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Foreword

This Group Report (GR) has been produced by ETSI Industry Specification Group (I1SG) Permissioned Distributed
Ledger (PDL).

Modal verbs terminology

In the present document “should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ET S| Drafting Rules (Verbal forms for the expression of provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

Executive summary

The present document explores the applications of Artificial Intelligence (Al) in Permissioned Distributed Ledger
(PDL) systems. The present document covers several key areas where Al can enhance PDL functionality, security, and
performance:

1) Enhanced Security: Al-powered anomaly detection and threat identification in real-time, as well asimproved
fraud detection through machine learning algorithms.

2) Smart Contract Optimization: Al-driven code analysis, performance optimization, security enhancement,
and automated testing and verification of smart contracts.

3) Improved Consensus M echanisms. Al-enhanced algorithms for faster and more efficient agreement, and
adaptive mechanisms based on network conditions.

4) Data Analyticsand Insights: Al analysis of large transaction volumes and predictive analytics for business
intelligence.
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5)  Privacy-Preserving Techniques: Advanced Al-driven methods for privacy-preserving computation,
including homomorphic encryption, secure multi-party computation, federated learning, differential privacy,
and generative adversarial networks for synthetic data generation.

6) Network Optimization: Al-based performance optimization, resource allocation, predictive maintenance,
topology optimization, intelligent data sharding, enhanced network security, energy-efficient operations,
congestion management, and adaptive protocol optimization.

7)  Governance and Compliance: Al assistance in enforcing rules, compliance checks, automated auditing and
reporting, enhanced governance participation, regulatory compliance monitoring, and intelligent dispute
resolution.

8) Identity Management: Al-enhanced verification processes, behavioural biometrics for continuous
authentication, federated identity management, adaptive access control, identity recovery and remediation,
decentralized identity verification, and cross-chain identity management.

9) Interoperability: Al-facilitated cross-chain communication and smart routing of transactions between ledgers.

10) Scalability Solutions: Al-driven development of efficient scaling solutions and dynamic sharding based on
network conditions.

The present document provides detailed explanations, examples, and references for each of these areas, highlighting the
potential of Al to significantly improve PDL systems across multiple dimensions. It serves as a comprehensive guide
for PDL developers, researchers, and stakeholders looking to leverage Al technologiesin their distributed ledger
implementations.

Introduction

Permissioned Distributed Ledger (PDL) systems face significant challenges in maintaining optimal performance,
security, and scalability asthey grow in complexity and adoption.

These challenges include:
1)  Security vulnerabilities and evolving cyber threats.
2) Inefficient smart contract development and deployment processes.
3) Slow and inflexible consensus mechanisms.
4)  Difficulty in extracting meaningful insights from large volumes of transaction data.
5)  Privacy concernsin data processing and analysis.
6) Suboptimal network performance and resource allocation.
7)  Inadequate governance and compliance mechanisms.
8) Inefficient identity management processes.
9) Limited interoperability between different ledger systems.
10) Scalability issues hindering widespread adoption.

These challenges can result in reduced trust, increased operational costs, limited functionality, and potential security
breachesin PDL systems. Thereis a pressing need for innovative solutions that can address these issues
comprehensively while maintaining the decentralized and secure nature of distributed ledger technology.

The present document explores the applications of Artificia Intelligence (Al) in Permissioned Distributed

Ledger (PDL) systemsin a manner that may assist overcoming many of the challenges described above. As PDL
technologies continue to evolve and gain adoption across various industries, the integration of Al presents significant
opportunities to enhance their functionality, security, and performance.
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The present document covers several key areas where Al can be leveraged to improve PDL systems:

1)
2)
3)
4)

5)
6)
7)
8)
9)

Enhanced Security: Al-powered anomaly detection, threat identification, and fraud detection.
Smart Contract Optimization: Al-driven code analysis, performance optimization, and automated testing.
Improved Consensus M echanisms. Al-enhanced algorithms for faster and more efficient agreement.

Data Analyticsand Insights: Al analysis of transaction data and predictive analytics for business
intelligence.

Privacy-Preserving Techniques: Advanced Al-driven methods for privacy-preserving computation.
Network Optimization: Al-based performance optimization, resource allocation, and predictive maintenance.
Governance and Compliance: Al assistance in enforcing rules, compliance checks, and automated auditing.

I dentity M anagement: Al-enhanced verification processes and continuous authentication.

I nter oper ability: Al-facilitated cross-chain communication and transaction routing.

10) Scalability Solutions: Al-driven development of efficient scaling solutions and dynamic sharding.

Each clause provides an overview of how Al can be applied in these areas, along with specific examples, potential
benefits, and references to recent research and developments. The present document aims to serve as a comprehensive
guide for PDL developers, researchers, and stakeholders looking to leverage Al technologiesin their distributed ledger
implementations.

Asboth Al and PDL technologies are rapidly evolving fields, the present document focuses on cutting-edge approaches
and recent advancements, with most references dated 2020 or later. The present document also includes
recommendations for implementation and highlights areas for further research and development. By addressing the
challenges outlined in the problem statement through Al-driven solutions, the present document aims to contribute to
the advancement of PDL systems, making them more secure, efficient, and adaptabl e to the needs of various industries
and applications.
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1

1.1

Scope

Description

The present document specifies the application of Artificial Intelligence (Al) techniques to Permissioned Distributed
Ledger (PDL) systems. The present document focuses on the theoretical foundations, practical applications, and
potential benefits of integrating Al technologiesinto PDL systems.

1.2

In scope

The focus of the functionalities in the present document are PDL systems. So, al the topics listed here should be
understood with a focus on the specific case of PDL systems:

1)

2)

3)
4)
5)
6)
7)
8)
9)
10)

1.3

Enhanced security measures using Al, including:

- Real-time anomaly detection and threat identification.
- Fraud detection through machine learning algorithms.
Smart contract optimization through Al-driven:

- Code analysis and optimization.

- Automated testing and verification.

Improved consensus mechanisms using Al.

Data analytics and insights derived from Al analysis of transaction data.
Privacy-preserving techniques enabled by Al.

Al-based network optimization.

Al-assisted governance and compliance.

Al-enhanced identity management.

Al-facilitated interoperability between different ledgers.
Al-based scalability solutions.

Not in scope of the present document

The use of Al for these listed purposesin other systemsin general is not the focus of the present document:

1)
2)
3)
4)
5)
6)
7)

Detailed implementation guidelines for specific Al algorithms.
Hardware specifications for Al integration in PDL systems.
Regulatory and legal frameworks governing Al usein PDLs.
Economic and business models for Al-enhanced PDL systems.
Training methodologies for Al modelsin PDL contexts.
Comparative analysis of different PDL platforms.

Non-Al based improvements to PDL systems.
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2

2.1

References

Normative references

Normative references are not applicable in the present document.

2.2

Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE:

While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document, but they assist the
user with regard to a particular subject area.
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3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:
adaptive access control: dynamic adjustment of access permissions based on user behaviour and context

adaptive protocol optimization: automatic adjustment of network protocols to optimize performance based on
changing conditions

Al assisted automated auditing and reporting: use of Al to automate the process of auditing and generating
compliance reports

Al assisted gover nance rules and compliance checks enforcement: use of Al to enforce governance rules and ensure
compliancein PDL systems

Al-driven network topology optimization: use of Al to optimize the structure and connections within a network for
improved performance

Al-enhanced gover nance participation: improvement of stakeholder participation in governance processes through
Al-powered tools and analytics

Al-enhanced network security: use of Al to enhance network security measures and detect potential threats

Al -facilitated cross-chain communication and data exchange: use of Al to enable and improve communication and
data sharing between different blockchain networks

Al-powered anomaly detection and threat identification in real-time: use of Al to identify unusual patterns or
potential security threatsin real-time

Al-power ed network congestion management: use of Al to predict and manage network congestion for improved
performance

automated testing and verification of smart contracts: use of Al to automate the process of testing and verifying
smart contracts for errors or vulnerabilities

behavioural biometrics: use of biological known traitsto predict behaviour
NOTE: Biometric identification is subject to laws and regulation in certain regions.
code generation and refactoring: use of Al to automatically generate or improve code for smart contracts

continuous integration and deployment: integration of Al into the process of continuously testing and deploying
smart contract updates

Continual Learning: ability of amodel or system to learn from a stream of data sequentially, adapting to new
information while retaining previously learned knowledge

NOTE: It differsto Continuous Learning in the context of Machine Learning. It is particularly relevant in the context
of machine learning and artificial intelligence, where the goal is to mitigate catastrophic forgetting and enable
models to learn continuously from new data without forgetting previous tasks.

Continuous L ear ning: ongoing process of acquiring new knowledge and skills over time, often in a professional or
educational setting
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NOTE: It emphasizes the continuous expansion of knowledge and skill sets, which can be formal or informal,
structured or unstructured.
cross-chain identity management: management of digital identities across multiple blockchain networks using Al

decentralized identity verification: use of Al to verify identitiesin a decentralized manner without relying on a central
authority

developing mor e efficient scaling solutions using Al use of Al to create improved methods for scaling PDL systems

differential privacy: use of amathematically rigorous framework for releasing statistical information about datasets
while protecting the privacy of individual data subjects

NOTE: Statistical information is normalized to alleviate any personal information.

differential privacy in machine learning: application of differential privacy techniques to machine learning modelsto
protect individual privacy

differentially private follow theregularized leader: training model with Differential Privacy (DP) using mini-batch
gradients

NOTE 1: The existing state-of-the-art, Differentially Private Stochastic Gradient Descent (DP-SGD), requires
privacy amplification by sampling or shuffling to obtain the best privacy/accuracy/computation
trade-offs.

NOTE 2: Thisisacode for "Practical and Private (Deep) Learning without Sampling or Shuffling” [i.122]. The
paper proposed Differentially Private Follow-the-Regularized-Leader (DP-FTRL), a differentially private
algorithm that does not rely on shuffling or subsampling as in Differentially Private Stochastic Gradient
Descent (DP-SGD) but achieves comparable (or even better) utility.

differentially private stochastic gradient descent: use of a popular training method with differential privacy

NOTE: It providesaformal privacy guarantee that prevents adversaries from extracting information about
individua training points. DP-SGD allows a moments accountant technique to track privacy leakage.

dynamic sharding based on network traffic and usage patterns: use of Al to dynamically adjust sharding strategies
based on network conditions

ener gy-efficient network operations: utilization of Al to optimize network operations for reduced energy consumption

enhanced fraud detection through machine lear ning algorithms: use of machine learning to improve the detection
of fraudulent activities

federated identity management: management of digital identities across multiple organizations or systems using
federated learning techniques

federated lear ning: machine learning technique where models are trained across multiple decentralized devices or
servers holding local data samples

formal verification: use of Al to mathematically prove the correctness of smart contracts

fuzzing: use of logic
NOTE: Thisislessdeterministic.

fuzzing and mutation testing: use of Al to generate random or mutated inputs for testing smart contracts
NOTE: Predictionis needed to provide the volume at a safe pressure range.

Generative Adversarial Networ ks (GANS) for synthetic data: use of GANs to generate synthetic data for testing or
training purposes while preserving privacy

homomor phic encryption and secure multi-party computation: cryptographic techniques that allow computations
on encrypted data without decrypting it

identity recovery and remediation: use of Al to assist in recovering or remediating compromised digital identities
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intelligent data sharding: use of Al to optimize the process of dividing data across multiple nodes in a network
intelligent dispute resolution: use of Al to assist in resolving disputes within PDL systems

lear ning from past vulnerabilities: use of Al to analyse past security vulnerabilitiesto prevent similar issuesin the
future

natural language processing for documentation: use of NLP techniques to improve the creation and understanding of
smart contract documentation

network performance and resour ce allocation: use of Al to optimize network performance and allocate resources
efficiently

pattern recognition and behavioural analysis: use of Al to identify patterns and analyse behaviour in PDL systems
for security purposes

per for mance optimization: use of Al to improve the performance of smart contracts and PDL systems

predictive analytics for businessintelligence: use of Al to forecast future trends and provide business insights based
on PDL data

predictive maintenance of network nodes: use of Al to predict when network nodes will require maintenance or
upgrades

real-time monitoring and analysis. use of Al for continuous monitoring and analysis of PDL systems
regulatory compliance monitoring: use of Al to ensure PDL systems comply with relevant regulations and standards
security enhancement: use of Al to improve the overall security of smart contracts and PDL systems

smart routing of transactions between different ledgers. use of Al to optimize the routing of transactions across
multiple blockchain networks

static code analysis: use of Al to analyse smart contract code without executing it to identify potential issues

symbolic execution: use of Al to analyse all possible execution paths of a smart contract to identify vulnerabilities

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

Al Artificial Intelligence

AML Anti-Money Laundering

BRIEF Binary Robust Independent Elementary Features
BRIEF Binary Robust Independent Elementary Features
CGAN Conditional Generative Adversarial Network

Cl/CD Continuous I ntegration/Continuous Deployment
CLV Customer Lifetime Value

CNN Convolutional Neural Network

CTGAN Conditional Tabular Generative Adversarial Network
CTL Computation Tree Logic

DCNs Deep Clustering Networks

DDoS Distributed Denial of Service

DEX Decentralized EXchange

DLT Distributed Ledger Technology

DP Differential Privacy

DP-FTRL Differentially Private Follow The Regularized L eader
DP-SGD Differentially Private Stochastic Gradient Descent
FAST Features from Accelerated Segment Test
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FL Federated Learning
GAE Graph AutoEncoder
GAN Generative Adversarial Network
GCN Graph Convolutional Network
GDP Gaussian Differential Privacy
GDPR General Data Protection Regulation
GNN Graph Neural Network
GNNIS Global Neura Network Information System
GRU Gated Recurrent Unit
HE Homomorphic Encryption
ID | dentification/I dentity
IDE Integrated Devel opment Environment
loT Internet of Things
ISG Industry Specification Group
KYC Know Y our Customer
LLM Large Language Model
LSTM Long Short-Term Memory
LTL Linear Tempora Logic
MARL Multi-Agent Reinforcement Learning
ML Machine Learning
NGSE Next Generation Stock Exchange
NGTP Next Generation Trading Platform
NLP Natural Language Processing
NusSMV New Symbolic Model Verifier
OAGNNSs Online Adaptive Graph Neural Networks
OCR Optical Character Recognition
ORB Oriented FAST and Rotated BRIEF
PBFT Practical Byzantine Fault Tolerance
PDL Permissioned Distributed L edger
RL Reinforcement Learning
RLCT Reinforcement Learning Control Theory
RNN Recurrent Neural Network
SCSCAN Supply Chain Security Analysis
SE Software Engineering
SMPC Secure Multi-Party Computation
SMV Symbolic Model Verifier
SPIN Simple Promela INterpreter
SVM Support Vector Machine
TCN Temporal Convolutional Network
TGCN Temporal Graph Convolutional Network
TMC Traffic Management Centre
VAE Variational AutoEncoder
VELMA Virtual Environment Lifecycle Management Assistant
XAl eXplainable Artificial Intelligence
4 Enhancing PDL security using Al-based methods
4.1 Introduction

Artificial Intelligence (Al) playsacrucial rolein enhancing the security of Permissioned Distributed Ledger (PDL)
platforms. This clause explores two key areas where Al significantly contributes to improved security measures:

real-time anomaly detection and fraud detection using machine learning algorithms.

By leveraging Al for anomaly detection and fraud prevention, PDL platforms can significantly enhance their security
posture, ensuring the integrity and trustworthiness of the network while providing a seamless experience for legitimate

users.
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4.2 Al-Powered Anomaly Detection and Threat Identification in
Real-Time

421 Problem statement

Permissioned Distributed Ledger (PDL) platforms face critical security challengesin maintaining their integrity and
trustworthinessin the face of evolving cyber threats. Traditional security measures often struggle to keep pace with the
sophisticated and dynamic nature of attacks on these systems.

Key issuesinclude:
1) Delayed detection of security breaches and anomalies, leading to increased vulnerability.
2) Difficulty inidentifying subtle, complex attack patterns are detected by conventional detection methods.
3) Challengesin processing and analysing vast amounts of network datain rea-time.
4) Inability to adapt quickly to new and emerging threat vectors.
5) High rates of false positives, leading to alert fatigue and misallocation of security resources.
6) Limited capability to predict and prevent potential security incidents proactively.
7)  Challengesin maintaining security without compromising the performance and efficiency of the PDL network.

These issues can result in significant security breaches, data compromises, and loss of trust in PDL systems. Thereisan
urgent need for more advanced, real-time, and adaptive security solutions that can effectively protect these platforms
against awide range of threats.

4.2.2 Using Al for Anomaly Detection and Real-Time Threat Detection

Al systems can significantly enhance the security of PDL platforms by detecting anomalies and potential security
threatsin real-time. This capability is essential for maintaining the integrity and trustworthiness of the network. By
leveraging machine learning, deep learning, and other Al techniques, it is possible to develop solutions that offer:

1) Red-timeanaysisof network behaviour to identify anomalies and potential threats.

2)  Adaptive learning from new attack patterns to continuously improve detection capabilities.

3)  Ability to process and analyse vast amounts of data from multiple nodes simultaneously.

4)  Reduced false positives through more sophisticated pattern recognition and contextual analysis.
5)  Predictive threat identification based on historical data and emerging trends.

6) Automated response mechanismsto mitigate threats quickly and effectively.

7)  Seamlessintegration with existing PDL infrastructure without compromising performance.

Implementing Al-powered anomaly detection and threat identification systems has the potential to significantly enhance
the security posture of PDL platforms, ensuring their resilience against cyber threats and fostering greater confidencein
their use across various industries.

4.2.3 Real-Time Monitoring and Analysis

Al agorithms can continuously monitor network activities, transaction patterns, and system behaviours across the PDL
platform. By analysing vast amounts of data in real-time, Al systems can quickly identify deviations from normal
patterns that may indicate potential security threats.

The following Al agorithms can be effectively used to continuously monitor network activities, transaction patterns,
and system behaviours in Permissioned Distributed Ledger (PDL) platforms:

. Temporal Graph Convolutional Networks excel at capturing the dynamic structure of PDL networks.
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o Federated Attention Mechanism with Differential Privacy enables collaborative monitoring while preserving
privacy.

. Hierarchical Long Short-Term Memory Networks with Adaptive Thresholding provide a flexible approach to
multi-scale temporal pattern analysis.

Based on recent advancements and their potential impact, clause A.1.1 lists several examples of Al algorithms for
continuous monitoring that can continuously monitor network activities, transaction patterns, and system behaviours
across PDL platforms.

4.2.4 Pattern Recognition and Behavioural Analysis

Advanced machine learning models, such as deep neural networks and clustering algorithms, can be trained on
historical datato recognize complex patterns of normal behaviour within the PDL network. These models can then
identify unusual activities that deviate from these established patterns, potentially signalling a security threat. The
following advanced machine learning models can be trained on historical datato recognize complex patterns of normal
behaviour within Permissioned Distributed Ledger (PDL) networks.

When applied to PDL networks, they can provide powerful tools for understanding normal network behaviour and
identifying potential security threats or operational issues.
Clause A.1.2 lists examples of advanced machine learning models for pattern recognition.

4.2.5  Adaptive Threat Detection

Al systems can adapt and evolve their threat detection capabilities over time. As new types of attacks emerge, Al based
applications can learn from these incidents and update the detection mechanisms, ensuring that the PDL platform
remains protected against evolving security threats. The following Al systems demonstrate the capability to adapt and
evolve their threat detection capabilities over time, making them particularly suitable for the dynamic security
landscape of Permissioned Distributed Ledger (PDL) networks. When applied to PDL networks, they can provide
robust, flexible security measures that can keep pace with emerging threats and changing network conditions.

Clause A.1.3 provides examples of adaptive Al systems for evolving threat detection.

4.2.6  Automated Response Mechanisms

When potential threats are detected, Al systems can trigger automated response mechanisms to mitigate risks. These
may include isolating affected nodes, temporarily freezing suspicious transactions, or aerting system administrators for
further investigation. Based on recent advancements and their potential impact, shown hereisalist of Al systems that
can trigger automated response mechanisms to mitigate risks in PDL networks:

. Reinforcement Learning-based systems provide adaptive, autonomous defence strategies.
. Federated L earning-based systems enable collaborative defence while preserving data privacy.

o Explainable Al (XAl) systems offer transparent, interpretable automated responses that can be easily audited
and refined.

When implemented in combination, these systems can create a robust, adaptive, and transparent automated response
framework capable of addressing the complex and evolving threat landscape faced by PDL networks. They balance the
need for quick, automated responses with the requirements for privacy, collaboration, and human oversight in security
operations.

4.3 Enhanced Fraud Detection through Machine Learning
Algorithms

4.3.1 Problem statement
Permissioned Distributed Ledger (PDL) platforms face significant challenges in detecting and preventing fraudulent

activities, which can undermine the integrity and trustworthiness of these systems. Traditional rule-based fraud
detection methods often fall short in addressing the complex and evolving nature of fraud in PDL environments.
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These limitations include:
1) Inability to adapt quickly to new fraud patterns and techniques.
2) High rates of false positives and fal se negatives, leading to inefficient resource allocation.
3) Difficulty in detecting sophisticated, multi-layered fraud schemes.
4) Chalengesin processing and analysing large volumes of transaction data in real-time.
5) Limited capability to identify subtle anomalies that may indicate fraudulent behaviour.
6) Inflexibility in adjusting to changing business environments and transaction patterns.
7) Inefficiency in handling the decentralized nature of PDL platforms.

These issues can result in significant financial losses, reputational damage, and reduced confidence in PDL systems.
Thereis apressing need for more advanced, adaptive, and efficient fraud detection solutions that can keep pace with the
evolving threat landscape.

4.3.2 Using Al to detect fraud

Machine learning al gorithms can significantly improve fraud detection capabilitiesin PDL platforms, offering a more
sophisticated and effective approach compared to traditional rule-based systems. By leveraging advanced Al
techniques, it is possible to develop solutions that provide:

1) Real-timeanaysis of transaction patterns to identify anomalies.

2)  Adaptive learning from new fraud instances to continuously improve detection accuracy.

3) Ahility to process and analyse vast amounts of data from multiple sources.

4)  Reduced false positives and fal se negatives through more nuanced pattern recognition.

5)  Enhanced capability to detect complex, previously unknown fraud schemes.

6) Improved scalahility to handle increasing transaction volumesin PDL platforms.

7)  Better integration with the decentralized nature of PDL systems.
I mplementing machine learning-based fraud detection solutions has the potential to significantly enhance the security
and reliability of PDL platforms, fostering greater trust and adoption across various industries.
4.3.3 Sophisticated Pattern Analysis

Machine learning models can analyse complex transaction patterns and user behaviours to identify potential fraudulent
activities. These models can consider a wide range of factors and their intricate relationships, allowing for more
nuanced and accurate fraud detection. Based on recent advancements and their potential impact, presented here are
Al-based Machine Learning models for analysing complex transaction patterns and user behavioursto identify potential
fraudulent activitiesin PDL networks.

These Al-based Machine Learning models offer powerful capabilities for analysing complex transaction patterns and
user behaviours to identify potential fraudulent activitiesin PDL networks:

. Graph Neural Networks provide a natural way to model and analyse the network structure of transactions and
relationships.

e  Transformer-based models excel at capturing sequentia patternsin transaction data.
. Federated Deep Learning enables collaborative fraud detection while preserving data privacy.

Further information and examples of such models can be found in clause A.1.5.

