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Intellectual Property Rights  

Essential patents  

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword  
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) Network Functions 
Virtualisation (NFV). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Executive summary  
The present document proposes a model of the NFV test domain and recommends requirements for a test Domain 
Specific Language (DSL) to manipulate it. In the context of NFV, a network service is supplied by multiple vendors and 
each vendor has its own test technology, interfaces into the system under test, and test languages (usually GPLs like 
Java®, Ruby®, Python®, etc.) In order to create a common test language, the test cases follow a standardized test case 
model that the language can manipulate, and that can be implemented within individual test technologies. The model 
includes shareable and reusable artefacts tied to the test domain: execution flow, data, abstract resources, environment, 
etc. 

Integration of multiple test technologies is only possible by a system that can accept contributions of test resources from 
multiple parties. These contributions may include lab resources, test APIs, test data, high-level function libraries, test 
execution platforms, etc. The test environment is then constructed dynamically from these contributions. To allow the 
dynamic nature of the test environment, it is necessary for the test case to be decoupled from specific resource 
contributions and express the test process in terms of resource abstractions. Mapping these abstractions to concrete 
resources is the job of a Dynamic Resource Management (DRM) system. This is done by creating an environment 
resource meta-model available to the test case developers at design time. The meta-model is then used for creation of 
specific environment instance models at runtime. Each environment instance includes dynamic resource contributions 
to which resource abstractions are mapped. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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Introduction  
With the advent of NFV, the industry is experiencing the following transformative challenges: 

• Multiple contributions to a network service 

• Open collaboration 

• Shift away from dedicated resources (sharing of resources) 

• Shift of integration responsibility from vendors to service providers (or their agents) 

• Test cases/plans can be repeated multiple times, making reuse critical 

To address these challenges and to encourage collaboration, the present document provides recommendations for NFV 
test domain modelling and a Test DSL that does not force vendors/participants to change their test technology/language 
and enables efficient utilization of resources. To enable reuse, the model also decouples test data and test environment 
from the test case and uses dynamic allocation of test resources. 
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1 Scope  
The present document proposes a model of the NFV test domain and recommends requirements for a test Domain 
Specific Language (DSL) to manipulate it. The description includes an NFV test automation ecosystem that facilitates 
interaction among NFV suppliers and operators, based on the DevOps principles.  

The NFV test domain contains: 

• System Under Test (SUT): Network Functions (NF), Network Functions Virtualisation Infrastructure (NFVI) 
and network services.  

• Test Resources: tools or instrumented NF's and NFVI elements that test cases can interface to manipulate the 
SUT. 

• Test Execution Flow: controlled and uncontrolled state transitions. 

• Test case configuration data and parameters: test-resource-specific and non-test-resource-specific. 

The present document explores the following attributes to enable efficient multi-supplier NFV interaction: 

• Reusability of test plans, test cases and test resources. 

• Abstraction of test data. 

• Decoupling of test case from the test environment. 

• Use of test resource abstractions in place of concrete resources. 

2 References  

2.1 Normative references  
Normative references are not applicable in the present document. 

2.2 Informative references  
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] ETSI GS NFV-TST 001 (V1.1.1): "Network Functions Virtualisation (NFV); Pre-deployment 
Testing; Report on Validation of NFV Environments and Services". 

[i.2] ETSI GS NFV-MAN 001 (V1.1.1): "Network Functions Virtualisation (NFV); Management and 
Orchestration". 

[i.3] ETSI GS NFV-SOL 003 (V2.3.1): "Network Functions Virtualisation (NFV) Release 2; Protocols 
and Data Models; RESTful protocols specification for the Or-Vnfm Reference Point". 

[i.4] ETSI GS NFV-IFA 006: "Network Functions Virtualisation (NFV) Release 2; Management and 
Orchestration; Vi-Vnfm reference point - Interface and Information Model Specification". 

[i.5] ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in 
NFV". 
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3 Definition of terms, symbols and abbreviations  

3.1 Terms  
For the purposes of the present document, the terms given in ETSI GS NFV 003 [i.5] and the following apply: 

execution engine: means by which a program can be executed on the target platform using the two approaches of 
interpretation and compilation 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the abbreviations given in ETSI GS NFV 003 [i.5] and the following apply: 

DSL Domain Specific Language 
GPL General Purpose Language 
HLF High-Level Function 
TEP Test Execution Platform 

4 Test Domain  

4.1 Overview  
The NFV test domain is a set of artefacts and systems for testing NFV-based solutions. NFV introduced the concept of 
"dynamically configurable and fully automated cloud environments" (https://www.etsi.org/technologies/nfv) for 
network functions. The present document models the NFV test domain as a set of abstractions so that the same level of 
flexibility is available in testing those network functions. Figure 1 is included to illustrate relationships among artefacts 
discussed in clause 4; the NFV Test Domain model is described in more detail in clause 6. In addition, the present 
document proposes requirements for a Domain-specific language (DSL) to manipulate that test domain. Using these 
models and recommended requirements, suppliers and service providers are able to leverage different test technologies, 
dynamically allocate test resources, and reuse test plans, test cases, and Test Execution Platforms (TEPs). In the present 
document, a test case always refers to a computer program that can be executed by a test automation system. 

