

ETSI GR NFV-REL 014 V5.1.1 (2023-10)

Network Functions Virtualisation (NFV) Release 5;
Reliability;

Report on evaluating reliability for cloud-native VNFs

Disclaimer

The present document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP REPORT

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)2

Reference
DGR/NFV-REL014

Keywords
cloud-native, reliability

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2023.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definition of terms, symbols and abbreviations ... 7

3.1 Terms .. 7

3.2 Symbols .. 7

3.3 Abbreviations ... 7

4 Overview and background .. 7

4.1 General ... 7

4.2 Containerized VNFs ... 8

5 Cloud-native configuration capabilities and metrics related to reliability.. 9

5.1 Kubernetes® objects ... 9

5.2 Management of clusters .. 9

5.2.1 Introduction... 9

5.2.2 Relevant configuration capabilities ... 10

5.2.3 Relevant metrics ... 10

5.3 Management of pods .. 10

5.3.1 Overview .. 10

5.3.2 Existing configuration capabilities ... 11

5.3.3 Existing metrics .. 13

6 Use cases .. 14

6.1 Introduction .. 14

6.2 Cloud-native VNF software modification .. 14

6.2.1 Overview .. 14

6.2.2 MCIO availability evaluation ... 14

6.2.3 Containerized VNF availability evaluation ... 15

6.2.4 Impact of the availability evaluation ... 15

6.2.5 Resiliency assurance for containerized VNF software modification .. 16

6.2.5.1 Actors and roles .. 16

6.2.5.2 Pre-conditions ... 16

6.2.5.3 Post-conditions .. 17

6.2.5.4 Flow description .. 17

6.3 Cloud-native VNF scaling .. 17

6.3.1 Overview .. 17

6.3.2 Containerized VNF scaling out ... 18

6.3.2.1 Introduction ... 18

6.3.2.2 Actors and roles .. 18

6.3.2.3 Pre-conditions ... 18

6.3.2.4 Post-conditions .. 18

6.3.2.5 Flow description .. 19

6.3.3 Containerized VNF scaling in ... 19

6.3.3.1 Introduction ... 19

6.3.3.2 Actors and roles .. 19

6.3.3.3 Pre-conditions ... 19

6.3.3.4 Post-conditions .. 20

6.3.3.5 Flow description .. 20

7 Functionalities of AEAF .. 21

7.1 Evaluation request .. 21

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)4

7.2 Evaluation methods .. 21

7.2.1 Introduction... 21

7.2.2 Evaluation methods classified by measured object ... 21

7.2.2.1 VNF... 21

7.2.2.2 VNFC .. 21

7.2.2.3 Pod, Deployment and StatefulSet .. 22

7.2.2.4 Node .. 24

7.2.2.5 CIS cluster ... 25

7.3 Evaluation outputs .. 25

7.4 Potential architectural options related to AEAF ... 26

8 Recommendations related to AEAF ... 26

9 Conclusion .. 27

Annex A: Existing pod metrics and configurable attributes in Kubernetes® 28

Annex B: Change History ... 30

History .. 31

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) Network Functions
Virtualisation (NFV).

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)6

1 Scope
The present document studies the reliability evaluation for cloud-native VNFs (as defined in ETSI
GS NFV-EVE 011 [i.2]). It identifies key use cases (containerized VNF software modification, containerized VNF
scaling out/in) of cloud-native VNF lifecycle management which may impact reliability. In these use cases, possible
new functionalities to support the resiliency assurance of these VNF operations are discussed, using Kubernetes® as an
example containerization technology. Then possible solutions are presented related to the new functionalities, together
with the potential architectural options.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI GR NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in
NFV".

[i.2] ETSI GS NFV-EVE 011 "Network Functions Virtualisation (NFV) Release 3; Virtualised
Network Function; Specification of the Classification of Cloud Native VNF implementations".

[i.3] ETSI GS NFV-SEC 023: "Network Functions Virtualisation (NFV) Release 4; Security; Container
Security Specification".

[i.4] ETSI GR NFV-IFA 029: "Network Functions Virtualisation (NFV) Release 3; Architecture;
Report on the Enhancements of the NFV architecture towards "Cloud-native" and "PaaS"".

[i.5] ETSI GS NFV-IFA 010: "Network Functions Virtualisation (NFV) Release 4; Management and
Orchestration; Functional requirements specification".