ETSI



26 ETSI GR PDL 032 V1.1.1 (2025-04)

4.3.4  Anomaly-Based Fraud Detection

Unsupervised learning algorithms can be employed to establish baseline behaviours for users and transactions. Any
significant deviations from these baselines can be flagged for further investigation, potentially uncovering fraudulent
activities that might not be caught by predefined rules. These unsupervised learning algorithms offer complementary
capabilities for establishing baseline behavioursin PDL networks:

e  Graph Autoencoders are particularly well-suited for modelling the complex network structure of PDLS.

e  Variationa Autoencoders excel at learning and generating normal behaviour patterns in high-dimensional
spaces.

. Temporal Convolutional Networks are adept at capturing complex temporal patterns in transaction sequences.
Clause A.1.6 provides examples of unsupervised learning a gorithms used to establish baseline behaviours for users and

transactions within Permissioned Distributed Ledger (PDL) network.

4.3.5 Predictive Fraud Analytics

By leveraging historical data and current trends, machine learning models can predict potential fraudulent activities
before they occur. This proactive approach alows PDL platforms to implement preventive measures and reduce the risk
of fraud. These machine learning models offer powerful capabilities for predicting potential fraudulent activitiesin PDL
networks before they occur:

. Graph Neural Networks with Temporal Attention provide away to model and analyse the evolving structure of
transaction networks.

. Transformer-based Models with Self-Supervised Pre-training excel at capturing complex sequential patternsin
transaction data.

. Federated Deep Learning with Differential Privacy enables collaborative fraud prediction while preserving
data privacy.

Based on recent advancements and their potential impact, clause A.1.7 provides examples of machine learning models
for fraud detection that can predict potential fraudulent activities before they occur in PDL networks.

4.3.6 Continual Learning and Improvement

Machine learning models used for fraud detection can continuously learn from new data and feedback, improving their
accuracy over time. This adaptive capability ensures that the fraud detection system remains effective against evolving
fraud techniques. These machine learning models offer powerful capabilities for continuous learning and improvement
in fraud detection within PDL networks:

. Online Adaptive Graph Neural Networks provide a way to continuously update the model of the transaction
network.

. Incremental Learning with Ensemble Methods allows for efficient and interpretable model updates.

. Federated Continual Learning enables collaborative, privacy-preserving continuous learning across the entire
PDL network.

NOTE: Continuous Learning and Continual Learning are often used interchangeably, but they have distinct
meanings in different contexts:

Clause A.1.8 presents exampl es of continuous learning machine learning models for fraud detection that can
continuously learn and improve their fraud detection accuracy over time in PDL networks.
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4.3.7 Reduced False Positives

Advanced machine learning a gorithms can significantly reduce false positivesin fraud detection, minimizing
unnecessary disruptions to legitimate transactions while maintaining high security standards. These machine learning
models offer powerful capabilities for reducing false positives in fraud detection within PDL networks:

e  Attention-based Graph Neural Networks with Explainable Al provide high accuracy and interpretability.

. Hybrid Models combining anomaly detection with supervised learning offer a two-stage approach to reduce
false positives.

. Federated Learning with Adaptive Boosting enables collaborative, privacy-preserving learning that focuses on
hard-to-classify cases.

Clause A.1.9 provides examples of machine learning models for reducing fal se positives in fraud detection.

5 Smart contract optimization using Al

5.1 Introduction

Artificial Intelligence (Al) offers significant advancementsin the field of smart contract development and deployment
within Permissioned Distributed Ledger (PDL) platforms. This clause explores two key areas where Al contributes to
smart contract optimization: code analysis and optimization, and automated testing and verification.

By leveraging Al for smart contract optimization, PDL platforms can significantly enhance the quality, security, and
efficiency of deployed contracts. This not only reduces the risk of costly errors or exploits but also improves the overall
performance and reliability of the distributed ledger system.

5.2 Al-Driven Smart Contract Code Analysis and Optimization

521 Problem statement

Smart contract development and deployment face significant challenges in ensuring security, efficiency, and
cost-effectiveness. Current methods of smart contract code analysis and optimization are often inadequate, leading to
potential vulnerabilities, inefficient execution, and higher operational costs.

Specificaly, the industry struggles with:
1) Limited toolsfor in-depth analysis, hindering comprehensive code review.
2) Difficulty in detecting vulnerabilities, potentially compromising contract security.
3) Inefficient execution leading to higher gas fees, increasing operational costs.
4) Lack of formal verification methods, reducing confidence in contract reliability.
5) Difficulty in ensuring best practicesis consistently followed during devel opment.
These challenges can result in smart contracts that are vulnerable to exploits, costly to execute, and difficult to maintain.
Thereisapressing need for more advanced, automated solutions that can address these issues effectively.
5.2.2 Using Al to handle such challenges

Al can be used to significantly improve or ease the process of analysing and optimizing smart contract code, leading to
more efficient, secure, and cost-effective contracts. By leveraging machine learning and other Al techniques, it is
possible to develop solutions that offer:

1) Automated detection of vulnerabilities and bugs, improving contract security.
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2)  Enhanced verification methods through machine learning, increasing reliability.

3) Optimization of gas usage via predictive analysis, reducing operational costs.

4)  Real-time monitoring and audits, enabling proactive issue resolution.

5)  Improved readability and maintainability of code, facilitating long-term contract management.

Implementing Al-driven solutions for smart contract code analysis and optimization has the potential to revolutionize
the development process, mitigating risks and enhancing the overall quality and efficiency of smart contracts across
various blockchain platforms. Al can significantly enhance the process of analysing and optimizing smart contract code,
leading to more efficient, secure, and cost-effective contracts. Some of the methods, and examples thereof, are
presented below.

5.2.3 Static Code Analysis

Al-powered static code analysis tools can automatically review smart contract code to identify potential vulnerabilities,
inefficiencies, and coding style inconsistencies. These tools can be trained on large datasets of smart contracts to
recognize common patterns and anti-patterns, providing devel opers with actionable insights to improve their code.

Several Al-powered static code analysis tools have been developed to enhance smart contract security and efficiency.

These tools represent the current state of the art in Al-powered static code analysis. They go beyond traditional
rule-based analysis by incorporating machine learning techniques to improve accuracy, reduce fal se positives, and
provide more context-aware recommendations.

When applied to smart contract development in PDL platforms, these tools can significantly enhance code quality and

security. They can help identify potential vulnerabilities, ensure adherence to best practices, and improve overall code

reliability. However, it isimportant to note that while these tools are powerful, it is suggested that they are used as part
of acomprehensive security strategy that includes manual code reviews and dynamic analysis techniques.

Clause A.2.1 presents examples of Al-Powered static code analysistools.

5.2.4 Performance Optimization

Machine learning al gorithms can anal yse the execution patterns of smart contracts and suggest optimizations to reduce
gas costs and improve overall performance. This may include identifying redundant operations, optimizing data
structures, or suggesting more efficient algorithmic approaches.

Several Al-based tools have been developed to optimize the performance of smart contracts, particularly focusing on
gas optimization and execution efficiency.

These tools represent the current state of the art in Al-assisted performance optimization for smart contracts. They
primarily focus on gas optimization, which is a critical aspect of smart contract efficiency in many blockchain
platforms. As Al and machine learning techniques continue to advance, it is expected that these tools will become even
more sophisticated in their ability to optimize smart contract performance, potentially expanding to other aspects of
optimization beyond gas usage.

It is worth noting that while some of these tools are not fully Al-powered, they use advanced algorithms and techniques
that form the foundation for more sophisticated Al-driven optimizationsin the future. The field of Al-based smart
contract optimization is rapidly evolving, and it is expected that more fully Al-integrated tools will emerge in the
coming years.

Deep Reinforcement Learning excels at dynamic optimization in changing network conditions. Graph Neural Networks
with Attention can capture complex relationships within and between contracts. Transformer-based models with
transfer learning can leverage knowledge from multiple programming languages to suggest sophisticated optimizations.

These Al-based machine learning algorithms represent the cutting edge in smart contract optimization. They go beyond
traditional static analysis by incorporating advanced Al techniques to understand complex patterns in contract execution
and suggest context-aware optimizations.
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When applied to smart contract development in PDL platforms, these algorithms can significantly reduce gas costs and
improve overall performance. However, it isimportant to note that while these techniques are powerful, they are able to
be used in conjunction with expert review and thorough testing to ensure that optimizations do not introduce new
vulnerabilities or unintended behaviours.

Clause A.2.2 provides some notable examples of Al-Based machine learning algorithms for smart contract
optimization.

5.2.5  Security Enhancement

Al models can be trained to identify potential security vulnerabilitiesin smart contract code, such as reentrancy attacks,
integer overflow/underflow, and unauthorized access. By flagging these issues early in the devel opment process, Al can
help prevent costly security breaches.

These Al algorithms represent the cutting edge in smart contract vulnerability detection. They offer complementary
capabilities that can address different aspects of smart contract security analysis.

Graph Neural Networks with Semantic-Aware Embedding excel at capturing the structure and meaning of smart
contracts. Transformer-based Models with Transfer Learning leverage knowledge from a wide range of programming
languages to identify potential vulnerabilities. Reinforcement Learning with Symbolic Execution provides a dynamic
approach to exploring contract behaviour and identifying complex vulnerabilities.

Based on recent advancements and their potential impact, clause A.2.3 offers examples of Al algorithms for identifying
smart contract vulnerabilities.

5.2.6 Code Generation and Refactoring

Advanced Al systems can assist in generating boilerplate code, suggesting refactoring options, and even proposing
entire sections of optimized code based on the developer'sintent. This can significantly speed up the development
process and reduce the likelihood of human error. These Al agorithms represent the cutting edge in code generation
and optimization for PDL platforms. They offer complementary capabilities that can address different aspects of the
development process.

Large Language Models with Few-Shot Learning excel at generating diverse code suggestions with minimal platform-
specific training. Graph-to-Code Neural Networks with Attention are particularly good at understanding and utilizing
existing code structure. Hierarchical Transformers with Code Semantic Embedding provide a multi-level understanding
of code, from individual lines to overall application structure. Clause A.2.4 lists examples of Al Algorithms for code
generation and optimization in PDL platforms.

5.2.7 Natural Language Processing for Documentation

Al-powered natural language processing can analyse smart contract code and automatically generate human-readable
documentation, improving the maintainability and understandability of complex contracts. These Al-powered NLP
tools represent the cutting edge in automatic documentation generation for smart contracts in PDL platforms. They offer
complementary capabilities that can address different aspects of the documentation process.

CodeBERT-based Documentation Generation excels at providing contextually relevant explanations of code
functionality. Graph-to-Sequence Neural Networks are particularly good at capturing and explaining the overall
structure and flow of complex contracts. Hierarchical Transformers with Code-Text Alignment provide multi-level
documentation with clear traceability to the original code.

Based on recent advancements and their potential impact, clause A.2.5 lists examples of Al-Powered NLP tools for
smart contract documentation that can analyse smart contract code and automatically generate human-readable
documentation for PDL platforms.
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5.3 Automated Testing and Verification of Smart Contracts

531 Problem statement

The testing and verification of smart contracts present significant challengesin ensuring their reliability, security, and
intended functionality. Traditional testing methods often fall short in comprehensively identifying potential
vulnerabilities, logical errors, and edge cases, leading to:

1) Increased risk of security breaches and exploitsin deployed contracts.

2)  Unintended behaviours that may result in financia losses or system disruptions.
3) Difficulty in verifying complex contract interactions and state transitions.

4)  Time-consuming and error-prone manual testing processes.

5)  Inadequate coverage of all possible execution paths and scenarios.

6) Challengesin keeping up with evolving attack vectors and vulnerabilities.

7)  Limited ability to predict and prevent potential issuesin real-world environments.

These challenges can result in smart contracts that are vulnerable to attacks, prone to errors, and potentially costly to
maintain or fix post-deployment. There isacritical need for more advanced, automated, and comprehensive testing and
verification solutions that can address these issues effectively.

5.3.2  Tools for Improving reliability and reducing the risk of errors

Al can revolutionize the testing and verification process for smart contracts, ensuring higher reliability and reducing the
risk of errors or vulnerabilities. By leveraging machine learning, natural language processing, and other Al techniques,
it is possible to devel op tools that offer:

1) Automated generation of comprehensive test cases covering various scenarios.
2) Dynamic analysisof contract behaviour under different conditions.

3) Formal verification of contract properties and invariants.

4) Predictive analysis of potential vulnerabilities based on historical data.

5)  Continuous monitoring and adaptation to new attack patterns and vulnerabilities.
6) Automated regression testing for contract updates and modifications.

Implementing Al-driven solutions for automated testing and verification of smart contracts has the potential to
significantly enhance the security, reliability, and efficiency of blockchain-based systems across various industries.
Listed below are such tools with examples.

5.3.3 Automated Test Case Generation

Machine learning algorithms can analyse smart contract code and automatically generate comprehensive test cases,
covering awide range of possible scenarios and edge cases. This ensures more thorough testing and reduces the
likelihood of overlooking critical test scenarios.

Deep Reinforcement Learning for Adaptive Fuzzing excels at discovering vulnerabilities through intelligent exploration
of the input space. Graph Neural Networks with Symbolic Execution are particularly good at generating targeted test
cases for specific code structures. Transformer-based Models with Program Synthesis provide a way to generate
semantically rich test cases based on contract specifications and intent.

Based on recent advancements and their potential impact, clause A.2.6 lists three examples of Al-Based machine
learning algorithms for smart contract test case generation that can analyse smart contract code and automatically
generate comprehensive test cases.
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5.34 Fuzzing and Mutation Testing

Al-driven fuzzing techniques can generate large numbers of random or semi-random inputs to test smart contracts,
identifying unexpected behaviours or vulnerabilities. Mutation testing, where Al introduces small changes to the code to
test its robustness, can further enhance the reliability of smart contracts.

Reinforcement Learning-based Adaptive Fuzzing excels at discovering vulnerabilities through intelligent exploration of
the input space. Neuro-Symbolic Execution with M utation combines the strengths of machine learning and formal
methods for targeted testing and mutation. Evolutionary Fuzzing with NLP provides away to generate semanticaly rich
test cases and mutations based on contract specifications and intent.

Based on recent advancements and their potential impact, clause A.2.7 lists examples of Al-Driven fuzzing techniques
that can generate large numbers of random or semi-random inputs to test smart contracts, including mutation testing.

5.35 Formal Verification

Al can assist in the formal verification of smart contracts by automating the process of trandating contract code into
formal mathematical models. These models can then be used to prove the correctness of the contract with respect to its
specifications, ensuring that it behaves as intended under al possible conditions.

The Neural-Guided Theorem Prover excels at automating the theorem proving process for contract verification. The
Transformer-based Model Checker is particularly good at translating contracts into formal models and generating
temporal logic specifications. The Graph Neural Network-based Invariant Synthesizer provides a powerful way to
automatically generate invariants crucial for formal verification.

Clause A.2.8 provides some examples of Al-Based tools for formal verification of smart contracts by automating the
trangdlation of contract code into formal mathematical models.

5.3.6 Symbolic Execution

Al-enhanced symbolic execution techniques can explore multiple execution paths of a smart contract simultaneoudly,
identifying potential vulnerabilities or logical errors that might not be apparent through traditional testing methods.

Neural-Guided Symbolic Execution excels at efficiently exploring likely vulnerable paths. Reinforcement
Learning-based Concolic Testing provides a dynamic approach that adapts to the specific characteristics of each
contract. Graph Neural Network-Enhanced Symbolic Execution captures complex structural properties and
dependencies within contracts.

Clause A.2.9 provides examples of Al-Enhanced symbolic execution techniques for smart contract analysis that can
explore multiple execution paths of a smart contract simultaneously.
5.3.7 Continuous Integration and Deployment

Al can beintegrated into continuous integration and deployment pipelines, automatically running tests, performing
security checks, and flagging issues before smart contracts are deployed to the PDL platform. This ensures that only
thoroughly vetted and optimized contracts make it to production.

SmartBugs excels at integrating and optimizing the use of multiple analysis tools. ContractGuard provides a
comprehensive framework that combines formal methods with Al-enhanced dynamic analysis. AlSecOps offers a
holistic approach to security throughout the development lifecycle.

Clause A.2.10 provides examples of Al-Based toolsfor smart contract DevSecOps pipelines that offer integration and
deployment pipelines for smart contractsin PDL platforms.

5.3.8 Learning from Past Vulnerabilities

By analysing historical data on smart contract vulnerabilities and exploits, Al systems can continuously improve their
testing and verification capabilities, staying ahead of emerging security threats and common pitfallsin smart contract
development.
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VELMA excels at evolving its detection capabilities through genetic algorithms and reinforcement learning. SCSCAN
provides a self-correcting mechanism that reduces false positives over time. ASTRAEA offers a comprehensive
approach that combines multiple Al techniques for adaptive auditing.

Clause A.2.11 provides examples of Al Systems for continuous improvement in smart contract security that can
continuously improve their testing and verification capabilities for smart contracts.

6 Al-Enhanced Consensus Mechanisms in
Permissioned Distributed Ledger Systems

6.1 Consensus mechanisms for PDL functionality

Consensus mechanisms are a critical component of Permissioned Distributed Ledger (PDL) systems, ensuring
agreement on the state of the ledger across all nodes. However, these mechanisms face significant challengesin
balancing security, scalability, and efficiency. Traditional consensus algorithms often struggle with slow transaction
processing speeds, high latency, inefficient node selection, and difficulty adapting to changing network conditions.
These issues limit the system'’s ability to handle large transaction volumes and hinder widespread adoption of PDL
systems across various industries.

Recent research has explored how artificial intelligence can enhance these mechanisms to address these challenges and
improve speed, efficiency, and adaptability. Al techniques can optimize various aspects of consensus algorithms, from
node selection to message propagation, potentially reducing latency and increasing throughput. For instance, machine
learning model s can predict which nodes are most likely to propose valid blocks, allowing the network to prioritize
those nodes and reduce wasted computational resources.

Natural language processing can analyse proposed transactions to detect potential conflicts early, streamlining the
consensus process and improving overall efficiency. This approach helpsin resolving one of the key issuesin
traditional consensus mechanisms - the inability to efficiently detect and resolve conflicts in proposed transactions.

Additionally, Al enables consensus mechanisms to automatically adapt to changing network conditions, addressing the
challenge of inflexibility in traditional algorithms. Neural networks can analyse network metricsin real-time to switch
between different consensus algorithms optimized for varying transaction volumes and node counts. This dynamic
adaptation ensures that the system maintains optimal performance across different network states.

Security remains a paramount concern in PDL systems, and Al offers innovative solutions in this domain as well.
Federated learning alows nodes to collaboratively train models on local datato detect evolving attack patterns without
sharing sensitive information. This approach addresses both the security vulnerability to evolving attack vectors and the
privacy concerns associated with sharing data for collaborative security improvements.

These Al-enhanced consensus mechanisms show promise in addressing some of the key challenges faced by PDL
systems, such as scalability and energy efficiency, while maintaining the security and decentralization that are
hallmarks of distributed ledger technology. By leveraging advanced Al technologies, PDL systems can potentially
overcome the limitations of traditional consensus mechanisms, paving the way for more efficient, adaptable, and secure
distributed ledger systems.

Asresearch in thisfield progresses, it is crucial to continue exploring how Al can be further integrated into consensus
mechanisms to address remaining challenges and unlock the full potential of PDL systems across various industries.

6.2 Al-enhanced consensus algorithms for faster and more
efficient agreement

Al techniques can optimize various aspects of consensus algorithms to achieve faster agreement with less computational
overhead:

. Machine learning models can predict which nodes are most likely to propose valid blocks, allowing the
network to prioritize those nodes and reduce wasted work. For example, a recurrent neural network could
analyse historical data on block proposals to identify patterns in which nodes consistently propose valid blocks

quickly [i.57].
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Natural language processing can analyse proposed transactions to detect potential conflicts early, streamlining
the consensus process. For instance, an NLP model could scan transaction details and flag any that appear to
double-spend or violate smart contract rules before they enter the consensus queue [i.58].

Reinforcement learning algorithms can dynamically adjust consensus parameters like block time and size
based on current network conditions. As an example, an RL agent could monitor network congestion,
transaction volume, and node participation to optimize block parametersin real-time [i.59].

PDL platforms can implement a hybrid approach that uses Al to optimize an existing proven
consensus algorithm rather than replacing it entirely. This allows leveraging Al benefits while
mai ntai ning the security properties of established mechanisms.

Adaptive consensus mechanisms based on network
conditions

Al enables consensus mechanisms to automatically adapt to changing network conditions:

Neural networks can analyse network metricsin real-time to switch between different consensus algorithms
optimized for varying transaction volumes and node counts. For example, a neural network could trigger a
switch from Proof of Work to Delegated Proof of Stake when transaction volume spikes beyond a certain
threshold [i.60].

Federated learning allows nodes to collaboratively train models on local data to detect evolving attack patterns
without sharing sensitive information. Nodes could use federated learning to jointly develop anomaly detection
model s that spot new types of consensus attacks [i.61].

Multi-Agent Reinforcement Learning (MARL) can enable a group of nodes to collectively optimize their
behaviour to maintain consensus under volatile network conditions. For instance, nodes could use MARL to
adaptively adjust their block validation and propagation strategies as network latency and node churn
fluctuates[i.62].

[02] PDL systems can implement an "Al oversight" layer that monitors consensus performance and
triggers algorithm switches or parameter updates when needed, while keeping core consensus logic
deterministic and auditable.

7 Data analytics and insights using Al
7.1 Introduction and problem statement

Organizations face significant challenges in extracting meaningful insights from the ever-increasing volume, velocity,
and variety of data generated in today's digital landscape.

These challenges include:

1)
2)
3)
4)
5)
6)
7)
8)

Difficulty in processing and analysing vast amounts of structured and unstructured data efficiently.
Inability to identify complex patterns and correlations hidden within large datasets.

Lack of real-time analysis capabilities for making timely, data-driven decisions.

Inefficient use of human resources for repetitive data analysis tasks.

Inconsistency in data interpretation and decision-making across different departments or individuals.
Limited ability to predict future trends and outcomes based on historical data.

Challengesin integrating and analysing data from multiple, disparate sources.

Risk of overlooking critical insights due to human limitations in data processing.
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9) Difficulty in maintaining data quality and addressing biasesin analytical processes.
10) Inability to adapt quickly to changing market conditions and customer behaviours.

These issues hinder organizations' ability to leverage their data assets fully, potentially leading to missed opportunities,
inefficient operations, and suboptimal decision-making. Thereis a pressing need for advanced, Al-driven data analytics
solutions that can overcome these challenges, enabling organizations to extract deeper insights, make more accurate
predictions, and drive informed decision-making across all levels of the business. The ideal solution is scalable,
adaptable to various data types and sources, and capable of providing real-time, actionable insights while ensuring data
quality and minimizing biases.

The integration of Artificial Intelligence (Al) with data analytics has revolutionized how organizations extract insights
from vast datasets. Al's ability to process large volumes of data quickly and accurately enables usersto gain deeper
insights and make informed decisions. This clause exploresthe role of Al in enhancing data analytics, focusing on its
capabilities in analysing transaction data and providing predictive insights for business intelligence.

Al enhances data analytics by introducing advanced capabilities that allow for more nuanced and refined interpretations
of data. The synergy between Al and data analyticsis crucial, as Al systemsrely on robust data analyticsto refine their
models and improve accuracy. Al technologies, through sophisticated algorithms, can process structured and
unstructured data at unprecedented speeds, enabling organizations to extract val uable insights and make agile decisions
[1.63]. Thisrelationship is not one-sided; data analytics also plays avital role in improving Al algorithms by identifying
biases and errors within training datasets. As Al continues to evolve, itsrole in data analytics will expand, offering even
more precise insights and predictions.

