

ETSI GR ZSM 009-3 V1.1.1 (2023-08)

Zero-touch network and Service Management (ZSM);
Closed-Loop Automation;
Part 3: Advanced topics

Disclaimer

The present document has been produced and approved by the Zero-touch network and Service Management (ZSM) ETSI
Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP REPORT

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)2

Reference
DGR/ZSM-009-3_Cla_AdvTop

Keywords
automation, closed control loop, management,

service

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2023.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definition of terms, symbols and abbreviations ... 6

3.1 Terms .. 6

3.2 Symbols .. 6

3.3 Abbreviations ... 6

4 Next-generation closed-loop operations ... 6

5 Problem Statements .. 7

5.1 Cognitive closed loops ... 7

5.2 Composition and coordination of interdependent closed loops .. 8

5.3 Dynamic composition of closed loops.. 9

5.4 Intent-based closed loops ... 11

5.5 Resource locality and scarcity on closed loop automation ... 12

6 Potential solutions .. 13

6.1 Cognitive Closed Loops ... 13

6.1.1 Active measurements .. 13

6.1.2 Self-learning closed loops ... 14

6.1.2.1 Introduction ... 14

6.1.2.2 Evaluation of the efficiency and impact of closed loops ... 15

6.1.2.3 Timing aspects .. 15

6.1.2.4 Self-learning CL operation .. 16

6.2 Composition and Coordination of interdependent Closed Loops ... 18

6.2.1 Grouping interdependent (nested) Closed Loops .. 18

6.2.2 Coordination of interdependent (nested) Closed Loops .. 19

6.2.3 Example Workflows for Coordination of interdependent (nested) Closed-Loops 20

6.2.4 Example Workflows for Coordination of interdependent (hierarchical) Closed-Loops 23

6.3 Dynamic Composition of Closed Loops .. 24

6.4 Intent-based closed loops ... 25

6.4.1 Intent-driven closed loops ... 25

6.4.2 Knowledge base-centric closed loops ... 26

6.5 Hierarchical coordination between closed loops in resource constrained environments 27

7 Recommendations .. 28

7.1 Cognitive closed loops ... 28

7.2 Composition and coordination of interdependent closed loops .. 29

7.3 Dynamic composition of closed loops.. 29

7.4 Intent-based closed loops ... 30

Annex A: Change History ... 31

History .. 32

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)4

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) Zero-touch network and
Service Management (ZSM).

The present document is part 3 of a multi-part deliverable. Full details of the entire series can be found in part 1 [i.2].

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)5

1 Scope
The present document investigates advanced topics related to closed-loop operations such as learning and cognitive
capabilities (e.g. based on different degrees of use and integration of artificial intelligence technologies), ways to set
and evaluate levels of oversight, autonomy, and operational confidence on the behaviour of the closed loops. The
present document will document problem statements and technical challenges, derive potential requirements, capture,
and evaluate potential solution options, and provide recommendations for further standardization activities.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document, but they assist the
user with regard to a particular subject area.

[i.1] S. Ayoubi, N. Limam, M.A. Salahuddin, N. Shahriar, R. Boutaba: "Machine Learning for
Cognitive Network Management". IEEE Communications Magazine. Vol. 56(1), pp. 158-165,
January 2018.

[i.2] ETSI GS ZSM 009-1: "Zero-touch network and Service Management (ZSM); Closed-Loop
Automation; Part 1: Enablers".

[i.3] ETSI GS ZSM 009-2: "Zero-touch network and Service Management (ZSM); Closed-Loop
Automation; Part 2: Solutions for automation of E2E service and network management use cases".

[i.4] ETSI GR ZSM 011 (V1.1.1): "Zero-touch network and Service Management (ZSM); Intent-driven
autonomous networks; Generic aspects".

[i.5] TM Forum IG1253 (V1.2.0): "Intent in Autonomous Networks".

[i.6] Russell, Stuart J.; Norvig, Peter (2003) (2nd ed.): "Artificial Intelligence: A Modern Approach".
Upper Saddle River, New Jersey: Prentice Hall. Chapter 2. ISBN 0-13-790395-2.

[i.7] ETSI GS ZSM 001: "Zero-touch network and Service Management (ZSM); Requirements based
on documented scenarios".

[i.8] Stephen S. Mwanje, Christian Mannweiler: "Towards Cognitive Autonomous Networks"
Publisher: WILEY.

[i.9] ETSI GS ZSM 002 (V1.1.1): "Zero-touch network and Service Management (ZSM); Reference
Architecture".

[i.10] ETSI TS 128 312 (V17.1.1) (2022-10): "LTE; 5G; Management and orchestration; Intent driven
management services for mobile networks (3GPP TS 28.312 version 17.1.1 Release 17)".

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)6

3 Definition of terms, symbols and abbreviations

3.1 Terms
Void.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

5G Fifth Generation of mobile networks
AI Artificial Intelligence
C-MAPE Cognitive Control Loop
CL Closed Loop
CLC Closed Loop Controller
CPU Central Processing Unit
IME Intent Management Entity
IoT Internet of Things
KPI Key Performance Indicator
LTE Long Term Evolution
M2O-CL Made-to-Order Closed Loop
MD Management Domain
ML Machine Learning
OWL Web Ontology Language
PM Performance Management
QoE Quality of Experience
RDF Resource Description Framework
SLA Service Level Agreement
SON Self Organizing Networks
TOSCA Topology and Orchestration Specification for Cloud Applications
TS Traffic Steering
UE User Equipment
VNF Virtual Network Function

4 Next-generation closed-loop operations
It is expected that the future network management systems should be able to handle the increased complexity in the
evolving network scenarios arising from diverse network deployments options and massive scalability requirements. As
part of the evolution, the management of the network should be automated as much as possible. Accordingly, the
management system, specifically the next generation of closed-loop operations, should be able to handle the additional
requirements through machine-learning-driven or cognitive automation. Cognition built from learning based on
different network and environment events will be used to derive insights and decisions on network and service
management scenarios involving single or multiple network events. As described in [i.1] closed loops may benefit from
applying machine learning in any of the stages, to make the closed loops more adaptive and self-learning.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)7

As described in [i.8], the evolution towards autonomous networks empowered with cognitive capabilities will happen in
stages starting with today's automated network employing SON as closed loops involving a set of automation
capabilities configured and managed by the operator. The intermediate stage is the automated network, which adds
cognitive capabilities to the management layer thereby eliminating the need for the operator to handle the configuration
and management of the network management automation capabilities that constitute the closed loops. The configuration
and management for the automation capabilities may be selected based on prevailing contexts in the network
environment. Eventually, the operations will evolve further into a fully autonomous network in which cognitive
capabilities are introduced into the closed loops of managed and management layers. These learning driven closed loop
are then capable of learning the right configuration parameters for different network contexts and update the learning in
the context model in a continuous manner. Autonomous networks enable the service user and the network operator as
management service consumers to provide their expectations as "intents". The intent-based system converts the intent to
objectives which are further processed by different closed loops to satisfy the expectations expressed by the intent. The
system accepts input data from different sources to gather different perspective on the network and also the impacts
from configuration and environmental changes. This will enable the system to contextualize the information with
multi-dimensional perspective of the network behaviour (network performance and user experience) based on different
scenarios (configuration, environment, user specific handling, etc.).

This study investigates various challenges in network automation and potential advanced closed loop solutions such as
cognitive closed loops, intent based closed loops, dynamic closed loop composition and coordination, inter-dependent
closed loop, etc. to support cognitive autonomous network.

5 Problem Statements

5.1 Cognitive closed loops
Closed loops have multiple stages which could benefit from applying Machine Learning (ML) technology. According
to the C-MAPE principle [i.1] a cognitive control loop may incorporate ML into any of its stages: ML-based
monitoring, analysis, decision making and optimized actions. Such approach makes a CL more adaptive and self-
driven/self-learning, as opposed to traditional CLs that are usually self-regulating (implement a pre-defined control
logic like in LTE/5G SON) but not self-learning (i.e. they do not change the control logic regardless of the outcome of
their actions).

