ETSI GR NFV-TST 011 vi.1.1 (2019-03)

<d

GROUP REPORT

Network Functions Virtualisation (NFV);
Testing;
Test Domain and Description Language Recommendations

Disclaimer

The present document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.

2 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Reference
DGR/NFV-TSTO011

Keywords
language, NFV, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Contents

Intellectual Property RIGNES.... ..ottt b e b e s 5
0 (<1170 (o R 5
MoOdal VErDS TEMINOIOGYccveieeiieceeie sttt sttt e e s re s be e b e sbeeaeesbesreentesaeenseseesneenseseeeseensesseas 5
EXECULIVE SUMIMAIYeeviieieite ettt sttt e e st et e e s te e e s be s ae e teeaeeatestesaeesbesaeentesseene e teeaeessesteeneentesteensensesneensesnennns 5
11070 (8 (o110 o R 6
1 o0 0 SR 7
2 R S (10 = 7
2.1 [NL0 g 0T AV SN (= 1 (10 T 7
2.2 (0 (0 00Tz AV SR L= (= (0. T 7
3 Definition of terms, symbols and abbreviations...........cccovveeri e s 8
31 L= 8
3.2 SYIMDOIS. ..ottt ettt b et b e et b e e e s e e bt sE et b e 4R e s e ek e AR e R e R e eR e e b e eR e e bt nh et eb e e e e b e e rere s 8
33 PN o] o[(< YTz (L0 IR 8
4 K=< B L] 0= o TSRO 8
41 (@Y Y=Y 8
4.2 TSt CaSE RESOUITES. ...utveiieeiiiiititteei et e eeeiibbee e e e e e e sesbareeeeeeeseababaeeseeeseaaabaeeeeessesassbseeeeassesassbaseeesasesassssaneseessansnrens 9
4.3 LSS = (o 11T 0) a1 = o Y2 10
4.4 HiGN-LEVE FUNCLIONS........cueitiieiiiitiieiet ettt b bbbt b bbb s bt e st b e e bt e e eb b nnens 11
45 LIS 0= SN DL v S 11
4.6 EXECULTON SEOIMENES ...ttt ettt s b e st bt h bt e s bt e h e bt e et e bt e e st bt b e e e bt b e e ebe e e e ens 11
4.7 LIS = 01V 10010 101= 2 AT 12
4.8 TESE SUITES & TTATIC IMIXESeeieieeie ettt ettt e ettt e et e s sttt e s et e e e s eaaeeessabeeesssaeessessaeessbseessansenessrenas 12
5 (RIS Y U o[1T (=TSR 12
5.1 (@ Y Y=Y 12
5.2 ENVIronment DECOUPIINGocverieeieeeee et ste ettt e st eeste s see s saeesaeeteanteeneeeseesseesseenseeseensenneennns 12
53 RESOUICE APl DECOUDIINGecveeeeeeieeseese ettt s ettt et e st e st e s e e te e teeaesseesseesseenteenteeseesseesseesseeseensenneennns 13
54 High-level FUNCLION DECOUPIINGeiieieeiie ettt ettt te e s esteenaesnaesreasseesseesseenseeneennenenes 13
55 TSt DAt DECOUPIING ...ttt ettt sttt et b e et b e st b b s b b st e bt s b e st eb e e b e neeb e e b e e ekt sbeneeb e ebeneeneebeneeneas 13
6 RIS 0 a01001= 10 (5.0 H1Y Ko 0 (< =T 14
6.1 (@< AV 1= Y TR 14
6.2 IS 00 1Y, o o <t SRR 14
6.3 LIS = V000 1001 411 Lo o [14
6.4 LSS S <= 0 15
6.5 LU LI o] ai =T 1Y, Koo L= 16
7 L=< 5 1 TR 18
71 (@< AV 1= Y TR 18
7.2 TESE DSL CONCEPES. .. .vireveeieeieee ettt sttt sttt sttt b bt s e e s et Rt s bt Rt e st e s e e e e e e b e nae e R e e st e s e e e er e e resreene e e ne e 18
7.3 ADSEract SyntaX MELBEMOTEooiiiiiiiieee bbbt b e e b e e e b b se b b snenea 19
7.4 Dynamically LOaded CONSIIAINTScctiueirierieirieseeestese ettt sb et se e b b s b s ene e ens 20
7.5 LIS 00 Y (<7 [SRR 20
7.5.0 Lo 0 1 Tox 1] TR 20
7.5.1 L= O <l Lo (<l LA = 20
75.2 ILCS O DT o] o1 oo S SPSP 21
7.5.3 (OIS (o] R =S 0= 1S Sl N L o101 21
754 L [T A N I o1 o L 21
755 LIS 0= Y DL v W 21
7.6 RESOUICE DECIAIELION ...ttt ettt e et e e st e e e et e e e s esee e e s sabeeesabaesessaseessabaeesesbesesessnasssssenesansenessanes 21
7.7 EXECULION FIOW ...ttt e e ettt e e ettt e e s aae e e s s abe e e s eseeeessaseessabeessasbasesensenassasseassabenessne 22
7.7.0 g L0 To [§0x1] o USRI 22
7.7.1 Getters for RESOUICE-SPECITIC DBIAL.......civeuerrereeiiriereet ettt ettt b e s bbb sneneenen 22
7.7.2 Y 00T e T (U o S 22

ETSI

4 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

7.7.3 High-level FUNCLION INVOCELIONciiiieiiieeeierieeie ettt 22
Annex A: JADL EXAMPIE....eiiieieee et 24
Annex B: AULNOrS & CONEIIDULONS......oiiiiiiiitce s 28
L 11 (TSP OPT PR PRTORPRPROTN 29

ETSI

5 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Group Report (GR) has been produced by ETSI Industry Specification Group (1SG) Network Functions
Virtualisation (NFV).

Modal verbs terminology

In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

Executive summary

The present document proposes a model of the NFV test domain and recommends requirements for atest Domain
Specific Language (DSL) to manipulateit. In the context of NFV, a network service is supplied by multiple vendors and
each vendor hasits own test technology, interfaces into the system under test, and test languages (usually GPLs like
Java®, Ruby®, Python®, etc.) In order to create acommon test language, the test cases follow a standardized test case
model that the language can manipulate, and that can be implemented within individual test technologies. The model
includes shareable and reusabl e artefacts tied to the test domain: execution flow, data, abstract resources, environment,
etc.

