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1 Scope 
The scope of the present document is to specify the self-organizing control and management planes for the Next 
Generation Protocols (NGP), Industry Specific Group (ISG). 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-
it-racism/. 

[i.2] https://www.thesun.co.uk/tech/4141624/facebook-robots-speak-in-their-own-language/. 

[i.3] Reed S, Akata Z, Yan X, et al.: "Generative adversarial text to image synthesis", in ICML 2016. 

[i.4] Oord A, Dieleman S, Zen H, et al.: "Wavenet: A generative model for raw audio", 
arXiv:1609.03499, 2016. 

[i.5] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton: "Deep learning", in Nature 521.7553 (2015): 
436-444. 

[i.6] Kingma D P, Welling M.: "Auto-encoding variational bayes", in ICLR 2014. 

[i.7] Goodfellow, Ian, et al.: "Generative adversarial nets", in NIPS 2014. 

[i.8] Cisco White Paper. 

NOTE: Available at https://www.cisco.com/c/en/us/products/collateral/routers/wan-automation-
engine/white_paper_c11-728552.html.  

[i.9] https://arxiv.org/abs/1701.07274. 

[i.10] ETSI TR 121 905: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal 
Mobile Telecommunications System (UMTS); LTE; Vocabulary for 3GPP Specifications 
(3GPP TR 21.905)". 

[i.11] ETSI TS 136 401: "LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); 
Architecture description (3GPP TS 36.401)". 

https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/
https://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/
https://www.thesun.co.uk/tech/4141624/facebook-robots-speak-in-their-own-language/
https://www.cisco.com/c/en/us/products/collateral/routers/wan-automation-engine/white_paper_c11-728552.html
https://www.cisco.com/c/en/us/products/collateral/routers/wan-automation-engine/white_paper_c11-728552.html
https://arxiv.org/abs/1701.07274
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3 Abbreviations 
For the purposes of the present document, the abbreviations given in ETSI TR 121 905 [i.10] and the following apply to 
scenarios that include mobile network architectures: 

3GPPTM 3rd Generation Participation Project 
AI Artificial Intelligence 
DHCP Dynamic Host Configuration Protocol 
E-W East and West (direction) 
IDN Intelligence-Defined Network 
IETF Internet Engineering Task Force 
IP Internet Protocol 
ISG Industry Specific Group  
ML Machine Learning 
NE Network Element 
NGP Next Generation Protocols 
NMS Network Management System 
N-S North and South (direction) 
OAM Operation And Management 
OSPF Open Shortest Path First 
QoE Quality of Experience 

4 Overview 
The Next Generation Protocols (NGP), ISG aims to review the future landscape of Internet Protocols, identify and 
document future requirements and trigger follow up activities to drive a vision of a considerably more efficient Internet 
that is far more attentive to user demand and more responsive whether towards humans, machines or things. 

A measure of the success of NGP would be to remove historic sub-optimised IP protocol stacks and allow all next 
generation networks to inter-work in a way that accelerates a post-2020 connected world unencumbered by past 
developments. 

The NGP ISG is foreseen as having a transitional nature that is a vehicle for the 5G community and other related 
communications markets to first gather their thoughts together and prepare the case for the Internet community's 
engagement in a complementary and synchronised modernisation effort. 

Therefore NGP ISG aims to stimulate closer cooperation over standardisation efforts for generational changes in 
communications and networking technology. 

The present document focuses on proposing a new Intelligence-Defined Network (IDN) architecture and a gap analysis 
of current architectures. The intelligence technologies can learn from historical data, and make predictions or decisions, 
rather than following strictly predetermined rules. On one hand, the IDN can dynamically adapt to a changing situation 
and enhance its own intelligence with by learning from new data. On the other hand, IDN can also aim at supporting 
human-based decision by pre-processing data and rendering insights to users through advanced user interfaces and 
visualisations. The integration with various network infrastructures, such as SDN, NFV&MANO, intelligence router, 
traditional router, is in the scope of the present document. 

5 Background 

5.1 Continuous Evolution of Network 
The development of network is continuously evolving process. In different stages, the network faces to various and 
different complexity problems. Therefore, the operating and management methodologies are also various.  
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Figure 1: Three Stages Development 

As Figure 1 shows, early networks are referred as Manually Defined Network. In such networks, the OAM basic 
approach is network planning, CLI configuration and network optimization. All the operations are fully human driven. 
Since the administrator needed to configure and control each device individually, the complexity and the cost of OAM 
was very high.  

Along with the development, the scale of network and service became larger and larger. The OAM requirement has also 
increased. Due to the high degree of required control degree of requirement, a virtual control layer was developed. This 
layer supports batch operation of low layer devices, which improves the efficiency significantly. Because of the divide 
of control layer and forwarding layer, the configuration and controlling operation is implemented by south and north-
bound cooperation. Southbound typically uses Netconf/YANG, OpenFlow, etc. to configure the network forwarding, 
policies, etc. Northbound abstracts the functionalities for application requirements, thus deriving the forwarding table 
and policies, etc. With this paradigm, the entire network was transformed to become semi-automatic. Many operations 
can be executed automatically and the administrator is only responsible for decision making. 

Currently, the network undergoing a new transformation towards Intelligence-Defined Network (IDN). Since the 
network problems evolve to more complex, the traditional human decision-making can hardly support the requirements. 
Therefore, the AI methods, which can help for decision making and analysis, are introduced to solve OAM problems. 
The core of IDN is machine learning algorithms and models. The network, traffic and application patterns can be 
modelled by AI methods via learning from the existing data and experiences. It is expected as a full-autonomic system 
that can make decision itself, especially in the common and repeat events that do not need human to judge. This will 
decrease the OAM cost hugely in the future.  

5.2 Functional and Systemic Requirement 
IDN is seen as the next form of network evolution. Comparing with the current state, there are new requirements that 
declare the essential improvements of new approach.  

The first part is functional requirements, which means the IDN approach should own the functions that the previous 
network approaches do not have. For IDN, some of the potential functional requirements are following: 

• Real-time assessment. The IDN approach should provide a consolidated view of the current network status 
including traffic and running applications by providing aggregated and condensed insights. 

• Prediction or inference. The IDN approach should have the ability to predict / infer the oncoming trend of 
network in multiple dimensions, such as inferring the QoS parameter according to the traffic matrix. This 
ability will support the intelligent system to implement proactive operations.  

• Autonomic decision making. The network will not only execute the policies which produced by administrator 
but also autonomously make decision. This is one of the most important reasons that why AI technology is 
introduced into network.  
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• Verification. IDN is not only in charge of taking decisions but also (1) verifies that its own decision are 
properly applied and results in the expected states and (2) can be leveraged to verify that policies derived from 
multiple entities (concurrent IDN algorithms and even users) are coherent. 

• Dynamical configuring ability. For stability consideration, typically operators try to minimize changes on the 
devices. However, one of the purposes of introducing AI technology is to modify the configuration so that 
adapt for the variation of network traffic and state.  

The second part is systemic requirements, which means the IDN approach should own the system level abilities in the 
low layer (or say primordially) that the previous network approaches do not have or cannot easily complement. For 
IDN, the potential systemic requirements are following but not limited. 

• Inherent data collection and orchestration. The current measure method is driven by external command. 
Namely, all the network data is a response (or feedback) of a specific command. The network devices do not 
widely support the actively data upload functions. This leads to at least two problems. The first one is the cost. 
When the measured data volume is large, there is nearly half of the signal messages and transfer time are 
wasted because one data feedback should be potentially triggered by one measure signal. This external trigger 
mechanism may not satisfy the requirements of huge network data collection. The second one is the 
complexity. The current measured factors are few (delay, jitter, loss). Even if in this case, it is hard to obtain 
the accurate data according to simple operations. The intelligent system may handle not only the existing 
factors but also other complex data types. Some of the factors may be hard to measure, such as if the queuing 
length is wanted to know. Furthermore, IDN decision algorithms could also rely on external data for which 
particular connectors are required. This potentially becomes one of the key systemic requirements.  

• Data pre-processing. As multiple sources of data will be leveraged, normalisation techniques it its large sense 
should be used (including data alignment, sanitization). It also concerns the establishment of proper metrics 
(distance, similarities, and dissimilarities) which are in the core of ML algorithms whereas some collected data 
may not be easily mapper to a metric space by nature. 

• Map algorithm to network. There is a huge gap between the current AI algorithms input/output and network 
policy. The former is pure mathematical expression while the latter one tends to be a kind of programmed 
language. If the intelligent system is seen as the mapping of physical network, it is very important to build up 
the "bridge" between the network semantics and algorithm semantics. Different with the process of data 
orchestration, the core problems here is how to generate and delivery the network policies based on the 
mathematical input/output of the algorithm.  

5.3 Rapid Development of Machine Learning Technologies 
Even though the use of Machine Learning technologies is still in its infancy in most fields of networking, it will become 
a much thought for opportunity to enhance network operations and performance in the coming years. This is mostly due 
to the rapid development of Machine Learning (ML) and associated Artificial Intelligence (AI) technologies in other 
fields. 