Applying ML within a CL requires the integration of one or more trained ML models in the CL implementation. With
state-of-the-art ML methods, an ML model architecture (e.g. neural network layers, activation functions) defines the
syntax and semantics of both the input data and the model output. That is, each ML model takes a set of well-defined
input data and produces inference results of a specific kind. Due to such focus of a single model, a CL may benefit from
having multiple models, each operating on different sets or types of input data and producing different outputs. The
reasons for multiple models may include:

• Using multiple models in combination to implement a more complex analytics and decision pipeline (e.g. by
considering insights generated by different analytics algorithms in parallel and/or in series). In this case, the
involved models are simultaneously active and should be supplied with their respective input data.

• Some models are alternatives to others with different level of functionality or capability. For instance, different
models may be created to analyse time series data coming in at different measurement intervals (5 minutes,
15 minutes, 1 hour). Depending on the resolution of the input data available in the deployment of the CL, the
corresponding model is selected. Additionally, if the availability of the input data changes (e.g. a data source
stops sending data for a period of time), the CL may autonomously switch between models.

• Some models implement special analysis cases that are only needed under specific circumstances. For
example, in a hierarchical analysis, high level analysis and decision may be driven by a first model, whereas
special non-anticipated cases, such as suspicion of an anomaly, triggers further analysis using other models. As
the various models require different input data, the CL may need to activate specific data sources so that they
start to produce data required by a newly activated model.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)8

The above considerations forecast a more dynamic interplay between stages of a CL compared to a mostly linear
collection-analysis-decision-actuation cycle. Such dynamism also contributes to improved level of autonomy for the
CL, such as:

• Proactively re-program data sources to autonomously collect the right type, quality, and quantity of data. The
data quality and quantity of data may be a pre-requisite for versatile and high-quality analytics (or to be able to
perform analytics at all).

• With enhanced analytics, CLs may implement self-learning capability by analysing the outcome of the actions
and learning from a feedback based on how well the actions have reached the goal for which the actions have
been initiated.

5.2 Composition and coordination of interdependent closed
loops

Multiple closed loops may belong to the same use case with a common goal or related goals. These interdependent CLs
may act directly or indirectly on the same managed entity. Hence, the predicted actions of these interdependent CLs
may conflict with each other resulting in an undesired operation on the managed entity.

Figure 5.2-1: Example for Interdepended Closed loops

• As shown in figure 5.2-1a), two or more instantiated CLs may act directly on the same managed entity, e.g.
two CLs acting on the same Virtual Network Function (VNF) instance for horizontal VNF autoscaling.

• As shown in figure 5.2-1b), two or more instantiated CLs may act indirectly on the same managed entity, e.g.
when one CL acts on the CPU resource of the VNF instance for vertical VNF autoscaling and another CL acts
on that same VNF instance for horizontal VNF autoscaling.

Challenges:

Currently, external coordination mechanism (i.e. via CL Coordinator as shown in figure 5.2-1) is employed to detect
and mitigate CL conflicts either before (i.e. Pre-action coordination) or immediately after they occur (i.e. Post-action
coordination).

In Pre-action coordination, the CL coordinator detects and resolves conflicts between CLs before triggering
the Execution stage of the CLs.

In Post-action coordination, the CL coordinator identifies CL actions after the Execution stage that lead to undesired
outcomes and determines how to avoid such conflicts in the future.

However, external coordination mechanism assumes that all CLs are independent and can thus be coordinated as
independent entities. Consequently, the CLs are currently always composed independently of each other, even though
the CLs are interdependent belonging to the same use case with common goal or related goals.

With hundreds or thousands of CLs instantiated in the network, some of these CLs may be nested or hierarchical.
Scaling the functionality of the CL Coordinator becomes a challenge.

The potential solutions to address these challenges are specified in clause 6.3. Related Requirement are:

• ETSI GS ZSM 001 [i.7] clause 5.2 Req #70 "ZSM framework shall support the capability of nested closed
loops".

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)9

• ETSI GS ZSM 009-2 [i.3] clause 5.2 [CL-general-2] "The ZSM framework shall allow establishing different
types of relationships between Closed Loops. NOTE 2: Examples of relationships are peer Closed Loops,
hierarchical or nested Closed Loops."

The potential solutions to address these challenges are specified in clause 6.2.

Figure 5.2-2: External Closed Loop Coordinator-1

Figure 5.2-3: External Closed Loop Coordinator-2

5.3 Dynamic composition of closed loops
Closed loops may be, in general, within a single management function that combines all the closed loop stages or
functionalities. In such cases, multi-vendor interactions need interfaces to the network resources while control and
exposure interfaces focus on the capabilities of the combined function.

Alternatively, for multi-vendor network automation environments, closed loops support specific modules for
accomplishing specific tasks, e.g. to provide a specific analysis on some data. CLs may be composed from multi-
vendors components using standardized services. As illustrated by figure 5.3-1, the different stages can support control
and exposure services (marked with "C" and "E" in figure 5.3-1), through which an authorized entity (e.g. the ZSM
framework consumer) may control the stages. Each stage also supports the run-time services (marked with D in
figure 5.3-1) through which the stages exchange data to accomplish the network management tasks.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)10

Figure 5.3-1: Automatic composition and management of multi-vendor closed loop

Given the likely high number of CLs and combinations thereof, it would be a heavy task for the human operators to
manage. Hence It is necessary to provide automation means with which CL stages may be dynamically composed.

Challenges:

Made-to-Order Closed Loops (M2O-CL), as defined in clause 7.4 of ETSI GS ZSM 009-1 [i.2] and service capabilities
further described in clause 5.4.6 of ETSI GS ZSM 009-2 [i.3], are assembled on demand by ZSM framework owner, or
by other entities on behalf of the ZSM framework owner, using capabilities offered by the ZSM framework.
Components of M2O-CLs may come from different ZSM framework vendors and can be associated with a CL instance
based on demand. As described in ETSI GS ZSM 009-2 [i.3], it defines the capabilities needed to chain the different
components together to prepare a M2O-CL for deployment.

The composition process - according to current solution - does not support means to request for the dynamic
composition of the closed loop. Accordingly, such means do not reflect sufficient flexibility to automatically decide the
number and type of needed stages and how to handle situations where one or more needed components are not
available. Moreover, a flexible and abstract way to submit a M2O-CL composition request needs to be supported.

To provide a flexible/abstract way to submit a M2O-CLs composition it is important.

• To determine the minimum needed information to form M2O-CLs. The needed information may be:

- Catalogue(s) of CL components

- CL goal and description

- Required capabilities of management functions that combine to form M2O-CLs

• To determine the required number of stages and capability to form M2O-CLs.

• To configure the M2O-CL stages, e.g. with their sources of data or where to deliver their reports.

• To map output of one stage to the input of subsequent stages e.g. data transformation might be required
between the stages to facilitate mapping.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)11

5.4 Intent-based closed loops
Intelligent networks need to have the ability to adapt to new situations and new services without the intervention of
human operators or experts. One needed feature that is necessary for any intelligent network is to decouple the
requirements that are given to the management systems from the solutions that are used to deploy and manage the
services. As defined in ETSI GR ZSM 011 [i.4], intents are the formal definition of the requirements, goals, and
constraints that a technical system receive and should be used as the main input information for autonomous
management of the network.

An intent is a declarative information object that allows the system to understand utility and the value of its actions
from a producer's perspective. This allows the system to become autonomous and evaluate situations and potential
action strategies, rather than being just limited to follow instructions that operators and experts have specified in
policies. This means that intelligent decisions that were previously made exclusively by policy developers can become
automated.

On one hand, intents are necessary for providing information about requirements and utility, which is one of the
foundations for autonomous systems; on the other hand, closed loops are the key enablers for automating the
configuration of networks and steering their state towards the wanted state. The combination of these two concepts, i.e.
intents and closed loops - which is needed to realize intelligent and autonomous networks - is still a challenging task.

As described in ETSI GR ZSM 011 [i.4], the management domains may contain Intent Management Entities (IME),
which are responsible for managing the life cycle of intents. This implies that an IME is able to detect whether the
intent has been fulfilled and, if not, find and execute corrective actions; therefore, IMEs have to leverage closed loops
functionalities while dealing with the intent lifecycle management.