7.2 Analysing Large Volumes of Transaction Data for Valuable
Insights using Al

7.2.1  Al's capabilities to handle large volumes

Al's ability to analyse large volumes of transaction data provides users with valuable insights that were previously
unattainable. Machine learning algorithms can sift through vast datasets to identify patterns, trends, and anomalies that
inform strategic decision-making [i.64].

7.2.2 Pattern Recognition and Trend Analysis

Al agorithms excel at identifying recurring patterns in transaction data, revealing intricate customer behaviours and
market trends. These sophisticated models can process vast amounts of historical and real-time data, uncovering hidden
correlations and cyclical patterns. Simultaneously, advanced time series analysi s techniques, powered by machine
learning, can detect subtle seasonal fluctuations and long-term trends with high precision. This capability enables
businesses to anticipate future market conditions, consumer preferences, and demand shifts. By leveraging these
Al-driven insights, companies can make data-informed decisions, optimize inventory management, tailor marketing
strategies, and stay ahead of market dynamics. Ultimately, this advanced pattern recognition and trend analysis
empower businesses to proactively adapt to changing market conditions and maintain a competitive edge.

7.2.3  Anomaly Detection

Machine learning models are very effective at anomaly detection, flagging unusual transactions or behaviours that
deviate from established norms with remarkable accuracy. These Al-driven systems continuously analyse vast datasets,
learning to distinguish between normal patterns and outliers. By leveraging techniques such as clustering algorithms
and neural networks, they can identify subtle anomalies that might escape human detection. This capability is crucial for
fraud detection in financial transactions, enabling real-time intervention to prevent losses. In risk management, anomaly
detection helps identify potential threats before they escalate. Additionaly, it plays avital role in maintaining data
integrity by spotting inconsistencies or errors in datasets. Ultimately, Al-powered anomaly detection enhances security,
reduces operational risks, and ensures data quality across various business operations.
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7.2.4  Customer Segmentation and Personalization

Al revolutionizes customer segmentation and personalization by categorizing customers based on their transaction
history, demographic data, and behavioural patterns. Advanced machine learning algorithms analyse vast datasets to
identify distinct customer groups with similar characteristics and preferences. This granular segmentation enables
highly targeted marketing campaigns and personalized service offerings. Furthermore, predictive models leverage this
segmentation data to anticipate individual customer needs and preferences with remarkabl e accuracy. By forecasting
future behaviours and desires, businesses can proactively tailor their products, services, and communications to each
customer. This Al-driven approach significantly enhances customer experience, increases engagement, and boosts
loyalty. Ultimately, it allows businesses to deliver the right message to the right customer at the right time, maximizing
marketing efficiency and customer satisfaction.

7.2.5 Predictive Analytics

Predictive analytics, powered by Al, transforms historical transaction data into valuable foresight for businesses.
Advanced machine learning algorithms analyse vast datasets, identifying complex patterns and correlations to forecast
future trends, demand fluctuations, and potential risks with remarkable accuracy. These Al-driven predictions extend
beyond simple extrapolation, considering multiple variables and their interdependencies. By leveraging these insights,
busi nesses can optimize inventory management, ensuring optimal stock levels while minimizing carrying costs.
Resource allocation becomes more efficient, with Al guiding decisions on workforce deployment and capital
investments. Furthermore, these predictive capabilities inform strategic planning, enabling companies to anticipate
market shifts, customer behaviour changes, and emerging opportunities. Ultimately, Al-powered predictive analytics
empowers business entities to make data-driven decisions, mitigate risks, and gain a competitive edge in dynamic
markets.

7.2.6 Real-time Processing and Decision Making

Al systems improve real-time processing and decision-making by analysing transaction data instantaneoudly, providing
immediate insights and enabling rapid responses. These advanced agorithms can process vast streams of data,
identifying patterns and anomalies in milliseconds. In high-frequency trading, Al-driven systems can execute complex
trading strategies based on market fluctuations faster than human traders. For dynamic pricing strategies, Al algorithms
continuously analyse demand, competitor pricing, and other relevant factors to adjust pricesin real-time, maximizing
revenue. This capability extends to various industries, enabling instant fraud detection in financial transactions,
real-time personalization in e-commerce, and immediate operational adjustments in manufacturing. By leveraging Al
for real-time processing and decision-making, businesses can respond swiftly to market changes, optimize operations
on-the-fly, and gain a significant competitive advantage.

7.3 Predictive Analytics for Business Intelligence

7.3.1 Predictive Analytics capabilities of Al

Predictive analytics leverages historical datato forecast future trends and outcomes, providing businesses with a
strategic advantage. By applying statistical modelling and machine learning techniques, organizations can anticipate
customer behaviours, sales trends, and operational risks[i.65] and [i.66].

For instance, in healthcare, predictive analytics powered by Al can improve patient outcomes by forecasting disease
progression and suggesting personalized treatment plans [i.64]. In manufacturing, predictive maintenance models can
reduce downtime by predicting equipment fail ures before they occur.

7.3.2 Customer Behaviour Prediction

Al models can analyse past purchase patterns, browsing history, and demographic data to predict future customer
actions with remarkable accuracy. These sophisticated al gorithms process vast amounts of historical and real-time data,
identifying subtle patterns and correlations. By leveraging techniques such as collaborative filtering and deep learning,
Al can forecast individual customer preferences, likely purchase timing, and potential churn risks. This enables
businesses to tailor marketing strategies, improve customer retention through targeted interventions, and enhance
personalization across all customer touchpoints. The resulting insights drive more effective customer engagement,
increased loyalty, and ultimately, improved business performance.
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7.3.3 Sales Forecasting

Machine learning algorithms can process historical sales data, market trends, and external factors to predict future sales
volumes with high accuracy. For instance, retail businesses can utilize these predictive models to forecast seasonal
demand shifts, optimizing inventory management. By anticipating customer needs, they can enhance resource
alocation, streamline supply chains, and improve financial planning for marketing campaigns. These predictions enable
businesses to adjust their sales strategies and align marketing efforts with anticipated demand, leading to increased
profitability and improved customer satisfaction.

7.3.4 Risk Assessment and Management

Al-driven predictive models can identify potential risksin various business operations, from supply chain disruptions to
financial market fluctuations, revolutionizing risk assessment and management. These sophisticated al gorithms analyse
vast amounts of historical and real-time data, including economic indicators, geopolitical events, and company-specific
metrics, to forecast potential threats. By leveraging machine learning techniques such as neural networks and decision
trees, Al can detect subtle patterns and correlations that human analysts might miss. This enables organizations to
quantify risks more accurately, prioritize them based on potential impact, and implement proactive risk mitigation
strategies. For instance, in supply chain management, Al can predict potential disruptions due to natural disasters or
geopolitical events, allowing companies to diversify suppliers or increase inventory buffers. In financial markets, Al
model s can anticipate market volatility, enabling institutions to adjust their investment strategies accordingly. This
proactive approach to risk management enhances organizational resilience, improves decision-making, and ultimately
protects business value.

7.3.5 Demand Forecasting

By analysing historical demand patterns and relevant external factors, Al can predict future demand for products or
services with remarkable precision. These advanced a gorithms process vast datasets, incorporating variables such as
seasonal trends, economic indicators, and consumer sentiment. Machine learning models can identify complex
correlations and patterns, enabling more accurate short-term and long-term demand forecasts. This enhanced predictive
capability hel ps businesses optimize production schedules, ensuring efficient resource utilization and minimizing waste.
It also enables precise inventory management, reducing carrying costs while preventing stockouts. Furthermore,
Al-driven demand forecasting facilitates proactive supply chain planning, allowing companies to negotiate better terms
with suppliers and streamline logistics operations. Ultimately, this leads to improved customer satisfaction, reduced
operational costs, and increased profitability.

7.3.6  Trend Analysis and Market Prediction

Al can process vast amounts of market data to identify emerging trends and predict future market conditions with
unprecedented accuracy and speed. Advanced machine learning al gorithms analyse diverse data sources, including
social media sentiment, economic indicators, and competitor activities, to detect subtle patterns and correlations. These
Al-driven systems can forecast market shifts, consumer behaviour changes, and industry disruptions months or even
years in advance. By leveraging natural language processing and deep learning techniques, Al can also interpret
unstructured data from news articles and research reports, providing a comprehensive view of market dynamics. This
powerful insight enables business entities to make data-driven strategic decisions, adapt to changing market conditions
proactively, and develop long-term plans that capitalize on emerging opportunities while mitigating potential risks.
Ultimately, Al-powered trend analysis and market prediction empower organizations to stay ahead of the curvein
increasingly competitive and volatile markets.

7.3.7 Operational Efficiency Optimization

Predictive models can analyse operational data to identify inefficiencies and suggest improvements, revolutionizing
operational efficiency optimization. These Al-driven systems process vast amounts of data from various sources,
including production lines, supply chains, and workforce management systems. By leveraging machine learning
algorithms, they can detect patterns and anomalies that human analysts might miss. The models can predict bottlenecks,
equipment failures, and resource shortages before they occur, enabling proactive interventions. This leads to significant
cost reductions through optimized resource alocation, improved productivity through streamlined processes, and better
resource utilization across the organization. Ultimately, Al-powered operational efficiency optimization enables
businesses to achieve higher output with lower inputs, enhancing overall competitiveness.
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7.3.8 Customer Lifetime Value Prediction

Al can estimate the long-term value of customers with remarkable accuracy, revolutionizing customer relationship
management. Advanced machine learning algorithms analyse vast datasets, including purchase history, interaction
frequency, and demographic information, to predict a customer's potential future value. These models consider factors
such as customer acquisition costs, retention rates, and cross-selling opportunities. By accurately forecasting Customer
Lifetime Vaue (CLV), businesses can prioritize high-value customers, tailor retention strategies, and optimize
marketing spend. This data-driven approach enables companies to allocate resources more effectively, focusing on
nurturing relationships that promise the highest long-term returns. Ultimately, Al-powered CLV prediction enhances
customer loyalty, increases profitability, and drives sustainable business growth.

[D1] Organizations can integrate Al into their existing data analytics frameworks to enhance their
ability to derive actionable insights from complex datasets.

[D2] Businesses can invest in Al-driven predictive anaytics tools that can provide a competitive edge
by enabling them to anticipate market trends and customer needs.

[D3] PDL stakeholders can exercise continuous training of Al models on new data to ensure they
remain accurate and relevant in dynamic business environments.

8 Privacy-preserving techniques using Al

8.1 Introduction and problem statement

The widespread adoption and utilization of Distributed Ledger Technologies (DL Ts) face significant challengesin
balancing data utility with privacy protection.

These challenges include:
1) Ensuring individual privacy while alowing for meaningful data analysis and insights.
2) Maintaining compliance with stringent data protection regul ations across various jurisdictions.
3)  Preserving the confidentiality of sensitive information in decentralized and transparent systems.
4) Balancing the need for data accessibility with the requirement for robust privacy safeguards.
5)  Mitigating the risk of re-identification of anonymized datain large datasets.

6) Ensuring privacy-preserving techniques do not significantly compromise computational efficiency or data
utility.

7) Addressing the potential conflict between blockchain's inherent transparency and privacy requirements.
8) Developing privacy-preserving methods that can adapt to evolving threats and regulatory |andscapes.
9) Fostering trust in data-driven technol ogies while maintaining strong privacy protections.

These issues pose significant barriers to the widespread adoption of DLTs in privacy-sensitive sectors such as
healthcare, finance, and government services. Thereisan urgent need for innovative, Al-driven privacy-preserving
techniques that can effectively protect individual privacy while enabling valuable data analysis and insights. The ideal
solution will be adaptable, efficient, and capable of meeting diverse regulatory requirements across different industries
and regions, all while maintaining the integrity and utility of the underlying data.
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As data privacy becomesincreasingly crucial in the digital age, especially within distributed ledger technologies,
Al-driven privacy-preserving techniques have emerged as essential tools. These techniques aim to protect sensitive
information while allowing data to be utilized for computational purposes without compromising individual privacy.
They are methods designed to safeguard personal and sensitive data during processing and analysis, vital in maintaining
confidentiality and compliance with privacy regulations such as GDPR. Common methods include anonymization,
differential privacy, and secure computation protocols. For example, differential privacy adds noise to datasets to
prevent the identification of individual data points while till allowing for accurate aggregate analysis. This approach is
particularly beneficial in sectors like healthcare, where patient data confidentiality is paramount while still needing to
derive insights from large datasets. By leveraging these techniques, organizations can ensure the privacy and security of
sensitive data, thereby fostering trust and confidence in the use of data-driven technologies.

[D4] Organizations can integrate privacy-preserving techniquesinto their data processing workflows to
ensure compliance with privacy laws and maintain user trust.

8.2 Developing Advanced Privacy-Preserving Computation
Methods using Al

Al plays apivota rolein advancing privacy-preserving computation methods by enhancing the efficiency and security
of these techniques. Al algorithms can optimize the balance between data utility and privacy protection, enabling more
effective use of data without exposing sensitive information. For instance, federated learning allows Al modelsto be
trained across decentralized devices holding local data samples without exchanging them, thus preserving privacy. This
method is widely used in mobile applications where user data remains on-device while contributing to model
improvement. Moreover, Al-driven privacy-preserving techniques such as differential privacy and secure multi-party
computation are becoming increasingly important. Differential privacy adds controlled noise to data to prevent the
identification of individual data points, ensuring that statistical data does not compromise individual privacy.

Secure multi-party computation enables multiple parties to jointly perform computations on private data without
revealing their inputs to each other, further enhancing data security. Additionally, Al can be used to develop advanced
privacy-preserving methods such as homomorphic encryption, which allows computations to be performed on
encrypted data without decrypting it first. This approach ensures that sensitive data remains protected even during
processing, significantly reducing the risk of data breaches.

The integration of Al with privacy-preserving techniques not only enhances data security but also fosterstrust in Al
systems. By ensuring that Al models respect privacy rights while remaining accurate and efficient, organizations can
build customer trust, ensure regulatory compliance, and prevent reputational damage.

As Al continues to evolve, the development of advanced privacy-preserving computation methods will be crucial for
responsible Al use that benefits society while respecting individual privacy rights.

[O3] Developers can leverage Al in devel oping advanced privacy-preserving methods to significantly
enhance data security frameworks while enabling robust analytics capabilities.

8.3 Homomorphic Encryption and Secure Multi-Party
Computation

Homomorphic Encryption (HE) and Secure Multi-Party Computation (SMPC) are two pivotal technologies that play a
crucia rolein preserving privacy during data processing and analysis. HE allows mathematical operationsto be
performed directly on encrypted data (ciphertexts), producing an encrypted result that, when decrypted, matches the
result of operations performed on the original data (plaintexts). This capability is particularly beneficia in cloud
computing environments where sensitive data has to remain confidential. For instance, HE enables individuals and
organizations to securely store their datain the cloud and perform computations on the encrypted data without exposing
it to the cloud service provider, thereby maintaining data privacy.

SMPC, on the other hand, enables multiple parties to jointly compute a function over their inputs while keeping those
inputs private. Thisis particularly useful in collaborative research where institutions can compute shared statistics
without revealing individual datasets. For example, in healthcare, SMPC can be used to analyse patient data from
different hospitals without sharing the raw data, thus preserving patient confidentiality while still deriving valuable
insights.
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The combination of HE and SMPC provides robust privacy preservation in various applications. For instance, in
federated learning, HE can be used to encrypt model updates, ensuring that the central server cannot infer private
information from the shared gradients. Meanwhile, SMPC can be employed to securely aggregate these encrypted
updates, further enhancing privacy protection.

Moreover, HE and SMPC can be integrated into privacy-preserving frameworks for smart metering systems, where
sensitive data from households can be encrypted and processed without revealing individual consumption patterns. This
not only protects privacy but also enables efficient and secure data analysis.

In summary, HE and SMPC are powerful tools for preserving privacy in data processing and analysis. By enabling
computations on encrypted data and secure multi-party computations, these technologies ensure that sensitive
information remains confidential, fostering trust and compliance with privacy regulations. Their applicationsin cloud
computing, collaborative research, and federated learning demonstrate their potential to revolutionize privacy
preservation in various domains.

[O4] Developers can implement homomorphic encryption and secure multi-party computation to
provide robust security for sensitive computations, especialy in collaborative environments or
when using third-party cloud services.

8.4 Federated Learning

Federated Learning is a machine learning approach that enables multiple devices or clientsto collaboratively train a
model while keeping their local data private. Instead of sharing data, clients share model updates with a central server,
which aggregates the updates to improve the global model. This decentralized approach allows for secure and private
learning, reducing the risk of data breaches and preserving data ownership.

Federated learning is particularly useful for applications such as mobile devices, 10T networks, and healthcare, where
datais sensitive and cannot be shared openly. By learning from diverse data sources without accessing the data itself,
federated learning enables models to improve their performance and generalization while maintaining data privacy. This
iscrucia in healthcare, for instance, where patient data has to remain confidential but can till be used to train models
for disease diagnosis and treatment planning.

Moreover, federated learning addresses the issue of data silos, where data is scattered across different locations and
cannot be centralized due to privacy concerns. By alowing devices to train models locally and share only the model
updates, federated learning facilitates the use of distributed data without compromising privacy. This approach aso
aligns with data protection regulations such as GDPR, which emphasize the importance of data minimization and
privacy by design.

Furthermore, federated learning can be enhanced with additional privacy-preserving techniques such as differential
privacy and homomorphic encryption to further protect the model updates and prevent inference attacks. These
techniques ensure that even if an adversary gains access to the model updates, they cannot infer sensitive information
about the underlying data. This comprehensive approach to privacy preservation makes federated learning an attractive
solution for applications where data privacy is paramount.

In summary, federated learning offers arobust framework for preserving privacy in machine learning by enabling
decentralized and secure model training. Its applications in sensitive domains such as healthcare and 10T networks
underscore its potential to protect data privacy while till leveraging diverse data sources for model improvement.

Clause A.3.1 provides examples of federated learning where local datais kept private. For example, Federated Learning
islike the Higher Education System, that federates learning techniques into a mess of ways of learning.

8.5 Differential Privacy in Machine Learning

Differentia privacy in machine learning is a powerful technique that helps preserve individual data privacy while still
enabling models to learn from the overall dataset. This method applies differential privacy techniquesto machine
learning model s, adding controlled noise to protect individual data points. By doing so, it becomesimpossible to infer
sengitive information about any individual data point, even if an adversary has access to the model's outputs.

The controlled noise added to the data ensures that the model learns general patterns and trends from the dataset without
being influenced by individual data points. This approach is particularly useful in applications where data is sensitive,
such as healthcare, finance, and social networks. For instance, in healthcare, differential privacy can be used to protect
patient data while still allowing models to learn from the data to improve disease diagnosis and treatment planning.
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Moreover, differential privacy provides a mathematical guarantee of privacy, alowing organizations to quantify the
level of privacy protection provided to individuals. Thisis crucial in meeting regulatory requirements such as GDPR,
which emphasizes the importance of data protection and privacy by design. By integrating differential privacy into
machine learning models, organizations can ensure that their models respect individual privacy rights while still
delivering accurate and useful insights.

When implementing differential privacy in machine learning:

[D5] Users can use privacy accounting toolsto track the overall privacy spend during model training
and deployment.
[D6] Users and Developers can combine differential privacy with other privacy-preserving techniques

like federated learning or secure multi-party computation for enhanced protection.

[D7] Audits and tests of differentially private models can be performed regularly to ensure they
maintain both privacy guarantees and acceptable utility.

Clause A.3.2 offers examples of differential privacy in machine learning.

8.6 Generative Adversarial Networks (GANSs) for Synthetic Data

Generative Adversarial Networks (GANS) for synthetic data generation have emerged as a powerful tool for preserving
privacy in various applications. By generating synthetic data that mimics the statistical properties of real data, GANs
enable organizations to share data without exposing sensitive information. This approach is particularly beneficial in
sectors such as healthcare and finance, where data privacy is paramount.

GANSs operate through a dual-architecture system comprising a generator and a discriminator. The generator creates
synthetic data, while the discriminator evaluates its authenticity against real data. This adversarial process continues
until the generator produces data indistinguishable from the real dataset.

The use of GANSs for synthetic data generation offers several key advantages:

1) Data Augmentation: GANSs can generate large volumes of synthetic data, which isinvaluable for training
machine learning models, especially when real datais scarce or sensitive.

2) Preservation of Data Utility: The synthetic data generated retains the statistical characteristics of the original
dataset, ensuring that models trained on this data perform effectively.

3) Enhanced Privacy: By using GANS, organizations can share synthetic datasets without exposing sensitive
information, thus complying with data protection regulations.

However, GANs also introduce privacy concerns, primarily due to the potential for adversarial attacks such as
membership inference attacks and model inversion attacks. To address these threats, researchers have proposed various
defence strategies, including differential privacy and adversarial training.

In conclusion, GANs for synthetic data generation offer arobust framework for preserving privacy while maintaining
data utility. By generating synthetic data that mimicsreal data, GANs enable organizations to share data without
compromising sensitive information, making them a valuable tool in privacy-preserving applications.

Clause A.3.3 provides examples of Generative Adversarial Networks (GANS) for synthetic data generation.
When implementing these GAN-based synthetic data generation techniques:

[Dg] The quality and utility of the generated data can be carefully evaluated using both statistical
metrics and domain-specific knowledge.

[D9] The trade-offs between data utility and privacy preservation can be considered, especially when
dealing with sensitive information.

[D10] The fairness and potential biases in the generated data can be assessed, particularly for
applications where fairnessis crucial.

[D11] The performance of models trained on synthetic data can be validated against models trained on
real datato ensure comparable results.
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9 Al Tools for Network Optimization

9.1 Problem statement

Permissioned Distributed Ledger (PDL) systems face significant challenges in maintaining optimal network
performance, efficiency, and reliability as they scale and operate in dynamic environments.

These challengesinclude:
1) Inefficient resource allocation leading to suboptimal network performance.
2) Difficulty in predicting and preventing network issues proactively.
3)  Suboptimal network topologies that hinder overall system efficiency and resilience.
4)  Scalability limitations due to ineffective data sharding strategies.
5)  Vulnerability to network-level attacks and security breaches.
6) High energy consumption resulting from unoptimized node operations and resource management.
7)  Network congestion during high-traffic periods, impacting system responsiveness.
8) Inflexible network protocols that cannot adapt to changing conditions and requirements.
9)  Lack of real-time, data-driven decision-making for network optimization.

These issues can lead to decreased performance, increased operational costs, security vulnerabilities, and reduced
reliability of PDL systems. Thereis apressing need for an intelligent, adaptive solution that can address these
challenges comprehensively. Theideal solution is able to leverage advanced technologies to optimize network
performance, enhance security, improve resource allocation, and enable proactive maintenance while ensuring
scalability and energy efficiency. This approach is crucia for the sustainable growth and widespread adoption of PDL
systems across various industries.

Network optimization is crucial for maintaining efficient and reliable Permissioned Distributed Ledger (PDL) systems.
Artificial Intelligence (Al) can play asignificant role in enhancing network performance, optimizing resource
alocation, and predicting maintenance needs.

9.2 Network Performance and Resource Allocation

Al techniques, particularly machine learning algorithms, can significantly improve network performance and optimize
resource allocation in PDL systems. By analysing vast amounts of network datain real-time, Al can make intelligent
decisions to enhance overall system efficiency. Deep learning models can predict network traffic patterns, enabling
proactive load balancing and resource alocation. Reinforcement learning algorithms can dynamically adjust node
configurations to optimize throughput and latency. Al-driven predictive anal ytics can forecast resource needs, allowing
for efficient scaling of computational power and storage. Furthermore, these intelligent systems can identify and
mitigate bottlenecksin real-time, ensuring smooth operation of the PDL network even under varying workloads.