ML/AI in picture/video/speech recognition as well as big-data analytics in areas such as e-commerce and search have 
evolved to a point where many of the methods and components of building solutions are well enough understood to 
apply them to novel fields - such as networking. 

The ability of developers to rapidly build systems with ML/AI was vastly improved in the last few years through 
common tools such as TensorFlow that took most of the novel and unique complexity of building ML/AI solution into 
those expert built tools/libraries. The layers above those common libraries now become areas of development where 
more and more the subject matter experts (such as networking engineers) will be able to collaborate with data analysts 
to build those ML/AI solutions. 

The performance of both AI/ML learning/training as well as the execution of the trained neural networks has been 
improved radically in the past years and it is expected lot more of these recent developments to proliferate into 
products.  

GPUs (Graphic Processor Units) such as those from NVidia (as leader in the market) have evolved to be equal good 
high-performance parallel execution units for ML/AI training and inference. Algorithms to improve performance of 
execution by more than a factor of 1 000 have been developed in the past years.  
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Low-end ML/AI neural network inference hardware is now being released on products. Product means that these are 
hardware building block that can for example be added to existing low-end CPU chips such as ARM CPUs for 
cellphones and low-end network devices. This hardware can only execute neural networks (this is called inference), but 
not train those neural networks. These accelerators can do inference at minute fractions of the power needed in GPUs. 
The likely first big area where these will be used is speech recognition and translation on mobile phones. 

6 Benefits of Introducing AI into Network 

6.1 Towards Fully Autonomic Network 
A fully autonomic network means that the network contains a closed-loop of "Measure-Analyse-Decide" which can 
realize the whole process autonomically. By means of AI-based learning and optimization techniques, the goal of IDN 
architecture is to learn about its behaviour, the fundamental relation between traffic load, network configuration and the 
resulting performance, understand the target policy set by the network administration, and configure that policy 
efficiently and fully autonomously. The advantage of a fully autonomic network is realizing the closed-loop of 
"Measure-Analyse-Decide", which will minimize the requirements for human administrators. 

Currently, the process of measure, analysis and decision are mainly independent and the cooperation of such processes 
typically relies on humans. The limitation is caused by the lack of analysis ability of network, which is precisely AI 
technology performs really well. While in operation, the IDN architecture will react autonomously to relevant events 
(e.g. a failure, a spike in the traffic, etc.) and change the configuration accordingly. The core of AI technology is 
extracting the patterns (or knowledge) from complex data, in other words, discovering the rules then applying. In 
current, the forwarding process has achieved stateless or stateful full automation while most of the controlling process, 
such as the configuration and optimization, are still manual. The roadmap should be gradual, which starts from the local 
area autonomic to large area and finally to global. As if the development of self-driving, the automatic transformation is 
realized step by step, from such as auto-shift and auto-break. As yet, the AI technology is the one of the most possible 
ways to realize the whole process. During the development, the introducing of the AI technology gradually implement 
the closed-loop of network controlling so that reduce the unnecessary manual operation including coding, configuring, 
simple inference, etc. A fully autonomic network potentially decreases the cost of carriers during management and 
control. It will be benefit for the income in the long term. 

6.2 Response to the challenge of complexity 
AI and most notably Machine Learning (ML) techniques play a central role in the future architecture of networks. By 
means of ML mechanisms, the network behaviour can be learnt to obtain a ML-based model. This model can account 
for any arbitrary network characteristic of interest. As examples the models can characterize the energy consumption of 
the network or understand the relation between the traffic load and external factors such as popular sports events. 

Traditionally network modelling has been done by means of simulation, however ML provides many advantages in this 
regard. First, ML scales very well with complexity and it is able to understand and model non-linear (complex) issues, 
indeed deep neural networks are able to account for multi-dimensional non-linear problems. On the contrary, 
simulations require costly development to model complex behaviour. Second, although training the neural networks is a 
CPU/GPU intensive process, once trained the neural network is very lightweight and fast, actually just a 
multi-dimensional function. However, both developing and running simulations is a costly process. This is relevant 
particularly when using network simulations to optimize the network performance, since each run is CPU intensive. 
And third, ML is able to understand the network (or parts of it) as a black-box and model behaviours even in the 
presence of hidden information. This provides important advantages in the simplification of the measurement process, 
since even in the presence of uncompleted information, ML can produce efficient models. On the other side, simulation 
cannot work with hidden information.  

Along with the growth of scale, very large scale networks become unmanageable without intelligence. Because it is 
hard to formulate or design a rule universal for all.  
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Take the allocation of link resource as an example. According to the calculation with a traditional analytical model, the 
optimal solution for a specific question can be obtained with a long time computing. More often, the computing time is 
perhaps longer than transmitting the data via the worst link, which is meaningless. The Machine Learning (ML) based 
method can use the trained model and quickly output an approximate optimal solution according to various network 
parameters as input. This operation can continually adjust and optimize the solution. In general, any questions can be 
calculated and obtain a theoretical optimal solution by accurate and comprehensive calculation. However, the cost may 
be far smaller than the benefit, for example, the time for calculating an optimal route for a flow maybe far longer than 
the delay detouring few of congesting links. The birth of ML method is aiming to solve the complex issues according to 
analysing the huge amount of historic data and extracting the hidden rules behind the issues. The complexity actually 
lies on two aspects: the complexity of data to handle in terms of volume, heterogeneity, accessibility and even veracity 
and the complexity of problems to solve which are nowadays multi-faceted and try to accommodate multiple and 
sometimes partially antagonist objectives. The traditional network modelling and optimization techniques may perform 
unsatisfactorily since they are not inherently designed for such big data scenario. However, the introducing of AI 
technology potentially becomes a sharp weapon to deal with the complex network issues. 

6.3 Response to the challenge of variation 
The AI technology brings learning-based adaptability and flexibility. Actually, the machine learning based algorithm 
upgrade the controlling logic more adaptive. Comparing with experienced parameters from expert, the result of ML is 
more flexible, especially in real-time operation of the network. The supervised training can be used in decision-making 
or classification problems while the unsupervised training is good at extracting the patterns that might be hard for 
human to find. Meanwhile, the experienced parameters (also including decisions or policies) that obtained from experts 
is replaced with adaptive parameters which are controlled and updated by learning algorithm. The ML based 
intelligence technology can make the policy flexible. According to the specific environment, the administrator or 
managing system can train its own model so that to satisfy the diversity. Meanwhile, whether there are any changes in 
the hardware layer of the network, the requirement of user and service will change always, especially behaving in traffic 
character. Base on the machine learning algorithm, the intelligent system can capture data (both network data and 
content data) in real-time and then obtain the feature of the network by distributed or centralized training process. 
Finally, it will modify the parameters to match the requirement of current service. The adaptive ability makes network 
devices configuration match the distribution character of traffic and service so that to utilize the bandwidth flexible. 

Not only to adapt to the change of network, the AI technology but also potentially bring more powerful ability to 
modify the network. For example, in the scenario that virtual topology is defined by software, the AI technology can 
control and modify the virtual network topology so that to satisfy the traffic change and user requirement. The under 
layer technology can be provided by slicing. Due to the introducing of AI technology, the network will be not only 
static but also dynamic, which enables more abilities for the network. Elasticity of networks promoted by SDN and 
NFV can be thus fully enabled by AI-based decisions. 

6.4 Insights of the Network and Improve the Utilization 
The rapid construction and change of the network makes itself complex than ever. The network is developing to a 
dynamically changing black box for the carriers. It is more and more difficult to learn what, where and when the fault 
happened, and eventually trace the root causes and responsible entities. This is paramount of importance since defining 
an appropriate responses, such as a counter-measures, would necessitate the most specific characterization (of the fault) 
to be efficient. The AI technologies might be helpful to this question. By data analysing and visualization, the intelligent 
system may help administrator to monitor and analyse the internal events and try to make them visual and 
comprehensible. Along with the increasing of network scale, the network administrator feels puzzled with the abnormal 
behaviour. Such a visualized system can help administrator to monitor, analyse and understand the internal events and 
even their relations with external indicators, which will improve the network insights dramatically. 
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The operation always faces to the fundamental trade-off between utilization and stability. Face to the uncontrollable and 
complex environment, because of the lack of methods for uncertain and latent elements, big amount of physical 
resource needs to be reserved to prevent the uncertain event happened. The redundancy depends on experience and risk 
control strategy. For example, for ensuring the service level agreement, carriers usually reserve an excess of bandwidth 
resource which may far larger than its real demand to prevent the accident. In other word, exchange utilization for 
stability. The intelligent system can deeply analyse the network in foundation level and utilize the knowledge to 
implement refine control and management. The learned knowledge is helpful for mining the latent factors that influence 
the network so that decrease the uncontrollability, which may help the administrator or decision system avoiding 
excessive waste. Along with the increasing of network scale, the intelligent system can essentially save the physical 
resource and improve the utilization of network and the mix between extending the network capacity with new 
dedicated hardware or accessing to shared cloud-based infrastructures. As an example, defeating link-flooding attacks 
can rely on increasing link capacity or buying a cloud-specific service, each of these solutions having their own costs 
depending on their utilization. 

