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Intellectual Property Rights 

Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations 
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be 
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to 
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the 
ETSI Web server (https://ipr.etsi.org/). 

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, 
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not 
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, 
essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its 
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP 
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the 
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association. 

Foreword 
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) Secure AI (SAI). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Introduction 
Artificial Intelligence (AI) and Machine Learning (ML) are fast becoming ubiquitous in almost every sector of society, 
as AI systems are relied upon to maintain our security, prosperity and health. The compromise of AI systems can 
therefore have significant impacts on the way of life of vast numbers of people.  

However, like any information technology system, AI models are vulnerable to compromise, whether by deliberately 
hostile or accidental action. One potential vector to compromise AI systems is through the data used to train and operate 
AI models. If an attacker can introduce incorrect, or incorrectly labelled, data into the model training process, then a 
model's learning process can be disrupted, and it can be made to produce unintended and potentially harmful results.  

This type of attack can be extremely challenging to detect, particularly when, as is increasingly common, the data used 
to develop and train AI models is part of a complex supply chain. Ensuring the provenance and integrity of the data 
supply chain will therefore be a key aspect of ensuring the integrity and performance of critical AI-based systems. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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The present document has investigated existing mechanisms for carrying out this assurance. AI remains a 
fast-developing discipline and no legal, policy or standards frameworks have been found that specifically cover data 
supply chain security. Although many threats can be mitigated by following standard cybersecurity good practice, there 
is value in producing standards and guidance tailored specifically to AI data supply chains. The conclusion to the 
present document sets out a number of general principles for consideration in designing and implementing the data 
supply chain for an AI system. 
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1 Scope 
Data is a critical component in the development of Artificial Intelligence (AI) and Machine Learning (ML) systems. 
Compromising the integrity of data has been demonstrated to be a viable attack vector against such systems (see 
clause 4). The present document summarizes the methods currently used to source data for training AI, along with a 
review of existing initiatives for developing data sharing protocols. It then provides a gap analysis on these methods and 
initiatives to scope possible requirements for standards for ensuring integrity and confidentiality of the shared data, 
information and feedback.  

The present document relates primarily to the security of data, rather than the security of models themselves. It is 
recognized, however, that AI supply chains can be complex and that models can themselves be part of the supply chain, 
generating new data for onward training purposes. Model security is therefore influenced by, and in turn influences, the 
security of the data supply chain. Mitigation and detection methods can be similar for data and models, with poisoning 
of one being detected by analysis of the other.  

The present document focuses on security; however, data integrity is not only a security issue. Techniques for assessing 
and understanding data quality for performance, transparency or ethics purposes are applicable to security assurance 
too. An adversary aim can be to disrupt or degrade the functionality of a model to achieve a destructive effect. The 
adoption of mitigations for security purposes will likely improve performance and transparency, and vice versa. 

The present document does not discuss data theft, which can be considered a traditional cybersecurity problem. The 
focus is instead specifically on data manipulation in, and its effect on, AI/ML systems. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, Bo Li: 
"Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression 
Learning". 2018. 

NOTE: Available at https://arxiv.org/abs/1804.00308. 

[i.2] Panagiota Kiourti, Kacper Wardega, Susmit Jha, Wenchao Li: "TrojDRL Evaluation of Backdoor 
Attacks on Deep Reinforcement Learning". 2020. 

NOTE: Available at https://susmitjha.github.io/papers/AAAI20.pdf. 

[i.3] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin Zhu: "Adversarial Attacks on Stochastic 
Bandits". 2018. 

NOTE: Available at https://papers.nips.cc/paper/2018/file/85f007f8c50dd25f5a45fca73cad64bd-Paper.pdf. 

https://arxiv.org/abs/1804.00308
https://susmitjha.github.io/papers/AAAI20.pdf
https://papers.nips.cc/paper/2018/file/85f007f8c50dd25f5a45fca73cad64bd-Paper.pdf
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[i.4] Roei Schuster, Tal Schuster, Yoav Meri, Vitaly Shmatikov: "Humpty Dumpty: Controlling Word 
Meanings via Corpus Poisoning". 2020. 

NOTE: Available at https://arxiv.org/abs/2001.04935. 

[i.5] Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li, Kui Ren: "Data 
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NOTE: Available at https://www.ijcai.org/proceedings/2019/0674.pdf. 

[i.6] Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, Dawn Song: "Data 
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NOTE: Available at https://arxiv.org/pdf/1810.12881.pdf. 

[i.7] Qiang Yang, Yang Liu, Tianjian Chen, Yongxin Tong: "Federated Machine Learning: Concept 
and Applications, ACM Transactions on Intelligent Systems and Technology". 2019. 