[i.6] ETSI GS NFV-IFA 040: "Network Functions Virtualisation (NFV) Release 4; Management and
Orchestration; Requirements for service interfaces and object model for OS container management
and orchestration specification".

[i.7] ETSI GS NFV-IFA 036: "Network Functions Virtualisation (NFV) Release 4; Management and
Orchestration; Requirements for service interfaces and object model for container cluster
management and orchestration specification".

[i.8] Kubernetes® document.

[i.9] Kubernetes® API conventions document.

[i.10] ETSI GS NFV 006: "Network Functions Virtualisation (NFV) Release 4; Management and
Orchestration; Architectural Framework Specification".

[i.11] ETSI GS NFV-REL 003: " Network Functions Virtualisation (NFV); Reliability; Report on
Models and Features for End-to-End Reliability".

https://kubernetes.io/docs/home/
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)7

[i.12] ETSI GS NFV-SOL 001: "Network Functions Virtualisation (NFV) Release 4; Protocols and Data
Models; NFV descriptors based on TOSCA specification".

[i.13] ETSI GR NFV-IFA 041: "Network Functions Virtualisation (NFV) Release 4; Management and
Orchestration; Report on enabling autonomous management in NFV-MANO".

[i.14] ETSI GS NFV-IFA 027: "Network Functions Virtualisation (NFV) Release 4; Management and
Orchestration; Performance Measurements Specification".

[i.15] ETSI GS NFV-SOL 018: "Network Functions Virtualisation (NFV) Release 4; Protocols and Data
Models; Profiling specification of protocol and data model solutions for OS Container
management and orchestration".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the terms given in ETSI GR NFV 003 [i.1] and the following apply:

NOTE: A term defined in the present document takes precedence over the definition of the same term, if any, in
ETSI GR NFV 003 [i.1].

cloud-native VNF: VNF designed to be deployed and managed in a cloud computing environment for efficient
operation

NOTE: The present document assumes that cloud-native VNFs have (but are not limited to) the following
characteristics:

 dynamic (e.g. with frequent changes);

 scalable;

 fine-granular (e.g. composed of microservices, containerized).

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the abbreviations given in ETSI GR NFV 003 [i.1] apply.

4 Overview and background

4.1 General
The telecom industry is experiencing a transformation towards cloud-native. Cloud-native VNFs may use technologies
such as containerized functions, micro-service based architecture, self-management, scalability, etc. The management of
VNFs following cloud-native principles is bringing profound changes to the operations and maintenance of telecom
cloud-based networks, e.g. the combination of DevOps and Cloud increases the software delivery and efficiency. These
new changes introduce new challenges on managing cloud-native VNFs, especially for the non-functional aspects like
performance, reliability and security.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)8

Reliability for cloud-native VNFs is really challenging because of their highly dynamic nature. Thus, highly dynamic
management is needed due to the nature of cloud-native VNFs. In the scope of ISG NFV, ETSI GS NFV-EVE 011 [i.2]
specifies non-functional aspects for cloud-native VNFs, e.g. resiliency, scaling and composition. ETSI
GS NFV-SEC 023 [i.3] specifies the security and hardening requirements for VNFs running in a containerized
environment. ETSI GR NFV-IFA 029 [i.4] investigates the use cases for application of cloud-native design principles,
but it lacks the use cases analysis and has no recommendations on NFV-MANO functional enhancement derived from
the use cases.

The present document focuses on the study of reliability aspects for supporting the management of cloud-native VNFs.
Clause 5 introduces some cloud-native configuration capabilities and metrics related to reliability. Clause 6 studies a
number of use cases for the purpose of deriving corresponding criteria and their associated configuration capabilities
and metrics to evaluate the reliability for cloud-native VNFs. Clause 7 further elaborates on the identified criteria and
their associated metrics of reliability evaluation. Finally, Clause 8 summarizes the recommendations for normative
work in the future.

4.2 Containerized VNFs
In a cloud-native VNF environment, OS-container becomes the recommended technology for the infrastructure services
in support of the VNFs, even though VM-based virtualisation is still an option for fulfilling cloud-native objectives. The
introduction of OS-containers has an impact on the NFV-MANO architecture, as specified in ETSI
GS NFV-IFA 010 [i.5] and ETSI GS NFV-IFA 040 [i.6], namely the introduction of new managed objects and a
management function related to OS-container management and orchestration, i.e. MCIO and CISM. A Managed
Container Infrastructure Object (MCIO) is a managed object representing the desired and actual state of a containerized
workload for the OS-container management and orchestration. As specified in ETSI GS NFV-IFA 040 [i.6], an MCIO
requesting compute/storage resources can be mapped to a VNFC.