https://www.etsi.org/technologies/nfv
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Figure 1: NFV Test Domain Artefact Relationships 

The NFV test domain is comprised of: 

• System Under Test (SUT) [i.1]: Network Functions (NF), Network Functions Virtualisation 
Infrastructure (NFVI), and network services  

• Test Case Resources: tools or instrumented NF's and NFVI elements that test cases can interface to manipulate 
the SUT 

• Execution Flow: controlled and uncontrolled state transitions 

• High-Level Functions 

• Test case configuration data and parameters: test-resource-specific and non-test-resource-specific 

• Execution Segments 

• Test Environment 

• Test Suites & Traffic Mixes 

4.2 Test Case Resources  
In order to be tested, the SUT exposes a set of interfaces over which test interactions happen. These interfaces vary in 
the degree of complexity and may include entire protocol stacks. The test drivers communicate with the SUT by 
sending and receiving encoded messages over one or more of these interfaces. This means that the implementation of 
the interface is also present on the test side. 

It is therefore necessary for the executing test case to create or otherwise acquire one or more objects that implement the 
SUT interfaces and use them to send and receive messages to and from the SUT. These objects in turn expose their own 
interfaces to the test case to allow the test to manipulate the message flow more easily. These objects will be referred to 
as abstract resources. In essence an abstract resource is an instance of an SUT interface that provides its own API to the 
test. 
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Abstract resources are test case-facing abstractions that utilize units of lab equipment, software, and/or data to do real 
work. These units will be referred to as concrete resources. In the context of a shared lab, concrete resources are shared 
among multiple users and are allocated to specific test cases for the duration of the test. This guarantees that the test 
case gets exclusive access to concrete resources required for its execution. Some examples of concrete resources include 
instances of instrumented or stubbed out MANO components, VNFs, VNFCs, etc. Availability of concrete resources is 
generally limited and concurrently executing test cases contend to gain access to them. 

The relationship between abstract and concrete resources is typically many-to-many, and the mapping between them is 
described in clause 6.3. The test DSL is expected to enforce proper resource declaration, preclude any access to 
concrete resources outside the resource management system, and provide the user with an intuitive way to declare and 
manipulate abstract resources. Once an abstract resource is mapped to an allocated concrete resource they form a single 
entity used by the test case to interact with the SUT. This entity will be called test case resource as illustrated in 
Figure 2. 

4.3 Test Execution Flow 
As the test case executes, every resource goes through a sequence of states, reflecting the SUT functionality being 
tested. These sequences range in complexity from trivial to very complex. The test case may be interested in some but 
not all of these states. For example, if a resource is running a protocol stack, unless protocol conformance is being 
tested, most low-level messaging is of no interest to the test case. It may only be interested in the successful or 
unsuccessful outcome of such messaging. The degree to which the test case has visibility of the resource state can vary 
for the same type of resource depending on the test scenario. Consequently, it is necessary for a mechanism for different 
levels of control over the resource state to be present. The test case should have the ability to "take over" the resource 
state transition when necessary and let the resource run its own state machine at other times. The resource states 
controlled by the test case are referred to as controlled states. 

Controlled states of all test case resources at any given time form the state of the test case. Test case initiates state 
transitions by sending or receiving and verifying messages to and from the SUT on any of the test case resources. For 
example, if the SUT is a VNFM implementation and an Instantiate VNF request is sent from the NFVO resource, the 
test case can verify receiving a Grant VNF Lifecycle Operation request by the NFVO resource and after acknowledging 
it with a Grant VNF Lifecycle Operation response, verify that the Allocate Resource request is received by the VIM 
resource. Running a single state machine per test case for controlled states while letting individual resources run their 
own state machines for uncontrolled states provides an intuitive and flexible framework for SUT interface interworking.  

 

Figure 2: Test Case Resources and State Machine 
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Any controlled state can be passing or failing. Criteria for failing the test are evaluated by the test case at every 
controlled state. If failure criteria are satisfied the test fails immediately. Otherwise it continues until it reaches a final 
state at which point it passes. If a test case does not reach a final state it gets killed by the TEP once sufficient time has 
passed to conclude that the test behaviour is abnormal. Regardless of the type of test case termination (passed, killed, 
crashed, hung and killed by the TEP), the allocated concrete resources are returned into their initial state and released. 
Since no assumption can be made about normal vs. abnormal test case termination, the responsibility of resource 
clean-up and release cannot be assigned to the test case and should lie with individual resource implementations. 

4.4 High-Level Functions 
A test scenario may also require a series of controlled state transitions involving multiple resources whose details are 
outside the main focus of the test. Continuing with the previous example, if the main focus of the test is verification of 
VNFM configuring the newly created VNF with deployment-specific parameters, the details of the VNF instantiation 
are not important to the test scenario and can be grouped into a single action. These actions will be referred to as 
high-level functions. They capture frequently repeated state transition sequences and encapsulate them into invokable, 
parameterizable units of functionality. High-level functions can also call other high-level functions. This provides a 
flexible mechanism for control of granularity for different parts of the execution flow. High-level functions are reusable 
across multiple test cases and activities. 

4.5 Test Case Data 
Many test cases utilize data that are not explicitly defined in the body of the test case. Separation of the execution flow 
and the data that can parameterize the execution flow allows greater flexibility of test case design and reuse of the same 
data sets by multiple tests.  