NOTE: Available at https://dl.acm.org/doi/10.1145/3298981. 
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https://papers.nips.cc/paper/6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent.pdf
https://papers.nips.cc/paper/6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent.pdf
http://proceedings.mlr.press/v80/yin18a.html
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://arxiv.org/pdf/2002.05646.pdf
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

artificial intelligence: ability of a system to handle representations, both explicit and implicit, and procedures to 
perform tasks that would be considered intelligent if performed by a human 

availability: property of being accessible and usable on demand by an authorized entity  

confidentiality: assurance that information is accessible only to those authorized to have access 

data injection: introducing malicious samples of data into a training dataset 

data modificiation: tampering with training data to affect the outcome of a model trained on that data 

federated learning: machine learning process where an algorithm is trained collaboratively across multiple devices 
holding local data samples 

integrity: assurance of the accuracy and completeness of information and processing methods 

label modification: tampering with the labels used on training data to affect the classifications produced by a model 
trained on that data 

machine learning: branch of artificial intelligence concerned with algorithms that learn how to perform tasks by 
analysing data, rather than explicitly programmed 

https://arxiv.org/abs/2005.06928
https://storage.googleapis.com/openimages/web/index.html
https://www.usenix.org/system/files/sec20summer_fang_prepub.pdf
https://arxiv.org/abs/2104.09667
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https://www.flickr.com/photos/ddebold/8322992478
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_ECCGuide_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_ECCGuide_e_pdf.pdf
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reinforcement learning: paradigm of machine learning where a policy defining how to act is learned by agents through 
experience to maximize their reward, and agents gain experience by interacting in an environment through state 
transitions 

supervised learning: paradigm of machine learning where all training data is labelled, and a model can be trained to 
predict the output based on a new set of inputs 

unsupervised learning: paradigm of machine learning where the data set is unlabelled, and the model looks for 
structure in the data, including grouping and clustering 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AI Artificial Intelligence 
APPI the Act on the Protection of Personal Information (Japan) 
CCPA California Consumer Privacy Act 
CCTV Closed Circuit TeleVision 
CI/CD Continuous Integration/Continuous Deployment 
CPRA California Privacy Rights Act 
CSP Cloud Storage Provider 
GDPR General Data Protection Regulation (EU) 
ICT Information and Communications Technology 
IEC International Electrotechnical Commission 
ISO International Organization for Standardization 
ML Machine Learning 
MLaaS Machine Learning as a Service 
NIST National Institute of Standards and Technology 
RL Reinforcement Learning 
RONI Reject On Negative Impact 
SAI Securing Artificial Intelligence 

4 The importance of data integrity to AI security 

4.1 General 
Traditionally, cybersecurity involves restricting access to sensitive systems and components. In an AI system, however, 
fundamental operation relies on continued access to large volumes of representative data. The acquisition, processing 
and labelling of datasets is extremely resource-intensive, particularly in the quantities often required to create accurate 
models. Models are frequently pre-trained, or used outside of the organization where they were developed. As users 
increasingly look outside their organizations to access labelled datasets, the attack surface increases, and it becomes 
ever more vital to assure the provenance and integrity of training data throughout its supply chain. 

According to ETSI's Securing Artificial Intelligence Problem Statement (ETSI GR SAI 004 [i.13]), in a poisoning 
attack, an attacker seeks to compromise a model, normally during the training phase, so that the deployed model 
behaves in a way that the attacker desires. This can mean the model failing based on certain tasks or inputs, or the 
model learning a set of behaviours that are desirable for the attacker, but not intended by the model designer. Data 
poisoning can be done during the data acquisition or curation phases (see clause 5 and can be very hard to detect since 
training data sets are typically very large and can come from multiple, distributed sources, see ETSI GR SAI 004 [i.13]. 
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The majority of research into the consequences of data integrity compromise has focussed on supervised learning. 
However, poisoning of Reinforcement Learning (RL) and unsupervised models has also been demonstrated. 

NOTE: Poisoning of upstream models via their training data can lead to misbehaviour of downstream models of a 
different type.  

EXAMPLE 1: The misclassification of a road sign leads to an autonomous vehicle RL agent failing to take the 
correct action. 

EXAMPLE 2: Compromise of a language model, used to preprocess text for a email classifier, can lead to 
malicious emails evading a phishing filter. 

4.2 Consequences of data integrity compromise 
Fundamentally, a data supply chain compromise represents the compromise of any model using that data, and hence any 
system using that model. Different types of supply chain attack are discussed in clause 4.3 and a number of case studies 
showing the potential for damage to an organization in the event of data compromise are given in clause 4.4.  

Broadly speaking, an attack can be generic, resulting in denial or degradation of service; or targeted, aiming to cause a 
model to behave in a specific way [i.19]. Though poisoning attacks typically affect the integrity of data, ETSI 
GR SAI 005 [i.27] notes that they can also be considered attacks on availability, as the aim of an attacker can be to 
increase misclassification to the point of making a system unusable, see ETSI GR SAI 005 [i.27]. 

Alteration or deletetion of data or labels used to develop and train a model would affect the model's performance, 
causing it to become degraded, inoperable or untrustworthy. This type of attack would likely result in operational 
disruption, financial harm or reputational damage to any organization relying on the affected data [i.16]. AI systems are 
in widespread use across a host of different industries and are increasingly used in controlled environments where they 
can be trained, for example, on sensitive military, financial or healthcare data. If a model is affected by such attacks, 
this would have significant real world consequences [i.18]. 