6.5 To Be Predictive 
Prediction, may be the most important attribute that AI brings since it enables proactive behaviour. According to the 
model learnt from the network data, the prediction-based methods tend to foresee the evolution, such as the traffic load, 
link congestion, failure and all kinds of factors in advance. Take the risk of failure as an example. Whatever how 
precise and smart of calculation, including human brains, the deployed policy will face to the risk of failure. What is 
worse, the increasing number of network policies and their overlap will aggravate the risk. The predictability of network 
(e.g. the prediction of traffic) will enable the evaluation ability of network policy for network management system or 
decision system. By sensing the network state, the AI algorithm can derive the development of network and forecast the 
potential problems, such as traffic peak, congestion, device failure, etc. This will bring significant change for network 
management. The network administrator will always like to predict the problems and pre-process them, which will 
reduce the fault rate and save the repairing cost.  

Another benefit of AI is that it can model the network and provide predictions of the performance before applying a 
particular configuration. This provides many advantages since configurations that reduce the performance and/or are 
unreliable can be avoided before applying it onto the real infrastructure. 

ML methods have many applications in the field of prediction, since they are well-suited to model the dependencies of 
multi-dimensional non-linear behaviours. In this context, ML can help predicting important network parameters. Three 
relevant examples are listed following: 

• Traffic characteristics. An ML-based algorithm can predict the traffic load in the network at different scales. 
First, different spaces can be considered: by individual links, by individual nodes (routers/switches), by 
end-point pairs (traffic matrices), by autonomous systems pairs, etc. The time dimension also affects the 
granularity (per hour, week, month, etc.). This can help preparing beforehand the network to account for such 
load and providing better service. With long-term prediction, this can help network operators to anticipate 
when the load will exceed the capacity and plan ahead future network hardware upgrades. This prediction can 
be based on external events, such as the weather, popular sports events, time-of-day, the load of certain 
services, etc. The same reasoning applies for other traffic characteristics such as latency or jitter.  

• Failures or attacks. It is impossible to propose a system (hardware or software) to work without being faced 
with a failure or an attack. Predicting them is a valuable information to actually prepare proactive-plan by 
increasing redundancy among network equipment. For instance, predictive maintenance is thus also helpful to 
prepare hardware replacement in network. From a security perspective, analysing external indicators can be 
used to focus analysis on certain part of the network or services and thus do predictive security by adjusting in 
real time the security configurations. 

• Prediction can also play a central role in low-level configurations parameters of the data-plane, for instance 
weights of routing protocols can be predicted to achieve optimal performance. 
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6.6 Potential Decision Efficiency 
The introduction of AI technologies brings shorter response time and improve the decision efficiency. The increasing 
service volume has challenge the current decision and deployment system. The machine-assistant decision system is 
becoming the future pattern of network management. The machine learning algorithm can learn the historical decision 
and data then obtain a decision model. This model can provide recommendations or suggestions to the network 
administration regarding the operation of the infrastructure. For instance an AI-based algorithm can learn that a certain 
link is congested periodically and suggest a change in the configuration, or can recommend deploying a new RAN to 
improve the service to the wireless subscribers. On one hand, as mentioned in clause 6.4, these policies can be evaluated 
and own a risk index. When the risk is low enough (high reliable), the policy can be deployed automatically without 
delayed. When the risk is high, the decision system can output a set of solutions as pending suggestions for 
administrator. Essentially, the AI technology replaces the work of human labour in learning and mining the objective 
rules. The network administrator can pay more attention on dealing with the novel problems that machine cannot solve 
immediately or cannot judge accurately. On the other hand, the long-time training process can be executed off-line that 
independent with the network. The parallel training and execution design can avoid the timeliness problem of ML. 
Besides, interaction between humans and ML can be done in a seamless way such that benefit of each other's. Actually, 
a user can limit the searching space of a solution a ML tries to solve by adding her own expertise. In this way, the 
decision efficiency may be improve materially and then drives the improvement of network. 

6.7 Potential Business Model 
The introduction of AI technologies brings greater transmission ability to carriers. From the beginning to now, the 
Internet has experienced from point-to-point communication to asymmetric content delivery. The rise of CDN is the 
best illustration and response to this change. From the view of transmission, CDN enlarges the transmission ability for 
the huge amount of content, which decreases the load of core network and holds up the service requirement. Other 
similar cases are multicast and router cache. Both of them try to reduce the redundant transmission for same content. In 
recent years, live content is another emerging service, which distributes the content sources and challenges the network 
transmission ability and granularity sharply. The huge size of content data needs more power to transfer and the 
increasing distributed degree of users also need more efficient controlling system to drive. Whatever the change of 
business in the future, the general requirements will always orient to greater transmission ability. The network 
intellectualization will potentially force and support the requirements of new service pattern, which help the carriers 
quickly adapting to market changes. 

7 Design Goals of IDN 

7.1 Goal of IDN 
The goal of IDN is introducing AI technology into network so that to further upgrade the automation level of the 
network and improve the automation, robustness, compatibility and universality. 

Intelligent decision is one of the core technologies of IDN. Current network such as SDN also has some decision 
capability. However, that decision capability is very limited and cannot adaptive to diverse situations of network. SDN 
itself is more like a compiler than a decision maker. 

The IDN should open its capabilities to up layer applications, possibly through a standardized interface. This is to allow 
users themselves or third-party developers to easily leverage the AI capability with customized requirements. 

There could be different algorithms and mechanisms to deal with different problems. However, these algorithms and 
mechanisms should be integrated together as one universal platform for different scenarios and applications.  

Ideally, the algorithms/mechanisms should also be de-coupled from specific applications as much as possible so that 
some common function modules could be reused by different tasks. 

No matter how autonomic the networks could be, it is always a requirement that users/administrators need to intervene 
on the networks to make it running as expected, thus, IDN should reserve the user interface. The interface should be as 
simple and abstract as possible.  

Another important principle is that using IDN should not assume users to be experts of relevant technologies  
(e.g. machine learning technology). 
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7.2 Deployment models: Centralized, distributed and Hybrid 
There are various models how intelligent functions can be deployed. Three types, which are centralized, distributed and 
hybrid are considered. These are not absolute and clearly defined but describe the deployment approaches.  

The centralized model tends to aggregate the intelligent functions into fewer devices and centralize the computing, 
analysis and decision making. This model pushes the intelligent entity upward and uses master-slave relations to the 
controlled devices. Due to the high layer position and aggregating functions, the core intelligence point can own the 
best global view and controllability. It is easy and convenient to plan the global policy and optimization. The intelligent 
system is easy to deploy because most of the existing devices do not need to be upgraded. The development work is 
likely easier than in the other models. Less communications between devices needs to be implemented. Complex 
distributed algorithm issues can be avoided. 

The disadvantages of centralized form are mainly from three aspects: 

• The first aspect is heavy centralized load. The centralized intelligence will be responsible for all computing, 
analysing and decision making, which requires extensive storage and powerful computing resource.  

• Single point of failure. Centralized designs may be more vulnerable to a single point of failure and attacks than 
a distributed system. The impact of a successful attack on a system with centralized design can be far greater 
as well.  

• Latency. When control loops cannot be executed locally but have to run through a central system, such loops 
become slower. When such loops need to dynamically adjust actions to a particular set of conditions, the delay 
incurred can cause inaccuracy of those adjustments. This latency will even increase further if the aggregate 
data collected into the central intelligence or the aggregate amount of actions to be sent from the central 
intelligence are throttled by the network performance to/from that central location. 

The distributed form tends to deploy the intelligent functions into each device. Each device may take part in the 
intelligent process and provide the computing and analysing ability as much as possible. Different with the centralized 
models, this framework owns more powerful local processing ability so that any complex problem can be divided into 
numbers of sub-problems and solved by local devices. The single point failure problem can be avoided possibly. 

The disadvantages are from three aspects:  

1) Firstly, many of the existing devices need to be upgraded. Otherwise, the new functions cannot be deployed 
distributed into the low layer devices. 

2) Secondly, the intelligent system is complex. The intelligent functions are deployed into each possible devices. 
Therefore, a perfect distributed system, which can implement the communication, mission distributing and 
convergence, is needed. Otherwise, the distributed intelligent system can hardly run. 

3) Finally, the deeply distributed design tends to fall into local optimization trap. It means that each local area 
produces its own optimal solutions and lack of the global view. The combination of several local solutions 
may perform badly, which has been proved timely in the past years.  