Figure 5.4-1 shows the main interactions between IMEs within different management domains (which may include the
end-to-end management domain). The IME receives all intents directed toward its autonomous domain and it has to
report back to the intent origin regarding its success in fulfilling the intent. The intent fulfilment has to be executed
based on measurements that allow the IME to compare the state of the network to the expected state derived from the
intent. If the system is not meeting the requirements, corrective actions are needed. The actions can be through
conventional management interfaces or, if the targeted is intent-aware, by defining its requirements through another
intent.

Figure 5.4-1: Automatic composition and management of multi-vendor closed loop

Challenges:

Intent-based operations are well explained in ETSI GR ZSM 011 [i.4] and in other standards ([i.5] and [i.10]).

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)12

As investigated in ETSI GR ZSM 011 [i.4], the IMEs operate different closed loops that are responsible to produce and
maintain the outcomes expected from the intent received, e.g. a service with specified QoE.

The implementation of IMEs and the use of closed loops can be realized in different forms, but a general challenge is
how the IMEs interact with the specific business logic within a management domain, so that they can together translate
an intent that expresses business needs into detailed technical configurations.

Such translation can be done in generic way, such closed loop enablers can be used to create a generic closed loop
structure that is able to deal with any type of intent, given they follow a common syntax and modelling. This would
relieve the burden of implementers that would not need to design and code specific (and different) closed loops for each
type of intent that is employed.

The challenge that should be tackled is to create intent-driven closed loops that have a generic structure and that:

i) are able to deal with any type of intent, and

ii) can be specialized to translate business logic into technical configurations in any management domain.

5.5 Resource locality and scarcity on closed loop automation
The implementation of a closed loop may require a certain number of resources. The number of resources may
potentially grow with the complexity of the activities expected from the closed loops. Complex operations that are
likely to be performed by a closed loop might include artificial intelligence (AI) model training, data analysis and other
non-trivial decision-making processes. At the same time, some resources that are supposed to be managed by closed
loops may be hosted in local nodes, quite far (and in some cases, isolated) from central nodes. This is the situation that
industry foresees with the on-going trend of IoT-edge-cloud continuum, where managed resources do not only include
only the ones hosted in centralized and regional data centers, but also on extreme-edge nodes (also known to as the far-
edge).

As for the management of extreme-edge node resources, there exists different variants.

On the one hand, implementing the closed loop locally, on the extreme-edge node; this means the closed loop and the
resources under its managed scope will both run on the same execution environment. The main issue of going for this
approach is that it may be very costly (per compute unit), or ineffective, as it would deplete a large part of the scarce
resources available in the extreme-edge node.

On the other hand, implementing the closed loop remotely, on a central node. However, this approach might pose
serious issues related to the exchange of data and control flows between the extreme-edge and central nodes. Examples
of these issues can include:

• disconnection risks between both nodes, which may result in non-acceptable service downtime;

• data sharing: moving local data from extreme-edge node to central node for their processing may raise privacy
concerns, especially when these data hold sensitive (business-critical or regulation-subjected) data;

• performance degradation, in terms of latency (e.g. increased time to send the monitoring data and receive
action plans) and backhaul capacity (more exchange of data and control flows between nodes mean higher
bandwidth consumption, which might result in poor resource efficiency and congestion).

Challenges:

Currently, resource locality is not taken into account when considering closed loop instantiation and operation. While
cognitive and self-learning closed loops are expected to bring better results than traditional non-self-learning ones, they
also require larger amount of data and processing power to operate, which is not necessarily compatible with specific
use cases where local resources are scarce, such as mobile network edge resource management.

Centralizing the closed loop in an area with more resource may result in increased risk of disconnection from the
managed resources. In many cases, such as security, such disconnection may not be acceptable.

Similarly, centralization may induce additional delays in the loop, which may also be a problem if the action plan needs
to be carried out in a timely manner.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)13

6 Potential solutions

6.1 Cognitive Closed Loops

6.1.1 Active measurements

As discussed in clause 5.1, a CL may host multiple ML models to enable a wide range of analytics capabilities.
Different models usually require different type and amount of input data to produce their inference result. For example,
a model with few input data may be able to deliver coarse analytics results, while another model with more diverse
input data may deliver finer analytics results. The two models may be different in complexity and inference speed, i.e.
the simpler model may be quicker for basic decisions. Additionally, the simpler model is more relaxed on the data
collection requirements, i.e. puts lower load on the data producers (e.g. other CLs or managed entities). Therefore, the
mode of operation of the CL could be to normally use the simpler model driven by a limited set of data, whereas it
proceeds to use the more complex (and more data intensive) model only in exceptional cases when the simpler model's
inference is not satisfactory or conclusive.

Figure 6.1.1-1: Dynamic interaction with data sources

Optimizing data collection according to the above mode of operation requires that the CL be able to dynamically select
data sources according to its internal analytics flow. Accordingly, the CL may use a set of "default data sources" whose
data are collected and analysed when the CL operates under in normal conditions, while additional "on-demand data
sources" are utilized only on need basis such as when the CL faces unusual or abnormal conditions, and thus such
additional data are collected only on specific request from the CL. Such operation is outlined in figure 6.1.1-1.

The on-demand data collected on need basis may be used in combination with already available historical data
(figure 6.1.1-2(a), when a model has been trained on a combination of regular and on-demand data) or used separately
(figure 6.1.1-2(b), when a model is trained solely on the on-demand data).

Figure 6.1.1-2: Closed Loop with multiple analytics models,
each requiring different (potentially overlapping) set of input data

On-demand data may have at least two availability stages:

1) Pre-available/existing data. This is data that has already been produced by a data source and has been stored in
a database, from where it only needs to be retrieved.

2) Non pre-available/non-pre-existing data. Such data needs to be generated on request. This data has not been
produced prior to the request and requires additional actions/procedures (outside of the CL) to be generated.

Closed Loop

Default data
sources

On-demand
data sources

Cont inuous data
collect ion (streaming)

Request data (tr igger
measurement)

Provide data

Analytics
Model 1

Analytics
Model 2

Default data
sources

On-demand
data sources

Closed Loop

Analytics
Model 1

Analytics
Model 2

Default dat a
sources

On-demand
dat a sources

Closed Loop

(a) (b)

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)14

Requesting existing data is usually more lightweight and available with shorter latency compared to the data that needs
to be generated, especially if the latter implies interactions between network functions or measuring/generating user
plane traffic. Still, on-demand generated data is useful to enable a CL to perform more detailed analysis; and in some
situations, the availability of pre-existing data may not be always guaranteed (e.g. due to deployment or storage
constraints).

With certain ML technology, the CL may detect that a model is not able to deliver conclusive or confident results by
evaluating the module's intrinsic confidence metric, such as that of a SoftMax classifier used as the output layer of a
deep neural network. Alternatively, the CL may monitor the distribution of model input data encountered on the field
and compare it to the current default model's training data distribution to check if the model is dealing with the kind of
data, it has not been trained for, triggering a switch-over to another model that was trained for the currently received
data. Other analytics specific means may also exist that the CL may use to realize that a given model is not sufficient for
its analytics/decision step and another model, therefore additional data is required.

The flow of command where a CL triggers active measurement as part of its analytics/decision steps is shown in
figure 6.1.1-3. The CL is depicted by its multiple internal stages (Collection, Analytics, Decision, Actuation). The
Analytics stage realizes (by means discussed above) that the default collected data does not lead to conclusive results,
therefore it decides to trigger a new measurement. The new measurement is shown to be initiated by the CL's Actuation
step, emphasizing that obtaining the on-demand data may require new data to be generated by entities outside of the CL,
not only fetching additional (but already existing) data from a database.

Figure 6.1.1-3: Procedure for triggering active measurements from a Closed Loop

6.1.2 Self-learning closed loops

6.1.2.1 Introduction

Closed loops autonomously trigger actions based on a series of steps including data collection, analytics, and decision.
During a CL's decision step, the closed loop may select from a set of actions, where the best action depends on the CL's
dynamically changing environment and operational context. In systems with dynamicity (such as mobile networks with
mobility, traffic diversity, etc.), the mapping between potential contexts (such as domain specific insights and system
states generated by domain intelligence) and actions cannot be defined statically (e.g. as a list of rules) prior to the
implementation and deployment of the CL. Therefore, CLs are expected to autonomously adapt their operation to
varying environments, collect operational knowledge and autonomously learn from their experience.