To date, there are few reported examples of specific attacks on the AI data supply chain; however, this does not 
represent evidence that attacks have not taken place. This type of attack is hard to detect, particularly if conducted in a 
targeted way by a competent attacker. The potential consequences of such an attack have been demonstrated, with the 
poisoning of training data being the most likely outcome. Figure 1 below shows an example of targeted poisoning of a 
dataset to cause a model to misclassify. Recent research has investigated the effects of data poisoning attacks on four 
machine learning models, noting substantial impact on the models' performance [i.17]. Targeted data poisoning 
experiments have also demonstrated the ability to cause a model to misclassify based on a very small number of 
poisoned data points and no prior knowledge of the model architecture [i.20]. 

   

NOTE: Original images without trigger symbol taken from the OpenImages dataset [i.44] having a CC BY 
2.0 license. From [i.47] and [i.48] under CC BY 2.0 license 

 
Figure 1: By introducing poisoned training data, an image recognition model can be made to 

misclassify any image featuring a trigger symbol 

The problem is not confined to classification tasks. Compromise of regression models has been demonstrated on 
datasets from health care, loan assessment, and real estate applications [i.1]. Supervised and unsupervised embedding 
generation has shown to be vulnerable to poisoning, with examples demonstrated in text and graph domains [i.4], [i.5] 
and [i.6]. This is particularly significant when considering risks to systems overall, as embeddings are often utilized at 
the data preprocessing stage.  

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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EXAMPLE: Using word embeddings to initialize natural language processing tasks. 

Reinforcement learning (RL) agents can also be manipulated to prefer or eschew particular actions by compromising 
reward or environment data [i.2] and [i.3]. 

The threat level in the AI space appears set to increase. According to a 2019 Gartner® report, by 2022 almost one third 
of cyberattacks will affect AI [i.16], while a Microsoft® survey suggested many organizations remain unclear on how to 
secure machine learning systems [i.14]. Research by Microsoft® highlights data poisoning as the greatest current 
security threat in this space, due to the lack of standard common detection and security measures and the widespread 
dependence on untrusted, often public, datasets as training data [i.14]. 

Due to the reuse of both data and models in the AI ecosystem, it is possible that any compromised data introduced to 
data supply chains can continue to undermine the trustworthiness of AI models for a long time. 

4.3 Methods of compromise 
Though terminology is currently somewhat flexible, three broad strategies have been identified by which an adversary 
could compromise data via a supply chain attack. These require differing levels of access to the data.  

1) In supervised learning, label modification can be used to cause a model to misclassify. 

2) Data injection can be used to introduce adversarial data into a training set, or dilute useful data with noise. 

3) If the actor has full access to training data, data modification can be used to alter data points and influence a 
model's behaviour [i.17] and [i.18]. 

Very recent work also suggests that data reordering (changing the order of batches and individual points within batches 
are passed to a model during training) can also be used to degrade model performance [i.46]. 

Data can be compromised at any point during its lifecycle (see clause 5). The data acquisition stage is particularly 
vulnerable to data injection, while the enrichment stage of the process is most vulnerable to modification. 

Both data injection and data manipulation can be the result of using untrusted or compromised third party data sources, 
the manipulation of sensors by malicious actors, insider threats or breaches in security. Attacks can be targeted, where 
the goal of the attacker is to contaminate the model to misclassify specific examples; or indiscriminate.  

A specific form of targeted attack is backdooring or trojaning, whereby the threat actor: 

4) Embeds a special pattern into a model during the training phase; and 

5) Triggers an unexpected output (e.g. misclassifying, choosing a suboptimal action) by including the designed 
input (this "trigger" pattern) during the inference phase, see ETSI GR SAI 004 [i.13] and [i.23]. 

A backdoor attack can use poisoning as part of the attack, although other methods of backdooring also exist, see ETSI 
GR SAI 004 [i.13]. 

Many of the methods by which an attacker could gain access to a model's training data are not unique to the AI space. 
These would include techniques described by the established MITRE® ATT&CK framework, including exploitation of 
insecure storage of data, the compromise of valid accounts and trusted relationships to access data, and the use of well-
known cyber access vectors such as phishing and compromising vulnerable remote services [i.16]. As such, the 
likelihood of compromise can be reduced by following standard cybersecurity best practices. 

4.4 Case studies and examples 
No published examples have yet been identified where compromise of data supply chains has led to substantial real 
world impact. However, a number of case studies highlight the potential impact of an AI model being poisoned, 
regardless of the vector by which poisoned data was introduced. Similar attacks could be enabled by supply chain 
compromise. These include: 

• Research from 2008 identified that poisoning training data could result in the degradation of the performance 
of email spam filters to the point that they became unusable [i.28]. The ongoing competition between the 
development of spam filters and techniques to subvert them has been termed an ML 'arms race' [i.29]. 
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• One well-publicized incident involved a chatbot created to engage with 18-to-24 year olds on social media. 
The bot used interactions with users as training data and within 24 hours of deployment, a coordinated 
campaign of data poisoning had resulted in messages becoming increasingly offensive. The bot was quickly 
withdrawn [i.16]. 