Some data are resource-specific and come from test case resources. Since the test case only manipulates abstract 
resources and has no prior knowledge of what concrete resource may be allocated to it, any attributes of the concrete 
resources used in the test case are acquired at run time. For example, in order to verify that the VNFM under test sends 
the correct VNF identifier in the alarm notification to the NFVO, it is necessary for the test case to know the VNF 
identifier of the VNF generating the alarm. Until a specific VNF test resource instance is allocated to the test case, its 
identifier is not known. The test case should therefore be able to obtain the identifier from the VNF test resource at 
runtime to verify that the correct one is sent to the NFVO test resource.  

Some data are not resource-specific and come from elsewhere. For example, default values for a set of protocol 
messages can be specified outside the test case. This allows the test case writer to only provide non-default values for 
message Information Elements (IEs). This also allows reuse of this data across a potentially very large number of test 
cases using the same protocol. 

Test case data should be easily customizable. In the protocol defaults example there may be global defaults, defaults 
that a particular user team is using for their purposes, or even defaults for a particular test activity that further specialize 
test case writers' defaults. This can be accomplished by creating progressively specialized test case data hierarchies with 
every new child defining a nested scope within its parent's scope. Data lookup then follows the regular scoping rules. 

4.6 Execution Segments 
In some cases the test execution flow can be separated into individually executable segments. For example, many 
control-plane test scenarios are designed to have segments of signalling separated by periods of inactivity. These 
periods of inactivity represent voice or data transmission and are commonly referred to as hold time. Hold time may be 
in orders of magnitude longer that the active segments of the test case and a very large number of test cases can be 
holding at the same time. It is therefore important to have a mechanism for suspending execution of the test case and 
releasing associated computing resources (not test case resources) for the duration of the hold time. 

Unlike high-level functions execution segments are only defined within the scope of an individual test execution flow. 
They are not shareable artefacts and cannot be invoked by the test case. They only provide the ability to the TEP to 
execute parts of the test case individually. High-level functions of various degree of granularity can be invoked from 
within execution segments. 
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Segmentation also provides the ability to run parts of the execution flow in a different order. A separate model 
specifying desired combinations of the segments and their permutations can be defined and provided to the TEP. The 
TEP can then execute the segments in the specified order. This can provide substantial time and effort savings 
compared to writing a separate test case for every desired permutation. 

4.7 Test Environment 
Test Environment is defined in ETSI GS NFV-TST 001 [i.1], clause 4.2. The present document introduces the concepts 
of Abstract and Concrete test environments that enable reuse. Similarly to test case resources, environments can also be 
abstract and concrete. Abstract environments consist of abstract resources, and concrete environments consist of 
concrete resources. Abstract resources are mapped to concrete resources by the resource management system. 

Before concrete resources can be used in a test case (or a group of test cases within the same test activity) they are 
allocated to that test activity and provisioned. In addition to specifying required abstract resources, abstract environment 
definition also specifies Provisioning Data that is applied to allocated concrete resources to complete concrete 
environment instantiation. 

4.8 Test Suites & Traffic Mixes 
In a typical test scenario test cases are not executed by themselves. They run as a part of either a test suite or a traffic 
mix.  

Test suites aggregate test cases that verify a particular set of functional requirements. Test cases in a test suite are 
executed once and success and failure are considered on individual test case basis. Test suites impose sequential or 
parallel mode of test case execution, or define flows that combine both. Test suites can also set context (e.g. test data) 
for parts of such flows. 

Traffic mixes aggregate test cases that verify non-functional requirements, such as performance, robustness, etc. Test 
cases in a traffic mix execute repeatedly, each at its own rate. Together, they emulate real network traffic where 
multiple activities happen at the same time. Success and failure are considered on the entire traffic mix execution and a 
certain number of individual test case failures is typically expected. For example, a five 9's availability metric allows 
one out 100 000 test cases to fail in a successful run.  

Traffic mixes define relative frequencies of different network activities and the overall rate of network traffic. Both 
activity distribution and the overall rate can change over time. 

5 Reuse Guidelines 

5.1 Overview 
NFV solutions are composed of contributions from multiple suppliers. As such, test cases or entire test plans may be 
repeated multiple times, making reuse critical. The NFV test domain model (as defined in the present document) 
enables reusability through decoupling, abstraction and modularization. 

5.2 Environment Decoupling 
Decoupling the test environment from test cases is achieved by strict separation of abstract and concrete resources and 
using a dynamic resource management system to map the abstract resource space to the concrete resource space.  

The relationship between test cases and their environments is many-to-many, which means that multiple test cases with 
the same resource requirements can execute on the same test environment and that the same test case can execute on 
multiple environments.  

The resource management system manages the available test resources and accepts contributions of resources from 
various resource contributors. From these contributions it builds a dynamic model of the concrete resource space. The 
model adapts dynamically to changes in resource contributions. This dynamic model is used by the resource 
management system to find a concrete resource for an abstract resource request from the resource consumer. 
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This dynamic model is an instance of a meta-model that specifies resource abstractions and their relationships. This 
meta-model is defined statically and describes a family of resource models. The resource abstractions specified by the 
meta-model are visible to resource consumers. A resource consumer can request any resource abstraction without the 
knowledge of the concrete resource space. 