On-demand
data sources

Default dat a
sources Collect ion Analyt ics Decision Actuat ion

St art analyt ics session

Result is ambiguous,
suspend analyt ics

Decision: t rigger new
measurement

Act ion: trigger new
measurement

Decision based on
analyt ics result

Collect and pre-
process data

Collect and pre-
process data

Cont inue analyt ics

Result is complete

Execute act ions
based on decision

Closed Loop

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)15

Such self-learning capability complements external CL supervision when an entity outside of the CL evaluates the
performance of a CL and may adapt the CL's operation.

6.1.2.2 Evaluation of the efficiency and impact of closed loops

Self-learning requires that CLs evaluate their decisions and actions in the context in which they were initiated. CLs may
generate self-learning feedback from their own actions by correlating the context in which the actions were initiated, the
action itself, and measuring their efficiency and impact the action had on the entities managed by the CL. The context,
efficiency and impact terms are defined as follows.

Context: the context may be derived from the CL's collected data (historical and current), any past knowledge and
internal insights created by its analytics step. The context may not only be a snapshot of the state of the managed
entities at the time of initiating the action but could (and often should) include longer term historical and temporal
behaviour of the system, as well as the other actions that have been in effect.

Efficiency: describes whether the action has been successfully completed with the specific scope and target (UEs, cells,
etc.). An action may be partly inefficient if its outcome depends on conditions that are context specific, such as traffic,
mobility, UE capability, service availability or any other dynamically changing state. Therefore, a CL may store the
actions, the context in which the action was triggered and the measured efficiency of the action to learn what actions are
efficient in a given context and filter out actions from contexts where they consistently prove to be inefficient.

Impact: describes whether the action has reached its goal, which should be aligned with the CL's operational target
(e.g. resolve a system state degradation). Even an efficiently executed action may have low impact if the action was not
the proper one to resolve the motivation of the action. Therefore, a CL may store the measured impact of the actions
along with the efficiency to filter out low impact actions. Note that an efficient action may have various impact based
on the force of the action, i.e. the same action may be administered lightly or more strongly based on parameterization.
Low impact of an otherwise efficient action does not necessarily mean that the action itself was wrong, it may be that
the action would have needed different parameters or strength. Therefore, the CL should also note the parameters of the
action to enable tuning the actions similarly to control-loop tuning in control theory.

Figure 6.1.2.2-1: Example scenario for measuring the efficiency and impact of an action

For illustration, an example scenario is depicted in figure 6.1.2.2-1. The scenario consists of two resource layers, LTE
and 5G, where the LTE layer is overloaded causing service degradation. The action triggered by the CL is traffic
steering (TS) to move selected UEs from LTE to 5G. The efficiency of the action is measured by evaluating how many
of the UEs targeted by the TS action have indeed moved to 5G. Efficiency below 100 % may be caused by, e.g.
inadequate 5G coverage at their exact location. The impact of the action is measured by evaluating whether the original
cause of the action, i.e. the degradation in LTE, has been resolved. It may be that the UEs handed over to the 5G are
moving sufficient load away from LTE and onto 5G that the LTE degradation is resolved, which would mean high
impact (good case). A low impact case would happen if, despite moving UEs from LTE to 5G, the LTE situation
remains poor. Additionally, low impact should be declared if, due to moving load from LTE to 5G, the 5G layer
becomes degraded. In general, the impact should not only consider whether the original cause has been resolved, but
also whether the action has caused additional issues - those should be avoided as well for an impactful action.

6.1.2.3 Timing aspects

Actions may have different latency until they become effective (i.e. until their outcome becomes measurable), therefore
even an efficiently completed action may not deliver the expected impact in time. Therefore, considering the timing
aspect of the actions is essential for making efficient and impactful decisions by the CL. In general, if the action is
triggered as a remedy to a degradation, the action should complete (take effect) before the issue escalates to
degradations noticeable to end users or SLA violations.

Efficiency and impact of the actions:

Action

Impact– degradat ion – resolved

LTE
5G

Efficiency

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)16

Therefore, the CL should measure and store the latency of the actions it triggers, and in any situation select actions that
have a chance to take effect within the time budget available to resolve the trigger condition.

The timing of actions is also relevant for tuning the action (cf. the earlier control-loop analogy), as tuning an action's
parameters requires knowledge on the time constant of the action (i.e. the speed at which changing the action
parameters is expected to take effect in the action's observed efficiency and impact).

Figure 6.1.2.3-1: Illustration of the concept of considering the latency of actions
in CL analytics & decision making

The concept is illustrated in figure 6.1.2.3-1 with a situation where, with time, the system would transition into a
degraded state, which is monitored by the CL. The objective of the CL is to keep the system out of the poor
performance range. Suppose that in the current context, there are two actions that have proven to be efficient and
impactful for the CL, indicated by "A" and "B". The latency profiled for action "A" is shorter than the time before the
degradation is expected to escalate, making "A" a potential choice for the CL. However, the latency of action "B" has
been measured to be longer than the time until degradation, therefore, even if action "B" was an efficient and impactful
one, in the current situation it should not be selected if there is a better alternative. Therefore, the CL should go with
action "A" in this case. Action "B" is still a valuable tool as a long-term action that is however impactful only in case of
slow system changes or as proactive actions.

6.1.2.4 Self-learning CL operation

The self-evaluating and self-learning CL operation is depicted in figure 6.1.2.4-1, combining the concepts of efficiency
and impact evaluation as well as latency considerations, and mapping them onto the CL steps of data collection and
analytics, decision, actuation. The contextual knowledge representation is also highlighted.

Time unt il degradat ion becomes not iceable

Latency of act ion A: OK t o select

Latency of act ion B: too late to select

After this point , dedicated,
only real t ime act ions may
solve the degradat ion in t ime.

CLçs conformance to its operat ional targetsgood poor

t ime

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)17

Figure 6.1.2.4-1: Self-evaluating and self-learning CL operation

The CL may be logically partitioned into two interacting internal loops: a Cognitive Loop and an Operational Loop. The
Cognitive Loop is responsible for maintaining the context-based knowledge of the CL, based on self-monitoring the
actions and their efficiency, impact and latency. The Operational Loop has the scope to collect data from the managed
entities and observe the context in which the CL operates; detect if there is any need for an action (degradation from CL
operational targets); select, based on the accumulated knowledge, the best possible action in the context; launch the
selected action; monitor the efficiency, impact, and latency of the action. The interaction between the two logical loops
is to generate self-learning feedback from the Operational Loop for the Cognitive Loop, and to retrieve knowledge from
the Cognitive Loop to the Operational Loop.

Note that at a given decision point, prior accumulated knowledge may be insufficient to support the decision of the CL
about triggering actions. In this case, the CL may transition to an exploration mode, where actions are evaluated based
on pre-defined rules or general (not context specific) domain knowledge used for bootstrapping the CL. In theory,
random action selection as in reinforcement learning exploration may also be used, however this may not be suitable in
certain CL deployment environments (e.g. business critical deployments). In such cases, domain knowledge may be
used to limit the explorable actions (or the extent of the actions) to a safe range.

Another possibility to boost learning is to leverage the collective knowledge of multiple CL instances that implement
the same business logic but that are deployed at various locations (e.g. at different radio access nodes). In such cases,
combining knowledge accumulated from multiple CLs and feeding it back to CL instances has advantage over isolated
self-learning as multiple CLs may cumulatively encounter richer context and exhibit experience of more diverse
actions. Additionally, bootstrapping the knowledge of a newly deployed CL with a combined knowledge may fast-track
the self-learning of the individual CL as well.

Expect ed eff iciency based
ranking of t he alternat ives

Expect ed impact based
ranking of t he alternat ives

Select ion of the valid
act ions (alternatives)

+context based ef f iciency
+context based impact
+per-action t ime to impact

Decision Actuat ion Data Collection & Analyt ics Knowledge

Monit oring and
measurement /evaluation of

the ef ficiency and impact

Monit or and measure t he
t ime t o impact

Trigger the most suitable
act ion (high efficiency and

impact)

Self - learning feedback about
suitable act ions (context

based, e.g., per locat ion, et c.)