• Following an increase in reports of a certain ransomware family to a sample scanning website, investigations 
indicated that a large number of very similar samples had been submitted to the site with the apparent intention 
of classifying them as malicious, even though most of the files were manipulated in such a way that they 
would not run [i.16]. 

• In an experimental context, researchers introduced malicious samples into a medical dataset used to prescribe 
dosage of an anticoagulant drug. Even a relatively small number of rogue samples caused a large change in 
dosage for more than half of patients [i.22]. 

In more general terms, recent research has highlighted numerous instances of compromise or misdirection of machine 
learning systems, with several major internet companes among those who have seen systems affected [i.16]. 

4.5 Summary 
Data integrity is critical to the performance and reliability of AI systems. Compromising this integrity can have 
substantial consequences for any model trained on the data concerned. AI models are now used across a wide range of 
industries and environments, many of them sensitive, and a successful attack on the data supply chain could have 
significant real world consequences. These would likely include operational disruption, financial harm and reputational 
damage for any organization affected. 

5 Data supply chains 

5.1 General 
The lifecycle of data used in AI applications has a number of stages, as illustrated in Figure 2 and described in more 
detail in ETSI SAI GR 004 [i.13]. Typically, once data has been acquired it will require curation, the level of which will 
depend on the type of machine learning being used (such as being labelled for supervised learning). Residing in an 
appropriate location, the data will then be used to train and validate a model prior to deployment. Each stage of the 
lifecycle will introduce different aspects of risk.  

The data supply chain is not simple, single or linear in many scenarios. Recent research into data supply chains in the 
UK highlighted notable differences in the way organizations manage different elements of the supply chain [i.11]. 
There were examples of data being generated from both internal and external sources. Data was commonly stored in 
cloud services, though on-premises storage was not unusual. Most data processing was done in-house, however there 
were examples of organizations outsourcing processing to customers or third parties. Finally, the use of data with pre-
trained models was common, though there were also numerous examples of organizations creating their own models. 
Use of a pre-trained model will introduce separate data and model supply chains that should be considered in any risk 
assessment.  

A practical pipeline is often cyclical, as shown by the right-hand side of Figure 2. Once initially deployed, a model is 
likely to be retrained and redeployed, whether periodically or on an ongoing basis, to ensure it remains performant. This 
will likely involve incorporating new training or fine-tuning data, the supply chain security of which should be 
considered alongside that of the original training data.  
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Figure 2: The life cycle of training data in an AI system (ETSI GR SAI 004 [i.13]) 

5.2 Sources of data 
In an AI system, data can be obtained from a multitude of sources, including sensors (such as CCTV cameras, 
smartphones or medical devices) and digital assets (such as data from trading platforms, document extracts or log files). 
Data can be in many different forms including text, images, video and audio, and can be structured or unstructured 
(ETSI GR SAI 004 [i.13]). Data can be openly available, for example on the internet, or closed source, either 
commercially acquired or private. It can be purposely generated for a specific activity, or it may have been generated 
previously for a different purpose. Data can be captured from the real world, or synthetic, that is artificially generated, 
potentially by another model. 

Any of these categories of data can be sourced from within an organization or be provided by a customer or third party 
supplier. Training data sets are typically very large, and often come from multiple distributed sources, making data set 
poisoning very difficult to detect (ETSI GR SAI 004 [i.13]). Often, data which has been acquired, labelled and 
processed by a third party will be made openly available with its annotations (such as data labels) as a complete dataset.  

No category or source of data is completely immune to the types of attack detailed in the present document, and risks 
should be assessed at all stages of the data lifecycle including in transmission and storage, see ETSI GR SAI 004 [i.13]. 
Methods for understanding and mitigating threats are given in clause 6. Poisoning attacks can be a particular risk where 
frequent training data updates are needed to keep a model performant, see ETSI GR SAI 005 [i.27]. 

5.3 Data curation 
The curation, or processing, stage typically includes a number of aggregation and transformation steps, including data 
storage, pre-processing, cleaning, enrichment and labelling. It can include integrating data from multiple sources and 
formats, identifying missing components of the data, removing errors and sources of noise, conversion of data into new 
formats, labelling the data, data augmentation using real and synthetic data, or scaling the data set using data synthesis 
approaches, see ETSI GR SAI 004 [i.13]. 