When a test activity needs a concrete environment to run on, an abstract environment gets designed to describe it. This 
abstract environment is defined in terms of specific resource abstractions provided by the meta-model. This abstract 
environment is a reusable artefact that multiple test activities can use to build concrete environments. 

Environment meta-models and abstract environment definitions are carefully designed by solution and automation 
architects and managed by the test environment management service. The end user only deals with the namespace for 
resource abstractions (like a pool of VIMs) they use in the test case.  

5.3 Resource API Decoupling 
Test resources are contributed from multiple sources and, in the context of multi-organizational collaboration, different 
test technologies come from different suppliers. The resource APIs are therefore decoupled from any resource 
implementations and are defined outside of any specific test technology. Test cases written in a test DSL have no 
knowledge of the test resources but as long as the APIs are defined outside of any specific resource contribution, the test 
cases can be written against these APIs, compile-time error checking can be performed, and code assist/code 
completion can be provided to the user.  

5.4 High-level Function Decoupling 
High-level Functions (HLFs) provide a high degree of reuse and a single point of truth (written or fixed once - used 
everywhere). Most existing test technologies will have some form of HLFs already implemented that may be leveraged. 
Similarly to test resource contributions, this necessitates having an externally defined contract for using these HLFs 
with which all implementations comply. It is the responsibility of individual execution engines to compile HLF API 
calls into calls on specific HLF implementations.  

5.5 Test Data Decoupling 
As indicated in clause 4.5, the test domain definition includes a mechanism for separation of the test case execution 
flow from the data used to parameterize the test.  

Resource-specific data come from the concrete resource allocated to the test case and is not known in advance to the 
test case designer. Non-resource-specific data is a part of the context for the test case execution and forms a hierarchy 
that can be easily customized. The customization may include progressive specialization from global set of values down 
to values for individual test activities. The data is dynamically looked up by the test case using fully qualified symbols 
as keys. Each fully qualified name represents a path from the root of the data tree to the node holding the value.  

The symbol lookup functionality is provided by the TEP and can have its own implementation. Test data is provided to 
the TEP as metadata that can be converted into any TEP-specific format or integrated into already existing 
functionality.  

In order to use test case data, it is necessary for the test case designer to provide names for individual data elements. In 
the case of resource-specific data the problem of checking validity of these names at compile time and providing code 
assist/code completion functionality to the user is easily solved by making getters for any data elements the resource 
exposes to the user a part of the resource API. 

For non-resource-specific data this problem is more challenging. Since this type of data is a part of the context for the 
test case execution it is not known at design time. If a test case tries to look up a symbol that is not present in the data it 
will be a run-time error. In addition, the namespace can be very large and fully qualified symbol names could also be 
long and prone to spelling errors. The problem can be rectified if a schema for test data is made available to the test case 
at design time. Symbol names will be validated against this schema, auto-proposed, and auto-completed.  
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6 Recommended Models 

6.1 Overview 
In order to create a common test language, the test cases follow a standardized model that the language can manipulate, 
and that can be implemented within individual test technologies. The model includes shareable and reusable artefacts 
tied to the test domain:  

• execution flow;  

• data;  

• abstract environment definitions;  

• etc. 

6.2 Test Case Model 
The diagram in Figure 3 shows test case elements and their relationships. The test case has a test script and uses test 
data, high-level function libraries and segment ordering data. The test script in turn has resource declaration and 
execution flow definition parts. The resource declaration section aggregates a set of abstract resources that realize their 
respective APIs. The execution flow can call the abstract resource APIs. It can also invoke higher-level functions. 
Higher-level functions can invoke other higher-level functions and call abstract resource APIs. The execution flow uses 
the test data model for dynamic symbol lookup. The execution flow aggregates execution segments that are ordered 
according to the segment ordering data model. 

 

Figure 3: Test Case Elements 

6.3 Test Environment Model 
The diagram in Figure 4 shows how test environments relate to test cases. Abstract test environments aggregate abstract 
resources, which in turn are mapped to concrete resources. There are three major types of concrete resources: elements 
of the SUT, test tools used to interact with the SUT and reservable data. An example of reservable data could be a 
license key with a limited set of instances.  
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The link between the abstract and the concrete environments is provided by the Environment Meta-model. It models the 
concrete resource space as a set of reservable entities and provides a number of abstractions (e.g. pools) that can be 
referenced from the abstract environment definition. The meta-model captures domain knowledge about the concrete 
resource space and considerably simplifies abstract environment definition.  

Before concrete resources can be used in a test case - or a group of test cases within the same test activity - they are 
provisioned (configured). Abstract environment definition specifies Provisioning Data that is applied to allocated 
concrete resources to complete concrete environment instantiation. 