Monit oring managed entit ies
and degradat ion from

operat ional targets

Cognitive loop Operat ional loop

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)18

6.2 Composition and Coordination of interdependent Closed
Loops

6.2.1 Grouping interdependent (nested) Closed Loops

As discussed in clause 5, multiple instantiated CLs belonging to the same use case with a common goal or related goals
may act directly or indirectly on the same managed entity. Therefore, new solutions are required to compose and
coordinate such interdependent CLs to ensure that their individual predicted actions do not conflict with each other
resulting in an undesired operation on the managed entity.

Figure 6.2.1-1: Interdependent (nested) Closed loops

CLs belonging to the same use case with a common goal or related goals may be composed as a group of interdependent
(nested) CLs. These CLs may coordinate themselves in a hierarchical manner, without the need for an external CL
Coordinator, to detect and mitigate conflicting actions. The grouped interdependent (nested) CLs may appear as a single
entity to the external CL coordinator, as shown in figure 6.2.1-1.

The grouped interdependent (nested including hierarchical) CL model may be defined by introducing new attributes (as
shown in table 6.2.1-1) in addition to the attributes existing in CL model that was defined in ETSI ZSM009-1. In the
case of hierarchical CLs, subordinate CL can be defined as manageableEntityList of superior CL (as defined in ETSI
GS ZSM 009-1 [i.2], clause 8.1.4.4).

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)19

Table 6.2.1-1: Attributes for Interdependent (nested) closed loops

Attribute Name Optional / Mandatory Description
closedLoopGroupInstanceUniqueId Mandatory It indicates the identifier of the

grouped CL instance.
closedLoopGroupGoal Mandatory It indicates the common goals of the

grouped CL instance.
closedLoopGroupPriority Mandatory It indicates the priority of the grouped

CL instance. It is set to avoid
conflicting actions (i.e. between two or
more grouped CL instances) to the
same managed entity.

closedLoopGroupCoordinationType Mandatory It indicates the type of hierarchical
coordination approach (i.e. hierarchy
either increases or decreases from
the innermost CL to the outermost
CL) within the grouped
interdependent CL instance.

closedLoopGroupTypeDescription Optional It indicates a description of the
grouped CL type (Made-to-Order CL
or Ready-Made CL).

closedLoopClass 1 (Innermost CL) Mandatory It is of type closedLoopClass and
defines the attributes of the Innermost
CL.

closedLoopClass 2 (Intermediate CL) Mandatory It is of type closedLoopClass and
defines the attributes of the
Intermediate CL.
Note that there can be 0, 1 or many
Intermediate CL instances.

closedLoopClass n (Outermost CL) Mandatory It is of type closedLoopClass and
defines the attributes of the
Outermost CL.

6.2.2 Coordination of interdependent (nested) Closed Loops

The grouped interdependent (nested) CLs may coordinate with each other to ensure that their individual predicted
actions do not conflict with each other. Such coordination mechanism ensures that at a time only the Decision stage of
one of the interdependent CLs will send their insights & workflows to the corresponding Execution stage (i.e. the
Decision stage of other CLs will be in pause mode).

Solution 1

As shown in figure 6.2.2-1, the insights & workflows from the Decision stage of one CL are fed as an input to the
Analytics stage of next (or all) lower or higher CL(s). The Analytics stage of one CL may control or configure (e.g.
enabling or disabling pause points) the Decision stage of other (or all) lower or higher CL(s).

Figure 6.2.2-1: Coordination of Interdependent Closed Loops - Solution 1

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)20

Solution 2

As shown in figure 6.2.2-2, if Analytics and Decision stages of a CL are combined into a single Analytics & Decision
stage, then the insights & workflows from the Analytics & Decision stage of one CL are fed as an input to the Analytics
& Decision stage of the next (or all) lower or higher CL(s). The "Analytics & Decision" stage of one CL may control or
configure (e.g. enabling or disabling pause points) the "Analytics & Decision" stage of the next (or all) lower or higher
CL(s).

Figure 6.2.2-2: Coordination of Interdependent Closed Loops - Solution 2

6.2.3 Example Workflows for Coordination of interdependent (nested)
Closed-Loops

Grouped Nested Closed Loops
(Use Case-specific)

Outermost
CL

Intermediate
CL

Innermost
CL

Managed
Entity

1: Decision

2: Insights & Workflows

3: Insights & Workflows

4: Execution

5: Proactive Action

Figure 6.2.3-1: Workflows for Coordination of interdependent closed loops

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)21

Table 6.2.3-1: Capabilities required for interdependent closed loops

Insight Reporting & Control (One CL Decision Stage -> Another CL Analytics Stage)
Capabilities Description

Transfer insights & workflows report
(raw or aggregate) from one CL to
another CL

Transfer a file or stream data on the derived insights & workflows which
need to include at least the following information:

• Specifies the scope of the target managed entity (e.g. CPU,
VNF, node) that the CL is acting on

• Individual goal of the CL (e.g. maintain sufficient CPU resources
in the VNF depending on the traffic load to avoid service
degradation)

• The predicted decision/action (e.g. add/remove one/more CPU
units in the VNF)

• Accuracy/confidence of the prediction (e.g. x % accurate with
confidence value y)

• Timestamp when the predicted action is planned to be executed
(e.g. t+5 minutes)

Escalate/signal problem about the CL
to another CL

Transfer a file or stream data on the performance of the CL. For e.g.
indicating that the required data to train an ML algorithm is not available
or indicating that the accuracy/confidence of the prediction is poor or
indicating that by performing the predicted action the value of the
closedLoopGroupGoal attribute might not be achieved.

In figure 6.2.3-1:

Example 1: The Decision stage of a CL in the CL Group may derive insights & workflows by applying analytics (e.g.
Machine Learning algorithms) on the data collected in its Collection and Knowledge stages of the CL.

Example 2-3: The derived insights & workflows (e.g. predicted/proposed actions) from one CL may be sent to the
Analytics stage of the next (or all) CL(s) via the Insight Reporting & Control Interface.

Example 4-5: The derived insights & workflows are received by the Execution stage of the CL that derived the insights
& workflows, which triggers the proactive action towards the managed entity.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)22

Grouped Nested Closed Loops
(Use Case-specific)

Outermost
CL

Intermediate
CL

Innermost
CL

Managed
Entity

1: Combined Analytics

2: Control Innermost CL
(e.g., pause or unpause)

3: Decision

4: Insights & Workflows

5: Execution

6: Proactive Action

7: Combined Analytics

8: Control Intermediate CL
(e.g., pause or unpause)

9: Control Innermost CL
(e.g., pause or unpause)

10: Decision

11: Execution

12: Proactive Action

Figure 6.2.3-2: More workflows Coordination for interdependent closed loops

Table 6.2.3-2: More Capabilities for interdepended closed loops

Insight Reporting & Control (One CL Analytics Stage -> Another CL Decision Stage)
Capabilities Description

Pause/unpause another CL(s) Set pause point on the Decision stage of another CL(s) by indicating how
long the CL needs to be in pause state. Alternatively, the CL may be
unpaused only when the action/trigger is requested by other CL(s) in the
closedLoopGroup instance.

Update/reconfigure individual goal of
another CL

Updates/reconfigures the value of the closedLoopGoal attribute of
another CL instance.

Configure insight & workflow report
requirements to be received from
another CL

Configure whether raw reports are needed or aggregated reports (also
specifying the time granularity) is sufficient for performing analysis.

In figure 6.2.3-2:

Example 1 or 7: A CL within the CL group could combine the analytics on data collected by itself and the insights &
workflows from the decision stage of the other CLs within the group to determine the best course of action.

Example 2 or Example 8 or Example 9: The control message (e.g. pause) is sent by the Analytics stage of one CL (e.g.
intermediate) via the Insight Reporting & Control Interface to the Decision stage of the next (or all CL(s)).