The hybrid form tends to deploy the intelligent functions into both high layer and low layer devices. This form is the 
flexible solution, which aims to avoid the problems occurring in centralized and distributed design. For those functions, 
which requests less analysing and decision, it is suitable for deploying them into the low layer devices. For example, the 
simple traffic classification is suitable to deploy into the router. This will improve the classification efficiency and 
timeliness. However, the path planning work may not suitable to deploy into local devices. Because a mass of path 
information and traffic statistics may be needed and the optimization algorithm need huge CPU support. This work is 
too heavy for local devices.  

The deployment policy will be not universal. It needs to be selected according to the actual situation. The overall 
principles are: 

• High complexity function tends to high layer.  

• Common function tends to low layer.  

• Controlling function tends to be centralized. 

• Data relative function tends to be distributed. 
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The classical example for the tendency to centralization is the evolution in traffic engineering from RSVP-TE to SR 
(Segment Routing). Initially, path calculation was performed in the distributed fashion by every edge-LSR using CSPF 
(Constrained Shorted Path First) and every LSR in the network needed to maintain state about the already reserved 
bandwidth so that these independently operating edge-LSR knew where in the network how much bandwidth was 
available. When it became clear that this approach did not allow to calculate good global optimizations (local 
optimization trap), centralized PCEs where introduced (Path Computation Engines). With only a single central entity 
being aware of the usage of bandwidth, the need for all LSR to know about allocated bandwidth also disappeared, and 
with it the need to use a protocol like RSVP-TE that did signal this allocation. This in result opened the door for 
lightweight forwarding plane operations with SR. It is quite likely that more intelligent algorithms in PCEs will be the 
next step of evolution of these concepts. 

The opposite trend for distribution happens with enterprise networks evolved from leased-line hub & spoke topologies 
to any-to-any connectivity across the Internet, something that today many companies sell as so called SD-WAN 
(Software Defined WAN). Because traffic not passed through a central (hub) site anymore, many intelligent policies 
need to be executed distributed on every branch site, and depending on design of the solution, the determination of 
policy may be distributed or centralized (in which case the resulting solution is a hybrid one). 

7.3 Wired and wireless consideration 
Since fixed telecommunication networks (such as broad band service and traditional fixed voice service, etc.) and 
mobile telecommunication networks are usually separated systems, IDN fitting into fixed networks and mobile 
networks are introduced respectively. 

 

Figure 2: IDN in Fixed Network Scenarios 

As the Figure 2 shown, the basic structure of the IDN is as the following: 

• Upper layer: Applications and the "Network Brain" 

 This layer is application-centric. The "Network Brain" normally does not directly interact with specific 
network devices; it provides data analysis/learning services to a variety of applications, and generate network-
level policies to intervene the network to run as the applications expected.  
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 The core of the Network Brain is mostly composed by a variety of AI relevant technologies such as machine 
learning algorithms, data-mining algorithms, expert systems, etc. 

 As described in clause 6.3, the Network Brain also represents an interface to applications so that developer 
could easily create specific tasks without handling the data analysis/mining/learning by themselves. 

• Middle layer: Network Orchestration and Controlling 

 This layer is to interpret the network-level policies generated by the Network Brain into device-level 
policies/configurations and deliver them to corresponding devices. 

 SDN controller is an instance of the middle layer. 

 Based on the Network Brain generated policies, this layer could make some simple decision by itself so that a 
quick control loop could be formed to control the devices behaviour in a much more efficient way. 

• Under layer: Network Devices 

There are different kinds of network devices: NFV infrastructure, SDN-managed devices, Intelligent Devices (which 
could directly interact with the Network Brain), and Traditional Devices. 

As the Figure 3 shows, the wireless part of IDN is composed of a number of distinct mobile intelligent network decision 
entities. One centralized cross-domain IDN decision entity sits in upper layer. Below it in the network layer reside many 
distributed decision entities. Each of these entities is made up of four key components: wireless data collection, analysis 
& modelling, policy decision, and action verification and application, with these components an intelligent control loop 
can be realized. 

 

Figure 3: IDN in Wireless Network Scenarios 

The IDN architecture will affect mobile network from context awareness, policy control architecture, intelligence 
decentralization and other more aspects, the IDN decision instances can be deployed in the radio access network as well 
as core network, in order to meet future wireless and 5G network diverse requirements. The IDN collects runtime 
network context as well as static parameters from virtualized or physical network functions and infrastructures.  
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Figure 4: New RAN architecture with CU and DU separated 

As Figure 4 shows, in New RAN architecture gNodeB will be divided into Central Unit (CU) and Distributed Unit 
(DU), CU and DU can be defined as follows: 

• Central Unit (CU): a logical node that includes the RAN functions excepting those functions allocated 
exclusively to the DU. CU controls the operation of DUs, and is supposed runs on commodity hardware. 

• Distributed Unit (DU): a logical node that includes, depending on the functional split option, a subset of the 
gNodeB functions. The operation of DU is controlled by the CU, and is supposed runs on proprietary 
hardware. 

Wireless IDN should be either independent entity or be integrated in both CU and DU to enhance those functions 
accomplishment; RAN internal functional split is still under discussion, such Functions similar to E-UTRAN as listed in 
ETSI TS 136 401 [i.11]. 

7.4 Security and Privacy Considerations 
When security relevant decisions are made based on the use of intelligent analytics or automated intelligent decision 
making, care should be taken to understand the new security challenges. When, for example, more intelligent decisions 
are enabled through the collection of ever more data, it needs to be analysed how that potentially enables attackers to 
easier feed data that derails the intelligent system ability to distinguish good from bad behaviour. As [i.1] and [i.2] 
reported, many companies have been puzzled by the unprecedented "attack" that the legal and safe operations and data 
cause unexpected result. The traditional security problems are caused by the bugs in design or implementation. These 
two may become the typical examples of potential new security challenges. The future system should include the ability 
that can deal with the following problems but not limited.  

• Negative Data: the training system should have the ability to recognize data which may induce the system to 
become in an unexpected form on purpose. This problem will be serious in every data-fed system and it never 
happened in the past design.  

• Conflict Data: the training system should have the ability that can recognize the data which may cause 
confliction to the current known strategies or states. This problem may happen when user or device execute its 
private rules in a large and share area unintentionally or intentionally.  

Content data transmitted through network contains private data about users. Whereas AI techniques are powerful tools 
to automate network management functions, systematizing the large collection and processing of data presents some 
risk regarding the privacy of users. Indeed, predicting the location of a mobile users can clearly help in allocating 
resources in a RAN but it is also a privacy breaches. A future AI-based system should take in considerations the two 
following: 

• Limitation of private data. Privacy can be leaked out from collected or post-processed data. Decisions 
algorithms may need it. Thus, any algorithms should clearly specify the mention of information it uses to get 
as input/output and clearly limits according to it. Therefore, acquiring non used data should be excluded. As a 
result, this will prevent to gather potential private information which is not use and also improve the scalability 
of the collection process. Such a limitation has to be also compatible with legislation. 
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• Data security. The IDN architecture should include the necessary mechanisms to avoid unfortunate data 
leakage. First, collected data should be accessible by only specific algorithms that use them in an appropriate 
way. Second, collected data could have a maximum lifetime to be then discarded when being meaningless for 
further processing. Third, the IDN architecture should prevent any algorithms (for instance provided by a third 
party) aiming at discretely supporting private data exfiltration.  

 

Figure 5: Information Flow 

7.5 Multi-objectives Resolution  
Intelligent techniques relying on IA, ML or optimization techniques are able to provide good results only if objectives 
are well scoped and defined. For instance, reducing the network load or latency is a standard objective of traffic 
engineering techniques. However, a network operator usually expects to satisfy several and parallel objectives like 
security and performance. Those can be in fact antagonist and compete to each other. As more individual problems to 
solve are introduced, the global "network brain" may suffer to apply incoherent policies making so impossible to reach 
states expected by AI algorithms. They can continue by refining their decision with reinforcement learning but this will 
continue in the wrong direction. The problem to address in that case is the conjunction of multiple decision algorithms 
which actually needs to be aware of each other. Such awareness can take several form. Algorithms can interact together 
in a pair-wise manner or through a central controller, the brain. The latter can also play the role of an AI orchestrator by 
providing feedback to the algorithms regarding what has been really applied in the network compared to what they 
expect. Hence, continuous learning can be based on valuable data.  

The next question is how to balance priorities between algorithms, e.g. security or performance first. Such a question is 
hardly addressable by fully automated method but one could imagine a global algorithm taking a single objective such 
as reducing costs or increasing the benefit to automatically balance the risk between losing some customers due to 
performance issues or security issues. Legal penalties could be even then included in such a decision algorithm. Such a 
problem is very large and paves the way of opportunities for IA in network as well. This is all the more true with 
multi-tenant scenarios where operators may provide their infrastructures to others who want to build AI-added services 
on top of it.  