 

Figure 4: Test Environment in Relation to Test Cases 

6.4 Test Scenarios 
The diagram in Figure 5 shows test suites and traffic mixes in relation to the test cases. Test suites and traffic mixes 
aggregate test cases and verify functional and non-functional requirements respectively. All requirements define a set of 
attributes or keywords that the test cases are labelled with. Dynamic suites and traffic mixes are constructed from test 
cases selected based on these labels. A natural constraint is that all test cases within the same test suite or traffic mix are 
able to execute on the same test environment. Test cases with non-intersecting environment requirements cannot be part 
of the same test suite or traffic mix. 
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Figure 5: Statically and Dynamically Defined Test Suites and Traffic Mixes 

6.5 Full Domain Model 
Domain diagrams in Figures 3 through 5 combine to form a recommended test case domain model as shown on 
Figure 6.  
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Figure 6: Recommended Test Case Domain Model 
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7 Test DSL 

7.1 Overview 
Vendors have their own test technologies, interfaces into the system under test, and test languages (usually GPLs like 
Java®, Ruby®, Python®, etc.). In order to create a common test language, it is necessary for the test cases to follow a 
standardized test case model that the language can manipulate, and that can be implemented within individual test 
technologies. As stated in clause 6, the model includes shareable and reusable artefacts tied to the test domain: 
execution flow, data, abstract resources, environment, etc. 

Integration of multiple test technologies is only possible by a system that can accept contributions of test resources from 
multiple parties. These contributions may include lab resources, test APIs, test data, high-level function libraries, test 
execution platforms, etc. The test environment is then constructed dynamically from various contributions. To allow the 
dynamic nature of the test environment, the test case are decoupled from specific resource contributions and express the 
test process in terms of resource abstractions. Mapping these abstractions to concrete resources is the job of a dynamic 
resource management system. This is done by creating an environment resource meta-model available to the test case 
developers at design time. The meta-model is then used for creation of specific environment instance models at runtime. 
Each environment instance includes dynamic resource contributions to which resource abstractions are mapped. 

7.2 Test DSL Concepts 
A test case is a computer program. This program has syntax and semantics. The semantics reflect the meaning of what 
the program does and the syntax describes a particular representation of this meaning. Many different syntactic 
representations may result in the same program semantics. As a clarification of scope, any examples of such 
representation are for illustration purposes only and are not meant to suggest any particular concrete syntax. 

The task of writing a test case in a DSL is a task of building the semantic model of the test using that DSL syntax. This 
semantic model is an object model that captures what the test case is supposed to do when it executes.  

In clause 6, the test case domain model was recommended to have the following elements: test execution flow, test case 
resources, test data, high-level functions, and test segment model. The test case semantic model defines a specific 
instance of the execution flow and manipulate instances of other test case elements (resources, data, etc.) It is important 
to note that these instances can have different implementations and can be written in different programming languages 
(GPLs or DSLs). The semantic model together with other test element instances form the conceptual model of the test. 
In other words the test case domain model is the meta-model of which the conceptual model is an instance. 

A conceptual model can be constructed in several different ways. One way is to create a grammar for a particular DSL 
concrete syntax and generate a parser for this grammar. The resulting text-based DSL will need an IDE providing 
common services like code assist, code completion, and design-time compile error checking. As mentioned above, there 
can be many different concrete syntax representations for the same conceptual model. Another way is to use a 
projectional modeller or a set of modellers that will manipulate the conceptual model directly from the modeller UI (as 
illustrated in Figure 7). 
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Figure 7: DSL Components 

The same conceptual model can have multiple execution engines that generate GPL representations of the test for 
multiple target platforms. Figure 7 illustrates how this works: the same conceptual model uses two execution engines to 
generate programs in two different GPLs that execute on their respective test execution platforms sharing the same 
environment. The conceptual model provides clear separation of concerns between the language concrete syntax (or 
projectional modeller implementation), the resulting execution semantics, and code generation of various GPL 
representations. 

7.3 Abstract Syntax meta-model 
When a DSL test case is processed by the parser, a semantic model of the test case is generated. A different semantic 
model is created for each test case, depending on the meaning of the individual test program. All such semantic models 
have the same structural elements specified by the language grammar. In this sense they are all instances of a meta-
model that models these structural elements and their relationships. This meta-model is the abstract syntax meta-model 
for the language.  

For example, a semantic model may have any number of specific resource declaration elements, one for each declared 
resource. All such elements will have the same structure and will all be children of the resource declaration section 
element. The element structure and its relationship to its parent element is defined in the abstract syntax meta-model. 

The relationships between the abstract syntax meta-model and test case semantic models are illustrated in Figure 8. 



 

ETSI 

ETSI GR NFV-TST 011 V1.1.1 (2019-03) 20 

 

Figure 8: Meta-model Relationships 

7.4 Dynamically Loaded Constraints 
Nodes of the abstract meta-model can have constraints that, in addition to syntax, determine the validity of the test case 
code. Test cases that are syntactically invalid or that contain code violating such constrains will produce compile-time 
errors. It is recommended that the test DSL takes advantage of this functionality to not only add statically defined 
constraints, but also validate the code against dynamically loaded artefacts. For example, in the resource declaration 
section of the test case, a URL can be specified that points to an environment meta-model against which the test case is 
written. The environment meta-model provides a namespace for abstract resources available from the test environment. 

Once the environment meta-model is loaded and processed, the information of all available abstract resources and their 
APIs becomes a part of the test case's sematic model that imposes constraints on the resource declaration element of the 
abstract syntax meta-model. Thus, the check that the particular abstract resource is present in the test environment and 
that it realizes a specific API can be done at compile time. Violation of either of these two constraints should result in 
compile-time errors. 

