system then an error of
type ResourceNotFound shall be raised.

• Otherwise implementations shall delete the Subscription and no longer perform notifications concerning such
Subscription.

• Using the mapping of the own Subscription identifier to each of the subscriptionId of a subscription to a
Context Source, a delete Subscription shall be forwarded to each such Context Source, if the delete
Subscription operation is supported as indicated in the corresponding Context Source Registration:

- Based on the mapping of the Subscription to its respective Context Source Registration Subscription (see
clause 5.8.1.4), that Context Source Registration Subscription shall be deleted (clause 5.11.6).

5.8.5.5 Output data

None.

5.8.6 Notification behaviour

A notification is a message that allows a subscriber to be aware of the changes in subscribed Entities. Implementations
shall exhibit the following behaviour:

• Notifications shall only be sent if and only if the status of the corresponding subscription
("subscription.status") is active, i.e. not paused nor expired.

• If a Subscription defines a timeInterval member, a Notification shall be sent periodically, when the time
interval (in seconds) specified in such value field is reached, regardless of Attribute changes. The notification
message shall include all the subscribed Entities that match the query, geoquery and Scope query conditions. If
none of query, geoquery and Scope query are defined, then all subscribed Entities shall be included.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)162

• If a Subscription does not define a timeInterval term, the notification shall be sent whenever there is a change
in the watched Attributes. An Attribute is considered to change when any of the members (including children)
in its corresponding JSON-LD node is updated with a value different than the existing one. The notification
message shall include all the subscribed Entities that changed and that match (as mandated by clauses 4.9 and
4.10) the query and geoquery conditions. If query or geoquery are not defined then all subscribed Entities that
changed shall be included. If, for an Entity, there are multiple instances of the GeoProperty on which the
geoquery is based, it is sufficient if any of these instances meets the geospatial restrictions. Finally, if a
Context Source filter is defined, then only the subscribed Entities whose origin Context Source matches the
referred filter shall be included.

• If a Notification with a subscriptionId is received that has a mapping to a local Subscription identifier, the
Notification shall be forwarded to the Notification endpoint specified in the local Subscription, using this local
Subscription identifier instead of the subscriptionId received.

• A Notification shall be sent as follows:

- The structure of the notification message shall be as mandated by clause 5.3.1.

- The @context to be used is the one specified in the jsonldContext field of the corresponding
Subscription.

- The Attributes included (Properties or Relationships) shall be those specified by the
notification.attributes member in the Subscription data type (clause 5.2.12). Term to URI expansion shall
be observed (clause 5.5.7). The absence of the notification.attributes member of a Subscription means
that all Attributes shall be included. If the notification was triggered by the deletion of an Entity and the
notification.showChanges member is not set to true, only the deletedAt system property shall be
provided. In case notification.sysAttrs is set to true, also createdAt and modifiedAt shall be provided.

- If an Attribute has been deleted, only the name of the attribute as key and the URI "urn:ngsi-ld:null" as
value shall be provided, unless more information is required. The latter is the case, if:

 a datasetId needs to be provided;

 the notification.sysAttrs is set to true and thus the system generated sub-attributes have to be
provided;

 notification.showChanges is set to true and thus a previous value or object has to be provided.

 In all such cases, a JSON object with all the required information is provided, where the value or the
object is set to the URI "urn:ngsi-ld:null" respectively or, in case of a Language Property, the
languageMap is set to {"@none": "urn:ngsi-ld:null"}.

- If the notification.format member value is "keyValues" then a simplified representation of the entities (as
mandated by clause 4.5.3) shall be provided. Otherwise the normalized format shall be used.

- A Notification shall be sent (as mandated by each concrete binding and including any optional
endpoint.receiverInfo defined by clause 5.2.22) to the endpoint specified by the endpoint.uri member of
the notification structure defined by clause 5.2.14. The Notification content shall be JSON by default.
However, this can be changed to JSON-LD or GeoJSON by means of the endpoint.accept member.

- The notification.timesSent member shall be incremented by one.

- The notification.lastNotification member shall be updated with a timestamp representing the current date
and time.

- If the response to the notification request is 200 OK then implementations shall:

 Update notification.lastSuccess with a timestamp representing the current date and time.

 Update notification.status to "ok".

- If the response to the notification request is different than 200 OK then implementations shall:

 Update notification.lastFailure with a timestamp representing the current date and time.

 Update notification. status to "failed".

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)163

5.9 Context Source Registration

5.9.1 Introduction

As described in clause 5.2.9, Context Source Registrations have a similar structure as Entities and are generally handled
in the same way. However, there are some aspects that are specific to Registrations, in particular with respect to the
handling of required properties. Thus, the operation descriptions for Registrations reference the respective operations
for Entities and in addition specify any deviations and additions that are necessary for handling Context Source
Registrations.

Context Source Registrations either contain information about Context Sources providing the latest information or
about Context Sources providing temporal information, but not both. Context Sources that can provide both thus have to
use two separate Context Source Registrations. If no temporal query is present, only Context Source Registrations for
Context Sources providing latest information are returned, i.e. those which do not specify time intervals used for
temporal queries. If a temporal query is present in a request for Context Source Registrations, only those Context
Source Registrations that have a matching time interval are returned.

5.9.2 Register Context Source

5.9.2.1 Description

This operation allows registering a context source within an NGSI-LD system.

5.9.2.2 Use case diagram

A context provider can register one or more context sources within an NGSI-LD system as shown in figure 5.9.2.2-1.

Figure 5.9.2.2-1: Register context source use case

5.9.2.3 Input data

A data structure conforming to the CSourceRegistration data type as mandated by clause 5.2.9.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)164

5.9.2.4 Behaviour

Implementations shall generally exhibit the behaviour described in clause 5.6.1.4, but instead of any type of entities
only Context Source Registrations can be provided. Deviating from clause 5.6.1.4, implementations shall exhibit the
following behaviour:

• If the data types and restrictions expressed by clause 5.2.9 are not met by the Context Source Registration,
then an error of type BadRequestData shall be raised.

• If a "contextSourceInfo" array is defined and the restrictions expressed by clause 4.3.3.6 are not met by the
Context Source Registration, then an error of type BadRequestData shall be raised.

• If the Context Source to be registered has its mode property defined as exclusive, the following additional
restrictions apply:

- If an exclusive or redirect Context Source Registration already matches against the Entity id (URI) and
any of the Attributes defined in the registration, an error of type Conflict shall be raised.

- If an Entity already exists for the supplied Entity id (URI) and the existing Entity contains any of the
Attributes defined in the registration, an error of type Conflict shall be raised.

• If the Context Source to be registered has its mode property defined as redirect, the following additional
restriction applies:

- If an existing Entity already matches the Context Source Registration, an error of type Conflict shall be
raised.

• If the Context Source to be registered has its mode property defined as auxiliary, the following additional
restriction applies:

- If the operations property is not defined as one of: "retrieveOps", "retrieveEntity" or "queryEntity", an
error of type BadRequestData shall be raised.

• If the property expiresAt is not defined then the Context Source Registration shall last forever (or until it is
deleted from the system).

• If expiresAt is a date and time in the past, an error of type BadRequestData shall be raised.

• If expiresAt is a date and time in the future, implementations shall delete the Registration when this point in
time is reached.

• If the registration identifier, id, is contained in the Context Source Registration, implementations have to check
whether this is a valid identifier that conforms to its policies and is unique within its scope. Otherwise, it can
replace the 'id' with a valid registration identifier.

• Implementations shall add the concerned Context Source Registration and return an 'ok' response together with
a registration identifier (id).

• This id shall be used if NGSI-LD clients need to manage the registration later.

5.9.2.5 Output data

One registration identifier (id) of type string, representing a URI. Implementations shall ensure that registration
identifiers are unique within an NGSI-LD system.

5.9.3 Update Context Source Registration

5.9.3.1 Description

This operation allows updating a Context Source Registration in an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)165

5.9.3.2 Use case diagram

A Context Provider can update a Context Source Registration in an NGSI-LD system as shown in figure 5.9.3.2-1.

Figure 5.9.3.2-1: Update context source registration use case

5.9.3.3 Input data

• Context Source Registration identifier (URI), the target Context Source Registration.

• A JSON-LD document representing a Context Source Registration Fragment (clause 5.4).

5.9.3.4 Behaviour

• If the target Context Source Registration id (id) is not present or it is not a valid URI, then an error of type
BadRequestData shall be raised.

• If a "contextSourceInfo" array is defined and the restrictions expressed by clause 4.3.3.6 are not met by the
Context Source Registration, then an error of type BadRequestData shall be raised.

• If the NGSI-LD System does not know about the target Context Source Registration, because there is no
existing Context Source Registration whose id (URI) is equivalent, an error of type ResourceNotFound shall
be raised.

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• If the data types and restrictions expressed by clause 5.2.9 are not met by the Context Source Registration
Fragment, then an error of type BadRequestData shall be raised.

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• If the Context Source Registration to be updated has its mode property defined as exclusive, the following
additional restrictions apply:

- If an exclusive or redirect Context Source Registration already matches against the Entity id (URI) and
any of the Attributes defined in the registration, an error of type Conflict shall be raised.

- If an Entity already exists for the supplied Entity id (URI) and the existing Entity contains any of the
Attributes defined in the registration, an error of type Conflict shall be raised.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)166

• If the Context Source Registration to be updated has its mode property defined as redirect, the following
additional restriction applies:

- If an existing Entity already matches the Context Source Registration, an error of type Conflict shall be
raised.

• If the Context Source to be updated has its mode property defined as auxiliary, the following additional
restriction applies:

- If the operations property is not defined as one of: "retrieveOps", "retrieveEntity" or "queryEntity", an
error of type BadRequestData shall be raised.

• Then, implementations shall modify the target Context Source Registration as mandated by clause 5.5.8.

5.9.3.5 Output data

None.

5.9.4 Delete Context Source Registration

5.9.4.1 Description

This operation allows deleting a Context Source Registration from an NGSI-LD system.

5.9.4.2 Use case diagram

A context provider can delete a context source registration from an NGSI-LD system as shown in figure 5.9.4.2-1.

Figure 5.9.4.2-1: Delete context source registration use case

5.9.4.3 Input data

Registration identifier (URI) of the context source registration to be deleted (target registration).

5.9.4.4 Behaviour

• If the target context source registration id is not present or it is not a valid URI, then an error of type
BadRequestData shall be raised.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)167

• If the NGSI-LD endpoint does not know about the target context source registration, because there is no
existing context source registration whose id (URI) is equivalent, then an error of type ResourceNotFound
shall be raised.

• Otherwise the context source registration shall be removed.

5.9.4.5 Output data

None.

5.10 Context Source Discovery

5.10.1 Retrieve Context Source Registration

5.10.1.1 Description

This operation allows retrieving a specific context source registration from an NGSI-LD system.

5.10.1.2 Use case diagram

A context consumer or a context provider can retrieve a specific context source registration from an NGSI-LD system
as shown in figure 5.10.1.2-1.

Figure 5.10.1.2-1: Retrieve context source registration use case

5.10.1.3 Input data

• Context source registration identifier (id) of the context source registration to be retrieved (target registration).

5.10.1.4 Behaviour

• If the context source registration id (id) is not present or it is not a valid URI, then an error of type
BadRequestData shall be raised.

• If the NGSI-LD endpoint does not know about the target context source registration, because there is no
existing context source registration whose id (URI) is equivalent, then an error of type ResourceNotFound
shall be raised.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)168

• Term to URI expansion of Attribute names shall be observed as mandated by clause 5.5.7.

• Otherwise return a JSON-LD object representing the Context Source Registration as mandated by clause 5.2.9.

5.10.1.5 Output data

A JSON-LD object representing the target context source registration as mandated by clause 5.2.9.

5.10.2 Query Context Source Registrations

5.10.2.1 Description

This operation allows discovering context source registrations from an NGSI-LD system. The behaviour of the
discovery of context source registrations differs significantly from the querying of entities as described in clause 5.7.2.
The approach is that the client submits a query for entities as described in clause 5.7.2, but instead of receiving the
Entity information, it receives a list of Context Source Registrations describing Context Sources that possibly have
some of the requested Entity information. This means that the requested Entities and Attributes are matched against the
'information' property as described in clause 5.12.

If no temporal query is present, only Context Source Registrations for Context Sources providing latest information, i.e.
without specified time intervals, are considered. If a temporal query is present only Context Source Registrations with
matching time intervals, i.e. observationInterval or managementInterval, are considered.

5.10.2.2 Use case diagram

A context consumer can discover context source registrations that may be able to provide (part of) the context
information specified in the query from an NGSI-LD system as shown in figure 5.10.2.2-1.

Figure 5.10.2.2-1: Discover context source registrations use case

5.10.2.3 Input data

• A reference to a JSON-LD @context (optional).

• A selector of Entity types as specified by clause 4.17. Both type name (short hand string) and fully qualified
type name (URI) are allowed (optional).

• A list (one or more) of Entity identifiers (optional).

• A list (one or more) of Attribute names (called query projection attributes) (optional).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)169

• An id pattern as a regular expression (optional).

• An NGSI-LD query (to filter out Entities by Attribute values, used here to identify relevant attributes) as per
clause 4.9 (optional).

• An NGSI-LD geoquery (to filter out Entities by spatial relationships, used here to identify relevant
GeoProperties and for geographical scoping) as per clause 4.10 (optional).

• In the case of GeoJSON representation:

- The name of the GeoProperty attribute to use as the geometry for the GeoJSON representation as
mandated by clause 4.5.16 (optional).

- A datasetId specifying which instance of the value is to be selected if the GeoProperty value has
multiple instances as defined by clause 4.5.5 (optional).

• An NGSI-LD temporal query as per clause 4.11 (optional).

• An NGSI-LD context source query as per clause 4.9 (optional).

• A NGSI-LD Scope query as mandated by clause 4.19 (optional).

• A limit to the number of Context Source Registrations to be retrieved. See clause 5.5.9.

• A specified language filter as per clause 4.15 (optional).

It is not possible to retrieve a set of context source registrations related to entities by only specifying desired entity
identifiers, without further specifying restrictions on the entities' types or attributes, either explicitly, via lists of Entity
types or of Attribute names, or implicitly, within an NGSI-LD query or geoquery.

5.10.2.4 Behaviour

• Execute the behaviour defined in clause 5.5.4 on JSON-LD validation.

• At least one of the following input data shall be provided:

a) selector of Entity Types;

b) list of Attribute names;

c) NGSI-LD query;

d) NGSI-LD geoquery.

 If none of them is provided, then an error of type BadRequestData shall be raised (too wide query). Attributes
specified in NGSI-LD query or NGSI-LD geoquery shall be used for matching RegistrationInfo elements in the
same way as the attributes in the list of Attribute names.

• If the list of Entity identifiers includes a URI which it is not valid, or the query, geoquery or temporal query
are not syntactically valid (as per clauses 4.9, 4.10 and 4.11) an error of type BadRequestData shall be raised.

• Term to URI expansion of type and Attribute names shall be performed, as mandated by clause 5.5.7.

• Otherwise, implementations shall run a query that shall return context source registrations that meet all the
applicable conditions:

- If present, the entity specification in the query consisting of a combination of entity type selector and
entity id/entity id pattern (optional) matches an EntityInfo specified in a RegistrationInfo of the
information property in a context source registration. If there is no EntityInfo specified in the
RegistrationInfo, the entity specification is considered matching. This matching is further described in
clause 5.12.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)170

- If present, at least one Attribute name specified in the query matches one Property or Relationship in the
RegistrationInfo element of the information property in a context source registration.. If no Properties or
Relationships are specified in the RegistrationInfo, the Attribute names are considered matching. This
matching is further described in clause 5.12.

- If present, the geoquery is matched against the GeoProperty identified in the geoquery. If no
GeoProperty is specified in the geoquery, the default property is 'location'. The geoquery matches the
GeoProperty specified in the Context Source Registration, if the location directly matches or if the
location possibly contains locations that would match the geoquery.

- If no temporal query is present, only Context Source Registrations for Context Sources providing latest
information, i.e. without specified time intervals, are considered.

- If a temporal query is present, only Context Source Registrations with specified time intervals,
i.e. observationInterval or managementInterval are considered. If the timeproperty is observedAt or no
timeproperty is specified in the temporal query (default: observedAt), the temporal query is matched
against the observationInterval (if present). If the timeproperty is createdAt, modifiedAt or deletedAt, the
temporal query is matched against the managementInterval (if present). If the relevant interval is not
present, there is no match:

 The semantics of the match is that the "timeAt" in the case of the "before" and "after" relation is
contained in or is an endpoint of a time period included in the specified time interval. In the case of
the "between" relation there is a match if there is an overlap between the interval specified by the
"timeAt" and "endTimeAt" and the specified time interval.

- If present, the conditions specified by the context source query filter match the respective Context Source
Properties (as mandated by clause 4.9).

- If present, the Scope query (as mandated by clause 4.19) is matched against the scope property.

• Pagination logic shall be in place as mandated by clause 5.5.9.

5.10.2.5 Output data

A JSON-LD array of matching Context Source Registrations as defined by clause 5.2.9. Instead of the original Context
Source Registration which may contain a lot of irrelevant information, implementations should return filtered Context
Source Registrations, which only contain context source registration information relevant for the query, in particular
only matching RegistrationInfo elements.

5.11 Context Source Registration Subscription

5.11.1 Introduction

Context Source Registration Subscriptions in general work like context information subscriptions; however, instead of
resulting in notifications with context information, the notifications contain Context Source Registrations describing
Context Sources that can potentially provide the requested context information. If no temporal query is present, only
Context Source Registrations for Context Sources providing latest information, i.e. without such time intervals, are
considered. If a temporal query is present only Context Source Registrations with matching time intervals, i.e.
observationInterval or managementInterval, are considered.

5.11.2 Create Context Source Registration Subscription

5.11.2.1 Description

This operation allows creating a new Context Source Registration Subscription.

5.11.2.2 Use case diagram

A Context Source subscriber can subscribe to a new Context Source Registration as shown in figure 5.11.2.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)171

Figure 5.11.2.2-1: Subscribe Context Source Registration use case

5.11.2.3 Input data

• A data structure (represented in JSON-LD) conforming to the Subscription data type as mandated by
clause 5.2.12.

5.11.2.4 Behaviour

• The behaviour shall be as described in clause 5.8.1.4, restricted to the local case, with the following
exceptions:

- If an exclusive Context Source Registration is being created:

 If an Entity matching the Registration already exists for this id (URI) and attributes, an error of
type Conflict shall be raised.

 If an exclusive Context Source Registration already exists for this id (URI) and attributes, an error
of type AlreadyExists shall be raised.

- If a redirect Context Source Registration is being created and an Entity matching the Registration
already exists for this id (URI) and attributes, an error of type Conflict shall be raised.

- If all checks described in clause 5.8.1.4 pass, implementations shall add a new Context Source
Registration Subscription. The parameters of the created subscription shall be configured as described in
clause 5.8.1.4.

- Instead of directly matching the entities and watched Attributes from the Subscription with the Context
Source registrations, the entities specified in the subscription, the watched Attributes and the Attributes
specified in the notification parameter are matched against the respective information property of the
Context Source registrations. If either the watched Attributes or the Attributes in the notification are not
present or of length 0, all possible Attributes (if present in the Context Source Registrations) for
matching entities match. This matching is further described in clause 5.12.

- If present, the geoquery in the geoQ element is matched against the GeoProperty of the subscription
identified in the geoQ element. If no GeoProperty is specified in the geoquery, the default property is
'location'. The geoquery matches the GeoProperty specified in the Context Source Registration, if the
location directly matches or if the location possibly contains locations that would match the geoquery.

- If no temporal query is present in the temporalQ element, only Context Source Registrations for Context
Sources providing latest information, i.e. without specified time intervals for observationInterval or
managementInterval, are considered.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)172

- If a temporal query in the temporalQ element is present, only Context Source Registrations with
specified time intervals are considered. If the timeproperty is observedAt or no timeproperty is specified
in the temporal query (default: observedAt), the temporal query is matched against the
observationInterval (if present). If the timeproperty is createdAt, modifiedAt or deletedAt, the temporal
query is matched against the managementInterval (if present). If the relevant interval is not present, there
is no match:

 The semantics of the match is that the "timeAt" in the case of the "before" and "after" relation is
contained in or is an endpoint of a time period included in the specified time interval. In the case of
the "between" relation there is a match if there is an overlap between the interval specified by the
"timeAt" and "endTimeAt" and the specified time interval.

- If present, the conditions specified by the context source filter match the respective Context Source
Properties (as mandated by clause 4.9).

• If the subscription defines a "timeInterval" term, a CSourceNotification (clause 5.3.2) with all matching
Context Source Registrations shall be sent periodically, initially on subscription and when the time interval (in
seconds) specified in such value field is reached, independent of any changes to the set of Context Source
registrations.

• If "timeInterval" is not defined, initially on subscription and whenever there is a change of a matching Context
Source Registration (creation, update, deletion), implementations shall post a new CSourceNotification to the
endpoint specified in the notification parameters informing about this change by providing the Context Source
Registration(s) together with the appropriate trigger reason in the "triggerReason" member.

• If present, the conditions specified by the context source query match the respective Context Source Properties
(as mandated by clause 4.9).

• If present, the Scope query (as mandated by clause 4.19) is matched against the scope property.

5.11.2.5 Output data

One subscription identifier (id) of type string, representing a URI. Implementations shall ensure that subscription
identifiers are unique within an NGSI-LD system.

5.11.3 Update Context Source Registration Subscription

5.11.3.1 Description

This operation allows updating an existing Context Source Registration Subscription.

5.11.3.2 Use case diagram

A context source subscriber can update a Context Source Registration Subscription as shown in figure 5.11.3.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)173

Figure 5.11.3.2-1: Update Context Source Registration Subscription use case

5.11.3.3 Input data

• Subscription identifier (URI), the target Context Source Registration Subscription.

• A JSON-LD document representing a Subscription Fragment.

5.11.3.4 Behaviour

• If the Subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the data types and restrictions expressed by clause 5.2.12 are not met by the Subscription Fragment, then an
error of type BadRequestData shall be raised.

• Then, implementations shall modify the target subscription as mandated by clause 5.5.8.

• Finally, send a notification with all currently matching Context Source Registrations.

5.11.3.5 Output data

None.

5.11.4 Retrieve Context Source Registration Subscription

5.11.4.1 Description

This operation allows retrieving an existing Context Source Registration Subscription.

5.11.4.2 Use case diagram

A Context Source subscriber can retrieve a specific Context Source Registration Subscription as shown in
figure 5.11.4.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)174

Figure 5.11.4.2-1: Retrieve Context Source Registration Subscription use case

5.11.4.3 Input data

• Id (URI) of the subscription to be retrieved (target subscription).

5.11.4.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the identifier provided does not correspond to any existing subscription in the system then an error of type
ResourceNotFound shall be raised.

• Otherwise implementations shall query the Context Source Registration Subscriptions and obtain the
subscription data to be returned to the caller.

5.11.4.5 Output data

A JSON-LD object representing the subscription details as mandated by clause 5.2.12.

5.11.5 Query Context Source Registration Subscriptions

5.11.5.1 Description

This operation allows querying existing Context Source Registration Subscriptions.

5.11.5.2 Use case diagram

A context source subscriber can query all existing Context Source Registration Subscriptions as shown in
figure 5.11.5.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)175

Figure 5.11.5.2-1: Query Context Source Registration Subscriptions use case

5.11.5.3 Input data

• A limit to the number of Context Source Registration Subscriptions to be retrieved. See clause 5.5.9.

5.11.5.4 Behaviour

• The NGSI-LD System shall list all the existing Context Source Registration Subscriptions.

• Pagination logic shall be in place as mandated by clause 5.5.9.

5.11.5.5 Output data

A list (represented as a JSON array) of JSON-LD objects each one representing subscription details as mandated by
clause 5.2.12.

5.11.6 Delete Context Source Registration Subscription

5.11.6.1 Description

This operation allows deleting an existing Context Source Registration Subscription.

5.11.6.2 Use case diagram

A context source subscriber can delete a Context Source Registration Subscription as shown in figure 5.11.6.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)176

Figure 5.11.6.2-1: Delete Context Source Registration Subscriptions use case

5.11.6.3 Input data

• A subscription identifier (URI).

5.11.6.4 Behaviour

• If the subscription Id is not present or it is not a valid URI, then an error of type BadRequestData shall be
raised.

• If the subscription id provided does not correspond to any existing subscription in the system then an error of
type ResourceNotFound shall be raised.

• Otherwise implementations shall delete the Context Source Registration Subscription and no longer perform
notifications concerning that Subscription.

5.11.6.5 Output data

None.

5.11.7 Notification behaviour

A Context Source Notification is a message that allows a subscriber to be aware of the changes in the set of Context
Source Registrations describing Context Sources that can potentially provide the requested context information.
Implementations shall exhibit the behaviour described in clause 5.8.6 with the following exceptions:

• If a subscription defines a "timeInterval" member, a CSourceNotification (clause 5.3.2) shall be sent on initial
subscription and periodically, when the time specified time interval (in seconds) has elapsed, regardless of any
changes to the set of context source registrations. The CSourceNotification message shall include all the
Context Source Registrations whose information property matches the entities and watched Attributes or
Attributes specified in the notification parameter and, if present, have a matching geoquery. If either the
watched Attributes or the Attributes in the notification are not present or of length 0, all possible Attributes (if
present in the Context Source Registrations) for fitting entities match.

• If a subscription does not define a "timeInterval" term, the csource notification shall be sent on initial
subscription and whenever there is a change in a matching csource registration. Such a change may be
triggered by the creation of a new matching csource registration, the update of a csource registration (whether
matching before the update, after the update or in both cases) or the deletion of a matching csource
registration. The notification message shall include the matching csource registration(s) together with the
appropriate trigger reason in the "triggerReason" member.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)177

• Instead of providing the original Context Source Registration which may contain a lot of irrelevant
information, implementations should return filtered Context Source Registrations, which only contain context
source registration information relevant for the subscription, in particular only matching RegistrationInfo
elements.

• A csource notification shall be sent as follows:

- The structure of the csource notification message shall be as mandated by clause 5.3.2.

- A csource notification shall be sent to the "endpoint".

- The "notification.timesSent" member shall be incremented by one.

- The "notification.lastNotification" member shall be updated with the current timestamp.

- If the notification is sent successfully:

 Update "notification.lastSuccess" with the current timestamp.

- If the notification is not sent successfully:

 Update "notification.lastFailure" with the current timestamp.

 Update the subscription "status" to "failed".

5.12 Matching Context Source Registrations
When querying Context Source Registrations as described in clause 5.10.2 and subscribing to Context Source
Registrations as described in clause 5.11.2, the Entities and/or Attributes specified in the request have to be matched
against the set of Context Source Registrations, extracting the matching ones. This clause describes this matching.

The relevant specification information in the query for Context Source Registrations are the selector of Entity Types (if
present), the list of Entity identifiers (if present), the id pattern (if present) and the list of Attribute names (if present). In
the case of subscriptions to context source registrations, it is the Entities as specified in the array of type EntitySelector
in the Subscription, the watchedAttributes element of the Subscription and the attributes specified as part of the
NotificationParams element of the Subscription. If the attributes in the NotificationParams element are empty or not
present, the matching is done as if no attribute identifiers have been specified, otherwise the combination of the
watchedAttributes and the attributes in the NotificationParams element are used as the specified attribute identifiers for
the matching.

Even though the way relevant Entities are specified differs in queries and subscriptions, they consist of the same
information, so for the purpose of this clause, the specification of Entity Types or Attributes refers to the relevant
elements for matching, i.e. Entity Types, Entity identifiers, id pattern and Attribute names. A specification of Entity
Types or Attributes shall contain at least one of:

a) selector of Entity Types; or

b) list of Attribute names.

A specification of Entity Types or Attributes matches a Context Source Registration if at least one of the
RegistrationInfo elements in the information element matches. An Entity specification matches a RegistrationInfo if the
following conditions hold:

• If present, the selector of Entity Types, Entity identifiers and id pattern match at least one of the EntityInfo
elements of the RegistrationInfo (see below).

• If present, the Attribute identifiers match the combination of Properties and Relationships specified in the
RegistrationInfo (see below).

An Entity specification consisting of selector of Entity Types, Entity identifiers and id pattern matches an EntityInfo
element of the RegistrationInfo if the type selector matches the entity types in the EntityInfo element and one of the
following conditions holds:

• The EntityInfo contains neither an id nor an idPattern.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)178

• One of the specified entity identifiers matches the id in the EntityInfo.

• At least one of the specified entity identifiers matches the idPattern in the EntityInfo.

• The specified id pattern matches the id in the EntityInfo.

• Both a specified id pattern and an idPattern in the Entity Info are present (since in the general case it is not
easily feasible to determine if there can be identifiers matching both patterns).

Attribute names match the combination of Properties and Relationships if one of the following conditions hold:

• No Attribute names have been specified (as this means all Attributes are requested).

• The combination of Properties and Relationships is empty (as this means only Entities have been registered
and the Context Sources may have matching Property or Relationship instances).

• If at least one of the specified attribute names matches a Property or Relationship specified in the
RegistrationInfo.

5.13 Storing, Managing and Serving @contexts

5.13.1 Introduction

NGSI-LD Brokers optionally (see clause 4.3.5) offer the capability to store and serve @contexts to clients. The stored
@contexts may be managed by clients directly, via the APIs specified in clause 5.13. Clients can store custom user
@contexts at the Broker, effectively using the Broker as a @context server.

Moreover, in order to optimize performance, NGSI-LD Brokers may automatically store and use the stored copies of
common @contexts as a local cache, downloading them just once, thus avoiding fetching them over and over again at
each NGSI-LD request. In order for the Broker to understand if a needed @context is already in the local storage or not,
the Broker uses the URL, where the @context is originally hosted, as an identifier for it in the local storage.
Consequently, the Broker has no ability to cache @contexts that arrive to it as embedded parts within the NGSI-LD
documents, since they are not uniquely (and implicitly) identified by any URL; Brokers only cache @contexts that are
referred to by means of explicit URLs (either in the HTTP Link header or as URLs in the payload body). Thus, the
recommended best-practice, in order to exploit caching, is that clients do not embed their user @contexts into
their NGSI-LD documents; instead clients should explicitly host their user @contexts at their premises, or use the
Broker's capability to host user @contexts on their behalf.

When an external @context is stored, either explicitly upon a client's request or implicitly downloaded for caching
purposes, the NGSI-LD Broker generates a unique local @context identifier. The original @context's URL, if any, is
stored alongside the generated local id. The local id is then used for subsequent managing operations on the specific
@context, that are specified in clauses 5.13.2 to 5.13.5. Moreover, the Broker tags the entry with the current timestamp,
so that, subsequently, clients can check the timestamp before deciding whether to force a refresh of the stored copy of
the @context. This is primarily intended as a means for clients to well-behave, thus avoiding triggering continuous
refresh of a stored @context on the Broker, for fear that it is not at the latest version.

Stored @contexts are flagged as one of three kinds: "Cached", "Hosted", "ImplicitlyCreated".

• Cached:
@contexts implicitly and automatically fetched by the Broker from external URLs during normal NGSI-LD
operations are flagged as "Cached". A locally unique identifier is generated for each @context not already in
the internal storage. The downloaded content, its URL and the current time in UTC are stored alongside the
locally unique identifier. Implementations shall periodically invalidate the "Cached" @contexts. Depending on
the binding of the NGSI-LD API to a specific protocol, that specific protocol may provide explicit indications
about expiration times of cached content. In such cases, implementations shall comply with the indications
provided by the protocol. Implementations should assign a heuristic expiration time when an explicit time is
not specified. Entries flagged as "Cached" shall not be served by NGSI-LD Brokers on-demand, but
only be used as a local cache to improve performance.

• Hosted:
@contexts that are explicitly added by users are flagged as "Hosted". These entries shall be served by NGSI-
LD Brokers on-demand.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)179

• ImplicitlyCreated:
@contexts that are implicitly, but ex-novo, created by the Broker as a result of a user request are flagged as
"ImplicitlyCreated". For instance, when a client creates a subscription using an @context that is an array, and
the Broker has to notify with Content-Type application/json, then the Broker needs this @context array to be
hosted at a URL. Hence the Broker has to create a new @context that is an array, and it is going to be served
from an own URL. These entries shall be served by NGSI-LD Brokers on-demand.

5.13.2 Add @context

5.13.2.1 Description

With this operation, a client can ask the Broker to store the full content of a specific @context, by giving it to the
Broker.

5.13.2.2 Use case diagram

A client can add an @context to be stored within an NGSI-LD system as shown in figure 5.13.2.2-1.

Figure 5.13.2.2-1: Add @context use case

5.13.2.3 Input data

A JSON object that has a top-level field named @context, i.e. a JSON object representing a JSON-LD "local context".
As specified in the JSON-LD specification [2], all extra information located outside of the @context subtree in the
referenced object shall be discarded.

5.13.2.4 Behaviour

A new entry is created in the local storage and a locally unique identifier is generated for it. The JSON object
representing the client-supplied @context and the current UTC time are stored alongside the locally unique identifier.
That identifier shall be given back as a result in the output data. The entry is flagged as being of kind "Hosted".

The behaviour described in clause 5.5.4 about JSON and JSON-LD validation shall be applied in case of invalid
@context.