8 The proposed IDN Architecture 

8.1 Reference Architecture 
In this clause, a reference Intelligence-Defined Network architecture has been proposed. This architecture can cover, 
explain and support most of the current use cases and scenarios.  
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Figure 6: The reference IDN Architecture 

The under layer is Infrastructure layer, which contains network function, measurement function and terminal/user 
device. The network function stands for the traditional routers, switches and other network devices, which are 
responsible for constructing the network foundations and forwarding data. The Measurement function stands for devices 
that can collect information from the network and various devices. A common approach for the measurement function 
are probe systems, which are deployed among the network in a distributed manner. Besides that, some of the network 
devices integrate the measure function and play two roles. The information may involve but not limited the content 
listed in Table 1. The Terminal/User Device stands for the device that produces and consumes data, which may include 
PC, smart phone, datacentre, content storage server, cloud, etc. Some of the data produced by terminal/user devices is 
measurable. This type of data will be captured by the measurement function. In-network measurement can be done in an 
active or passive manner. In the passive manner, data are directly derived from observations without acting in the 
network. Active measure would request some operations to be achieved such as testing routes or performance. Active 
measurement itself can be controlled by the AI loop to provide enough accurate results to support efficient decision 
making processes. Other types of data that cannot be measured directly by network measurement functions is 
represented as 3rd party datasets, which hopefully can be utilized in the future via 3rd party integration at the intelligence 
layer. Such data can help to consolidate network insights, as for example regarding current threats, but also the future 
configuration of the network, by pre-allocating resources to services gaining in popularity. What is more, the 
Terminal/User Device may also directly control the network function via User Network Interface, which is describe as 
the UNI loop in the following. 

Table 1: Measured Information 

Type Content 
Network Data Delay, Jitter, Packet Lose Rate, Link Utilization, … 
Device Data Device Configuration, VPN Configuration, Slicing Configuration, … 
User Data QoE Feedback, User Information, … 

Data Packet Packet Sample, Packet Character, … 
Other Type …… 
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The middle layer is Control Layer, which contains Control Function, Dataset Aggregation (Function) and 3rd Party 
Dataset. The control function stands for entities that can control, configure and operate devices, especially network 
devices. In SDN, controller and orchestrators are control functions. Traditional network devices such as routers 
integrate the forwarding and control functions (although as of today not with many instances of intelligent control 
functions). Traditional routers therefore include functions from two layers. The control function will most likely only 
perform intelligent inference, but not learn. For example, to execute neural networks, but do not train them. This is only 
an assumption at this time though and may prove to be wrong in the future when training becomes something easier 
defined into the control layer. 

The aggregated dataset function owns the ability to gather, cleaning and tidy the data. The database or database cluster 
is the typical example. Some of the control devices, such as SDN controller, integrate this function. Distributed 
instances aggregate data have also been defined. The network data can be directly sent back to the control function in 
support of network policies. For example, the controller can adjust the flow table according to the local cache which 
collects the network data periodically from the devices in its controlled area. The 3rd party dataset involves the data that 
may be provided by all kinds of applications or services. For example, the content provider may own social contact data 
and the map service provider may own the geographic data. This information does not belong to the network but could 
be very helpful for intelligent analytics and decision making in the network.  

The high layer, which is also the main body of IDN, is the Intelligence Layer. This layer is commonly deployed in the 
datacentre, or large scale computing centre that can support massive storage and computing resources. To the south 
direction, there are two interfaces which provides external data (3rd party data oriented) and internal data (network data 
oriented) access. A data integration component is defined to emphasize the need to adopt format and structure of 
various types of collected information to the needs of the AI Platform. 

The core of the AI Platform are algorithm and model. The AI platform can be built based on the result of the large body 
of research and platform development work that already exists (albeit mostly developed for and deployed with non-
network data). The platform should be agile extensible for future services, therefore a 3rd party Algorithm Interface is 
defined to provide an adaptive developing ability. The user (or a 3rd party) may develop his/her own algorithms and 
upload then onto the AI Platform via a northbound Open Application Interface. Additional Northbound Open 
Application interfaces can also be used to connect other software platforms to the AI Platform to create a cooperation 
between multiple systems (not shown). 

The output of AI Platform is transmitted to the Policy Generator. Since the policy language might be machine readable 
or unreadable, the Policy Generator is responsible for generating the executable commands and connect to the control 
devices. This process refers to the interactions of northbound interface of control devices - which is what often gets 
standardized. Therefore, some of the potential standardization points will be mentioned in the following clauses.  

Figure 7 shows some more example details of the back end (northbound) processing that could go along with the above 
shown AI platform. The core component is network policy task management module. Face to the upper side, it can 
interact with network administrator via the Intelligence Network Task Description API. The network tasks are deployed 
automatically or manually. Face to the underside, it can accept data from the outside or deploy policy to the low layer 
devices via the intelligence Policy & Data Interface (IPDI). The input data will be processed after IPDI and then 
transport to the AI platform. The purple blocks, such as Task Modelling, AI Algorithms and AI Platform, are mainly 
relative with AI technology. The AI platform is mainly responsible for training the model. The task modelling and AI 
algorithms are responsible for storing the trained model. The management module can call the corresponding function 
in these modules to generate the output decision. What is more, the 3rd-party algorithms are also accepted. Network 
clients can upload their own algorithm model into the engine.  
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Figure 7: Back End Components of IDN 

 

Figure 8: Front End Components of IDN 

Figure 8 shows the Front End Components of IDN. From this view, the low layer devices are SDN-enable routers, 
which can be fully controlled by the SDN controller. The controller is divided into two parts. To the upper layer, the 
Network Policy Agent module is responsible for receiving the policy from the IDN engine. Then, the agent will 
generate the details configuration information and push to the Service Deployment module. And finally, the 
SDN-enable routers will be configured by the controller to execute the policy.  

Figure 9 describes the information flow from the network view with the example of residential users. This user accesses 
the network via the home gateway when using in-home networks (wired, wireless) and the cell-tower when using 
3G/4G/5G - e.g. from a mobile handset/tablet. The terminal and home gateway combine the end-system. The ISP 
deployed the probe functions in the network (collect the data of network, such as QoS data) and the home gateway 
(collect the data of user, such as the QoE data), respectively. The former one is objective feedback which is 
measure-based and collect the data periodically and the latter one is subjective feedback which is push-based and collect 
the data randomly.  

A IP latform

Network 
Task

APP 2

Network policy task management 
(Training, decision)

Intelligence Policy & 
Data Interface (IPDI)

Intelligence Network 
Task Description API

Data pre-
processing

Network 
Task

APP 3

Network 
Task

APP 1

AI Algorithms
Task Modeling 3rd-party 

Algorithms

Network 
Clients

Network
Admin

Training 
data set

Back End



 

ETSI 

ETSI GR NGP 006 V1.1.1 (2018-06) 21 

Both of the two sources of data are seen as internal data and will be upload to the intelligent system (brain system). 
Besides that, there may be several 3rd party databases that can provide external data, which is produced by various 
applications. The AI algorithm and model will aggregate these internal and external data then make an optimizing 
policy to improve its service. This policy is translated into the format that controller can read and execute. After the 
policy deployment, the configuration of network devices (routers) will be modified and the route between terminal and 
content server is optimized.  

 

Figure 9: Information Flow 

8.2 Comparing System design 

8.2.1 Overview 

Any network faces to the function deployment problem, which means how to allocate the functions and deploy them 
into different layers and devices. For example, which layer should the routing planning function be deployed? The IP 
network typically deploys the routing algorithm in the forwarding layer so that each router can learn and plan the routes 
via its local information. This is efficient but faces to the lack of optimization in the global area. The SDN network 
tends to deploy the route planning function on the high layer controller to solve the global optimization problem but 
potentially introduces the massive load to the single point. Fortunately, these is no right or wrong answer for this 
problem but only design consideration according to the different scenarios and requirements. In IDN, three key 
indicators have been proposed to describe the function deployment.  

Table 2: Key Indicators 

Indicator Property 
N-S Communication Density (C) 

[0, 1] 
C + D + H = 1 

E-W Communication Density (D) 
Function Divergence (H) 

 

The N-S Communication Density means that how many N-S direction context will be executed in once decision making 
process. The larger of C means the function tends to be deployed upper layer and centralized. This is because if the 
function is deployed and integrated in high layer, the computing and control devices will be isolated from the 
information by the low layer devices. Therefore, it potentially needs more N-S direction information exchange during 
the decision making.  

The E-W Communication Density means that how many E-W direction context will be executed in once decision 
making process. The larger of D means the function tends to be deployed upper layer and centralized. This is because if 
the function is deployed and separated in low layer, the low layer devices need to exchange more information each 
other so that it can obtain the necessary information to make the decision. Take the IP routing algorithm as an example. 
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The function is deployed among all routers in the network. During the route calculation, each router will exchange the 
information with at least all the neighbour routers but no any context with the manage devices (N-S direction devices) 
whatever there is or not. This function can be call fully distributed but not centralized. Take the SDN flow table as 
another example. If the SDN switch want to obtain a next hop for a series of packets, it can only ask the high layer 
controller to calculate and then wait for the configuration. During this process, no any information needs to exchange 
between SDN switches. This function can be call fully centralized but not distributed.  