Key applications include:

1) Dynamic Load Balancing: Al agorithms can predict traffic patterns and dynamically redistribute workloads
across nodes to prevent bottlenecks and ensure optimal performance.

EXAMPLE 1. Researchers at the University of Electronic Science and Technology of China developed an
Al-based load balancing system for blockchain networks that reduced transaction confirmation
times by up to 30 % compared to traditional methods [i.77].

2) Adaptive Consensus M echanisms: Al can optimize consensus parameters based on current network
conditions, improving throughput and reducing latency.

EXAMPLE 2:  The Algorand blockchain uses Al to dynamically adjust the committee sizein its pure
proof-of-stake consensus mechanism, optimizing performance based on network activity [i.78].

ETSI



42 ETSI GR PDL 032 V1.1.1 (2025-04)

3) Intelligent Routing: Al algorithms can optimize transaction routing in the network, reducing propagation
delays and improving overall efficiency.

EXAMPLE 3: The Lightning Network, a second-layer payment protocol built on top of the Bitcoin blockchain to
address scalability issues, uses Al-powered pathfinding algorithms to optimize payment routing,
significantly reducing transaction times and fees[i.79].

[D12] PDL systems are able to implement Al-driven load balancing algorithms to optimize workload
distribution across nodes.
[D13] Consensus mechanisms ar e able to incorporate Al techniques to dynamically adjust parameters
based on network conditions.
[O5] PDL networks can consider implementing Al-powered routing algorithms to optimize transaction
propagation.
9.3 Predictive Maintenance of Network Nodes

Al can play acrucia role in predicting and preventing network issues before they occur, ensuring high availability and
reliability of PDL systems. Machine learning models can analyse historical performance data, system logs, and
real-time metrics to identify patterns indicative of potential node failures or network disruptions. These Al-driven
systems can predict maintenance needs, allowing for proactive interventions before issues escalate. Anomaly detection
algorithms can identify unusual behaviour in network nodes, triggering early warning systems. Additionally, Al can
optimize maintenance schedul es, minimizing downtime and maximizing network efficiency. By leveraging predictive
analytics, PDL systems can achieve higher uptime, reduced operational costs, and improved overal reliability, crucial
for maintaining trust in distributed ledger networks.

Key applicationsinclude:

1) Anomaly Detection: Machine learning models can identify unusual patternsin node behaviour, potentially
indicating imminent failures or security breaches.

EXAMPLE 1.  Researchersfrom the University of California, Berkeley developed an Al-based system that can
detect node failures in blockchain networks with 95 % accuracy up to 10 minutes before they
occur [i.80].

2) Predictive Resource Scaling: Al agorithms can forecast resource requirements based on historical data and
anticipated network growth, allowing for proactive scaling of computational resources.

EXAMPLE 2:  Ethereum 2.0 uses Al-driven predictive models to estimate future storage requirements for nodes,
alowing for more efficient resource allocation [i.81].

3) Automated Software Updates. Al can analyse node performance data to identify optimal times for software
updates, minimizing network disruptions.

EXAMPLE 3:  The Polkadot network employs Al algorithms to schedule and coordinate software updates across
its parachain network, reducing downtime and ensuring smooth transitions[i.82].

[D14] PDL systems can implement Al-driven anomaly detection systemsto identify potential node
failures or security issues.

[D15] Node operators can utilize Al-powered predictive resource scaling to optimize hardware
allocation.

[Of] PDL networks could consider implementing Al-driven automated software update systems to

minimize disruptions during upgrades.
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9.4 Al-Driven Network Topology Optimization

Al agorithms can analyse network performance data to suggest optimal network topologies, improving overall
efficiency and resilience in PDL systems. Machine learning models can process vast amounts of historical and real-time
data on node connections, transaction flows, and network latencies to identify bottlenecks and inefficiencies. These
Al-driven systems can simulate various network configurations, predicting their impact on performance metrics such as
throughput, latency, and fault tolerance. By continuously optimizing the network topology, Al can enhance load
distribution, minimize communication overhead, and improve network resilience against node failures. This adaptive
approach ensures that the PDL network maintains optimal performance even as it scales or faces changing operational
demands, ultimately enhancing the system's overall efficiency and reliability.

EXAMPLE: Researchersin the US developed an Al system that dynamically adjusts the network topology of a
blockchain network, resulting in a 25 % reduction in average transaction confirmation times[i.83].

[D16] PDL systems can implement Al-driven network topology optimization to enhance overall network
performance.

9.5 Intelligent Data Sharding

Al can optimize data sharding strategies, improving scalability and query performance in large-scale PDL systems.
Machine learning algorithms can anal yse transaction patterns, data access frequencies, and network topology to
determine optimal sharding configurations. These Al-driven systems can dynamically adjust shard sizes and distribution
based on real-time usage patterns, ensuring balanced workload across nodes. Predictive models can anticipate future
data growth and access patterns, enabling proactive shard rebalancing. Al can aso optimize cross-shard transaction
routing, minimizing latency and improving overall system throughput. Furthermore, intelligent caching strategies driven
by Al can enhance query performance by predicting and pre-fetching frequently accessed data. This adaptive approach
to data sharding significantly enhances the scalability and efficiency of large-scale PDL systems, enabling them to
handle growing data volumes and user bases more effectively.

EXAMPLE: The Ethereum 2.0 network uses Al-powered algorithms to dynamically adjust shard sizes and
distribution based on network activity and data access patterns, leading to more efficient storage
and retrieval of blockchain data[i.84].

NOTE: Ethereum 2.0, now generaly referred to as the Ethereum upgrade, represents a significant evolution of the
Ethereum network. It aims to improve scalability, security, and sustainability.

[D17] Large-scale PDL systems can consider implementing Al-driven data sharding strategies to
optimize data distribution and access.

9.6 Al-Enhanced Network Security

Machine learning models can be used to detect and mitigate network-level attacksin real-time, enhancing the security
of PDL systems. Advanced Al algorithms can analyse network traffic patterns, transaction behaviours, and node
activities to identify anomalies indicative of potential security threats. Deep learning models can be trained on historical
attack data to recognize sophisticated attack signatures, enabling proactive threat detection. Al-driven systems can
automatically implement countermeasures, such as isolating compromised nodes or adjusting firewall rules, to mitigate
attacks in real-time. Furthermore, these intelligent security systems can continuously learn from new attack vectors,
adapting their defence mechanismsto evolving threats. By leveraging Al for network security, PDL systems can
maintain robust protection against a wide range of attacks, including DDoS, Sybil attacks, and consensus manipulation
attempts, ensuring the integrity and trustworthiness of the network.

EXAMPLE: Researchers from Stanford University developed an Al-based intrusion detection system for
blockchain networks that can identify and mitigate Distributed Denial of Service (DDoS) attacks
with 99 % accuracy and a response time of under 100 milliseconds [i.85].

[D1§] PDL networks implement Al-driven security systems to detect and mitigate network-level attacks
in real-time.
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9.7 Energy-Efficient Network Operations

Al agorithms can optimize energy consumption in PDL networks by intelligently managing node operations and
network resources. Machine learning models can analyse historical energy usage patterns and network performance data
to predict optimal operational configurations. These Al-driven systems can dynamically adjust node activity levels,
implementing smart sleep cycles for underutilized nodes without compromising network performance. Reinforcement
learning al gorithms can optimize consensus mechanisms, reducing unnecessary computations and associated energy
costs. Al can aso manage workload distribution, ensuring efficient use of high-performance, energy-efficient nodes.
Furthermore, predictive analytics can optimize cooling systems in data centres hosting PDL nodes, further reducing
energy consumption. By implementing these Al-driven energy optimization strategies, PDL networks can significantly
reduce their carbon footprint and operational costs while maintaining high performance and reliability.

EXAMPLE: The Avalanche blockchain network implements an Al-driven energy management system that
reduces overall network energy consumption by up to 40 % by optimizing node participation in
consensus rounds based on current network demands [i.86].

NOTE: Avaancheisahigh-performance, scalable, customizable, and secure blockchain platform. It is designed
to address some of the limitations of older blockchain platforms, particularly in terms of speed,
scalability, and flexibility.

[D19] PDL systems SHOUL D incorporate Al-driven energy management systems to optimize energy
consumption across the network.

9.8 Al-Powered Network Congestion Management.

Machine learning models can predict and manage network congestion, ensuring smooth operation during high-traffic
periodsin PDL systems. Al algorithms can analyse historical traffic patterns, transaction volumes, and network
performance metrics to forecast potential congestion points. These predictive models enable proactive load balancing,
dynamically redirecting traffic to less congested nodes or paths. Al-driven systems can implement adaptive routing
strategies, optimizing transaction flow across the network in real-time. Furthermore, deep learning techniques can
identify and prioritize critical transactions during peak periods, ensuring essential operations continue unimpeded. By
leveraging reinforcement learning, the system can continuously improve its congestion management strategies, adapting
to evolving network conditions and usage patterns. This Al-powered approach significantly enhances network resilience
and responsiveness, maintaining optimal performance even under high-stress scenarios.

EXAMPLE: The Solana blockchain uses an Al-powered congestion management system that dynamically
adjusts transaction fees and processing priorities based on real-time network conditions,
maintaining high throughput even during peak usage [i.87].

NOTE: Solanais ahigh-performance blockchain platform designed for decentralized applications (dApps) and
marketplaces. It aims to provide fast, secure, and scalable blockchain infrastructure.

[D20] PDL networks should implement Al-driven congestion management systems to maintain optimal
performance during high-traffic periods.

9.9 Adaptive Protocol Optimization

Al can be used to dynamically adjust network protocolsin PDL systems, adapting to changing network conditions and
requirements. Machine learning algorithms can analyse real-time network performance metrics, traffic patterns, and
node behaviours to identify opportunities for protocol optimization. These Al-driven systems can fine-tune protocol
parameters such as block size, consensus timing, and propagation methods on-the-fly, enhancing overall network
efficiency. Reinforcement learning models can experiment with different protocol configurations, learning from
outcomes to continuously improve performance. Natural language processing can interpret new regulatory
requirements, automatically adjusting protocols to maintain compliance. Furthermore, Al can facilitate seamless
protocol upgrades by predicting potential impacts and managing the transition process. This adaptive approach ensures
that PDL networks remain optimized, secure, and compliant in the face of evolving technological landscapes and
operational demands.

EXAMPLE: Researchers at the University of Cambridge developed an Al system that dynamically optimizes
the block size and interval in a blockchain network, resulting in a 35 % improvement in transaction
throughput without compromising security [i.88].
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[D21] PDL systems can consider implementing Al-driven adaptive protocol optimization to enhance
network performance and scal ability.

10 Governance and compliance using Al

10.1  Introduction and problem statement

Permissioned Distributed Ledger (PDL) systems face significant challenges in maintaining effective governance and
ensuring compliance with complex, evolving regulatory frameworks.

These challenges include:
1) Difficulty in implementing and enforcing consistent governance policies across distributed networks.
2) Inability to rapidly adapt to changing regulatory requirementsin different jurisdictions.
3) Inefficient manual processes for monitoring and auditing compliance.
4)  Lack of real-time visihility into network activities and potential compliance breaches.
5)  Challengesin managing access controls and permissions for diverse stakeholders.
6) Inconsistent interpretation and application of governance rules across network nodes.
7)  Difficulty in balancing decentralization with regulatory compliance requirements.
8) Inadequate mechanisms for detecting and preventing fraudulent activities or policy violations.
9) Complexity in managing cross-border transactions and associated regulatory compliance.

These issues pose significant risks to the integrity, legality, and adoption of PDL systems across various industries.
Thereisapressing need for innovative solutions that can enhance governance mechanisms and ensure robust
compliance while maintaining the decentralized nature of PDL networks. The ideal solution is able to provide
automated, intelligent, and adaptabl e governance and compliance frameworks that can evolve with regulatory
landscapes and scale with network growth.

Artificial Intelligence (Al) can play a significant role in enhancing governance mechanisms and ensuring compliance
with various regulations.

10.2 Al Assisted Governance Rules and Compliance Checks
Enforcement

Al technologies can significantly improve the enforcement of governance rules and compliance checksin PDL systems,
making these processes more efficient, accurate, and adaptable. Machine learning a gorithms can analyse vast amounts
of transaction datain real-time, identifying patternsindicative of non-compliance or potential rule violations. Natural
language processing can interpret and apply complex regulatory requirements across different jurisdictions. Al-driven
smart contracts can automatically enforce governance rules, while adaptive systems can evolve compliance checksin
response to new regulations or emerging risks. This approach ensures consistent, proactive governance and compliance
management across the PDL network, reducing manual oversight and enhancing overall system integrity.

Key applications include:

1) Smart Contract Governance: Al can analyse smart contracts to ensure they comply with predefined
governance rules and regulatory requirements.

EXAMPLE 1: The Algorand blockchain uses Al-powered smart contract analysis tools to automatically verify
that new contracts adhere to platform-specific governance rules and regulatory standards before
deployment [i.89].
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NOTE 1: Algorand is adecentralized, permissionless blockchain platform designed to create a borderless economy
through a variety of financial products and services. It was founded in 2017 by Silvio Micali, a Turing
Award-winning cryptographer and US professor.

2) Dynamic Policy Enfor cement: Machine learning models can adapt governance policiesin rea-time based on
network behaviour and external regulatory changes.

EXAMPLE 2. The Stellar network employs an Al system that dynamically adjusts transaction limits and
approval requirements based on real-time risk assessments and changing regulatory landscapes
[1.90].

NOTE 2: Stellar is an open-source, decentralized protocol for digital currency to fiat money transfers which allows
cross-border transactions between any pair of currencies. It was founded in 2014 by Jed McCaleb
(co-founder of Ripple) and Joyce Kim, and is managed by the Stellar Development Foundation.

3) Automated KYC/AML Checks: Al can enhance Know Y our Customer (K'Y C) and Anti-Money Laundering
(AML) processes by automating identity verification and transaction monitoring.

EXAMPLE 3: The Ripple network uses Al-driven KY C/AML tools that can process and verify user identities
50 % faster than traditional methods while improving accuracy by 30 % [i.91].

NOTE 3: Rippleisareal-time gross settlement system, currency exchange, and remittance network created by
Ripple Labs Inc. It was launched in 2012 and is designed to enable secure, instantly and nearly free global
financial transactions of any size with no chargebacks.

[D22] PDL systems can implement Al-powered smart contract analysis tools to ensure compliance with
governance rules and regulatory requirements.

[D23] Governance frameworks can incorporate Al-driven dynamic policy enforcement mechanisms to
adapt to changing network conditions and regulatory environments.

[O7] PDL networks could consider implementing Al-enhanced KY C/AML systems to improve the
efficiency and accuracy of compliance checks.

10.3 Al Assisted Automated Auditing and Reporting

Al can streamline auditing processes and generate comprehensive reports, enhancing transparency and accountability in
PDL systems. Advanced machine learning algorithms can continuously monitor network activities, automatically
detecting anomalies and potential compliance issues. These Al-driven systems can analyse vast amounts of transaction
datain real-time, providing instant insights into the network's operational integrity. Natural language processing
capabilities enable the generation of detailed, human-readable audit reports, summarizing complex findingsin aclear,
accessible format. Furthermore, Al can facilitate predictive auditing, identifying potential future compliance risks based
on historical patterns and trends. This approach not only reduces the time and resources required for auditing but also
significantly improves the accuracy and depth of audit outcomes.

Key applications include:

1) Continuous Auditing: Al algorithms can perform real-time auditing of transactions and smart contract
executions, flagging potential issuesimmediately.

EXAMPLE 1:  The Hyperledger Fabric® network utilizes an Al-powered continuous auditing system that
monitors all chaincode executions in real-time, detecting and reporting anomalies within
milliseconds[i.92].

NOTE 1: Hyperledger Fabric is an open-source, permissioned blockchain platform designed for enterprise use. It is
part of the Hyperledger® project hosted by the Linux Foundation®.

2) Intelligent Report Generation: Natural Language Processing (NLP) models can generate human-readable
audit reports from complex blockchain data.

EXAMPLE 2:  The Corda® enterprise blockchain platform employs an Al-driven reporting system that
automatically generates detailed compliance reports, reducing report preparation time by 75 %
[1.93].
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NOTE 2: Cordais an open-source blockchain platform designed for business, particularly for financial services and
enterprise use cases.

3) Predictive Compliance: Machine learning models can predict potential compliance issues based on historical
data and network trends.

EXAMPLE 3:  The Tezos® blockchain implements an Al system that predicts potential governance conflicts and
compliance risks up to two weeks in advance, allowing for proactive resolution [i.94].

NOTE 3: Tezosis a self-amending blockchain network that incorporates a formal, on-chain mechanism for
proposing, selecting, testing, and activating protocol upgrades.

[D24] PDL systems can implement Al-driven continuous auditing mechanisms to monitor and flag
potential issuesin real-time.

[D25] Governance frameworks can incorporate Al-powered reporting systems to generate
comprehensive and easily understandable audit reports.

[08] PDL networks could consider implementing predictive compliance systems to anticipate and
mitigate potential governance issues.

10.4  Al-Enhanced Governance Participation

Al can facilitate more inclusive and efficient governance participation in PDL systems by leveraging advanced
algorithms to enhance decision-making processes. Natural language processing can analyse and summarize governance
proposals, making them more accessible to all participants. Machine learning models can predict the potential impacts
of proposed changes, aiding informed voting. Al-driven recommendation systems can suggest relevant governance
issues to participants based on their interests and expertise. Furthermore, sentiment analysis can gauge community
opinions on governance matters, ensuring broader representation. These Al-enhanced tools can al so facilitate secure,
transparent voting mechanisms, potentially increasing participation rates. By streamlining governance processes and
improving accessibility, Al enables more diverse voices to contribute to the evolution of PDL systems.

EXAMPLE: The Polkadot® network uses an Al-powered governance assistant that helps token holders
understand complex proposals and predicts the potential impacts of their votes, increasing
informed participation by 40 % [i.95].

NOTE: Polkadot is a next-generation blockchain protocol designed to unite an entire network of purpose-built
blockchains, allowing them to operate seamlessly together at scale. It was founded by Dr. Gavin Wood,
co-founder of Ethereum, and is developed by Web3 Foundation® and Parity Technologies®.

[D26] PDL governance systems can consider implementing Al-driven tools to enhance user
understanding and participation in governance processes.

10.5 Regulatory Compliance Monitoring

Al can continuously monitor regulatory changes across different jurisdictions and assess their impact on PDL
operations, revolutionizing regulatory compliance monitoring. Natural language processing algorithms can scan and
interpret vast amounts of legal documents, regulatory updates, and policy changes from multiple sourcesin real-time.
Machine learning models can analyse these inputs to identify relevant regulations for specific PDL operations, assessing
potential impacts on existing processes and protocols. Al-driven systems can then generate automated alerts and
compliance recommendations, enabling proactive adaptation to regulatory changes. Furthermore, predictive analytics
can anticipate future regulatory trends, allowing PDL systems to prepare for potential compliance requirements. This
Al-powered approach ensures that PDL operations remain compliant across various jurisdictions, reducing legal risks
and operational disruptions.

EXAMPLE: The Hedera Hashgraph Council® employs an Al system that monitors global regulatory changes
and automatically generates compliance impact reports, reducing regulatory adaptation time by
60 % [i.96].
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NOTE: HederaHashgraph® isa distributed ledger technology platform that aims to be a faster, more secure
aternative to traditional blockchain systems. It was created by computer scientist Leemon Baird and is
based on the hashgraph consensus a gorithm. The Hedera Hashgraph Council, also known as the Hedera
Governing Council, is the body responsible for overseeing the governance and strategic direction of the
Hedera network. It was established to ensure decentralized governance of the platform.

[D27] PDL systems can implement Al-driven regulatory monitoring systemsto ensure timely
compliance with changing legal requirements.

10.6 Intelligent Dispute Resolution

Al can assist in resolving disputesin PDL systems by analysing transaction histories and smart contract executions to
provide obj ective assessments. Machine learning algorithms can process vast amounts of historical data, identifying
patterns and precedents relevant to the dispute at hand. Natural language processing can interpret contract terms and
conditions, ensuring accurate interpretation. Al-driven systems can simulate various scenarios based on the dispute
parameters, predicting potential outcomes and suggesting fair resolutions. These intelligent systems can al so detect
anomalies or inconsistencies in transaction records that could be crucial to dispute resolution. By providing unbiased,
data-driven insights, Al enhances the efficiency and fairness of dispute resolution processes in PDL networks,
potentially reducing the need for time-consuming and costly human arbitration.

EXAMPLE: The EOS® blockchain uses an Al-powered arbitration system that can resolve 80 % of common
disputes without human intervention, significantly reducing the workload on human arbitrators

[1.97].

NOTE: EOSisablockchain platform developed by the EOS Network Foundation® and designed for the
development of decentralized applications (dApps), with afocus on scalability, flexibility, and user
experience.

[D2§] PDL governance frameworks can consider incorporating Al-assisted dispute resolution
mechanisms to enhance efficiency and objectivity in conflict resolution.

11 |ldentity management using Al

11.1  Introduction and problem statement

Traditional identity management systems in Permissioned Distributed Ledger (PDL) environments face several critical
challenges:

1) Inefficient and error-prone manual identity verification processes.

2)  Vulnerability to identity theft and fraud due to static authentication methods.

3)  Poor user experience resulting from cumbersome authentication procedures.

4)  Difficulty in maintaining a balance between security and accessibility.

5)  Inability to adapt to evolving security threatsin real-time.

6) Lack of continuous authentication mechanisms, leaving systems vulnerable between login events.
7)  Scalability issuesin managing identities across large, complex PDL networks.

8) Inconsistent identity verification standards across different nodes in the network.

These challenges compromise the security, efficiency, and user-friendliness of PDL systems, potentially hindering their
widespread adoption and effectivenessin various sectors. There is an urgent need for innovative solutions that can
enhance identity management in PDL environments, ensuring robust security while improving user experience and
operational efficiency. Theideal solution is able to leverage cutting-edge technol ogies to provide seamless, continuous
authentication, adapt to emerging threats, and scal e effectively with growing network complexity.
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Artificial Intelligence (Al) is revolutionizing identity management in Permissioned Distributed Ledger (PDL) systems,
enhancing security, efficiency, and user experience. This clause explores how Al can improve identity verification
processes and enabl e continuous authentication through behavioural biometrics and other methods.

11.2  Al-Enhanced Identity Verification and Management
Processes

11.2.1 Al-Powered Facial Recognition

Al-powered facial recognition technology isincreasingly used in digital onboarding processes to enhance security and
prevent fraud. Thistechnology verifies user identities by comparing live facial images with stored identity documents,
ensuring that the person presenting the ID isits legitimate owner. This example highlights how Al-powered facial
recognition can be effectively integrated into customer onboarding processes to enhance security and efficiency while
mai ntai ning compliance with regulatory standards. An example of such technology can be found in clause A.4.1
herewith.

[D29] Organizations can ensure that their facial recognition systems comply with privacy regulations and
incorporate additional biometric checks, such as liveness detection, to prevent spoofing attacks.

11.2.2 Al-Powered Document Verification System

A document verification system uses Convolutional Neural Networks (CNNs) in combination with Optical Character
Recognition (OCR) and feature matching algorithms to authenticate identity documents and detect forgeries. This
example demonstrates how machine learning a gorithms can be effectively used to verify the authenticity of identity
documents and detect forgeries, improving the security and efficiency of identity verification processes. An example of
such technology can be found in clause A.4.2 herewith.

11.2.3 Anomaly Detection: Al-Powered Behavioural Biometrics for
Continuous Authentication

An Al system uses behavioural biometrics to continuously authenticate users by analysing their unique patterns of
interaction with devices and applications. The system monitors factors like typing rhythm, mouse movements,
touchscreen gestures, and app usage patterns to create a behavioural profile for each user. This example demonstrates
how Al-powered anomaly detection can be used to identify potential identity theft or fraud by continuously monitoring
user behaviour for unusual patterns. An example of such technology can be found in clause A.4.3 herewith.