Integration of multiple test technologiesis only possible by a system that can accept contributions of test resources from
multiple parties. These contributions may include lab resources, test APIs, test data, high-level function libraries, test
execution platforms, etc. The test environment is then constructed dynamically from these contributions. To allow the
dynamic nature of the test environment, it is necessary for the test case to be decoupled from specific resource
contributions and express the test process in terms of resource abstractions. Mapping these abstractions to concrete
resourcesisthe job of a Dynamic Resource Management (DRM) system. Thisis done by creating an environment
resource meta-model available to the test case developers at design time. The meta-model is then used for creation of
specific environment instance models at runtime. Each environment instance includes dynamic resource contributions
to which resource abstractions are mapped.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Introduction

With the advent of NFV, the industry is experiencing the following transformative challenges:

Multiple contributions to a network service

Open collaboration

Shift away from dedicated resources (sharing of resources)

Shift of integration responsibility from vendors to service providers (or their agents)

Test cases/plans can be repeated multiple times, making reuse critical

To address these challenges and to encourage collaboration, the present document provides recommendations for NFV
test domain modelling and a Test DSL that does not force vendors/participants to change their test technol ogy/language
and enables efficient utilization of resources. To enable reuse, the model also decouples test data and test environment
from the test case and uses dynamic allocation of test resources.

ETSI

7 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

1 Scope

The present document proposes a model of the NFV test domain and recommends requirements for atest Domain
Specific Language (DSL) to manipulate it. The description includes an NFV test automation ecosystem that facilitates
interaction among NFV suppliers and operators, based on the DevOps principles.

The NFV test domain contains:

. System Under Test (SUT): Network Functions (NF), Network Functions Virtualisation Infrastructure (NFV1)
and network services.

. Test Resources: tools or instrumented NF's and NFVI elements that test cases can interface to manipulate the
SUT.

e Test Execution Flow: controlled and uncontrolled state transitions.

. Test case configuration data and parameters: test-resource-specific and non-test-resource-specific.
The present document explores the following attributes to enable efficient multi-supplier NFV interaction:

o Reusability of test plans, test cases and test resources.

. Abstraction of test data.

o Decoupling of test case from the test environment.

. Use of test resource abstractions in place of concrete resources.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI GSNFV-TST 001 (V1.1.1): "Network Functions Virtualisation (NFV); Pre-deployment
Testing; Report on Validation of NFV Environments and Services'.

[i.2] ETSI GSNFV-MAN 001 (V1.1.1): "Network Functions Virtualisation (NFV); Management and
Orchestration".

[i.3] ETSI GSNFV-SOL 003 (V2.3.1): "Network Functions Virtualisation (NFV) Release 2; Protocols
and Data Models; RESTful protocols specification for the Or-Vnfm Reference Point”.

[i.4] ETSI GS NFV-IFA 006: "Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Vi-Vnfm reference point - Interface and Information Model Specification".

[i.5] ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Conceptsin
NFV*".

ETSI

8 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in ETSI GS NFV 003 [i.5] and the following apply:

execution engine: means by which a program can be executed on the target platform using the two approaches of
interpretation and compilation

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI GS NFV 003 [i.5] and the following apply:

DSL Domain Specific Language

GPL General Purpose Language

HLF High-Level Function

TEP Test Execution Platform
4 Test Domain

4.1 Overview

The NFV test domainisaset of artefacts and systems for testing NFV-based solutions. NFV introduced the concept of
"dynamically configurable and fully automated cloud environments® (https.//www.etsi.org/technologies/nfv) for
network functions. The present document models the NFV test domain as a set of abstractions so that the same level of
flexibility is available in testing those network functions. Figure 1 isincluded to illustrate relationships among artefacts
discussed in clause 4; the NFV Test Domain model is described in more detail in clause 6. In addition, the present
document proposes requirements for a Domain-specific language (DSL) to manipulate that test domain. Using these
models and recommended requirements, suppliers and service providers are able to leverage different test technologies,
dynamically allocate test resources, and reuse test plans, test cases, and Test Execution Platforms (TEPS). In the present
document, atest case always refers to a computer program that can be executed by atest automation system.

ETSI

https://www.etsi.org/technologies/nfv

9 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Aggregates Aggregates

Test Case

Execution
Flow

Non-Resource- |
Specific Data

May have Contain Allocated from

Resource- Test

gh-Level
ions Specific Data

Hi

Figure 1: NFV Test Domain Artefact Relationships

The NFV test domain is comprised of:

4.2

System Under Test (SUT) [i.1]: Network Functions (NF), Network Functions Virtualisation
Infrastructure (NFV1), and network services

Test Case Resources: tools or instrumented NF's and NFVI elements that test cases can interface to manipulate
the SUT

Execution Flow: controlled and uncontrolled state transitions

High-Level Functions

Test case configuration data and parameters: test-resource-specific and non-test-resource-specific
Execution Segments

Test Environment

Test Suites & Traffic Mixes

Test Case Resources

In order to be tested, the SUT exposes a set of interfaces over which test interactions happen. These interfaces vary in
the degree of complexity and may include entire protocol stacks. The test drivers communicate with the SUT by
sending and receiving encoded messages over one or more of these interfaces. This means that the implementation of
the interface is also present on the test side.

It istherefore necessary for the executing test case to create or otherwise acquire one or more objects that implement the
SUT interfaces and use them to send and receive messages to and from the SUT. These objects in turn expose their own
interfacesto the test case to allow the test to manipulate the message flow more easily. These objects will be referred to
as abstract resources. In essence an abstract resource is an instance of an SUT interface that providesits own API to the

test.

ETSI

10 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Abstract resources are test case-facing abstractions that utilize units of lab equipment, software, and/or data to do real
work. These units will be referred to as concrete resources. In the context of a shared lab, concrete resources are shared
among multiple users and are allocated to specific test cases for the duration of the test. This guarantees that the test
case gets exclusive access to concrete resources required for its execution. Some examples of concrete resources include
instances of instrumented or stubbed out MANO components, VNFs, VNFCs, etc. Availability of concrete resourcesis
generally limited and concurrently executing test cases contend to gain access to them.

The relationship between abstract and concrete resources is typically many-to-many, and the mapping between them is
described in clause 6.3. Thetest DSL is expected to enforce proper resource declaration, preclude any access to
concrete resources outside the resource management system, and provide the user with an intuitive way to declare and
manipul ate abstract resources. Once an abstract resource is mapped to an allocated concrete resource they form asingle
entity used by the test case to interact with the SUT. This entity will be called test case resource asillustrated in

Figure 2.

4.3 Test Execution Flow

Asthe test case executes, every resource goes through a sequence of states, reflecting the SUT functionality being
tested. These sequences range in complexity from trivial to very complex. The test case may be interested in some but
not all of these states. For example, if aresource is running a protocol stack, unless protocol conformance is being
tested, most low-level messaging is of no interest to the test case. It may only be interested in the successful or
unsuccessful outcome of such messaging. The degree to which the test case has visibility of the resource state can vary
for the same type of resource depending on the test scenario. Consequently, it is necessary for a mechanism for different
levels of control over the resource state to be present. The test case should have the ability to "take over" the resource
state transition when necessary and let the resource run its own state machine at other times. The resource states
controlled by the test case are referred to as controlled states.