5.13.2.5 Output data

The locally unique identifier that identifies the @context in the Broker's internal storage.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)180

5.13.3 List @contexts

5.13.3.1 Description

With this operation a client can obtain a list of URLs that represent all of the @contexts stored in the local context store
of the Broker. Each URL can be used to download the corresponding @context, and, in case the @context's kind is
"Cached", it shall be the original URL the Broker downloaded the @context from.

In case a "details" flag is set to true, the client obtains a list of JSON objects, each representing information (metadata)
about an @context currently stored by the Broker. Each JSON object contains information about the @context's
original URL (if any), its local identifier in the Broker's storage, its kind ("Cached", "Hosted" and "ImplicitlyCreated"),
its creation timestamp, its expiry date (if "Cached"), and additional optional information.

5.13.3.2 Use case diagram

A client can list all @contexts stored within an NGSI-LD system as shown in figure 5.13.3.2-1.

Figure 5.13.3.2-1: List @contexts use case

5.13.3.3 Input data

• A kind filter indicating the kind of stored @contexts that are to be included in the output list. Currently,
possible kinds are "Cached", "Hosted" and "ImplicitlyCreated" (optional).

• A boolean details flag indicating that detailed JSON objects representing metadata about the stored @contexts
instead of simple URLs are requested (optional).

5.13.3.4 Behaviour

The Broker shall provide a URL or JSON object for each @context currently stored in the internal Broker's storage, that
match the filter. If no filter is specified, all kinds are included.

5.13.3.5 Output data

A list of URLs, or a list of resulting JSON objects containing the following fields:

• URL;

• localId;

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)181

• kind;

• timestamp;

• lastUsage [OPTIONAL];

• numberOfHits [OPTIONAL];

• extraInfo [OPTIONAL, used by implementations to report any kind of custom information].

5.13.4 Serve @context

5.13.4.1 Description

With this operation a client can obtain the full content of a specific @context (only for @contexts of kind "Hosted" or
"ImplicitlyCreated"), which is currently stored in the Broker's internal storage, or its metadata (for all kinds of stored
@contexts).

5.13.4.2 Use case diagram

A client can request the Broker to serve a specific @context stored within the NGSI-LD system as shown in
figure 5.13.4.2-1.

Figure 5.13.4.2-1: Serve @context use case

5.13.4.3 Input data

• The locally unique identifier that identifies the desired @context in the Broker's internal storage. Such unique
identifiers are obtained by the client as a result of either a "Add @context" (clause 5.13.2) API operation or of
a "List @contexts" (clause 5.13.3) API operation. For @contexts of kind "Cached" this can also be the original
URL the Broker downloaded the @context from.

• A boolean details flag indicating that a JSON object representing metadata about the @context, instead of the
full content, is requested (optional).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)182

5.13.4.4 Behaviour

• If details is set to false, or details is not present, the Broker shall give back the full content of the @context
that corresponds to the indicated local identifier, serving it from its internal storage, if the @context that
corresponds to the indicated local identifier is of kind "Hosted" or "ImplicitlyGenerated". It shall give back
OperationNotSupported error if it is of kind "Cached". It shall give back ResourceNotFound if the identifier is
not found.

• Otherwise, if details is set to true, the Broker shall give back metadata about the @context that corresponds to
the indicated local identifier. It shall give back ResourceNotFound error if the identifier is not found.

5.13.4.5 Output data

The full content of the indicated @context (or its metadata as specified in clause 5.13.3.5), or
ResourceNotFound/OperationNotSupported errors.

5.13.5 Delete and Reload @context

5.13.5.1 Description

With this operation, a client supplies a local identifier to the Broker, indicating a stored @context, that the Broker shall
remove from its storage. For @contexts of kind "Cached" this can also be the original URL the Broker downloaded the
@context from. If the entry in the local storage that corresponds to the identifier is itself an array of @contexts, this
operation will not delete the children, i.e. the @contexts in the array, but just the entry.

5.13.5.2 Use case diagram

A client can request the Broker to delete (and optionally reload) a specific @context stored within the NGSI-LD system
as shown in figure 5.13.5.2-1.

Figure 5.13.5.2-1: Delete and Reload @context use case

5.13.5.3 Input data

• The locally unique identifier that identifies the desired @context in the Broker's internal storage. For
@contexts of kind "Cached" this can also be the original URL the Broker downloaded the @context from.

• A reload boolean flag indicating that reloading of the @context shall be attempted (optional).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)183

5.13.5.4 Behaviour

• If the @context identifier is not supplied, then an error of type BadRequestData shall be raised.

• If the @context identifier does not correspond to any existing entry in the @context storage, then an error of
type ResourceNotFound shall be raised.

• If reload is true and the kind of the @context is "Cached", implementations shall try to re-download the
identified @context from its original URL, before removing it from the internal storage. If downloading fails,
or the downloaded @context is invalid according to JSON and JSON-LD validation of clause 5.5.4, then an
error of type LdContextNotAvailable shall be raised. More detailed information about the errors shall be
specified in the ProblemDetails (see IETF RFC 7807 [10]) field of the response. In case of any error, the
operation ends without removing the existing @context. Otherwise, the existing @context is replaced with the
newly downloaded one.

• If reload is true and the kind of the @context is not "Cached", implementations shall return a BadRequestData
error.

• If reload is false (or reload is not supplied), implementations shall remove from the internal storage the
@context that corresponds to the given identifier. The local identifier is used for finding the @contexts in the
internal Broker's storage. If the local identifier is not in the storage, a ResourceNotFound error shall be raised.

5.13.5.5 Output data

Void.

6 API HTTP Binding

6.1 Introduction
This clause defines the resources and operations of the NGSI-LD API. The NGSI-LD API is structured in terms of
HTTP [3], [4] verbs, request and response payload bodies.

A non-normative OAS specification [i.12] of the referred HTTP binding can be found at [i.14].

6.2 Global Definitions and Resource Structure
All resource URIs of this API shall have the following root:

• {apiRoot}/{apiName}/{apiVersion}/

NOTE 1: The apiRoot discovery process is out of the scope of the present document.

NOTE 2: The apiRoot for Context Source related aspects and the apiRoot for general Entity-related aspects can be
different, e.g. the Context Source related aspects can be implemented by a Context Registry as shown for
the distributed and federated architectures (see clause 4.3), whereas the Entity-related aspects would be
implemented by a Context Broker.

NOTE 3: The apiRoot for Context Source related aspects and the apiRoot for general Entity-related aspects can be
different than the apiRoot for temporal aspects, e.g. the temporal aspects can be implemented by an
NGSI-LD subsystem specialized in historical data.

The apiRoot includes the scheme ("http" or "https"), host and optional port, and an optional prefix string. The API shall
support HTTP over TLS (also known as HTTPS - see IETF RFC 2818 [18]). TLS version 1.2 as defined by IETF
RFC 5246 [19] shall be supported. HTTP without TLS is not recommended.

The apiName shall be set to "ngsi-ld" and the apiVersion shall be set to "v1" for the present document.

All resource URIs are defined relative to the above root URI. The structure of the resources under the root URI is
shown in figure 6.2-1 and methods defined on them are shown in table 6.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)184

Figure 6.2-1: Resource URI structure of the NGSI-LD API

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)185

Table 6.2-1: Resources and HTTP methods defined on them

Resource Name Resource URI HTTP
Method Meaning Clauses

Entity List /entities/
POST Entity creation 5.6.1; 6.4.3.1
GET Query entities 5.7.2; 6.4.3.2

Entity by id /entities/{entityId}

GET Entity retrieval by id 5.7.1; 6.5.3.1
DELETE Entity deletion by id 5.6.6; 6.5.3.2
PATCH Entity merge by id 5.6.17; 6.5.3.4

PUT Entity replacement by id 5.6.18; 6.5.3.3

Attribute List /entities/{entityId}/attrs/
POST Append Attributes to Entity 5.6.3; 6.6.3.1

PATCH Update Attributes of an Entity 5.6.2; 6.6.3.2

Attribute by id /entities/{entityId}/attrs/{attrId}
PATCH Partial Attribute update 5.6.4; 6.7.3.1
DELETE Attribute delete 5.6.5; 6.7.3.2

PUT Attribute replace 5.6.19; 6.7.3.3

Subscriptions List /subscriptions/
POST Create Subscription 5.8.1; 6.10.3.1
GET Retrieve list of Subscriptions 5.8.4; 6.10.3.2

Subscription by Id /subscriptions/{subscriptionId}
GET Subscription retrieval by id 5.8.3; 6.11.3.1

PATCH Subscription update by id 5.8.2; 6.11.3.2
DELETE Subscription deletion by id 5.8.5; 6.11.3.3

Entity Types /types/ GET Retrieve available entity types 5.7.5 and 5.7.6;
6.25.3.1

Entity Type /types/{type} GET Details about available entity
type

5.7.7; 6.26.3.1

Attributes /attributes/ GET Available attributes 5.7.8 and 5.7.9;
6.27.3.1

Attribute /attributes/{attrId} GET Details about available
attribute

5.7.10; 6.28.3.1

Context source
registration list /csourceRegistrations/

POST CSource registration creation 5.9.2; 6.8.3.1

GET Discover CSource
registrations

5.10.2; 6.8.3.2

Context source
registration by Id /csourceRegistrations/{registrationId}

GET CSource registration retrieval
by id

5.10.1; 6.9.3.1

PATCH CSource registration update
by id

5.9.3; 6.9.3.2

DELETE CSource registration deletion
by id

5.9.4; 6.9.3.3

Context source
registration

subscription list
/csourceSubscriptions/

POST Create subscription to
CSource registration

5.11.2; 6.12.3.1

GET Retrieval of list of subscription
to CSource registration

5.11.5; 6.12.3.2

Context source
registration

subscription by Id
/csourceSubscriptions/{subscriptionId}

GET CSource registration
subscription retrieval by id

5.11.4; 6.13.3.1

PATCH CSource registration
subscription update by id

5.11.3; 6.13.3.2

DELETE CSource registration
subscription deletion by id

5.11.6; 6.13.3.3

Entity Operations.
Create /entityOperations/create POST

Batch Entity creation 5.6.7; 6.14.3.1

Entity Operations.
Upsert

/entityOperations/upsert POST Batch Entity create or update
(upsert)

5.6.8; 6.15.3.1

Entity Operations.
Update

/entityOperations/update POST Batch Entity update 5.6.9; 6.16.3.1

Entity Operations.
Delete

/entityOperations/delete POST Batch Entity deletion 5.6.10; 6.17.3.1

Entity Operations.
Query

/entityOperations/query POST Query entities based on
POST

5.7.2; 6.23.3.1

Entity Operations.
Merge

/entityOperations/merge POST Batch Entity merge 5.6.20; 6.31.3.1

Entity Temporal
Evolution

/temporal/entities/ POST Temporal Representation of
Entity creation

5.6.11; 6.18.3.1

GET Query temporal evolution of
Entities

5.7.4; 6.18.3.2

Temporal
Representation of

Entity by id

/temporal/entities/{entityId} GET Temporal Representation of
Entity retrieval by id

5.7.3; 6.19.3.1

DELETE Temporal Representation of
Entity deletion by id

5.6.16; 6.18.3.2

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)186

Resource Name Resource URI HTTP
Method Meaning Clauses

Temporal
Representation of

Attribute List

/temporal/entities/{entityId}/attrs/ POST Temporal Representation of
Attribute instance addition

5.6.12; 6.20.3.1

Temporal
Representation of

Attribute by id

/temporal/entities/{entityId}/attrs/{attrId} DELETE Attribute from Temporal
Representation of Entity
deletion

5.6.13; 6.21.3.1

Temporal
Representation of
Attribute Instance

by id

/temporal/entities/{entityId}/attrs/{attrId}
/{instanceId}

PATCH Attribute Instance update 5.6.14; 6.22.3.1
DELETE Attribute Instance deletion by

instance id
5.6.15; 6.22.3.2

Temporal Query
Operation

/temporal/entityOperations/query POST Temporal Representation of
Entity Query based on POST

5.7.4; 6.24.3.1

Add and List
@context

/jsonldContexts POST Add a user @context to the
internal cache

5.13.2; 6.29.3.1

GET List all cached @contexts 5.13.3; 6.29.3.2
Serve, Delete and
Reload @context

/jsonldContexts/{contextId} GET Serve one specific user
@context

5.13.4; 6.30.3.1

DELETE Delete one specific @context
from internal cache, possibly
re-inserting a freshly
downloaded copy of it

5.13.5; 6.30.3.2

6.3 Common Behaviours

6.3.1 Introduction

This clause extends the API common behaviours to the particularities of the HTTP REST binding. For each operation
implementations shall exhibit the common behaviours as specified by clause 5.5 and the behaviours defined by the
present clause.

6.3.2 Error Types

This clause associates API error types (which shall be contained in the response payload body) defined by clause 5.5.2
with HTTP status codes as shown in table 6.3.2-1.

Table 6.3.2-1: Mapping of error types to HTTP status codes

Error Type HTTP status
https://uri.etsi.org/ngsi-ld/errors/InvalidRequest 400
https://uri.etsi.org/ngsi-ld/errors/BadRequestData 400
https://uri.etsi.org/ngsi-ld/errors/AlreadyExists 409
https://uri.etsi.org/ngsi-ld/errors/OperationNotSupported 422
https://uri.etsi.org/ngsi-ld/errors/ResourceNotFound 404
https://uri.etsi.org/ngsi-ld/errors/InternalError 500
https://uri.etsi.org/ngsi-ld/errors/TooComplexQuery 403
https://uri.etsi.org/ngsi-ld/errors/TooManyResults 403
https://uri.etsi.org/ngsi-ld/errors/LdContextNotAvailable 503
https://uri.etsi.org/ngsi-ld/errors/NoMultiTenantSupport 501
https://uri.etsi.org/ngsi-ld/errors/NonexistentTenant 404

In addition, implementations shall support the standard specific errors of HTTP bindings, such as the following:

• "Method Not Allowed" (405) which shall be raised when a client invokes a wrong HTTP verb over a resource.
Implementations shall provide the allowed HTTP methods as mandated by IETF RFC 7231 [3] in
section 6.5.5.

• "Request Entity too large" (413) which shall be raised when the HTTP input data stream provided by a client
was too large i.e. too many bytes.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)187

• "Length required" (411) which shall be raised when an HTTP request provided by a client does not define the
"Content-Length" HTTP header.

• "Unsupported Media Type" (415) which shall be raised when an HTTP request payload body (as per the
"Content-Type" header) it is not "application/json" nor "application/ld+json".

• "Not Acceptable" (406) which shall be raised when the response media types that are acceptable by a client (as
per the "Accept" header) do not include or expand to "application/json" nor "application/ld+json".

6.3.3 Reporting errors

When an API operation results in an error, implementations shall return an HTTP response as follows:

• Content-Type: application/json.

• HTTP Status Code: As per clause 6.3.2 depending on error type.

• Payload body: A JSON object including all the terms defined by clause 5.5.3.

6.3.4 HTTP request preconditions

For POST, PATCH and PUT HTTP requests implementations shall check the following preconditions:

• Content-Type header shall be "application/json" or "application/ld+json".

• Content-Length header shall include the length of the request payload body.

For PATCH HTTP requests "application/merge-patch+json" is allowed as Content-Type, as mandated by IETF
RFC 7396 [16]. Implementations shall interpret such MIME type as equivalent to "application/json".

For GET HTTP requests implementations shall check the following preconditions:

• Accept header shall include (or define a media range that can be expanded to):

- "application/json"

- "application/ld+json"

- "application/geo+json"

The order of the list above is significant. If the Accept header can be expanded to more than one of the options of the
list, the first one of the list shall be selected, unless amended by the HTTP Accept header processing rules, e.g. the
presence of a "q" parameter indicating a relative weight, (as mandated by IETF RFC 7231 [3], section 5.3.2) require
otherwise.

If the Accept header is not present, "application/json" shall be assumed.

If an incoming HTTP request does not meet the preconditions stated above, an HTTP error response of type
InvalidRequest shall be returned, with the following exceptions:

• "Content-Length" HTTP header absence, shall result in just a 411 HTTP status code (without any payload
body).

• Unsupported Media Type, i.e. "Content-Type" header is not "application/json" nor "application/ld+json", shall
result in just a 415 HTTP status code (without any payload body).

• Not Acceptable Media Type, i.e. "Accept" header does not imply "application/json" nor "application/ld+json",
shall result in just a 406 HTTP status code and the body of the message shall contain the list of the available
representations of the resources.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)188

Notwithstanding the above, if the Accept Header is set to "application/geo+json":

• For Context Information Consumption operations only, specifically "Retrieve Entity" (see clause 5.7.1) and
"Query Entity" (clause 5.7.2) GeoJSON is considered as an acceptable content type and a GeoJSON payload
will be returned.

• For all other operations, the request will result in a Not Acceptable Media Type error, returning a 406 HTTP
status code and the body of the message shall contain the list of the available representations of the resources.

6.3.5 JSON-LD @context resolution

In the HTTP REST binding, implementations shall resolve the JSON-LD "@context" associated to an incoming HTTP
request as follows:

• If the request verb is GET or DELETE, then the associated JSON-LD "@context" shall be obtained from a
Link header [7] as mandated by JSON-LD [2], section 6.2. In the absence of such Link header, then the
associated "@context" shall be the default JSON-LD "@context".

EXAMPLE: The structure of the referred Link header is shown below. The first component (between < >) is a
dereferenceable URI pointing to the JSON-LD document which contains the @context to be used
to expand the terms used by the corresponding operation. The second parameter is a fixed, non-
dereferenceable URI used to denote a unique identifier and semantics for this header (marking it as
a link to a JSON-LD @context). The third and final parameter flags the MIME type of the linked
resource (JSON-LD).

 Link: <http://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json".

• If the request verb is POST, PATCH or PUT and the Content-Type header is "application/json", then the
@context shall be obtained from a Link Header as mandated by JSON-LD [2], section 6.2. In the absence of
such Link Header, then the "@context" shall be the default @context. In any case, if the request payload body
(as JSON) contains a "@context" term, then an HTTP error response of type BadRequestData shall be raised.

• If the request verb is POST, PATCH or PUT and the Content-Type header is "application/ld+json", then the
associated @context shall be obtained from the request payload body itself. If no @context can be obtained
from the request payload body, then an HTTP error response of type BadRequestData shall be raised. In any
case, the presence of a JSON-LD Link header in the incoming HTTP request when the Content-Type header is
"application/ld+json" shall result in an HTTP error response of type BadRequestData.

In summary, from a developer's perspective, for POST, PATCH and PUT operations, if MIME type is
"application/ld+json", then the associated @context shall be provided only as part of the request payload body.
Likewise, if MIME type is "application/json", then the associated @context shall be provided only by using the JSON-
LD Link header. No mixes are allowed, i.e. mixing options shall result in HTTP response errors. Implementations
should provide descriptive error messages when these situations arise.

In contrast, GET and DELETE operations always take their input @context from the JSON-LD Link Header.

6.3.6 HTTP response common requirements

Implementations shall honour the Accept header provided by HTTP requests as mandated by clause 6.3.4:

• If the target response's MIME type is "application/json" such response shall include a Link to the associated
JSON-LD @context as mandated by [2], section 6.2.

• If the target response's MIME type is "application/ld+json", then the response payload body provided by the
HTTP response shall include a JSON-LD @context.

• If the target response's MIME type is "application/geo+json" and the Prefer Header [26] is omitted or set to
"body=ld+json", then the response payload body provided by the HTTP response shall include a JSON-LD
@context, and the representation of the entities shall be in GeoJSON format in the response payload body.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)189

• If the target response's MIME type is "application/geo+json" and the Prefer Header [26] is set to "body=json"
such response shall include a Link to the associated JSON-LD @context as mandated by [2], section 6.2 and
the representation of the entities shall be in GeoJSON format in the response payload body, and "@context"
shall be omitted from the payload body.

Operations that result in an error that return a payload shall always respond with MIME type "application/json",
regardless of the Accept header. It is assumed that if a client application understands any of the supported MIME types,
the application shall understand "application/json" errors.

Operations where the response payload body is not present such as successful POST, or PATCH or PUT operations and
all error responses, do not include the Link header in the response. Only Fully Qualified Names shall be used in the
payload body of error responses, as there is no context present.

No Content-Length HTTP header shall be present if the response code is 204.

6.3.7 Representation of Entities

For HTTP GET operations performed over the resource/entities and all of its sub-resources, Context Broker
implementations shall support the parameter specified in table 6.3.7-1, which specifies all possible supported
representations formats.

In contrast, at a minimum, registered Context Source implementations shall support the normalized representation of
Entities as default. When a registered Context Source is unable to support additional representations, a 501 Not
Implemented Error shall be raised.

Table 6.3.7-1: Simplified representation: options parameter

Name Data Type Cardinality Remarks
options Comma separated list of strings 0..1 When its value includes the keyword "normalized", a

normalized representation of Entities shall be provided as
defined by clause 4.5.1, with Attributes returned in the
normalized representation as defined in clauses 4.5.2.2,
4.5.3.2, 4.5.18.2 and 4.5.20.2.

When its value includes the keyword "concise", a concise
lossless representation of Entities shall be provided as
defined by clause 4.5.1. with Attributes returned in the
concise representation as defined in clauses 4.5.2.3,
4.5.3.3, 4.5.18.3 and 4.5.20.3. In this case the broker will
return data in the most concise lossless representation
possible, for example removing all Attribute "type"
members.

When its value includes the keyword "keyValues" (or
"simplified" as a synonym), a simplified representation of
Entities shall be provided as defined by clause 4.5.4.

If the Accept Header is set to "application/geo+json" the
response will be in simplified GeoJSON format as defined
by clause 4.5.17.

6.3.8 Notification behaviour

In the HTTP binding a notification that is triggered by a subscription shall be sent by issuing an HTTP POST request
targeted to the value of "notification.endpoint.uri" member of the subscription structure (defined by clauses 5.2.12,
5.2.14 and 5.2.15). For the HTTP binding, the protocol part of the endpoint URI is http or https. In case the optional
MQTT notification binding (clause 7) is supported, the protocol part of the endpoint URI can also be mqtt or mqtts. The
MIME type associated to the POST request shall be "application/json" by default. However, this can be changed to
"application/ld+json", or "application/geo+json" by means of the "endpoint.accept" member.

If the target MIME type is "application/json" then the HTTP notification request shall include a Link header with a
reference to the corresponding JSON-LD @context as mandated by the JSON-LD specification [2], section 6.2 (to the
default JSON-LD @context if none available).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)190

If the optional array (of KeyValuePair type, as defined by clause 5.2.22) "notification.endpoint.receiverInfo" of the
subscription is present, then a new custom HTTP header for each member named "key" of the key, value pairs that
make up the array shall be generated and included in the HTTP POST's list of headers. The content of each custom
header shall be set equal to the content of the corresponding "value" member of the KeyValuePair. "Key" and "value"
members shall adhere to IETF RFC 7230 [27] Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
definitions concerning HTTP headers.

If the target MIME type is "application/geo+json" and the "notification.endpoint.receiverInfo" member contains a key
"Prefer" whose value is set to "body=json" then the HTTP notification request shall include a Link header with a
reference to the corresponding JSON-LD @context as mandated by the JSON-LD specification [2], section 6.2 (to the
default JSON-LD @context if none available).

If the target MIME type is "application/geo+json" and the "notification.endpoint.receiverInfo" contains a key "Prefer"
whose value is set to "body=ld+json" or the "Prefer" key is omitted or "notification.endpoint.receiverInfo" does not
exist, then the HTTP notification request includes an @context element in the payload body.

6.3.9 CSource Notification behaviour

In the HTTP binding a csource notification that is triggered by a csource subscription shall be sent by issuing an HTTP
POST request targeted to the value of "notification.endpoint.uri" member of the csource subscription structure (defined
by clauses 5.2.12 and 5.2.14). The MIME type associated to the POST request shall be "application/json" by default.
However, this can be changed to application/ld+json by means of the "endpoint.accept" member.

If the target MIME type is "application/json" then the HTTP notification request shall include a Link header with a
reference to the corresponding JSON-LD @context as mandated by the JSON-LD specification [2], section 6.2 (to the
default JSON-LD @context if none available).

If the optional array (of KeyValuePair type, as defined by clause 5.2.22) "notification.endpoint.receiverInfo" of the
subscription is present, then a new custom HTTP Header for each member named "key" of the key, value pairs that
make up the array shall be generated and included in the HTTP POST's list of headers. The content of each custom
header shall be set equal the content of the corresponding "value" member of the KeyValuePair. "Key" and "value"
members shall adhere to IETF RFC 7230 [27] Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
definitions concerning HTTP headers.

6.3.10 Pagination behaviour

For HTTP operations corresponding to the operations listed in clause 4.12 (see table 6.2-1 for a list of HTTP operations
with their corresponding clauses), implementations shall support the HTTP query parameter specified in table 6.3.10-1.

Table 6.3.10-1: Pagination: limit parameter

Name Data Type Cardinality Remarks
limit Integer 0..1 Only values greater or equal to 0.

It defines the limit to the number of NGSI-LD Elements that shall be
retrieved at a maximum as mandated by clause 5.5.9. The value 0 is only
allowed in combination with the count URI parameter.

This clause defines the specific HTTP binding mechanisms that shall be used in conjunction with the behaviours
defined by clause 5.5.9. Particularly, to flag the existence of related pages that could be retrieved when dealing with
query operations involving pagination, NGSI-LD Systems implementing the HTTP binding shall use the HTTP Link
header field as mandated by IETF RFC 8288 [7], clause 3, as follows:

• The pointers to the next and previous pages (when needed as mandated by clause 5.5.9) shall be serialized as
link-value elements. The content of such link-value(s) shall be:

- For the next page, the Link Target shall be a URI-reference that could be dereferenced by an NGSI-LD
Client to retrieve the next page of NGSI-LD Elements. In addition, the Link Relation Type shall be equal
to "next", registered under the IANA Registry of Link Relation Types [20].

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)191

- For the previous page, the Link Target shall be a URI-reference that could be dereferenced by an
NGSI-LD Client to retrieve the previous page of NGSI-LD Elements. In addition, the Link Relation
Type shall be equal to "prev", registered under the IANA Registry of Link Relation Types [20].

• At least, the "type" Link Target Attribute shall be included by the previously described serialized Link Header,
as mandated by IETF RFC 8288 [7], clause 3.4, and its value shall be exactly equal to the media type resulting
from the original request made by the NGSI-LD Client (the request that triggered the current pagination
iteration).

EXAMPLE: If the media type requested originally was "application/json" then during the entire pagination
iteration the value of the Link Target Attribute "type" shall be "application/json".

Temporal representation of resources adds an additional dimension to the pagination. Depending on the requested time
range, the response will contain multiple instances of the requested Attribute, and therefore an additional pagination
mechanism for those temporal representations is required, in order to limit the time range of the response. If no limits
are specified, a default limit is enforced, depending on implementation specific configurations. For HTTP operations on
temporal representations of Entities, implementations shall use the Partial Content Response (206) as specified by IETF
RFC 7233 [31], clause 4.1, if the implementation is not able to respond with the full representation at once. In this case,
for requests where the parameter "lastN" is present, pagination shall happen "backwards" (from the most recent to the
least recent timestamp in the requested time range). For requests without the parameter "lastN", pagination shall happen
"forwards" (from the least recent to the most recent timestamp in the requested time range).

This is achieved by including the "Content-Range" header field with the following contents:

• "unit" shall be equal to "DateTime";

• "range-start" and "range-end" shall be of type DateTime. They depend on the requested time relationship
"timerel" (as defined by clause 4.11), as follows:

- If the "lastN" parameter is present, pagination shall happen "backwards":

 "range-start" shall be equal to "timeAt" for requests with "timerel=before", "endTimeAt" for
requests with "timerel=between", or the most recent timestamp in the range of the response, for
requests with "timerel=after";

 "range-end" shall be equal to the least recent timestamp in the range of the response;

 "size" shall be equal to the requested "lastN".

- If the "lastN" parameter is not present, pagination shall happen "forwards":

 "range-start" shall be equal to "timeAt" for requests with "timerel=after" or "timerel=between", or
the least recent timestamp in the range of the response, for requests with "timerel=before";

 "range-end" shall be equal to the most recent timestamp in the range of the response;

 "size" shall be equal to "*".

6.3.11 Including system generated attributes

For HTTP GET operations performed over the resources /entities/, /subscriptions/, /csourceRegistrations/,
/csourceSubscriptions/ and all of its sub-resources, implementations shall support the parameter specified in
table 6.3.11-1. Implementations shall not raise an error if they do not hold system generated attributes.

Table 6.3.11-1: Including system generated attributes: options parameter

Name Data Type Cardinality Remarks
options Comma separated list of strings 0..1 When its value includes the keyword "sysAttrs", a

representation of NGSI-LD Elements shall be provided so
that the system generated attributes createdAt, modifiedAt
are included in the response payload body where known.
In the case of temporal representations, also the system
generated attribute deletedAt is included, if the NGSI-LD
Element has been deleted.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)192

6.3.12 Simplified or aggregated temporal representation of entities

For HTTP GET operations performed over the resource /temporal/entities/ and all of its sub-resources, implementations
shall support the parameter specified in table 6.3.12-1.

Table 6.3.12-1: Simplified representation: options parameter

Name Data Type Cardinality Remarks
options Comma separated list of strings 0..1 When its value includes the keyword "temporalValues", a

simplified temporal representation of entities shall be
provided as defined by clause 4.5.8.

When its value includes the keyword "aggregatedValues",
an aggregated temporal representation of entities shall be
provided as defined by clause 4.5.19.

Only one of the two keywords can be present in the values
of the parameter.

6.3.13 Counting number of results

This clause implements the behaviour described in clause 4.13, in case of HTTP binding.

For HTTP operations corresponding to the operations listed in clause 4.12 (see table 6.2-1 for a list of HTTP operations
with their corresponding clauses), implementations shall support the HTTP query parameter specified in table 6.3.13-1.

Table 6.3.13-1: Counting number of results: count parameter

Name Data Type Cardinality Remarks
count Boolean 0..1 If true, then a special HTTP header (NGSILD-Results-Count) is set in the

response. Regardless of how many entities are actually returned (maybe due to
the "limit" URI parameter), the total number of matching results (e.g. number of
Entities) is returned.

This clause defines the specific HTTP binding mechanisms that can be useful to plan the "limit" and "offset" URI
parameters for pagination, thus allowing to convey an overview of the number of entities in a system.

To get only the count itself, and no entities, the URI parameter "limit" may have the value "0", and an empty array shall
be returned as payload body.

Setting the URI parameter "limit" to zero without including the "count" URI parameter will result in a 400 Bad Request
error.

6.3.14 Tenant specification

If the system implementing the NGSI-LD API supports multi-tenancy as described in clause 4.14 and clause 5.5.10, the
tenant, to which the NGSI-LD HTTP operation is targeted, is specified as the HTTP header "NGSILD-Tenant", whose
value is the String identifying the tenant. In case the target tenant is the default tenant, the HTTP header is omitted. If
the HTTP header "NGSILD-Tenant" is present in the HTTP request, it shall also be present in HTTP response. This
also applies to HTTP notifications sent as a result of subscriptions with an "NGSILD-Tenant" HTTP header
(clause 6.3.8).

6.3.15 GeoJSON representation of spatially bound entities

For HTTP GET operations performed over the resource /entities and /entities/{entity-id}, if the GeoJSON Accept
header ("application/geo+json") is present, implementations shall render the entities of the response in the GeoJSON
format, as described in clause 5.2.29.

For GeoJSON representations, a GeoProperty may be selected as the geolocation to be used as the geometry within the
GeoJSON payload. If no "geometryProperty" parameter is specified then the "location" GeoProperty of the Entity is
used.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)193

Table 6.3.15-1: Selecting a geometry

Name Data Type Cardinality Remarks
geometryProperty String 0..1 If not present, "location" is used.
datasetId String 0..1 Shall be valid URI. If the referenced GeoProperty consists of an

attribute with multiple instances the datasetId specifies which instance
of the value is to be selected. If not present, the default instance is
used.

6.3.16 Expiration time for cached @contexts

Implementations shall comply with the Expires header field (section 5.3 of IETF RFC 7234 [30]) or a max-age or
s-maxage response directive of Cache-Control header field (section 5.2.2 of IETF RFC 7234 [30]) that may be present
in the downloaded @context. This means that implementations shall periodically invalidate the "Cached" @contexts
according to the headers mentioned above. Since origin servers do not always provide explicit expiration times,
implementations should assign a heuristic (for instance according to IETF RFC 7234 [30] section 4.2.2) expiration time
when an explicit time is not specified.

6.3.17 Distributed Operations Caching and Timeout Behaviour

The caching of response data received from forwarded HTTP GET requests is optionally supported by Context Brokers.
For HTTP GET operations performed over the resources /entities and /entities/{entity-id}, where a Context Source
Registration matches the request and a previous forwarded response has been cached and a subsequent request occurs
before the Context Source Registration "cacheDuration" (as defined in table 5.2.34-1) has been reached, the result may
incorporate data cached from a previous response. To indicate that data from a cache has been included in the response,
the HTTP header "NGSILD-Warning" shall be included. The value shall match the IANA Warning Code [32]
110 - Response is Stale.