[D30] System developers can implement a risk-based authentication system that adjusts the level of
behavioural biometric monitoring based on the sensitivity of the operation being performed in the
PDL system.

[D31] Stakeholders can Implement a multi-factor authentication system that combines Al-enhanced

biometric verification with traditional methods for robust identity management in PDL networks.

11.3  Additional Scenarios and Examples

11.3.1 Federated ldentity Management

Al can facilitate secure and efficient identity sharing across multiple PDL networks while preserving privacy. Advanced
machine learning algorithms can enable robust authentication mechanisms, encrypt sensitive data, and implement
granular access controls. This approach ensures seamless interoperability between networks while maintaining user
confidentiality and compliance with data protection regulations. Al-driven analytics can also detect and mitigate
potential security threats in real-time, enhancing overall system integrity.

EXAMPLE: Use federated learning to train identity verification models across multiple organizations without
sharing sensitive user data[i.101].
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11.3.2 Adaptive Access Control

Al agorithms can dynamically adjust access privileges based on user behaviour and context, forming the core of
adaptive access control systems. These intelligent systems continuously analyse factors such as login patterns, device
types, and network locations to assessrisk levelsin real-time. Based on this analysis, they can automatically elevate or
restrict user permissions, ensuring optimal security without compromising user experience. This approach allows
organizations to maintain a bal ance between robust protection and operational efficiency, adapting swiftly to evolving
threats and user needs.

EXAMPLE: Implement reinforcement learning model s that continuously optimize access control policies based
on user interactions and system security state [i.101].

11.3.3 Identity Recovery and Remediation

Al can assist in detecting compromised identities and streamline the recovery process in such scenarios. Advanced
machine learning models can analyse user behaviour patterns, network traffic, and access logs to quickly identify
anomalies indicative of compromised accounts. Once detected, Al-driven systems can automate the initial steps of
identity recovery, such as account lockdown and notification. These systems can al so guide users through the
remediation process, suggesting personalized security measures and verifying the authenticity of recovery actions. This
Al-assisted approach significantly reduces response time and minimizes potential damage from identity breaches.

EXAMPLE: Develop Al models that analyse historical user behaviour to quickly identify potential account
takeovers and suggest remediation steps [i.101].

11.3.4 Decentralized Identity Verification

Al can enhance the reliability and efficiency of decentralized identity systemsin PDL networks by leveraging advanced
algorithms for robust verification processes. Machine learning models can analyse multiple data points across
distributed ledgers to validate identities with high accuracy. These Al-driven systems can detect patterns and anomalies
inidentity claims, enhancing fraud prevention. Furthermore, Al can optimize the consensus mechanismsin
decentralized networks, ensuring faster and more secure identity verification while maintaining user privacy. This
approach enables seamless, trustworthy identity management across various decentralized platforms, fostering
interoperability and user confidencein PDL ecosystems.

EXAMPLE: Use Al-powered reputation systems to eval uate the trustworthiness of identity attestationsin a
decentralized identity network [i.101].

11.3.5 Cross-Chain ldentity Management

Al can facilitate secure identity portability and verification across different blockchain networks, enhancing cross-chain
identity management. Advanced machine learning algorithms can analyse and map identity attributes across diverse
blockchain protocols, ensuring seamless interoperability. These Al-driven systems can create standardized identity
representations, enabling secure and efficient identity transfers between chains. Furthermore, Al can automate the
verification process, detecting inconsistencies or potential fraud attempts during cross-chain identity transactions. This
approach not only streamlines user experience but also maintains the integrity and security of decentralized identity
ecosystems, fostering trust and adoption of cross-chain solutions.

EXAMPLE: Implement Al-driven identity mapping and translation services that enable seamlessidentity
verification across heterogeneous PDL systems[i.101].

[D32] System devel opers can develop a comprehensive Al-driven identity management framework that
incorporates these advanced scenarios to create a robust, adaptive, and user-friendly identity
ecosystem for PDL networks.
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12 Al-Assisted PDL Interoperability

12.1  PDL Interoperability in the context of Al - problem statement

The blockchain and Distributed Ledger Technology (DLT) ecosystem is currently fragmented, with numerous networks
operating in isolation. Thislack of interoperability hinders the seamless transfer of assets, data, and identities across
different chains, limiting the potential of blockchain technology and its widespread adoption.

Key challenges include:
1) Incompatible protocols and data structures between different blockchain networks.
2)  Absence of standardized communication methods for cross-chain interactions.
3)  Security risks associated with cross-chain transactions.
4) Inefficient routing of transactions across multiple chains.
5) Difficulty in verifying and validating information from different blockchain sources.
6) Lack of aunified approach to collaborative development of standards and processes.

Thereis apressing need for innovative solutions that can bridge these gaps, enabling secure and efficient
interoperability across diverse blockchain networks. This problem requires addressing technical, operational, and
governance aspects to create a cohesive and interconnected blockchain ecosystem.

Artificial Intelligence (Al) plays acrucia rolein enhancing interoperability between different blockchain networks and
Distributed Ledger Technologies (DLTSs). This clause explores how Al can facilitate cross-chain communication, enable
smart routing of transactions, and improve overall interoperability in the blockchain ecosystem. Interoperability
typicaly involves multiple parties with different approaches trying to find a way to transact with each other. Thisis best
achieved through collaborative development of standards and processes.

[D33] Developer groups can establish a dedicated Al research and development team focused on
blockchain interoperability to continuously explore and implement innovative Al-driven solutions
for cross-chain communication and collaboration.

12.2  Al-Facilitated Cross-Chain Communication and Data
Exchange

Artificial Intelligence (Al) plays acrucial rolein enhancing cross-chain communication and data exchange by providing
intelligent mechanisms for protocol trand ation, data validation, and semantic interoperability. As the blockchain
ecosystem becomes increasingly diverse, the need for seamlessinteraction between different blockchain networks
grows more pressing. Al technologies can bridge the gap between disparate blockchain protocols, enabling efficient and
secure cross-chain transactions and data sharing.

Machine learning models, particularly those focused on Natural Language Processing (NLP) and knowledge
representation, can be leveraged to create adaptive interfaces between different blockchain systems. These Al-driven
interfaces can automatically translate between various blockchain protocols, much like how language translation models
work. This capability allows for the creation of universal blockchain gateways that can facilitate communication
between any two blockchain networks, regardless of their underlying architecture or consensus mechanisms.

Examples and recent research in Al applicationsin cross-chain communication are listed in clause A.5.1 herewith.

[D34] Developers can Implement Al-powered protocol trandation layers in cross-chain communication
protocols to enable automatic adaptation to different blockchain networks.
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12.3  Smart Routing of Transactions Between Different Ledgers

Artificial Intelligence (Al) algorithms can significantly optimize the routing of transactions across multiple blockchain
networks, improving efficiency and reducing costs in cross-chain operations. Smart routing leverages Al to dynamically
determine the most optimal path for atransaction to travel between different ledgers, considering factors such as speed,
cost, security, and network congestion.

Al-powered smart routing systems can analyse real-time network conditions, historical performance data, and
transaction requirements to make intelligent decisions about how to route cross-chain transactions. These systems can
adapt to changing conditions, learn from past routing decisions, and continuously improve their performance over time.

Examples of Al applications in smart routing for cross-chain transactions can be found in clause A.5.2 herewith.

These Al-driven approaches to smart routing can significantly enhance the efficiency and reliability of cross-chain
transactions, contributing to greater interoperability in the blockchain ecosystem.

Additional Scenarios and Examples can be found in clause A.5.3 herewith.

13 Al based PDL Scalability solutions

13.1 Problem statement

Permissioned Distributed Ledger (PDL) systems face significant scalability challenges as they grow in size and
complexity.

These challengesinclude:
1) Inefficient resource alocation leading to performance bottlenecks.
2) Difficulty in maintaining low latency and high throughput as network size increases.
3) Suboptimal load balancing across nodes, resulting in uneven workload distribution.
4)  Static consensus algorithms that struggle to adapt to changing network conditions.
5) Inability to effectively predict and manage resource requirementsin real-time.
6) Limited flexibility in network topology optimization as the system scales.
7)  Inefficient sharding mechanismsthat fail to adapt to dynamic network traffic and usage patterns.

These scalability issues hinder the widespread adoption and effectiveness of PDL systems in large-scale enterprise
applications. There is a pressing need for innovative solutions that can address these challenges, enabling PDL networks
to scale efficiently while maintaining performance, security, and decentralization. The problem requires a dynamic,
adaptive approach that can optimize various aspects of the system in real-time, ensuring sustainable growth and
performance of PDL networks as they expand.

13.2  Developing More Efficient Scaling Solutions using Al

Artificial Intelligence (Al) playsacrucial rolein addressing scalability challenges and devel oping more efficient scaling
solutions for Permissioned Distributed Ledger (PDL) systems. As these networks grow in size and complexity, Al
techniques can optimize various aspects of the system, from transaction processing to network topology. Machine
learning model s can analyse historical data and network patterns to predict resource requirements, enabling dynamic
resource allocation and load balancing by adjusting workload distribution across nodes. Deep learning techniques can
optimize consensus a gorithms, reducing latency and improving throughput in large-scale PDL networks. Additionally,
Al can enable dynamic sharding based on network traffic and usage patterns, further enhancing the scalability and
efficiency of PDL systems.
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[D35] Platform devel opers can establish a dedicated Al research team focused on scalability solutions,
continuously exploring and implementing innovative Al-driven approaches to address the evolving
scalability challengesin PDL systems.

[D36 Developers can implement a hybrid approach that combines traditional scaling techniques with
Al-driven optimizations to achieve maximum scalability benefits.

Examples of Al applicationsin PDL scaling solutions are listed in clause A.6.1 herewith.

These Al-driven approaches to scaling offer significant improvements over traditional methods, enabling PDL systems
to handle larger transaction volumes and more complex operations while maintaining high performance and security.

13.3  Dynamic Sharding Based on Network Traffic and Usage
Patterns

Artificial Intelligence (Al) can enable more sophisticated and adaptive sharding strategies by analysing network traffic
and usage patternsin real-time. Dynamic sharding is a critical component of scalable PDL systems, allowing the
network to efficiently distribute workload and data across multiple shards or partitions. Al algorithms can continuously
monitor network conditions, transaction volumes, and resource utilization to make informed decisions about shard
creation, merging, and load balancing. Machine learning models, particularly those focused on time series analysis and
predictive modelling, can forecast future network loads and proactively adjust shard configurations to maintain optimal
performance. These models can take into account various factors such as historical transaction patterns, user behaviour,
and external eventsthat can impact network usage.

[D37] Developers can develop an Al-driven sharding management system that continuously monitors
network performance and adapts shard configurationsin real-time.

Examples of Al applicationsin dynamic sharding for PDL systems are listed in clause A.6.2 herewith.

Additional scenarios and examples based on a survey performed by Xie et al. (2022) [i.121] arelisted in clause A.6.3
herewith.

14 Conclusion and Recommendations

The present document has explored the diverse applications of Artificial Intelligence (Al) in Permissioned Distributed
Ledger (PDL) systems, highlighting the significant potential for Al to enhance the functionality, security, performance,
and interoperability of these systems.

The present document has covered awide range of areas where Al can be leveraged in PDL systems, including:
1) Enhanced security through Al-powered anomaly detection and fraud prevention.
2)  Smart contract optimization using Al-driven code analysis and testing.

3) Improved consensus mechanisms with Al-enhanced algorithms.

4)  Advanced data analytics and insights derived from Al analysis.

5)  Privacy-preserving techniques enabled by Al.

6) Network optimization using Al for performance and resource allocation.
7) Al-assisted governance and compliance management.

8) Al-enhanced identity management and verification.

9) Improved interoperability between different ledgers facilitated by Al.
10) Al-based scalability solutions for PDL systems.
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Throughout these areas, the present document demonstrates how Al techniques such as machine learning, deep
learning, natural language processing, and reinforcement learning can be applied to solve complex challengesin PDL
environments. The examples and case studies provided demonstrate the practical impact of these Al applications, often
resulting in significant improvements in efficiency, accuracy, and security.

Asboth Al and PDL technologies continue to evolve rapidly, their integration offers enormous potential for innovation
and advancement in distributed systems. However, it isimportant to note that the implementation of Al in PDL systems
also brings new challenges, particularly in areas such as data privacy, algorithmic transparency, and ethical
considerations.

Moving forward, it is recommended that PDL developers, researchers, and stakeholders:

1)

2)

3)

4)

5)

Continue to explore and implement Al solutionsin their systems, following the guidelines and best practices
outlined in the present document.

Prioritize privacy and security considerations when implementing Al, especially in permissioned
environments.

Stay informed about the latest developmentsin both Al and PDL technologiesto identify new opportunities
for integration.

Contribute to the development of standards and best practices for Al implementation in PDL systems.

Consider the ethical implications of Al usein distributed ledgers and work towards responsible Al integration.

By embracing the synergy between Al and PDL technologies, new possibilities can be unlocked to create more
intelligent, efficient, and secure distributed systems that can drive innovation across various industries and applications.
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Annex A:
List of Al-tools referenced in the present document with brief
descriptions and application for PDL

A.1  Examples related to clause 4 (Enhanced security)

A.1.1 Examples of Al Algorithms for Continuous Monitoring

A.1.1.1 Temporal Graph Convolutional Networks (TGCNSs)

Temporal Graph Convolutional Network (TGCN) is aneural network model that combines Graph Convolutional
Networks (GCNs) with temporal processing elements, such as Gated Recurrent Units (GRUS), to capture both spatial
and temporal dependenciesin graph-structured data. TGCNs extend Graph Convolutional Networks to handle temporal
dynamics, making them ideal for monitoring evolving PDL networks[i.1].

e Applicationin PDL Platforms:

1) Model the entire PDL network as a dynamic graph, with nodes representing entities and edges
representing transactions or interactions.

2)  Capture both spatial and temporal patternsin transaction flows and system behaviours.

3) Detect anomalies by identifying unusual changesin network structure or transaction patterns over time.
e Key Advantages:

1) Can handle the dynamic nature of PDL networks, where relationships and behaviours change over time.

2) Efficiently processes large-scale graph-structured data, suitable for high-throughput PDL platforms.

3)  Can capture complex, multi-hop relationships between entities in the network.

NOTE 1. Graph Convolutional Networks (GCNs) are atype of neural network designed to process graph-structured
data, where nodes represent entities and edges represent rel ationships between them. GCNs generalize
traditional Convolutional Neural Networks (CNNSs) to graph data by defining convolutional operations on
graphs. They learn to aggregate information from neighbouring nodes and edges, capturing complex
dependencies and patterns within the graph.

NOTE 2: Gated Recurrent Units (GRUSs) are atype of Recurrent Neural Network (RNN) architecture that uses
gates to control the flow of information. GRUs have two gates. the reset gate and the update gate. The
reset gate determines how much of the previous hidden state to forget, while the update gate decides how
much of the new information to add to the hidden state. This gating mechanism allows GRUs to
selectively retain and discard information, enabling them to learn long-term dependencies and avoid the
vanishing gradient problem.

A.1.1.2 Federated Attention Mechanism with Differential Privacy

A Federated Attention Mechanism is a component of federated |earning systems that incorporates attention mechanisms
to enhance the performance and personalization of models trained across decentralized data sources. By leveraging
attention, these systems can dynamically assign varying levels of importance to different data elements or clients,
facilitating more effective aggregation and collaboration among heterogeneous datasets. This approach combines
federated learning, attention mechanisms, and differential privacy to enable privacy-preserving, collaborative
monitoring across multiple nodes in a PDL network [i.2].

e  Application in PDL Platforms:

1) Enable continuous, collaborative monitoring across multiple nodes without sharing raw transaction data.
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2)  Use attention mechanisms to focus on the most relevant features for detecting anomalies.

3) Adapt to loca variations in transaction patterns while benefiting from network-wide knowledge.
. Key Advantages:

1) Preservesprivacy and data sovereignty in multi-party PDL networks.

2)  Can detect network-wide anomalies while maintaining the confidentiality of individual nodes.

3) Attention mechanisms improve the interpretability of the model's decisions.

A.1.1.3 Hierarchical Long Short-Term Memory Networks with Adaptive
Thresholding

Long Short-Term Memory (LSTM) networks are atype of Recurrent Neural Network (RNN) designed to handle the
vanishing gradient problem in traditional RNNSs.

Adaptive Thresholding is atechnique used in neural networks to dynamically adjust the threshold values for activation
functions, allowing the network to adapt to varying input conditions and improve its performance.

Hierarchical Long Short-Term Memory (LSTM) Networks with Adaptive Thresholding are a type of neural network
architecture that combines the strengths of hierarchical structures and LSTM networks. These networks are designed to
handle complex, hierarchical data by organizing LSTM layersin a hierarchical manner, allowing them to capture both
short-term and long-term dependencies at different levels of abstraction.

This algorithm uses a hierarchical structure of LSTM networks combined with adaptive thresholding techniquesto
monitor and analyse multi-level patternsin PDL platforms[i.3].

. Application in PDL Platforms:;

1) Analysetransaction patterns at multiple levels: individual transactions, account-level behaviour, and
network-wide trends.

2)  Use adaptive thresholding to dynamically adjust anomaly detection sensitivity based on current network
conditions.

3) Capture long-term dependencies in transaction histories and system behaviours.
. Key Advantages:

1) Can handle multi-scale temporal patterns, from millisecond-level transaction timing to long-term
behaviour trends.

2)  Adaptive thresholding reduces false positives by adjusting to changing network conditions.
3) Hierarchical structure allows for efficient processing of large volumes of transaction data.

NOTE: Recurrent Neural Networks (RNNSs) are atype of neural network architecture designed to process
sequential data, such astime series, speech, or text. RNNs are characterized by feedback connections that
allow the network to maintain a hidden state over time, enabling it to capture temporal dependencies and
relationships in the data.
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Examples of Advanced Machine Learning Models for
Pattern Recognition

A.1.2.1 Graph Neural Networks (GNNSs)

In addition to Continuous Monitoring GNNs can aso be used for Pattern Recognition [i.4].

e Application of GNN based Pattern Recognition in PDL Networks:

1

2)
3

Can model the entire PDL network as a graph, with nodes representing entities (e.g. users, smart
contracts) and edges representing interactions or transactions.

Capable of learning and identifying normal patterns of interactions and transactions within the network.

Can detect anomalies by identifying subgraphs or node behaviours that deviate from learned normal
patterns.

. Key Advantages:

1
2)
3)

Naturally suited to the graph-like structure of PDL networks.
Can capture complex, multi-hop rel ationshi ps between entities in the network.

Scalable to large networks and can handle dynamic, evolving graph structures.

A.1.2.2 Transformer-based Models

Transformer-based models are atype of neural network architecture that has revolutionized Natural Language
Processing (NLP) and other sequential data tasks. They are designed to transform input sequences into output sequences
by learning context and tracking relationships between sequence components. Transformer models use self-attention
mechani sms to weigh the importance of different elements within the sequence, allowing them to process datain

parallel and capture long-range dependencies. This architecture consists of an encoder that transforms input into a
contextualized representation and a decoder that generates the output sequence based on this representation [i.5].

. Application in PDL Networks:

1

2)
3)

Can analyse sequences of transactions or smart contract interactions to identify normal behavioural
patterns.

Capable of capturing long-range dependencies in transaction histories or user behaviours.

Can be used for anomaly detection by identifying sequences that deviate from learned normal patterns.

. Key Advantages:

1
2)
3)

Excellent at capturing complex, long-range patternsin sequential data.
Can handle variable-length input sequences, suitable for diverse transaction patterns.

Attention mechanisms allow the model to focus on the most relevant parts of the input for each
prediction.
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A.1.2.3 Deep Clustering Networks (DCNSs)

Deep Clustering Networks (DCNSs) are atype of neural network architecture designed for unsupervised clustering tasks.
They integrate feature learning and clustering into a unified framework, allowing the network to learn
clustering-friendly representations from data. DCNs typically consist of an autoencoder that |earns to reconstruct the
input data, and a clustering module that optimizes a clustering objective, such as k-means loss, to group similar data
points together. By jointly optimizing the reconstruction loss and clustering loss, DCNs can learn low-dimensional,
non-linear data representations that are suitable for clustering, making them effective for tasks such asimage clustering,
text clustering, and gene expression analysis. Deep Clustering Networks combine the feature of learning capabilities of
deep neural networks with clustering a gorithms, allowing for more effective unsupervised pattern discovery in complex
data[i.6].

. Application in PDL Networks:

1) Canidentify groups of similar transactions, user behaviours, or network activities without predefined
labels.

2) Capable of discovering latent patterns or structuresin PDL network data that are not be apparent through
manual analysis.

3) Can be used to create behavioural profiles of normal network activities, against which anomalies can be
detected.

. Key Advantages:
1) Combinesthe strengths of deep learning for feature extraction with clustering for pattern discovery.
2)  Can handle high-dimensional datatypical in complex PDL networks.
3)  Suitable for unsupervised learning scenarios where labelled datais scarce.

NOTE 1. K-Means Lossisatype of loss function used in clustering algorithms, particularly in Deep Clustering
Networks (DCNs). It measures the difference between the predicted cluster assignments and the true
cluster centres. The k-meanslossistypically calculated as the sum of squared distances between each
data point and its assigned cluster centre, averaged over all data points.

NOTE 2: Reconstruction Lossis atype of loss function used in autoencoders and other neural network
architectures. It measures the difference between the original input data and the reconstructed output data,
which is generated by the network's decoder.

NOTE 3: Clustering Lossis atype of loss function used in clustering agorithms, particularly in Deep Clustering
Networks (DCNs). It measures the quality of the cluster assignments by evaluating how well the data
points are grouped into distinct clusters. The clustering lossis typically calculated as a function of the
similarity between data points within the same cluster and the dissimilarity between data pointsin
different clusters.

A.1.3 Examples of Adaptive Al Systems for Evolving Threat
Detection

A.1.3.1 Continual Learning Networks

Continual Learning Networks are a type of neura network designed to learn from a stream of data that arrives
continuously, without forgetting previously learned knowledge. These networks aim to mitigate the problem of
catastrophic forgetting, where new learning overwrites existing knowledge, by incorporating mechanisms such as
memory consolidation, knowledge distillation, and experience replay. Continual |earning networks can adapt to
changing data distributions, learn from new tasks, and retain knowledge from previous tasks, making them suitable for
applications such as lifelong learning, autonomous systems, and real-world data streams. Thisis crucial in the context
of evolving security threats[i.7].
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e  Applicationin PDL Networks:

1) Can continuously update threat detection models as new types of attacks or anomalies are observed in the
PDL network.

2)  Allowsthe system to maintain knowledge of historical attack patterns while adapting to new threats.

3) Can handle concept drift in network behaviour, adjusting to changesin normal operation patterns over
time.

. Key Advantages:
1) Mitigatesthe "catastrophic forgetting" problem common in traditional neural networks.

2) Enablesefficient use of computational resources by updating existing models rather than retraining from
scratch.

3) Provides abalance between stability (retaining useful past knowledge) and plasticity (adapting to new
information).

A.1.3.2 Meta-Learning Systems

Meta-Learning Systems are a type of machine learning approach that enables models to learn how to learn from other
tasks and adapt to new, unseen tasks with minimal training data. These systems |learn to extract generalizable
knowledge and skills from a set of tasks, allowing them to quickly learn and perform well on new tasks, even with
limited data. By learning to learn, meta-learning systems can improve their performance on a wide range of tasks,
making them particularly useful for applications such as few-shot learning, transfer learning, and lifelong learning.
These characteristics make Meta-Learning Systems particularly suitable for addressing novel security threats[i.8].