Kubernetes®, also known as K8s, is an open-source system for automating deployment, scaling, and management of
containerized applications. ETSI GS NFV-SOL 018 [i.15] profiles the Kubernetes® API as NFV protocol and data
model solution for OS container management and orchestration. As defined in ETSI GR NFV-IFA 029 [i.4] and ETSI
GS NFV-IFA 040 [i.6], MCIO could be realized as Pod, Deployment, StatefulSet, etc. in Kubernetes®.

Figure 4.2-1 shows the OS-container infrastructure service management architecture, as described in ETSI
GS NFV 006 [i.10]. The Container Infrastructure Service (CIS) is responsible for providing the virtualised
infrastructure as OS-containers. The Container Infrastructure Service Management (CISM) is responsible for the
management of containerized workloads as MCIOs running in the CIS. The Container Cluster Management (CCM) is
responsible for the management of CIS clusters.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)9

Figure 4.2-1: Container-based NFV architectural framework

5 Cloud-native configuration capabilities and metrics
related to reliability

5.1 Kubernetes® objects
Kubernetes® objects are persistent managed objects representing the managed container cluster and its different
resources such as pods. Kubernetes® objects can describe among others which containerized applications are running
(and on which nodes), the resources available to those applications, and the policies applicable to those applications
[i.8]. In the context of NFV, Kubernetes objects are MCIOs.

Most importantly, a Kubernetes® object includes two fields: the spec field and the status field [i.9]. The spec field is set
by the user and characterizes the desired status of the entity represented by the Kubernetes® object. The status field
shows the current status of the entity represented by the Kubernetes® object as supplied and updated by Kubernetes®.
Kubernetes® continually and actively manages the actual status of each entity to match its desired status.

5.2 Management of clusters

5.2.1 Introduction

Current industry solutions for OS container management expect that a cluster of machines (running either in virtual
machines or on bare-metal servers) is provided for their use. In the context of NFV, a cluster is called a Container
Infrastructure Service (CIS) cluster and is composed of one or multiple CIS cluster nodes. A CIS cluster node, which
can be realized as a VM or a bare-metal server, is a compute resource that runs a CIS instance or a CISM instance, or
both.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)10

The CCM (CIS Cluster Management) is responsible for the lifecycle management and FCAPS management of the CIS
cluster. The CCM consumer can define the essential cluster information, including the description of the CIS cluster
nodes, the placement constraints and the affinity or anti-affinity rules, etc., in the CIS Cluster Descriptor (CCD) that is
interpreted by the CCM.

The concept of CIS cluster and the functionalities of CCM are detailed in ETSI GS NFV-IFA 036 [i.7].

5.2.2 Relevant configuration capabilities

ETSI GS NFV-IFA 036 [i.7] defines the requirements for CIS cluster management. CCM is responsible for lifecycle
management of the CIS cluster, including applying changes to the CIS cluster configuration, scaling the CIS cluster,
and modification of CIS cluster software.

CIS cluster configuration attributes include CIS cluster nodes to be used in the CIS cluster, number of CIS cluster
nodes, scaling characteristics, placement constraints, cluster networking, and cluster storage. For more details, refer to
clause 4.2.4 of ETSI GS NFV-IFA 036 [i.7].

CCM can construct CISM with high availability. For details of how CISM high availability can be achieved, refer to
clause 4.2.12 of ETSI GS NFV-IFA 036 [i.7].

5.2.3 Relevant metrics

CCM reports information related to the CIS cluster configuration and CIS cluster status as defined in clause 4.2.4 of
ETSI GS NFV-IFA 036 [i.7].

CCM provides performance measurements for CIS cluster nodes, CIS cluster storage, and CIS cluster nodes network,
but not at the overall CIS cluster level.

5.3 Management of pods

5.3.1 Overview

Pods are the most basic deployable resources in Kubernetes® which are represented by Kubernetes® objects. Pods
contain one or more containers, such as Docker™ containers. When a pod runs multiple containers, the containers share
the pod's resources. Pods run on nodes organized in a certain container cluster.

Pods follow a defined lifecycle, starting in the Pending phase, moving through the Running phase if at least one of its
containers is running, or in the process of starting or restarting. Pods complete their lifecycle through either the
Succeeded or Failed phases depending on whether any container in the pod has terminated in a failure. A pod will
spend most of its operational life in the Running phase.