"NGSILD-Warning" HTTP headers shall also be used to indicate instances of abnormal behaviour for distributed HTTP
GET operations performed over the resources /entities and /entities/{entity-id}.

Table 6.3.17-1: NGSILD Warning Codes

IANA Warning Code Remarks
110 - Response is Stale No request was made to a specified registration endpoint - data from a cached

value has been reused and it has been incorporated into the response.
111 - Revalidation Failed Although data was received from the registration endpoint within the specified

timeout period, the payload of the response was invalid. This could occur if the
payload was corrupted or a non-NGSI payload was received.

199 - Miscellaneous Warning No response was received from the registration endpoint within the specified
timeout period.

299 - Miscellaneous
Persistent Warning

An error response (such as 403 - Forbidden) was received from the registration
endpoint within the specified timeout period. This could occur if the Context Broker
has insufficient access rights to retrieve the data.

For distributed HTTP GET operations, registered context sources should always respond with a valid NGSI-LD
payload. The Context Broker shall successfully parse this data and invalid non-NGSI-LD payloads shall be rejected and
not incorporated into the overall response. It should be noted that a registration endpoint responding with no data and
the HTTP status code 404 - Not Found should not be considered as abnormal behaviour for distributed operations.

For all other operations, which correspond to HTTP Unsafe methods, the error response should be as informative as
possible.

In the case of an exclusive or redirect registration, where all of the data is held outside of the Context Broker and held
in a single registered source:

• 504 Gateway Timeout - if the single registered source fails to respond in time.

• 404 Not Found - if resources not found within the single registered source.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)194

• 502 Bad Gateway - if the single forwarded request fails for any other reason such as the Context Broker itself
having insufficient access rights.

In the case of an inclusive or redirect registration, where an entity is distributed over multiple equally valid endpoints,
but when updating the state of the distributed entity, an error response is returned from one or more registered sources:

• 207 Multi Status

In the case of an auxiliary registration HTTP unsafe methods are not supported.

Whenever failures or timeouts occur, Context Brokers may optionally decline to make subsequent requests to the same
registration endpoint until the cooldown period (as defined in table 5.2.9-1) has been reached.

6.3.18 Limiting Distributed Operations

This clause amends the matching Context Source Registrations behaviour as described in clause 5.12, in the case of the
HTTP binding in order to avoid cascading distributed operations (see clause 4.3.6.4). For all operations the resources
/entities/, /types/, /attributes/, /subscriptions/, /csourceSubscriptions/, /entityOperations/, /temporal/entities/ and
temporal/entityOperations/ implementations shall support the HTTP query parameter specified in table 6.3.18-1.

Table 6.3.18-1: Limiting distributed operations: local parameter

Name Data Type Cardinality Remarks
local Boolean 0..1 If local=true then no Context Source Registrations shall be

considered as matching to avoid cascading distributed
operations (see clause 4.3.6.4)

6.3.19 Extra information to provide when contacting Context Source

As specified in clauses 4.3.6.5 and 4.3.6.6, extra information to be provided when contacting a Context Source can be
specified in the optional array (of KeyValuePair type, as defined by clause 5.2.22) "contextSourceInfo" of the
CSourceRegistration.

In the HTTP binding, if the "jsonldContext" key is present, the URL value is placed in an HTTP "Link" Header as
described by the JSON-LD specification [2], section 6.2 and, whenever a payload body is present in the request, the
HTTP "Content-Type" Header is set to "application/json". For all other keys, a new custom HTTP header is added for
each member named "key" of the key-value pairs that make up the array shall be generated and included in the HTTP
list of headers. The content of each custom header shall be set equal to the content of the corresponding "value" member
of the KeyValuePair, unless the special value "urn:ngsi-ld:request" has been set, in which case the value is to be taken
from the triggering request, if present there. "Key" and "value" members shall adhere to IETF RFC 7230 [27] Hypertext
Transfer Protocol (HTTP/1.1): Message Syntax and Routing definitions concerning HTTP headers.

Headers derived from other elements of the CSourceRegistration, e.g. "NGSILD-Tenant", take precedence and cannot
be overridden using contextSourceInfo. The same applies for headers generally set by HTTP itself, e.g. Content-length.

6.3.20 Invalid parameters

If an HTTP request for an operation contains parameters that are incompatible with the operation, or it contains values
of the "options" parameter that are not supported by the operation, an HTTP error response of type InvalidRequest
should be returned.

6.4 Resource: entities/

6.4.1 Description

This resource represents the entities known to an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)195

6.4.2 Resource definition

Resource URI:

• /entities/

6.4.3 Resource methods

6.4.3.1 POST

This method is bound to the operation "Create Entity" and shall exhibit the behaviour defined by clause 5.6.1, taking the
entity to be created from the HTTP request payload body. Figure 6.4.3.1-1 shows the Create Entity interaction and
table 6.4.3.1-1 describes the request body and possible responses.

Figure 6.4.3.1-1: Create Entity interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)196

Table 6.4.3.1-1: Post Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

Entity 1 Payload body in the request contains a JSON-LD object which
represents the entity that is to be created.

Response
Body

Data Type Cardinality Response
Codes

Remarks

N/A N/A 201 Created The HTTP response shall include a "Location"
HTTP header that contains the resource URI of
the created entity resource.

BatchOperationR
esult

1 207 Multi-
Status

The HTTP response shall include a "Location"
HTTP header that contains the resource URI of
the created entity resource.

If the entity input data matches to a registration,
the relevant parts of the request are forwarded as
a distributed operation.

In the case when an error response is received
back from any distributed operation, a response
body containing the result returned from each
registration is returned in a BatchOperationResult
structure.

Errors can occur whenever a distributed operation
is unsupported, fails or times out, see
clause 6.3.17.

ProblemDetails
(see IETF
RFC 7807 [10])

1 400 Bad
Request

It is used to indicate that the request or its content
is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure, the
"detail" member should convey more information
about the error.

ProblemDetails
(see IETF
RFC 7807 [10])

1 409 Conflict It is used to indicate that the entity or an exclusive
or redirect registration defining the entity already
exists, see clause 6.3.2.
In the returned ProblemDetails structure, the
"detail" attribute should convey more information
about the error.

ProblemDetails
(see IETF
RFC 7807 [10])

1 422
Unprocessab
le Entity

It is used to indicate that the operation is not
available, see clause 6.3.2.
In the returned ProblemDetails structure, the
"detail" attribute should convey more information
about the error.

6.4.3.2 GET

This method is associated to the operation "Query Entities" and shall exhibit the behaviour defined by clause 5.7.2,
providing entities as part of the HTTP response payload body. In addition to this method, an alternative way to perform
"Query Entities" operations via POST is defined in clause 6.23. Figure 6.4.3.2-1 shows the query entities interaction.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)197

Figure 6.4.3.2-1: Query Entities interaction

The query parameters that shall be supported by implementations are those defined in table 6.4.3.2-1, and
table 6.4.3.2-2 describes the request body and possible responses.

Table 6.4.3.2-1: Query parameters

Name Data Type Cardinality Remarks
id Comma separated

list of strings
0..1 Each String shall be a valid URI.

List of entity ids to be retrieved.
type String 0..1

At least one among: type,
attrs, q, or georel shall be
present.

Selection of Entity Types as per
clause 4.17.

idPattern Regular expression
as defined by [11]

0..1 Regular expression that shall be matched
by entity ids.

attrs Comma separated
list of strings

0..1
At least one among: type,
attrs, q, or georel shall be
present.

Each String is an Attribute (Property or
Relationship) name.
List of Attributes to be matched by the
Entities and also included in the response,
i.e. only Entities that contain at least one of
the Attributes in attrs are to be included in
the response, and only the Attributes listed
in attrs are to be included in each of the
Entities of the response.

q String 0..1
At least one among: type,
attrs, q, or georel shall be
present.

Query as per clause 4.9.

expandValues Comma separated
list of strings

0..1 Each String is an Attribute (Property or
Relationship) name.
List of Attributes whose values shall be
expanded into URIs according to the
supplied @context prior to executing a
query. It is part of query.

csf String 0..1 Context Source filter as per clause 4.9.
geometry String 0..1

It shall be 1 if georel or
coordinates are present. At
least one among: type,
attrs, q, or geometry shall
be present.

Geometry as per clause 4.10. It is part of
geoquery.

georel String 0..1
It shall be 1 if geometry or
coordinates are present.

Geo relationship as per clause 4.10. It is
part of geoquery.

coordinates String 0..1
It shall be one if geometry
or georel are present.

Coordinates serialized as a string as per
clause 4.10. It is part of geoquery.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)198

Name Data Type Cardinality Remarks
geoproperty String 0..1

It shall be ignored unless a
geoquery is present.

It represents the name of the Property that
contains the geospatial data that will be
used to resolve the geoquery. By default,
will be location (see clause 4.7).

geometryProperty String 0..1 It represents a Property name.

In the case of GeoJSON Entity
representation, this parameter indicates
which GeoProperty to use for the toplevel
geometry field.

lang String 0..1 It represents the preferred natural language
of the response.

It is used to reduce languageMaps to a
string or string array property in a single
preferred language.

scopeQ String 0..1 Scope query (see clause 4.19).

Table 6.4.3.2-2: Get Entities request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
Entity[] 1 200 OK A response body containing the query

result as a list of entities, unless the
Accept Header indicates that the Entities
are to be rendered as GeoJSON.

GeoJSON
FeatureCollection

1 200 OK If the Accept Header indicates that the
Entities are to be rendered as GeoJSON,
a response body containing the query
result as GeoJSON FeatureCollection is
returned.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 501 Not
Implemented

It is used by Registered Context Sources
to indicate that the data format of the
request is unsupported see clause 6.3.7.

6.5 Resource: entities/{entityId}

6.5.1 Description

This resource represents an entity known to an NGSI-LD system.

6.5.2 Resource definition

Resource URI:

• /entities/{entityId}

Resource URI variables for this resource are defined in table 6.5.2-1.

Table 6.5.2-1: URI variables

Name Definition
entityId Id (URI) of the entity to be retrieved

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)199

6.5.3 Resource methods

6.5.3.1 GET

This method is associated to the operation "Retrieve Entity" and shall exhibit the behaviour defined by clause 5.7.1. The
entity identifier is the value of the resource URI variable "entityId". Figure 6.5.3.1-1 shows the retrieve entity
interaction.

Figure 6.5.3.1-1: Retrieve Entity interaction

The query parameters that shall be supported are those defined in table 6.5.3.1-1 and table 6.5.3.1-2 describes the
request body and possible responses.

Table 6.5.3.1-1: Query parameters

Name Data Type Cardinality Remarks
attrs Comma separated list

of strings
0..1 Each String is an Attribute (Property or Relationship)

name.
List of Attributes to be matched by the Entity and
included in the response. If the Entity does not have any
of the Attributes in attrs, then a 404 Not Found shall be
retrieved. If attrs is not specified, no matching is
performed and all Attributes related to the Entity shall be
retrieved.

type String 0..1 Selection of Entity Types as per clause 4.17.
geometryProperty String 0..1 It represents a GeoProperty name.

In the case of GeoJSON Entity representation, this
parameter indicates which GeoProperty to use for the
"geometry" element. By default, it shall be 'location'.

lang String 0..1 It represents the preferred natural language of the
response.

It is used to reduce languageMaps to a string or string
array property in a single preferred language.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)200

Table 6.5.3.1-2: Get Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
Entity 1 200 OK A response body containing the JSON-LD

representation of the target entity
containing the selected Attributes, unless
the Accept Header indicates that the
Entity is to be rendered as GeoJSON.

GeoJSON Feature 1 200 OK If the Accept Header indicates that the
Entity is to be rendered as GeoJSON, a
GeoJSON Feature is returned.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an entity
identifier (URI) not known to the system,
see clause 6.3.2.

ProblemDetails (see
IETF RFC 7807 [10])

1 501 Not
Implemented

It is used by Registered Context Sources
to indicate that the data format of the
request is unsupported see clause 6.3.7.

6.5.3.2 DELETE

This method is associated to the operation "Delete Entity" and shall exhibit the behaviour defined by clause 5.6.6. The
entity identifier is the value of the resource URI variable "entityId". Figure 6.5.3.2-1 shows the delete entity interaction.

Figure 6.5.3.2-1: Delete Entity interaction

The query parameters that shall be supported are those defined in table 6.5.3.2-1 and table 6.5.3.2-2 describes the
request body and possible responses.

Table 6.5.3.2-1: Query parameters

Name Data Type Cardinality Remarks
type String 0..1 Selection of Entity Types as per clause 4.17

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)201

Table 6.5.3.2-2: Delete Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response
Codes

Remarks

N/A N/A 204 No
Content

BatchOperation
Result

1 207 Multi-
Status

If the entity input data matches to a
registration, the relevant parts of the request
are forwarded as a distributed operation.

In the case when an error response is
received back from any distributed operation,
a response body containing the result
returned from each registration is returned in
a BatchOperationResult structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times out,
see clause 6.3.17.

ProblemDetails
(see IETF
RFC 7807 [10])

1 400 Bad
Request

It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure, the
"detail" attribute should convey more
information about the error.

ProblemDetails
(see IETF
RFC 7807 [10])

1 404 Not
Found

It is used when a client provided an entity
identifier (URI) not known to the system, see
clause 6.3.2.

6.5.3.3 PUT

This method is bound to the "Replace Entity" operation and shall exhibit the behaviour defined by clause 5.6.18. The
entity identifier is the value of the resource URI variable "entityId". The data to be updated shall be contained in the
HTTP request payload body. Figure 6.5.3.3-1 shows the Replace Entity interaction.

Figure 6.5.3.3-1: Replace Entity interaction

The query parameters that shall be supported are those defined in table 6.5.3.3-1 and table 6.5.3.3-2 describes the
request body and possible responses.

Table 6.5.3.3-1: Query parameters

Name Data Type Cardinality Remarks
type String 0..1 Selection of Entity Types as per clause 4.17

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)202

Table 6.5.3.3-2: Replace Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

Entity Fragment 1 Entity Fragment containing a complete representation of the
Entity to be replaced.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No content The entity was replaced successfully.
BatchOperationResult 1 207 Multi-Status If the entity input data matches to a

registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body containing
the result returned from each
registration is returned in a
BatchOperationResult structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times
out, see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier not known to the system,
see clause 6.3.2.

6.5.3.4 PATCH

This method is bound to the "Merge Entity" operation and shall exhibit the behaviour defined by clause 5.6.17. The
entity identifier is the value of the resource URI variable "entityId". The data to be updated shall be contained in the
HTTP request payload body. Figure 6.5.3.4-1 shows the Merge Entity interaction.

Figure 6.5.3.4-1: Merge Entity interaction

The query parameters that shall be supported are those defined in table 6.5.3.4-1 and table 6.5.3.4-2 describes the
request body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)203

Table 6.5.3.4-1: Query parameters

Name Data Type Cardinality Remarks
options Comma separated list

of strings
0..1 When its value includes the keyword "keyValues" (or

"simplified" as a synonym), this indicates that a simplified
representation of Entities has been provided as defined
by clause 4.5.4.
In this case, when a merge operation applies to an
existing Attribute the "type" attribute shall remain
unchanged.

type String 0..1 Selection of Entity Types as per clause 4.17.
observedAt String 0..1 It shall be a DateTime (see clause 4.6.3).

When a merge operation applies to a pre-existing
Attribute which previously contained an "observedAt"
sub-attribute, the value held in this query parameter shall
be used if no specific "observedAt" sub-Attribute is found
in the payload body.

lang String 0..1 It represents the natural language of data held in the
request.
When a merge operation applies to a pre-existing
LanguageProperty and the value is supplied as a string
or string array in the payload body, this query parameter
shall be used to determine the key within the
languageMap JSON Object to update.

Table 6.5.3.4-2: Merge Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

Entity Fragment 1 Entity Fragment containing a complete representation of the
Attributes to be merged.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No content All the Attributes were merged

successfully.
BatchOperationResult 1 207 Multi-Status If the entity input data matches to a

registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body containing
the result returned from each
registration is returned in a
BatchOperationResult structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times
out, see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier not known to the system,
see clause 6.3.2.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)204

6.6 Resource: entities/{entityId}/attrs/

6.6.1 Description

This resource represents all the Attributes (Properties or Relationships) of an NGSI-LD Entity.

6.6.2 Resource definition

Resource URI:

• /entities/{entityId}/attrs

Resource URI variables for this resource are defined in table 6.6.2-1.

Table 6.6.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity

6.6.3 Resource methods

6.6.3.1 POST

This method is bound to the "Append Attributes" operation and shall exhibit the behaviour defined by clause 5.6.3. The
entity identifier is the value of the resource URI variable "entityId". The data to be appended shall be contained in the
HTTP request payload body. Figure 6.6.3.1-1 shows the Append Attributes interaction.

Figure 6.6.3.1-1: Append Attributes interaction

The query parameters that shall be supported are those defined in table 6.6.3.1-1 and table 6.6.3.1-2 describes the
request body and possible responses.

Table 6.6.3.1-1: Query parameters

Name Data Type Cardinality Remarks
type String 0..1 Selection of Entity Types as per clause 4.17.
options Comma separated list

of strings
0..1 "noOverwrite" indicates that no attribute overwrite shall

be performed.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)205

Table 6.6.3.1-2: Post Attributes request body and possible responses

Request Body
Data Type Cardinality Remarks

Entity Fragment 1 Entity Fragment containing a complete representation of the
Attributes to be added.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No content All the Attributes were appended

successfully.
UpdateResult 1 207 Multi-Status Only the Attributes included in the

response payload body were
successfully appended.

If the entity input data matches to a
registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body containing
the result returned from each
registration is returned in a
UpdateResult structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times
out, see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

6.6.3.2 PATCH

This method is bound to the "Update Attributes" operation and shall exhibit the behaviour defined by clause 5.6.2. The
entity identifier is the value of the resource URI variable "entityId". The data to be updated shall be contained in the
HTTP request payload body. Figure 6.6.3.2-1 shows the Update Attributes interaction.

Figure 6.6.3.2-1: Update Attributes interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)206

The query parameters that shall be supported are those defined in table 6.6.3.2-1 and table 6.6.3.2-2 describes the
request body and possible responses.

Table 6.6.3.2-1: Query parameters

Name Data Type Cardinality Remarks
type String 0..1 Selection of Entity Types as per clause 4.17

Table 6.6.3.2-2: Patch Attributes request body and possible responses

Request Body
Data Type Cardinality Remarks

Entity Fragment 1 Entity Fragment containing a complete representation of the
Attributes to be updated.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No content All the Attributes were updated

successfully.
UpdateResult 1 207 Multi-Status Only the Attributes included in the

response payload body were
successfully updated. If no Attributes
were successfully updated the updated
array of UpdateResult (see
clause 5.2.18) will be empty.

If the entity input data matches to a
registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body containing
the result returned from each
registration is returned in a
BatchOperationResult structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times
out, see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier not known to the system,
see clause 6.3.2.

6.7 Resource: entities/{entityId}/attrs/{attrId}

6.7.1 Description

This resource represents an attribute (Property or Relationship) of an NGSI-LD Entity.

6.7.2 Resource definition

Resource URI:

• /entities/{entityId}/attrs/{attrId}

Resource URI variables for this resource are defined in table 6.7.2-1.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)207

Table 6.7.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity
attrId Attribute name (Property or Relationship)

6.7.3 Resource methods

6.7.3.1 PATCH

This method is bound to the "Partial Attribute Update" operation and shall exhibit the behaviour defined by
clause 5.6.4. The entity identifier is the value of the resource URI variable "entityId". The attribute name is the value of
the resource URI variable "attrId". The Entity Fragment shall be contained in the HTTP request payload body.
Figure 6.7.3.1-1 shows the Partial Attribute Update interaction.

Figure 6.7.3.1-1: Partial Attribute Update interaction

The query parameters that shall be supported are those defined in table 6.7.3.1-1 and table 6.7.3.2-2 describes the
request body and possible responses.

Table 6.7.3.1-1: Query parameters

Name Data Type Cardinality Remarks
type String 0..1 Selection of Entity Types as per clause 4.17

Table 6.7.3.1-2: Partial Attribute Update request body and possible responses

Request Body
Data Type Cardinality Remarks

Entity Fragment 1 Entity Fragment containing the elements of the attribute to be
updated.

Response Body

Data Type Cardinality Response
Codes

Remarks

N/A N/A 204 No Content The attribute was updated successfully.
UpdateResult 1 207 Multi-

Status
If the entity input data matches to a
registration, the relevant parts of the request
are forwarded as a distributed operation.

In the case when an error response is
received back from any distributed operation,
a response body containing the result
returned from each registration is returned in
a UpdateResult structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times out,
see clause 6.3.17.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)208

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad
Request

It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure, the
"detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an entity
identifier or attribute name not known to the
system, see clause 6.3.2.

6.7.3.2 DELETE

This method is associated to the operation "Delete Attribute" and shall exhibit the behaviour defined by clause 5.6.5.
The entity identifier is the value of the resource URI variable "entityId". The attribute name is the value of the resource
URI variable "attrId". Figure 6.7.3.2-1 shows the Delete Attribute interaction, table 6.7.3.2-1 shows the delete
parameters to be supported and table 6.7.3.2-2 describes the request body and possible responses.

Figure 6.7.3.2-1: Delete Attribute interaction

Table 6.7.3.2-1: Delete parameters

Name Data Type Cardinality Remarks
deleteAll Boolean 0..1 If true, all attribute instances are deleted. Otherwise (default) only the Attribute

instance specified by the datasetId is deleted. In case neither the deleteAll flag
nor a datasetId is present, the default Attribute instance is deleted.

type String 0..1 Selection of Entity Types as per clause 4.17.
datasetId String 0..1 Shall be a valid URI. Specifies the datasetId of the dataset to be deleted.

Table 6.7.3.2-2: Delete Attribute request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
UpdateResult 1 207 Multi-Status If the entity input data matches to a

registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body
containing the result returned from
each registration is returned in a
UpdateResult structure.

Errors can occur whenever a
distributed operation is unsupported,
fails or times out, see clause 6.3.17.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)209

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier (URI) or attribute
name not known to the system. see
clause 6.3.2.

6.7.3.3 PUT

This method is bound to the "Attribute replace" operation and shall exhibit the behaviour defined by clause 5.6.19. The
entity identifier is the value of the resource URI variable "entityId". The attribute name is the value of the resource URI
variable "attrId". The Attribute Fragment shall be contained in the HTTP request payload body. Figure 6.7.3.3-1 shows
the Attribute replace interaction.

Figure 6.7.3.3-1: Attribute replace interaction

The query parameters that shall be supported are those defined in table 6.7.3.3-1 and table 6.7.3.3-2 describes the
request body and possible responses.

Table 6.7.3.3-1: Query parameters

Name Data Type Cardinality Remarks
type String 0..1 Selection of Entity Types as per clause 4.17

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)210

Table 6.7.3.3-2: Attribute replace request body and possible responses

Request Body
Data Type Cardinality Remarks

Attribute Fragment 1 Attribute Fragment replacing the previous data.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content The attribute was replaced

successfully.
UpdateResult 1 207 Multi-Status If the entity input data matches to a

registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body
containing the result returned from
each registration is returned in a
UpdateResult structure.

Errors can occur whenever a
distributed operation is unsupported,
fails or times out, see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier or attribute name not
known to the system, see
clause 6.3.2.

6.8 Resource: csourceRegistrations/

6.8.1 Description

This resource represents the context source registrations known to an NGSI-LD system.

6.8.2 Resource definition

Resource URI:

• /csourceRegistrations/

6.8.3 Resource methods

6.8.3.1 POST

This method is bound to the operation "Register Context Source" and shall exhibit the behaviour defined by
clause 5.9.2, taking the context source registration to be created from the HTTP request payload body. Figure 6.8.3.1-1
shows the Register Context Source interaction and table 6.8.3.1-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)211

Figure 6.8.3.1-1: Register Context Source interaction

Table 6.8.3.1-1: Patch Attribute request body and possible responses

Request Body
Data Type Cardinality Remarks

CSourceRegistration 1 Payload body in the request contains a JSON-LD object which
represents the context source registration that is to be created.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created The HTTP response shall include a

"Location" HTTP header that contains
the resource URI of the created context
source registration resource.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 409 Conflict It is used to indicate that the context
source registration already exists, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 422 Unprocessable
Context Source
Registration

It is used to indicate that the operation is
not available see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.8.3.2 GET

This method is associated to the operation "Query Context Source Registrations" and shall exhibit the behaviour defined
by clause 5.10.2, i.e. the parameters in the request describe entity related information, but instead of directly providing
this entity information, the context source registration data, which describes context sources that can possibly provide
the information, are returned as part of the HTTP response payload body. Figure 6.8.3.2-1 shows the Query Context
Source Registrations interaction.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)212

Figure 6.8.3.2-1: Query Context Source Registrations interaction

The query parameters that shall be supported by implementations are those defined in table 6.8.3.2-1 and table 6.8.3.2-2
describes the request body and possible responses.

Table 6.8.3.2-1: Query parameters

Name Data Type Cardinality Remarks
id Comma separated list of

strings
0..1 Each String shall be a valid URI.

List of entity ids to be retrieved
type String 0..1

At least one among: type,
attrs, q, or georel shall be
present.

Selection of Entity Types as per
clause 4.17

idPattern Regular expression as
defined by [11]

0..1 Regular expression that shall be matched
by entity ids satisfying the query

attrs Comma separated list
strings

0..1
At least one among: type,
attrs, q, or georel shall be
present.

Each String is an Attribute (Property or
Relationship) name.
List of Attributes (Properties or
Relationships) to be retrieved

q String 0..1
At least one among: type,
attrs, q, or georel shall be
present.

Query as per clause 4.9

csf String 0..1 Context Source filter as per clause 4.9
geometry String 0..1

It shall be 1 if georel or
coordinates are present.
At least one among: type,
attrs, q, or georel shall be
present.

Geometry as per clause 4.10. It is part of
geoquery

georel String 0..1
It shall be 1 if geometry or
coordinates are present.

Geo relationship as per clause 4.10. It is
part of geoquery

coordinates String 0..1
It shall be one if geometry
or georel are present.

Coordinates serialized as a string as per
clause 4.10. It is part of geoquery

geoproperty String 0..1
It shall be ignored if no
geoquery is present.

It represents the name of the Property that
contains the geospatial data that will be
used to resolve the geoquery

timeproperty String 0..1
It shall be ignored if no
temporal query is present.

It represents a Temporal Property name

Allowed values: "observedAt", "createdAt",
"modifiedAt" and "deletedAt". If not
specified, the default is "observedAt". (See
clause 4.8)

timerel String 0..1 It represents the temporal relationship as
defined by clause 4.1

Allowed values: "before", "after", "between"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)213

Name Data Type Cardinality Remarks
timeAt String 0..1 It represents the timeAt parameter as

defined by clause 4.1

It shall be a DateTime. Cardinality shall be
1 if timerel is present

endTimeAt String 0..1 It represents the endTimeAt parameter as
defined by clause 4.1

It shall be a DateTime. Cardinality shall be
1 if timerel is equal to "between"

geometryProp
erty

String 0..1 It represents a Property name

In the case of GeoJSON Entity
representation, this parameter indicates
which GeoProperty to use for the toplevel
geometry field

lang String 0..1 It represents the preferred natural language
of the response

It is used to reduce languageMaps to a
string or string array property in a single
preferred language

scopeQ String 0..1 Scope query (see clause 4.19)

Table 6.8.3.2-2: Get Context Source Registrations request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
CSourceRegistration[] 1 200 OK A response body containing the query

result as an array of context source
registrations.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.9 Resource: csourceRegistrations/{registrationId}

6.9.1 Description

This resource represents the context source registration, identified by registrationId, known to an NGSI-LD system.

6.9.2 Resource definition

Resource URI:

• /csourceRegistrations/{registrationId}

Resource URI variables for this resource are defined in table 6.9.2-1.

Table 6.9.2-1: URI variables

Name Definition
registrationId Id (URI) of the context source registration

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)214

6.9.3 Resource methods

6.9.3.1 GET

This method is associated with the operation "Retrieve Context Source Registration" and shall exhibit the behaviour
defined by clause 5.10.1. The registration identifier is the value of the resource URI variable "registrationId".
Figure 6.9.3.1-1 shows the Retrieve Context Source Registration interaction and table 6.9.3.1-1 describes the request
body and possible responses.

Figure 6.9.3.1-1: Retrieve Context Source Registration interaction

Table 6.9.3.1-1: Get Context Source Registration request body and possible responses

Request Body Data Type Cardinality Remarks
N/A N/A

Response Body Data Type Cardinality Response Codes Remarks
CSourceRegistration 1 200 OK A response body containing the

JSON-LD representation of the target
context source registration.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
context source registration identifier
(URI) not known to the system, see
clause 6.3.2.

6.9.3.2 PATCH

This method is bound to the "Update Context Source Registration" operation and shall exhibit the behaviour defined by
clause 5.9.3. The context source registration identifier is the value of the resource URI variable "registrationId". The
context source registration to be updated shall be contained in the HTTP request payload body. Figure 6.9.3.2-1 shows
the Update Context Source Registration interaction and table 6.9.3.2-1 describes the request body and possible
responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)215

Figure 6.9.3.2-1: Update Context Source Registration interaction

Table 6.9.3.2-1: Patch Context Source Registration request body and possible responses

Request Body

Data Type Cardinality Remarks
CSourceRegistration
Fragment

1 Payload body in the request contains a JSON-LD object
which represents the context source registration that is to
be updated.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content The context source registration was

successfully updated.
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
context source registration identifier
not known to the system, see
clause 6.3.2.

6.9.3.3 DELETE

This method is associated to the operation "Delete Context Source Registration" and shall exhibit the behaviour defined
by clause 5.9.4. The context source registration identifier is the value of the resource URI variable "registrationId".
Figure 6.9.3.3-1 shows the Delete Context Source Registration interaction and table 6.9.3.3-1 describes the request body
and possible responses.

Figure 6.9.3.3-1: Delete Context Source Registration interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)216

Table 6.9.3.3-1: Delete Context Source Registration request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
context source registration identifier
(URI) not known to the system, see
clause 6.3.2.

6.10 Resource: subscriptions/

6.10.1 Description

This resource represents the subscriptions known to an NGSI-LD system.

6.10.2 Resource definition

Resource URI:

• /subscriptions/

6.10.3 Resource methods

6.10.3.1 POST

This method is bound to the operation "Create Subscription" and shall exhibit the behaviour defined by clause 5.8.1,
taking the subscription to be created from the HTTP request payload body. Figure 6.10.3.1-1 shows the Create
Subscription interaction and table 6.10.3.1-1 describes the request body and possible responses.

Figure 6.10.3.1-1: Create Subscription interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)217

Table 6.10.3.1-1: Post Subscription request body and possible responses

Request
Body

Data Type Cardinality Remarks
Subscription 1 Payload body in the request contains a JSON-LD object which

represents the subscription that is to be created.

Response
Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created The HTTP response shall include a

"Location" HTTP header that contains the
resource URI of the created subscription
resource.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 409 Conflict It is used to indicate that the subscription
already exists see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.10.3.2 GET

This method is associated to the operation "Query Subscriptions" and shall exhibit the behaviour defined by
clause 5.8.4, providing the subscription data as part of the HTTP response payload body. Figure 6.10.3.2-1 shows the
Query Subscriptions interaction.

Figure 6.10.3.2-1: Query Subscriptions interaction

The query parameters that shall be supported by implementations are those defined in table 6.10.3.2-1 and
table 6.10.3.2-2 describes the request body and possible responses.

Table 6.10.3.2-1: Query parameters

Name Data Type Cardinality Remarks
limit Number 0..1 Maximum number of subscriptions to be retrieved

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)218

Table 6.10.3.2-2: Get Subscriptions request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
Subscription[] 1 200 OK A response body containing a list of

subscriptions.
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.11 Resource: subscriptions/{subscriptionId}

6.11.1 Description

This resource represents a subscription known to an NGSI-LD system.

6.11.2 Resource definition

Resource URI:

• /subscriptions/{subscriptionId}

Resource URI variables for this resource are defined in table 6.11.2-1.

Table 6.11.2-1: URI variables

Name Definition
subscriptionId Id (URI) of the concerned subscription

6.11.3 Resource methods

6.11.3.1 GET

This method is associated to the operation "Retrieve Subscription" and shall exhibit the behaviour defined by
clause 5.8.3. The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.1-1
shows the Retrieve Subscription interaction and table 6.11.3.1-1 describes the request body and possible responses.

Figure 6.11.3.1-1: Retrieve Subscription interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)219

Table 6.11.3.1-1: Get Subscription request body and possible responses

Request
Body

Data Type Cardinality Remarks
N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
Subscription 1 200 OK A response body containing the JSON-LD

representation of the target subscription.
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.11.3.2 PATCH

This method is associated to the operation "Update Subscription" and shall exhibit the behaviour defined by
clause 5.8.2. The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.2-1
shows the Update Subscription interaction and table 6.11.3.2-1 describes the request body and possible responses.

Figure 6.11.3.2-1: Update Subscription interaction

Table 6.11.3.2-1: Patch Subscription request body and possible responses

Request Body
Data Type Cardinality Remarks

Subscription Fragment 1 Subscription Fragment including id, type and any other
subscription field to be changed

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known
to the system, see clause 6.3.2.