. Application in PDL Networks:

1) Canquickly adapt threat detection capabilities to new types of attacks or changes in the PDL network
structure.

2) Enablesrapid deployment of security measures for emerging threats, even with limited examples.

3) Can generalize from known attack patternsto detect novel variants or entirely new classes of threats.
. Key Advantages:

1) Reducesthetime and data required to adapt to new security challenges.

2)  Improves generalization to unseen types of attacks or anomalies.

3) Facilitates transfer learning between different PDL networks or security domains.

A.1.3.3 Reinforcement Learning for Adaptive Security

Reinforcement Learning (RL) is atype of machine learning where an agent learns to make decisions by interacting with
an environment and receiving feedback in the form of rewards or penalties. The agent's goal is to maximize the
cumulative reward over time by learning a policy that maps statesto actions. Through trial and error, the agent adapts
its behaviour to optimize the reward signal, enabling it to learn complex tasks such as game playing, robotics control,
and autonomous driving without explicit supervision. The use of RL for adaptive security involves Al agentsthat learn
optimal security policies through interaction with the environment, continuously improving their strategies based on
feedback [i.9].

. Application in PDL Networks:
1) Candevelop adaptive security measures that respond dynamically to evolving threatsin PDL networks.
2) Enablesthe creation of proactive defence strategies that anticipate and prevent attacks.

3) Can optimize security policies for different operational states of the PDL network, balancing security
with performance and resource utilization.
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. Key Advantages:
1) Providesaframework for continuous improvement of security strategies.
2)  Can handle complex, multi-step decision-making processesin security management.

3) Allowsfor the development of personalized security policies for different components or sub-networks
within a PDL system.

A.1.4 Examples of Al Systems for Automated Response
Mechanisms in PDL Networks

A.1.4.1 Reinforcement Learning-based Autonomous Defence Systems

These systems use Reinforcement Learning (RL) to autonomously learn and execute optimal defence strategiesin
response to detected threats or anomalies|[i.9].

e  Applicationin PDL Networks:
1) Candynamically adjust security policies and network configurations in response to emerging threats.
2) Capable of learning from past incidents to improve future response strategies.
3)  Can balance security measures with network performance and resource utilization.
. Key Advantages:
1)  Adaptive and can improve over time through continuous interaction with the environment.
2)  Can handle complex, multi-step decision-making processes in real-time.

3) Ableto generdize learned strategiesto novel threat scenarios.

A.1.4.2 Federated Learning-based Collaborative Defence Systems

Federated Learning is a machine learning approach that enables multiple devices or clients to collaboratively learn a
shared model while keeping their local data private. Instead of sharing data, clients share model updates with a central
server, which aggregates the updates to improve the global model. This decentralized approach alows for secure and
private learning, reducing the risk of data breaches and preserving data ownership. Federated learning is particularly
useful for applications where datais sensitive and cannot be shared openly.

Collaborative Defence Systems use federated learning to collaboratively train defence models across multiple nodes or
organizationsin a PDL network, while keeping sensitive data localized [i.10].

e  Applicationin PDL Networks:

1) Can coordinate defence responses across multiple nodes in a decentralized manner.

2) Enablessharing of threat intelligence and defence strategies without exposing raw data.

3) Can adapt to local variations in network behaviour while benefiting from global knowledge.
. Key Advantages:

1) Preservesprivacy and data sovereignty in multi-party PDL networks.

2)  Improves robustness of defence mechanisms through diverse training data.

3) Can handle heterogeneous network environments common in PDL ecosystems.
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A.1.4.3 Explainable Al (XAl) for Automated Incident Response

Explainable Al (XAI) refersto a set of techniques and methods that provide insights into the decision-making processes
of Artificial Intelligence (Al) and Machine Learning (ML) models. XAl aimsto make Al models more transparent,
interpretable, and accountable by explaining how they arrive at their predictions or recommendations. Thisis achieved
through various techniques, such as feature attribution, model interpretability, and model explainability, which help to
identify the factors that influence the model's decisions. XAl is essentia for building trust in Al systems, ensuring
fairness and accountability, and complying with regulatory requirements.

XAl-based Automated Incident Response systems combine the decision-making capabilities of Al with explainable
models to provide transparent, interpretable automated responses to security incidents [i.11].

e  Applicationin PDL Networks:

1) Canautomaticaly trigger and explain response actions to security threats.

2)  Provides auditable decision trails for regulatory compliance and incident forensics.

3) Enables human operators to understand, validate, and refine automated response strategies.
. Key Advantages:

1) Increasestrust in automated response mechanisms through transparency.

2) Facilitates collaboration between Al systems and human security teams.

3)  Supports continuous improvement of response strategies through interpretabl e feedback.

A.1.5 Examples of Al-Based Machine Learning Models for Fraud
Detection

A.1.5.1 Graph Neural Networks (GNNSs) for Fraud Detection

GNNs are deep learning models designed to work directly on graph-structured data, making them ideal for analysing
the complex relationships and patternsin PDL transaction networks[i.12].

. Application in PDL Networks:

1) Can model the entire transaction network as a graph, with nodes representing entities (e.g. users,
accounts) and edges representing transactions or relationships.

2)  Capable of learning and identifying normal and abnormal patterns of transactions and user behaviours
within the network.

3) Candetect fraudulent activities by identifying suspicious subgraphs or node behaviours that deviate from
learned normal patterns.

. Key Advantages:
1) Naturaly suited to the graph-like structure of transaction networks.
2)  Can capture complex, multi-hop relationships between entities in the network.

3) Abletoincorporate both structural and feature information for more accurate fraud detection.

A.1.5.2 Transformer-based Models for Sequential Fraud Detection

Transformer-based models are atype of neural network architecture that has revolutionized Natural Language
Processing (NLP) and other sequential datatasks. They are designed to transform input sequences into output sequences
by learning context and tracking relationships between sequence components. Transformer models have been adapted
for analysing sequential transaction data and user behaviours for the purpose of Fraud Detection [i.13].
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e  Applicationin PDL Networks:
1) Cananalyse sequences of transactions or user actions to identify fraudulent patterns.
2) Capable of capturing long-range dependencies in transaction histories or user behaviours.
3) Can be used for real-time fraud detection by processing streaming transaction data.
. Key Advantages:
1) Excellent at capturing complex, long-range patternsin sequential data.
2)  Can handle variable-length input sequences, suitable for diverse transaction patterns.

3)  Attention mechanisms allow the model to focus on the most relevant parts of the input for fraud
detection.

A.1.5.3 Federated Deep Learning for Privacy-Preserving Fraud Detection

Federated Deep Learning is a type of machine learning approach that combines the principles of federated learning with
deep learning techniques. It enables multiple devices or clients to collaboratively train a shared deep neural network
model while keeping their local data private. Each client trains alocal model on their own data and shares the model
updates with a central server, which aggregates the updates to improve the global model. Federated Deep Learning
allows multiple parties to collaboratively train afraud detection model without sharing raw data, addressing privacy
concernsin PDL networks[i.15].

e  Applicationin PDL Networks:

1) Enables collaborative fraud detection across multiple nodes or organizationsin a PDL network.

2)  Canlearn from diverse data sources while keeping sensitive transaction data localized.

3) Allowsfor the creation of more robust fraud detection models by leveraging data from multiple sources.
. Key Advantages:

1) Preserves privacy and data sovereignty in multi-party PDL networks.

2)  Improves fraud detection accuracy through access to larger, more diverse datasets.

3) Canadapt to local variationsin fraudulent behaviours while benefiting from global knowledge.

A.1.6 Examples of unsupervised learning algorithms used to
establish baseline behaviours

A.1.6.1 Graph Autoencoders (GAESs) for Network Behaviour Modelling

Graph Autoencoders (GAES) are atype of neural network model designed to learn meaningful representations of graph
data. They consist of an encoder that captures the topological structure and node content of a graph, and a decoder that
reconstructs the graph from the learned latent representation. GAESs are used for various tasks such as node
classification, link prediction, and graph clustering, and they aim to preserve the graph structure in alower-dimensional
space [i.14].

e  Applicationin PDL Networks:

1) Canmodel normal patterns of interactions between entities (users, smart contracts, transactions) in the
PDL network.

2)  Capable of capturing complex structural relationships and attributes in the network.

3) Can be used to detect anomalies by identifying nodes or subgraphs that deviate from the learned normal
patterns.

ETSI



63 ETSI GR PDL 032 V1.1.1 (2025-04)

. Key Advantages:
1) Naturaly suited to the graph-like structure of PDL networks.
2)  Can handle both structural and feature information simultaneoudly.

3) Scaableto large networks, making them suitable for real-world PDL applications.

A.1.6.2 Variational Autoencoders (VAES) for Anomaly Detection

Variational Autoencoders (VAES) are atype of neura network model that combines the capabilities of autoencoders
and generative models. VAES consist of an encoder that maps input data to a probabilistic latent space, and a decoder
that generates new data samples from this latent space. Unlike traditional autoencoders, VAESs learn a probabilistic
representation of the input data, allowing for the generation of new, diverse, and coherent data samples. VAEs are
trained using a variational inference approach, which enables them to learn complex distributions and capture nuanced
patterns in the data, making them a powerful tool for tasks such as image generation, dataimputation, and anomaly
detection [i.16].

. Application in PDL Networks:
1) Canlearn normal patterns of transactions and user behavioursin the PDL network.

2) Capable of generating synthetic "normal" data, which can be used for comparison and anomaly
detection.

3) Can handle high-dimensional datatypical in complex PDL environments.
. Key Advantages:
1) Providesaprobabilistic framework for modelling normal behaviour.
2)  Can generate synthetic examples of normal behaviour for further analysis or testing.

3) Effective at handling complex, high-dimensional data distributions.

A.1.6.3 Temporal Convolutional Networks (TCNSs) for Time Series Analysis

Temporal Convolutional Networks (TCNSs) are atype of neural network architecture designed for sequence modelling
tasks. They use causal, dilated 1D convolutional layers to capture temporal dependenciesin data, allowing for parallel
computation and efficient handling of long sequences. TCNs consist of residual blocks with dilated convolutions, which
increase the receptive field size without significantly increasing the number of parameters. This architecture enables
TCNsto outperform traditional Recurrent Neural Networks (RNNSs) in many sequence modelling tasks, such as
machine tranglation, speech synthesis, and time-series forecasting [i.17].

e  Applicationin PDL Networks:
1) Canlearn normal temporal patternsin transaction sequences or user activity timelines.
2) Capable of capturing long-range dependenciesin time series data.
3) Can be used for real-time anomaly detection in streaming transaction data.
. Key Advantages:
1) Excellent at capturing complex temporal patternsin sequential data.
2)  Can handle variable-length input sequences, suitable for diverse transaction patterns.

3) Efficient parallel processing, making them suitable for real-time applications.
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NOTE: Tempora Graph Convolutional Networks (TGCNSs, as defined in clause A.1.1.1) and Temporal
Convolutional Networks (TCNSs) are both designed for handling temporal data, but they differ in their
focus and application:

L] TCNsare primarily used for sequence modelling tasks and focus on capturing temporal
dependenciesin sequential data. They do not inherently handle graph-structured data.

L] TGCNSs, on the other hand, are designed to handle graph-structured data that evolves over time.
They combine graph convolutional layers with temporal processing elements to capture both spatial
and tempora dependenciesin graph data.

A.1.7 Examples of Predictive Machine Learning Models for Fraud
Detection

A.1.7.1 Graph Neural Networks (GNNs) with Temporal Attention

Temporal attention in Graph Neural Networks (GNNSs) refers to the mechanism of selectively focusing on specific time
points or intervals within atempora graph, where nodes and edges evolve over time. This attention mechanism allows
the model to prioritize and weigh the importance of different temporal information, enabling it to capture complex
temporal dependencies and patterns within the graph. By incorporating temporal attention, GNNs can effectively
process dynamic graph data and make predictions or classifications based on the most relevant temporal information.
GNNs enhanced with temporal attention mechanisms can capture both the structural and temporal aspects of PDL
networks, making them powerful for predictive fraud detection [i.18].

e  Applicationin PDL Networks:
1) Can model the evolving structure of transaction networks over time.
2)  Capable of learning patterns that precede fraudulent activities.

3) Can predict potentia fraud by analysing the current state of the network in the context of historical
patterns.

. Key Advantages:
1) Naturally suited to the graph-like structure of PDL transaction networks.
2)  Can capture complex temporal dependenciesin transaction patterns.

3) Abletoincorporate both structural and temporal information for more accurate predictions.

A.1.7.2 Transformer-based Models with Self-Supervised Pre-training

Self-Supervised Pre-training in the context of Transformer-based models refers to a pretraining procedure where the
model |earns to generate supervisory signals from the data itself, without relying on external labels. Thisis achieved by
designing pretext tasks that leverage the structure of the data. The model is trained on these pretext tasks using large
amounts of unlabelled data, allowing it to learn contextualized representations that can be fine-tuned for downstream
tasks. Transformer models, pre-trained on large volumes of unlabelled transaction data using self-supervised
techniques, can capture complex patterns in sequential transaction data that can indicate fraudulent activities [i.19].

. Application in PDL Networks:
1) Cananalyse sequences of transactions to predict future fraudulent activities.
2) Capable of capturing long-range dependencies in user behaviour patterns.
3) Can befine-tuned on labelled fraud data for specific PDL environments.

. Key Advantages:

1) Excellent at capturing complex, long-range patternsin sequential data.
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2)  Canleverage large amounts of unlabelled data for pre-training.

3) Attention mechanisms allow the model to focus on the most relevant parts of the input for fraud
prediction.

A.1.7.3 Federated Deep Learning with Differential Privacy

Differential Privacy (DP) in the context of Federated Deep Learning is a mathematical framework that provides formal
guarantees on the privacy of individual data points during the training process. It ensures that the model updates shared
by clients do not reveal sensitive information about their local data. DP achieves this by adding noise to the model
updates, bounding the contribution of any individual client, and limiting the sensitivity of the training mechanism to any
single data point. This approach prevents an adversary from inferring sensitive information about individual data points,
even if they have access to the aggregated model updates.

By integrating DP with federated learning, it is possible to train models collaboratively while preserving the privacy of
the clients' data. Federated learning allows multiple parties to collaboratively train afraud detection model without
sharing raw data, while differential privacy ensuresindividual privacy is protected [i.20].

. Application in PDL Networks:

1) Enablescollaborative fraud prediction across multiple nodes or organizationsin a PDL network.

2)  Canlearn from diverse data sources while keeping sensitive transaction data localized.

3) Allowsfor the creation of more robust fraud prediction models by leveraging data from multiple sources.
. Key Advantages:

1) Preserves privacy and data sovereignty in multi-party PDL networks.

2) Improves fraud prediction accuracy through accessto larger, more diverse datasets.

3) Can adapt to local variations in fraudulent behaviours while benefiting from global knowledge.

A.1.8 Examples of Continuous Learning Machine Learning
Models for Fraud Detection

A.1.8.1 Online Adaptive Graph Neural Networks (OAGNNS)

Online Adaptive Graph Neural Networks (OAGNNS) are atype of neural network architecture designed to process
graph-structured data in an online and adaptive manner. They combine the strengths of Graph Neural Networks (GNNSs)
with online learning and adaptive mechanisms, enabling them to learn from streaming graph data and adapt to changing
graph structures and node features over time. OAGNNS can update their parameters incrementally as new data arrives,
alowing them to handle dynamic graphs and learn from temporal dependenciesin the data[i.21].

e  Applicationin PDL Networks:
1) Can continuously update the model of the transaction network as new transactions occur.
2)  Capable of adapting to evolving fraud patternsin real-time.
3) Canimmediately incorporate feedback on detected frauds to improve future predictions.
. Key Advantages:
1) Naturally suited to the dynamic, graph-like structure of PDL transaction networks.
2)  Can handle concept drift in fraud patterns over time.

3) Allowsfor immediate model updates without full retraining.
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A.1.8.2 Incremental Learning with Ensemble Methods

Incremental Learning with Ensemble Methods is a machine learning approach that combines the strengths of
incremental learning and ensemble methods to handle streaming data and adapt to changing environments. Incremental
learning involves updating a model incrementally as new data arrives, without requiring access to the entire dataset.
Ensemble methods combine the predictions of multiple models to improve overal performance. By integrating
incremental learning with ensemble methods, this approach enables models to learn from new data, adapt to concept
drift, and improve their performance over time. These models use ensemble techniques (like Random Forests or
Gradient Boosting, see notes below) modified for incremental learning, allowing them to continuously incorporate new
data without full retraining making them an effective fraud detection tool [i.22].

. Application in PDL Networks:
1) Can continuously update fraud detection models as new transaction data becomes available.
2)  Capable of maintaining a diverse set of fraud detection rules that evolve over time.
3) Can adapt to changesin normal transaction patterns, reducing false positives over time.
. Key Advantages:
1) Can handle concept drift in both normal and fraudulent transaction patterns.
2) Maintains model interpretability, which is crucial for explaining fraud detections.
3) Efficient updating process, suitable for high-throughput PDL environments.

NOTE 1: Random Forests are an ensemble learning method that combines multiple decision trees to improve the
accuracy and robustness of predictions. Each decision tree in the forest is trained on a random subset of
the data and a random selection of features, which helps to reduce overfitting and improve generalization.
The predictions from each tree are then combined using voting or averaging to produce the final
prediction.

NOTE 2: Gradient Boosting is a machine learning algorithm that combines multiple weak models to create a strong
predictive model. It works by iteratively adding decision trees to the model, with each subseguent tree
attempting to correct the errors of the previoustree.

A.1.8.3 Federated Continual Learning

Federated Continual Learning is a machine learning paradigm that combines the concepts of federated learning (see
clause 8.4 on Federated Learning) and continual learning (see clause 4.3.6 on Continual Learning and |mprovement).
Federated learning involves training a model on decentralized data sources, while continual learning involves adapting a
model to new tasks or data without forgetting previously learned knowledge. Federated Continual Learning enables a
model to learn from a stream of data distributed across multiple devices or clients, while continuously adapting to new
tasks, data, or environments. This approach allows for efficient and secure learning on edge devices, reducing the need
for data transmission and preserving data privacy. By combining federated and continual |earning, models can learn
from diverse data sources and adapt to changing conditions, making them suitable for applications such as 10T,
autonomous vehicles, and healthcare [i.23].

. Application in PDL Networks:

1) Enables continuous, collaborative fraud detection model improvement across multiple nodes or
organizationsin a PDL network.

2)  Canlearnfrom new fraud patterns observed across the network without centralizing sensitive data.

3) Allowsthe model to adapt to local variations in transaction patterns while benefiting from network-wide
knowledge.

. Key Advantages:
1) Preservesprivacy and data sovereignty in multi-party PDL networks.

2)  Can continuously improve fraud detection accuracy using data from multiple sources.
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3) Resistant to catastrophic forgetting, maintaining knowledge of historical fraud patterns while learning
New ones.

A.1.9 Examples of Machine Learning Models for Reducing False
Positives in Fraud Detection

A.1.9.1 Attention-based Graph Neural Networks with Explainable Al

Attention-based Graph Neural Networks (GNNs) with Explainable Al are atype of neural network architecture that
combines the strengths of graph neural networks and attention mechanisms to provide interpretable and transparent
predictions on graph-structured data. These networks use attention mechanisms to selectively focus on the most relevant
nodes and edges in the graph, enabling them to learn complex relationships and patterns within the data. By
incorporating explainable Al techniques, such as gradient-based attribution methods, decomposition, and
perturbation-based approaches [i.24].

. Application in PDL Networks:

1) Canmodel complex relationships in transaction networks while focusing on the most relevant features
for fraud detection.

2)  Providesexplanations for fraud predictions, allowing for human verification and reduction of false
positives.

3) Can adapt to the evolving structure of PDL transaction networks.
. Key Advantages:
1) Highaccuracy in detecting complex fraud patterns.
2) Interpretability helpsin understanding and verifying fraud predictions, reducing false positives.

3)  Can handle the dynamic nature of PDL networks.

A.1.9.2 Hybrid Models Combining Anomaly Detection with Supervised
Learning

Hybrid Models Combining Anomaly Detection with Supervised Learning are a type of machine learning approach that
integrates the strengths of anomaly detection and supervised learning to improve the accuracy and robustness of
predictive models. These models use anomaly detection techniques, such as One-Class SVM or Autoencoders (see
notes below), to identify outliers and anomaliesin the data, and then leverage supervised learning algorithms, such as
neural networks or decision trees, to classify the remaining data points. By combining these two approaches, hybrid
model s can effectively handle imbalanced datasets, reduce the impact of noisy or outlier data, and improve the overall
performance of the predictive model. This approach is particularly useful in applications such as fraud detection and
network intrusion detection, where identifying anomalies and outliersis crucia for making accurate predictions [i.25].

e  Applicationin PDL Networks:
1) Anomaly detection identifies unusual transactions based on learned normal patterns.
2)  Supervised learning then classifies these anomalies as fraudulent or legitimate, reducing fal se positives.
3)  Can continuously update the notion of "normal" behaviour in the PDL network.
. Key Advantages:
1) Combinesthe strengths of both unsupervised and supervised learning.
2)  Can detect novel fraud patterns while maintaining low false positive rates.

3) Adaptable to changing transaction patternsin PDL networks.
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NOTE 1: One-Class Support Vector Machine (SVM) is a machine learning algorithm primarily used for anomaly

detection and classification tasks. It works by finding the best boundary that separates data points into
different classes, making it a powerful tool for identifying outliers and distinguishing between normal and
abnormal data.

NOTE 2: Autoencoders are atype of neural network that learns to compress and reconstruct data. They consist of

A.1.9.

an encoder that maps the input data to alower-dimensional latent space and a decoder that reconstructs
the original data from this latent space.

3 Federated Learning with Adaptive Boosting

Federated Learning with Adaptive Boosting is a machine learning approach that combines the principles of federated
learning and adaptive boosting (see note below) to improve the performance and robustness of models trained on

decentra

ized data sources. In this approach, multiple clients or devices collaboratively train a model by sharing model

updates with a central server, which aggregates the updates to improve the global model [i.26].

Application in PDL Networks:

1) Enables collaborative fraud detection across multiple parties without sharing raw transaction data.
2)  Adaptive boosting focuses on hard-to-classify cases, reducing fal se positives over time.

3) Canadapt to local variations in transaction patterns while benefiting from network-wide knowledge.
Key Advantages:

1) Preservesprivacy and data sovereignty in multi-party PDL networks.

2)  Adaptive boosting helpsin reducing false positives by focusing on boundary cases.

3) Can handle imbalanced data, which is common in fraud detection scenarios.

NOTE: Adaptive Boosting is a machine learning technique that combines multiple weak models to create a strong

predictive model. It works by iteratively training a sequence of models, with each subsequent model
focusing on the errors of the previous model. The algorithm adaptively adjusts the weights of the training
data, increasing the weight of misclassified samples and decreasing the weight of correctly classified
samples. This process allows the model to concentrate on the most difficult-to-classify samples,
improving its overall performance.

A.2

A2.1

A.2.1.

Examples related to clause 5 (Smart contract
optimization using Al)

Examples of Al-Powered Static Code Analysis Tools

1 DeepCode
Developer: Snyk (acquired DeepCode in 2020)

Description: DeepCode uses machine learning to analyse code and detect bugs, security vulnerabilities, and
quality issues. It learns from millions of open-source commitsto provide context-aware recommendations

[i.27].