Example 3 or Example 10: The Decision stage of one CL (e.g. intermediate) may derive insights & workflows by
applying analytics (e.g. Machine Learning algorithms) on the data collected in the Collection and Knowledge stages of
the same CL.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)23

Example 5-6 or Example 11-12: The Execution stage of one CL (e.g. intermediate) triggers the proactive action
towards the managed entity.

6.2.4 Example Workflows for Coordination of interdependent (hierarchical)
Closed-Loops

As ETSI GS ZSM 009-1 [i.2], clause 9.2.4 described, the Closed Loops execution management service provides the
ability to pause the execution of a Closed Loop at a "pause point". In the case of pausing the hierarchical Closed Loops,
there may be two possibilities to consider:

1) In most cases, when the superior CL is paused, the subordinate CL is paused as well.

2) If goals, actions, etc. in different CLs are independent of each other, the coordination between CLs may not
always happen. In this case, when the superior CL is paused, the subordinate CL continues working.

The possible way to deal with above possibilities is providing instruction to describe what the subordinate CL should be
done when superior CL is paused/resumed.

Figure 6.2.4-1: Workflows of Consumer-triggered interdependent closed loops Coordination

Table 6.2.4-1: Capabilities required for interdependent closed loops

Control (Consumer -> CL Coordination)
capabilities Description

Configure instruction whether to
perform the same pause/resume
operation on the subordinate CLs
when pause/resume a CL.

Pause/resume a closed loop with subordinate CLs operation instruction.
• When superior CL will be paused at the next reachable pause point,

the instruction can indicate whether subordinate CLs are paused as
well.

• When superior CL is resumed, the instruction can indicate whether
pass the resume operation to subordinate CLs.

In figure 6.2.4-1:

Message Flow 1: The pause/resume message sent by an authorized consumer may carry an instruction of what the
subordinate CLs should be done upon the action of the superior CL.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)24

Message Flow 2: If message flow 1 acts on a CL with the instruction indicates that subordinate CLs are paused/resumed
as well. The superior CL sends pause/resume message to each subordinate CL.

NOTE: According to definition in ETSI GS ZSM 009-1 [i.2], clause 9.2.4, the Closed Loops execution
management service can be a producer to receive the pause/resume message using the "Pause a Closed
Loop" or "Continue Closed Loop execution" capability, and to provide the notification to authorized
consumer as required using the "Provide notification for a pause point reached" capability.

6.3 Dynamic Composition of Closed Loops
To provide enablers for automation, one may apply a Closed-Loop Controller (CLC), described in clause 5.3, which is
responsible for composing the closed loop based on the input "context" (e.g. capabilities, control) provided by the ZSM
framework consumers. The CLC replaces the ZSM framework consumers for composing the closed loop using
information about CL components and stages.

NOTE: As described in ETSI GS ZSM 009-1 [i.2], CL stage is the logical role to be played while the CL
component is the entity identified to play the particular role(s).

To automate the composition of the closed loop:

1) The ZSM framework consumer sends a request to the CLC to compose a CL. The request may specify inputs
and information about the CL components or roles/stages that are needed to compose the CL. Such
information may include:

- CL-component identifiers: The ZSM framework consumer may know (via pre-arrangement per use case,
capabilities, and roles) the exact components which need to be composed into a CL. Then, the ZSM
framework consumer identifies the components using their unique names or identifiers such as
Calculate_mean or Statistical_analysis and defines their roles/stage (e.g. Decision, analysis, etc.).
Subsequently, the ZSM framework consumer provides CL component identifiers and their roles as the
input to the composition request sent to the CLC.

- CL-component inputs and outputs: The ZSM framework consumers may not know the exact components
(their names or identifiers) that are needed for the different steps of the CL composition but may know
the inputs needed to be used and outputs to be generated at different steps in the CL. In that case, the
ZSM framework consumers identifies the tuple of inputs and outputs for each CL step and labels it with
the respective roles for that tuple. Subsequently, the ZSM framework consumers provides CL
components roles (e.g. one more CL stages) and inputs-outputs tuples as the input to the composition
request sent to the CLC.

- CL-Step capabilities: Alternatively, the ZSM framework consumer may not know the inputs and outputs
required at different steps in the CL but may know the descriptions of the capabilities (e.g. analysis of
handover performance) of the corresponding components (or a subset of them). In that case, the ZSM
framework consumer describes the expected capabilities required for each CL component and the
respective role for that set of capabilities. Subsequently, the ZSM framework consumer provides the CL
component roles and capability description as the input to the composition request sent to the CLC.

- Combinations of CL-Step capabilities, inputs, and outputs: The ZSM framework consumer may also
state the combination of capabilities with inputs, capabilities with outputs or of capabilities with both
input and outputs as the basis for composing the CL.

2) The request sent by the ZSM framework consumer triggers the composition process. Thereby, the CLC
identifies and finds the required components as described by the ZSM framework consumer's request i.e. in
terms of the components' unique names or identifiers, components' inputs and outputs tuples and/or
components' capabilities.

3) The CLC composes the CL by configuring the relation and data exchange among the individual identified
components. This may be achieved using the services define in clause 5.4.6 of ETSI GS ZSM 009-2 [i.3] for
the Made-to-Order Closed Loops (M2O-CL). Some examples are:

- The CLC may configure the monitoring component to deliver data to the analytics component.

- Alternatively, The CLC may configure the analytics component to collect data from the monitoring
components whenever such data is needed to compute analytics.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)25

- The CLC may configure the analytics component to deliver data to the Decision component.

- Alternatively, the CLC may configure the Decision component to request and collect data in the form of
an analytics report from the analytics component whenever such data is needed to derive a decision.

- The CLC may configure the Decision component to deliver data in form of recommended actions or
commands to the Execution component.

- Alternatively, the CLC may configure the Execution component to collect data in form of a set of
recommended actions from the Decision component whenever such recommendations are needed.

- The CLC configures the Execution component to implement the recommended actions on to the network
once received or upon certain conditions, e.g. threshold surpass.

- The CLC may also configure the components to provide Performance Management (PM) and/or Key
Performance Indicator (KPI) and/or feedback data on their operations.

6.4 Intent-based closed loops

6.4.1 Intent-driven closed loops

Figure 6.4.1-1 illustrates how a closed loop could be implemented within an IME to execute the intent fulfilment; this is
an example of an intent-driven closed loop. This closed loop consists of logical stages that are implemented by different
types of agents: Measurement, Issues, Solutions, Evaluation and Actuation. Compared to the ETSI GS ZSM 009-1 [i.2]
functional representation of closed loops, Measurement agents implement the Monitoring stage; Issues agents
implement the Analysis stage, Solutions and Evaluation agents implement the Decision stage, while Actuation agents
implement the Execution stage [i.2]. Each logical stage is implemented by a software agent [i.6] that is specialized in
each task of the closed loop execution; different agents can be coded to perform the same task and different agents can
be used depending on the conditions of the environment or the performance of the closed loop execution.

Figure 6.4.1-1: More workflows Coordination for interdependent closed loops

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)26

Measurement is a continuous activity used both to set goals and to evaluate the intent fulfillment. The IME needs to
know which resource instances are used to fulfill the intent as well as their operational state. Knowledge of the current
performance of service components at their resource instances makes it possible to determine if the system is in breach
of its intent and needs corrective action. However, as the intent can change, so can the required measurements. The IME
should adapt its measurements accordingly by employing measurement agents (specialist implementations of
measurement tasks) as required.

The Issues stage focuses on identifying what needs to be fixed. Issues are defined as requirements that are not met by
the system. Examples include a required QoE metric that is not reached or a required resource that is not available.
Assurance agents implement continuous monitoring of state versus requirements and raise issues when required. This
can include a root cause analysis for a more precise description of the issue, prioritization of issues depending on their
severity or waiting for ongoing actions showing results.

In the Solutions stage, proposal agents react to issues and determine the available corrective action strategies. Any
number of differently implemented proposal agents can be used at this stage, including human designed policies and
machine learned policies that derive solutions from evidence data. Multiple action strategies may be proposed, each of
them representing what the system can do to address the issue.