Data can be stored in a number of different ways, all of which carry some level of risk. It is now standard practice for 
many organizations to rely on a Cloud Storage Provider (CSP) to store large volumes of data. When an organization 
chooses to use a CSP, they lose some visibility and control over how and where the storage solution operates and the 
number of networks over which data travels increases, increasing the potential area for attack. However, the security 
provided is typically higher than would be reasonably expected in a bespoke storage solution due to the largest CSPs 
having placed a significant focus on maintaining a high level of security for their services [i.11]. 
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After data has been acquired and stored, data processing procedures are carried out to prepare the data for use. This 
necessitates access to and manipulation of raw data (and labels, where they are part of the model) and hence provides 
the greatest opportunity for harmful changes to be introduced, whether by deliberate data poisoning or human error. In 
some use cases, elements of this processing have been outsourced, which introduces risk, particularly if sub-contracted 
organizations are handling data for multiple companies [i.11]. To protect the integrity of the data supply chain, users 
should ensure the security of their data processing environment when considering the risks associated with data 
processing and labelling, whether this is carried out internally or externally [i.11].

 

5.4 Training and testing 
It is in the training phase of the machine learning lifecycle that the baseline behaviour of the system is established and 
and where an attack on data will have a tangible effect. This stage consists of running the model iteratively with a 
baseline data set for which the desired output is known. With each iteration, the model parameters are adjusted to 
achieve more accurate performance, and this is repeated until an acceptable level of accuracy is achieved. It is critical 
that the training data set is of high quality and trustworthiness, as inaccuracies or inconsistencies in the data can lead to 
a model which behaves incorrectly, see ETSI GR SAI 004 [i.13]. 

Training typically includes a testing or validation stage where a retained portion of the training data is used to check the 
performance of the model and its parameters, see ETSI GR SAI 004 [i.13]. The security of this subset of data is as 
important as the that of the larger training set from which it is drawn. 

5.5 Deployment 
Once a model is trained and validated, it is deployed into an operational system. The behaviour of the model will be 
monitored once deployed, which will feed back into earlier stages of the life cycle to allow the model to be recalibrated 
and retrained as needed. This creates a further data source in the model's data supply chain that also needs to be 
considered as part of the data supply chain. 

5.6 Data exchange 
Each exchange of data or models represents an opportunity for loss of data integrity. Mechanisms for reducing or 
assuring the exchange of data and models are discussed in clause 6. 

5.7 Summary 
Data used for training AI systems passes through a number of different stages in its supply chain, all of which introduce 
different elements of risk: data can be obtained or generated from a wide range of sources, many of which are unlikely 
to be controlled by the organization acquiring it. Following acquisition, data will typically undergo a process of 
aggregation, preparation, labelling and validation before operational use. Any of these stages can be carried out by a 
third party supplier. Data can also be shared, or reused in applications for which it was not initially collected. 

There is no single data supply chain process which will be appropriate for all circumstances. However, the integrity and 
security of data should be considered when designing and implementing methods of obtaining, storing and processing 
data.  

6 Mechanisms to preserve integrity 

6.1 Standard cybersecurity practices 

6.1.1 Introduction 

Several of the threats to the AI data supply chain are common to more traditional cybersecurity domains. As such, 
established best practice should be followed to mitigate risk. Details of such best practice are given in this clause. 
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6.1.2 Cybersecurity hygiene 

Integrating traditional cybersecurity into all the steps of the AI lifecycle is very important, as missing a traditional 
vulnerability can jeopardize the security of the whole AI system [i.31]. A full exploration of standard cybersecurity best 
practice is outside the scope of the present document, however the following examples are illustrative: 

• Phishing attacks are a common attack vector for malicious actors seeking to gain credentials or access to a 
system. Good training and employee awareness remain the best defence against this kind of attack. 

• System patch levels should be kept updated to protect systems against exploitation of known vulnerabilities. 

• Any keys and passwords used to access data should be secured. Weak passwords and the reuse of 
compromised passwords are common enterprise security vulnerabilities and apply to both cloud and local 
storage. A robust password policy and multi-factor authentication should be in place. 

• Strong access controls should be in place, applying the principle of least privilege. These stand alongside 
limits to the number of queries allowed to be made against a model in a period of time. 

• Any organization using cloud storage should understand its responsibilities and the limits of what is provided 
by its CSP. This is particularly relevant where products move from development into critical operations, and 
may have inherited risk from the previous research phases.  

• A good CI/CD (continuous integration/continuous deployment) pipeline can improve the security of a resultant 
system, however, tools used in the pipeline should be updated regularly and access to repositories should be 
monitored [i.11]. 

• Following deployment of a service, auditing and logging enables the detection of possible anomalies. In an AI 
context, this could include a representation of the inputs to the ML model. Though significant research has 
been conducted on mapping established software security practices to AI environments, these practices remain 
less developed in the AI domain [i.14]. 

• A cyber incident response plan should be in place and audit processes should be established in order to support 
analysis of and learning from any security incidents that do take place [i.31].  

The security and assurance of environments in which datasets are stored and processed is crucial to maintain the 
security of the data supply chain. Data manipulation represents a higher security risk to an ML system compared to a 
traditional information system, as described in clause 4. 

6.1.3 Supply chain security 

In addition to the broad cyber hygiene principles above, system owners and users should also apply supply chain 
security principles to data and models brought in from external sources. These include: 

• Understanding the risks associated with the supply chain, particularly for high-value components such as 
datasets. This includes understanding the security posture of the suppliers. 