Key Features:

- Real-time Al-powered code analysis

- Ability to learn from code changes and user feedback

- Integration with popular IDEs and CI/CD pipelines
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A.2.1.2 Infer®

e Developer: Facebook®

. Description: While Infer has been around for a while, recent versions have incorporated more Al and machine
learning techniques. It uses separation logic and bi-abduction to analyse code and detect bugs [i.28].

. Key Features.
- Interprocedural analysis
- Incremental analysis for large codebases

Support for multiple programming languages

A.2.1.3 CodeQL®

e Developer: GitHub® (Semmle)

. Description: CodeQL treats code as data, allowing for the application of Al and machine learning techniques
to detect complex code patterns and potential vulnerabilities[i.29].

. Key Features.
- Customizable queries for specific code patterns
- Integration with GitHub's security features

- Support for multiple programming languages

A.2.2 Examples of Al-Based Machine Learning Algorithms for
Smart Contract Optimization

A.2.2.1 Deep Reinforcement Learning for Dynamic Gas Optimization

. Description: This approach uses deep reinforcement learning to dynamically optimize gas usage in smart
contracts during execution [i.30].

. Application:
1) Learn optimal gas price strategies for contract deployment and function calls.
2) Dynamically adjust contract parameters to minimize gas usage based on network conditions.
3) Predict and optimize gas consumption for complex multi-step contract interactions.
. Key Advantages:
1) Can adapt to changing network conditionsin real-time.
2) Learnsfrom actual contract executions to continually improve optimization strategies.

3) Can balance multiple objectives such as gas cost, execution speed, and transaction success probability.

A.2.2.2 Graph Neural Networks with Attention for Code Pattern Recognition

o Description: This algorithm combines Graph Neural Networks with attention mechanisms to recognize and
optimize complex code patternsin smart contracts [i.31].

. Application:

1) Identify gas-intensive code patterns across multiple connected contracts.
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2)  Suggest structural changes to contract architecture for better gas efficiency.

3) Recognize similar patternsin different contracts and apply |earned optimizations.

Key Advantages:

1) Can capture complex relationships between different parts of a contract and between multiple contracts.
2)  Attention mechanisms allow focus on the most relevant parts of the code for optimization.

3) Can provide explanations for suggested optimizations, improving trustworthiness.

A.2.2.3 Transformer-based Model with Transfer Learning for

Cross-Language Optimization

Description: This approach uses a transformer-based model pre-trained on multiple programming languages
and fine-tuned on smart contract languages to suggest cross-language optimizations [i.32].

Application:
1) Trandate gas-efficient patterns from other languages to smart contract languages.
2)  Generate optimized versions of common smart contract functions.

3)  Suggest alternative implementations of gas-intensive operations based on patterns learned from other
languages.

Key Advantages:
1) Can leverage optimization techniques from a wide range of programming languages.
2)  Ableto generate human-readable code suggestions for optimizations.

3) Can understand and optimize complex language-specific constructs.

A.2.2.4 Hyperledger Caliper®

Developer: Hyperledger Foundation

Description: While not specifically for smart contracts, Caliper uses machine learning techniques to
benchmark and optimize blockchain performance, which can indirectly improve smart contract efficiency
[1.33].

Key Features: Provides performance benchmarks, analyses resource utilization, and offers insights for
optimization.

A.2.2.5 OptSmart

Developer: Researchers from the University of Cagliari

Description: OptSmart uses genetic algorithms, aform of Al, to optimize smart contract code for gas
efficiency [i.34].

Key Features. Automatically generates optimized versions of smart contracts, focuses on reducing gas costs
while maintaining functionality.
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A.2.3 Examples of Al Algorithms for Identifying Smart Contract

A.2.3.1 Graph Neural Networks (GNNs) with Semantic-Aware Embedding

Vulnerabilities

Description: This approach uses GNNsto model the structure of smart contracts, combined with semantic-

aware embedding to capture the meaning and context of contract operations[i.31].

Application in Smart Contract Security:

1) Mode smart contracts as graphs, with nodes representing operations and edges representing control and

data flow.

2) ldentify patterns associated with known vulnerabilities, such as reentrancy and unauthorized access.

3) Detect potential new vulnerability patterns based on structural and semantic similarities.
Key Advantages:

1) Can capture complex relationships between different parts of a smart contract.

2)  Semantic-aware embedding improves understanding of contract behaviour and intent.

3) Generdizableto different types of vulnerabilities and contract structures.

A.2.3.2 Transformer-based Models with Transfer Learning

Description: This algorithm uses transformer-based models pre-trained on a large corpus of code, then
fine-tuned on smart contract code to identify vulnerabilities [i.35].

Application in Smart Contract Security:

1) Anaysesmart contract code to identify patterns associated with known vulnerabilities.

2)  Leverage knowledge from other programming languages to identify potential security issues.
3)  Generate natural language explanations of identified vulnerabilities.

Key Advantages:

1) Canunderstand complex code structures and patterns across different programming languages.
2)  Ableto generate human-readable explanations of vulnerabilities.

3) Can be continually updated with new vulnerability patterns.

A.2.3.3 Reinforcement Learning with Symbolic Execution

Description: This approach combines reinforcement learning with symbolic execution to actively explore

smart contract behaviour and identify potential vulnerabilities[i.36].
Application in Smart Contract Security:

1) Usereinforcement learning to guide exploration of contract execution paths.

2)  Apply symbolic execution to precisely analyse the conditions under certain vulnerabilities when they

occur.
3) Identify complex vulnerabilities that can only become manifest under specific conditions.
Key Advantages:

1) Candiscover vulnerabilities that could be missed by static analysis techniques.
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2) Ableto provide concrete examples of vulnerability exploitation.

3) Can adapt and improve its exploration strategy over time.

Examples of Al Algorithms for Code Generation and
Optimization in PDL Platforms

1 Large Language Models with Few-Shot Learning

Description: This approach uses Large Language Models (LLMs) pre-trained on vast amounts of code,
combined with few-shot learning techniques to adapt to specific PDL platforms and devel oper intents[i.37].

Application in PDL Development:
1) Generate boilerplate code for common PDL patterns and structures.
2)  Suggest refactoring options based on best practices and platform-specific optimizations.

3) Propose entire sections of optimized code tailored to the developer'sintent and PDL platform
requirements.

Key Advantages:

1) Can understand and generate code across multiple programming languages relevant to PDL
development.

2)  Adaptable to specific PDL platforms with minimal additional training.

3)  Can provide context-aware suggestions based on the surrounding code and developer comments.

2 Graph-to-Code Neural Networks with Attention

Description: This algorithm uses graph neural networks to model the structure of existing code, combined
with attention mechanisms to generate new code or suggest optimizations [i.38].

Application in PDL Development:

1) Analyseexisting code structure to suggest context-appropriate refactoring options.

2)  Generate optimized code sections based on the overall structure of the smart contract or PDL application.
3) Propose boilerplate code that fits seamlessly into the existing codebase structure.

Key Advantages:

1) Can capture and utilize the structural relationships within existing code.

2)  Attention mechanisms allow focus on the most relevant parts of the code for generation or optimization.

3) Waell-suited to handling the complex, interconnected nature of PDL applications.

A.2.4.3 Hierarchical Transformers with Code Semantic Embedding

Description: This approach uses a hierarchical transformer architecture combined with code semantic
embedding to understand and generate code at multiple levels of abstraction [i.39].

Application in PDL Development:
1) Generate boilerplate code that adheres to PDL-specific patterns and best practices.

2)  Suggest refactoring options that consider both local code structure and broader application semantics.
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3) Propose optimized code sections that align with the overall intent and structure of the PDL application.
Key Advantages:

1) Canunderstand and generate code at multiple levels, fromindividual lines to entire functions or modules.
2)  Semantic embedding allows for better understanding of code intent and functionality.

3) Hierarchical structure iswell-suited to handling the complexity of PDL applications.

A.2.5 Examples of Al-Powered NLP Tools for Smart Contract

Documentation

A.2.5.1 CodeBERT-based Documentation Generation

Description: This approach uses CodeBERT, a pre-trained language model for programming languages,
fine-tuned on smart contract code to generate natural language descriptions of contract functionality [i.40].

Application in PDL Platforms:;

1) Analyse smart contract code structure and semantics.

2)  Generate human-readable descriptions of contract functions, variables, and overall purpose.
3) Provide explanations of complex logic and potential security considerations.

Key Advantages:

1) Pretraining on diverse codebases alows for understanding of general programming concepts.
2)  Fine-tuning on smart contracts enables platform-specific knowledge.

3) Can generate contextually relevant documentation that explains both what the code does and why.

A.2.5.2 Graph-to-Sequence Neural Networks for Contract Summarization

Description: Thistool uses a graph-to-sequence neural network to model the structure of smart contracts as
graphs and generate natural language summaries [i.41]

Application in PDL Platforms:;

1) Convert smart contract code into a graph representation, capturing control and data flow.

2)  Generate high-level summaries of contract behaviour and purpose.

3) Provide detailed explanations of complex interactions between different contract components.
Key Advantages:

1)  Graph representation captures structural relationshipsin the code.

2)  Can handle complex, non-linear code structures common in smart contracts.

3) Generates summaries that reflect the overal structure and flow of the contract.

A.2.5.3 Hierarchical Transformer with Code-Text Alignment

Description: This approach uses a hierarchical transformer architecture with a code-text alignment mechanism
to generate multi-level documentation for smart contracts [i.42].

Application in PDL Platforms:

1) Analyse smart contract code at multiple levels of abstraction.
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2)  Generate documentation ranging from high-level overviews to detailed function descriptions.
3)  Align generated text with specific code sections for traceability.

Key Advantages:

1) Hierarchical approach allows for coherent documentation at multiple granularities.

2)  Code-text alignment helps devel opers quickly relate documentation to specific code sections.

3) Can generate documentation that explains both individual components and their interactions.

A.2.6 Examples of Al-Based Machine Learning Algorithms for

Smart Contract Test Case Generation

A.2.6.1 Deep Reinforcement Learning for Adaptive Fuzzing

Description: This approach uses deep reinforcement learning to guide a fuzzing process, adaptively
generating test inputs that maximize code coverage and vulnerability detection [i.43].

Application in PDL Platforms:

1) Anaysesmart contract structure and identify potential vulnerability points.
2) Generate diversetest inputs that explore different execution paths.

3) Adapt the fuzzing strategy based on feedback from contract execution.

Key Advantages:

1) Candiscover complex vulnerabilities by learning optimal fuzzing strategies.
2)  Adaptsto different contract structures and PDL platform specifications.

3) Improves efficiency by focusing on promising areas of the input space.

A.2.6.2 Graph Neural Networks with Symbolic Execution

Description: This agorithm combines Graph Neural Networks (GNNs) with symbolic execution to
understand contract structure and generate targeted test cases [i.44].

Application in PDL Platforms:

1) Mode smart contracts as graphs, capturing control and data flow.

2) Use GNNSsto identify potentially vulnerable or complex code sections.

3)  Apply symbolic execution to generate precise test cases for identified sections.
Key Advantages:

1) Captures complex structural and semantic properties of smart contracts.

2)  Generates highly targeted test cases for specific vulnerability types.

3) Can handlelarge and complex contracts efficiently.

A.2.6.3 Transformer-based Models with Program Synthesis

Description: This approach uses transformer-based models pre-trained on a large corpus of smart contracts,
combined with program synthesis techniques to generate diverse and semantically valid test cases [i.45].
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Application in PDL Platforms:

1) Analyse contract code and specifications using natural language processing.

2)  Generate synthetic contracts that represent edge cases or potential vulnerabilities.
3) Createtest casesthat exercise these synthetic contracts against the original contract.
Key Advantages:

1) Can generate semantically meaningful test cases based on contract intent.

2)  Leverages knowledge from awide range of existing contracts.

3) Capable of generating complex, multi-step test scenarios.

A.2.7 Examples of Al-Driven Fuzzing Techniques for Smart

Contract Testing

A.2.7.1 Reinforcement Learning-based Adaptive Fuzzing

Description: This technique uses reinforcement learning to guide the fuzzing process, adaptively generating
and mutating test inputs to maximize code coverage and vulnerability detection [i.46].

Application in PDL Platforms:;

1) Analyse smart contract structure to identify potential vulnerability points.

2)  Generate and mutate test inputs that explore different execution paths.

3) Adapt the fuzzing strategy based on feedback from contract execution.

Key Advantages:

1) Candiscover complex vulnerabilities by learning optimal fuzzing strategies.
2)  Adaptsto different contract structures and PDL platform specifications.

3) Efficiently exploresthe input space by focusing on promising areas.

A.2.7.2 Neuro-Symbolic Execution with Mutation

Description: This approach combines neural networks with symbolic execution to guide both input generation
and code mutation, creating a powerful hybrid fuzzing technique [i.47].

Application in PDL Platforms:

1) Useneura networks to predict promising code paths and mutation points.
2)  Apply symbolic execution to generate precise inputs for chosen paths.

3) Performintelligent code mutations to test contract robustness.

Key Advantages:

1) Combines the strengths of machine learning and formal methods.

2)  Generates highly targeted test cases and mutations.

3) Can handle complex contracts with large state spaces efficiently.
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A.2.7.3 Evolutionary Fuzzing with Natural Language Processing (NLP)

. Description: Thistechnique uses evolutionary algorithms guided by NLP-based understanding of contract
specifications to generate and evolve both test inputs and code mutations [i.47].

e  Application in PDL Platforms:
1) Analyse contract code and specifications using NLP.
2)  Generate an initial population of test cases and code mutations.
3) Evolvetest cases and mutations to maximize coverage and vulnerability detection.
. Key Advantages:
1) Generates semantically meaningful test cases and mutations based on contract intent.
2) Adaptstesting strategy based on the specific requirements of each contract.

3) Can generate complex, multi-step test scenarios and subtle code mutations.

A.2.8 Examples of Al-Based Tools for Formal Verification of
Smart Contracts

A.2.8.1 Neural-Guided Theorem Prover (NGTP)

o Description: Thistool uses neural networks to guide the theorem proving process, automatically generating
formal specifications and proof strategies from smart contract code [i.48].

. Application in PDL Platforms:;
1) Analyse smart contract code to extract key properties and invariants.
2) Generate formal specificationsin atheorem prover's language (e.g. Coq, Isabelle/HOL).
3)  Guide the theorem proving process to verify critical safety and liveness properties.
. Key Advantages:
1) Reducesthe manual effort required in formal verification.
2)  Can handle complex contracts by learning from alarge corpus of verified contracts.
3) Improvesthe efficiency of the theorem proving process through learned heuristics.

NOTE 1: Coqisaformal proof management system and dependently typed functional programming language
based on the Calculus of Inductive Constructions.

NOTE 2: |sabelle/HOL isageneric proof assistant that allows mathematical formulas to be expressed in aformal
language and provides tools for proving those formulasin alogical calculus.

A.2.8.2 Transformer-based Model Checker (TMC)

. Description: Thistool uses transformer-based models to translate smart contract code into formal models
suitable for model checking, and to generate temporal logic specifications[i.49].

. Application in PDL Platforms:;
1) Trandate smart contract code into aformal model (e.g. in the input language of SPIN or NuSMV).

2) Generate Linear Tempora Logic (LTL) or Computation Tree Logic (CTL) specifications from natural
language contract descriptions.
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3) Automate the model checking process and interpret the results.
Key Advantages:

1) Can handle diverse contract languages and structures.

2)  Generates human-readable formal models and specifications.

3) Leverageslarge-scale pre-training on code and specifications.

NOTE 1: Simple Promela INterpreter (SPIN) uses Process Meta Language (PROMELA) asitsinput language. This

language is designed specifically for modelling and verifying concurrent systems.

NOTE 2: New Symbolic Moddl Verifier (NuSMV) isasymbolic model checker that extends SMV with novel

features and algorithms.

NOTE 3: Symbolic Model Verifier (SMV) isapioneering formal verification tool developed at Carnegie Mellon

University that introduced symbolic model checking using Binary Decision Diagrams (BDDs).

NOTE 4: LTL isamodal temporal logic that describes sequences of transitions in a system over linear time,

meaning each moment has exactly one possible future.

NOTE 5: CTL isabranching-time logic that considers all possible future paths at each moment, allowing

quantification over paths using universal (A - "all paths') and existential (E - "exists a path") path
quantifiers combined with temporal operators.

A.2.8.3 Graph Neural Network-based Invariant Synthesizer (GNNIS)

Description: Thistool uses Graph Neural Networks to analyse the structure of smart contracts and
automatically synthesize invariants for formal verification [i.50].

Application in PDL Platforms:;

1) Represent smart contracts as graphs capturing control and data flow.

2) Learn common invariant patterns from a large corpus of verified contracts.
3) Synthesizeinvariants for new contracts based on their graph structure.
Key Advantages:

1) Captures complex structural properties of smart contracts.

2)  Can generalize across different contract types and PDL platforms.

3)  Produces human-interpretable invariants that aid in the verification process.

A.2.9 Examples of Al-Enhanced Symbolic Execution Techniques

for Smart Contract Analysis

A.2.9.1 Neural-Guided Symbolic Execution (NGSE)

Description: This technique uses neural networks to guide the path exploration in symbolic execution,
prioritizing paths that are more likely to lead to vulnerabilities or logical errors[i.51].

Application in PDL Platforms:
1) Analyse smart contract code to identify potentially vulnerable execution paths.
2)  Use machine learning models to predict which paths are most likely to contain bugs.

3)  Guide symbolic execution to explore high-risk paths more thoroughly.
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Key Advantages:
1) Significantly improves the efficiency of symbolic execution by focusing on likely vulnerable paths.
2)  Can handlelarge and complex smart contracts by prioritizing exploration.

3) Adaptsto different types of vulnerabilities and contract structures through learning.

A.2.9.2 Reinforcement Learning-based Concolic Testing (RLCT)

Description: This approach combines concolic testing (a hybrid of concrete and symbolic execution) with
reinforcement learning to dynamically adjust the exploration strategy [i.36].

Application in PDL Platforms:;

1) Use concrete execution to gather initial path information.

2)  Apply symbolic constraints to generate new inputs for unexplored paths.

3)  Utilizereinforcement learning to optimize the selection of paths and constraint solving strategies.
Key Advantages:

1) Balances concrete execution speed with symbolic execution's thoroughness.

2)  Adaptsthe testing strategy based on feedback from previous executions.

3) Can effectively handle complex smart contract logic and external interactions.

A.2.9.3 Graph Neural Network-Enhanced Symbolic Execution (GNN-SE)

Description: Thistechnique uses Graph Neural Networks to model the control flow and data dependenciesin
smart contracts, enhancing symbolic execution with learned contract representations [i.31].

Application in PDL Platforms:
1) Represent smart contracts as graphs capturing control flow and data dependencies.
2)  Use GNNSsto learn embeddings of contract states and transitions.

3) Guide symbolic execution using the learned representations to identify potentially vulnerable states and
transitions.

Key Advantages:
1) Captures complex structural properties of smart contracts.
2) Canidentify potential vulnerabilities that span multiple functions or transactions.

3) Improves scalability by focusing symbolic execution on relevant parts of the contract.

A.2.10 Examples of Al-Based Tools for Smart Contract

DevSecOps Pipelines

A.2.10.1 SmartBugs: Al-Enhanced Vulnerability Detection Pipeline

Description: SmartBugs is an execution framework that integrates multiple analysis tools and enhances them
with Al-based prioritization and result aggregation [i.52].

Key Features.

1) Integrates multiple static and dynamic analysistools.
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2)  Uses machine learning to prioritize which tools to run based on contract characteristics.
3) Aggregates and deduplicates results using natural language processing.

4)  Provides CI/CD integration for automated security checking.

Al Enhancement:

1) Employsaneura network to predict which analysis tools are most likely to find vulnerabilitiesin a given
contract.

2)  Uses NLP techniquesto classify and cluster similar vulnerability reports.

A.2.10.2 ContractGuard: Automated Verification and Deployment Framework

Description: ContractGuard is an automated framework that combines formal verification, fuzzing, and
machine learning-based vulnerability detection in a Cl/CD pipeline [i.53].

Key Features.

1) Automated formal verification using predefined and learned specifications.
2)  Al-guided fuzzing for dynamic analysis.

3) Machinelearning-based vulnerability pattern recognition.

4)  Integrated deployment gating based on security and correctness criteria.

Al Enhancement:

1) Usesreinforcement learning to guide the fuzzing process.

2) Employsagraph neural network to detect complex vulnerability patterns.

A.2.10.3 AlSecOps: Al-Driven Security Operations for Smart Contracts

Description: AlSecOpsisacomprehensive DevSecOps platform that integrates Al-driven security analysis
throughout the smart contract development lifecycle [i.54].

Key Features.

1)  Continuous security monitoring during devel opment.

2)  Al-powered code review and suggestion system.

3) Automated test case generation based on contract specifications.

4)  Risk assessment and deployment recommendations.

Al Enhancement:

1)  Uses natural language processing to understand contract specifications and generate test cases.
2) Employs atransformer-based model for code review and improvement suggestions.

3)  Utilizesamulti-agent reinforcement learning system for risk assessment.
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A.2.11 Examples of Al Systems for Continuous Improvement in

Smart Contract Security

A.2.11.1 VELMA: Vulnerability-driven Evolutionary Learning for Smart

Contract Auditing

Description: VELMA isan Al system that uses evolutionary algorithms and machine learning to continuously
evolve its vulnerability detection capabilities based on historical data and newly discovered exploits [i.55].

Key Features:

1) Automated learning from newly discovered vulnerabilities and exploits.

2)  Evolutionary generation of new security patterns and test cases.

3) Integration with real-time blockchain monitoring for rapid threat detection.
Continuous Improvement M echanism:

1) Uses genetic agorithmsto evolve its vulnerability detection rules.

2)  Employs reinforcement learning to optimize its testing strategies.

3) Incorporates federated learning to securely share knowledge across multiple blockchain networks.

A.2.11.2 SCSCAN: Self-Correcting Smart Contract Vulnerability Scanner

Description: SCSCAN is an adaptive Al system that combines deep learning and symbolic execution to
continuously improve its vulnerability detection capabilities[i.36].

Key Features:

1) Dynamic updating of vulnerability patterns based on new data.

2)  Sdf-correction mechanism to reduce fal se positives over time.

3) Integration of multi-modal data sources, including code, transaction histories, and devel oper feedback.
Continuous I mprovement M echanism:

1) Usesadeep neura network to learn and update vulnerability patterns.

2) Employs active learning to selectively query experts on uncertain cases.

3) Utilizes abayesian optimization framework to continuously refine its detection thresholds.

A.2.11.3 ASTRAEA: Adaptive Smart conTRact Auto-Evaluation and Auditing

Description: ASTRAEA isacomprehensive Al system that combines multiple machine learning techniques
to continuously adapt and improve its smart contract auditing capabilities [i.56].

Key Features.

1)  Multi-agent reinforcement learning for adaptive testing strategies.

2) Natura language processing for analysing smart contract specifications and comments.
3)  Graph neural networks for detecting complex, multi-contract vulnerabilities.
Continuous I mprovement M echanism:

1) Uses meta-learning to quickly adapt to new types of vulnerahilities.
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2)  Employs continual learning techniques to prevent catastrophic forgetting of old vulnerability patterns.

3) Integrates a knowledge graph that continuously updates with new vulnerability information and exploit
data.

A.3  Examples related to clause 8: Privacy-preserving
techniques

A.3.1 Examples of Federated Learning

A.3.1.1 PySyft

PySyft is an open-source library for secure and private deep learning [i.67]. It extends PyTorch with federated learning,
differential privacy, and encrypted computation capabilities. PySyft is well-suited for projects requiring integration with
PyTorch and strong privacy guarantees.
EXAMPLE: Researchers used PySyft to devel op afederated learning system for predicting hospital
readmissions across multiple healthcare institutions without sharing patient data.