6.11.3.3 DELETE

This method is associated to the operation "Delete Subscription" and shall exhibit the behaviour defined by clause 5.8.5.
The subscription identifier is the value of the resource URI variable "subscriptionId". Figure 6.11.3.3-1 shows the
Delete Subscription interaction and table 6.11.3.3-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)220

Figure 6.11.3.3-1: Delete Subscription interaction

Table 6.11.3.3-1: Delete Subscription request body and possible responses

Request
Body

Data Type Cardinality Remarks
N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.12 Resource: csourceSubscriptions/

6.12.1 Description

This resource represents the context source registration subscriptions known to an NGSI-LD system.

6.12.2 Resource definition

Resource URI:

• /csourceSubscriptions/

6.12.3 Resource methods

6.12.3.1 POST

This method is bound to the operation "Create Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.2, taking the context source registration subscription to be created from the HTTP
request payload body. Figure 6.12.3.1-1 shows the Create Context Source Registration Subscription interaction and
table 6.12.3.1-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)221

Figure 6.12.3.1-1: Create Context Source Registration Subscription interaction

Table 6.12.3.1-1: Post Context Source Registration Subscription request body
and possible responses

Request Body

Data Type Cardinality Remarks
Subscription 1 Payload body in the request contains a JSON-LD object which

represents the context source registration subscription that is to
be created.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created The HTTP response shall include a

"Location" HTTP header that contains the
resource URI of the created context
source registration subscription resource.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 409 Conflict It is used to indicate that the context
source registration subscription already
exists, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.12.3.2 GET

This method is associated to the operation "Query Context Source Registration Subscriptions" and shall exhibit the
behaviour defined by clause 5.11.5, providing the context source registration subscription data as part of the HTTP
response payload body. Figure 6.12.3.2-1 shows the Query Context Source Registration Subscriptions interaction.

Figure 6.12.3.2-1: Query Context Source Registration Subscriptions interaction

The query parameters that shall be supported by implementations are those defined in table 6.12.3.2-1 and
table 6.12.3.2-2 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)222

Table 6.12.3.2-1: Query parameters

Name Data Type Cardinality Remarks
limit Number 0..1 Maximum number of subscriptions to be retrieved

Table 6.12.3.2-2: Get Context Source Registration Subscriptions request body
and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
Subscription[] 1 200 OK A response body containing a list of

context source registration
subscriptions.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.13 Resource: csourceSubscriptions/{subscriptionId}

6.13.1 Description

This resource represents the context source registration subscription, identified by subscriptionId, known to an
NGSI-LD system.

6.13.2 Resource definition

Resource URI:

• /csourceSubscriptions/{subscriptionId}

Resource URI variables for this resource are defined in table 6.13.2-1.

Table 6.13.2-1: URI variables

Name Definition
subscriptionId Id (URI) of the concerned context source registration subscription

6.13.3 Resource methods

6.13.3.1 GET

This method is associated to the operation "Retrieve Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.4. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.1-1 shows the Retrieve Context Source Registration interaction and table 6.13.3.1-1
describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)223

Figure 6.13.3.1-1: Retrieve Context Source Registration Subscription interaction

Table 6.13.3.1-1: Get Context Source Registration Subscription request body and possible responses

Request
Body

Data Type Cardinality Remarks
N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
Subscription 1 200 OK A response body containing the

JSON-LD representation of the target
context source registration subscription.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.13.3.2 PATCH

This method is associated to the operation "Update Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.3. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.2-1 shows the Update Context Source Registration Subscription interaction and
table 6.13.3.2-1 describes the request body and possible responses.

Figure 6.13.3.2-1: Update Context Source Registration Subscription interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)224

Table 6.13.3.2-1: Patch Context Source Registration Subscription request body
and possible responses

Request Body
Data Type Cardinality Remarks

Subscription Fragment 1 Subscription Fragment including id, type and any other
context source registration subscription field to be changed.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known
to the system, see clause 6.3.2.

6.13.3.3 DELETE

This method is associated to the operation "Delete Context Source Registration Subscription" and shall exhibit the
behaviour defined by clause 5.11.6. The subscription identifier is the value of the resource URI variable
"subscriptionId". Figure 6.13.3.3-1 shows the Delete Context Source Registration Subscription interaction and
table 6.13.3.3-1 describes the request body and possible responses.

Figure 6.13.3.3-1: Delete Context Source Registration Subscription interaction

Table 6.13.3.3-1: Delete Context Source Registration Subscription request body
and possible responses

Request
Body

Data Type Cardinality Remarks
N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided a
subscription identifier (URI) not known to
the system, see clause 6.3.2.

6.14 Resource: entityOperations/create

6.14.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity creation for the NGSI-LD
API.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)225

6.14.2 Resource definition

Resource URI:

• /entityOperations/create

6.14.3 Resource methods

6.14.3.1 POST

This method is associated to the operation "Batch Entity Creation" and shall exhibit the behaviour defined by
clause 5.6.7. Figure 6.14.3.1-1 shows the operation interaction and table 6.14.3.1-1 describes the request body and
possible responses.

Figure 6.14.3.1-1: Batch Entity Creation Interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)226

Table 6.14.3.1-1: Batch Entity Creation Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Entity[] 1 Array of entities to be created

Response
Body

Data Type Cardinality Response Code Remarks
String[] 1 201 Created If all entities have been successfully

created, an array of Strings containing URIs
is returned in the response. Each URI
represents the Entity Id of a created entity.
There is no restriction as to the order of the
Entity Ids.

BatchOperationResult 1 207 Multi-Status If only some or none of the entities have
been successfully created, a response body
containing the result of each operation
contained in the batch is returned in a
BatchOperationResult structure. It contains
two arrays. The first array ('success')
contains the URIs of the successfully
created entities, while the second array
('errors') contains information about the
error for each of the entities that could not
be created. There is no restriction as to the
order of the Entity Ids in the arrays.

If any of the entities matches to a
registration, the relevant parts of the request
are forwarded as a distributed operation.

In the case when an error response is
received back from any distributed
operation, a response body containing the
result returned from each registration is
returned in a BatchOperationResult
structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times out,
see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure, the
"detail" attribute should convey more
information about the error.

6.15 Resource: entityOperations/upsert

6.15.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity creation or update for the
NGSI-LD API.

6.15.2 Resource definition

Resource URI:

• /entityOperations/upsert

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)227

6.15.3 Resource methods

6.15.3.1 POST

This method is associated to the operation "Batch Entity Creation or Update (Upsert)" and shall exhibit the behaviour
defined by clause 5.6.8. Figure 6.15.3.1-1 shows the operation interaction and table 6.15.3.1-1 describes the request
body and possible responses.

The "options" query parameter for this request can take the following values:

• "replace". Indicates that all the existing Entity content shall be replaced (default mode);

• "update". Indicates that existing Entity content shall be updated.

Figure 6.15.3.1-1: Batch Entity Creation or Update Interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)228

Table 6.15.3.1-1: Batch Entity Creation or Update Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Entity[] 1 Array of entities to be created/updated

Response
Body

Data Type Cardinality Response Code Remarks
String[] 1 201 Created If all entities not existing prior to this request

have been successfully created and the
others have been successfully updated, an
array of String (with the URIs representing
the Entity Ids of the created entities only) is
returned in the response. There is no
restriction as to the order of the Entity Ids.
The merely updated entities do not take
part in the response (corresponding to 204
No Content returned in the case of
updates).

N/A N/A 204 No Content If all entities already existed and are
successfully updated, there is no payload
body in the response.

BatchOperationResult 1 207 Multi-Status If only some or none of the entities have
been successfully created or updated, a
response body containing the result of each
operation contained in the batch is returned
in a BatchOperationResult structure. It
contains two arrays. The first array
('success') contains the URIs of the
successfully created or updated entities,
while the second array ('errors') contains
information about the error for each of the
entities that could not be created or
updated. There is no restriction as to the
order of the Entity Ids in the arrays.

If any of the entities matches to a
registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body containing the
result returned from each registration is
returned in a BatchOperationResult
structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times out,
see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.16 Resource: entityOperations/update

6.16.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity update for the NGSI-LD
API.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)229

6.16.2 Resource definition

Resource URI:

• /entityOperations/update

6.16.3 Resource methods

6.16.3.1 POST

This method is associated to the operation "Batch Entity Update" and shall exhibit the behaviour defined by
clause 5.6.9. Figure 6.16.3.1-1 shows the operation interaction and table 6.16.3.1-1 describes the request body and
possible responses.

The "options" query parameter for this request can take the following values:

• "noOverwrite". Indicates that no attribute overwrite shall be performed.

Figure 6.16.3.1-1: Batch Entity Update Interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)230

Table 6.16.3.1-1: Batch Entity Update Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Entity[] 1 Array of Entities to be updated

Response
Body

Data Type Cardinality Response Code Remarks
N/A N/A 204 No Content If all entities have been successfully

updated, there is no payload body in the
response.

BatchOperationResult 1 207 Multi-Status If only some or none of the entities have
been successfully updated, a response
body containing the result of each operation
contained in the batch is returned in a
BatchOperationResult structure. It contains
two arrays. The first array ('success')
contains the URIs of the successfully
updated entities, while the second array
('errors') contains information about the
error for each of the entities that could not
be updated. There is no restriction as to the
order of the Entity Ids in the arrays.

If any of the entities matches to a
registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body containing the
result returned from each registration is
returned in a BatchOperationResult
structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times out,
see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.17 Resource: entityOperations/delete

6.17.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity deletion for the NGSI-LD
API.

6.17.2 Resource definition

Resource URI:

• /entityOperations/delete

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)231

6.17.3 Resource methods

6.17.3.1 POST

This method is associated to the operation "Batch Entity Delete" and shall exhibit the behaviour defined by
clause 5.6.10. Figure 6.17.3.1-1 shows the operation interaction and table 6.17.3.1-1 describes the request body and
possible responses.

Figure 6.17.3.1-1: Batch Entity Delete Interaction

Table 6.17.3.1-1: Batch Entity Delete Interaction and possible responses

Request Body
Data Type Cardinality Remarks

String[] 1 Array of String (URIs representing Entity IDs) to be deleted

Response
Body

Data Type Cardinality Response Code Remarks
N/A N/A 204 No Content If all entities existed and have been

successfully deleted, there is no payload
body in the response.

BatchOperationResult 1 207 Multi-Status If some or all of the entities have not been
successfully deleted, or did not exist, a
response body containing the result of each
operation contained in the batch is returned
in a BatchOperationResult structure. It
contains two arrays. The first array
('success') contains the URIs of the
successfully deleted entities, while the
second array ('errors') contains information
about the error for each of the entities that
could not be deleted. There is no restriction
as to the order of the Entity Ids in the
arrays.

If any of the entities matches to a
registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body containing the
result returned from each registration is
returned in a BatchOperationResult
structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times out,
see clause 6.3.17.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)232

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.18 Resource: temporal/entities/

6.18.1 Description

This resource represents the temporal evolution of Entities known to an NGSI-LD system.

6.18.2 Resource definition

Resource URI:

• /temporal/entities/

6.18.3 Resource methods

6.18.3.1 POST

This method is associated to the operation "Create or Update Temporal Representation of Entities" and shall exhibit the
behaviour defined by clause 5.6.11, taking the temporal representation of entity to be created from the HTTP request
payload body. Figure 6.18.3.1-1 shows this interaction and table 6.18.3.1-1 describes the request body and possible
responses.

Figure 6.18.3.1-1: Create or Update Temporal Representation of Entity interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)233

Table 6.18.3.1-1: Post EntityTemporal request body and possible responses

Request Body

Data Type Cardinality Remarks
EntityTemporal 1 Payload body in the request contains a JSON-LD object

which represents the temporal representation of the entity
that is to be created (or updated).

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created Upon creation success, the HTTP

response shall include a "Location"
HTTP header that contains the
resource URI of the created entity
resource.

N/A N/A 204 No Content Upon update success.
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" member should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 422 Unprocessable
Entity

It is used to indicate that the operation
is not available, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.18.3.2 GET

This method is associated to the operation "Query Temporal Evolution of Entities" and shall exhibit the behaviour
defined by clause 5.7.4, providing the temporal evolution of the matching Entities as part of the HTTP response payload
body. In addition to this method, an alternative way to perform "Query Temporal Evolution of Entities" operations via
POST is defined in clause 6.24. Figure 6.18.3.2-1 shows this interaction.

Figure 6.18.3.2-1: Query Temporal Evolution of Entities interaction

The query parameters that shall be supported by implementations are those defined in table 6.18.3.2-1 and
table 6.18.3.2-2 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)234

Table 6.18.3.2-1: Temporal Evolution Query parameters

Name Data Type Cardinality Remarks
id Comma separated list of

strings
0..1 Each String shall be a valid URI.

List of entity ids to be retrieved.
type String 0..1

It shall be 1 if attrs is not
present

Selection of Entity Types as per
clause 4.17.

idPattern Regular expression as
defined by [11]

0..1 Regular expression that shall be matched
by entity ids.

attrs Comma separated list of
strings

0..1
It shall be 1 if type is not
present

Each String is an Attribute (Property or
Relationship) name.
List of Attributes
(Properties or Relationships) to be
retrieved.

q String 0..1 Query as per clause 4.9.
csf String 0..1 Context Source filter as per clause 4.9.
geometry String 0..1

It shall be 1 if georel or
coordinates are present

Geometry as per clause 4.10. It is part of
geoquery.

georel String 0..1
It shall be 1 if geometry or
coordinates are present

Geo relationship as per clause 4.10. It is
part of geoquery.

coordinates String 0..1
It shall be one if georel or
geometry are present

Coordinates serialized as a string as per
clause 4.10. It is part of geoquery.

geoproperty String 0..1
It shall be ignored if no
geoquery is present

The name of the Property that contains the
geospatial data that will be used to resolve
the geoquery. By default, will be location
(see clause 4.7).

timeproperty String 0..1 It represents a Temporal Property Name.
Allowed values: "observedAt", "createdAt",
"modifiedAt" and "deletedAt". If not
specified, the default is "observedAt" (see
clause 4.8).

timerel String 1 It represents the temporal relationship as
defined by clause 4.11.
Allowed values: "before", "after",
"between".

timeAt String 1 representing the timeAt parameter as
defined by clause 4.11.
It shall be a DateTime.

endTimeAt String 0..1 It representing the endTimeAt parameter
as defined by clause 4.11.
It shall be a DateTime.
Cardinality shall be 1 if timerel is equal to
"between".

lastN Positive integer 0..1 Only the last n instances, per Attribute, per
Entity (under the specified time interval)
shall be retrieved.

lang String 0..1 It represents the preferred natural language
of the response.
It is used to reduce languageMaps to a
string or string array property in a single
preferred language.

aggrMethods Comma separated list of
strings

0..1
It shall be 1 if
aggregatedValues is
present in the options
parameter

Each String represents an aggregation
method, as defined by clause 4.5.19.
Only applicable if aggregatedValues is
present in the options parameter.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)235

Name Data Type Cardinality Remarks
aggrPeriodDuration String 0..1 It represents the duration of each period

used for the aggregation as defined by
clause 4.5.19.
If not specified, it defaults to a duration of
0 seconds and is interpreted as a duration
spanning the whole time-range specified by
the temporal query.
Only applicable if aggregatedValues is
present in the options parameter

scopeQ String 0..1 Scope query (see clause 4.19).

Table 6.18.3.2-2: Query Entities History request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
EntityTemporal[] 1 200 OK A response body containing the query

result as a list of temporal representation
of Entities.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.19 Resource: temporal/entities/{entityId}

6.19.1 Description

This resource is associated to the temporal representation of an Entity known to an NGSI-LD system.

6.19.2 Resource definition

Resource URI:

• /temporal/entities/{entityId}

Resource URI variables for this resource are defined in table 6.19.2-1.

Table 6.19.2-1: URI variables

Name Definition
entityId Id (URI) of the entity to be retrieved

6.19.3 Resource methods

6.19.3.1 GET

This method is associated to the operation "Retrieve temporal evolution of an Entity" and shall exhibit the behaviour
defined by clause 5.7.3. The Entity identifier is the value of the resource URI variable entityId. Figure 6.19.3.1-1 shows
the retrieve temporal representation of an entity interaction.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)236

Figure 6.19.3.1-1: Retrieve Temporal evolution of an Entity interaction

The query parameters that shall be supported are those defined in table 6.19.3.1-1 and table 6.19.3.1-2 describes the
request body and possible responses.

Table 6.19.3.1-1: Query parameters

Name Data Type Cardinality Remarks
attrs Comma separated list of

strings
0..1 Each String is an Attribute (Property or

Relationship) name.
List of Attributes to be retrieved. If not specified,
all Attributes related to the temporal
representation of an entity shall be retrieved.

timeproperty String 0..1 It represents a Temporal Property Name.
Allowed values: "observedAt", "createdAt",
"modifiedAt" and "deletedAt". If not specified,
the default is "observedAt". (See clause 4.8).

timerel String 0..1
It shall be 1 if timeAt
is present

It represents the temporal relationship as
defined by clause 4.11.
Allowed values: "before", "after", "between".

timeAt String 0..1
It shall be 1 if timerel
is present

It represents the timeAt parameter as defined by
clause 4.11.
It shall be a DateTime.

endTimeAt String 0..1
It shall be 1 if timerel
is equal to "between"

It represents the endTimeAt parameter as
defined by clause 4.11.
It shall be a DateTime.

lastN Positive integer 0..1 Only the last n Attribute instances (under the
concerned time interval) shall be retrieved.

lang String 0..1 It represents the preferred natural language of
the response.
It is used to reduce languageMaps to a string or
string array property in a single preferred
language.

aggrMethods Comma separated list of
strings

0..1
It shall be 1 if
aggregatedValues is
present in the
options parameter

Each String represents the aggregation
methods as defined by clause 4.5.19.
Only applicable if aggregatedValues is present
in the options parameter.

aggrPeriodDuration String 0..1 It represents the duration of each period used
for the aggregation as defined by clause 4.5.19.
If not specified, it defaults to a duration of 0
seconds and is interpreted as a duration
spanning the whole time-range specified by the
temporal query.
Only applicable if aggregatedValues is present
in the options parameter.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)237

Table 6.19.3.1-2: Get Temporal Representation of Entity request body and possible responses

Request
Body

Data Type Cardinality Remarks
N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
EntityTemporal 1 200 OK A response body containing the

JSON-LD temporal representation of the
target entity containing the selected
Attributes.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an entity
identifier (URI) not known to the system,
see clause 6.3.2.

6.19.3.2 DELETE

This method is associated to the operation "Delete Temporal Representation of an Entity" and shall exhibit the
behaviour defined by clause 5.6.16. The Entity identifier is the value of the resource URI variable entityId.
Figure 6.19.3.2-1 shows the delete entity interaction and table 6.19.3.2-1 describes the request body and possible
responses.

Figure 6.19.3.2-1: Delete Temporal Representation of Entity interaction

Table 6.19.3.2-1: Delete Temporal Representation of Entity request body and possible responses

Request
Body

Data Type Cardinality Remarks
N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

6.20 Resource: temporal/entities/{entityId}/attrs/

6.20.1 Description

This resource represents all the Attributes (Properties or Relationships) of a Temporal Representation of an NGSI-LD
Entity.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)238

6.20.2 Resource definition

Resource URI:

• /temporal/entities/{entityId}/attrs/

Resource URI variables for this resource are defined in table 6.20.2-1.

Table 6.20.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity

6.20.3 Resource methods

6.20.3.1 POST

This method is bound to the "Add Attributes to Temporal Representation of an Entity" operation and shall exhibit the
behaviour defined by clause 5.6.12. The Entity identifier is the value of the resource URI variable entityId. The data to
be added shall be contained in the HTTP request payload body. Figure 6.20.3.1-1 shows the Add Attributes interaction
and table 6.20.3.1-1 describes the request body and possible responses.

Figure 6.20.3.1-1: Add Attributes to Temporal Representation of an Entity interaction

Table 6.20.3.1-1: Add Attributes to Temporal Representation of
an Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

EntityTemporal
Fragment

1 EntityTemporal Fragment containing a complete representation
of the Attribute instances to be added.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No content All the Attributes were added

successfully.
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier (URI) not known to the
system, see clause 6.3.2.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)239

6.21 Resource: temporal/entities/{entityId}/attrs/{attrId}

6.21.1 Description

This resource represents an Attribute (Property or Relationship) of a Temporal Representation of an NGSI-LD Entity.

6.21.2 Resource definition

Resource URI:

• /temporal/entities/{entityId}/attrs/{attrId}

Resource URI variables for this resource are defined in table 6.21.2-1.

Table 6.21.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity
attrId Attribute name (Property or Relationship)

6.21.3 Resource methods

6.21.3.1 DELETE

This method is associated to the operation "Delete Attribute from Temporal Representation of an Entity" and shall
exhibit the behaviour defined by clause 5.6.13. The Entity identifier is the value of the resource URI variable entityId.
The Attribute Name is the value of the resource URI variable attrId. Figure 6.21.3.1-1 shows the Delete Attribute from
Temporal Representation of an Entity interaction, table 6.21.3.1-1 shows the delete parameters to be supported and
table 6.21.3.1-2 describes the request body and possible responses.

Figure 6.21.3.1-1: Delete Attribute from Temporal Representation
of an Entity interaction

Table 6.21.3.1-1: Delete parameters

Name Data Type Cardinality Remarks
deleteAll Boolean 0..1 If true, all attribute instances are deleted. Otherwise (default) only the Attribute

instance specified by the datasetId is deleted. In case neither the deleteAll flag
nor a datasetId is present, the default Attribute instance is deleted.

datasetId String 0..1 Shall be a valid URI. Specifies the datasetId of the dataset to be deleted.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)240

Table 6.21.3.1-2: Delete Attribute from Temporal Representation of
an Entity request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier (URI) or Attribute
Name not known to the system. See
clause 6.3.2.

6.22 Resource: temporal/entities/{entityId}/attrs/{attrId}/
{instanceId}

6.22.1 Description

This resource represents an Attribute (Property or Relationship) instance of a Temporal Representation of an NGSI-LD
Entity.

6.22.2 Resource definition

Resource URI:

• /temporal/entities/{entityId}/attrs/{attrId}/{instanceId}

Resource URI variables for this resource are defined in table 6.22.2-1.

Table 6.22.2-1: URI variables

Name Definition
entityId Id (URI) of the concerned entity
attrId Attribute Name (Property or Relationship)
instanceId Id (URI) identifying a particular Attribute instance

6.22.3 Resource methods

6.22.3.1 PATCH

This method is associated to the operation "Modify attribute instance from Temporal Representation of an Entity" and
shall exhibit the behaviour defined by clause 5.6.14. The Entity identifier is the value of the resource URI variable
entityId. The attribute name is the value of the resource URI variable attrId. The instance identifier is the value of the
resource URI variable instanceId. Figure 6.22.3.1-1 shows the Modify Attribute instance interaction and
table 6.22.3.1-1 describes the request body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)241

Figure 6.22.3.1-1: Modify Attribute instance from Temporal Representation interaction

Table 6.22.3.1-1: Modify Attribute instance from
Temporal Representation request body and possible responses

Request Body
Data Type Cardinality Remarks

EntityTemporal
Fragment

1 EntityTemporal Fragment containing a complete
representation of the Attribute instance to be replaced.

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier (URI), attribute name
or instance identifier not known to the
system. See clause 6.3.2.

6.22.3.2 DELETE

This method is associated to the operation "Delete Attribute instance from Temporal Representation of an Entity" and
shall exhibit the behaviour defined by clause 5.6.15. The Entity identifier is the value of the resource URI variable
entityId. The Attribute Name is the value of the resource URI variable attrId. The instance identifier is the value of the
resource URI variable instanceId. Figure 6.22.3.2-1 shows the Delete Attribute instance interaction and table 6.22.3.2-1
describes the request body and possible responses.

Figure 6.22.3.2-1: Delete Attribute instance from Temporal Representation interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)242

Table 6.22.3.2-1: Delete Attribute instance from
Temporal Representation request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request
or its content is incorrect, see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
entity identifier (URI), attribute name
or instance identifier not known to the
system. See clause 6.3.2.

6.23 Resource: entityOperations/query

6.23.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable querying for entities by means of a
POST method. The behaviour of this clause mirrors the one in clause 6.4.3.2, which performs the "Query Entity"
operation (defined by clause 5.7.2) by means of a GET method. The reason to provide an alternative via POST is that,
using GET:

a) The client may end up assembling very long URLs, due to the URI parameters for 'id', 'q'‚ type', 'attrs', etc.,
being included in the URL. Problems with too long URLs may arise with some applications that cut URLs to a
maximum length.

b) There is a need to URL-encode the resulting URL. By using POST, there is no need to url-encode.

6.23.2 Resource definition

Resource URI:

• /entityOperations/query

6.23.3 Resource methods

6.23.3.1 POST

This method is associated to the operation "Query Entities" and shall exhibit the behaviour defined by clause 5.7.2.
Figure 6.23.3.1-1 shows the operation interaction and table 6.23.3.1-1 describes the request body and possible
responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)243

Figure 6.23.3.1-1: Query Entity via POST Interaction

Table 6.23.3.1-1: Query Entity via POST Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Query 1 Payload body in the request contains a JSON-LD object which
represents the query to be performed.

Response Body

Data Type Cardinality Response Codes Remarks
Entity[] 1 200 OK A response body containing the query

result as a list of Entities.
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.24 Resource: temporal/entityOperations/query

6.24.1 Description

A sub-resource, pertaining to the temporal/entityOperations/ resource, intended to enable temporal querying for entities
by means of a POST method. The behaviour of this clause mirrors the one in clause 6.18.3.2, which performs the
"Query Temporal Evolution of Entities" (defined by clause 5.7.4) operation by means of a GET method. The reason to
provide an alternative via POST is that, using GET:

a) The client may end up assembling very long URLs, due to the URI parameters for 'id', 'q'‚ type', 'attrs', etc.,
being included in the URL. Problems with too long URLs may arise with some applications that cut URLs to a
maximum length.

b) There is a need to URL-encode the resulting URL. By using POST, there is no need to url-encode.

6.24.2 Resource definition

Resource URI:

• /temporal/entityOperations/query

6.24.3 Resource methods

6.24.3.1 POST

This method is associated to the operation "Query Temporal Evolution of Entities" and shall exhibit the behaviour
defined by clause 5.7.4. Figure 6.24.3.1-1 shows the operation interaction and table 6.24.3.1-1 describes the request
body and possible responses.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)244

Figure 6.24.3.1-1: Temporal Query Entity via POST Interaction

Table 6.24.3.1-1: Temporal Query Entity via POST Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Query 1 Payload body in the request contains a JSON-LD object which
represents the query to be performed.

Response Body

Data Type Cardinality Response Codes Remarks
EntityTemporal[] 1 200 OK A response body containing the query

result as a list of Entities.
ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.25 Resource: types/

6.25.1 Description

This resource represents the entity types available in an NGSI-LD system.

6.25.2 Resource definition

Resource URI:

• /types/

6.25.3 Resource methods

6.25.3.1 GET

This method is associated to the operations "Retrieve Available Entity Types" and "Retrieve Details of Available Entity
Types" (if the "details" parameter is set to true) and shall exhibit the behaviour defined by clauses 5.7.5 and 5.7.6
respectively.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)245

Figure 6.25.3.1-1: Retrieve Available Entity Types interaction

The request parameters that shall be supported are those defined in table 6.25.3.1-1 and table 6.25.3.1-2 describes the
request body and possible responses.

Table 6.25.3.1-1: Retrieve Available Entity Types: optional parameter

Name Data Type Cardinality Remarks
details Boolean 0..1 If true, then detailed entity type information represented as an array with elements

of the Entity Type data structure (clause 5.2.25) is to be returned

Table 6.25.3.1-2: Retrieve Available Entity Types request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
EntityTypeList 1 200 OK A response body containing the JSON-LD

representation of the EntityTypeList
(clause 5.2.24) is to be returned, unless
details=true is specified

EntityType[] 1 200 OK If details=true is specified, a response
body containing a JSON-LD array with
elements of the EntityType data structure
(clause 5.2.25) is to be returned

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error

6.26 Resource: types/{type}

6.26.1 Description

This resource represents the specified entity type for which entity instances are available in an NGSI-LD system.

6.26.2 Resource definition

Resource URI:

• /types/{type}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)246

Resource URI variables for this resource are defined in table 6.26.2-1.

Table 6.26.2-1: URI variables

Name Definition
type Name of the entity type for which detailed information is to be retrieved. The Fully Qualified Name (FQN) as

well as the short name can be used, given that the latter is part of the JSON-LD @context provided.

6.26.3 Resource methods

6.26.3.1 GET

This method is associated to the operation "Retrieve Available Entity Type Information" and shall exhibit the behaviour
defined by clause 5.7.7. The entity type is the value of the resource URI variable "type". Figure 6.26.3.1-1 shows the
retrieve available entity type interaction.

Figure 6.26.3.1-1: Retrieve Available Entity Type interaction

Table 6.26.3.1-1 describes the request body and possible responses.

Table 6.26.3.1-1: Retrieve Available Entity Type request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
EntityTypeInfo 1 200 OK A response body containing the JSON-LD

representation of the detailed information
about the available entity type.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an entity
type not known to the system, see
clause 6.3.2.

6.27 Resource: attributes/

6.27.1 Description

This resource represents the attributes available in an NGSI-LD system.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)247

6.27.2 Resource definition

Resource URI:

• /attributes/

6.27.3 Resource methods

6.27.3.1 GET

This method is associated to the operations "Retrieve Available Attributes" and "Retrieve Details of Available
Attributes" (if the "details" parameter is set to true) and shall exhibit the behaviour defined by clauses 5.7.8 and 5.7.9
respectively.

Figure 6.27.3.1-1: Retrieve Available Attributes interaction

The request parameters that shall be supported are those defined in table 6.27.3.1-1 and table 6.27.3.1-2 describes the
request body and possible responses.

Table 6.27.3.1-1: Retrieve Available Attributes: optional parameter

Name Data Type Cardinality Remarks
details Boolean 0..1 If true, then detailed attribute information represented as an array with elements of

the Attribute data structure (clause 5.2.28) is to be returned

Table 6.27.3.1-2: Retrieve Available Attributes request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
AttributeList 1 200 OK A response body containing the JSON-LD

representation of the AttributeList
(clause 5.2.27) is to be returned, unless
details=true is specified.

Attribute[] 1 200 OK If details=true is specified, a response
body containing a JSON-LD array with
elements of the Attribute data structure
(clause 5.2.28) is to be returned.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)248

6.28 Resource: attributes/{attrId}

6.28.1 Description

This resource represents the specified attribute that belongs to entity instances existing within the NGSI-LD system.

6.28.2 Resource definition

Resource URI:

• /attributes/{attrId}

Resource URI variables for this resource are defined in table 6.28.2-1.

Table 6.28.2-1: URI variables

Name Definition
attrId Name of the attribute for which detailed information is to be retrieved. The Fully Qualified Name (FQN) as well

as the short name can be used, given that the latter is part of the JSON-LD @context provided.

6.28.3 Resource methods

6.28.3.1 GET

This method is associated to the operation "Retrieve Available Attribute Information" and shall exhibit the behaviour
defined by clause 5.7.10. The attribute is the value of the resource URI variable "attrId". Figure 6.28.3.1-1 shows the
retrieve available attribute information interaction.

Figure 6.28.3.1-1: Retrieve Available Attribute Information interaction

Table 6.28.3.1-1 describes the request body and possible responses.

Table 6.28.3.1-1: Retrieve Available Attribute Information request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
Attribute 1 200 OK A response body containing the JSON-LD

representation of the detailed information
about the available attribute.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
attribute name not known to the system,
see clause 6.3.2.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)249

6.29 Resource: jsonldContexts/

6.29.1 Description

This resource represents the @contexts known to an NGSI-LD system.

6.29.2 Resource definition

Resource URI:

• /jsonldContexts/

6.29.3 Resource methods

6.29.3.1 POST

This method is bound to the operation "Add @context" and shall exhibit the behaviour defined by clause 5.13.2, taking
the @context to be added from the HTTP request payload body. Figure 6.29.3.1-1 shows the Add @context interaction
and table 6.29.3.1-1 describes the request body and possible responses.

Figure 6.29.3.1-1: Add @context interaction

Table 6.29.3.1-1: Add @context request body and possible responses

Request Body

Data Type Cardinality Remarks
JSON Object 1 Payload body in the request contains a JSON object that has a

root node named @context, which represents a JSON-LD
"local context".

Response
Body

Data Type Cardinality Response Codes Remarks
N/A N/A 201 Created The HTTP response shall include a

"Location" HTTP header that contains the
local URI of the added @context.

ProblemDetails
(see IETF
RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

6.29.3.2 GET

This method is associated to the operation "List @contexts" and shall exhibit the behaviour defined by clause 5.13.3,
and it provides information about stored @contexts as part of the HTTP response payload body. Figure 6.29.3.2-1
shows the List @contexts interaction.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)250

Figure 6.29.3.2-1: List @contexts interaction

The request parameters that shall be supported by implementations are those defined in table 6.29.3.2-1 and
table 6.29.3.2-2 describes the request body and possible responses.