• Setting minimum security standards for the supply chain and communicating these to the suppliers. 

• Building data and model security considerations into the contracting processes.  

• Adopting a view of supply chain security as a continuous process. 

• Using additional security (for example cryptographic protection of data) to protect the most critical functions.  

Examples of existing guidance are given in [i.24], [i.25] and [i.31]. 

6.2 Policies and legal frameworks 
There are few, if any, legal instruments specifically concerning the security of data in the AI supply chain. Many 
existing data handling regulations are primarily concerned with the content or nature of data, not its end use. The 
majority of legislation focuses on privacy, and a full exploration of privacy data legislation is not in scope for the 
present document. Nevertheless, a brief review of existing frameworks is given here. 
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The 'purpose limitation' principle of the EU General Data Protection Regulations (GDPR) requires companies to limit 
their use of personal information to that which is necessary for specific, explicit, purposes, and transparency and 
traceability of data is a recommendation of the European Commission's Ethics guidelines for trustworthy AI [i.12]. If 
GDPR encourages the development and adoption of more transparent AI models, this is likely to have a positive impact 
on the security of the models. Such models would be easier to inspect and validate, to look for indications that they have 
been corrupted [i.30]. More generally, GDPR sets out requirements relating to security, but is not prescriptive about 
how they are met, leaving contractual parties responsible for understanding and complying with the requirements and 
ensuring organizations in their supply chains do the same [i.39]. GDPR has extra-territorial effect which means that 
organizations outside of EU member states are subject to GDPR when processing personal data on subjects who are in 
the EU.  

There is no single relevant legal framework in the US, with a large number of federal and state regulations that address 
issues of privacy and data security. The EU-US Privacy Shield, which regulated the commercial exchange of personal 
data between the EU and the United States, was struck down by the European Court of Justice in June 2020 [i.37]. The 
European Commission and US Department of Commerce have begun discussions on an enhanced Privacy Shield and 
currently US companies are required to sign non-negotiable contractual clauses in order to operate with EU citizens' 
data [i.26]. Though it does not correspond exactly to GDPR, the 2018 California Consumer Privacy Act (CCPA) 
provides broader consumer rights than any other US state or federal privacy law and it will be supplemented by a new 
California Privacy Rights Act (CPRA) which will come into force at the beginning of 2023 [i.32]and [i.33]. To date, 
CCPA is the most significant data protection legislation passed in the US. It remains to be seen to what extent other 
states or the federal government will follow [i.33]. 

Other countries have similar legislation. In the UK the relevant regulations are the Data Protection Act 2018 and the 
continuing UK GDPR (based on that of the EU). The Russian Federal Law On Personal Data contains similar 
provisions to those of the GDPR. It does not contain specific security obligations other than a general requirement to 
implement appropriate technical and organizational measures to protect personal data [i.34]. Recent developments in 
Russia have focused mainly on localization: legislation has not yet kept pace with rapid technological change and there 
remain considerable grey areas without adequate legislation [i.40]. 

In Japan, the most relevant law appears to be the Act on the Protection of Personal Information (APPI), which is 
accompanied by guidance providing specific requirements for control measures to prevent unauthorised disclosure or 
loss of personal information. This covers systemic, physical and technical protections [i.36]. Similarly, the Australian 
government has published a guide to securing personal information covering governance, physical security and culture, 
as well as more traditional ICT security, alongside its Privacy Act [i.38]. 

China's data protection laws are in a period of change, with a range of new measures introduced in the last five years 
and further legislation on cybersecurity and information protection expected to be enacted during the current five-year 
plan, which runs until March 2023. Some Chinese laws in the information security space have been written to be 
broadly applicable [i.35]. These laws would be unlikely to explicity refer to ML data supply chain security and expert 
guidance would likely be required to understand their full implications.  

Though a full examination is out of scope for the present document, it is possible that the right to erasure, and to restrict 
the processing of personal data enshrined in some current legislation, could potentially create vectors for malicious 
actors to invalidate or disrupt the development of the AI data supply chain. If multiple subjects choose to exercise their 
right to erasure from a dataset, this could impact the validity of any model trained on this now-erased data.  

6.3 Standards 
In general terms, the establishment of AI standards faces a number of challenges. Constantly changing technologies 
make it difficult to generate consensus on elements of standardization, and overlapping domain boundaries between AI 
fields make it difficult to establish the scope and interdependence of proposed standards. Furthermore, standards on 
security and ethics can lag behind technological development [i.15]. 

Nevertheless, a number of international bodies have published standards that relate to some aspect of AI security. 
ISO/IEC JTC 1 (the Joint Technical Committee of the International Organization for Standardization and the 
International Electrotechnical Commission) has subcommittees that work on a range of aspects of information 
technology and data security and has been producing work in this area since 2018, when a subcommittee to carry out AI 
standardization work was created. This subcommittee published a technical report on trustworthiness in AI in mid-2020. 
The International Telecommunications Union has also carried out elements of AI standards research [i.15]. Work 
produced to date, however, does not relate specifially to issues of AI data supply chain security. 
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In the UK, there are a number of sector specific industry standards on the handling of data, which provide guidance that 
could be more widely applied to the protection of data supply chains. Most standards with a strong focus on security 
provide a reasonable level of protection against malicious actors, both in the general sense and within the context of AI. 
These standards provide a checklist for organizations to follow to ensure they achieve a minimum level of security. 
There are common themes across the standards, which are all common good practice and are not unique to AI, but 
which can provide value in the context of AI systems.  