Likewise, the validity of API calls on abstract resources and high-level function calls based on resource APIs and 
high-level function contracts dynamically loaded into their respective modules of the test case semantic model can be 
verified at compile time. Violation of these constraints should also result in compile-time errors. It is important to note 
that even though the environment meta-model and the resource and high-level function contracts are loaded 
dynamically, they are statically defined artefacts.  

7.5 Test Case Header 

7.5.0 Introduction 

The header describes the test case and its relationship to other artefacts the test case interacts with. It is recommended 
that the header has the elements described below. 

7.5.1 Test Case Identifier 

A test case identifier uniquely identifies the test case. Uniqueness cannot be enforced by the language and is a concern 
for test case management, which is outside the scope of the present document. However, since individual users are only 
in control of a specific namespace within their organization, separation of these namespaces are essential to avoid 
conflicts. It is recommended that such separation is achieved by the requirement that the test case identifier be a fully 
qualified name. In the service integration context, it is even more important to avoid name conflicts between different 
vendors. 

Specifying the test case identifier in the test case header should be mandatory. 
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7.5.2 Test Case Description 

The test case description element is a natural language description of the test case. A meaningful description simplifies 
maintenance of the test cases and can be utilized by maturing Natural Language Processing/Artificial Intelligence 
technologies. 

Specifying the test case description in the test case header should be mandatory. 

7.5.3 Custom Test Case Attributes 

It is recommended that custom attribute elements be provided for test case maintenance purposes. There can be any 
number of custom attributes. Each attribute has a name that is a valid identifier and a value that can be any string.  

Specifying custom test case attributes should be optional. 

7.5.4 High-Level Functions 

The high-level function element of the header declares high-level function APIs required for the test case to execute. 
Specific high-level function implementations can be contributed by different test technologies. As long as these 
implementations realize contracts declared in the test case header, the test case can execute. It is recommended that such 
declaration contain a list of URLs, each of which specifying an API for a library of high-level functions. These 
externally defined APIs are also used as constraints on high-level function calls in the execution flow section of the test 
case. Invalid high-level function API calls should result in compile-time errors. 

Specifying high-level function APIs should be optional.  

7.5.5 Test Case Data 

Similarly to high-level functions, it is recommended that the test data element be a list of URLs. Each URL specifies a 
schema for test data required by the test case to execute. Specific test data instances are provided at runtime but the 
schema is known at design time to ensure validity of test data lookup.  

The order in which the schemas appear in the list is insignificant. The order in which the symbols are looked up at 
runtime is determined by the design of the data instance rather than the order in which the schemas are specified in the 
test data element of the test case header. Test data schemas are only used as constraints on non-resource-specific data 
lookups at design time. 

Specifying test case data schemas should be optional. 

7.6 Resource Declaration 
The resource declaration section specifies the environment meta-model against which the test case is written and the 
abstract resources the test case requires for its execution. The environment meta-model defines the available abstract 
resource namespace and the API for each resource abstraction in the namespace. The environment meta-models are 
described in more detail in clause 5.2 of the present document. 

Resource declaration is a part of the test case script. It is recommended that it contains an environment meta-model 
URL, indicating that all required resources will come from a concrete environment that can be modelled by an instance 
of the specified meta-model.  

The rest of the resource declaration section should be a list of resource allocation statements indicating the abstract 
resource name and the API the resource is expected to realize. A constraint on resource allocation statements is that a 
resource abstraction with the specified name is defined in the specified meta-model and that it realizes the specified 
API. Violations of this constraint should result in compile-time errors. 

The relationship between test cases and their environments is many-to-many, which means that multiple test cases with 
the same resource requirements can execute on the same test environment and that the same test case can execute on 
multiple environments. In addition, concrete environments can, and in most cases should, be allocated dynamically. 
Statically defined environment meta-models allow the test case designer to write and validate (at design/compile time) 
test cases that use a yet unknown test environment. 
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7.7 Execution Flow 

7.7.0 Introduction 

The execution flow is a sequence of executable statements that manipulate abstract resources defined in the resource 
declaration section. As illustrated in the diagram in Figure 3, these statements call resource APIs and invoke high-level 
functions from high-level function libraries, APIs for which are specified in the test case header. Any API call may 
succeed or fail. If an API call fails, the test case fails immediately. If the required behaviour for the passing scenario is 
for the API call to fail, the language syntax should have a clause to indicate that if a particular API call succeeds, the 
test case is supposed to fail.  

Control-flow statements are not recommended in the execution flow as they would compromise the notion of the test 
validity. Multiple possible paths through the test execution flow would result in uncertainty as to which specific path 
was executed at run time and hence which specific scenario was tested. This would render the test result essentially 
meaningless. 

7.7.1 Getters for Resource-Specific Data 

As mentioned in the clause 5.4, it is recommended that resource-specific data be retrieved by calling a getter defined in 
the resource API. The resource API is a contract, and as such, it makes no assumptions about the resource 
implementation or its properties. The getter is a method that has a contractual obligation to return a value with a 
particular meaning documented in the API. How the actual resource maintains, obtains, or computes this value is up to 
the resource implementation.  

7.7.2 Symbol Lookup 

Non-resource-specific test data come from the test case context and is looked up dynamically. It is recommended that 
symbols be fully qualified names to avoid ambiguity. 