Controlled states of all test case resources at any given time form the state of the test case. Test caseinitiates state
transitions by sending or receiving and verifying messages to and from the SUT on any of the test case resources. For
example, if the SUT isaVNFM implementation and an Instantiate VNF request is sent from the NFV O resource, the
test case can verify receiving a Grant VNF Lifecycle Operation request by the NFV O resource and after acknowledging
it with a Grant VNF Lifecycle Operation response, verify that the Allocate Resource request is received by the VIM
resource. Running a single state machine per test case for controlled states while letting individual resources run their
own state machines for uncontrolled states provides an intuitive and flexible framework for SUT interface interworking.

Concrete Rsc

Test Execution Platform \

Test Case _ SuT
- Abstract Rsc '
- State ‘R’
ESoLice machine _ Concrete Rsc

| Abstract Rsc =

Test @ @.“u
Execution Abstract Rsc

J

Concrete Rsc

&

{ Resource Manager]
)
.

Figure 2: Test Case Resources and State Machine

ETSI

11 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Any controlled state can be passing or failing. Criteria for failing the test are evaluated by the test case at every
controlled state. If failure criteria are satisfied the test failsimmediately. Otherwise it continues until it reaches afinal
state at which point it passes. If atest case does not reach afinal state it getskilled by the TEP once sufficient time has
passed to conclude that the test behaviour is abnormal. Regardless of the type of test case termination (passed, killed,
crashed, hung and killed by the TEP), the allocated concrete resources are returned into their initial state and released.
Since no assumption can be made about normal vs. abnormal test case termination, the responsibility of resource
clean-up and release cannot be assigned to the test case and should lie with individual resource implementations.

4.4 High-Level Functions

A test scenario may also require a series of controlled state transitions involving multiple resources whose details are
outside the main focus of the test. Continuing with the previous example, if the main focus of the test is verification of
VNFM configuring the newly created VNF with deployment-specific parameters, the details of the VNF instantiation
are not important to the test scenario and can be grouped into a single action. These actions will be referred to as
high-level functions. They capture frequently repeated state transition sequences and encapsulate them into invokable,
parameterizable units of functionality. High-level functions can aso call other high-level functions. This providesa
flexible mechanism for control of granularity for different parts of the execution flow. High-level functions are reusable
across multiple test cases and activities.

4.5 Test Case Data

Many test cases utilize data that are not explicitly defined in the body of the test case. Separation of the execution flow
and the data that can parameterize the execution flow allows greater flexibility of test case design and reuse of the same
data sets by multiple tests.

Some data are resource-specific and come from test case resources. Since the test case only manipulates abstract
resources and has no prior knowledge of what concrete resource may be allocated to it, any attributes of the concrete
resources used in the test case are acquired at run time. For example, in order to verify that the VNFM under test sends
the correct VNF identifier in the alarm notification to the NFVO, it is necessary for the test case to know the VNF
identifier of the VNF generating the alarm. Until a specific VNF test resource instance is allocated to the test case, its
identifier is not known. The test case should therefore be able to obtain the identifier from the VNF test resource at
runtime to verify that the correct oneis sent to the NFV O test resource.

Some data are not resource-specific and come from elsewhere. For example, default values for a set of protocol
messages can be specified outside the test case. This allows the test case writer to only provide non-default values for
message | nformation Elements (IES). This also allows reuse of this data across a potentially very large number of test
cases using the same protocol.

Test case data should be easily customizable. In the protocol defaults example there may be global defaults, defaults
that a particular user team is using for their purposes, or even defaults for a particular test activity that further speciaize
test case writers' defaults. This can be accomplished by creating progressively specialized test case data hierarchies with
every new child defining a nested scope within its parent's scope. Data lookup then follows the regular scoping rules.

4.6 Execution Segments

In some cases the test execution flow can be separated into individually executable segments. For example, many
control-plane test scenarios are designed to have segments of signalling separated by periods of inactivity. These
periods of inactivity represent voice or data transmission and are commonly referred to as hold time. Hold time may be
in orders of magnitude longer that the active segments of the test case and a very large number of test cases can be
holding at the same time. It is therefore important to have a mechanism for suspending execution of the test case and
releasing associated computing resources (not test case resources) for the duration of the hold time.

Unlike high-level functions execution segments are only defined within the scope of an individual test execution flow.
They are not shareable artefacts and cannot be invoked by the test case. They only provide the ability to the TEP to
execute parts of the test case individually. High-level functions of various degree of granularity can be invoked from
within execution segments.

ETSI

12 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Segmentation also provides the ability to run parts of the execution flow in a different order. A separate model
specifying desired combinations of the segments and their permutations can be defined and provided to the TEP. The
TEP can then execute the segments in the specified order. This can provide substantial time and effort savings
compared to writing a separate test case for every desired permutation.

4.7 Test Environment

Test Environment isdefined in ETSI GS NFV-TST 001 [i.1], clause 4.2. The present document introduces the concepts
of Abstract and Concrete test environments that enable reuse. Similarly to test case resources, environments can also be
abstract and concrete. Abstract environments consist of abstract resources, and concrete environments consist of
concrete resources. Abstract resources are mapped to concrete resources by the resource management system.

Before concrete resources can be used in atest case (or a group of test cases within the same test activity) they are
allocated to that test activity and provisioned. In addition to specifying required abstract resources, abstract environment
definition also specifies Provisioning Data that is applied to allocated concrete resources to complete concrete
environment instantiation.

4.8 Test Suites & Traffic Mixes

In atypical test scenario test cases are not executed by themselves. They run as a part of either atest suite or atraffic
mix.

Test suites aggregate test cases that verify aparticular set of functional requirements. Test casesin atest suite are
executed once and success and failure are considered on individual test case basis. Test suitesimpose sequential or
parallel mode of test case execution, or define flows that combine both. Test suites can aso set context (e.g. test data)
for parts of such flows.

Traffic mixes aggregate test cases that verify non-functional requirements, such as performance, robustness, etc. Test
casesin atraffic mix execute repeatedly, each at its own rate. Together, they emulate real network traffic where
multiple activities happen at the same time. Success and failure are considered on the entire traffic mix execution and a
certain number of individual test case failuresistypically expected. For example, afive 9's availability metric allows
one out 100 000 test casesto fail in a successful run.

Traffic mixes define relative frequencies of different network activities and the overall rate of network traffic. Both
activity distribution and the overall rate can change over time.

5 Reuse Guidelines

5.1 Overview

NFV solutions are composed of contributions from multiple suppliers. As such, test cases or entire test plans may be
repeated multiple times, making reuse critical. The NFV test domain model (as defined in the present document)
enables reusability through decoupling, abstraction and modularization.

5.2 Environment Decoupling

Decoupling the test environment from test cases is achieved by strict separation of abstract and concrete resources and
using a dynamic resource management system to map the abstract resource space to the concrete resource space.