In a pod, Kubernetes® tracks the container(s) status and determines what action(s) to take to keep the pod's actual status
as desired. Kubernetes® is able to restart containers to handle some failures, e.g. Out-Of-Memory (OOM) failure when a
container exceeds its resource limit. Container failures, which cannot be resolved by restart, are escalated to the pod
level and cause the pod to be terminated in the Failed phase.

For stateless containerized applications, Kubernetes® provides the Deployment object to realize declarative
configuration for a set of pods. Users can create a Deployment to roll out a group of identical pods, scale the
Deployment to increase or decrease the number of its pods, and update the Deployment which means changing this
Deployment's pod template by updating the pods' metadata and spec configurations (see clause 5.3.2), e.g. pods' labels
or container images.

For stateful containerized applications, the Kubernetes® object StatefulSet is used to manage the roll-out and scaling of
a set of pods. A StatefulSet provides guarantees about the ordering and uniqueness of these pods. Like a Deployment, a
StatefulSet contains pods that are based on the same container spec. Unlike a Deployment, a StatefulSet maintains a
sticky identity for each of its pods. Even though these pods are created from the same spec, they are not
interchangeable: each has a persistent identifier that it maintains even across rescheduling [i.8].

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)11

Pods in a StatefulSet have a unique identity that is comprised of an ordinal and a stable network identity, and a stable
storage. When pods are being deployed, they are created sequentially, which defines a succession. When pods are
deleted, they are terminated in reverse order. Pods of a StatefulSet can be updated in a rolling fashion, which means an
automated rolling update of their containers, labels, resource requests/limits, and annotations.

The Kubernetes® objects expose some configurable attributes to request resources for running pods and their desired
limits. These attributes allow capacity planning, assessment of current or historical scheduling limits, quick
identification of workloads that cannot be scheduled due to a lack of resources, and comparison of actual usage to the
pod's request.

For more details on pods management, refer to [i.8] and [i.9].

5.3.2 Existing configuration capabilities

The Kubernetes® object representing a pod includes the following configuration capabilities:

• Metadata: which contains the identification and description of the pod. Commonly used metadata attributes
for a pod are:

- Name.

- Namespace: which configures the namespace to which the pod belongs.

- Labels: which lists the pod's custom labels.

• Spec: which is a detailed configuration of the pod's various resources and handling options. The key attributes
for the pod's resource configuration are the following:

- Containers: which is used to configure the containers of the pod.

- NodeName: name of the node on which Kubernetes® can schedule this pod.

- NodeSelector: which defines the node labels. Kubernetes® has to schedule this pod to a node with these
labels.

- Volumes: which provides the storage volume information of the pod.

- RestartPolicy: which configures the strategy for this pod in case of pod failure.

Kubernetes® provides the capability to configure a single pod; however, it is more common to deploy a set of identical
pods as a Deployment or a StatefulSet using pod templates.

For managing a set of stateless pods, the Kubernetes® object Deployment includes the following configuration
capabilities:

• Metadata: which contains the identification and description of the Deployment. Commonly used metadata
attributes for a Deployment are its name and labels.

• Spec: which is a detailed configuration of the Deployment's various resources. The key attributes for the
Deployment's resource configuration are the following:

- Replicas: which is used to configure how many pod replicas are needed.

- Selector: which defines how the Deployment controller finds which pods it manages. For example, the
user can select a label that is defined in the pod template, then the Deployment controller will manage
pods with this label.

- Template: which provides template for pods in the Deployment.

- Strategy: which specifies the strategy used to replace pods of the old template by new ones when the
Deployment is upgraded. It has two options "Recreate" or "RollingUpdate".

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)12

 For a containerized application consisting of a pool of stateless pods, it can be configured in the sub-
attribute maxUnavailable and maxSurge under the RollingUpdate strategy to control the rolling
software modification process in Kubernetes®. The configurable attribute maxUnavailable specifies the
maximum number of pods that can be unavailable during the software modification process. The value
can be an absolute number (for example, 5) or a percentage of desired pods (for example, 10 %),
ensuring that the total number of pods available at all times during the software modification process can
meet the least availability need of the application. The configurable attribute maxSurge specifies the
maximum number of pods that can be created over the desired number of pods. The value can be an
absolute number (for example, 5) or a percentage of desired pods (for example, 10 %), ensuring that the
total number of pods running at any time during the software modification won't go over the threshold to
affect the system performance or occupy too many virtualised resources.