The United States, China, Japan and the European Union have all issued documents attaching importance to the task of 
AI standardization. NIST in the United States has conducted research into AI security standards, while in China the 
National Information Technology Standardization Technical Committee has carried out work in several associated 
fields [i.15]. 

6.4 Technologies 

6.4.1 Introduction 

A range of technologies, both existing and newly-developed, can help mitigate risks associated with different parts of 
the data supply chain. Some, such as cryptographic techniques, prevent datasets from being compromised, while others 
attempt to prevent compromised data from affecting model performance. A number of these technologies are described 
in this clause. 

6.4.2 Federated learning 

Federated learning allows models to be trained on large amounts of data while limiting the exposure or movement of 
raw data, and can hence be seen as a special means of data exchange [i.7]. Although not free of security threats, the 
approach has been shown to reduce the effectiveness of a data poisoning attacks in some cases [i.45]. It allows the 
introduction of more and more varied training data, which helps to increase the robustness of a model, and reduces the 
control an attacker has over the dataset they wish to poison. 

A brief description of federated learning is given here. With a shared initial model configuration including model 
parameters and hyper-parameters, each data owner locally performs a training process on a self-owned training dataset 
and then provides locally-computed parameter updates to a central server. The shared model is updated by the central 
server through aggregating parameter updates. The updated model is then distributed to all data owners. The shared 
model is converged by the central server through iteratively aggregating parameter updates. Because only model 
parameters are shared, federated learning has communication-efficiency in terms of bandwidth and a naïve data privacy 
by keeping training datasets local. However, federated learning can need more communication rounds before the 
training process converges, because training datasets among data owners are mostly not independent or identically 
distributed. 

 

Figure 3 Multiple data owners jointly train a shared model sharing parameter updates 
rather than raw data 
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While the risk of a general degradation attack can be mitigated, federated learning faces specific security threats 
introduced by a broader attack surface from data owners and interactions between the central server and data owners. 
Assessing the supply chain risks is much more difficult, giving much greater opportunity for a malicious data owner to 
introduce poisoned examples [i.8]. Manipulation of local and/or shared model parameters can result in model poisoning 
if data owners and/or the central server are compromised [i.45] and the sharing of model parameters can reveal 
information about the corresponding dataset and compromising system confidentiality (see ETSI GR SAI 004 [i.13]). 
Mitigations are available in some cases however, with some assumptions [i.9], [i.10] and [i.45] (see also clause 6.4.4 
and ETSI GR SAI 005 [i.27]). 

6.4.3 Cryptographic mechanisms 

The standard way for ensuring integrity of data is to apply cryptographic hash functions to the data and store the 
resulting hash values. The hash values are then signed using a digital signature algorithm. This protection allows 
proving and verifying the correctness and integrity of data: first, the proving party provides the data, their hash values 
and the digital signature to the verifying party. The verifying party then checks the correctness of the digital signature, 
which will not match if the signed values have been modified. If the signature is valid, the verifying party applies the 
hash function to the data and compares the results to the signed hash values. If the data have been tampered with, the 
signed values and the newly computed ones will not match. 

If cryptographic hash functions are used for integrity protection, the hash values are signed using digital signatures. 
Cryptographic algorithms from [i.41] can be used and can be selected according to the desired time-frame for the 
security guarantees. Guidelines for secure implementation of the algorithms exist, such as [i.42] and [i.49]. The 
authenticity of the signatures can, for instance, be verified by directly checking the correlation of alleged owner and 
public key or, on a larger scale, using a public key infrastructure involving a trusted third party as a root anchor. 

The data that is protected using the cryptographic mechanisms can be chosen according to the security requirements and 
attacker model. To preserve the integrity of data at a certain step of the data supply chain, cryptographic protection can 
be applied to all relevant information at that step and then stored. This allows furnishing the information upon request 
and verifying its integrity later on. 

To preserve the integrity of the complete data supply chain, at least the following should be integrity-protected with an 
appropriate cryptographic mechanism, as defined above: 

• Data acquisition: raw data (sensor output or from other sources). 

• Data preprocessing: exact information on preprocessing techniques used (regular transformations, 
augmentation, sanitisation, etc.). 

• Model training: information on training procedure: 

- Architecture. 

- ML algorithm, hyper-parameters (a justification of design decisions can also be added for increasing 
transparency). 

- Pseudorandom seeds in ML algorithm. 

- Parameter values (initial, final; intermediate values can also be added). 

• Testing: Output of training/testing. 