Table 6.29.3.2-1: List @contexts request parameters

Name Data Type Cardinality Remarks
details Boolean 0..1 Whether a list of URLs or a more detailed list of

JSON Objects is requested
kind String 0..1 Can be either "Cached", "Hosted", or

"ImplicitlyCreated"

Table 6.29.3.2-2: List @contexts request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response Body

Data Type Cardinality Response Codes Remarks
String[]
or
JSON Object[]

1 200 OK A response body containing a list of
URLs or a list of JSON Objects, as
defined in clause 5.13.3.5,
representing metadata about stored
@contexts.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect see
clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

6.30 Resource: jsonldContexts/{contextId}

6.30.1 Description

This resource represents a JSON-LD @context stored in the Broker's internal @context storage.

6.30.2 Resource definition

Resource URI:

• /jsonldContexts/{contextId}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)251

Resource URI variables for this resource are defined in table 6.30.2-1.

Table 6.30.2-1: URI variables

Name Definition
contextId Local identifier of the @context to be managed (served or

deleted). For @contexts of kind "Cached" this can also be the
original URL the Broker downloaded the @context from.

6.30.3 Resource methods

6.30.3.1 GET

This method is associated to the operation "Serve @context" and shall exhibit the behaviour defined by clause 5.13.4.
The @context identifier is the value of the resource URI variable "contextId". Figure 6.30.3.1-1 shows the HTTP Serve
@context interaction.

Figure 6.30.3.1-1: Serve @context interaction

The request parameters that shall be supported by implementations are those defined in table 6.30.3.1-1 and
table 6.30.3.1-2 describes the request body and possible responses.

Table 6.30.3.1-1: Serve @contexts request parameters

Name Data Type Cardinality Remarks
details Boolean 0..1 Whether the content of the @context or its

metadata is requested

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)252

Table 6.30.3.1-2: Serve @context request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
JSON Object 1 200 OK If the parameter details is False or

missing, response body contains a JSON
object that has a root node named
@context, which represents a JSON-LD
"local context".
If the parameter details is True, response
body contains a JSON object as defined
in clause 5.13.4.5, which metadata of a
JSON-LD "local context".

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

ProblemDetails (see
IETF RFC 7807 [10])

1 404 Not Found It is used when a client provided an
@context identifier not known to the
system, see clause 6.3.2.

ProblemDetails (see
IETF RFC 7807 [10])

1 422 Unprocessable It is used when a client indicated an
@context of type "Cached", see
clause 6.3.2.

6.30.3.2 DELETE

This method is associated to the operation "Delete and Reload @context" and shall exhibit the behaviour defined by
clause 5.13.5. The entity identifier is the value of the resource URI variable "contextId". Figure 6.30.3.2-1 shows the
delete entity interaction. The request parameters that shall be supported are those defined in table 6.30.3.2-1 and
table 6.30.3.2-2 describes the request body and possible responses.

Table 6.30.3.2-1: Delete and Reload @context request parameters

Name Data Type Cardinality Remarks
reload Boolean 0..1 indicates to perform a download and replace of the

@context, as specified in clause 5.13.5.4.

Figure 6.30.3.2-1: Delete and Reload @context interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)253

Table 6.30.3.2-2: Delete and Reload @context request body and possible responses

Request Body
Data Type Cardinality Remarks

N/A N/A

Response
Body

Data Type Cardinality Response Codes Remarks
N/A N/A 204 No Content
ProblemDetails
(see IETF
RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or
its content is incorrect, see clause 6.3.2.
In the returned ProblemDetails
structure, the "detail" attribute should
convey more information about the
error.

ProblemDetails
(see IETF
RFC 7807 [10])

1 404 Not Found It is used when a client provided an
@context identifier not known to the
system, see clause 6.3.2.

ProblemDetails
(see IETF
RFC 7807 [10])

1 503 Service
Unavailable

It is used when re-downloading fails.

6.31 Resource: entityOperations/merge

6.31.1 Description

A sub-resource, pertaining to the entityOperations/ resource, intended to enable batch entity merge for the NGSI-LD
API.

6.31.2 Resource definition

Resource URI:

• /entityOperations/merge

6.31.3 Resource methods

6.31.3.1 POST

This method is associated to the operation "Batch Entity Merge" and shall exhibit the behaviour defined by
clause 5.6.20. Figure 6.31.3.1-1 shows the operation interaction and table 6.31.3.1-1 describes the request body and
possible responses.

Figure 6.31.3.1-1: Batch Entity Merge Interaction

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)254

Table 6.31.3.1-1: Batch Entity Merge Interaction and possible responses

Request Body
Data Type Cardinality Remarks

Entity[] 1 Array of Entities to be merged.

Response
Body

Data Type Cardinality Response Code Remarks
N/A N/A 204 No Content If all entities have been successfully

merged, there is no payload body in the
response.

BatchOperationResult 1 207 Multi-Status If only some or none of the entities have
been successfully merged, a response body
containing the result of each operation
contained in the batch is returned in a
BatchOperationResult structure. It contains
two arrays. The first array ('success')
contains the URIs of the successfully
merged entities, while the second array
('errors') contains information about the
error for each of the entities that could not
be merged-patched. There is no restriction
as to the order of the Entity Ids in the
arrays.

If any of the entities matches to a
registration, the relevant parts of the
request are forwarded as a distributed
operation.

In the case when an error response is
received back from any distributed
operation, a response body containing the
result returned from each registration is
returned in a BatchOperationResult
structure.

Errors can occur whenever a distributed
operation is unsupported, fails or times out,
see clause 6.3.17.

ProblemDetails (see
IETF RFC 7807 [10])

1 400 Bad Request It is used to indicate that the request or its
content is incorrect, see clause 6.3.2.
In the returned ProblemDetails structure,
the "detail" attribute should convey more
information about the error.

7 API MQTT Notification Binding

7.1 Introduction
This clause defines the optional support of the NGSI-LD API for sending notifications via the MQTT protocol [24] and
[25]. The subscriptions are handled using the HTTP binding as described in clause 6, but instead of an HTTP endpoint,
an MQTT endpoint is provided.

7.2 Notification behaviour
In case a subscription received via HTTP specifies an MQTT endpoint in the "notification.endpoint.uri" member of the
subscription structure (defined by clauses 5.2.12, 5.2.14 and 5.2.15), and the MQTT notification binding is supported by
the NGSI-LD implementation, notifications related to this subscription shall be sent via the MQTT protocol.

The syntax of an MQTT endpoint URI is
mqtt[s]://[<username>][:<password>]@<host>[:<port>]/<topic>[/<subtopic>]* and follows an existing convention for
representing an MQTT endpoint as a URI [i.19].

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)255

Username and password can be optionally specified as part of the endpoint URI. If the port is not explicitly specified,
the default MQTT port is 1883 for MQTT over TCP and 8883 for mqtts, i.e. Secure MQTT over TLS. MQTT supports
the structuring of topics as a hierarchy with any number of subtopic levels, which can be specified as part of the
endpoint URI.

In MQTT, all non-protocol information has to be included into the MQTT message. This means that the actual
notification as specified in clause 5.3.1, as well as additional information like MIME type, possibly the link to the
@context and additional user-specified information, which in the HTTP case is provided as headers, has to be included
into the MQTT message. The MQTT notification message shall be provided as a JSON Object with the two elements
"metadata" and "body". The actual notification, as specified in clause 5.3.1 is the value of "body", whereas any
additional information is provided as key-value pairs in "metadata".

For the MQTT protocol, there are currently two versions supported, MQTTv3.1.1 [24] and MQTTv5.0 [25]. Also, there
are three levels of quality of service:

• at most once (0);

• at least once (1); and

• exactly once (2).

These can be specified in the subscription as part of the optional array of KeyValuePair type (defined by clause 5.2.22)
"notification.endpoint.notifierInfo". The MQTT protocol parameters can be found in table 7.2-1. If not present, the
given default value is used.

Table 7.2-1: Protocol parameters for MQTT in notifierInfo

Key Possible Values Default Source Description
MQTT-
Version

mqtt3.1.1, mqtt5.0 mqtt5.0 Subscription's
notification.endpoint.notifierInfo

Version of MQTT protocol

MQTT-QoS 0, 1, 2 0 Subscription's
notification.endpoint.notifierInfo

MQTT Quality of service, at
most once (0), at least once (1)
and exactly once (2)

The MIME type associated with the notification shall be "application/json" by default. However, this can be changed to
application/ld+json by means of the "endpoint.accept" member. The MIME type is specified as Content-Type in the
"metadata" element of the MQTT message. If the target MIME type is "application/json" then the reference to the
JSON-LD @context is provided as Link in the "metadata" element of the MQTT message, following the specification
of the HTTP Link header as mandated by the JSON-LD specification [2], section 6.2 (to the default JSON-LD
@context if none available). Table 7.2-2 lists these "receiver side" metadata parameters.

Table 7.2-2: Parameters for MQTT in "metadata"

Key Possible Values Default Source Description
Content-
Type

application/json,
application/ld+json

application/json Subscription's
notification.endpoint
.accept

MIME type of the notification
included in the "body" element of the
MQTT message

Link Same format as
specified in JSON-LD
specification [2],
section 6.2 for the
HTTP Link header

 Link Header
provided in
Subscription

Contains the reference to the
@context in case Content-Type is
application/json. Example:
<http://myhost.org/mycontext>;
rel="http://www.w3.org/ns/json-
ld#context";
type="application/ld+json"

Additionally, if the optional array of KeyValuePair type (defined by clause 5.2.22) "notification.endpoint.receiverInfo"
of the subscription is present, then a new entry for each member named "key" of the key, value pairs that make up the
array shall be generated and added to the "metadata" element of the MQTT message. The content of each entry shall be
set equal to the content of the corresponding "value" member of the KeyValuePair.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)256

Annex A (normative):
NGSI-LD identifier considerations

A.1 Introduction
The purpose of identifiers is to allow uniquely identifying NGSI-LD elements (Entities, Context Subscriptions or
Context Source Registrations) within an NGSI-LD system. This annex is intended to clarify the different issues around
the design of identifiers in NGSI-LD.

A.2 Entity identifiers
In order to enable the participation of NGSI-LD in linked data scenarios, all Entities are identified by URIs. If those
URIs are expected to participate in external linked data relationships they should be dereferenceable.

It is noteworthy that the identifier from the point of view of NGSI-LD is different from the inherent identifier that a
specific Entity may have. For instance, an NGSI-LD Entity of Type Vehicle may have a Property named
licencePlateNumber, which it is actually a unique identifier from the point of view of the Entity domain, as it uniquely
identifies the specific vehicle instance. However, from the point of view of the NGSI-LD system, it may have another
identifier which might or might not include such licence plate number identifier.

A.3 NGSI-LD namespace
NGSI-LD defines a specific URN [9] namespace intended to help API users to design readable, clean and simple
identifiers. As it is based on URNs, the usage of this identification approach is not recommended when dereferenceable
URIs are needed (fully-fledged linked data scenarios).

The referred namespace is defined as follows (to be registered with IANA):

• Namespace identifier: NID = "ngsi-ld"

• Namespace specific string: NSS = EntityTypeName ":" EntityIdentificationString

EntityTypeName shall be an Entity Type Name which can be expanded to a URI as per the @context.

EntityIdentificationString shall be a string that allows uniquely identifying the subject Entity in combination with the
other items being part of the NSS.

EXAMPLE: urn:ngsi-ld:Person:28976543.

It is recommended that applications use this URN namespace when applicable.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)257

Annex B (normative):
Core NGSI-LD @context definition
Below is the definition of the Core NGSI-LD @context which shall be supported by implementations.

Such definition has been tested using [i.7].

{
 "@context": {
 "ngsi-ld": "https://uri.etsi.org/ngsi-ld/",
 "geojson": "https://purl.org/geojson/vocab#",
 "id": "@id",
 "type": "@type",
 "Attribute": "ngsi-ld:Attribute",
 "AttributeList": "ngsi-ld:AttributeList",
 "ContextSourceNotification": "ngsi-ld:ContextSourceNotification",
 "ContextSourceRegistration": "ngsi-ld:ContextSourceRegistration",
 "Date": "ngsi-ld:Date",
 "DateTime": "ngsi-ld:DateTime",
 "EntityType": "ngsi-ld:EntityType",
 "EntityTypeInfo": "ngsi-ld:EntityTypeInfo",
 "EntityTypeList": "ngsi-ld:EntityTypeList",
 "Feature": "geojson:Feature",
 "FeatureCollection": "geojson:FeatureCollection",
 "GeoProperty": "ngsi-ld:GeoProperty",
 "GeometryCollection": "geojson:GeometryCollection",
 "LineString": "geojson:LineString",
 "LanguageProperty": "ngsi-ld:LanguageProperty",
 "MultiLineString": "geojson:MultiLineString",
 "MultiPoint": "geojson:MultiPoint",
 "MultiPolygon": "geojson:MultiPolygon",
 "Notification": "ngsi-ld:Notification",
 "Point": "geojson:Point",
 "Polygon": "geojson:Polygon",
 "Property": "ngsi-ld:Property",
 "Relationship": "ngsi-ld:Relationship",
 "Subscription": "ngsi-ld:Subscription",
 "TemporalProperty": "ngsi-ld:TemporalProperty",
 "Time": "ngsi-ld:Time",
 "VocabularyProperty": "ngsi-ld:VocabularyProperty",
 "accept": "ngsi-ld:accept",
 "attributeCount": "attributeCount",
 "attributeDetails": "attributeDetails",
 "attributeList": {
 "@id": "ngsi-ld:attributeList",
 "@type": "@vocab"
 },
 "attributeName": {
 "@id": "ngsi-ld:attributeName",
 "@type": "@vocab"
 },
 "attributeNames": {
 "@id": "ngsi-ld:attributeNames",
 "@type": "@vocab"
 },
 "attributeTypes": {
 "@id": "ngsi-ld:attributeTypes",
 "@type": "@vocab"
 },
 "attributes": {
 "@id": "ngsi-ld:attributes",
 "@type": "@vocab"
 },
 "attrs": "ngsi-ld:attrs",
 "avg": {
 "@id": "ngsi-ld:avg",
 "@container": "@list"
 },
 "bbox": {
 "@container": "@list",
 "@id": "geojson:bbox"
 },
 "cacheDuration": "ngsi-ld:cacheDuration",
 "contextSourceInfo": "ngsi-ld:contextSourceInfo",
 "cooldown": "ngsi-ld:cooldown",

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)258

 "coordinates": {
 "@container": "@list",
 "@id": "geojson:coordinates"
 },
 "createdAt": {
 "@id": "ngsi-ld:createdAt",
 "@type": "DateTime"
 },
 "csf": "ngsi-ld:csf",
 "data": "ngsi-ld:data",
 "dataset": {
 "@id": "ngsi-ld:hasDataset",
 "@container": "@index"
 },
 "datasetId": {
 "@id": "ngsi-ld:datasetId",
 "@type": "@id"
 },
 "deletedAt": {
 "@id": "ngsi-ld:deletedAt",
 "@type": "DateTime"
 },
 "description": "http://purl.org/dc/terms/description",
 "detail": "ngsi-ld:detail",
 "distinctCount": {
 "@id": "ngsi-ld:distinctCount",
 "@container": "@list"
 },
 "endAt": {
 "@id": "ngsi-ld:endAt",
 "@type": "DateTime"
 },
 "endTimeAt": {
 "@id": "ngsi-ld:endTimeAt",
 "@type": "DateTime"
 },
 "endpoint": "ngsi-ld:endpoint",
 "entities": "ngsi-ld:entities",
 "entityCount": "ngsi-ld:entityCount",
 "entityId": {
 "@id": "ngsi-ld:entityId",
 "@type": "@id"
 },
 "error": "ngsi-ld:error",
 "errors": "ngsi-ld:errors",
 "expiresAt": {
 "@id": "ngsi-ld:expiresAt",
 "@type": "DateTime"
 },
 "features": {
 "@container": "@set",
 "@id": "geojson:features"
 },
 "format": "ngsi-ld:format",
 "geoQ": "ngsi-ld:geoQ",
 "geometry": "geojson:geometry",
 "geoproperty": "ngsi-ld:geoproperty",
 "georel": "ngsi-ld:georel",
 "idPattern": "ngsi-ld:idPattern",
 "information": "ngsi-ld:information",
 "instanceId": {
 "@id": "ngsi-ld:instanceId",
 "@type": "@id"
 },
 "isActive": "ngsi-ld:isActive",
 "key": "ngsi-ld:hasKey",
 "lang": "ngsi-ld:lang",
 "languageMap": {
 "@id": "ngsi-ld:hasLanguageMap",
 "@container": "@language"
 },
 "languageMaps": {
 "@id": "ngsi-ld:hasLanguageMaps",
 "@container": "@list"
 },
 "lastFailure": {
 "@id": "ngsi-ld:lastFailure",
 "@type": "DateTime"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)259

 },
 "lastNotification": {
 "@id": "ngsi-ld:lastNotification",
 "@type": "DateTime"
 },
 "lastSuccess": {
 "@id": "ngsi-ld:lastSuccess",
 "@type": "DateTime"
 },
 "localOnly": "ngsi-ld:localOnly",
 "location": "ngsi-ld:location",
 "management": "ngsi-ld:management",
 "managementInterval": "ngsi-ld:managementInterval",
 "max": {
 "@id": "ngsi-ld:max",
 "@container": "@list"
 },
 "min": {
 "@id": "ngsi-ld:min",
 "@container": "@list"
 },
 "mode": "ngsi-ld:mode",
 "modifiedAt": {
 "@id": "ngsi-ld:modifiedAt",
 "@type": "DateTime"
 },
 "notification": "ngsi-ld:notification",
 "notificationTrigger": "ngsi-ld:notificationTrigger",
 "notifiedAt": {
 "@id": "ngsi-ld:notifiedAt",
 "@type": "DateTime"
 },
 "notifierInfo": "ngsi-ld:notifierInfo",
 "notUpdated": "ngsi-ld:notUpdated",
 "object": {
 "@id": "ngsi-ld:hasObject",
 "@type": "@id"
 },
 "objects": {
 "@id": "ngsi-ld:hasObjects",
 "@container": "@list"
 },
 "observationInterval": "ngsi-ld:observationInterval",
 "observationSpace": "ngsi-ld:observationSpace",
 "observedAt": {
 "@id": "ngsi-ld:observedAt",
 "@type": "DateTime"
 },
 "operationSpace": "ngsi-ld:operationSpace",
 "operations": "ngsi-ld:operations",
 "previousLanguageMap": {
 "@id": "ngsi-ld:hasPreviousLanguageMap",
 "@container": "@language"
 },
 "previousObject": {
 "@id": "ngsi-ld:hasPreviousObject",
 "@type": "@id"
 },
 "previousValue": "ngsi-ld:hasPreviousValue",
 "previousVocab": {
 "@id": "ngsi-ld:hasPreviousVocab",
 "@type": "@vocab"
 },
 "properties": "geojson:properties",
 "propertyNames": {
 "@id": "ngsi-ld:propertyNames",
 "@type": "@vocab"
 },
 "q": "ngsi-ld:q",
 "reason": "ngsi-ld:reason",
 "receiverInfo": "ngsi-ld:receiverInfo",
 "refreshRate": "ngsi-ld:refreshRate",
 "registrationId": "ngsi-ld:registrationId",
 "registrationName": "ngsi-ld:registrationName",
 "relationshipNames": {
 "@id": "ngsi-ld:relationshipNames",
 "@type": "@vocab"
 },

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)260

 "scope": "ngsi-ld:scope",
 "scopeQ": "ngsi-ld:scopeQ",
 "showChanges": "ngsi-ld:showChanges",
 "startAt": {
 "@id": "ngsi-ld:startAt",
 "@type": "DateTime"
 },
 "status": "ngsi-ld:status",
 "stddev": {
 "@id": "ngsi-ld:stddev",
 "@container": "@list"
 },
 "subscriptionId": {
 "@id": "ngsi-ld:subscriptionId",
 "@type": "@id"
 },
 "subscriptionName": "ngsi-ld:subscriptionName",
 "success": {
 "@id": "ngsi-ld:success",
 "@type": "@id"
 },
 "sum": {
 "@id": "ngsi-ld:sum",
 "@container": "@list"
 },
 "sumsq": {
 "@id": "ngsi-ld:sumsq",
 "@container": "@list"
 },
 "sysAttrs": "ngsi-ld:sysAttrs",
 "temporalQ": "ngsi-ld:temporalQ",
 "tenant": {
 "@id": "ngsi-ld:tenant",
 "@type": "@id"
 },
 "throttling": "ngsi-ld:throttling",
 "timeAt": {
 "@id": "ngsi-ld:timeAt",
 "@type": "DateTime"
 },
 "timeInterval": "ngsi-ld:timeInterval",
 "timeout": "ngsi-ld:timeout",
 "timeproperty": "ngsi-ld:timeproperty",
 "timerel": "ngsi-ld:timerel",
 "timesFailed": "ngsi-ld:timesFailed",
 "timesSent": "ngsi-ld:timesSent",
 "title": "http://purl.org/dc/terms/title",
 "totalCount": {
 "@id": "ngsi-ld:totalCount",
 "@container": "@list"
 },
 "triggerReason": "ngsi-ld:triggerReason",
 "typeList": {
 "@id": "ngsi-ld:typeList",
 "@type": "@vocab"
 },
 "typeName": {
 "@id": "ngsi-ld:typeName",
 "@type": "@vocab"
 },
 "typeNames": {
 "@id": "ngsi-ld:typeNames",
 "@type": "@vocab"
 },
 "unchanged": "ngsi-ld:unchanged",
 "unitCode": "ngsi-ld:unitCode",
 "updated": "ngsi-ld:updated",
 "uri": "ngsi-ld:uri",
 "value": "ngsi-ld:hasValue",
 "values": {
 "@id": "ngsi-ld:hasValues",
 "@container": "@list"
 },
 "vocab": {
 "@id": "ngsi-ld:hasVocab",
 "@type": "@vocab"
 },
 "vocabs": {

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)261

 "@id": "ngsi-ld:hasVocabs",
 "@container": "@list"
 },
 "watchedAttributes": {
 "@id": "ngsi-ld:watchedAttributes",
 "@type": "@vocab"
 },
 "@vocab": "https://uri.etsi.org/ngsi-ld/default-context/"
 }
}

NOTE: Implementers can take advantage of prefixed terms, i.e. in the form ngsi-ld:term, to provide a terser
representation of the Core @context.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)262

Annex C (informative):
Examples of using the API

C.1 Introduction
This annex is informative and is intended to show in action the JSON-LD representation defined by NGSI-LD.

JSON representations of the examples shown in this annex can be found at [i.15].

C.2 Entity Representation

C.2.1 Property Graph
Figure C.2.1-1 shows a diagram representing a property graph to be used for the examples discussed in this clause.

Figure C.2.1-1: Reference example

As per the algorithms described above and as per the rules for generating the JSON-LD representation of NGSI-LD
entities the above graph will result in the following JSON-LD representations. The syntax has been checked using the
JSON-LD Playground tool [i.5].

Vehicle

urn:ngsi-ld:

Vehicle:

A4567

"Mercedes"

2017-07-

29T12:00:04Z

urn:ngsi-ld:

OffStreetParking:

Downtown1

urn:ngsi-ld:

Person:

Bob

Person

OffStreetParking

urn:ngsi-ld:

Camera:C1

Camera

0.7 121

brandName

parkingDate

reliability
availableSpot

Number

isParked

provided

By

provided

By

Property Relationship Entity

Entity Type

type

hasValue

hasObject

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)263

C.2.2 Vehicle Entity
Normalized Representation

The normalized representation is a lossless representation of an Entity, where every Property is defined by a "type" and
a "value" and every Relationship is defined by a "type" and an "object".

Below there is a representation of an Entity of Type "Vehicle". It can be observed that the @context is composed of
different parts, namely the Core @context and several vocabulary-specific @contexts.

It is noteworthy that the @context corresponding to the Parking domain is included as it is referenced through the
isParked Relationship.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": {
 "type": "Property",
 "value": "Mercedes"
 },
 "street": {
 "type": "LanguageProperty",
 "languageMap": {
 "fr": "Grand Place",
 "nl": "Grote Markt
 }
 },
 "isParked": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "observedAt": "2017-07-29T12:00:04Z",
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Person:Bob"
 }
 },
 "category": {
 "type": "VocabularyProperty",
 "vocab": "non-commercial"
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Normalized Representation when Language Filter is used

When the Language Filter (see clause 4.15) is used, Properties of type "LanguageProperty" are returned as type
"Property", and their languageMaps are reduced to simple strings. For example if the language filter lang=fr is
specified, only the value for French language is present.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": {
 "type": "Property",
 "value": "Mercedes"
 },
 "street": {
 "type": "Property",
 "value": "Grand Place",
 "lang": "fr"
 },
 "isParked": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "observedAt": "2017-07-29T12:00:04Z",
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Person:Bob"
 }

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)264

 },
 "category": {
 "type": "VocabularyProperty",
 "vocab": "non-commercial"
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Concise Representation

The concise representation is a terser, lossless form of the normalized representation, where redundant Attribute "type"
members are omitted and the following rules are applied:

• Every Property without further sub-attributes is represented directly by the Property value only.

• Every Property that includes further sub-attributes is represented by a value key-value pair.

• Every GeoProperty without further sub-attributes is represented by the GeoProperty's GeoJSON
representation only.

• Every GeoProperty that includes further sub-attributes is represented by a value key-value pair.

• Every LanguageProperty is represented by a languageMap key-value pair.

• Every VocabularyProperty is represented by a vocab the value of which is a compacted URI.

• Every Relationship is represented by an object key-value pair.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": "Mercedes",
 "street": {
 "languageMap": {
 "fr": "Grand Place",
 "nl": "Grote Markt"
 }
 },
 "isParked": {
 "object": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "observedAt": "2017-07-29T12:00:04Z",
 "providedBy": {
 "object": "urn:ngsi-ld:Person:Bob"
 }
 },
 "category": {
 "vocab": "non-commercial"
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Concise representation when Language Filter is used

The rules apply as defined in the previous examples. For example if the language filter lang=fr is specified.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": "Mercedes"
 },
 "street": {
 "value": "Grand Place",
 "lang": "fr"
 },

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)265

 "isParked": {
 "object": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "observedAt": "2017-07-29T12:00:04Z",
 "providedBy": {
 "object": "urn:ngsi-ld:Person:Bob"
 }
 },
 "category": {
 "vocab": "non-commercial"
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Simplified Representation

The simplified representation is a collapsed, lossy representation of an Entity, which focuses on Property Values and
Relationship objects present at the first level of the graph only.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": "Mercedes",
 "street": {
 "languageMap": {
 "fr": "Grand Place",
 "nl": "Grote Markt"
 }
 }
 "isParked": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "category": {
 "vocab": "non-commercial"
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Simplified Representation of Natural Language Attributes

The simplified natural language representation is a collapsed representation of an Entity, which focuses on Property
Values and Relationship objects present at the first level of the graph, and where languageMaps are reduced to simple
string properties. For example if the language filter lang=fr is specified.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "brandName": "Mercedes",
 "street": "Grand Place",
 "isParked": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "category": {
 "vocab": "non-commercial"
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Multiple attribute example

Below is an example, where the speed of the car is provided by two different sources. As both may be relevant at the
same time, there are two individual attribute instances for speed; each is identified by a datasetId and both instances are
represented in an array. The datasetId enables individually creating, updating and deleting a particular instance without
affecting the instance from another source.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)266

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "speed": [{
 "type": "Property",
 "value": 55,
 "source": {
 "type": "Property",
 "value": "Speedometer"
 },
 "datasetId": "urn:ngsi-ld:Property:speedometerA4567-speed"
 },
 {
 "type": "Property",
 "value": 54.5,
 "source": {
 "type": "Property",
 "value": "GPS"
 },
 "datasetId": "urn:ngsi-ld:Property:gpsBxyz123-speed"
 }],
 "@context": [
 {
 "Vehicle": "http://example.org/Vehicle",
 "speed": "http://example.org/speed",
 "source": "http://example.org/hasSource"
 },
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Simplified Representation of a multi-attribute

The simplified representation is a collapsed, lossy representation of an Entity, which focuses on Property Values and
Relationship objects present at the first level of the graph only.

{
 "id": "urn:ngsi-ld:Vehicle:A4567",
 "type": "Vehicle",
 "speed": {
 "dataset": {
 "urn:ngsi-ld:Property:speedometerA4567-speed": 55,
 "urn:ngsi-ld:Property:gpsBxyz123-speed": 54.5
 }
 },
 "@context": [
 {
 "Vehicle": "http://example.org/Vehicle",
 "speed": "http://example.org/speed"
 },
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

C.2.3 Parking Entity
Normalized Representation

The normalized representation is a lossless representation of an Entity, where every Property is defined by a "type" and
a "value" and every Relationship is defined by a "type" and an "object".

Below there is a representation of an Entity of Type "OffStreetParking". It can be observed that the @context is
composed of two different elements, the Core one and the vocabulary-specific one.

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)267

 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": {
 "type": "Property",
 "value": 0.7
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "location": {
 "type": "GeoProperty",
 "value": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Concise Representation

The concise representation is a terser, lossless form of the normalized representation, where redundant Attribute "type"
members are omitted and the following rules are applied:

• Every Property without further sub-attributes is represented by the Property value only.

• Every Property that includes further sub-attributes is represented by a value key-value pair.

• Every GeoProperty without further sub-attributes is represented by the GeoProperty's GeoJSON
representation only.

• Every GeoProperty that includes further sub-attributes is represented by a value key-value pair.

• Every LanguageProperty is defined by a languageMap key-value pair.

• Every VocabularyProperty is represented by a vocab the value of which is a compacted URI.

• Every Relationship is defined by an object key-value pair.

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": {
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": 0.7,
 "providedBy": {
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",
 "coordinates": [
 -8.5,
 41.2
]
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)268

Simplified representation

The Simplified Representation (also known as keyValues) is a lossy, collapsed representation of an Entity, which
focuses on Property Values and Relationship objects present at the first level of the graph only.

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": 121,
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Normalized GeoJSON Representation

The normalized GeoJSON representation of a single Entity is defined as a single GeoJSON Feature object as follows:

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": {
 "type": "Property",
 "value": 0.7
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "location": {
 "type": "GeoProperty",
 "value": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 }
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
}

The GeoJSON representation of multiple Entities is defined as a GeoJSON FeatureCollection object containing an array
of GeoJSON features corresponding to the individual Entity representations.

{
 "type": "FeatureCollection",
 "features": [
 {

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)269

 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.5, 41.1]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": {
 "type": "Property",
 "value": 0.7
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "location": {
 "type": "GeoProperty",
 "value": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 }
 }
 }
 },
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown2",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown Two"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 99,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": {
 "type": "Property",
 "value": 0.8
 },
 "providedBy": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Camera:C2"
 }
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 100
 },
 "location": {
 "type": "GeoProperty",
 "value": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 }
 }
 }
 }
],

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)270

 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Concise GeoJSON Representation

The concise GeoJSON representation of a single Entity is defined as a single GeoJSON Feature object as follows:

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -8.51,
 41.1
]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": {
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": 0.7,
 "providedBy": {
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "location": {
 "type": "Point",
 "coordinates": [
 -8.51,
 41.1
]
 },
 "totalSpotNumber": 200,
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
}

The concise GeoJSON representation of multiple Entities is defined as a GeoJSON FeatureCollection object containing
an array of GeoJSON features corresponding to the individual Entity representations in concise GeoJSON format.

{
 "type": "FeatureCollection",
 "features": [
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -8.5,
 41.1
]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": {
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": 0.7,
 "providedBy": {
 "object": "urn:ngsi-ld:Camera:C1"
 }
 },
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",
 "coordinates": [

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)271

 -8.51,
 41.1
]
 }
 }
 },
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown2",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -8.51,
 41.1
]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown Two",
 "availableSpotNumber": {
 "value": 99,
 "observedAt": "2017-07-29T12:05:02Z",
 "reliability": 0.8,
 "providedBy": {
 "object": "urn:ngsi-ld:Camera:C2"
 }
 },
 "totalSpotNumber": 100,
 "location": {
 "type": "Point",
 "coordinates": [
 -8.51,
 41.1
]
 }
 }
 }
],
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Simplified GeoJSON Representation

The simplified GeoJSON representation of a single Entity is defined as a single GeoJSON Feature object where the
properties represent a collapsed representation of the Entity, which focuses on Property Values and Relationship objects
present at the first level of the graph.

{
 "id": "urn:ngsi-ld:offstreetparking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": 121,
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

The simplified GeoJSON representation of multiple Entities is defined as a GeoJSON FeatureCollection object
containing an array of GeoJSON features corresponding to the individual Entity representations in simplified GeoJSON
format.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)272

{
 "type": "FeatureCollection",
 "features": [
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown One",
 "availableSpotNumber": 121,
 "totalSpotNumber": 200,
 "location": {
 "type": "Point",
 "coordinates": [-8.5, 41.2]
 }
 }
 },
 {
 "id": "urn:ngsi-ld:OffStreetParking:Downtown2",
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 },
 "properties": {
 "type": "OffStreetParking",
 "name": "Downtown Two",
 "availableSpotNumber": 99,
 "totalSpotNumber": 100,
 "location": {
 "type": "Point",
 "coordinates": [-8.51, 41.1]
 }
 }
 }
],
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

C.2.4 @context
The disposition of the @context can be as an inline JSON object, as a dereferenceable URI or as a (multiple)
combination of both. In the examples above the @context is provided through several dereferenceable URIs. The
resulting @context (obtained by merging the content of the resource referenced by the referred URIs) is shown below.