The Function Divergence means that how many types of devices, which are function independent to each other, will 
join in once decision making process. The larger of H means the function tends to be deployed multiple layer and 
hybrid. This concept may be novel but important. This concept describes the complexity of a function which 
centralization and distribution cannot. Take the route optimization in Figure 9 as an example. If the ISP wants to 
optimize the route service for an end-system, there at least six types of devices in three layers need to take part in. It is 
really difficult to define the optimization function is centralized controlled or distributed controlled. However, the 
hybrid degree describe this well. It is highly hybrid.  

It is necessary to note that the centralized and distributed is not opposite but negative correlative. Any function at least 
needs two independent devices to take part in the process. It is hardly to define a function to be distributed or 
centralized and it is harder in a network. Here the Decision-Making Triangle describes the three relationships well. The 
IDN functions can be also deployed into multiple forms according to the requirements.  

These three key indicators can be expressed in visual three dimensions graph. As Figure 10 shown, there are three 
dimensions to evaluate the design trend of IDN architecture, which are N-S Communication Density (marked as C), 
E-W Communication Density (marked as D) and Function Divergence (marked as H). A Decision-Making Triangle is 
proposed to describe the network function deployment form.  

 

Figure 10: Visual Expression of Function Deployment 



 

ETSI 

ETSI GR NGP 006 V1.1.1 (2018-06) 23 

8.2.2 Distributed Architecture 

 

Figure 11: IDN Distributed Architecture 

Figure 11 shows the schematic diagram of distributed architecture. The intelligent functions are deployed separately in 
multiple layers. The decision function are designed as a layered and tree structure. The lower intelligent system plays a 
slave role and becomes the local proxy of the higher layer intelligent system. In this architecture, the data tends to 
exchange among the devices of same layer or same type. The decision tends to be made in local and downward layer. 
The upward layer intelligent system play two roles. One is managing and organizing its slave systems, including the 
initialization and maintenance work. The other is to agent the communication between downward layer's devices.  

The key advantage of the distributed architecture is the high scalability. Any complex or huge scale problems can be 
divided to multiple devices and each device takes on part of the problems and less pressure. This design potentially 
faces to light single point failure problem along with the increasing of requirement. The disadvantage is the lack of 
global view. Since each part of the network owns the local intelligent system and decision-making ability, the 
combination of several local optimized solution will not be the global optimized solution and this issue can be hardly 
solved.  

Due to the feature of distributed design, the functions, which may have high traffic and repeat works and require low 
global optimization support, are suitable employing this architecture.  

8.2.3 Centralized Architecture 

Figure 12 shows the schematic diagram of centralized architecture. The intelligent functions are deployed centralize in 
few of layers and devices. The decision function are designed as a client-server structure. The lower devices plays a 
client role and simply becomes the data supporter and policy executor of the higher layer intelligent system. In this 
architecture, the data tends to aggregate to the devices of upward layer or different type. The decision tends to be made 
in upward layer and then sent to the downward layer for execution. The upward layer intelligent system plays the server 
role. On one hand, it collects and maintains the important data from the low layer devices. On the other hand, the 
intelligent system provides calculating and analysing ability to the low layer devices. Make the decision and direct other 
devices to execute.  

The key advantage of the centralized architecture is the dominant force. Any complex or huge scale problems can be 
solved by the global view and full information of whole network. The deployment is easier because most of the 
functions are integrated into few of devices. However, this design potentially faces to the heavy single point failure 
problem along with the increasing of requirement. Since most of the calculating work is aggregated to the centralized 
intelligent system device, the high efficiency brings the heavy work load.  
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Due to the feature of centralized design, the functions, which may have some traffic and calculating works and require 
high global optimization support, are suitable employing this architecture.  

 

Figure 12: IDN Centralized Architecture 

8.2.4 Hybrid Architecture 

 

 
Figure 13: Hybrid Architecture 

Figure 13 shows the schematic diagram of hybrid architecture. The intelligent functions are deployed separately in 
multiple layers and multiple types of device. Moreover, these device's function are independent to each other. The 
decision function are designed as a layered and pipeline structure. In each link of the pipeline, the architecture may be 
design to centralized or distributed. Each link gets the result from the upstream link and output the result to the 
downstream link. The responsibility of each link are highly independent to each other. In general, the AI system in each 
layer mainly play the role of backbone that means to integrate the result and organized the decision flow to run around 
in the network.  
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The key advantage of the hybrid architecture is the high flexibility. The AI system is open and easy to access. The 
whole system can be organized as toy block. Every function can be deployed according to its feature and requirement. 
However, this kind of system will be hard to build because massive of data format, interfaces and protocols are needed 
to design. Another serious lack is serious. Since the sub-system input and output only the result from and to the 
upstream and downstream, it is really hard to share the data content between two sub-systems. The hidden relationship 
among the massive data is potentially lost.  

Due to the feature of hybrid design, the functions, which may have high independence and private works and require 
flexible optimization support, are suitable employing this architecture.  

8.3 Controlling Loop  

8.3.1 AI-Enhanced Close Loop 

Figure 14 shows the controlling loop of IDN. One of the aims is to build up a fully automatic decision system that can 
analyse plan and execute the decision, which the close loop ring implements. The data is produced by the device of 
infrastructure layer and transmitted to the dataset. After analysis, the formatted data is transmitted to the intelligent 
system and finally arrived at the AI platform. The AI model and algorithm will deal with the input data and calculate a 
result for current state. The output decision may be translated into a specific data model/format before deploying. After 
the controller execute the decision, the network device configuration will be modified and the network layer is 
optimized. In the whole process, every step is executed automatic and there is no human action taking part in.  

 

 
Figure 14: The Controlling Loop Model 
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Figure 15 has shown an example Use-Cased: Deep Reinforcement Learning-based Routing. An architecture of a fully 
autonomic routing system has been proposed. The system is based on Deep-Reinforcement Learning (DRL) techniques 
[i.9]. DRL uses an agent that interacts with by changing the environment through actions, such actions change the state 
of the environment. The goal of the agent is find the set of actions that puts the environment in a state that maximizes a 
certain reward. In the context of computer networks, the infrastructure can be understood as the environment where the 
agent acts.  

 

 
Figure 15: Use-Case: DRL-based Routing 

Operation: 

In this context the DRL loop (AI-Enhanced Open Loop) operates as follows: 

1) The agent acts upon the network by changing the network routing policy, this can be the weights of the links 
(similarly to OSPF) or the OpenFlow configuration for flow-based routing. This action is applied through the 
SDN controller that transforms the output of the DRL agent into imperative commands that are understood by 
network data-plane elements (e.g. CLI, OpenFlow, etc.). 

2) The network reacts to this change by routing flows through different paths. This fundamentally changes the 
state of the network and results in a different performance.  

3) By means of the monitoring infrastructure, the agent receives the new state of the network. In this particular 
example this is represented by the performance of the network (e.g. per-link utilization and QoS metrics). In 
addition to that the agent is informed about the current Traffic Matrix that the network is forwarding. 

4) During the training phase, the agent has learnt which are the set of actions that will maximize the reward. In 
this case the reward can be understood as the network policy, as an example: 'minimize the delay of the flows 
while load-balance the utilization of the network'. With this, the agent will choose the set of actions that will 
match the performance of the reward function, autonomically managing the routing policy while achieving the 
high-level goals set by the network administrators.  

This loop is repeated for each new Traffic Matrix, where the agent will pick the routing configuration that successfully 
implements the reward (network policy). 
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Training: 

With DRL, training of the agent is achieved by means of exploration. This means that the agent will pick random 
actions to test which is the effect on the environment and the reward. Through this process, the agent builds internally a 
model of the network to maximize the reward. After a certain number of steps, the agent can then operate the network 
autonomically.  

Since the exploration phase (training) may result in the agent applying routing configurations that may render the 
infrastructure down, several approaches can be followed for training: 

1) Simulator/Model: In this case, the agent is first trained with a simulation or model of the real network, once 
training is finished then the agent is deployed online to operate the network. 

2) Expert: In this case the agent is trained by means of an expert, this expert can be a traditional network 
optimization system or a human network administrator. The agent monitors the actions taken by the expert to 
build the internal model, again after training the agent is deployed online. 

Advantages: 

Such approach provides several important advantages with respect to traditional optimization algorithms: 

• Real-time operation: The DRL agent is capable of operating autonomously the infrastructure in real time. On 
the contrary, traditional optimization algorithms require lengthy (and costly) iterative searches to find the 
optimal configuration. This is why typically they do not operate in real-time. 

• Black-box optimization: Existing network optimization techniques are tailored towards a particular goal  
(e.g. load-balance traffic). This means that changing the optimization goal often requires a new network 
optimization technique. With DRL changing the goal just means changing the reward function, but not the 
software of the agent. It is worth noting that a change in the reward function requires re-training the agent. 