Verifying the integrity of the complete supply chain using the cryptographically protected information essentially 
amounts to performing the whole machine learning process again (possibly taking some shortcuts). This can be very 
time-consuming and can require significant resources in terms of computing power. For this reason, it may be sufficient 
to verify the integrity of data only during some intermediate steps, e. g. one can check the correctness of some iterations 
of the training procedure using the optional intermediate parameter values, if available. However, in this case a strong 
attacker can bypass the integrity protection with high probability and, therefore, a verification of the complete supply 
chain may be used for high-risk applications. 
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To reduce the storage space and in particular the computational effort used in applying the cryptographic protection and 
checking it, the procedures can be implemented in an efficient way, while at the same time keeping the security 
guarantees. A straightforward approach is to use hash trees [i.43] for combining many individual hash values, and to 
only digitally sign the root hashes of the hash trees. Hash trees reduce storage space and allow verifying the integrity of 
individual or many data points in an efficient way. The exact structure of the hash tree (such as the number of child 
nodes at different levels) can be chosen depending on the required trade-off between storage space, computational effort 
and, if applicable, logical structure of data (the latter may facilitate debugging). 

6.4.4 Dataset and model analysis 

Development of methods to analyse datasets and models to detect and mitigate malicious manipulation is an area of 
active research. A fuller exploration of using dataset analysis for mitigation against attacks is provided in ETSI 
GR SAI 005 [i.27]. 

In general terms, mitigations against supply chain attack can be considered as falling into two classes: 

1) In the first class, model developers attempt to mitigate the effect of poisoned data before it can impact a 
model. 

2) In the second, a model or data is assumed to be poisoned already, and steps are taken to reduce any resulting 
damage. 

Recent guidance published by Microsoft® recommends that organizations using AI models assume that both data and 
any data provider are compromised and consider their security posture on that basis [i.23]. Users should (where 
possible, noting that this is an area of active research) have in place procedures to assess and mitigate any data 
compromise. 

To be effective, poisoned data points lie outside of typical expected inputs; otherwise, they have limited impact [i.18] 
and [i.19]. As such, one of the main approaches in the first class is to identify potentially poisoned samples and exclude 
them from the training set. Two example techniques include outlier sanitisation, where a model is trained to exclude 
data points that are significantly different from ground truth training data; and reject on negative impact (RONI), where 
training inputs are rejected should they have a significant negative impact on the overall accuracy of the model (see 
ETSI GR SAI 005 [i.27] for further detail). Outlier sanitisation is a more straightforward approach to implement, 
however it is susceptible to underfitting and to attacks that deliberately move its decision boundary over a period of 
time [i.17]. A related approach looks at data provenance: segmenting data by source, comparing data between segments 
and discarding all data from sources corresponding to anomalous segments. 

In the second class of mitigations, techniques including feature squeezing and de-noising of data are used as 
countermeasures against adversarial attacks. These would not prevent attempts to poison data, but can reduce their 
impact as an attacker will have less knowledge of how the mitigations will affect their poisoned input, see ETSI 
GR SAI 005 [i.27]. Deliberately including properly classified adversarial examples in a dataset can also help reduce the 
impact of data poisoning, whether resulting from a supply chain or other type of attack [i.18] and [i.21]. Frequent 
classifier retraining with new data will reduce the risk of being affected by any one poisoned dataset, although this 
increases the potential attack surface overall [i.19]. 

6.5 Analysis 
No legal, policy or standards frameworks have been found to cover data supply chain security specifically. Existing 
legal frameworks are concerned primarily with privacy of personal data, and while standards and guidance bodies are 
increasingly recognizing the importance of AI Security, the problem is generally considered in a wider software security 
context. This is not necessarily a bad thing: as described in clause 6.1, many of the threats to data supply chains can be 
mitigated by following standard cybersecurity good practice. 

There is likely value, however, in standards and/or guidance tailored specifically to data supply chains in AI. Such 
guidance would encourage the appropriate assessment of the risks associated with data, models, and the roles both play 
in a system and its supply chain, alongside traditional software and hardware components. 
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Any standards or guidance on the topic may recommend the use of specific technologies or approaches to defend data 
supply chains. However, the development of such techniques is ongoing, fast-moving, and often requires a significant 
understanding of practical AI. Due to these unsuitable properties, inclusion of specific technologies or mitigation 
approaches may not be included in such standards or guidance. However, a number of technology-agnostic principles 
should be recommended in such standards or guidance, for example: 

• Hash checks. Existing cryptographic mechanisms can be used for protecting the integrity of data in an 
efficient way. For verification of data integrity there is a trade-off between efficiency and security, which 
should be balanced according to the risk level of the application. 

• Fine-tuning and/or regular retraining of models with locally-verified or otherwise trusted data, where 
possible. 

• Following standard cybersecurity good practice, including following the principle of least privilege when 
accessing data. 

• Logging at all stages of processing and deployment, including collecting model telemetry. 

• Following standard cybersecurity supply chain guidance. Data, models and the roles and risks associated 
with them can be understood and assessed in the same way as any other component of a system. 
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