NOTE 1: For brevity reasons the @context does not contain the API terms defined by clause 5.2.

NOTE 2: Some extra terms are defined because they will be used in examples later presented.

{
 "id": "@id",
 "type": "@type",
 "Property": "https://uri.etsi.org/ngsi-ld/Property",
 "Relationship": "https://uri.etsi.org/ngsi-ld/Relationship",
 "value": "https://uri.etsi.org/ngsi-ld/hasValue",
 "object": {
 "@type": "@id",
 "@id": "https://uri.etsi.org/ngsi-ld/hasObject"
 },
 "observedAt": {
 "@type": "https://uri.etsi.org/ngsi-ld/DateTime",
 "@id": "https://uri.etsi.org/ngsi-ld/observedAt"
 },
 "datasetId": {
 "@id": "https://uri.etsi.org/ngsi-ld/datasetId",
 "@type":"@id"
 },
 "location": "https://uri.etsi.org/ngsi-ld/location",

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)273

 "GeoProperty": "https://uri.etsi.org/ngsi-ld/GeoProperty",
 "Vehicle": "http://example.org/vehicle/Vehicle",
 "street": "http://example.org/vehicle/street",
 "brandName": "http://example.org/vehicle/brandName",
 "category": "http://example.org/vehicle/category",
 "speed": "http://example.org/vehicle/speed",
 "isParked": {
 "@type": "@id",
 "@id": "http://example.org/common/isParked"
 },
 "OffStreetParking": "http://example.org/parking/OffStreetParking",
 "availableSpotNumber": "http://example.org/parking/availableSpotNumber",
 "totalSpotNumber": "http://example.org/parking/totalSpotNumber",
 "isNextToBuilding": {
 "@type": "@id",
 "@id": "http://example.org/common/isNextToBuilding"
 },
 "reliability": "http://example.org/common/reliability",
 "providedBy": {
 "@type": "@id",
 "@id": "http://example.org/common/providedBy"
 },
 "name": "http://example.org/common/name",
 "commercial": "http://example.org/vehicle/commercial",
 "non-commercial": "http://example.org/vehicle/non-commercial"
}

C.3 Context Source Registration
Below there is an example representation of a Context Source Registration. It makes use of the @context formerly
described.

{
 "id": "urn:ngsi-ld:ContextSourceRegistration:csr1a3456",
 "type": "ContextSourceRegistration",
 "information": [
 {
 "entities": [
 {
 "id": "urn:ngsi-ld:Vehicle:A456",
 "type": "Vehicle"
 }
],
 "propertyNames": ["brandName","speed"],
 "relationshipNames": ["isParked"]
 },
 {
 "entities": [
 {
 "idPattern": ".*downtown$",
 "type": "OffStreetParking"
 },
 {
 "idPattern": ".*47$",
 "type": "OffStreetParking"
 }
],
 "propertyNames": ["availableSpotNumber","totalSpotNumber"],
 "relationshipNames": ["isNextToBuilding"]
 }
],
 "endpoint": "http://my.csource.org:1026",
 "location": {
 "type": "Polygon",
 "coordinates": [
 [[100.0, 0.0], [101.0, 0.0], [101.0, 1.0],
 [100.0, 1.0], [100.0, 0.0]]]
 },
 "managementInterval": {
 "startAt": " 2017-11-29T14:53:15Z"
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/commonTerms.jsonld",
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "http://example.org/ngsi-ld/latest/parking.jsonld",

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)274

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

The Registration is referring to a Temporal Context Source capable of providing temporal information from Entities of
type Vehicle and OffStreetParking, meeting certain id requirements. More concretely, it can only provide the referenced
Properties and Relationships. Temporal information is provided for the given managementInterval, i.e. related to
createdAt and modifiedAt Temporal Properties. The managementInterval is specified as an open interval, so only a
starting point is given. In addition, the Registration example covers a particular geographical area.

C.4 Context Subscription
Below there is an example of a Context Subscription. It makes use of the @context formerly described.

{
 "id": "urn:ngsi-ld:Subscription:mySubscription",
 "type": "Subscription",
 "entities": [
 {
 "type": "Vehicle"
 }
],
 "watchedAttributes": ["speed"],
 "q": "speed>50",
 "geoQ": {
 "georel": "near;maxDistance==2000",
 "geometry": "Point",
 "coordinates": [-1,100]
 },
 "notification": {
 "attributes": ["speed"],
 "format": "keyValues",
 "endpoint": {
 "uri": "http://my.endpoint.org/notify",
 "accept": "application/json"
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

The subject of the Context Subscription is Entities of Type Vehicle which speed is greater than 50, and located close to
a certain area defined by a reference spatial point. Every time the speed (watched Attribute) of a concerned vehicle,
changes, a new notification (including the new speed value) will be received in the specified endpoint.

C.5 HTTP REST API Examples

C.5.1 Introduction
This clause introduces some simple usage examples of the NGSI-LD API (HTTP REST binding). They are not intended
to be exhaustive but just a sample for helping readers to understand better the present document. ETSI ISG CIM
published a Developer's Primer with many more examples, see ETSI GR CIM 008 [i.21].

C.5.2 Create Entity of Type Vehicle

C.5.2.1 HTTP Request

POST /ngsi-ld/v1/entities/

Content-Type: application/ld+json

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)275

Content-Length: 556

<Insert Here the JSON-LD representation of a Vehicle as described by clause C.2.2 Vehicle Entity>

C.5.2.2 HTTP Response

201 Created

Location: /ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:A4567

C.5.3 Query Entities

C.5.3.1 Introduction

EXAMPLE: Give back all the Entities of type Vehicle whose "brandName" attribute is not "Mercedes". Only
give back the "brandName" attribute and provide the data in the NGSI-LD Simplified Format.

C.5.3.2 HTTP Request

GET /ngsi-ld/v1/entities/?type=Vehicle&q=brandName!="Mercedes"&options=keyValues

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.3.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id":"urn:ngsi-ld:Vehicle:B9211",
 "type":"Vehicle",
 "brandName":"Volvo",
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
]

C.5.4 Query Entities (Pagination)

C.5.4.1 Introduction

EXAMPLE: Give back all the Entities of type Vehicle. Only give back the "brandName" attribute and provide
the data in the NGSI-LD Simplified Format. Limit the number of entities retrieved to 2.

C.5.4.2 HTTP Request

GET /ngsi-ld/v1/entities/?type=Vehicle&options=keyValues&limit=2

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)276

C.5.4.3 HTTP Response

200 OK

Content-Type: application/ld+json

Link: </ngsi-ld/v1/entities/?type=Vehicle&options=keyValues&limit=2&offset=2>; rel="next";
type="application/ld+json"

[
 {
 "id":"urn:ngsi-ld:Vehicle:B9211",
 "type":"Vehicle",
 "brandName":"Volvo",
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 },
 {
 "id":"urn:ngsi-ld:Vehicle:A456",
 "type":"Vehicle",
 "brandName":"Mercedes",
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
]

C.5.5 Temporal Query

C.5.5.1 Introduction

EXAMPLE 1: Give back the temporal evolution of the attribute "speed" of Entities of type Vehicle whose
"brandName" attribute is not "Mercedes" between the 1st of August at noon and the 1st of August at
01 PM.

EXAMPLE 2: Give back the temporal evolution of the attribute "speed" and "brandName" of Entities of type
Vehicle whose "brandName" attribute is not "Mercedes" between the 1st of August at noon and the
1st of August at 01 PM. As "brandName" attribute does not have any temporal evolution,
"brandName" attribute is omitted in the response.

C.5.5.2 HTTP Request #1

GET /ngsi-
ld/v1/temporal/entities/?type=Vehicle&q=brandName!=Mercedes&attrs=speed&timerel=between&timeAt=2018-
08-01T12:00:00Z&endTimeAt=2018-08-01T13:00:00Z

Accept: application/ld+json

Link: <http://example.org/ ngsi-ld /latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.5.3 HTTP Response #1

200 OK

Content-Type: application/ld+json

[
 {
 "id":"urn:ngsi-ld:Vehicle:B9211",
 "type":"Vehicle",
 "speed":[
 {

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)277

 "type":"Property",
 "value":120,
 "observedAt":"2018-08-01T12:03:00Z"
 },
 {
 "type":"Property",
 "value":80,
 "observedAt":"2018-08-01T12:05:00Z"
 },
 {
 "type":"Property",
 "value":100,
 "observedAt":"2018-08-01T12:07:00Z"
 }
],
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
]

C.5.5.2 HTTP Request #2

GET /ngsi-
ld/v1/temporal/entities/?type=Vehicle&q=brandName!=Mercedes&attrs=speed,brandName&timerel=between&tim
eAt=2018-08-01T12:00:00Z&endTimeAt=2018-08-01T13:00:00Z

Accept: application/ld+json

Link: <http://example.org/ ngsi-ld /latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.5.3 HTTP Response #2

200 OK

Content-Type: application/ld+json

[
 {
 "id":"urn:ngsi-ld:Vehicle:B9211",
 "type":"Vehicle",
 "speed":[
 {
 "type":"Property",
 "value":120,
 "observedAt":"2018-08-01T12:03:00Z"
 },
 {
 "type":"Property",
 "value":80,
 "observedAt":"2018-08-01T12:05:00Z"
 },
 {
 "type":"Property",
 "value":100,
 "observedAt":"2018-08-01T12:07:00Z"
 }
],
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
]

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)278

C.5.6 Temporal Query (Simplified Representation)

C.5.6.1 Introduction

EXAMPLE: Give back the temporal evolution of the "speed" attribute for Entities of type Vehicle whose
"brandName" attribute is not "Mercedes" between the 1st of August at noon and the 1st of August at
01 PM. Simplified representation is required.

C.5.6.2 HTTP Request

GET /ngsi-
ld/v1/temporal/entities/?type=Vehicle&q=brandName!=Mercedes&attrs=speed&timerel=between&timeAt=2018-
08-01T12:00:00Z&endTimeAt=2018-08-01T13:00:00Z&options=temporalValues

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.6.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id":"urn:ngsi-ld:Vehicle:B9211",
 "type":"Vehicle",
 "speed":{
 "type":"Property",
 "values":[
 [
 120,
 "2018-08-01T12:03:00Z"
],
 [
 80,
 "2018-08-01T12:05:00Z"
],
 [
 100,
 "2018-08-01T12:07:00Z"
]
]
 },
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
]

C.5.7 Retrieve Available Entity Types

C.5.7.1 Introduction

EXAMPLE: Give back all entity types for which entity instances are currently available in the NGSI-LD
system.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)279

C.5.7.2 HTTP Request

GET /ngsi-ld/v1/types

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.7.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id":"urn:ngsi-ld:EntityTypeList:34534657",
 "type":"EntityTypeList",
 "typeList":[
 "Vehicle",
 "OffStreetParking",
 "http://example.org/parking/ParkingSpot"
]
}

NOTE: All entity types that can be found in the provided @context are given as short names, the others as Fully
Qualified Names (FQNs).

C.5.8 Retrieve Details of Available Entity Types

C.5.8.1 Introduction

EXAMPLE: Give back the details of all entity types for which entity instances are currently available in the
NGSI-LD system.

C.5.8.2 HTTP Request

GET /ngsi-ld/v1/types?details=true

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.8.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

[
 {
 "id":"http://example.org/vehicle/Vehicle",
 "type":"EntityType",
 "typeName":"Vehicle",
 "attributeNames":[
 "brandName",
 "isParked",
 "location",

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)280

 "speed"
]
 },
 {
 "id":"http://example.org/parking/OffStreetParking",
 "type":"EntityType",
 "typeName":"OffStreetParking",
 "attributeNames":[
 "availableSpotNumber",
 "isNextToBuilding",
 "location",
 "totalSpotNumber"
]
 },
 {
 "id":"http://example.org/parking/ParkingSpot",
 "type":"EntityType",
 "typeName":"http://example.org/parking/ParkingSpot",
 "attributeNames":[
 "location",
 "http://example.org/parking/status"
]
 }
]

NOTE: The type name of all entity types and all attribute names that can be found in the provided @context are
given as short names, the others as Fully Qualified Names (FQNs). The id is always an FQN.

C.5.9 Retrieve Available Entity Type Information

C.5.9.1 Introduction

EXAMPLE: Give back the details of entity type Vehicle (for which entity instances are currently available in
the NGSI-LD system).

C.5.9.2 HTTP Request

GET /ngsi-ld/v1/types/Vehicle

[Alternative with FQN: GET /ngsi-ld/v1/attributes/http%3A%2F%2Fexample.org%2Fvehicle%2FVehicle]

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.9.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id":"http://example.org/vehicle/Vehicle",
 "type":"EntityTypeInfo",
 "typeName":"Vehicle",
 "entityCount":2,
 "attributeDetails":[
 {
 "id":"http://example.org/vehicle/brandName",
 "type":"Attribute",
 "attributeName":"brandName",
 "attributeTypes":[
 "Property"
]
 },

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)281

 {
 "id":"http://example.org/vehicle/isParked",
 "type":"Attribute",
 "attributeName":"isParked",
 "attributeTypes":[
 "Relationship"
]
 },
 {
 "id":"https://uri.etsi.org/ngsi-ld/location",
 "type":"Attribute",
 "attributeName":"location",
 "attributeTypes":[
 "GeoProperty"
]
 },
 {
 "id":"http://example.org/vehicle/speed",
 "type":"Attribute",
 "attributeName":"speed",
 "attributeTypes":[
 "Property"
]
 }
]
}

C.5.10 Retrieve Available Attributes

C.5.10.1 Introduction

EXAMPLE: Give back all attribute names for which entity instances are currently available in the NGSI-LD
system that have an attribute with the respective name.

C.5.10.2 HTTP Request

GET /ngsi-ld/v1/attributes

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.10.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id":"urn:ngsi-ld:AttributeList:56534657",
 "type":"AttributeList",
 "attributeList":[
 "brandName",
 "isParked",
 "location",
 "speed",
 "http://example.org/parking/status"
]
}

NOTE: The attribute names that can be found in the provided @context are given as short names, the others as
Fully Qualified Names (FQNs).

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)282

C.5.11 Retrieve Details of Available Attributes

C.5.11.1 Introduction

EXAMPLE: Give back the details of all attributes for which entity instances are currently available in the
NGSI-LD system to which an attribute with the respective attribute name belongs.

C.5.11.2 HTTP Request

GET /ngsi-ld/v1/attributes?details=true

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.11.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

[
 {
 "id":"http://example.org/vehicle/brandName",
 "type":"Attribute",
 "attributeName":"brandName",
 "typeNames":[
 "Vehicle"
]
 },
 {
 "id":"http://example.org/vehicle/isParked",
 "type":"Attribute",
 "attributeName":"isParked",
 "typeNames":[
 "Vehicle"
]
 },
 {
 "id":"https://uri.etsi.org/ngsi-ld/location",
 "type":"Attribute",
 "attributeName":"location",
 "typeNames":[
 "Vehicle",
 "OffStreetParking",
 "http://example.org/parking/ParkingSpot"
]
 },
 {
 "id":"http://example.org/vehicle/speed",
 "type":"Attribute",
 "attributeName":"speed",
 "typeNames":[
 "Vehicle"
]
 },
 {
 "id":"http://example.org/parking/status",
 "type":"Attribute",
 "attributeName":"http://example.org/parking/status",
 "typeNames":[
 "http://example.org/parking/ParkingSpot"
]
 }
]

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)283

NOTE: The attribute name and all type names that can be found in the provided @context are given as short
names, the others as Fully Qualified Names (FQNs). The id is always an FQN.

C.5.12 Retrieve Available Attribute Information

C.5.12.1 Introduction

EXAMPLE: Give back the details of the attribute named "brandName" (for which entity instances with an
attribute of this name are currently available in the NGSI-LD system).

C.5.12.2 HTTP Request

GET /ngsi-ld/v1/attributes/brandName

[Alternative with FQN: GET /ngsi-ld/v1/attributes/http%3A%2F%2Fexample.org%2Fvehicle%2FbrandName]

Accept: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.12.3 HTTP Response

200 OK

Content-Type: application/json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id": "http://example.org/vehicle/brandName",
 "type": "Attribute",
 "attributeName": "brandName",
 "attributeTypes": ["Property"],
 "typeNames": ["Vehicle"],
 "attributeCount": 2
}

C.5.13 Query Entities (Natural Language Filtering)

C.5.13.1 Introduction

EXAMPLE: Give back all the Entities of type Vehicle where the "marque" attribute in British English is
"Vauxhall Viva". Only give back the "marque" attribute and provide the data in the NGSI-LD
Simplified Format and only return language strings in German.

C.5.13.2 HTTP Request

GET /ngsi-ld/v1/entities/?type=Vehicle&attrs=marque&q=marque[en-GB]=="Vauxhall
Viva"&options=keyValues&lang=de

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)284

C.5.13.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id":"urn:ngsi-ld:Vehicle:A4567",
 "type":"Vehicle",
 "marque":"Opel Karl",
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
]

C.5.14 Temporal Query (Aggregated Representation)

C.5.14.1 Introduction

EXAMPLE: Give back the maximum and average speed of Entities of type Vehicle whose "brandName"
attribute is not "Mercedes" between the 1st of August at noon and the 1st of August at 01 PM,
aggregated by periods of 4 minutes.

C.5.14.2 HTTP Request

GET /ngsi-
ld/v1/temporal/entities/?type=Vehicle&q=brandName!=Mercedes&attrs=speed&timerel=between&timeAt=2018-
08-01T12:00:00Z&endTimeAt=2018-08-
01T13:00:00Z&aggrMethods=max,avg&aggrPeriodDuration=PT4M&options=aggregatedValues

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.14.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id":"urn:ngsi-ld:Vehicle:B9211",
 "type":"Vehicle",
 "speed":{
 "type":"Property",
 "max":[
 [
 120,
 "2018-08-01T12:00:00Z",
 "2018-08-01T12:04:00Z"
],
 [
 100,
 "2018-08-01T12:04:00Z",
 "2018-08-01T12:08:00Z"
]
],
 "avg":[
 [
 120,
 "2018-08-01T12:00:00Z",
 "2018-08-01T12:04:00Z"
],

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)285

 [
 90,
 "2018-08-01T12:04:00Z",
 "2018-08-01T12:08:00Z"
]
]
 },
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
]

C.5.15 Scope Queries

C.5.15.1 Introduction

EXAMPLE: Give back all the Entities of type OffStreetParking that are within the Scope /Madrid/Centro or
/Madrid/Cortes.

C.5.15.2 HTTP Request

GET /ngsi-ld/v1/entities/?type=OffStreetParking&scopeQ="/Madrid/Centro,/Madrid/Cortes"

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

C.5.15.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id":"urn:ngsi-ld:OffStreetParking:Downtown1",
 "type":"OffStreetParking",
 "scope":"/Madrid/Centro",
 "name":{
 "type":"Property",
 "value":"Downtown One"
 },
 "availableSpotNumber":{
 "type":"Property",
 "value":121,
 "observedAt":"2017-07-29T12:05:02Z",
 "reliability":{
 "type":"Property",
 "value":0.7
 },
 "providedBy":{
 "type":"Relationship",
 "object":"urn:ngsi-ld:Camera:C1"
 }
 },
 "totalSpotNumber":{
 "type":"Property",
 "value":200
 },
 "location":{
 "type":"GeoProperty",
 "value":{
 "type":"Point",
 "coordinates":[
 -8.5,
 41.2
]

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)286

 }
 },
 "@context":[
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 },
 {
 "id":"urn:ngsi-ld:OffStreetParking:Corte4",
 "type":"OffStreetParking",
 "scope":[
 "/Madrid/Cortes",
 "/Company894/UnitC"
],
 "name":{
 "type":"Property",
 "value":"Corte4"
 },
 "availableSpotNumber":{
 "type":"Property",
 "value":121,
 "observedAt":"2017-07-29T12:05:02Z",
 "reliability":{
 "type":"Property",
 "value":0.7
 },
 "providedBy":{
 "type":"Relationship",
 "object":"urn:ngsi-ld:Camera:C1"
 }
 },
 "totalSpotNumber":{
 "type":"Property",
 "value":100
 },
 "location":{
 "type":"GeoProperty",
 "value":{
 "type":"Point",
 "coordinates":[
 -8.6,
 41.3
]
 }
 },
 "@context":[
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 }
]

C.5.16 Temporal Scope Queries

C.5.16.1 Introduction

EXAMPLE: Give back the speed of all the Entities of type Vehicle that have been within the Scope
/Madrid/Centro between the 1st of August 2018 at noon and the 1st of August 2018 at 01 PM. Note
that the value of the Scope has to match for the given timeframe, which means it is possible that it
has been set before, e.g. on 1st of August 2018 at 11 AM.

C.5.16.2 HTTP Request

GET /ngsi-ld/v1/temporal/entities/?type=Vehicle&attrs=speed,scope&timerel=between&timeAt=2018-08-
01T12:00:00Z&endTimeAt=2018-08-01T13:00:00Z&scopeQ="/Madrid/Centro"

Accept: application/ld+json

Link: <http://example.org/ngsi-ld/latest/aggregatedContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)287

C.5.16.3 HTTP Response

200 OK

Content-Type: application/ld+json

[
 {
 "id":"urn:ngsi-ld:Vehicle:B9211",
 "type":"Vehicle",
 "scope":{
 "type":"Property",
 "values":[
 [
 "/Madrid/Centro",
 "2018-08-01T11:00:00Z"
]
]
 },
 "speed":{
 "type":"Property",
 "values":[
 [
 30,
 "2018-08-01T12:03:00Z"
],
 [
 60,
 "2018-08-01T12:05:00Z"
],
 [
 50,
 "2018-08-01T12:07:00Z"
]
]
 },
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
 },
 {
 "id":"urn:ngsi-ld:Vehicle:A8311",
 "type":"Vehicle",
 "scope":{
 "type":"Property",
 "values":[
 [
 [
 "/Madrid/Centro",
 "/Company123/UnitA"
],
 "2018-08-01T12:10:00Z"
]
]
 },
 "speed":{
 "type":"Property",
 "values":[
 [
 40,
 "2018-08-01T12:12:00Z"
],
 [
 60,
 "2018-08-01T12:14:00Z"
],
 [
 50,
 "2018-08-01T12:16:00Z"
]
]
 },
 "@context":[
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)288

 }
]

Vehicle B9211 has already been within the Scope /Madrid/Centro before the beginning of the request interval, whereas
Vehicle A8311 only entered the Scope within the request interval. Thus in the latter case only Property values are
included that have been observed after the Scope has become valid.

C.6 Date Representation
In NGSI-LD, a TemporalProperty is represented only by its value, i.e. no sub-Properties of TemporalProperty nor sub-
Relationships of TemporalProperty can be conveyed. In more formal language, a TemporalProperty does not allow
reification. The term TemporalProperty has been reserved for non-reified structural timestamps (observedAt, createdAt,
modifiedAt, deletedAt), which capture the temporal evolution of Attributes. Only such structural timestamps can be used
as timeproperty in Temporal Queries as mandated by clause 4.11.

The following example shows how time values (Date, Time, or DateTime) can be represented in NGSI-LD as reified
Properties. A reified Property whose value is assigned the JSON type Date, DateTime or Time, can use the JSON-LD
@value syntax structure, as shown by the example below:

{
 "id": "urn:ngsi-ld:Vehicle:B9211",
 "type": "Vehicle",
 "testedAt": {
 "type": "Property",
 "value": {
 "@type": "DateTime",
 "@value": "2018-12-04T12:00:00Z"
 }
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/vehicle.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

One other way to achieve the same result would be to use JSON-LD "type coercion". With type coercion, values with a
special data type are defined with @type in the @context. This enforces the correct type for any occurrence. An
example of such a @context fragment is shown below:

"testedAt": {
 "@type": "https://uri.etsi.org/ngsi-ld/DateTime",
 "@id": "http://example.org/test/testedAt"
}

The above does not work, when using the @context to perform compaction, in the normalized and compact
representation of NGSI-LD, due to reification of the Property, because in this case testedAt is a complex JSON object,
which cannot be compacted to a DateTime type as the @context specifies. Thus, the full URI
http://example.org/test/testedAt is kept, instead of the short name testedAt. In summary, user @contexts used for the
normalized and compact NGSI-LD representation cannot use the JSON-LD type coercion feature.

However, in the simplified (keyValue) representation case, such an @context with the specification of testedAt could be
used, as there is no reification.

As a side note, when using the above @value + @type approach, since type is mapped to @type in the NGSI-LD core
@context, JSON-LD compaction will result in the following compacted value, instead of the one shown above, because
@type is compacted to type:

"value": {
 "type": "DateTime",
 "@value": "2018-12-04T12:00:00Z"
}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)289

C.7 @context utilization clarifications
When expanding or compacting JSON-LD terms, the JSON-LD @context to be used is always the one provided in the
current API request. For the benefit of users and implementers the following examples illustrate this concept.

The scenario starts with the creation of an Entity using a JSON-LD @context as follows:

POST /ngsi-ld/v1/entities/

Content-Type: application/ld+json

Content-Length: 200

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffStreetParking",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 },
 "totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

The content of the @context utilized for the referred Entity creation (at http://example.org/ngsi-ld/latest/parking.jsonld)
is as follows:

{
"OffStreetParking": "http://example.org/parking/OffStreetParking",
"availableSpotNumber": "http://example.org/parking/availableSpotNumber",
"totalSpotNumber": "http://example.org/parking/totalSpotNumber",
"name": "http://example.org/parking/name"

}

At Entity creation time the implementation will perform the expansion of terms using the JSON-LD @context depicted
above.

Now it is needed to retrieve our initial Entity. For retrieving such Entity, this time, a different JSON-LD @context is
going to be utilized, as follows:

{
"OffP": "http://example.org/parking/OffStreetParking",
"ava": "http://example.org/parking/availableSpotNumber",
"total": "http://example.org/parking/totalSpotNumber"

}

This new @context, even though it makes use of the same set of Fully Qualified Names, is defining new short strings as
terms. The reasons for that could be multiple: to facilitate data consumption by clients, to save some bandwidth, to
enable a more (or less) human-readable response payload body in a language different than English, etc.

In this particular case, the result of the Entity retrieval will be as depicted below. It can be observed that the terms
defined by the JSON-LD @context provided at retrieval time are used to render the Entity content (compaction), and
not the terms that were provided at creation time (which may be no longer known by the NGSI-LD Broker).

It is also interesting to note that the @context array of the response payload body contains, indeed, our header-supplied
@context:

GET /ngsi-ld/v1/entities/urn:ngsi-ld:OffStreetParking:Downtown1

Accept: application/ld+json

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)290

Link: <http://example.org/ngsi-ld/latest/parking-abbreviated.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "OffP",
 "name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "ava": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 },
 "total": {
 "type": "Property",
 "value": 200
 },
 "@context": [
 "http://example.org/ngsi-ld/latest/parking-abbreviated.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

Another interesting case to note is the one when an @context with no matching terms or no @context at all is supplied.
See the following example:

GET /ngsi-ld/v1/entities/urn:ngsi-ld:OffStreetParking:Downtown1

Accept: application/ld+json

{
 "id": "urn:ngsi-ld:OffStreetParking:Downtown1",
 "type": "http://example.org/parking/OffStreetParking",
 "http://example.org/parking/name": {
 "type": "Property",
 "value": "Downtown One"
 },
 "http://example.org/parking/availableSpotNumber": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 },
 "http://example.org/parking/totalSpotNumber": {
 "type": "Property",
 "value": 200
 },
 "@context": "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
}

In this particular case it can be observed that the user names (Entity Type, Attributes) in the response payload body
have not been compacted, and as a result the Fully Qualified Names are included. However, the core API terms have
been compacted, as the Core @context is always considered to be implicitly present if not specified explicitly (and that
is why it is included in the JSON-LD response, as mandated by the specification).

C.8 Link header utilization clarifications
The JSON-LD Specification [2] states clearly that only one HTTP Link header with the link relationship
<http://www.w3.org/ns/json-ld#context> is required to appear. Such statement has implications in terms of providing
the JSON-LD @context when using the NGSI-LD API. The main implication is that if the @context is a compound
one, i.e. an @context which references multiple individual @context, served by resources behind different URIs, then a
wrapper @context has to be created and hosted. The final aim is that only one @context is referenced from the
JSON-LD Link header. This can be illustrated with an example:

Imagine that it is desired to create an Entity providing @context terms which are defined in two different JSON-LD
@context resources:

• http://example.org/vehicle/v1/vehicle-context.jsonld

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)291

• https://schema.org

If a developer wants to reference these two @context resources from a Link header, a wrapper @context can be easily
created as follows:

{
 "@context": [
 "http://example.org/vehicle/v1/vehicle-context.jsonld",
 "https://schema.org",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

As such wrapper @context needs to be referenced from a Link header by using a URI, then it will have to be hosted at
some place on the Web. Usually, developers will host @context using popular and simple solutions such as Github or
Gitlab pages. As a result, developers will be able to use @context in queries or when using "application/json" as main
content type managed by their applications.

It is a good practice to include the Core @context in the wrapper @context so it can be used, off-the-shelf, by
external JSON-LD processing tools. However, it should be noted this is not necessary for NGSI-LD, as the Core
@context is always implicitly included.

Then, using such wrapper @context, (in our example hosted at https://hosting.example.com/ngsi-ld/v1/wrapper-
context.jsonld), the developer will be able to issue requests like:

POST /ngsi-ld/v1/entities/

Content-Type: application/json

Content-Length: 200

Link: <https://hosting.example.com/ngsi-ld/v1/wrapper-context.jsonld>; rel="http://www.w3.org/ns/json-
ld#context"; type="application/ld+json"

{
 "id": "urn:ngsi-ld:Vehicle:V1",
 "type": "Vehicle",
 "builtYear": {
 "type": "Property",
 "value": "2014"
 },
 "speed": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 }
}

201 Created

Location: /ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:V1

Link: < https://hosting.example.com/ngsi-ld/v1/wrapper-context.jsonld >; rel="http://www.w3.org/ns/json-
ld#context"; type="application/ld+json"

GET /ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:V1

Accept: application/ld+json

Link: <https://hosting.example.com/ngsi-ld/v1/wrapper-context.jsonld>; rel="http://www.w3.org/ns/json-
ld#context"; type="application/ld+json"

200 OK

Content-Type: application/ld+json

{
 "id": "urn:ngsi-ld:Vehicle:V1",
 "type": "Vehicle",
 "builtYear": {
 "type": "Property",

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)292

 "value": "2014"
 },
 "speed": {
 "type": "Property",
 "value": 121,
 "observedAt": "2017-07-29T12:05:02Z"
 },
 "@context": "https://hosting.example.com/ngsi-ld/v1/wrapper-context.jsonld"
}

Observe that in this case the NGSI-LD Broker is responding with the same wrapper @context in the Link header of the
HTTP Response or within the JSON-LD response payload body (when MIME type accepted is "application/ld+json").
However, that could not be always the case, as there could be situations where the NGSI-LD Broker could need to
provide a wrapper @context hosted by itself, for instance, when there are inline @context terms or when the Core
@context has not been previously included by the wrapper @context (not recommended) provided within developer's
requests.

C.9 @context processing clarifications
JSON-LD Specification [2] says that "If a term is redefined within a context, all previous rules associated with the
previous definition are removed". In addition, it is stated that "Multiple contexts may be combined using an array,
which is processed in order".

In contrast to the JSON-LD Specification, the NGSI-LD specification states that the Core @context is protected and has
to remain immutable. This essentially means that the Core @context has final precedence and, therefore, is always to be
processed as the last one in the @context array. For clarity, data providers should place the Core @context in the final
position. From the point of view of Data providers, care has to be taken so that there are no unexpected or undesired
term expansions. See the following example:

{
 "id": "urn:ngsi-ld:Building:B1",
 "type": "Building",
 "name": {
 "type": "Property",
 "value": "Empire State"
 },
 "openingHours": {
 "type": "Property",
 "value": "Mo-Fr 10am-7pm Sa 10am-22pm Su 10am-21pm"
 },
 "@context": [
 "https://schema.org",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

The main caveat of the example above is that the term "name" is defined in multiple elements of the @context and the
last one takes final precedence for the expansion. In these situations, one solution is to prefix the conflicting terms, so
that there cannot be any clashing. Therefore, if the intent is to refer to https://schema.org/name throughout, the example
above can be modified as shown below:

{
 "id": "urn:ngsi-ld:Building:B1",
 "type": "Building",
 "schema:name": {
 "type": "Property",
 "value": "Empire State"
 },
 "openingHours": {
 "type": "Property",
 "value": "Mo-Fr 10am-7pm Sa 10am-22pm Su 10am-21pm"
 },
 "@context": [
 "https://schema.org",
 "http://example.org/ngsi-ld/latest/parking.jsonld",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.7.jsonld"
]
}

https://schema.org/name

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)293

Note that the Core @context should be placed in the last position of the @context array. NGSI-LD implementations are
required to render content following this approach, which has been undertaken in order to maximize compatibility with
JSON-LD processing tools. This example works because the "schema:" prefix has already been defined by the
schema.org @context.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)294

Annex D (informative):
Transformation Algorithms

D.1 Introduction
These algorithms are informative but NGSI-LD implementations should aim at either implementing them as they are
described here or devising similar algorithms which take exactly the same input and provides exactly the same output
(or an equivalent one as per the JSON-LD specification [2]).