The relationship between test cases and their environments is many-to-many, which means that multiple test cases with
the same resource requirements can execute on the same test environment and that the same test case can execute on
multiple environments.

The resource management system manages the available test resources and accepts contributions of resources from
various resource contributors. From these contributions it builds a dynamic model of the concrete resource space. The
model adapts dynamically to changesin resource contributions. This dynamic model is used by the resource
management system to find a concrete resource for an abstract resource request from the resource consumer.

ETSI

13 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

This dynamic model is an instance of a meta-model that specifies resource abstractions and their relationships. This
meta-model is defined statically and describes afamily of resource models. The resource abstractions specified by the
meta-model are visible to resource consumers. A resource consumer can request any resource abstraction without the
knowledge of the concrete resource space.

When atest activity needs a concrete environment to run on, an abstract environment gets designed to describeiit. This
abstract environment is defined in terms of specific resource abstractions provided by the meta-model. This abstract
environment is a reusable artefact that multiple test activities can use to build concrete environments.

Environment meta-models and abstract environment definitions are carefully designed by solution and automation
architects and managed by the test environment management service. The end user only deals with the namespace for
resource abstractions (like a pool of VIMs) they use in the test case.

5.3 Resource API Decoupling

Test resources are contributed from multiple sources and, in the context of multi-organizational collaboration, different
test technologies come from different suppliers. The resource APIs are therefore decoupled from any resource
implementations and are defined outside of any specific test technology. Test cases written in atest DSL have no
knowledge of the test resources but as long as the APIs are defined outside of any specific resource contribution, the test
cases can be written against these APIs, compile-time error checking can be performed, and code assist/code
completion can be provided to the user.

54 High-level Function Decoupling

High-level Functions (HLFs) provide a high degree of reuse and a single point of truth (written or fixed once - used
everywhere). Most existing test technologies will have some form of HLFs already implemented that may be leveraged.
Similarly to test resource contributions, this necessitates having an externally defined contract for using these HLFs
with which all implementations comply. It is the responsibility of individual execution engines to compile HLF API
calsinto calls on specific HLF implementations.

5.5 Test Data Decoupling

Asindicated in clause 4.5, the test domain definition includes a mechanism for separation of the test case execution
flow from the data used to parameterize the test.

Resource-specific data come from the concrete resource all ocated to the test case and is not known in advance to the
test case designer. Non-resource-specific datais a part of the context for the test case execution and forms a hierarchy
that can be easily customized. The customization may include progressive specialization from global set of values down
to valuesfor individual test activities. The datais dynamically looked up by the test case using fully qualified symbols
as keys. Each fully qualified name represents a path from the root of the data tree to the node holding the value.

The symbol lookup functionality is provided by the TEP and can have its own implementation. Test datais provided to
the TEP as metadata that can be converted into any TEP-specific format or integrated into already existing
functionality.

In order to use test case data, it is necessary for the test case designer to provide names for individual data elements. In
the case of resource-specific data the problem of checking validity of these names at compile time and providing code
assi st/code completion functionality to the user is easily solved by making getters for any data elements the resource
exposes to the user a part of the resource API.

For non-resource-specific data this problem is more challenging. Since this type of datais a part of the context for the
test case execution it is not known at design time. If atest casetries to ook up a symbol that is not present in the data it
will be arun-time error. In addition, the namespace can be very large and fully qualified symbol names could also be
long and prone to spelling errors. The problem can be rectified if a schemafor test datais made available to the test case
at design time. Symbol names will be validated against this schema, auto-proposed, and auto-completed.

ETSI

14 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

6 Recommended Models

6.1 Overview

In order to create a common test language, the test cases follow a standardized model that the language can manipulate,
and that can be implemented within individual test technologies. The model includes shareable and reusabl e artefacts
tied to the test domain:

° execution flow;
° data;
° abstract environment definitions;

. etc.

6.2 Test Case Model

The diagram in Figure 3 shows test case elements and their relationships. The test case has atest script and uses test
data, high-level function libraries and segment ordering data. The test script in turn has resource declaration and
execution flow definition parts. The resource declaration section aggregates a set of abstract resources that realize their
respective APIs. The execution flow can call the abstract resource APIs. It can also invoke higher-level functions.
Higher-level functions can invoke other higher-level functions and call abstract resource APIs. The execution flow uses
the test data model for dynamic symbol lookup. The execution flow aggregates execution segments that are ordered
according to the segment ordering data model.

Test Case Uses S
Ordering Data

Uses

' i Orders
Test Script Test Data High-Level
Function
ﬂ Calls

Dynamic call
looku alls
/ b Calls
Resource Execution /—/ Execution
Declaration Flow Segment

Abstract

Resource

Figure 3: Test Case Elements

6.3 Test Environment Model

The diagram in Figure 4 shows how test environments relate to test cases. Abstract test environments aggregate abstract
resources, which in turn are mapped to concrete resources. There are three major types of concrete resources. elements
of the SUT, test tools used to interact with the SUT and reservable data. An example of reservable data could be a
license key with alimited set of instances.

ETSI

15 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

The link between the abstract and the concrete environments is provided by the Environment Meta-model. It models the
concrete resource space as a set of reservable entities and provides a number of abstractions (e.g. pools) that can be
referenced from the abstract environment definition. The meta-model captures domain knowledge about the concrete
resource space and considerably simplifies abstract environment definition.

Before concrete resources can be used in atest case - or agroup of test cases within the same test activity - they are
provisioned (configured). Abstract environment definition specifies Provisioning Data that is applied to allocated
concrete resources to complete concrete environment instantiation.

Abstract Test
Environment

Specifies

Resource
Declaration

Provisioning
Data

Specifies

Applied to

Abstract
Resource

Mapped
baszed on

Environment
Metamodel

Concrete
Resource

SUT
Elements

Reservable
Data

Figure 4: Test Environment in Relation to Test Cases

6.4 Test Scenarios

The diagram in Figure 5 shows test suites and traffic mixesin relation to the test cases. Test suites and traffic mixes
aggregate test cases and verify functional and non-functional requirements respectively. All requirements define a set of
attributes or keywords that the test cases are labelled with. Dynamic suites and traffic mixes are constructed from test
cases selected based on these |abels. A natural constraint isthat all test cases within the same test suite or traffic mix are
able to execute on the same test environment. Test cases with non-intersecting environment requirements cannot be part
of the same test suite or traffic mix.

ETSI

16 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Defines

Functional
Requirement

Mon-Functional
Requirement

Keyword

N

Constructed Constructed
Werifies based on baszed on Verifies

Static Traffic
Mlix

Drynamic Traffic
MWlin

Static Test
Suite

Drynamic Test
Suite

Test Suite

Abstract Test
Environment

Figure 5: Statically and Dynamically Defined Test Suites and Traffic Mixes

6.5 Full Domain Model

Domain diagramsin Figures 3 through 5 combine to form a recommended test case domain model as shown on
Figure 6.