In the Evaluation stage, evaluation agents determine the expected impact of an action on the system state to determine
which of the proposed solutions can deliver the most positive effect on the fulfillment of all currently valid intents.
Predictive models and digital twins will play a major role in this step, as they make it possible to virtually explore
actions and their expected outcomes. The preferred action proposal is the one expected to maximize global utility by
best fulfilling all intents. The Evaluation stage can also include detection of conflict from actions that fulfill one intent
at the expense of degrading another. Evaluation can therefore be a sanity mechanism with the potential to save the
network from risky actions and degradations.

A solution with an overall preferential evaluation proceeds to the Actuation stage. Intent-based systems can act by using
an intent to define requirements on the autonomous subordinate system layer. Alternatively, they may act through
traditional interfaces by changing configurations of invoking processes. Specialized actuation agents are available to
implement a different type of action-taking. For example, in service intent management, a proposal may be expressed
by a Topology and Orchestration Specification for Cloud Applications (TOSCA) model and the actuation would
therefore be orchestration.

In all cases whenever multiple agents are implemented for a given closed loop stage, there should be some mediation
layer to decide which agent should be executed, or the outcome of which agent should be considered if more than one
agent is employed. This can be decided by the knowledge base and the decision about which agent to be considered can
change over time according to the condition of the environment, the performance of the closed loop or any other policy
specified.

6.4.2 Knowledge base-centric closed loops

The entire closed loop shown in figure 6.4.1-1 is based on agents creating and consuming knowledge. Agents both react
to knowledge changes and create knowledge. For example, proposal generation is initiated by the occurrence of the type
of issue that the proposal agent was implemented to handle. It delivers a proposal for the issue through the creation of a
proposal description in the knowledge base.

The knowledge base becomes a central piece of the closed loop execution, and it is responsible for all data exchange
between the closed loop stages. In figure 6.4.1-1, the arrows between Measurement, Issues, Solutions, Evaluation,
Actuation, represent the logical flow of data; but in a knowledge base-centric closed loop all flows are driven by
knowledge exchange between the closed loop stages and the knowledge base. This allows more flexible and dynamic
execution of the closed loops. The main difference between knowledge base-centric closed loops and other closed loops
is that the data and control flow between closed loop stage is driven by the knowledge base in a knowledge base-centric
closed loop; in this case the knowledge base is more than a simple datastore, but also included reasoning capabilities to
interpret different knowledge objects, which in most cases are coded as ontology graphs that leverage existing tools.

Intents are modelled in some standards as ontology graphs that represent knowledge about the service requirements
[i.5]. With this modelling, a knowledge base that is based on ontology graphs can be leveraged to enable a complete
knowledge-centric implementation of the closed loop. For that, ontologies can also be used to represent the network
state, the issues, proposals, predictions, and all types of knowledge needed to create the flows between closed loop
stages. This allows agent coordination through a generic logical-reasoning-based implementation.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)27

This type of knowledge-centric closed loop is highly self-adaptive to changing intents. If respective agents are
available, the machine-reasoning-based IME will autonomously utilize them by composing a custom, ad hoc workflow
of agents. Moreover, the knowledge-centric closed loop in figure 6.4.1-1 is not specific to any particular management
domain; it is, rather, a template for implementing any IME in any management domain. The creation of an IME for a
particular MD is primarily an implementation task of domain-specific agents that need to be coded for each closed loop
stage.

6.5 Hierarchical coordination between closed loops in resource
constrained environments

The problem "resource locality and scarcity on closed loop automation" (see clause 5.5) notes the problem on having
closed loops acting on resources which spread across the IoT-edge-cloud continuum. The managed resources located on
the extreme-edge may provide scarce compute capabilities. These capabilities are clearly insufficient to instantiate and
operate closed loops, considering the complex and resource-consuming analysis and decision-making activities that
these closed loops are presumed to execute. However, relying only on a remote closed loop induces several problems:
higher risks of disconnection, higher latency, and additional use of bandwidth.

To solve this issue, a hierarchical system can be established. Such system is represented in figure 6.5-1.

Figure 6.5-1: Hierarchical closed loop architecture

Domain Integration Fabric

Cross-Domain Integration Fabric

R
em

ote
location

(Z
S

M
dom

ain
#1)

Domain Integration Fabric

Central

Execution

Local

Monitoring

Local

Analysis

Local

Decision

Local

Execution

Central

Monitoring

Central

Analysis

Central

Decision

Monitored

Resource

CL

Controller

CM

CM

LCM

Local CL Central CL

C
entral location

(Z
S

M
dom

ain
#2)

Resource LCM

services

Domain control

services
CM

LCM

CM CMCM

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)28

As seen, for the management of resources hosted in the remote location (e.g. extreme-edge node), it is proposed to set
up a local closed loop. The scope of this closed loop is limited to fast yet simple analysis and decision-making
activities. The objective of this local closed loop is to provide decent level of management in a timely manner,
leveraging the limited computing capabilities provided by the resources available in this remote location. The local
closed loop will also be able to work autonomously if/when a disconnection from the central closed loop occurs. As for
execution, the closed loop may trigger corresponding management actions towards managed resources making use of
ZSM domain control services (see clause 6.5.6 from ETSI GS ZSM 002 [i.9]). These actions include either
configuration management actions (see clause 6.5.6.2.1 from ETSI GS ZSM 002 [i.9]), or resource lifecycle
management services (see clause 6.5.6.2.2 from ETSI GS ZSM 002 [i.9]) or both.

In parallel, the data produced by this local closed loop can be monitored by a central closed loop. The nature of the data
that the central closed loop chooses to monitor is open and may evolve depending on the needs and the amount of
network bandwidth dedicated to this monitoring. For example, the central closed loop can decide to monitor only the
data produced by the local closed loop's monitoring stage. Likewise, the central closed loop can also decide to monitor
the data produced across all the stages (e.g. monitoring, analysis, decision, execution) of the location closed loop.

From a solution standpoint, different options are plausible:

• Option 1: Using one of the solutions already reported in clause 6.2.2, i.e. coordination of interdependent closed
loops. The solutions can be used as-is, by simply mapping lower and higher closed loops to local and central
closed loops, respectively.

• Option 2: Use a new solution tailored to the specificities of the extreme-edge. The solution description is as
follows: Upon analysis of monitoring data, the central closed loop decides to act upon the managed resources
available in the remote location. Here there exist two plausible flavors:

- Flavor 2A (direct mode): The central closed loop interacts with the remote location directly, i.e. by
consuming the ZSM domain control services exposed by this remote location. This option allows the
central closed loop to access the remote location resources, and to execute configuration and/or lifecycle
management actions on them.

- Flavor 2B (indirect mode): The central closed loop interacts with the remote location indirectly, i.e. via
local closed loop. In this interaction, the central closed loop approaches the local closed loop with either
configuration management actions (e.g. changing the scope of monitoring collector, updating weights for
the AI/ML models used in analysis and decision engines) or lifecycle management actions (e.g.
deploying a new monitoring collector). Both types of actions can target any stage in the local closed
loop, as noted in figure 6.5-1.

In some cases, the actions range of central and local closed loops can overlap, when they try to execute management
actions on the same managed resources. This conflict situation had already been identified and is documented in
clause 8.2.3 of ETSI GS ZSM 009-1 [i.2]. To solve this situation, the following mechanisms can be applied:

• In case of going for option 1, using the coordination mechanisms defined therein.

• In case of going for option 2, avoiding the central closed loop to directly act on managed resources
(flavor 2A), delegating execution to the local closed loop (flavor 2B) instead.

7 Recommendations

7.1 Cognitive closed loops
Cognitive closed loops benefit from applying machine learning concepts in any of its stages making the closed loop
operations more adaptive and self-learning. It is essential to address the extended requirements of cognitive closed loops
and support services and capabilities required to configure and manage the cognitive closed loop.

Recommendation 1:

• Define cognitive closed loop and the services and capabilities that it needs.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)29

Recommendation 2:

• Specify a mechanism to configure cognitive closed loop.

NOTE 1: Examples of capabilities that may be configured are:

1) data requirements for cognitive closed loops;

2) knowledge stored and/or extracted;

3) action-related aspects such as timing, impact, efficiency; and

4) use of multiple analytics components within the cognitive closed loops.