D.2 Algorithm for transforming an NGSI-LD Entity into a
JSON-LD document (ALG1)

This algorithm takes as input an NGSI-LD graph which top level node is a particular Entity and returns as output a
JSON-LD document which represents all the data associated to the entity. The JSON-LD document (and its associated
@context) corresponds to a representation of the Entity in JSON-LD as per the NGSI-LD Information Model.

NOTE: An early implementation of this algorithm can be found at [i.5].

Let:

• G be a graph defined as follows:

- Let N be G's top level node.

- N is an Entity instance of type T or types Ts. Type Name is "AliasT" or there is an Array of Type Names
["AliasT1", …,"AliasTn"], N's identifier is I.

- N has 0 or more associated Property. Each Property (Psi) is defined as follows:

 Property type identifier is Pi.

 Property Name is "AliasPi".

 Property Value is Vi.

 Property Value's associated data type is Di.

- N is the subject of 0 or more Relationship. Each Relationship is defined as follows:

 Relationship type identifier is Ri.

 Relationship name is "AliasRi".

 Relationship target object identifier is Robji.

• O be a JSON object initialized to the empty object ({}).

• C be a JSON-LD @context initialized as described by annex B.

The algorithm should run as follows, provided all the preconditions defined above are satisfied:

1) Add to C a new member <"AliasT", T> or new members <"AliasT1", T1> … <"AliasTn", Tn>.

2) Add to O two new members:

a) <"id", I>.

b) <"type", "AliasT"> or <"type", ["AliasT1", …,"AliasTn"]> .">.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)295

3) For each Property Psi (Pi, "AliasP", Vi, Di) associated to N:

a) Run Algorithm ALG1.1 taking the following inputs:

 Ps → Psi.

 O → O.

 C → C.

4) For each Relationship Rs (Ri, AliasRi, Robji) associated to N:

a) Run Algorithm ALG1.2 taking the following inputs:

 Rs → Rsi.

 O → O.

 C → C.

5) Return (O, C) and end of the algorithm.

D.3 Algorithm for transforming an NGSI-LD Property into
JSON-LD (ALG1.1)

Let Ps be the Property that has to be transformed. It is defined by (P, "AliasP", V, D), where P denotes a Property Type
Id, "AliasP" is the Property Name, V is the Property Value and D is the Property Value's data type.

Ps might be associated to extra Properties or Relationships.

Let O be the output JSON-LD object and C the associated JSON-LD context:

1) Execute the following steps:

a) If no member with "AliasP" is present in O, add a new member to O with key "AliasP" and value an
object structure, let it be named Op as defined in the following. Otherwise, add all existing members
with "AliasP" to a JSON-LD array and in addition put the object structure Op as defined in the
following:

 <"type", "Property">.

 If D is not a native JSON data type add a new member to Op with name "value" and which value
has to be an object structure as follows:

1) <"@type", D>.

2) <"@value", V>.

 Else If D is a native JSON data type add a new member to Op as follows:

1) <"value", V>.

b) Add a new member to C as follows:

 <"AliasP", P>.

c) For each Property associated to Ps (Pss) recursively run the present algorithm (ALG1.1) taking the
following inputs:

 Ps → Pss.

 O → Op.

 C → C.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)296

d) For each Relationship associated to Ps (Rss) run algorithm ALG1.2 taking the following inputs:

 Rs → Rss.

 O → Op.

 C → C.

2) Return (O,C) and end of the algorithm.

D.4 Algorithm for transforming an NGSI-LD Relationship
into JSON-LD (ALG1.2)

Let Rs be the Relationship that has to be transformed. It is defined by (R, "AliasR", Robj), where R denotes a
Relationship Type Id, "AliasR" is the Relationship's Name and Robj is the identifier of the target object of the
Relationship.

Rs might be associated to extra Properties or Relationships.

Let O be the output JSON-LD object and C the current JSON-LD context:

1) Execute the following statements:

a) If no member with "AliasR" is present in O, add a new member to O with key "AliasR" and value an
object structure, let it be named Or, and defined as in the following. Otherwise, add all existing members
with "AliasR" to a JSON-LD array and in addition put the object structure Or as defined in the following:

 <"object", Robj>.

 <"type", "Relationship">.

b) For each Property associated to Rs (Pss) run the algorithm ALG1.1 taking the following inputs:

 Ps → Pss.

 O → Or.

 C → C.

c) For each Relationship associated to Rs (Rss) recursively run the present algorithm ALG1.2 taking the
following inputs:

 Rs → Rss.

 O → Or.

 C → C.

2) Return (O,C) and end of the algorithm.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)297

Annex E (informative):
RDF-compatible specification of NGSI-LD meta-model
The content of this annex is now in ETSI GS CIM 006 [i.8].

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)298

Annex F (informative):
Conventions and syntax guidelines
When new concepts or terms are defined they are marked in bold.

EXAMPLE 1: NGSI-LD Entity, Query Term, observedAt.

API Parameter names are always in lowercase.

EXAMPLE 2: Options.

Entity Types, JSON-LD node types and Data Types are defined using lowercase but with a starting capital letter.

EXAMPLE 3: Vehicle, Property, Relationship, DateTime.

JSON-LD terms are always defined using camel case notation starting with lower case.

EXAMPLE 4: createdAt, value, unitCode.

When referring to special terms or words, defined previously in the present document or by other referenced
specifications, italics format is used.

EXAMPLE 5: GeoProperty, Geometry, Second, Number.

When referring to literal strings double quotes are used.

EXAMPLE 6: "application/json", "Subscription".

When referring to the JSON-LD Context the mnemonic text string @context is used as a placeholder.

All the dates and times are given in UTC format.

EXAMPLE 7: 2018-02-09T11:00:00Z.

The measurement units used in the API are those defined by the International System of Units.

EXAMPLE 8: The distance in geo-queries is provided in meters.

When defining application-specific elements or API extensions the same conventions and syntax guidelines should be
followed.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)299

Annex G (informative):
Localization and Internationalization Support

G.0 Foreword
These algorithms described below are informative, but NGSI-LD implementations should aim at either implementing
them as they are described here or providing equivalent @context elements for their payloads to provide interoperability
with their internationalized context entities.

G.1 Introduction

G.1.0 Foreword
Since Internationalization is not core to context information management, any direct support within NGSI-LD systems
is limited. Annex G proposes a series of best practices for maintaining, querying and displaying interoperable
internationalized data.

The content of the @context utilized for the referred Entities within these examples uses pre-existing URNs used for
internationalization and is as follows:

{
"inLanguage": "http://schema.org/inLanguage",
"sameAs": "http://schema.org/sameAs"

}

G.1.1 Associating an Entity with a Natural Language
Where a context Entity is associated with a single natural language, include a well-defined Property indicating the
natural language of the content. For example an Event taking place in French may be defined as follows:

{
 "type": "Event",
 "id": "urn:ngsi-ld:Event:bonjourLeMonde",
 "name": {
 "type": "Property",
 "value": "Bonjour le Monde"
 },
 "description": {
 "type": "Property",
 "value": "«Bonjour le monde» sont les mots traditionnellement écrits par un programme
informatique simple"
 },
 "inLanguage": {
 "type": "Property",
 "value": "fr"
 }
}

G.1.2 Associating a Property with a Natural Language
Where a Property of a context entity can be associated to one more natural language, include additional metadata as a
sub-Property of that Property. For example, a Hotel with booking forms available in English, French and German may
be defined as follows:

{
 "type": "Hotel,
 "id": "urn:ngsi-ld:Hotel:XXXXX",
 "name": {
 "type": "Property",
 "value": "Grand Hotel"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)300

 },

 "bookingUrl": {
 "type": "Property",
 "value": [
 "http://example.com/booking-in-french/",
 "http://example.com/booking-in-english/",
 "http://example.com/booking-in-german/"
],
 "inLanguage": {
 "type": "Property",
 "value": ["fr", "en", "de"]
 }
 }
}

G.1.3 Associating as equivalent entity
Where equivalent context entities in multiple natural languages exist, they may be associated with each other through
the use of a one-to-many relationship, where each relationship holds an additional sub-Property indicating the natural
language of the equivalent entities.

For example, three Events (such as a walking tour which is available in English, French and German) may be associated
to each other as follows:

{
 "type": "Event",
 "id": "urn:ngsi-ld:Event:bonjourLeMonde",
 "name": {
 "type": "Property",
 "value": "Bonjour le Monde"
 },
 "sameAs": [
 {
 "type": "Relationship",
 "datasetId" : "urn:ngsi-ld:Relationship:1",
 "object": "urn:ngsi-ld:Event:helloWorld",
 "inLanguage": {
 "type": "Property",
 "value": "en"
 }
 },
 {
 "type": "Relationship",
 "object": "urn:ngsi-ld:Event:halloWelt",
 "inLanguage": {
 "type": "Property",
 "value": "de"
 }
 }
]
 }

G.2 Natural Language Collation Support

G.2.0 Foreword
All strings within an NGSI-LD system are defined and sorted as a sequence of Unicode characters. As such there is no
simple collation mechanism to query entities ignoring case, diacritic marks or matching diphthong single letters such as
the German "ö" to also match with "oe".

Many databases support a degree of natural language support, in general collation support will always depend upon the
underlying database and as such will vary from implementation to implementation. This therefore and cannot be
standardized and exposed as part of the context information management API. Furthermore, collation is slow and
processor intensive, and for massive systems is better achieved using a separate index.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)301

For systems that require it, this clause proposes a mechanism as an extension to a NGSI-LD broker which can be
modified and used to offer collation support to the natural language attributes found within context entities where
necessary through creating, querying and maintaining an additional property of a property for collated attributes.

G.2.1 Maintain collations as metadata
• Create a subscription on the attribute (e.g. name)

• Create a simple microservice to add/upsert a name.collate property-of-a-property using a simple function
to strip all diacritic marks - for example:

str.normalize("NFD").replace(/[\u0300-\u036f]/g, "").toLower()

Other substitutions could be made where local spelling rules vary (for example different for German ö = oe).

G.2.2 Route language sensitive queries via a proxy
Create a simple forwarding proxy around the NGSI-LD system. For any urls with a q param (and a collate flag) run a
clean-up of the q param and amend the query string:

The following request on the proxy:

GET /ngsi-ld/v1/entities/?type=Building&q=name==%22Schöne%20Grüße%22&collate=name

is altered on the fly and is sent to the NGSI-LD system as shown:

GET /ngsi-ld/v1/entities/?type=Building&q=name.collate==%22schoene%20gruesse%22

Once again, the substitutions to make to the query string will depend on the rules of the natural language to be
supported.

G.3 Localization of Dates, Currency formats, etc.

G.3.0 Foreword
Context data entities are designed to be interoperable and therefore all dates are held as UTC dates, all currency
amounts are held as JSON numbers (with the unitCode property-of-a-property available to hold the currency), etc.
Localization should not occur within the context data entities themselves. Offering fully localized responses is not a
concern of the NGSI-LD API.

If localization support is necessary, a simple proxying a conversion mechanism could be used to amend the context data
received from the NGSI-LD system before being passed to a third party system for display.

G.3.1 Localizing Dates
For example, if a system needs to display DateTime data in Islamic Date format

The following request on the proxy:

GET /ngsi-ld/v1/entities/urn:ngsi-ld:Event:XXX?attrs=date&options=keyValues

is forwarded unaltered and is sent to the NGSI-LD system as shown:

GET /ngsi-ld/v1/entities/urn:ngsi-ld:Event:XXX?attrs=date&options=keyValues

The response from the NGSI-LD system is always in UTC format:

 {"date": "2020-09-28T17:13:39+02:00"}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)302

And the proxy can be used to update this to the desired format:

 {"date": "11 Safar, 1442 1:13:39PM"}

Using an internationalization script such as the following:

new Intl.DateTimeFormat("en-u-ca-islamic", {day: 'numeric', month: 'long',weekday: 'long',year :
'numeric'}).format(date);

It should be noted that post-localization, the transformed date is no longer valid NGSI-LD.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)303

Annex H (informative):
Suggested actuation workflows

H.1 Actuators and feedback to the consumer
Actuators are things that can change their state (light on/off) or execute actions (move forward, detect face, etc.).

There is currently no explicitly and precisely specified support for actuation in the NGSI-LD API. Thus, this clause
describes some conventions that represent a proposed best-practice about how NGSI-LD API and data models can be
used for the interaction between applications and actuators represented by NGSI-LD Entities.

The conventions and approach described in this clause are not powerful enough to implement complex actuation jobs
that depend on each other and, for instance, make actuation decisions conditional on the outcome of other actuations,
unless that behaviour is implemented in a custom way within the application logic. The concept of a more evolved
service execution logic, being a first-class citizen of the NGSI-LD API and able to offer more structured building blocks
for actuation, is outside the scope of this annex.

An NGSI-LD system that comprises an actuator and supports actuation workflows is represented as one or more
NGSI-LD Entities, plus a Context Broker, a Context Source or a Context Producer, and a Context Consumer, which
collaborate.

The interaction between actuator and Context Consumer needs to be bidirectional. Thus, actuators are triggered by the
reception of actuation-specific commands (e.g. "set the on state of the lamp to false", to turn the light off) that are
encoded as NGSI-LD data, following a suggested data model. They respond with feedback, similarly encoded as
NGSI-LD data.

Command feedbacks may serve to control the maximum operations rate a controlling application needs to achieve, and
different levels of feedback can be requested, by associating a specific Quality of Service value to the command:

• Some applications need high operation rate but no feedback. For this case a QoS = 0 can be used. The typical
example is to control the arms of a robot with a joystick.

• Some applications need to be sure that the actuators actually received the command request or need to get back
a payload in response to the command. In this case a QoS = 1 can be used. The typical case is switching on a
light with confirmation, or request face-detection with consequent notification of matching events.

• Commands can either require a short or a long execution time. For commands with long execution time, the
application may require a continuous status feedback. In this case a QoS = 2 can be used. The typical example
is that of a door opening, where feedback continuously report the current level (10 % open, 50 % open, etc.).

H.2 Architecture for actuation
In this architecture, the application acts as Context Consumer, and the terms are used interchangeably.

Commands are sent to the Context Broker by the Context Consumer, using the standard NGSI-LD API and a suggested
convention for representing them. In turn, feedback about command execution is received by the Context Consumer,
both as continuous status updates and/or a final command result.

More specifically, the component that handles direct communication with the actuator is the Context Source or the
Context Producer: it uses an actuator-specific protocol to control the actuator and get responses and updates from it, i.e.
from the real system. Such Context Source/Consumer or Context Producer/Storage acting as a proxy or intermediary to
the actuator is referred to, in the following, as Context Adapter.

Thus, the Context Adapter is able to use the NGSI-LD API to receive NGSI-LD command requests from the NGSI-LD
Context Broker and send back command status and result to it, as well as using an actuator-specific protocol to
communicate with the actuator.

The NGSI-LD Context Broker is responsible for handling direct communication with the Context Consumer.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)304

Thus, to support actuation, there is a need to specify:

• Additional NGSI-LD Properties the NGSI-LD system has to have, in order to represent and manage command
Request, Status, Result.

• A communication model that allows commands to flow in forward direction and feedback to flow in reverse.
This communication model has to comprise a mapping, to be held within the NGSI-LD system, that is able to
route the command requests to the appropriate handler within the Context Adapter and vice-versa.

Figure H.2-1: Architecture for actuation

H.3 Structure of Commands and additional Properties

H.3.0 Introduction
The NGSI-LD system has, in addition to the usual NGSI-LD Properties representing the actuator's status, a set of
additional, dedicated NGSI-LD Properties associated with:

• the list of available commands, i.e. the list of commands supported by the actuator;

• command endpoints, one for each command, that are used to send and receive command related messages and
optionally hold state for the ongoing commands.

The structure of the commands needs to be specified, but not the internal format of their payloads. By using commands
with a custom payload, one can support all kinds of operations, for example:

• "set-on": "true"

• "detect-face": {"face-features": "…."}

• "move": "forward"

The data model for command requests, status and responses has to include metadata such as the QoS of the command,
its identifier, and the custom payload itself.

Both the requests/responses and the list of commands the NGSI-LD system is able to support can be represented with
additional NGSI-LD Properties, as follows.

Context Consumer Actuator

Command Request Property

Command
Execution

Command Status Property

Command Result Property

NGSI-LD system

Context Broker

+

NGSI-LD Entity

Context Adapter

NGSI-LD API Actuator-specific
protocol

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)305

H.3.1 Property for listing available commands
The additional Property dedicated to the list of available commands is as follows:

"commands": {
 "type": "Property",
 "value": ["<cmd_name1>","<cmd_name2>", …, "<cmd_nameN>"]
}

It is a Property whose value is an array of Strings, each string representing the unique name of a supported command.

H.3.2 Properties for command endpoints
For each available command, a set of three endpoints is to be additionally created within the NGSI-LD system, by
means of three dedicated Properties per command. The first endpoint will manage that command's requests, the second
endpoint will manage its status, and the third endpoint will manage command's results.

This convention dictates that:

• The NGSI-LD Property that manages requests has the same name as the command, e.g. "<cmd_name1>".

• The NGSI-LD Property that manages results has the same name as the command plus the "-RESULT" suffix.

• The NGSI-LD Property that manages status has the same name as the command plus the "-STATUS" suffix.

Each endpoint can receive multiple requests or responses, and it supports queueing of messages. For example, the
command "moveToLocation" may receive a sequence of requests that are to be stored in an array and orderly processed
depending on the arrival timestamps. A number of respective responses may be produced, as well. Thus, each endpoint,
represented by its dedicated NGSI-LD Property, exploits the multi-Attribute feature (see clause 4.5.5), as follows:

Command Request endpoint

"<cmd_name>": {
 "datasetId": a URI uniquely identifying the specific command request
 (optional, if the use case does not need command queueing),
 "type": "Property",
 "qos": an Integer, representing the desired QoS (optional, default=0),
 "value": custom parameters of the command (mandatory)
}

Command Status endpoint

"<cmd_name>-STATUS": {
 "datasetId": a URI uniquely identifying the specific status feedback message
 (optional, if the use case does not need queueing them),
 "type": "Property",
 "value": custom status of the command (mandatory)
}

Command Result endpoint

"<cmd_name>-RESULT": {
 "datasetId": a URI uniquely identifying the specific result feedback message
 (optional, if the use case does not need queueing them),
 "type": "Property",
 "value": custom result of the command (mandatory)
}

Usually, the Context Adapter (or the actuator behind it), upon receiving a command request with a specific "datasetId",
will then generate status and result with the same "datasetId", so that, when the status/result is received by the
application, it can link it back to the corresponding command that is generating the received feedback. The value of the
request, status and result is generic, and it is up to the specific application to define useful values. As an example, the
PackML language for the control of packaging machines defines a set of possible values for statuses during an actuation
workflow.

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)306

EXAMPLE 1: An example follows, where the NGSI-LD system represents a simple actuator. The example shows
the NGSI-LD Entity representing a light that can change colour by manipulation of its brightness,
hue and saturation values; further, it is possible to turn the lamp on and off. Apart from the "id"
and the "type", the actuator entity has a set of regular properties that represent the current status
of the lamp. In the example these are "colorRGB" and "is-on". Then it has the conventional
Property named "commands", signalling that it supports four commands: "turn-on",
"set-saturation", "set-brightness", "set-hue". Further, it has four (times three) additional
properties serving the purpose of command endpoints.

{
 "id": "urn:ngsi-ld:pHueActuator:light1",
 "type": "Lamp",

 REGULAR PROPERTIES
 "colorRGB": {"type": "Property", "value": "0xABABAB"},
 "is-on": {"type": "Property", "value": true},

 AVAILABLE COMMANDS
 "commands": {
 "type": "Property",
 "value": ["turn-on", "set-saturation", "set-hue", "set-brightness"]
 }

 COMMAND ENDPOINTS
 "turn-on": {"type": "Property", "value": <custom request>}
 "turn-on-STATUS": {"type": "Property", "value": <custom status>}
 "turn-on-RESULT": {"type": "Property", "value": <custom response>}
 "set-hue": ...
 "set-hue-STATUS": ...
 "set-hue-RESULT": ...
 …
}

EXAMPLE 2: The following example, shows an NGSI-LD Entity Fragment that can be used as a command
request to request that the lamp be turned off.

{
 "id": "urn:ngsi-ld:pHueActuator:light1",
 "type": "Lamp",
 "turn-on": {
 "type": "Property",
 "qos": {
 "type": "Property",
 "value": 1
 },
 "value": false
 }
}

EXAMPLE 3: In the following example, the value of the command request is a more complex JSON Object, to
show that complex actions can be conveyed by just one request. Further, the request has an
identifier that makes it possible to enqueue it, together with other request that may arrive to the
same command endpoint within a timespan.

{
 "id": "urn:ngsi-ld:pHueActuator:light1",
 "type": "Lamp",
 "set-hue": {
 "type": "Property",
 "qos": {
 "type": "Property",
 "value": 1
 },
 "datasetId": "myapp:mycommand:1342",
 "value": {"red":"1 seconds", "green": "2 seconds"}
 }
}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)307

In summary, the suggested convention prescribes a "commands" property that contains a list of commands supported
by the actuator. For each of these commands, the convention requires a command endpoint consisting of three
properties, the name of the command, e.g. "turn-on", the status property, which is the name of the command with
"-STATUS" as suffix, and the result, which is the name of the command with "-RESULT" as suffix. Nevertheless, it is
noted that such suffixes are just a convention to distinguish the endpoints. So far, two practical implementations exist,
see clauses H.5 and H.6, that adopt the general scheme of this convention, with minor deviations. In fact, this
convention is derived as a generalization that leverages the full potential of NGSI-LD sub-Attributes and
multi-Attributes.

H.4 Communication model

H.4.1 Possible communication models
This convention can be leveraged by two different communication models:

• Subscription/notification, where both the application and the Context Adapter use NGSI-LD Subscriptions to
have the command requests delivered to the appropriate handler within the Context Adapter and vice-versa. In
this case the Context Adapter acts as a Context Source as well as a Context Consumer.

• Forwarding, which uses the NGSI-LD Registry and a Context Adapter able to federate itself with the Context
Broker holding the actuator's Entity, as a means to deliver the commands. In this case the Context Adapter acts
as a Context Storage as well as a Context Producer.

H.4.2 Subscription/notification model
For the interaction to work, the Context Adapter, acting as a proxy to the actuator, subscribes to all command
properties; in example 1 of clause H.3.2, these are "set-brightness", "set-saturation", "set-hue" and "turn-on". When the
application, acting as the actuation client, updates the value of a command property, the Context Adapter will receive
the notification with the new value. This will be translated into the proprietary format and forwarded to the actuator
using the actuator-specific protocol. The application in turn can subscribe to the command status and the result. The
Context Adapter updates the status of the actuation during the execution of the command, which is primarily relevant in
the case of longer-lasting actuations, and finally updates the result once the actuation has been completed. If the
application has subscribed to the status and result, it will receive the corresponding notifications. Independent of the
command-related properties, the status of the actuator, held within its regular properties, will be updated.

The detailed workflow is depicted in figure H.4.2-1, and can be interpreted as follows:

1) Application updates "turn-on" command Property with "value": true

2) Context Adapter gets notification of the new value true

3) Context Adapter updates "turn-on-STATUS" command Property with "value": "PENDING"

4) Application gets notification of the new value "PENDING"

5) Context Adapter updates "is-on" regular Property with value: true

6) Application gets notification with value: true

7) Context Adapter updates "turn-on-RESULT" command Property with "value": "OK"

8) Application gets notification with of the new value "OK"

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)308

Figure H.4.2-1: Steps of the actuation workflow using subscription/notification

H.4.3 Forwarding model
The forwarding model uses registrations and forwarding of requests. Actuation of commands is provisioned via
registration(s) to the NGSI-LD Registry done by the Context Adapter that states "I am responsible for command
property <X>". When the Application changes the value of a command property, first the NGSI-LD Context Broker
asks to the NGSI-LD Registry whether the property is delegated to some other component. The NGSI-LD Registry
knows that property <X> of the Entity is delegated to the Context Adapter. Hence, the request is forwarded to the
Context Adapter. Similar to the other communication model, the request will then be translated into the proprietary
format and forwarded to the actuator using the actuator-specific protocol.

In this model, the NGSI-LD Entity is distributed over two different components, because some of its properties live in
the Context Brokers and other properties live in the Context Adapter, as indicated in figure H.4.3-1 with a dotted
rectangle.

The rest of the workflow, i.e. delivery of status and result messages to the application, is done similarly to the
subscription/notification model. The detailed workflow is depicted in figure H.4.3-1, and can be interpreted as follows:

1) Application updates "turn-on" command Property with "value": true

2a) Context Broker ask Registry where to forward the request

2b) Context Broker forwards request to Context Adapter

3) Context Adapter updates "turn-on-STATUS" command Property with "value": "PENDING"

4) Application gets notification of the new value "PENDING"

5) Context Adapter updates "is-on" regular Property with value: true

6) Application gets notification with value: true

7) Context Adapter updates "turn-on-RESULT" command Property with "value": "OK"

8) Application gets notification with of the new value "OK"

{
"id": "urn:ngsi-ld:pHueActuator:light1",
"type": "Lamp",

"colorRGB": { "type": "Property","value": "0xABABAB"},
"is-on": {"type": "Property","value": true},

"commands": {“type": "Property",
"value": ["set-saturation", "set-hue", "turn-on", …]}

…
"turn-on": {"type": "Property","value": true}
"turn-on-STATUS": {"type": "Property","value": "PENDING"}
"turn-on-RESULT": {"type": "Property","value": "OK"}

}

5. Update
"is-on"
Property

Context

Consumer

6. Notification

4. and 8.
Notifications

1. Update
"turn-on"
Property

true

true

NGSI-LD system

2. Notification

NGSI-LD Entity

3. and 7. Update
"turn-on-STATUS" and
"turn-on-RESULT"
Properties

Context

Adapter

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)309

Figure H.4.3-1: Steps of the actuation workflow using forwarding

H.5 Implementation of the subscription-based actuation
workflow

The Fed4IoT project (https://fed4iot.org) leverages the NGSI-LD architecture and the subscription/notification
workflow for actuation, in order to implement the concept of a Cloud of Things. It enables virtualization of existing IoT
sensors/actuators through Virtual Things and IoT Brokers. IoT application developers can simply rent the Virtual
Things and the Brokers their applications need.

The Fed4IoT's Cloud of Things is named VirIoT (https://github.com/fed4iot/VirIoT), and it is based on the concept of
Virtual Silos as-a-service: isolated and secure IoT environments made of Virtual Things whose data can be accessed
through standard IoT Brokers (oneM2M, NGSI, NGSI-LD, etc.).

In figure H.5-1 a diagram shows how VirIoT implements the concept of a large-scale and distribute NGSI-LD system
that leverages the architecture and the workflow convention described in clause H.4.2.

{
"id": "urn:ngsi-ld:pHueActuator:light1",
"type": "Lamp",

"colorRGB": { "type": "Property","value": "0xABABAB"},
"is-on": {"type": "Property","value": true},

"turn-on-STATUS": {"type": "Property","value": "PENDING"}
"turn-on-RESULT": {"type": "Property","value": "OK"}
}

5. Update "is-on"
Property

Context

Consumer

6. Notification

4. and 8.
Notifications

1. Update
"turn-on"
Property

true

true

NGSI-LD system

Context Broker

3. and 7. Update
"turn-on-STATUS" and
"turn-on-RESULT"
Properties

Context Registry

["set-saturation",
"set-hue",
"turn-on", …]

delegated to: "System Adapter"

"turn-on": {
"type": "Property",
"value": true

}

Context Adapter

2a. Is "turn-on"
Property delegated?

Distributed NGSI-LD Entity

2b. Delegated "turn-on" update

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)310

Figure H.5-1: VirIoT implementation of the NGSI-LD system and actuation workflow

All components encapsulate requests in a neutral-format message that leverages NGSI-LD Entities at its core. But, since
VirIoT uses MQTT as its internal data distribution system, all information and actuation commands are encoded as
NGSI-LD entities, plus an additional "meta header" that is used by the MQTT to publish and subscribe in a broadcast
fashion to multiple vThings, because the same virtual sensor can be used by multiple applications at the same time.

For the actuation workflow, the "data" part of this message contains the command request, as specified in clause H.3,
but with an additional value key that is the "command notification uri" (cmd-nuri), representing a location where
feedback (status, result) should be sent by the ThingVisor. For example, the cmd-nuri contains the "data_in" MQTT
topic of the issuing vSilo, so that command feedback (status and results) are sent to it, only, instead of being
broadcasted to all subscribing applications.

VirIoT is agnostic to access control issues to a virtual actuator, since the relevant policies are implemented in the
specific ThingVisor, which can grant tokens to execute actuation-commands to a subset of vSilos only, through
preliminary exchange of specific actuation-commands (a kind of log-in).

Fed4IoT has developed several different ThingVisors (Context Adapters for different sensors and hardware): for
example, lamp systems and robot devices are virtualized through specific ThingVisors, and applications can control the
lighting system of a rented conference room or control camera and position of a bot by adding related virtual actuators
to their vSilo.

H.6 Implementation of the registration-based actuation
workflow

The IoT Agent node library [i.22] introduces the concept of an IoT Agent, which is a component that lets a group of
devices send their data to and be managed from a Context Broker using their own native protocols. Thus, it corresponds
to the Context Adapter, and wires up the IoT devices so that measurements can be read and commands can be sent
using NGSI-LD requests sent to an NGSI-LD compliant context broker.

IoT Agents already exist or are in development for many IoT communication protocols and data models. Examples
include the following:

• IoTAgent-JSON - a bridge between HTTP/MQTT messaging (with a JSON payload) and NGSI-LD

• IoTAgent-LWM2M - a bridge between the Lightweight M2M protocol and NGSI-LD

• IoTAgent-UL - a bridge between HTTP/MQTT messaging (with an UltraLight2.0 payload) and NGSI-LD

• IoTagent-LoRaWAN - a bridge between the LoRaWAN protocol and NGSI-LD

Actuator

ThingVisor

(vThing)
IoT vSilo

Controller

IoT vSilo

Broker

MQTT

Distribution

System

vSilo

Conversion to/from NGSI-LD + MQTT metadata

Context

Consumer

Large-scale distributed NGSI-LD system

Context Broker Context AdapterAPI

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)311

This implementation follows the communication model described in clause H.4.3, as explained in figure H.6-1. In this
workflow:

• Requests between User and Context Broker use NGSI-LD

• Requests between Context Broker and IoT Agent use NGSI-LD

• Requests between IoT Agent and IoT Device use native protocols

• Requests between IoT Device and IoT Agent use native protocols

• Requests between IoT Agent and Context Broker use NGSI-LD

Figure H.6-1: IoT Agent node library implementation of the NGSI-LD system
and actuation workflow

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)312

Provisioning of the devices will be carried out (via REST API) through IoT Agents, as well. This provisioning implies
that, on the one hand, the corresponding entities (with their commands), that represent the devices, are generated in the
Context Broker and, on the other hand, that the corresponding IoT Agent is configured for communication with the
corresponding device, all in one provisioning step. Below, an example how to provision a device which supports start
and stop commands is presented.