- ProgressDeadlineSeconds: which configures the number of seconds Kubernetes® waits for the
Deployment to progress before the system reports back that the Deployment has failed.

For managing a set of stateful pods, the Kubernetes® object StatefulSet includes the following configuration
capabilities:

• Metadata: which contains the identification and description of the StatefulSet, e.g. the name and labels of the
StatefulSet.

• Spec: which is a detailed configuration of the StatefulSet's various resources. The key attributes for the
StatefulSet's resource configuration are the following:

- Replicas: which is used to configure how many pod replicas are needed.

- Selector: which defines how the StatefulSet controller finds which pods it manages. For example, the
user can select a label that is defined in the pod template, then the StatefulSet controller will manage
pods with this label.

- Template: which provides template for pods in the StatefulSet, including the information for containers'
images, ports and volume mounts in the pod.

- ServiceName: which defines the service this StatefulSet corresponds to.

- VolumeClaimTemplate: which configures a Persistent Volume Claim (PVC) template so that each pod
in the StatefulSet will have its persistent volume stable storage.

- PodManagementPolicy: which allows users to relax the StatefulSet's management of pod ordering
while preserving its pod uniqueness and identity guarantees. By default, in a StatefulSet, before a scaling
operation is applied, all the predecessors of the new pod need to be in the Running phase; or before a pod
is terminated, all of its successors need to be terminated (Succeeded or Failed).

- UpdateStrategy: which configures or disables automated rolling updates for containers, labels, resource
request/limits, and annotations of the pods of a StatefulSet. It has two options "OnDelete" or
"RollingUpdate". When the value is "OnDelete", Kubernetes® will not automatically update the pods in
the StatefulSet. Users manually delete old pods so that the controller creates new pods that reflect
modifications made to the template. The type "RollingUpdate" allows all or a partition of pods to be
automatically updated when the StatefulSet's template is updated.

 For the stateful containerized application software modification, the maxUnavailable can be configured
for the StatefulSet similar to the Deployment. Besides the maxUnavailable, the sub-attribute partition
under the RollingUpdate strategy can also be configured to define a set of pods that may be modified and
a set of pods that are not modified in this software modification process. This configuration can be useful
if it is decided to roll out a subset for software modification validation (known in Kubernetes® as a
canary upgrade), or perform a phased roll-out for containerized application software modification
depending on the likelihood of meeting the availability requirements of the application.

For more details of the existing pod configurable attributes in Kubernetes®, refer to Annex A.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)13

5.3.3 Existing metrics

For pods management in Kubernetes®, the status of pods summarizes the current situation of the pods in a container
cluster. Fields in status for pods are the most recent observations for pods' situation, but they may contain information
such as the results of allocations or similar operations which are executed in response to the Kubernetes® object's spec.
The key metrics showing the Kubernetes® pod's status are as follows:

• Phase: showing which phase this pod is currently in.

• Conditions: showing more detailed information per condition type on this pod's readiness:

- Type: there are four condition types: "PodScheduled", "Initialized", "ContainersReady" and "Ready".
"PodScheduled" shows if the pod has been scheduled to a node. "Initialized" shows if all init containers
in this pod have been started successfully. "ContainersReady" shows if all containers in the pod are
ready. "Ready" shows if the pod can provide its service. For all four condition types, the status value can
be "True", "False" or "Unknown".

- LastProbeTime: the timestamp of the last pod condition detection.

- LastTransitionTime: the timestamp of the last condition transition from one status value to another.

- Reason: a machine-readable reason for the last condition transition.

- Message: a human-readable detailed description of the last condition transition.

Besides, in Kubernetes®, CPU usage and memory usage are two key performance metrics for pod's computing
resources:

• Pod CPU usage: CPU is reported as the average core usage measured in CPU units. One CPU, in
Kubernetes®, means one vCPU/Core for cloud providers, or one hyper-thread on bare-metal processors. The
existing metrics include the number of cores and percentage (actual usage compared to the max limit) of
CPU usage.

• Pod memory usage: Memory is reported as the working set, measured in bytes, at the instant the metric was
collected. The existing metrics include the number of bytes and percentage (actual usage compared to the max
limit) of memory usage.

For monitoring a set of containerized applications, the key metrics showing the Kubernetes® Deployment and
StatefulSet's status are as follows:

• Replicas: showing how many pod replicas are in this set of pods.