Recommendation 3:

• Specify a mechanism to manage cognitive closed loop.

NOTE 2: Examples to monitor the time required to achieve the expected results post action is triggered, reports on
efficiency, impact, etc.

Recommendation 4:

• Specify escalation or fallback mechanism for cognitive closed loops to handle abnormal conditions.

NOTE 3: Examples of abnormal conditions may include insufficient accumulated knowledge.

7.2 Composition and coordination of interdependent closed
loops

Coordination of interdependent closed loop is essential in achieving reduction in conflict scenarios arising from
multiple closed loops which acts on same or related managed entities. Having external coordination is not sufficient
since these mechanisms assumes the individual closed loops as independent and may not be able to address the
interdependent scenario and due to complexity arising from scaling. As explained in clause 6.3, the challenges in
coordination of interdependent closed loop can be achieved by grouping of these interdependent closed loops with each
group handling the coordination within the group and external coordinator is involved in coordinating the actions from
each of these groups.

Recommendation 1:

• ZSM Closed Loop Automation framework should support mechanisms to group interdependent closed loops
by making use of the attributes defined under clause 6.2.1.

Recommendation 2:

• Specify common mechanisms to exchange information between the interdependent closed loops to address the
requirements highlighted by the scenario under clause 6.2.2.

Recommendation 3:

• Specify mechanisms to coordinate the different stages of execution for different closed loops belonging to the
same group.

Recommendation 4:

• Specify ways to convey instructions with the control flow sent by the authorized consumer and/or exchanged
between the interdependent closed loops to address the requirements highlighted by the scenario under
clause 6.2.4.

7.3 Dynamic composition of closed loops
Dynamic composition of closed loops allows ZSM framework consumers to request for made-to-order closed loop by
combining different closed-loop components from different vendors.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)30

Recommendation 1:

• Specify Closed Loop Controller (CLC) as the entity responsible for dynamic composition and instantiation of
closed loops.

Recommendation 2:

• Specify mechanisms for a Closed Loop Controller (CLC) to expose means by which Closed-Loop
Components are enabled to register capabilities, input/output supported by the closed loop components.

Recommendation 3:

• Specify mechanisms for a Closed Loop Controller (CLC) to allow ZSM framework consumer to request for
"made-to-order" closed loops (M2O-CL) based on the expected inputs and information on the required closed
loop components and stages.

Recommendation 4:

• Specify mechanisms for a Closed Loop Controller (CLC) to validate the request from ZSM framework
consumer and provide feedback on the validity of the request.

Recommendation 5:

• Specify mechanisms for a Closed Loop Controller (CLC) to allow ZSM framework consumer to query
information about made to order closed loop capabilities that are supported by the Closed Loop Controller.

7.4 Intent-based closed loops
Closed loops and intents are two critical automation enablers that should work together to improve the autonomy of
service and network management. Some steps still need to be taken to better specify intent-based closed loops within
the ZSM frameworks, as follows.

Recommendation 1:

• Intents should be considered as a source for the definition and specification of the (composition of) ZSM
closed loop goal(s).

Recommendation 2:

• The ZSM closed loop enablers defined in ETSI GS ZSM 009-1 [i.2] should be leveraged for the realization of
intent management entities (according to definition in ETSI GR ZSM 011 [i.4]) within the ZSM framework.

Recommendation 3:

• Identification of gaps for the combination of intents and closed loops on the existing ZSM 009-1 closed loop
enablers (CL governance and CL coordination) should be done and solutions should be developed for solving
those gaps.

Recommendation 4:

• The use of semantic knowledge representation (e.g. ontology graphs) should be considered within the ZSM
closed loops to facilitate the exchange of data and control between ZSM closed loop stages.

Recommendation 5:

• Specify ways to facilitate the creation of intent-based closed loops, e.g. semantic web technologies such as
RDF and OWL.

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)31

Annex A:
Change History

Date Version Information about changes
September 2019 0.0.1 Early draft: agreement on the skeleton

October 2020 0.1.0
Insertion of contribution ZSM(20)000154r1_ZSM009-3_Advanced_CL_features
Removed Editor's note: Update the figure to reflect agreement on text changes for data
sources

July 2022 0.2.0
0.2.1

Update to clause 5: new sub-clauses
Insertion of contribution ZSM(21)000364_ ZSM009-3_Composition and Coordination of
Interdependent Closed Loops

September 2022 0.3.0

Insertion of contributions
- ZSM(22)000250r3 - ZSM009-3 Sec 5.4 Dynamic Composition of Closed loops
- ZSM(22)000277r2 - ZSM009-3 Sec 6.4 Dynamic Composition of Closed loops
- ZSM(22)000284r2 ZSM009-3 - Intent-based closed loops

Update to Informative references and acronyms

Harmonization of figure and table references

Editorial and style corrections

September 2022 0.3.1 Fixed omission of figure 5.4-1 of ZSM(22)000284r2 ZSM009-3 - Intent-based closed
loops when updating to latest draft

June 2023 0.4.0

Integration of contributions
- ZSM(22)000370r2_ZSM009-
3_Sec_7_2_Composition_and_coordination_of_interdepend
- ZSM(22)000371r1_ZSM009-3_Sec_7_3_Dynamic_composition_of_closed_loops
- ZSM(22)000375_ZSM009-3_Sec_6_3_3_replacing_must
- ZSM(22)000381r3_ZSM009-3_Sec_4_Next-generation_closed-loop_operations
- ZSM(22)000382r1_ZSM009-3_Editorial_changes
- ZSM(22)000383r1_ZSM009-3_Sec_7_1_Cognitive_closed_loops
- ZSM(22)000392r2_ZSM009-3_Section_5_Resource_locality_and_scarcity_on_closed_
- ZSM(22)000393r3_ZSM009-3_Section_6_Add_potential_solution_for_handling_resou
- ZSM(22)000398r2_ZSM009-3_Section_7_4_Recommendations_for_intent-
based_closed
- ZSM(23)000106_ZSM009-3_Changing_clause_5_2_coordination_of_CLs
- ZSM(23)000107_ZSM009-3_Modifying_6_3_1_grouping_interdependent_CLs

Update to Informative references and acronyms

Harmonization of figure and table references

Editorial and style corrections

July 2023 0.4.1

Integration of contribution:
- ZSM(23)000108r4_ZSM009-3_Modifying_6_3_3_Example_workflows

Change work item status to Final draft

July 2023 0.4.2 New draft due to mistake in attachment of v0.4.1 as final draft
v0.4.2 is same as v0.4.1 from content viewpoint

ETSI

ETSI GR ZSM 009-3 V1.1.1 (2023-08)32

History

Document history

V1.1.1 August 2023 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Next-generation closed-loop operations
	5 Problem Statements
	5.1 Cognitive closed loops
	5.2 Composition and coordination of interdependent closed loops
	5.3 Dynamic composition of closed loops
	5.4 Intent-based closed loops
	5.5 Resource locality and scarcity on closed loop automation

	6 Potential solutions
	6.1 Cognitive Closed Loops
	6.1.1 Active measurements
	6.1.2 Self-learning closed loops
	6.1.2.1 Introduction
	6.1.2.2 Evaluation of the efficiency and impact of closed loops
	6.1.2.3 Timing aspects
	6.1.2.4 Self-learning CL operation

	6.2 Composition and Coordination of interdependent Closed Loops
	6.2.1 Grouping interdependent (nested) Closed Loops
	6.2.2 Coordination of interdependent (nested) Closed Loops
	6.2.3 Example Workflows for Coordination of interdependent (nested) Closed-Loops
	6.2.4 Example Workflows for Coordination of interdependent (hierarchical) Closed-Loops

	6.3 Dynamic Composition of Closed Loops
	6.4 Intent-based closed loops
	6.4.1 Intent-driven closed loops
	6.4.2 Knowledge base-centric closed loops

	6.5 Hierarchical coordination between closed loops in resource constrained environments

	7 Recommendations
	7.1 Cognitive closed loops
	7.2 Composition and coordination of interdependent closed loops
	7.3 Dynamic composition of closed loops
	7.4 Intent-based closed loops

	Annex A: Change History
	History