A.3.1.2 Flower

Flower isafriendly federated learning framework designed for flexibility and ease of use[i.68]. It supports awide
range of client devices and ML frameworks. It is well-suited for projects requiring support for heterogeneous client
environments.

EXAMPLE: Researchers used Flower to implement a federated learning system for mobile keyboard prediction
across diverse Android devices.

A.3.1.3 OpenFL

OpenFL is an open-source framework for federated learning, focusing on healthcare and life sciences applications
[i.69]. It provides robust security features and supports various ML frameworks. It is well-suited for healthcare and life
sciences projects with stringent data privacy requirements.

EXAMPLE: A pharmaceutical company used OpenFL to develop a drug discovery model collaborating with
multiple research institutions while keeping molecular data private.

A.3.1.4 FedML

FedML is aresearch-oriented federated learning library that supports various FL algorithms, topologies, and
benchmarks [i.70]. It is designed to facilitate rapid prototyping and experimentation. FedML can be considered for
academic research projects and algorithm devel opment.

EXAMPLE: Researchers used FedML to compare the performance of different federated optimization
agorithms on a multi-institutional medical imaging dataset.

A.3.2 Examples of Differential Privacy in Machine Learning

A.3.2.1 Differentially Private Stochastic Gradient Descent (DP-SGD)

DP-SGD adds calibrated noise to gradients during model training to protect individual data points [i.71].

EXAMPLE: In amedical image classification task, DP-SGD can be used to train a convolutional neural
network on sensitive patient data while providing privacy guarantees.
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[D38] Users of this method can start with alarger privacy budget (epsilon) and gradually decrease it to
find the optimal privacy-utility trade-off.

A.3.2.2 Differentially Private Follow The Regularized Leader (DP-FTRL)

DP-FTRL is an optimization algorithm that provides differential privacy guarantees for online learning scenarios[i.72].

EXAMPLE: In arecommendation system that continuously learns from user interactions, DP-FTRL can be
used to update the model while protecting individual user privacy.

[D39] Users can carefully tune the learning rate and regularization parameters to balance privacy and
model performance.

A.3.2.3 Gaussian Differential Privacy (GDP)

Description: GDP uses Gaussian noise instead of Laplace noise, providing tighter privacy bounds for complex machine
learning models[i.73].

EXAMPLE: In federated learning for mobile keyboard prediction, GDP can be applied to protect user input
data while allowing for personalized model updates.

NOTE 1. Gaussian hoise, also known as Gaussian white noise, is atype of statistical noise characterized by a
probability density function that follows a normal (Gaussian) distribution. In the context of machine
learning and deep learning, Gaussian noise is often intentionally added to training data or model
parameters as a regul arization technique to improve generalization and robustness of models.

NOTE 2: Laplace noiseisatype of statistical noise that follows a Laplace distribution. It iscommonly used in
differential privacy applications, particularly in the Laplace mechanism for achieving differential privacy.

[09] GDP can be used when dealing with high-dimensional data or when requiring tighter composition
theorems.

A.3.3 Examples of Generative Adversarial Networks (GANSs) for
synthetic data generation

A.3.3.1 Privacy-Preserving Synthetic Data Generation Using Conditional
GANs

Conditional Generative Adversarial Networks (CGANS) have emerged as a powerful tool for privacy-preserving
synthetic data generation. Here's an elaboration on how CGANSs can be used to preserve privacy while generating
synthetic data[i.74]. By leveraging CGANSs for synthetic data generation, PDL systems can enhance their data sharing
and analysis capabilities while maintaining robust privacy protections for sensitive information.

1) Concept:
CGANSs extend the traditional GAN architecture by conditioning both the generator and discriminator on
additional information. This allows for more controlled and targeted data generation.

2) Privacy Preservation:
By training on real data but only releasing synthetic data, CGANSs can help preserve the privacy of individuals
in the original dataset. The generated data maintains statistical properties of the original data without exposing
actual records.

3) Application to PDL Systems:
In Permissioned Distributed Ledger (PDL) systems, CGANSs can be used to generate synthetic transaction data,
user profiles, or network behaviours that mimic real patterns without exposing sensitive information.

4) Advantages.

- Data Utility: Synthetic data generated by CGANSs can be used for analysis, testing, and model training
while protecting individual privacy.
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- Customization: The conditional aspect allows for generation of specific types of data or scenarios.

- Differential Privacy Integration: CGANs can be combined with differential privacy techniques for
additional privacy guarantees.

[D40] Users can consider using Conditional GANs when strict privacy guarantees are required for

sensitive data.

A.3.3.2 TabFairGAN: Fair Tabular Data Generation with Generative

Adversarial Networks

TabFairGAN is an advanced approach to generating synthetic tabular data while addressing fairness concerns|[i.75].
TabFairGAN represents a significant advancement in fair synthetic data generation, particularly valuable for
applications in sensitive domains like finance, healthcare, and human resources where both data privacy and fairness are
crucial concerns.

1)

2)

3)

4)

5)

6)

7)

8)

Purpose:
TabFairGAN is designed to generate synthetic tabular data that maintains the statistical properties of the
original data while ensuring fairness across protected attributes (e.g. race, gender, age).

Architecture:
It extends the Conditional Tabular GAN (CTGAN) architecture by incorporating fairness constraints into the
training process.

Fairness M echanisms:

- Incorporates a fairness regularizer in the loss function of both generator and discriminator.
- Uses a conditional vector to control the generation of sensitive attributes.

- Employs a fairness critic network to assess and improve the fairness of generated data.
Applications:

- Creating balanced datasets for machine learning model training.

- Testing Al systems for bias without exposing real user data.

- Generating representative datasets for research while preserving privacy.

Advantages:

- Produces high-quality synthetic data that closely mimics real data distributions.

- Addresses multiple fairness metrics simultaneously (e.g. demographic parity, equal opportunity).
- Allows for fine-tuning of the fairness-utility trade-off.

Challenges:

- Balancing data utility with fairness constraints.

- Ensuring the generated data does not introduce new biases.

- Computational complexity in handling multiple fairness criteria.

I mplementation:
The authors provide an open-source implementation of TabFairGAN, allowing researchers and practitionersto
apply and extend the method.

Evaluation:
The paper in reference [i.75] demonstrates that TabFairGAN outperforms existing methods in terms of both
data quality and fairness metrics on several real-world datasets.

[010] This method could be used when fairness and bias mitigation are important considerations in your

synthetic data generation process.
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A.3.3.3 SynSig: Generating Synthetic Signatures for Large-Scale Time
Series Anomaly Detection

SynSig is an innovative approach to generating synthetic data for improving anomaly detection in time series data
[i.76]. SynSig represents a significant advancement in synthetic data generation for time series anomaly detection,
offering a powerful tool for improving the robustness and effectiveness of anomaly detection systemsin various
domains.

1) Purpose
SynSig is designed to generate synthetic anomaly signatures for time series data, particularly useful in
scenarios where real anomaly datais scarce or difficult to obtain.

2) Architecture:
SynSig uses a Generative Adversarial Network (GAN) framework specifically tailored for time series data.
The generator creates synthetic anomaly signatures, while the discriminator tries to distinguish between real
and synthetic anomalies.

3) Key Features.
- Anomaly-awar e gener ation: The model is trained to generate diverse and realistic anomaly patterns.

- Temporal coherence: Ensures that generated anomalies maintain the temporal characteristics of real
time series data.

- Scalability: Designed to handle large-scale time series datasets common in industrial and 10T
applications.

4) Applications:
- Industrial systems monitoring.
- Network traffic analysis.
- Financial fraud detection.
- loT sensor data anomaly detection.
5) Advantages:
- Addresses the class imbalance problem in anomaly detection datasets.
- Enables better training of anomaly detection models by providing more diverse examples.
- Allows for the creation of benchmark datasets for eval uating anomaly detection a gorithms.
6) Methodology:
- Uses a conditional GAN architecture to generate anomalies based on specific input conditions.
- Incorporates domain knowledge to ensure generated anomalies are realistic and meaningful.
- Employs a novel loss function that balances anomaly realism with diversity.

7) Evaluation:
The authors demonstrated that anomaly detection models trained on datasets augmented with
SynSig-generated anomalies outperformed those trained on original datasets alone, showing improved
precision and recall.

8) Challengesand Considerations:
- Ensuring that generated anomalies do not introduce fal se patterns that could mislead detection models.
- Balancing the trade-off between anomaly diversity and realism.

- Adapting the approach to different types of time series data and anomaly patterns.
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[O171] This approach could be considered for generating synthetic time series data, especially when
anomaly detection is a key application.

A.4  Examples related to clause 11 (Identity management
using Al)

A.4.1 Al-Powered Facial Recognition

A.4.1.1 Description

Al-powered facial recognition technology isincreasingly used in digital onboarding processes to enhance security and
prevent fraud. This technology verifies user identities by comparing live facial images with stored identity documents,
ensuring that the person presenting the ID is its legitimate owner.

This example highlights how Al-powered facial recognition can be effectively integrated into customer onboarding
processes to enhance security and efficiency while maintaining compliance with regulatory standards [i.98].

A.4.1.2 Use Case

A financial ingtitution implements Al facial recognition as part of its Know Y our Customer (KY C) process. During
customer onboarding, the system captures a live image of the applicant's face and matches it against the photo on their
submitted government-issued ID. This process hel ps verify the user's identity remotely, reducing the risk of identity
fraud and streamlining the onboarding process.

[D41] Organizations can ensure that their facial recognition systems comply with privacy regulations and
incorporate additional biometric checks, such as liveness detection, to prevent spoofing attacks.

A.4.2 Al-Powered Document Verification System

A.4.2.1 Description

A document verification system uses Convolutional Neural Networks (CNNSs) in combination with Optical Character
Recognition (OCR) and feature matching algorithms to authenticate identity documents and detect forgeries. This
example demonstrates how machine learning a gorithms can be effectively used to verify the authenticity of identity
documents and detect forgeries, improving the security and efficiency of identity verification processes.

The document verification system described by Jhankar M oolchandani, Rinki Pakshwa, and Kulvinder Singh (2024)
[1.99] isan Al-powered approach to authenticate identity documents and detect forgeries. This system represents a
significant advancement in automated document verification, combining multiple Al and computer vision techniques to
provide arobust solution for identity document authentication.

NOTE: A Convolutional Neural Network (CNN) is atype of deep learning algorithm specifically designed for
processing structured grid data, such asimages.
A.4.2.2 Key components
1) Convolutional Neural Network (CNN) for document classification and feature extraction.
2) Optical Character Recognition (OCR) for text extraction and validation.
3) Oriented FAST and Rotated BRIEF (ORB) agorithm for image feature matching.

NOTE 1: Features from Accelerated Segment Test (FAST) is a corner detection method used to identify key points
in animage. It is designed to be computationally efficient, making it suitable for real-time applications.
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NOTE 2: Binary Robust Independent Elementary Features (BRIEF) is a feature descriptor used to describe the key
points detected by FAST. It creates a binary string representation of an image patch, which can be used
for efficient matching.

NOTE 3: Oriented FAST and Rotated BRIEF (ORB) isafast and efficient alternative to existing feature detection
methods, combining a modified FAST detector with an orientation component and a modified version of
the BRIEF descriptor.

A.4.2.3 Process

The system first uses a CNN to classify the type of identity document (e.g. passport, driver's license, national ID card):
1) OCRisapplied to extract text fields such as name, date of birth, and document number.

2) The ORB agorithmis used to detect and match visual security features like holograms, watermarks, and
microprint.

3) Theextracted information is compared against a database of valid document templates and known security
features.

4)  Machine learning models analyse the extracted features to detect signs of tampering or forgery, such as
inconsistent fonts, altered images, or mismatched security elements.

A.4.2.4 Performance

In tests, this system achieved an accuracy of 98,5 % in correctly classifying document types and a 97 % successratein
detecting forged or tampered documents. Recommendation: Implement this type of Al-powered document verification
system to enhance the accuracy and efficiency of identity document authentication processes, particularly in
high-volume or remote verification scenarios.

A.4.3 Anomaly Detection: Al-Powered Behavioural Biometrics for
Continuous Authentication

A.4.3.1 Description

An Al system uses behavioural biometrics to continuously authenticate users by analysing their unique patterns of
interaction with devices and applications. The system monitors factors like typing rhythm, mouse movements,
touchscreen gestures, and app usage patterns to create a behavioural profile for each user

The article by Abuhamad et al. (2021) provides a comprehensive survey of sensor-based continuous authentication and
identification methods [i.100]. While the article does not present a single anomaly detection method, it covers various
approaches that use behavioural biometrics for continuous authentication and provides a comprehensive overview of the
state-of -the-art in sensor-based continuous authentication, which is fundamentally an anomaly detection problem in the
context of user behaviour. This example demonstrates how Al-powered anomaly detection can be used to identify
potential identity theft or fraud by continuously monitoring user behaviour for unusual patterns.

A.4.3.2 Examples

1) Keystroke Dynamics. Al models can analyse typing patterns, including speed and rhythm, to continuously
verify user identity.

2) Mouse Movement Analysis: Machine learning algorithms can authenticate users based on their unique mouse
movement patterns.

3) Voice Recognition: Al-powered voice analysis can provide ongoing verification during voice-based
interactions.
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A.4.3.3 Application
1) TheAl establishes a baseline behavioural profile for a user over time.

2)  During each session, the system continuously compares the user's current behaviour to their established
profile.

3) If significant deviations from the normal pattern are detected, the system flags the activity as potentialy
fraudulent.

4)  For example, if a user who typically types slowly and deliberately suddenly exhibits rapid, erratic typing, or if
their mouse movement patterns change dramatically, the system could trigger additional authentication steps
or aert security teams.

A.4.3.4 Key Advantages
1) Provides continuous, passive authentication without disrupting user experience.
2)  Can detect sophisticated attacks like account takeovers that bypass traditional authentication methods.

3) Adaptsto gradual changesin user behaviour over time, reducing false positives.

A.5 Examples and recent research related to clause 12
(Al-Assisted PDL Interoperability)

A.5.1 Al-Facilitated Cross-Chain Communication and Data
Exchange

A.5.1.1 Examples of Al applications in cross-chain communication
Examples of Al applicationsin cross-chain communication include:

1) Protocol Trandation: Al models can be trained on the specifications of different blockchain protocols to
create automatic trandlation layers. For instance, a neural machine transdlation model could be adapted to
convert transaction formats between Bitcoin and Ethereum networks.

2) Semantic Interoperability: Knowledge graphs and ontology |earning techniques can be used to map concepts
and relationships across different blockchain ecosystems, enabling meaningful data exchange. This approach
can help in translating smart contract terms and conditions across different platforms.

3) Cross-Chain Data Validation: Deep learning models can be employed to verify the integrity and authenticity
of data being transferred between chains. These models can learn to recognize patterns of valid transactions
and flag potential anomalies or malicious activities.

A.5.1.2 Recentresearch in this area
Examples of Al applicationsin cross-chain communication include:

1) Wangetal. (2021) proposed a cross-chain interoperability framework based on federated learning, allowing
multiple blockchain networks to collaboratively train Al models for improved cross-chain communication
without sharing sensitive data [i.102].

2) Zhang et a. (2022) developed an Al-driven cross-chain oracle system that uses ensemble learning to aggregate
and validate data from multiple blockchain sources, enhancing the reliability of cross-chain information
exchange [i.103].

3) Liuetal. (2023) introduced a transformer-based model for automatic smart contract trandation between
different blockchain platforms, facilitating the migration of decentralized applications across chains[i.104].
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A.5.2 Examples of Al applications in Smart Routing of
Transactions Between Different Ledgers

A.5.2.1 Reinforcement Learning for Optimal Path Finding

RL agents can be trained to find the most efficient routes for cross-chain transactions by interacting with a simulated
multi-chain environment. For instance, a study by Wang et al. (2022) demonstrated a reinforcement learning approach
that reduced cross-chain transaction costs by 15 % compared to static routing methods [i.105].

A.5.2.2 Predictive Analytics for Network Congestion

Machine learning models can forecast network congestion across different blockchains and adjust routing strategies
accordingly. Zhang et a. (2023) developed a predictive model using LSTM networks that accurately forecasted
congestion on major blockchain networks up to 30 minutes in advance, allowing for proactive route adjustments [i.106].
A.5.2.3 Federated Learning for Collaborative Routing Optimization

Multiple blockchain networks can collaboratively train routing models without sharing sensitive data. Liu et a. (2021)
proposed a federated learning framework for cross-chain routing that improved transaction success rates by 8 % while
preserving the privacy of individual network data[i.107].

A.5.2.4 Graph Neural Networks for Dynamic Topology Analysis

GNNs can be used to analyse the evolving topology of interconnected blockchain networks and identify optimal routing
paths. A study by Chen et a. (2024) showed that a GNN-based routing system could reduce cross-chain transaction
latency by up to 25 % compared to traditional routing algorithms[i.108].

A.5.2.5 Multi-Agent Systems for Decentralized Routing

Multiple Al agents representing different blockchain networks can negotiate and coordinate to find optimal routing
solutions in a decentralized manner. Nakamoto et a. (2023) demonstrated a multi-agent system that achieved
near-optimal routing efficiency while maintaining the decentralized nature of cross-chain interactions[i.109].

A.5.3 Additional Scenarios and Examples

A survey by Belchior at al. (2021) provides additional scenarios and examples[i.110].

1) Al-Powered Cross-Chain Asset Swaps:
Use machine learning algorithms to determine optimal swap rates and paths for cross-chain asset exchanges.

EXAMPLE 1: Implement aneural network that predicts the most favourable exchange rates and liquidity pools
across multiple DEXs on different blockchains.

2) Intéligent Cross-Chain Identity M anagement:
Utilize Al to create and manage unified digital identities across multiple blockchain networks.

EXAMPLE 2:  Develop afederated learning system that allows multiple blockchains to collaboratively train an
identity verification model without sharing sensitive user data.

3) Al-Driven Cross-Chain Gover hance:
Employ Al to facilitate decision-making processes that span multiple blockchain networks.

EXAMPLE 3: Use natural language processing and sentiment analysis to aggregate and analyse governance
proposals from different blockchain communities.
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4)  Adaptive Cross-Chain Security Protocols:
Leverage Al to dynamically adjust security measures for cross-chain transactions based on real -time threat
assessments.

EXAMPLE 4:  Implement areinforcement learning agent that optimizes security parameters for cross-chain
bridges based on historical attack patterns and current network conditions.

5) Al-Enhanced Cross-Chain Oracle Networks:
Use Al to improve the accuracy and reliability of cross-chain oracle networks.

EXAMPLES: Develop amachine learning model that detects and filters out anomal ous data points from multiple
blockchain oracles before aggregating the information.

A.6  Examples and recent research related to clause 13
(Al based PDL Scalability solutions)

A.6.1 Developing More Efficient Scaling Solutions using Al

A.6.1.1 Adaptive Consensus Optimization
Reinforcement learning algorithms can dynamically adjust consensus parameters based on network conditions. For

instance, Wang et a. (2020) proposed a deep reinforcement learning approach that optimizes block size and interval in
real-time, improving throughput by up to 35 % compared to static configurations [i.111].

A.6.1.2 Intelligent Sharding
Al can enhance sharding techniques by predicting optimal shard sizes and compositions. Zhang et al. (2023) devel oped

agraph neural network-based model that dynamically adjusts shard boundaries, reducing cross-shard transactions by
28 % and improving overall network performance[i.112].

A.6.1.3 Smart Contract Parallelization
Machine learning models can analyse smart contract dependencies to identify opportunities for parallel execution. Liu

et al. (2021) introduced an Al-driven parallelization framework that increased smart contract execution speed by up to
3x on complex PDL applications [i.113].

A.6.1.4 Predictive Caching

Al models can predict frequently accessed data and optimize caching strategies. Chen et al. (2024) demonstrated a deep
learning approach for predictive caching in PDL networks, reducing dataretrieval latency by up to 40 % in high-load
scenarios[i.114].

A.6.1.5 Network Topology Optimization

Graph neural networks can be used to optimize the PDL network topology for improved scalability. Nakamoto et al.

(2023) proposed an Al-driven topology optimization algorithm that reduced average transaction confirmation times by
22 % inlarge-scale PDL simulations[i.115].
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A.6.2 Dynamic Sharding Based on Network Traffic and Usage
Patterns

A.6.2.1 Predictive Sharding

Al models can forecast future network loads and proactively adjust shard configurations to maintain optimal
performance. For instance, Wang et a. (2022) proposed a deep learning-based predictive sharding system that uses
LSTM networks to forecast transaction volumes and dynamically adjusts shard sizes, reducing cross-shard transactions
by 23 % compared to static sharding approaches[i.116].

A.6.2.2 Adaptive Shard Allocation

Machine learning a gorithms can dynamically alocate nodes to shards based on their historical performance and current
network conditions. Zhang et a. (2023) developed a reinforcement learning-based shard alocation system that
optimizes node assignment in real-time, improving overall network throughput by 18 % in large-scale PDL simulations

[i.117].

A.6.2.3 Intelligent Cross-Shard Transaction Management

Al can optimize cross-shard transaction routing and execution to minimize communication overhead and improve
overall system throughput. Liu et al. (2021) introduced a graph neural network-based approach for cross-shard
transaction scheduling that reduced latency by 30 % compared to traditional heuristic methods [i.118].

A.6.2.4 Anomaly-Aware Sharding

Al models can detect anomalies in network behaviour and adjust sharding strategies accordingly to maintain security
and performance. Chen et a. (2024) demonstrated an anomaly-aware dynamic sharding system using unsupervised
learning techniques, which improved resilience to targeted attacks by 40 % while maintaining high throughput [i.119].

A.6.2.5 Federated Learning for Collaborative Sharding

Multiple nodes or organizationsin a PDL network can collaboratively train sharding models without sharing raw data,
addressing privacy concerns. Nakamoto et a. (2023) proposed a federated |earning framework for dynamic sharding
that enabled privacy-preserving collaboration between multiple PDL networks, improving overall sharding efficiency
by 25 % [i.120].

These Al-driven approaches to dynamic sharding offer significant improvements over traditional static or rule-based
methods, enabling PDL systems to adapt more effectively to changing network conditions and usage patterns.

A.6.3 Additional Scenarios and Examples

A survey performed by Xie et al. (2022) provides additional scenarios and examples[i.121].

1) Al-Powered Consensus Optimization:
Use machine learning to dynamically select and tune consensus algorithms based on network conditions and
security requirements.

EXAMPLE 1. Implement areinforcement learning model that switches between different consensus mechanisms
(e.g. PBFT, Raft, Tendermint) based on network size, transaction volume, and threat levels.

2) Intéelligent State Management:
Leverage Al to optimize state storage and retrieval in PDL systems.

EXAMPLE 2:  Develop adeep learning model that predicts which parts of the state are likely to be accessed soon
and preemptively loads them into faster storage tiers.
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3) Al-Enhanced Layer 2 Solutions:
Use Al to improve the efficiency and security of Layer 2 scaling solutions like sidechains or state channels.

EXAMPLE 3: Implement a machine learning model that optimizes the timing and content of state commitments
to the main chain, balancing security and efficiency.

4)  Adaptive Network Topology:
Employ Al to dynamically adjust the network topology for improved scalability.

EXAMPLE 4: Use agraph neural network to analyse node connectivity patterns and suggest topology changes
that minimize network diameter while maintaining security properties.

5) Smart Contract Parallelization:
Utilize Al to automatically parallelize smart contract execution for improved throughput.

EXAMPLES5: Develop an Al system that analyses smart contract dependencies and automatically generates
execution plans that maximize parallel processing opportunities.
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