• AvailableReplicas: showing the number of available pod replicas in this set of pods. Available pods are in the
phase "Running" and the condition type "Ready".

• UnavailableReplicas: showing the number of unavailable pod replicas in this set of pods. Available pods are
both in the phase "Running" and in the condition "Ready". All other pods are considered unavailable.

• Conditions: showing detailed information per condition type on the readiness of this set of pods:

- Type: there are two condition types: "Progressing" and "Complete". "Progressing" shows if the
Deployment or StatefulSet is now creating pods, scaling or has pods available. "Complete" shows if all
of the pods in this set have been updated to the latest version specified by the user, if all new replicas are
available and all old replicas have been terminated. For both condition types, the status value can be
"True", "False", or "Unknown".

- LastTransitionTime: the timestamp of the last condition transition from one status value to another

- Reason: a machine-readable reason for the last condition transition, e.g. "ProgressDeadlineExceed" for a
Deployment.

- Message: a human-readable detailed description of the last condition transition.

For more details of the existing pod metrics in Kubernetes®, refer to Annex A.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)14

6 Use cases

6.1 Introduction
This clause provides use cases related to evaluating reliability for cloud-native VNF software modification and scaling.

6.2 Cloud-native VNF software modification

6.2.1 Overview

In ETSI NFV concepts, the software modification process includes software upgrade, software update, software
fallback, and software rollback [i.1]. Cloud-native VNFs are expected to be equipped with appropriate mechanisms to
monitor the VNF health and support the general VNF lifecycle. The ability to estimate reliability and availability is very
useful for the successful software modification of cloud-native VNFs. For example, the software modification process
for VNFs may take different paths depending on the likelihood of meeting the availability requirements of the VNFs. In
clause 6.2, the VNF availability evaluation for containerized and VNF software modification is discussed.

Containerized implementation does not bring any inherent change to the overall logic of VNF software modification;
however, the CISM (as implemented by Kubernetes®) provides more automatic capabilities for containerized VNF
software modification. Similar to the case of VNFs deployed as virtual machines, containerized VNF software
modification may be initiated by EM or NFVO (the latter NFVO case assumes that the NFVO has received an
UpdateNS operation with updateType = ChangeVnfPkg from the OSS) using a ChangeCurrentVnfPackage operation.
As a result of this operation, VNFM requests the update of Kubernetes® managed objects (e.g. Deployment, StatefulSet)
which implies that the new software will be deployed in new containers. Before the request, it would be useful to
estimate if the current status of containerized applications managed by Kubernetes® and their configuration would
impact the VNF availability during the software modification, and re-configure Kubernetes® (using for example
replicas, updateStrategy) if necessary. Kubernetes® can then follow the configured strategy for the containerized
software modification process.

For both stateful and stateless containerized VNFs, Kubernetes® provides several autonomous mechanisms for software
modification. However, Kubernetes® itself doesn't have the ability to do the VNF availability calculation without
enhancement or external assistance. Therefore, a functional entity needs to evaluate the availability for containerized
VNFs before the VNF software modification process is triggered. Clause 7 discusses on where this functional entity
could be placed.

Beyond traditional VNF related metrics used for VNF generic OAM, metrics reflecting the container infrastructure
status are also useful to be observed for this VNF availability calculation and estimation.

6.2.2 MCIO availability evaluation

The cloud-native technology is supposed to provide container infrastructure status observability for the applications
running on it. In practice, container infrastructure status observability is the ability to understand the system using its
outputs like metric monitoring, event logging, and tracing. Among these outputs, metric monitoring allows the
management system to have a general understanding of the container infrastructure service health, event logging can
provide real-time event logs generated during the execution of the applications that can explain the running status of the
observed object system in detail, while tracing is request-oriented with abnormal point information useful in the case of
debugging for containerized VNF software modification.

As one of the 3 key aspects (metric monitoring, event logging and tracing) in the cloud-native observability practice,
container infrastructure related metrics are the focus of the present use case for availability evaluation for containerized
VNF software modification. As mentioned in clause 5, Kubernetes® provides a set of pod and cluster metrics for
monitoring the status of containerized implementation.