• Model-free: Typically network optimization algorithms operate on top of a model of the network, for instance 
a simulator. However, DRL can be trained with the real-infrastructure or, if this is found problematic, by 
means of an expert. 

8.3.2 AI-Enhanced Open Loop 

Even though the intelligent system could implement the fully autonomic controlling, there is still necessary to reserve 
the open interface for human intervention. The information from both External and Internal will influence the decision. 
The open loop may have at least three modes: 

• Firstly, when the machine learning algorithm cannot make a certain optimized decision, the AI platform 
should output several pending solutions for the administrator as choices. The network administrator can simply 
choose one of them or modify some of the parameters before execution.  

• Secondly, the administrator can modify the network configuration when necessary whatever the processing is 
reasonable or not. That means, human's volition is high than machine. 

• Thirdly, the 3rd party application should have an interface to access to the controlling system. As mentioned 
above, the whole intelligent system should be open to the permissible user and service. This can implement the 
system to system communication and cooperation.  
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Figure 16: Use-Case: QoS Monitoring and Recommendation 

Figure 16 is a use-case that exemplifies the AI-Enhanced open loop, in this case Machine Learning techniques are used 
to provide valuable recommendations to the network administrators to improve the overall performance of the network. 

In this case a Deep Generative Model (DGM) (for instance a Generative Adversarial Networks) is used to predict the 
performance of the network given the current traffic matrix. This means that the DGM model is trained to predict the 
QoS values (delay, jitter and losses) of the network when loaded with a particular traffic matrix.  

Operation: 

The system operates as follows: 

1) The Network Analysis platform is monitoring the load of the network by sampling the amount of traffic in 
each of the ingress/egress routers. With this builds periodically the current Traffic Matrix. 

2) The Traffic Matrix is used as input for the DGM, the model has been trained to predict which will be the 
resulting QoS performance of the network for when loaded with a particular Traffic Matrix. 

3) If the predicted QoS parameters are not met (for instance they are above a certain threshold) then the network 
administrator is alerted and recommended to change the network configuration to avoid the QoS-violation. 

Training: 

In order to train the DGM a dataset of tuples <Traffic Matrix, QoS parameters> is constructed, that is a set of examples 
of the performance of the network (QoS) for different set of loads (Traffic Matrices). Machine Learning techniques 
require that such dataset is representative enough to build accurate models.  

In this case training can occur offline using historical values. Since changes on the Traffic Matrix naturally occur while 
the network is in operation, the monitoring system can store such matrices. In addition and for each matrix, the 
monitoring system has to measure the corresponding QoS parameters, once the historical archive is representative 
enough the DGM can be trained. It is worth noting that each model is built for a particular network topology and 
routing configuration, if one of these characteristics changes the model has to be re-trained. 

Advantages: 

Existing techniques for modelling the performance of a network are based either on analytical or simulation techniques. 
Analytical techniques cannot model complex network behaviours, for instance they can model the utilization of the 
network but it is very hard to build a model for the delay in a real network. Simulations can actually model such 
complex behaviour, but this comes at a high development and computational costs. On the contrary, DGM can model 
complex multi-dimensional non-linear behaviours and at the same time once trained, are fast and lightweight. As such, 
DGM are lightweight and accurate techniques that can be effective used to predict the QoS of the network. 
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The cost associated to DGM models are in the training phase, which is typically expensive in terms of computing costs. 
However and for this use-case such costs are incurred offline (training is offline) and not while in operation. 

8.3.3 Traditional Loop 

IDN should be compatible with traditional network control logic and protocols so that the traditional control loop 
should be kept. For example, the current SDN architecture is centralized control and distributed forwarding. The 
controller will collect the key parameters from the under layer network and make a high layer policy. This process 
should be kept in the future IDN architecture.  

8.3.4 Internal Loop 

For efficiency, some of the low layer network functions quickly iterate in local area without long distance interaction. 
For example, the quick reward information between devices may not pass through the high layer devices. That means 
some of the simple intelligent functions will be implemented in the forwarding layer devices. The future intelligent 
router may run the AI algorithms in local and make optimizing decision without the support of high layer system.  

8.3.5 UNI Loop 

The UNI Loop stands for User Network Interface Loop, which is mainly responsible for the interaction between the 
user model and network model. In the future, the terminal will not only play the role of data producer, but also join in 
the network control process via UNI.  

8.4 Core Support Technologies 

8.4.1 Network modelling 

Generative model is a kind of model that often used to model a joint probability distribution over observations in the 
real world. Intuitively, it can generate (high- dimensional) data samples following the underlying unknown data 
distribution, which is learned from a group of collected data samples in the real world. In recent years, with the 
increasing power of deep learning, the generative model develops fast and becomes one of the hottest topic (termed the 
"deep generative model" (DGM)) in the research areas of AI. Due to the fast development of effective training methods 
(including both advanced algorithms and specialized GPU hardware) of ultra-deep neural network from big data, DGM 
exhibits great performance gains in multiple domains. For example, a typical deep generative model has been 
successively applied to generate data samples of highly-complex structures with state-of-art performance, such as 
generating high-quality images [i.3] and human-level speech [i.4] from given text description. Traditional algorithm 
typically requires data modelling and feature extraction by human analysis, which leads to both large overhead of 
human efforts and inaccurate data models. Compared with previous statistics modelling method, the surprisingly high 
performance gains from DGM should be contributed to the high effectiveness of deep neural network on representation 
learning and feature extraction from large amounts of data [i.5].  

DGM typically include the VAE (Variational AutoEncoder) [i.6] and GAN (Generative Adversarial Network) model 
[i.7]. VAE model is built by combining both the power of traditional Bayesian variational inference and deep learning, 
while GAN model is developed by combining the power of game theory and deep learning. By allowing additional 
inputs, they can be extended to the conditional version, named by CVAE and CGAN, respectively. In the computer 
network, a DGM can be used to model some data distribution that are quite challenge for traditional statistic methods, 
such as estimating the traffic demand matrix and path delay. A conditional DGM can further learn how such complex 
data distribution is related to the network measurements.  
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DGM is useful for optimizing the traffic engineering. For example, existing traffic engineering typically adopts the 
strategy of adjusting the flow routing paths to achieve load balancing. Since it is important to ensure the path delay does 
not exceed some SLA criterion (e.g. 90 % end-to-end delay should be less than 100 ms), one key problem involved is 
how to predict the end-to-end delay of specific paths when given a new flow allocation onto them. If this problem is 
well-solved, it becomes easy for a strategy to know a flow should choose which path to go, since the resulted path delay 
under different choices have been well estimated. Traditional methods on this problem requires careful mathematical 
modelling of path delay with queuing theory. However, to make it easy to analyse, such methods need some ideal 
assumptions for the traffic model (e.g. assuming the flow arrives following Poisson distribution), which may not hold in 
real networks. To overcome this issue, the DGM can learn the complex relationship between path delay and traffic 
loads directly from measurement data. Specifically, with the VAE model, one can first measure and collect pairs of 
traffic loads and corresponding path delay in the network. Next, a VAE model can be setup with the input as three parts: 
path delay, traffic loads and a high-dimensional Gaussian variable, while the output is the distribution of the path delay. 
Between the input and output, VAE consists of two neural networks (named the encoder and decoder). Then the 
traditional stochastic gradient descent (SGD) algorithm is employed to train the VAE model using the collected delay 
and traffic data. After training, only the decoder of VAE is used for inference. The decoder has an input of the traffic 
load and a high-dimensional Gaussian variable, while its output is the distribution of the path delay. When given any 
specific traffic load to the input of the VAE decoder, the different samples of the high-dimensional Gaussian variable 
are drawn into the decoder and the decoder output is calculated as samples of path delay. In this way, a probability 
distribution of path delay is obtained and the value of 90 % end-to-end path delay can be easily marked. Other values 
like mean and standard deviation can also be obtained. 

DGM is also a natural application to generate high-dimensional data with highly-complex structures in computer 
network, such as the traffic demand matrix. Traffic demand matrix estimation from several measurements of link loads 
is a key problem in existing core network planning [i.8]. Since it is hard for existing network to directly measure the 
entire traffic demand matrix, current approach requires the estimation based on link measurements (or called the 
"interface traffic") and also full expert knowledge on the network topology/routing rules. This traditional estimation 
process generally requires solving an implicit integer programming problem, and may take quite a long computation 
time when the network scale is large and the routing rules are highly-complex. With the tool of DGM (e.g. GAN), it is 
possible to learn the mapping from a set of link measurements to the distribution of traffic demand matrix. It indicates 
that the DGM not only outputs the estimated traffic demand matrix, but can also display the whole probability 
distribution of the traffic demand matrix due to the inaccurate and incompleteness of the link measurements. After 
training, DGM can do a fast traffic demand inference for a given set of link measurements, which requires only once 
feed-forward computation of the neural network. Specifically, some known traffic demands with corresponding to the 
link loads in the network can be tested firstly. A typical GAN model consists of two neural networks (generator and 
discriminator). The generator in the GAN model is setup with the input of link loads and a high-dimensional Gaussian 
variable, while the output is the generated traffic demand matrix. The discriminator in the GAN model is setup with 
input of the link loads and the generated traffic demand matrix, while the output is the probability of whether the 
generated traffic demand matrix comes from the real traffic distribution. By collecting pairs of the traffic demand 
matrix and corresponding measured link loads, the GAN model can be trained with SGD algorithm. Similar as the VAE 
model, after training, only the generator of GAN is used for traffic demand inference. Since the GAN model is 
well-known to successively learn the inner hidden structure of the generated high-dimensional data in real world [i.3], 
[i.4], it is expected to learn good insights into generating high-dimensional traffic demand matrix following real traffic 
distribution using the clues of link measurements. 