ETSI

Mon-Functional
Requirement

Verifies

Static Traffic
Mlix

Abstract Test

Uses

17

Defines

Constructed
based on

Constructed
bazed on

Drynamic Test

Suite
Labeled

with

Environment

Specifies

Provisioning
Data

Applied to

Specifies

ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Functional
Requirement

Verifies

Static Test
Suite

Test Case Uses Segment
- COrdering Data
U}USES

] Orders

Test Script Test Data High-Level

Function

ﬂ Invokes
Drynamic
Resource Execution Execution
Declaration Flow

Mapped
based on

Environment
Metamodel

Concrete
Resource

SUT
Elements

Reservable
Data

Segment

Figure 6: Recommended Test Case Domain Model

ETSI

18 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

V4 Test DSL

7.1 Overview

Vendors have their own test technologies, interfaces into the system under test, and test languages (usually GPLslike
Java®, Ruby®, Python®, etc.). In order to create a common test language, it is necessary for the test casesto follow a
standardized test case model that the language can manipulate, and that can be implemented within individual test
technologies. As stated in clause 6, the model includes shareable and reusable artefactstied to the test domain:
execution flow, data, abstract resources, environment, etc.

Integration of multiple test technologiesis only possible by a system that can accept contributions of test resources from
multiple parties. These contributions may include lab resources, test APIs, test data, high-level function libraries, test
execution platforms, etc. The test environment is then constructed dynamically from various contributions. To allow the
dynamic nature of the test environment, the test case are decoupled from specific resource contributions and express the
test processin terms of resource abstractions. Mapping these abstractions to concrete resourcesis the job of a dynamic
resource management system. Thisis done by creating an environment resource meta-model available to the test case
developers at design time. The meta-model is then used for creation of specific environment instance models at runtime.
Each environment instance includes dynamic resource contributions to which resource abstractions are mapped.

7.2 Test DSL Concepts

A test case is a computer program. This program has syntax and semantics. The semantics reflect the meaning of what
the program does and the syntax describes a particular representation of this meaning. Many different syntactic
representations may result in the same program semantics. As a clarification of scope, any examples of such
representation are for illustration purposes only and are not meant to suggest any particular concrete syntax.

The task of writing atest casein aDSL isatask of building the semantic model of the test using that DSL syntax. This
semantic model is an object model that captures what the test case is supposed to do when it executes.

In clause 6, the test case domain model was recommended to have the following elements: test execution flow, test case
resources, test data, high-level functions, and test segment model. The test case semantic model defines a specific
instance of the execution flow and manipulate instances of other test case elements (resources, data, etc.) It isimportant
to note that these instances can have different implementations and can be written in different programming languages
(GPLs or DSLs). The semantic model together with other test element instances form the conceptual model of the test.
In other words the test case domain model is the meta-model of which the conceptual model is an instance.

A conceptual model can be constructed in several different ways. One way isto create agrammar for a particular DSL
concrete syntax and generate a parser for this grammar. The resulting text-based DSL will need an IDE providing
common services like code assist, code completion, and design-time compile error checking. As mentioned above, there
can be many different concrete syntax representations for the same conceptual model. Another way isto use a
projectional modeller or a set of modellers that will manipulate the conceptual model directly from the modeller Ul (as
illustrated in Figure 7).

ETSI

19 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

GPL 1
Representation

Execution
Engine 1

Execution
Engine 2
Test

Execution
Platform 1

Projectional
Modeler

GPL 2

/ Representation

Conceptual
Model

ARy

—

IDE

Test
Execution
Platform 2

Concrete
> Syntax

Grammar Parser

Constraints
Optimizations

Resource
Manager

Provisioning
Manager

[Concrete Environment

Figure 7: DSL Components

The same conceptual model can have multiple execution engines that generate GPL representations of the test for
multiple target platforms. Figure 7 illustrates how this works: the same conceptual model uses two execution engines to
generate programs in two different GPLs that execute on their respective test execution platforms sharing the same
environment. The conceptual model provides clear separation of concerns between the language concrete syntax (or
projectional modeller implementation), the resulting execution semantics, and code generation of various GPL
representations.

7.3 Abstract Syntax meta-model

When a DSL test case is processed by the parser, a semantic model of the test case is generated. A different semantic
model is created for each test case, depending on the meaning of the individual test program. All such semantic models
have the same structural elements specified by the language grammar. In this sense they are all instances of a meta-
model that models these structural elements and their relationships. This meta-model is the abstract syntax meta-model
for the language.

For example, a semantic model may have any number of specific resource declaration elements, one for each declared
resource. All such elements will have the same structure and will al be children of the resource declaration section
element. The element structure and its relationship to its parent element is defined in the abstract syntax meta-model.

The relationships between the abstract syntax meta-model and test case semantic models areillustrated in Figure 8.

ETSI

20 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Abstract Syntax Generated from the
meta-model grammar; one per
language

Instances of

Model for ¢

Generated by the parser or
Test Case projectional modeler; one

Semantic model R

Figure 8: Meta-model Relationships

7.4 Dynamically Loaded Constraints

Nodes of the abstract meta-model can have constraints that, in addition to syntax, determine the validity of the test case
code. Test cases that are syntactically invalid or that contain code violating such constrains will produce compile-time
errors. It is recommended that the test DSL takes advantage of this functionality to not only add statically defined
constraints, but also validate the code against dynamically loaded artefacts. For example, in the resource declaration
section of the test case, a URL can be specified that points to an environment meta-model against which the test caseis
written. The environment meta-model provides a namespace for abstract resources available from the test environment.

Once the environment meta-model is loaded and processed, the information of all available abstract resources and their
APIs becomes a part of the test case's sematic model that imposes constraints on the resource declaration element of the
abstract syntax meta-model. Thus, the check that the particular abstract resource is present in the test environment and
that it realizes a specific API can be done at compile time. Violation of either of these two constraints should result in
compile-time errors.

Likewise, the validity of API calls on abstract resources and high-level function calls based on resource APIs and
high-level function contracts dynamically loaded into their respective modules of the test case semantic model can be
verified at compile time. Violation of these constraints should also result in compile-time errors. It isimportant to note
that even though the environment meta-model and the resource and high-level function contracts are loaded
dynamically, they are statically defined artefacts.

7.5 Test Case Header

7.5.0 Introduction

The header describes the test case and its relationship to other artefacts the test case interacts with. It is recommended
that the header has the elements described below.

75.1 Test Case Identifier

A test case identifier uniquely identifies the test case. Uniqueness cannot be enforced by the language and is a concern
for test case management, which is outside the scope of the present document. However, since individual users are only
in control of a specific namespace within their organization, separation of these namespaces are essential to avoid
conflicts. It is recommended that such separation is achieved by the requirement that the test case identifier be afully
qualified name. In the service integration context, it is even more important to avoid name conflicts between different
vendors.