Beyond generic metrics which Kubernetes® gathered from its own metrics server, custom metrics can also be monitored
by another server, an aggregated custom metrics server for carrier-grade telco cloud requirements, e.g. the network flow
rate for different pods inside a certain Container Infrastructure Service (CIS) instance (also known as a Kubernetes®
node). These container infrastructure observability improvements, especially the Kubernetes® pod related metrics, can
help stakeholders to ensure the availability for containerized VNFCs.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)15

As described in clause 4.2, an MCIO can be mapped to a VNFC and an MCIO instance could be realized as a Pod, a
Deployment, or a StatefulSet, etc. in Kubernetes®. The following shows an example of pod availability calculation
based on pod metrics.

According to ETSI GS NFV-REL 003 [i.11], the reliability and availability of a complex system such as an NFV
deployment can be modelled by breaking it down into its constituent components, of which the reliability and
availability are known. For repairable components, this can be expressed using cycles of uninterrupted working
intervals (uptime), followed by repair periods after a failure has occurred (downtime). The average length of the first
intervals is usually called the Mean Time Between Failures (MTBF), while the average length of the second intervals is
the Mean Time To Repair (MTTR). The MTBF and the MTTR of a pod, together with infrastructure availability, can be
used to calculate the availability of a single pod as:

 ����� = ���� = ���	
��
���
� ∗ ������� / (������� + �������) (1)

6.2.3 Containerized VNF availability evaluation

As discussed in clause 6.2.2, the availability of a MCIO instance can be measured according to related metrics. The
evaluation of the availability of a MCIO instance is performed as the first step for calculating the containerized VNF
availability. Based on the availability of a MCIO instance, the robustness of the containerized VNF could be evaluated
based on the topology model of MCIOs (e.g. containerized instances of the same VNFC with active-active model).
Based on these models, the analysing function can provide the availability estimation of the containerized VNF to give
a green light for its software modification.

The following shows an example of containerized VNF-internal redundancy model and VNF availability calculation.

In order to meet the VNF availability requirement, the analysing function needs to continually estimate the availability
of a VNF instance. To achieve this, the function responsible for the evaluation needs to have knowledge of the topology
of the constituent VNFCs and the redundancy models that are used. The topology of the constituent VNFCs can be
found in the VNFD which is used by the VNFM for the software modification.

Even though the methods to gather this information are not standardized, it is possible to give the following guidance on
how the availability of a VNF instance can be estimated.

The availability of a VNF which is composed of x VNFCs in series can be calculated as:

 ���� = ������ ∗ ������ ∗ … ∗ ������ (2)

As described in clause 4.2, an MCIO can be mapped to a VNFC. For a pool of MCIO instances (instances of the same
VNFC) with redundancy model RM(), the availability of a pool of n MCIO instances is calculated as:

 ����� = ��(������������� ,������������� , … ,�������������) (3)

For the simplest example pool of MCIO instances with active-active redundancy (where at least one of these MCIO
instances is available, this VNFC can be regarded as available), the availability of this VNFC is calculated as:

 ����� = 1 − (1 − �������������) ∗ (1 − �������������) ∗ … ∗ (1 − �������������) (4)

6.2.4 Impact of the availability evaluation

Different VNFs have different availability requirements to fulfil. For each containerized VNF, the CISM will
continuously monitor the CaaS metrics as input for availability calculation. Based on this input, the analysing function
is supposed to perform the VNF availability evaluation when the software modification is initiated by EM/NFVO. The
software modification can be performed at a certain time when the analysing function confirms that the VNF
availability requirements can be met during the software modification. If the calculation finds that the VNF availability
requirements cannot be met, CISM needs to take management actions accordingly (e.g. allocate more resources) to
reach these requirements. According to the analysis output, the analysing function can provide Kubernetes® with the
appropriate configuration parameters for this software modification (these configuration parameters can be carried in
Helm® charts and Kubernetes® manifests which can be delivered by NFVO/VNFM to the CISM).

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)16

Even though it is not possible to directly calculate the availability of pods containing the updated software, it is possible
to perform some estimation based on previous experience with pods which contain the older software (refer to ETSI
GS NFV-REL 003 [i.11], clause 5.3). In particular, it is assumed that the failure rate may typically be higher after a
software modification, which implies that the MTBF is shorter, and thereby the availability is reduced. In practical
terms, this means that software modification introduces some risks to VNF availability, and proactive measures may be
needed to mitigate these risks.

The following shows an example of how the maxUnavailable attribute in Kubernetes® may need to be changed to
ensure VNF availability after VNF software modification. This simple example is intended to demonstrate how to
calculate a Kubernetes® configurable attribute, it is not intended to be a complete realistic example.