{
 "devices": [
 {
 "device_id": "device001",
 "entity_name": "urn:ngsi-ld:Device:001",
 "entity_type": "Device",
 "attributes": [
 { "object_id": "s", "name": "isOpen", "type": "boolean" }
],
 "commands": [
 { "name": "start", "type": "command" },
 { "name": "stop", "type": "command" }
],
 "static_attributes": [
 {"name":"name", "type": "Text","value": "Device:001 provision"}
]
 }
]
}

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)313

Annex I (informative):
Change history

Date Version Information about changes
February 2020 1.2.10 Early draft copied from API version 1.2.1

February 2020 1.2.11
Unicode characters. Query Language syntax changes to Attribute path, and extension
to accept specifying just Query or Geoquery when Querying Entities
Acknowledgements to EU projects. Lightweight Figures

March 2020 1.2.12

Extending to other interactions the above changes to query entities interaction
Changes to ABNF Query Language syntax to access complex objects value of
properties more easily
Generalized Notification Headers, in order to carry authentication etc., info
Novel &option=count and associated Header to indicate number of Entities in
response to a query
Novel/entityOperations/query and/temporal/entityOperations/query endpoints to
perform query via POST
Clarified attrs URL parameter behaviour
Support for Multiple Attributes
Support for Multiple Tenants

May 2020 Candidate
1.2.13

from 101r1: Multi-Attribute-Support-fix-in-4.5.5
from 102r1: Batch_Operation_Error_Codes
from 110r1: JSON-LD Validation clause
from 112r1: IRI Support for International Characters
from 115r2: More Core Context Changes
from 130: Entity Types
MQTT Notifications
GeoJSON Representation

9 July 2020 1.3.1 Technical Officer verifications for submission to editHelp! publication pre-processing
August 2020 1.3.2 New baseline towards v1.4.1
November 2020 1.3.3 From 272r1: Support for natural languages via LanguageProperty; annex G
December 2020 1.3.4 From 319: Align table 6.8.3.2-1 with clause 5.10.2 for query via attrs
December 2020 1.3.4 From 310r2: Dot vs. comma in DateTime
December 2020 1.3.4 From 309r1: Remove sentences referring to old multi attributes representation
December 2020 1.3.4 From 308r: id and type for JSON-LD compliance

December 2020 1.3.4 From 313r1: FIXES to Cross domain data model for LanguageProperties
Bug fixes and errata

December 2020 1.3.5 From 275r3: Temporal Aggregation Functions
December 2020 1.4.0 1.3.5 with small typos corrected, approved as 1.4.0
January 2021 1.4.1 ETSI Technical Officer review for ETSI EditHelp publication pre-processing

March 2021 1.4.2 Editorial Changes, clarifications added, better references, figures replacements and
corrections, figures merged, typos, code identation

April 2021 1.4.2 Temporal Pagination
April 2021 1.4.2 Clarified behavior when multiple instances of the same Entity are in an input array
July 2021 1.4.3 From 130r6: NGSI-LD Scope
July 2021 1.4.3 From 143r6: Storing, managing and serving @contexts
July 2021 1.4.3 From 120r4: API structuring
October 2021 1.4.4 From 156: Remove static elements from temporal representations
October 2021 1.4.4 From 155: Existence query
October 2021 1.4.4 From 152: Remove null value deletion
October 2021 1.4.4 From 151: attrs missing in core context
October 2021 1.5.1 ETSI Technical Officer review for ETSI EditHelp publication pre-processing
November 2021 1.5.2 First early draft after EditHelp publication of V1.5.1 to prepare next V1.6.1 publication
January 2022 1.5.3 Concise representation
May 2022 1.5.4 PUT/PATCH Entity
May 2022 1.5.4 Distributed operations
July 2022 1.5.5 From 99r6: Deletions and advanced notifications
July 2022 1.5.5 From 106r1: Workflow for actuation
July 2022 1.5.5 From 105r1: Context Source Info in Context Source Registration
July 2022 1.5.5 From 93r1: default context clarification
July 2022 1.5.5 From 91r1: CR_on_Scope_ABNF_format
Juy 2022 1.6.1 Final Technical Official check for EditHelp publication

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)314

Date Version Information about changes

October 2022 1.6.2

New early draft:
corrected Annex C6 date representation
from 149r3: generalized description of @context in bullet lists
Fixed usage of NGSI-LD Null in Attributes' definitions

December 2022 1.6.4 From 188r2_Registration_Clarifications
December 2022 1.6.4 From 182r2_Add_NGSI-LD_Roles_for_Context_Registration
December 2022 1.6.4 From 156r2 Vocabulary Property/URI type coercion

December 2022 1.6.4 177r2 Clarify usage of Accept, Content-Type and Linked @context when forwarding to
partial brokers

December 2022 1.6.4 178 Add Batch Query to Federation Ops
December 2022 1.6.4 183r1 Clarify Temporal query behaviour
December 2022 1.6.4 149r4 Forbid scoped and nested @contexts
December 2022 1.6.4 023006 Fixing CSource registration example in C.3
December 2022 1.6.4 Fix: Tenants URI becomes String
December 2022 1.6.4 Fix: POST-QUERY-COUNT-PAGINATION
December 2022 1.6.4 Fix: CHECK-URI-PARAM
December 2022 1.6.4 Updated examples and text to context.v1.7.jsonld
March 2023 1.6.6 CIM(23)000006_Adding_previousValue_to_GeoProperty_type_definition
March 2023 1.6.6 cSource -> CSource; "implementations shall do the following"
March 2023 1.6.7 000013r4_Updated_Distributed_Execution_Behaviour
March 2023 1.6.8 CIM(22)000195r3_type_passing_for_M2M_callReviewed
April 2023 1.6.9 Fixing URIString datatypes

ETSI

ETSI GS CIM 009 V1.7.1 (2023-06)315

History
Document history

V1.1.1 January 2019 Publication

V1.2.1 October 2019 Publication

V1.2.2 February 2020 Publication

V1.3.1 August 2020 Publication

V1.4.1 February 2021 Publication

V1.4.2 April 2021 Publication

V1.5.1 November 2021 Publication

V1.6.1 August 2022 Publication

V1.7.1 June 2023 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Context Information Management Framework
	4.1 Introduction
	4.2 NGSI-LD Information Model
	4.2.1 Introduction
	4.2.2 NGSI-LD Meta Model
	4.2.3 Cross Domain Ontology
	4.2.4 NGSI-LD domain-specific models and instantiation
	4.2.5 UML representation

	4.3 NGSI-LD Architectural Considerations
	4.3.1 Introduction
	4.3.2 Centralized architecture
	4.3.3 Distributed architecture
	4.3.4 Federated architecture
	4.3.5 NGSI-LD API Structure and Implementation Options
	4.3.6 Distributed Operations
	4.3.6.1 Introduction
	4.3.6.2 Additive Registrations
	4.3.6.3 Proxied Registrations
	4.3.6.4 Limiting Cascading Distributed Operations
	4.3.6.5 Extra information to provide when contacting Context Source
	4.3.6.6 Additional pre- and post-processing of extra information when contacting Context Source

	4.4 Core and user NGSI-LD @context
	4.5 NGSI-LD Data Representation
	4.5.0 Introduction
	4.5.1 NGSI-LD Entity Representation
	4.5.2 NGSI-LD Property Representations
	4.5.2.1 Introduction
	4.5.2.2 Normalized NGSI-LD Property
	4.5.2.3 Concise NGSI-LD Property

	4.5.3 NGSI-LD Relationship Representations
	4.5.3.1 Introduction
	4.5.3.2 Normalized NGSI-LD Relationship
	4.5.3.3 Concise NGSI-LD Relationship

	4.5.4 Simplified Representation
	4.5.5 Multi-Attribute Support
	4.5.6 Temporal Representation of an Entity
	4.5.7 Temporal Representation of a Property
	4.5.8 Temporal Representation of a Relationship
	4.5.9 Simplified Temporal Representation of an Entity
	4.5.10 Entity Type List Representation
	4.5.11 Detailed Entity Type List Representation
	4.5.12 Entity Type Information Representation
	4.5.13 Attribute List Representation
	4.5.14 Detailed Attribute List Representation
	4.5.15 Attribute Information Representation
	4.5.16 GeoJSON Representation of Entities
	4.5.16.0 Foreword
	4.5.16.1 Top-level "geometry" field selection algorithm
	4.5.16.2 GeoJSON Representation of an individual Entity
	4.5.16.3 GeoJSON Representation of Multiple Entities

	4.5.17 Simplified GeoJSON Representation of Entities
	4.5.17.0 Foreword
	4.5.17.1 Simplified GeoJSON Representation of an individual Entity
	4.5.17.2 Simplified GeoJSON Representation of multiple Entities

	4.5.18 NGSI-LD LanguageProperty Representations
	4.5.18.1 Introduction
	4.5.18.2 Normalized NGSI-LD LanguageProperty
	4.5.18.3 Concise NGSI-LD LanguageProperty

	4.5.19 Aggregated Temporal Representation of an Entity
	4.5.19.0 Foreword
	4.5.19.1 Supported behaviours for aggregation functions

	4.5.20 NGSI-LD VocabularyProperty Representations
	4.5.20.1 Introduction
	4.5.20.2 Normalized NGSI-LD VocabularyProperty
	4.5.20.3 Concise NGSI-LD VocabularyProperty

	4.6 Data Representation Restrictions
	4.6.1 Supported text encodings
	4.6.2 Supported names
	4.6.3 Supported data types for Values
	4.6.4 Supported Entity Content
	4.6.5 Supported data types for LanguageMaps
	4.6.6 Ordering of Entities in arrays having more than one instance of the same Entity

	4.7 Geospatial Properties
	4.7.1 GeoJSON Geometries
	4.7.2 Representation of GeoJSON Geometries in JSON-LD
	4.7.3 Concise NGSI-LD GeoProperty

	4.8 Temporal Properties
	4.9 NGSI-LD Query Language
	4.10 NGSI-LD Geoquery Language
	4.11 NGSI-LD Temporal Query Language
	4.12 NGSI-LD Pagination
	4.13 Counting the Number of Results
	4.14 Supporting Multiple Tenants
	4.15 NGSI-LD Language Filter
	4.16 Supporting Multiple Entity Types
	4.17 NGSI-LD Entity Type Selection Language
	4.18 NGSI-LD Scopes
	4.19 NGSI-LD Scope Query Language
	4.20 NGSI-LD Distributed Operation Names

	5 API Operation Definition
	5.1 Introduction
	5.2 Data Types
	5.2.1 Introduction
	5.2.2 Common members
	5.2.3 @context
	5.2.4 Entity
	5.2.5 Property
	5.2.6 Relationship
	5.2.7 GeoProperty
	5.2.8 EntityInfo
	5.2.9 CSourceRegistration
	5.2.10 RegistrationInfo
	5.2.11 TimeInterval
	5.2.12 Subscription
	5.2.13 GeoQuery
	5.2.14 NotificationParams
	5.2.14.1 NotificationParams data type definition
	5.2.14.2 Additional members

	5.2.15 Endpoint
	5.2.16 BatchOperationResult
	5.2.17 BatchEntityError
	5.2.18 UpdateResult
	5.2.19 NotUpdatedDetails
	5.2.20 EntityTemporal
	5.2.21 TemporalQuery
	5.2.22 KeyValuePair
	5.2.23 Query
	5.2.24 EntityTypeList
	5.2.25 EntityType
	5.2.26 EntityTypeInfo
	5.2.27 AttributeList
	5.2.28 Attribute
	5.2.29 Feature
	5.2.30 FeatureCollection
	5.2.31 FeatureProperties
	5.2.32 LanguageProperty
	5.2.33 EntitySelector
	5.2.34 RegistrationManagementInfo
	5.2.35 VocabularyProperty

	5.3 Notification data types
	5.3.1 Notification
	5.3.2 CSourceNotification
	5.3.3 TriggerReasonEnumeration

	5.4 NGSI-LD Fragments
	5.5 Common Behaviours
	5.5.1 Introduction
	5.5.2 Error types
	5.5.3 Error response payload body
	5.5.4 General NGSI-LD validation
	5.5.5 Default @context assignment
	5.5.6 Operation execution
	5.5.7 Term to URI expansion or compaction
	5.5.8 Partial Update Patch Behaviour
	5.5.9 Pagination Behaviour
	5.5.10 Multi-Tenant Behaviour
	5.5.11 More than one instance of the same Entity in an Entity array
	5.5.11.0 Foreword
	5.5.11.1 Batch Entity Creation case
	5.5.11.2 Batch Entity Creation or Update (Upsert) case
	5.5.11.3 Batch Entity Update case
	5.5.11.4 Batch Entity Delete case
	5.5.11.5 Batch Entity Merge case

	5.5.12 Merge Patch Behaviour

	5.6 Context Information Provision
	5.6.1 Create Entity
	5.6.1.1 Description
	5.6.1.2 Use case diagram
	5.6.1.3 Input data
	5.6.1.4 Behaviour
	5.6.1.5 Output data

	5.6.2 Update Attributes
	5.6.2.1 Description
	5.6.2.2 Use case diagram
	5.6.2.3 Input data
	5.6.2.4 Behaviour
	5.6.2.5 Output data

	5.6.3 Append Attributes
	5.6.3.1 Description
	5.6.3.2 Use case diagram
	5.6.3.3 Input data
	5.6.3.4 Behaviour
	5.6.3.5 Output data

	5.6.4 Partial Attribute update
	5.6.4.1 Description
	5.6.4.2 Use case diagram
	5.6.4.3 Input data
	5.6.4.4 Behaviour
	5.6.4.5 Output data

	5.6.5 Delete Attribute
	5.6.5.1 Description
	5.6.5.2 Use case diagram
	5.6.5.3 Input data
	5.6.5.4 Behaviour
	5.6.5.5 Output data

	5.6.6 Delete Entity
	5.6.6.1 Description
	5.6.6.2 Use case diagram
	5.6.6.3 Input data
	5.6.6.4 Behaviour
	5.6.6.5 Output data

	5.6.7 Batch Entity Creation
	5.6.7.1 Description
	5.6.7.2 Use case diagram
	5.6.7.3 Input data
	5.6.7.4 Behaviour
	5.6.7.5 Output data

	5.6.8 Batch Entity Creation or Update (Upsert)
	5.6.8.1 Description
	5.6.8.2 Use case diagram
	5.6.8.3 Input data
	5.6.8.4 Behaviour
	5.6.8.5 Output data

	5.6.9 Batch Entity Update
	5.6.9.1 Description
	5.6.9.2 Use case diagram
	5.6.9.3 Input data
	5.6.9.4 Behaviour
	5.6.9.5 Output data

	5.6.10 Batch Entity Delete
	5.6.10.1 Description
	5.6.10.2 Use case diagram
	5.6.10.3 Input data
	5.6.10.4 Behaviour
	5.6.10.5 Output data

	5.6.11 Create or Update (Upsert) Temporal Representation of an Entity
	5.6.11.1 Description
	5.6.11.2 Use case diagram
	5.6.11.3 Input data
	5.6.11.4 Behaviour
	5.6.11.5 Output data

	5.6.12 Add Attributes to Temporal Representation of an Entity
	5.6.12.1 Description
	5.6.12.2 Use case diagram
	5.6.12.3 Input data
	5.6.12.4 Behaviour
	5.6.12.5 Output data

	5.6.13 Delete Attribute from Temporal Representation of an Entity
	5.6.13.1 Description
	5.6.13.2 Use case diagram
	5.6.13.3 Input data
	5.6.13.4 Behaviour
	5.6.13.5 Output data

	5.6.14 Modify Attribute instance in Temporal Representation of an Entity
	5.6.14.1 Description
	5.6.14.2 Use case diagram
	5.6.14.3 Input data
	5.6.14.4 Behaviour
	5.6.14.5 Output data

	5.6.15 Delete Attribute instance from Temporal Representation of an Entity
	5.6.15.1 Description
	5.6.15.2 Use case diagram
	5.6.15.3 Input data
	5.6.15.4 Behaviour
	5.6.15.5 Output data

	5.6.16 Delete Temporal Representation of an Entity
	5.6.16.1 Description
	5.6.16.2 Use case diagram
	5.6.16.3 Input data
	5.6.16.4 Behaviour
	5.6.16.5 Output data

	5.6.17 Merge Entity
	5.6.17.1 Description
	5.6.17.2 Use case diagram
	5.6.17.3 Input data
	5.6.17.4 Behaviour
	5.6.17.5 Output data

	5.6.18 Replace Entity
	5.6.18.1 Description
	5.6.18.2 Use case diagram
	5.6.18.3 Input data
	5.6.18.4 Behaviour
	5.6.18.5 Output data

	5.6.19 Replace Attribute
	5.6.19.1 Description
	5.6.19.2 Use case diagram
	5.6.19.3 Input data
	5.6.19.4 Behaviour
	5.6.19.5 Output data

	5.6.20 Batch Entity Merge
	5.6.20.1 Description
	5.6.20.2 Use case diagram
	5.6.20.3 Input data
	5.6.20.4 Behaviour
	5.6.20.5 Output data

	5.7 Context Information Consumption
	5.7.1 Retrieve Entity
	5.7.1.1 Description
	5.7.1.2 Use case diagram
	5.7.1.3 Input data
	5.7.1.4 Behaviour
	5.7.1.5 Output data

	5.7.2 Query Entities
	5.7.2.1 Description
	5.7.2.2 Use case diagram
	5.7.2.3 Input data
	5.7.2.4 Behaviour
	5.7.2.5 Output data

	5.7.3 Retrieve Temporal Evolution of an Entity
	5.7.3.1 Description
	5.7.3.2 Use case diagram
	5.7.3.3 Input data
	5.7.3.4 Behaviour
	5.7.3.5 Output data

	5.7.4 Query Temporal Evolution of Entities
	5.7.4.1 Description
	5.7.4.2 Use case diagram
	5.7.4.3 Input data
	5.7.4.4 Behaviour
	5.7.4.5 Output Data

	5.7.5 Retrieve Available Entity Types
	5.7.5.1 Description
	5.7.5.2 Use case diagram
	5.7.5.3 Input data
	5.7.5.4 Behaviour
	5.7.5.5 Output data

	5.7.6 Retrieve Details of Available Entity Types
	5.7.6.1 Description
	5.7.6.2 Use case diagram
	5.7.6.3 Input data
	5.7.6.4 Behaviour
	5.7.6.5 Output data

	5.7.7 Retrieve Available Entity Type Information
	5.7.7.1 Description
	5.7.7.2 Use case diagram
	5.7.7.3 Input data
	5.7.7.4 Behaviour
	5.7.7.5 Output data

	5.7.8 Retrieve Available Attributes
	5.7.8.1 Description
	5.7.8.2 Use case diagram
	5.7.8.3 Input data
	5.7.8.4 Behaviour
	5.7.8.5 Output data

	5.7.9 Retrieve Details of Available Attributes
	5.7.9.1 Description
	5.7.9.2 Use case diagram
	5.7.9.3 Input data
	5.7.9.4 Behaviour
	5.7.9.5 Output data

	5.7.10 Retrieve Available Attribute Information
	5.7.10.1 Description
	5.7.10.2 Use case diagram
	5.7.10.3 Input data
	5.7.10.4 Behaviour
	5.7.10.5 Output data

	5.7.11 Architecture-related aspects of retrieval of entity types and attributes

	5.8 Context Information Subscription
	5.8.1 Create Subscription
	5.8.1.1 Description
	5.8.1.2 Use case diagram
	5.8.1.3 Input data
	5.8.1.4 Behaviour
	5.8.1.5 Output data

	5.8.2 Update Subscription
	5.8.2.1 Description
	5.8.2.2 Use case diagram
	5.8.2.3 Input data
	5.8.2.4 Behaviour
	5.8.2.5 Output data

	5.8.3 Retrieve Subscription
	5.8.3.1 Description
	5.8.3.2 Use case diagram
	5.8.3.3 Input data
	5.8.3.4 Behaviour
	5.8.3.5 Output data

	5.8.4 Query Subscriptions
	5.8.4.1 Description
	5.8.4.2 Use case diagram
	5.8.4.3 Input data
	5.8.4.4 Behaviour
	5.8.4.5 Output data

	5.8.5 Delete Subscription
	5.8.5.1 Description
	5.8.5.2 Use case diagram
	5.8.5.3 Input data
	5.8.5.4 Behaviour
	5.8.5.5 Output data

	5.8.6 Notification behaviour

	5.9 Context Source Registration
	5.9.1 Introduction
	5.9.2 Register Context Source
	5.9.2.1 Description
	5.9.2.2 Use case diagram
	5.9.2.3 Input data
	5.9.2.4 Behaviour
	5.9.2.5 Output data

	5.9.3 Update Context Source Registration
	5.9.3.1 Description
	5.9.3.2 Use case diagram
	5.9.3.3 Input data
	5.9.3.4 Behaviour
	5.9.3.5 Output data

	5.9.4 Delete Context Source Registration
	5.9.4.1 Description
	5.9.4.2 Use case diagram
	5.9.4.3 Input data
	5.9.4.4 Behaviour
	5.9.4.5 Output data

	5.10 Context Source Discovery
	5.10.1 Retrieve Context Source Registration
	5.10.1.1 Description
	5.10.1.2 Use case diagram
	5.10.1.3 Input data
	5.10.1.4 Behaviour
	5.10.1.5 Output data

	5.10.2 Query Context Source Registrations
	5.10.2.1 Description
	5.10.2.2 Use case diagram
	5.10.2.3 Input data
	5.10.2.4 Behaviour
	5.10.2.5 Output data

	5.11 Context Source Registration Subscription
	5.11.1 Introduction
	5.11.2 Create Context Source Registration Subscription
	5.11.2.1 Description
	5.11.2.2 Use case diagram
	5.11.2.3 Input data
	5.11.2.4 Behaviour
	5.11.2.5 Output data

	5.11.3 Update Context Source Registration Subscription
	5.11.3.1 Description
	5.11.3.2 Use case diagram
	5.11.3.3 Input data
	5.11.3.4 Behaviour
	5.11.3.5 Output data

	5.11.4 Retrieve Context Source Registration Subscription
	5.11.4.1 Description
	5.11.4.2 Use case diagram
	5.11.4.3 Input data
	5.11.4.4 Behaviour
	5.11.4.5 Output data

	5.11.5 Query Context Source Registration Subscriptions
	5.11.5.1 Description
	5.11.5.2 Use case diagram
	5.11.5.3 Input data
	5.11.5.4 Behaviour
	5.11.5.5 Output data

	5.11.6 Delete Context Source Registration Subscription
	5.11.6.1 Description
	5.11.6.2 Use case diagram
	5.11.6.3 Input data
	5.11.6.4 Behaviour
	5.11.6.5 Output data

	5.11.7 Notification behaviour

	5.12 Matching Context Source Registrations
	5.13 Storing, Managing and Serving @contexts
	5.13.1 Introduction
	5.13.2 Add @context
	5.13.2.1 Description
	5.13.2.2 Use case diagram
	5.13.2.3 Input data
	5.13.2.4 Behaviour
	5.13.2.5 Output data

	5.13.3 List @contexts
	5.13.3.1 Description
	5.13.3.2 Use case diagram
	5.13.3.3 Input data
	5.13.3.4 Behaviour
	5.13.3.5 Output data

	5.13.4 Serve @context
	5.13.4.1 Description
	5.13.4.2 Use case diagram
	5.13.4.3 Input data
	5.13.4.4 Behaviour
	5.13.4.5 Output data

	5.13.5 Delete and Reload @context
	5.13.5.1 Description
	5.13.5.2 Use case diagram
	5.13.5.3 Input data
	5.13.5.4 Behaviour
	5.13.5.5 Output data

	6 API HTTP Binding
	6.1 Introduction
	6.2 Global Definitions and Resource Structure
	6.3 Common Behaviours
	6.3.1 Introduction
	6.3.2 Error Types
	6.3.3 Reporting errors
	6.3.4 HTTP request preconditions
	6.3.5 JSON-LD @context resolution
	6.3.6 HTTP response common requirements
	6.3.7 Representation of Entities
	6.3.8 Notification behaviour
	6.3.9 CSource Notification behaviour
	6.3.10 Pagination behaviour
	6.3.11 Including system generated attributes
	6.3.12 Simplified or aggregated temporal representation of entities
	6.3.13 Counting number of results
	6.3.14 Tenant specification
	6.3.15 GeoJSON representation of spatially bound entities
	6.3.16 Expiration time for cached @contexts
	6.3.17 Distributed Operations Caching and Timeout Behaviour
	6.3.18 Limiting Distributed Operations
	6.3.19 Extra information to provide when contacting Context Source
	6.3.20 Invalid parameters

	6.4 Resource: entities/
	6.4.1 Description
	6.4.2 Resource definition
	6.4.3 Resource methods
	6.4.3.1 POST
	6.4.3.2 GET

	6.5 Resource: entities/{entityId}
	6.5.1 Description
	6.5.2 Resource definition
	6.5.3 Resource methods
	6.5.3.1 GET
	6.5.3.2 DELETE
	6.5.3.3 PUT
	6.5.3.4 PATCH

	6.6 Resource: entities/{entityId}/attrs/
	6.6.1 Description
	6.6.2 Resource definition
	6.6.3 Resource methods
	6.6.3.1 POST
	6.6.3.2 PATCH

	6.7 Resource: entities/{entityId}/attrs/{attrId}
	6.7.1 Description
	6.7.2 Resource definition
	6.7.3 Resource methods
	6.7.3.1 PATCH
	6.7.3.2 DELETE
	6.7.3.3 PUT

	6.8 Resource: csourceRegistrations/
	6.8.1 Description
	6.8.2 Resource definition
	6.8.3 Resource methods
	6.8.3.1 POST
	6.8.3.2 GET

	6.9 Resource: csourceRegistrations/{registrationId}
	6.9.1 Description
	6.9.2 Resource definition
	6.9.3 Resource methods
	6.9.3.1 GET
	6.9.3.2 PATCH
	6.9.3.3 DELETE

	6.10 Resource: subscriptions/
	6.10.1 Description
	6.10.2 Resource definition
	6.10.3 Resource methods
	6.10.3.1 POST
	6.10.3.2 GET

	6.11 Resource: subscriptions/{subscriptionId}
	6.11.1 Description
	6.11.2 Resource definition
	6.11.3 Resource methods
	6.11.3.1 GET
	6.11.3.2 PATCH
	6.11.3.3 DELETE

	6.12 Resource: csourceSubscriptions/
	6.12.1 Description
	6.12.2 Resource definition
	6.12.3 Resource methods
	6.12.3.1 POST
	6.12.3.2 GET

	6.13 Resource: csourceSubscriptions/{subscriptionId}
	6.13.1 Description
	6.13.2 Resource definition
	6.13.3 Resource methods
	6.13.3.1 GET
	6.13.3.2 PATCH
	6.13.3.3 DELETE

	6.14 Resource: entityOperations/create
	6.14.1 Description
	6.14.2 Resource definition
	6.14.3 Resource methods
	6.14.3.1 POST

	6.15 Resource: entityOperations/upsert
	6.15.1 Description
	6.15.2 Resource definition
	6.15.3 Resource methods
	6.15.3.1 POST

	6.16 Resource: entityOperations/update
	6.16.1 Description
	6.16.2 Resource definition
	6.16.3 Resource methods
	6.16.3.1 POST

	6.17 Resource: entityOperations/delete
	6.17.1 Description
	6.17.2 Resource definition
	6.17.3 Resource methods
	6.17.3.1 POST

	6.18 Resource: temporal/entities/
	6.18.1 Description
	6.18.2 Resource definition
	6.18.3 Resource methods
	6.18.3.1 POST
	6.18.3.2 GET

	6.19 Resource: temporal/entities/{entityId}
	6.19.1 Description
	6.19.2 Resource definition
	6.19.3 Resource methods
	6.19.3.1 GET
	6.19.3.2 DELETE

	6.20 Resource: temporal/entities/{entityId}/attrs/
	6.20.1 Description
	6.20.2 Resource definition
	6.20.3 Resource methods
	6.20.3.1 POST

	6.21 Resource: temporal/entities/{entityId}/attrs/{attrId}
	6.21.1 Description
	6.21.2 Resource definition
	6.21.3 Resource methods
	6.21.3.1 DELETE

	6.22 Resource: temporal/entities/{entityId}/attrs/{attrId}/ {instanceId}
	6.22.1 Description
	6.22.2 Resource definition
	6.22.3 Resource methods
	6.22.3.1 PATCH
	6.22.3.2 DELETE

	6.23 Resource: entityOperations/query
	6.23.1 Description
	6.23.2 Resource definition
	6.23.3 Resource methods
	6.23.3.1 POST

	6.24 Resource: temporal/entityOperations/query
	6.24.1 Description
	6.24.2 Resource definition
	6.24.3 Resource methods
	6.24.3.1 POST

	6.25 Resource: types/
	6.25.1 Description
	6.25.2 Resource definition
	6.25.3 Resource methods
	6.25.3.1 GET

	6.26 Resource: types/{type}
	6.26.1 Description
	6.26.2 Resource definition
	6.26.3 Resource methods
	6.26.3.1 GET

	6.27 Resource: attributes/
	6.27.1 Description
	6.27.2 Resource definition
	6.27.3 Resource methods
	6.27.3.1 GET

	6.28 Resource: attributes/{attrId}
	6.28.1 Description
	6.28.2 Resource definition
	6.28.3 Resource methods
	6.28.3.1 GET

	6.29 Resource: jsonldContexts/
	6.29.1 Description
	6.29.2 Resource definition
	6.29.3 Resource methods
	6.29.3.1 POST
	6.29.3.2 GET

	6.30 Resource: jsonldContexts/{contextId}
	6.30.1 Description
	6.30.2 Resource definition
	6.30.3 Resource methods
	6.30.3.1 GET
	6.30.3.2 DELETE

	6.31 Resource: entityOperations/merge
	6.31.1 Description
	6.31.2 Resource definition
	6.31.3 Resource methods
	6.31.3.1 POST

	7 API MQTT Notification Binding
	7.1 Introduction
	7.2 Notification behaviour

	Annex A (normative): NGSI-LD identifier considerations
	A.1 Introduction
	A.2 Entity identifiers
	A.3 NGSI-LD namespace

	Annex B (normative): Core NGSI-LD @context definition
	Annex C (informative): Examples of using the API
	C.1 Introduction
	C.2 Entity Representation
	C.2.1 Property Graph
	C.2.2 Vehicle Entity
	C.2.3 Parking Entity
	C.2.4 @context

	C.3 Context Source Registration
	C.4 Context Subscription
	C.5 HTTP REST API Examples
	C.5.1 Introduction
	C.5.2 Create Entity of Type Vehicle
	C.5.2.1 HTTP Request
	C.5.2.2 HTTP Response

	C.5.3 Query Entities
	C.5.3.1 Introduction
	C.5.3.2 HTTP Request
	C.5.3.3 HTTP Response

	C.5.4 Query Entities (Pagination)
	C.5.4.1 Introduction
	C.5.4.2 HTTP Request
	C.5.4.3 HTTP Response

	C.5.5 Temporal Query
	C.5.5.1 Introduction
	C.5.5.2 HTTP Request #1
	C.5.5.3 HTTP Response #1
	C.5.5.2 HTTP Request #2
	C.5.5.3 HTTP Response #2

	C.5.6 Temporal Query (Simplified Representation)
	C.5.6.1 Introduction
	C.5.6.2 HTTP Request
	C.5.6.3 HTTP Response

	C.5.7 Retrieve Available Entity Types
	C.5.7.1 Introduction
	C.5.7.2 HTTP Request
	C.5.7.3 HTTP Response

	C.5.8 Retrieve Details of Available Entity Types
	C.5.8.1 Introduction
	C.5.8.2 HTTP Request
	C.5.8.3 HTTP Response

	C.5.9 Retrieve Available Entity Type Information
	C.5.9.1 Introduction
	C.5.9.2 HTTP Request
	C.5.9.3 HTTP Response

	C.5.10 Retrieve Available Attributes
	C.5.10.1 Introduction
	C.5.10.2 HTTP Request
	C.5.10.3 HTTP Response

	C.5.11 Retrieve Details of Available Attributes
	C.5.11.1 Introduction
	C.5.11.2 HTTP Request
	C.5.11.3 HTTP Response

	C.5.12 Retrieve Available Attribute Information
	C.5.12.1 Introduction
	C.5.12.2 HTTP Request
	C.5.12.3 HTTP Response

	C.5.13 Query Entities (Natural Language Filtering)
	C.5.13.1 Introduction
	C.5.13.2 HTTP Request
	C.5.13.3 HTTP Response

	C.5.14 Temporal Query (Aggregated Representation)
	C.5.14.1 Introduction
	C.5.14.2 HTTP Request
	C.5.14.3 HTTP Response

	C.5.15 Scope Queries
	C.5.15.1 Introduction
	C.5.15.2 HTTP Request
	C.5.15.3 HTTP Response

	C.5.16 Temporal Scope Queries
	C.5.16.1 Introduction
	C.5.16.2 HTTP Request
	C.5.16.3 HTTP Response

	C.6 Date Representation
	C.7 @context utilization clarifications
	C.8 Link header utilization clarifications
	C.9 @context processing clarifications

	Annex D (informative): Transformation Algorithms
	D.1 Introduction
	D.2 Algorithm for transforming an NGSI-LD Entity into a JSON-LD document (ALG1)
	D.3 Algorithm for transforming an NGSI-LD Property into JSON-LD (ALG1.1)
	D.4 Algorithm for transforming an NGSI-LD Relationship into JSON-LD (ALG1.2)

	Annex E (informative): RDF-compatible specification of NGSI-LD meta-model
	Annex F (informative): Conventions and syntax guidelines
	Annex G (informative): Localization and Internationalization Support
	G.0 Foreword
	G.1 Introduction
	G.1.0 Foreword
	G.1.1 Associating an Entity with a Natural Language
	G.1.2 Associating a Property with a Natural Language
	G.1.3 Associating as equivalent entity

	G.2 Natural Language Collation Support
	G.2.0 Foreword
	G.2.1 Maintain collations as metadata
	G.2.2 Route language sensitive queries via a proxy

	G.3 Localization of Dates, Currency formats, etc.
	G.3.0 Foreword
	G.3.1 Localizing Dates

	Annex H (informative): Suggested actuation workflows
	H.1 Actuators and feedback to the consumer
	H.2 Architecture for actuation
	H.3 Structure of Commands and additional Properties
	H.3.0 Introduction
	H.3.1 Property for listing available commands
	H.3.2 Properties for command endpoints

	H.4 Communication model
	H.4.1 Possible communication models
	H.4.2 Subscription/notification model
	H.4.3 Forwarding model

	H.5 Implementation of the subscription-based actuation workflow
	H.6 Implementation of the registration-based actuation workflow

	Annex I (informative): Change history
	History