Specifying the test case identifier in the test case header should be mandatory.

ETSI

21 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

7.5.2 Test Case Description

The test case description element is a natural language description of the test case. A meaningful description simplifies
mai ntenance of the test cases and can be utilized by maturing Natural Language Processing/Artificial Intelligence
technologies.

Specifying the test case description in the test case header should be mandatory.

7.5.3 Custom Test Case Attributes

It is recommended that custom attribute elements be provided for test case maintenance purposes. There can be any
number of custom attributes. Each attribute has a name that is avalid identifier and a value that can be any string.

Specifying custom test case attributes should be optional.

7.5.4 High-Level Functions

The high-level function element of the header declares high-level function APIsrequired for the test case to execute.
Specific high-level function implementations can be contributed by different test technologies. Aslong as these
implementations realize contracts declared in the test case header, the test case can execute. It is recommended that such
declaration contain alist of URLS, each of which specifying an API for alibrary of high-level functions. These
externally defined APIs are also used as constraints on high-level function callsin the execution flow section of the test
case. Invalid high-level function API calls should result in compile-time errors.

Specifying high-level function APIs should be optional.

7.5.5 Test Case Data

Similarly to high-level functions, it is recommended that the test data element be alist of URLs. Each URL specifiesa
schema for test data required by the test case to execute. Specific test data instances are provided at runtime but the
schemais known at design time to ensure validity of test datalookup.

The order in which the schemas appear in the list isinsignificant. The order in which the symbols are looked up at
runtime is determined by the design of the data instance rather than the order in which the schemas are specified in the
test data element of the test case header. Test data schemas are only used as constraints on non-resource-specific data
lookups at design time.

Specifying test case data schemas should be optional.

7.6 Resource Declaration

The resource declaration section specifies the environment meta-model against which the test case is written and the
abstract resources the test case requires for its execution. The environment meta-model defines the available abstract
resource namespace and the API for each resource abstraction in the namespace. The environment meta-models are
described in more detail in clause 5.2 of the present document.

Resource declaration is a part of the test case script. It isrecommended that it contains an environment meta-model
URL, indicating that al required resources will come from a concrete environment that can be modelled by an instance
of the specified meta-model.

The rest of the resource declaration section should be alist of resource allocation statements indicating the abstract
resource name and the API the resource is expected to realize. A constraint on resource allocation statementsisthat a
resource abstraction with the specified name is defined in the specified meta-model and that it realizes the specified
API. Violations of this constraint should result in compile-time errors.

The relationship between test cases and their environments is many-to-many, which means that multiple test cases with
the same resource requirements can execute on the same test environment and that the same test case can execute on
multiple environments. In addition, concrete environments can, and in most cases should, be allocated dynamically.
Statically defined environment meta-models allow the test case designer to write and validate (at design/compile time)
test cases that use a yet unknown test environment.

ETSI

22 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

7.7 Execution Flow

7.7.0 Introduction

The execution flow is a sequence of executable statements that manipul ate abstract resources defined in the resource
declaration section. Asillustrated in the diagram in Figure 3, these statements call resource APIs and invoke high-level
functions from high-level function libraries, APIs for which are specified in the test case header. Any API call may
succeed or fail. If an API call fails, the test case failsimmediately. If the required behaviour for the passing scenario is
for the API call to fail, the language syntax should have a clause to indicate that if a particular API call succeeds, the
test case is supposed to fail.

Control-flow statements are not recommended in the execution flow as they would compromise the notion of the test
validity. Multiple possible paths through the test execution flow would result in uncertainty as to which specific path
was executed at run time and hence which specific scenario was tested. This would render the test result essentially
meaningless.

7.7.1 Getters for Resource-Specific Data

As mentioned in the clause 5.4, it is recommended that resource-specific data be retrieved by calling a getter defined in
the resource API. The resource API is a contract, and as such, it makes no assumptions about the resource
implementation or its properties. The getter is a method that has a contractual obligation to return avalue with a
particular meaning documented in the API. How the actual resource maintains, obtains, or computes thisvalueis up to
the resource implementation.

7.7.2 Symbol Lookup

Non-resource-specific test data come from the test case context and islooked up dynamically. It is recommended that
symbols be fully qualified names to avoid ambiguity.

Similarly to the case of resource-specific data getters, the contract for symbol lookup does not imply any specific
implementation of the test data or any specific data lookup mechanism. It can be implemented by the TEP or as a
separate service. It can be represented as a search tree or stored in the object database. To the test case designer, this
only means that the required datum value will be returned if it existsin the test data instance of the current test case
context.

Asdescribed in clause 7.5.5, test data declaration in the test header contains alist of data schemas. This suggests that
the data instance provided to the test case can potentially have multiple separate data sets, each corresponding to its
respective schema. These datasets may have conflicts.

Whileit is possible to create different qualified namesin different schemas to avoid ambiguity, it is not possible to
enforce, especialy if these data sets come from different organizations. Additionally, an argument can be made that
using more generic names makes the test case more reusable.

If exactly the same qualified name exists in more than one data set, the first one found will be the one whose valueis
returned to the test case. The order in which the data hierarchy is searched depends on the specific data instance
provided to the test case. Modelling of such data instances should include a mechanism to customize the data set with
additional data sets that get searched first. This should be a general customization mechanism that can progressively
specialize test data by providing a new set of values for an existing subset of qualified names and placing them first in
the search order.

It is also recommended to have the ability to selectively specify which dataset to search first. An example of the use
case that may need such functionality is running the same test with multiple sets of protocol defaults, specified by a
single selector rather than replacing the whole dataset.

7.7.3 High-level Function Invocation
High-level function invocation is very similar to calling resource APl methods. Similar to the resource API definition

coming from the environment meta-model, the high level function API definitions come from URLs specified in the
high-level function element of the test case header.

ETSI

23 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

The difference from resource API callsisthat test case resources are objects that have a state, while high-level functions
are not called on a particular object and are therefore stateless. This means that any implementation of the high-level
function APl is a stateless component. This, of course, does not mean that the function cannot depend on, or modify, the
state of any object passed to it as an argument.

ETSI

24 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Annex A:
JADL Example

The following is an example test scenario represented in Joint Agile Delivery Language (JADL) that illustrates the
concepts described in the present document. JADL isa DSL developed for the Test domain as described in clause 4,
following the reuse guidelines in clause 5, and leveraging modelsin clause 6. It also closely follows the Test DSL
design recommendationsin clause 7. JADL can be found on GitHub: https.//github.com/usrdcc/jadl.

In this example the system under test isa VNFM implementation, the required test resources are an NFVO component,
an EM component, and aVIM component that can be either instrumented implementations assumed to work correctly
or automation framework stubs. The test scenario is validation of the VNF instantiation procedure from NFVO ETSI
GSNFV-MAN 001 [i.2], clause B.3.2.2. Since the focus of this exampleis on the Test domain and the Test DSL rather
than specifics of the VNF instantiation, it is kept at ahigh level with many low-level details of the VNF instantiation
procedure omitted.