Similarly to the case of resource-specific data getters, the contract for symbol lookup does not imply any specific 
implementation of the test data or any specific data lookup mechanism. It can be implemented by the TEP or as a 
separate service. It can be represented as a search tree or stored in the object database. To the test case designer, this 
only means that the required datum value will be returned if it exists in the test data instance of the current test case 
context. 

As described in clause 7.5.5, test data declaration in the test header contains a list of data schemas. This suggests that 
the data instance provided to the test case can potentially have multiple separate data sets, each corresponding to its 
respective schema. These datasets may have conflicts.  

While it is possible to create different qualified names in different schemas to avoid ambiguity, it is not possible to 
enforce, especially if these data sets come from different organizations. Additionally, an argument can be made that 
using more generic names makes the test case more reusable. 

If exactly the same qualified name exists in more than one data set, the first one found will be the one whose value is 
returned to the test case. The order in which the data hierarchy is searched depends on the specific data instance 
provided to the test case. Modelling of such data instances should include a mechanism to customize the data set with 
additional data sets that get searched first. This should be a general customization mechanism that can progressively 
specialize test data by providing a new set of values for an existing subset of qualified names and placing them first in 
the search order.  

It is also recommended to have the ability to selectively specify which dataset to search first. An example of the use 
case that may need such functionality is running the same test with multiple sets of protocol defaults, specified by a 
single selector rather than replacing the whole dataset. 

7.7.3 High-level Function Invocation 

High-level function invocation is very similar to calling resource API methods. Similar to the resource API definition 
coming from the environment meta-model, the high level function API definitions come from URLs specified in the 
high-level function element of the test case header. 
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The difference from resource API calls is that test case resources are objects that have a state, while high-level functions 
are not called on a particular object and are therefore stateless. This means that any implementation of the high-level 
function API is a stateless component. This, of course, does not mean that the function cannot depend on, or modify, the 
state of any object passed to it as an argument. 
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Annex A: 
JADL Example 
The following is an example test scenario represented in Joint Agile Delivery Language (JADL) that illustrates the 
concepts described in the present document. JADL is a DSL developed for the Test domain as described in clause 4, 
following the reuse guidelines in clause 5, and leveraging models in clause 6. It also closely follows the Test DSL 
design recommendations in clause 7. JADL can be found on GitHub: https://github.com/usrdcc/jadl. 

In this example the system under test is a VNFM implementation, the required test resources are an NFVO component, 
an EM component, and a VIM component that can be either instrumented implementations assumed to work correctly 
or automation framework stubs. The test scenario is validation of the VNF instantiation procedure from NFVO ETSI 
GS NFV-MAN 001 [i.2], clause B.3.2.2. Since the focus of this example is on the Test domain and the Test DSL rather 
than specifics of the VNF instantiation, it is kept at a high level with many low-level details of the VNF instantiation 
procedure omitted. 

A sequence diagram of the VNF instantiation from NFVO flow copied from [i.2], Figure B.11 is shown in Figure A.1.  

 

Figure A.1: VNF instantiation from NFVO flow 

In this diagram the VNF Manager timeline is the SUT for the test case and the EM, NFV Orchestrator, and VIM 
timelines are test resources. 

https://github.com/usrdcc/jadl
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An example JADL test case verifying the corresponding VNFM functionality is shown in Figure A.2. 

 

Figure A.2: JADL Test case example 

The following is a line-by-line description of this test case example.  

Lines 1 and 2 of the test case header specify the fully qualified test case ID and the test case description.  

Line 3 points to high-level function API specification for MANO high level functions. This specification places 
dynamically loaded constraints on high-level function calls in the execution flow section of the test case that are 
checked at compile time. This corresponds to clause 7.5.4 and implements the reuse guidelines in clause 5.4. 
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Line 4 points to the Test Data schema for test data required by the test case to execute. The data schema places 
dynamically loaded constraints on valid data lookups in the execution flow section that are also checked at compile 
time. This corresponds to clause 7.5.5 and implements the reuse guidelines in clause 5.5. 

Lines 6 through 9 are the Resource Declaration section. Line 6 points to the environment meta-model definition, against 
which the test case is written. Lines 7, 8 and 9 request test resources to be allocated to the test case. Line 7 allocates an 
NFVO resource by specifying the abstract resource name "nfvo" described in the environment meta-model and 
providing a dynamic configuration identifier "nfvoConfig" for any kind of dynamic configuration that the test 
resource may (optionally) require after it is allocated to the test case. The allocated resource type NFVO is a resource 
API type defined in the environment meta-model for NFVO test resources. The allocated test resource is assigned to the 
variable nfvo.  

The environment meta-model places several dynamically loaded constraints on the test case code. First, resources with 
the name "nfvo" exist; second, it is necessary that they implement the NFVO API; and third, execution flow 
statements are only allowed to call methods on variable nfvo that are defined in the NFVO API. If any of these 
constraints are violated a compile-time error will be generated. Lines 8 and 9 allocate a VIM and an EM resources in a 
similar fashion. This corresponds to clause 7.6 and implements the reuse guidelines in clauses 5.2 and 5.3. The 
Resource Declaration section aggregating abstract resources that implement APIs called by the Execution flow is a part 
of the Test Case Model described in clause 6.2 and shown on Figure 3. 