8.4.2 Measurement and Data Orchestration 

This block is responsible for obtaining and storing relevant information for further processing by ML algorithms. 
Actually, this block can be divided into the following sub-blocks: 

• Data acquisition: this consists in gathering data from network or from a third party. Data sources are thus very 
various and can come from the hardware or software infrastructure. This block mainly relies on traditional 
monitoring protocols as well as newly developed ones, when necessary. Depending on the use-case the block 
should monitor the network at packet-level, flow-level or coarser levels. In addition, the configuration of the 
network includes key information to learn the behaviour of the network as well as its elements. 

• Data cleaning: because data can be polluted by badly collected information, invaluable noise due to error or 
fault in the monitoring process itself. Besides, extreme cases can bias the learning process. Such inputs should 
be discarded before being processed for supporting decisions. AI driven algorithms can also be used in this 
task such as outlier detection techniques. 
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• Data sanitization and anonymization: to make the approach compatible with privacy concerns, such a step 
might be required. For example, assuming that the ML application is provided by a third party, the operator 
could not be allowed to reveal sensitive or client-specific information.  

• Data transformation, normalization and scaling: data collected from multiple locations, multiple sources or 
from multiple configurations of probes cannot be seen on the same scale. For example, different sampling rates 
can be applied from different flow collectors. Percentage based values may be more significant than absolute 
values but such a statement is not always true and highly dependent of the use case. Although ML algorithms 
can require specific inputs such as real values, integers, positives or bounded values, produced inputs by raw 
data acquisition could not respect such conditions. Data transformation is thus necessary and, again, AI 
technique can be already applied at this level. For example, methods from Natural Language Processing can be 
leveraged to transform text based data into numerical vectors which represent the most used types of inputs in 
ML. 

• Data aggregation: pre-processing data to combine multiple input instances into a consolidate insight before 
real processing for decisions have multiple advantages. First, it reduces the overhead induces by transmission 
of heavy load of data which can occur when measurement processing and decision algorithms are not 
collocated. Second, the ML process that will analyse consolidated data needs thus to process less data. 
Learning is thus sped up. 

A central aspect of this module is how it represents the data for the upstream functional blocks for processing, learning 
and optimization, in AI this is known as feature engineering. Feature engineering is the process of creating data 
representations (features) of the computer network data (e.g. regarding traffic, configuration, etc.) that makes ML 
algorithms work. Without proper representations of the data, such algorithms do not operate efficiently. Although some 
automatic techniques exist (e.g. auto-encoders), this process is typically carried by experts in the field. Feature 
engineering actually may span over multiple sub-blocks described above. For example, if feature engineering is guided 
by a human, this impact from the first step that defines the data to be collected. In case of an automated selection of 
features, the rationale is to collect as much as possible of initial data which are then transformed into a limited sets of 
features. 

Other well-established applications of Machine Learning have already developed features to represent their data, 
consequently an important effort is needed to carry this work in the computer network domain, finding ways to 
represent traffic flows, routing configuration, network policies, etc. Standardizing such features is central for the 
interoperability of different implementations of the IDN architecture.  

9 Potential Standardization Works  

9.1 Overview 
In this clause, the potential standardization opportunities in IDN have been analyzed. The following points not only 
service to IDN but also available in other area. Figure 17 shows the overview of potential standardization points.  
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Figure 17: Potential Standardization Points Overview 

9.2 Measurement 
The intelligent system needs massive data to feed and support to formulate the policy and decision. Therefore, the 
measurement should be satisfy the data requirement of IDN.  

Firstly, there may be higher-level requirement for the existing measuring technology. The high timeliness is one of the 
potential point. The IDN's control function needs accurate, global and highly real-time network data support.  

Secondly, the IDN may need more kinds of data type to measure. Not only the service-oriented data, such as delay, 
jitter and packet loss rate, but also other new necessary parameters. For example, is it possible to measure the QoE of 
user? Or is it possible to measure the flow continuity? So far as to measure how many 10 Mb/s links can be provide 
from a specific router to the destination and how many slicing resource can be provided? The flow-based parameter 
measurement may become important in the future.  

Thirdly, the current measuring method may become the alternate way for the legacy device, which cannot provide the 
proactive data upload ability. This will be a complement solution during the transition period.  

9.3 Data Centric standards 
Not all data can be used in AI system training or execution. The data should be formatted, program readable, 
explainable, labelled (sometimes not), aligned, semantic (perhaps) and with statistical significance. This provides 
several standardization opportunities: 

• Data representation. The data representation is significant. Most of the current AI algorithms were born in the 
pattern recognition area, especially the image processing. All the images can be expressed as uniform binary 
vectors or can be easily transformed into uniform format. Unfortunately, this is hardly satisfied in network 
area. A uniform data format is required, which can implement the justification, correlation and affiliation of 
the data. Which may obtain the best performance of AI algorithm to mine the valid pattern hidden in the data, 
especially when complex relationships in high dimensions data are focused. YANG model is a potential 
solution for this problems. The data listed in Table 1 should be covered.  
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• Data orchestration. The data may come from different source. For example, the delay, jitter and bandwidth can 
be captured from the network in real-time, which is call internal data and describe the properties of network. 
However, the other types of data, e.g. temperature, traffic information, which is not relevant with network but 
indeed influences the network policy, may come from external source. Such data may have various format, 
precision, size and so on. This will not satisfy the requirement of AI algorithm because most of the current 
(may be same in the future) algorithms require the data format uniform very strictly. Therefore, the data, 
whatever captured or measured from the network, should be organized or arranged before input to the 
algorithm. Currently, most of the data arrangement is implemented in centralized database. The scalability will 
be challenged when the data volume grows higher. A distributed data collection and orchestration method may 
be needed so that to build up the bridge between network data and algorithm. Assume that there are three types 
of devices in the network: data producer, data consumer and controller. When the data producer accesses to the 
network, the controller will send an index ID of a specific algorithm to the producer via the option of some 
protocols. This ID indicate the positions that the data will be placed in the specific algorithm. When the data 
consumer request data from the producer, it will indicate the algorithm ID in the option. After the data 
producer receives this request, it will send back the requested data to the consumer with both the index ID and 
algorithm ID. Thus, when the data arrives to the consumer, it will be easily recognized that which position of 
this data should be placed. This method can distribute the data arrangement into each data producer, which 
improve the scalability of data collection.  

• Data transport. When the data producer is far from the data consumer, or the structure is too complex, it is 
necessary to simplify the data transport process. For example, a data proxy may organize the local area data as 
a whole and then transport it to the data consumer. Similar with the bone router in an AS, according to the 
negotiation, a header data device will play the slave role to communicate with the data consumer so that to 
simplify the whole communication. Another example maybe the data relay. A relay may stand for all devices 
behind to organize and feedback the data to the consumer.  

• Inherent data upload. Instead of the network measurement, it is necessary to explore an inherent data upload 
scheme that allow the network device subscribe/push data proactively.  

9.4 Control Centric standards 
Around the control, there are numbers of potential standard points:  

• Device access. If the intelligent layer is seen as an overlay of physical network, the intelligent device actually 
accesses to an intelligent system when it accesses into the physical network. Just like the DHCP, a fully 
autonomic system should own the ability that auto-configuring the new device. For example, to allocate the 
manage device of current area.  

• Policy representation. Different with the data representation, the policy representation needs to translate the 
uniform format data (algorithm output) into various policies that the controller or managing device can read 
and execute. So YANG model may be not sufficient to implement this function. Another reason is that there 
may multiply SDN controller system, a readable and uniform policy representation is valuable to improve the 
policy deploying efficiency and simplify the communication between controllers on the E-W direction. What 
is more, some of the policies are sent to controller or orchestrator for execution while others may directly sent 
to the intelligent device as parameters, which needs different representations.  

• Election and hierarchy. When the network scale is very large, the centralized and flat manage scheme tends to 
low efficient. The hierarchical scheme is one of the potential solutions for the large scale network scenario. 
Thus, it may be necessary to explore the negotiation method among the local devices, such as to poll a leader 
data device standing for others. This may support the data transport mentioned above. 
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