A sequence diagram of the VNF instantiation from NFVO flow copied from [i.2], Figure B.11 is shownin Figure A.1.

| EM I | WMF Marager [NFV Om hestrator] VI

1. Instantiate YNF (WNF)

LY
C

2. Instantiate WNF (WVNF)

K
3. Grant Lifecycle Opemtion (WNF, Inst@ ntiation... .J

4 CheckiEe msoUmes
are availbk (2.g. Poal,
Resoume type, CPU,
Memory, etc.), optionally
msenve towamrds VIM.

5. joph Create Resoume Reservafion

G.Result of Resewation
T.ACK (VIMIK,..)

10. Configumre WNF [deplhyment Specifl: Farametes)

(11. Hotify WHF Instantiated

12, Add WNF as managed device

13. Configure WNF (App. Specifc Parametes)

14. Notify WNF Insta ntiate d

15, Map VWM F to VIM and
Resoume Pool

Figure A.1: VNF instantiation from NFVO flow

In this diagram the VNF Manager timeline isthe SUT for the test case and the EM, NFV Orchestrator, and VIM
timelines are test resources.

ETSI

https://github.com/usrdcc/jadl

25 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

An example JADL test case verifying the corresponding VNFM functionality is shown in Figure A.2.

1 @TCID jadl.etsi.nfv.TC_INST VNF_FROM_NFVO

2 @DESCRIPTION "Validation of the message flow for VNF instantiation from NFVO [GS NFV-MAN 081 Vv1.1.1]"
3 @HLF "http://jadl.nfv.etsi.com/hlf/mano.json"”

4 @DATA "http://jadl.nfv.etsi.com/data/nfv.json"

5

6= @RESOURCES "http://jadl.nfv.etsi.com/environment-meta-models/nfv.json"

7 nfvo = NFVO("nfvo", "nfvoConfig")

8 vim = VIM({"vim", "vimConfig")

9 em = EM("em", "emConfig")

18

11=start

12 var String vnfInstanceId = MANO.createVnf(EM(em), VNFD($vnfd.VNFD1))

13

14 nfvo.instantiateVnf(VNF_INSTANCE ID(vnfInstanceId), (FLAVOUR ID(Sdeployment.flavour.FLAVOUR1)))
15

16 var NFVO.GrantRequest grantRequest

17 grantRequest.vnfInstanceld = vnfInstanceld

18 grantRequest.operation = "INSTANTIATE"

19 grantRequest.flavourId = $deployment.flavour.FLAVOURL
28 // any other GrantRequest attibutes the test case wishes to verify
21
22 var NFVO.VimConnectionInfo connInfo
23 connInfo.vimId = vim.id
2 connInfo.vimType = vim.type
25 // any other VimConnectionInfe attributes the test case wishes to set
26 var NFVO.Grant grant
27 grant.vnfInstanceId = vnfInstanceId
28 grant.vimConnections.add({connInfo)
29 // any other Grant attributes the test case wishes to set
30
31 nfvo.verifyGrantLifecycleOp (REQUEST (grantRequest), RESPONSE(grant), MODE("SYNCHRONOUS"))
32
33 var VIM.VirtualMemoryData memoryData
34 memoryData.virtualMemorySize = 1824
35 // any other VirtualMemoryData attributes the test case wishes to verify
36 var VIM.VirtualComputeFlavour computeFlavour
37 computeFlavor.virtualMemory = memoryData
38 // any other VirtualComputeFlavour attributes the test case wishes to verify
39 var VIM.AllocateComputeRequest allocateRequest
40 allocateRequest.computeData = computeFlavour
41 7/ any other AllocateComputeRequest attributes the test case wishes to verify
42
43 var VIM.VirtualMemory virtualMemory
44 virtualMemory.numaSupported = true
45 virtualMemory.virtualMemSize = 1824
46 // any other VirtualMemory attributes the test case wishes to set
47 var VIM.VirtualCompute virtualCompute
48 virtualCompute.virtualMemory = virtualMemory
49 // any other VirtualCompute attributes the test case wishes to set
50 var VIM.AllocateComputeResponse allocateResponse
51 allocateResponse.computeData = virtualCompute
52
53 vim.verifyAllocateVirtualizedComputeResourceOp(REQUEST(allocateRequest), RESPONSE(allocateResponse))
54
55 em.verifyvnfInstantiatedNotification(VNF _INSTANCE ID(vnfInstanceId))
56 nfvo.verifyvnfInstantiatedNotification(VNF_INSTANCE ID(vnfInstanceld))
57 end

Figure A.2: JADL Test case example

The following is aline-by-line description of thistest case example.

Lines 1 and 2 of the test case header specify the fully qualified test case ID and the test case description.

Line 3 pointsto high-level function API specification for MANO high level functions. This specification places
dynamically loaded constraints on high-level function callsin the execution flow section of the test case that are
checked at compile time. This corresponds to clause 7.5.4 and implements the reuse guidelinesin clause 5.4.

ETSI

26 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Line 4 pointsto the Test Data schema for test data required by the test case to execute. The data schema places
dynamically loaded constraints on valid data lookups in the execution flow section that are also checked at compile
time. This corresponds to clause 7.5.5 and implements the reuse guidelinesin clause 5.5.

Lines 6 through 9 are the Resource Declaration section. Line 6 points to the environment meta-model definition, against
which the test caseiswritten. Lines 7, 8 and 9 request test resources to be allocated to the test case. Line 7 alocates an
NFV O resource by specifying the abstract resource name "nfvo" described in the environment meta-model and
providing adynamic configuration identifier "nfvoConfig" for any kind of dynamic configuration that the test
resource may (optionally) require after it is allocated to the test case. The alocated resource type NFVO is aresource
API type defined in the environment meta-model for NFV O test resources. The allocated test resource is assigned to the
variable nfvo.

The environment meta-model places several dynamically loaded constraints on the test case code. First, resources with
the name "nfvo" exist; second, it is necessary that they implement the NFvo API; and third, execution flow
statements are only allowed to call methods on variable nfvo that are defined in the NFvo API. If any of these
constraints are violated a compile-time error will be generated. Lines 8 and 9 allocate aVIM and an EM resourcesin a
similar fashion. This corresponds to clause 7.6 and implements the reuse guidelinesin clauses 5.2 and 5.3. The
Resource Declaration section aggregating abstract resources that implement APIs called by the Execution flow is a part
of the Test Case Model described in clause 6.2 and shown on Figure 3.

When the code in the Resource Declaration section is executed, abstract resources (as described in clause 4.2) are
instantiated and a request is sent to the resource management system to map them to a set of concrete resources. The
environment meta-model specified in line 6 is used for this mapping as shown in Figure 4. Dynamic configuration
identifierssuch as "nfvoConfig", "vimConfig", and "emConfig" inlines7-9 correspond to the provisioning
data applied to the allocated concrete resources which in thisinstance are Test Tools elements.