When the code in the Resource Declaration section is executed, abstract resources (as described in clause 4.2) are 
instantiated and a request is sent to the resource management system to map them to a set of concrete resources. The 
environment meta-model specified in line 6 is used for this mapping as shown in Figure 4. Dynamic configuration 
identifiers such as "nfvoConfig", "vimConfig", and "emConfig" in lines 7-9 correspond to the provisioning 
data applied to the allocated concrete resources which in this instance are Test Tools elements. 

Please note that allocation of the NFVO, the VIM, and the EM resources, as separate unrelated entities, is vastly 
simplified and would be insufficient in practice. Since test resource management and abstract environment modelling is 
outside the scope of the present document, for the purpose of this example, it is assumed that required relationships 
among the allocated resources are satisfied. One such relationship can be connectivity for example. 

The test execution flow consists of one segment (described in clause 4.6 and shown on the diagram in Figure 3) and is 
delimited with the keywords start and end. Before the VNF instantiation flow can be executed, it is necessary for 
the VNF creation flow to be executed. This is a necessary step and one that creates the VNF instance ID used 
throughout the test case, but the specifics of the VNF creation flow are of no particular interest to the test case since its 
main focus is on the VNF instantiation procedure. Therefore it is accomplished in one single step in line 12 by calling a 
high-level function createVNF() defined in the MANO HLF specification referenced in line 3. This corresponds to 
the "Calls" relationship between the Execution Flow and the High-Level Functions in Figure 3. Parameters passed to 
this call are the EM test resource and the VNFD to be used by the VNF creation procedure. The parameters are label-
value pairs for order-independence and greater flexibility with a potentially large number of optional parameters.  

In this example the VNFD is assumed to be defined in the test data. It is passed to the createVNF() function call by 
specifying the label VNFD and the value dynamically looked up in the test data by its qualified name vnfd.VNFD1. 
This name complies with the Test Data schema definition in line 4, otherwise a compile-time error will be generated. 
The function call returns the VNF instance ID of the newly created VNF to be used in the rest of the test case. 

Line 14 calls instantiateVnf() method on the nfvo resource. This corresponds to the "Calls" relationship 
between the Execution Flow and the Abstract Resource APIs in Figure 3. In this case the deployment flavour ID is 
passed to the method call by specifying the label FLAVOUR_ID and the value that is also dynamically looked up in the 
test data. The qualified name looked up in the test data is deployment.flavour.FLAVOUR1.  

Dynamic test data lookup in lines 12 and 14 corresponds to the "Dynamic lookup" relationship between the Execution 
Flow and the Test Data in Figure 3. 

After receiving the Instantiate VNF request the VNFM is supposed to send a Grant Lifecycle Operation request to 
NFVO. Line 31 verifies that by calling the method verifyGrantLifecycleOp()on the nfvo test resource. The 
parameters passed to this call are built in lines 16 through 29. The data models used for these parameters are defined in 
ETSI GS NFV-SOL 003 [i.3], clause 9.5. Since the VNF Lifecycle Granting interface allows both synchronous and 
asynchronous implementations of the Grant Lifecycle Operation flow [i.3], clause 9.3, this call also instructs the NFVO 
test resource to verify the synchronous implementation by specifying the MODE parameter. 
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Lines 16 to 20 create an instance of the Grant Request and set its attributes to the values that are to be verified. Line 22 
creates an instance of VIM Connection Info object to be included in the Grant to be returned to the VNFM. In lines 23 
and 24 its attributes vimId and vimType are set to the id and type values obtained from the vim test resource 
respectively by accessing its resource-specific data. Lines 26 to 29 create an instance of the Grant to be returned and set 
its attributes. 

In this example GrantRequest, Grant, and VnfConnectionInfo data elements are assumed to have been 
defined in the NFVO resource API definition, hence all three types are qualified to the NFVO type. Alternatively, they 
could be defined separately in a global VNF Lifecycle Operation Granting interface definition included in the NFVO 
resource API definition, in which case they would be qualified to the global definition. In either case the type 
information is loaded from the metadata referenced from within the environment meta-model in line 6 and can be 
validated at compile time. 

After the INSTANTIATE lifecycle operation is granted by the NFVO the VNFM is supposed to allocate virtualised 
compute resources from the VIM. Line 53 verifies that by calling the method 
verifyAllocateVirtualisedComputeResourceOp()on the vim test resource. Similarly to lines 16 to 29, 
lines 33 through 51 build the parameters passed on this call and should be self-explanatory. The data models used for 
these parameters are defined based on ETSI GS NFV-IFA 006 [i.4], clause 7.3.1.2. 

Finally, lines 55 and 56 verify notifications the VNFM is supposed to send to the EM and the NFVO upon the 
successful completion of the VNF insanitation by calling the method 
verifyVnfInstantiatedNotification() on the em and the nfvo test resources respectively. The VNF 
instance ID is passed on both calls for verification. 

Please note that for the purpose of this example, the instantiated VNF is not a test resource and the verification of 
step 10 of the flow in Figure 1, configuration of the VNF with the deployment-specific parameters, is not performed. A 
more complete example would allocate a VNF test resource, configure it with parameters required by the test scenario, 
return it to the VNFM, and verify step 10 of the flow by calling appropriate methods on the VNF test resource. 
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