Please note that allocation of the NFVO, the VIM, and the EM resources, as separate unrelated entities, is vastly
simplified and would be insufficient in practice. Since test resource management and abstract environment modelling is
outside the scope of the present document, for the purpose of this example, it is assumed that required relationships
among the allocated resources are satisfied. One such relationship can be connectivity for example.

The test execution flow consists of one segment (described in clause 4.6 and shown on the diagram in Figure 3) and is
delimited with the keywords start and end. Before the VNF instantiation flow can be executed, it is necessary for
the VNF creation flow to be executed. Thisis a necessary step and one that creates the VNF instance ID used
throughout the test case, but the specifics of the VNF creation flow are of no particular interest to the test case sinceiits
main focus is on the VNF instantiation procedure. Therefore it is accomplished in one single step in line 12 by calling a
high-level function createVNF () defined in the MANO HLF specification referenced in line 3. This corresponds to
the "Calls" relationship between the Execution Flow and the High-Level Functionsin Figure 3. Parameters passed to
this call are the EM test resource and the VNFD to be used by the VNF creation procedure. The parameters are |abel-
value pairs for order-independence and greater flexibility with a potentially large number of optional parameters.

In this example the VNFD is assumed to be defined in the test data. It is passed to the createVNF () function call by
specifying the label VNFD and the value dynamically looked up in the test data by its qualified name vnfd . VNFD1.
This name complies with the Test Data schema definition in line 4, otherwise a compile-time error will be generated.
The function call returns the VNF instance ID of the newly created VNF to be used in the rest of the test case.

Linel4 callsinstantiatevnf () method onthenfvo resource. This corresponds to the "Calls" relationship
between the Execution Flow and the Abstract Resource APIsin Figure 3. In this case the deployment flavour ID is
passed to the method call by specifying the label FLAVOUR _ID and the value that is also dynamically looked up in the
test data. The qualified name looked up inthetest datais deployment . flavour . FLAVOURL.

Dynamic test data lookup in lines 12 and 14 corresponds to the "Dynamic lookup™ relationship between the Execution
Flow and the Test Datain Figure 3.

After receiving the Instantiate VNF request the VNFM is supposed to send a Grant Lifecycle Operation request to
NFVO. Line 31 verifiesthat by calling the method verifyGrantLifecycleOp ()onthenfvo test resource. The
parameters passed to this call are built in lines 16 through 29. The data models used for these parameters are defined in
ETSI GSNFV-SOL 003 [i.3], clause 9.5. Since the VNF Lifecycle Granting interface allows both synchronous and
asynchronous implementations of the Grant Lifecycle Operation flow [i.3], clause 9.3, this call also instructsthe NFVO
test resource to verify the synchronous implementation by specifying the MODE parameter.

ETSI

27 ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Lines 16 to 20 create an instance of the Grant Request and set its attributes to the values that are to be verified. Line 22
creates an instance of VIM Connection Info object to be included in the Grant to be returned to the VNFM. In lines 23
and 24 its attributes vimId and vimType are set to the id and type values obtained from the vim test resource
respectively by accessing its resource-specific data. Lines 26 to 29 create an instance of the Grant to be returned and set
its attributes.

Inthisexample GrantRequest, Grant, and Vnf ConnectionInfo dataelements are assumed to have been
defined in the NFV O resource API definition, hence al three types are qualified to the NFVO type. Alternatively, they
could be defined separately in aglobal VNF Lifecycle Operation Granting interface definition included in the NFVO
resource API definition, in which case they would be qualified to the global definition. In either case the type
information is loaded from the metadata referenced from within the environment meta-model! in line 6 and can be
validated at compile time.

After the INSTANTIATE lifecycle operation is granted by the NFVO the VNFM is supposed to alocate virtualised
compute resources from the VIM. Line 53 verifies that by calling the method
verifyAllocateVirtualisedComputeResourceOp ()onthevim test resource. Similarly to lines 16 to 29,
lines 33 through 51 build the parameters passed on this call and should be self-explanatory. The data models used for
these parameters are defined based on ETSI GS NFV-IFA 006 [i.4], clause 7.3.1.2.

Finally, lines 55 and 56 verify notifications the VNFM is supposed to send to the EM and the NFV O upon the
successful completion of the VNF insanitation by calling the method
verifyVnfInstantiatedNotification () onthe em andthe nfvo test resourcesrespectively. The VNF
instance ID is passed on both calls for verification.

Please note that for the purpose of this example, the instantiated VNF is not atest resource and the verification of

step 10 of the flow in Figure 1, configuration of the VNF with the deployment-specific parameters, is not performed. A
more complete example would allocate a VNF test resource, configure it with parameters required by the test scenario,
return it to the VNFM, and verify step 10 of the flow by calling appropriate methods on the VNF test resource.

ETSI

28

ETSI GR NFV-TST 011 V1.1.1 (2019-03)

Annex B:
Authors & contributors

The following people have contributed to the present document:

Rapporteur:
Frank Massoudian, Huawei Technologies Co., Ltd.

Other contributors:
Edward Pershwitz, Huawei Technologies Co., Ltd.

Pierre Lynch, Keysight Technologies UK Ltd.

ETSI

29

ETSI GR NFV-TST 011 V1.1.1 (2019-03)

History

Document history

V111

March 2019

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Test Domain
	4.1 Overview
	4.2 Test Case Resources
	4.3 Test Execution Flow
	4.4 High-Level Functions
	4.5 Test Case Data
	4.6 Execution Segments
	4.7 Test Environment
	4.8 Test Suites & Traffic Mixes

	5 Reuse Guidelines
	5.1 Overview
	5.2 Environment Decoupling
	5.3 Resource API Decoupling
	5.4 High-level Function Decoupling
	5.5 Test Data Decoupling

	6 Recommended Models
	6.1 Overview
	6.2 Test Case Model
	6.3 Test Environment Model
	6.4 Test Scenarios
	6.5 Full Domain Model

	7 Test DSL
	7.1 Overview
	7.2 Test DSL Concepts
	7.3 Abstract Syntax meta-model
	7.4 Dynamically Loaded Constraints
	7.5 Test Case Header
	7.5.0 Introduction
	7.5.1 Test Case Identifier
	7.5.2 Test Case Description
	7.5.3 Custom Test Case Attributes
	7.5.4 High-Level Functions
	7.5.5 Test Case Data

	7.6 Resource Declaration
	7.7 Execution Flow
	7.7.0 Introduction
	7.7.1 Getters for Resource-Specific Data
	7.7.2 Symbol Lookup
	7.7.3 High-level Function Invocation

	Annex A: JADL Example
	Annex B: Authors & contributors
	History