If a pool of 5 MCIO instances of the same VNFC are operating with active-active redundancy, the necessary value of
maxUnavailable attribute in Kubernetes® can be calculated to meet the VNFC availability requirement. As an example
to demonstrate the use of the formulae in clause 6.2.3, it is assumed that each MCIO instance hosting the new software
has an availability of 99 %. The formulae can be used to calculate the availability of the containerized VNFC, and
thereby the minimum viable MCIO pool size. In the example of 5 MCIO instances, to reach a VNFC availability level
of 99,99 %, the pool contains at least 2 active MCIO instances, thus the maxUnavailable attribute is set to 3 in this case.
Similarly, to reach a VNFC availability level of 99,999 %, the pool contains at least 3 active MCIO instances, thus the
maxUnavailable attribute is set to 2 in this case.

6.2.5 Resiliency assurance for containerized VNF software modification

6.2.5.1 Actors and roles

Table 6.2.5.1-1 describes actors and roles of the resiliency assurance for containerized VNF software modification
initiated by NFVO.

Table 6.2.5.1-1: Resiliency assurance for containerized VNF software modification actors and roles

Role Description
1 NFVO NFV Orchestrator managing the NS instance.
2 VNFM VNF Manager managing one or more VNF instances of the NS instance.
3 CISM CIS Manager managing one or more container infrastructure services.
4 AEAF Availability Estimation and Analysis Function responsible for performing the VNF availability

evaluation/estimation. The function might or might not be part of NFV-MANO.

6.2.5.2 Pre-conditions

Table 6.2.5.2-1 describes the use case pre-conditions.

Table 6.2.5.2-1: Resiliency assurance for containerized VNF software modification pre-conditions

Pre-condition Additional description
1 The NS has been instantiated according to the relevant

NSD and is working normally.
The containerized infrastructure is managed using
Kubernetes®.

2 The NS instance provides its services according to the
requested availability characteristics.

3 The AEAF is equipped with models and algorithms and
is ready to perform availability estimation for the
containerized VNFs.

4 The NFVO has received an UpdateNS operation with
updateType = ChangeVnfPkg from the OSS and
decides to initiate software modification for one
containerized VNF.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)17

6.2.5.3 Post-conditions

Table 6.2.5.3-1 describes the use case post-conditions.

Table 6.2.5.3-1: Resiliency assurance for containerized VNF software modification post-conditions

Post-condition Additional description
1 The containerized VNF is equipped with the new version of

software.

2 The NS instance continues to provide its services according
to the requested availability characteristics.

6.2.5.4 Flow description

Table 6.2.5.4-1 describes the use case flow.

Table 6.2.5.4-1: Flow description of resiliency assurance for
containerized VNF software modification

Actor/Role Action/Description
Begins when NFVO → VNFM The NFVO sends a ChangeCurrentVnfPackage request to the VNFM.

See notes 1 and 2.
Step 1 VNFM VNFM determines which VNFCs will be impacted by the software modification

of the VNF. Impacts may be addition of VNFC(s), update of VNFC(s), or
removal of VNFC(s).

Step 2 VNFM → AEAF VNFM requests AEAF to perform the availability evaluation for the proposed
VNFC(s) software modification.

Step 3 AEAF AEAF reads the VNFD to fetch information (for example DeploymentFlavour)
which is needed to infer the expected availability of the new VNFC(s).

 Step 4 to Step 5 are repeated for each impacted VNFC.
Step 4 AEAF → CISM AEAF fetches information from CISM related to the VNFC, for example

number of MCIOs and status of these MCIOs.
Step 5 AEAF AEAF estimates the availability of the VNFC as a result of the software

modification. See note 3.
Step 6 AEAF → VNFM Taking into consideration the estimation of availability for each impacted

VNFC, AEAF responds to VNFM with the analysis result. This analysis result
may contain a recommendation to change Kubernetes® configurable attributes
before the software modification can proceed.

Step 7
(optional)

VNFM → CISM If the analysis result recommends to change Kubernetes® configurable
attributes, VNFM sends updated attribute values to CISM according to the
recommendations received from AEAF. Otherwise, there is no need to change
Kubernetes® configurable attributes.

Step 8 VNFM → CISM VNFM requests the CISM to update the VNFC(s) to the new software.
Step 9 CISM → VNFM CISM informs VNFM that the update is complete.

Step 10 VNFM → NFVO VNFM informs NFVO that the VNF software modification is complete.
Ends when NFVO NFVO has been informed that the VNF software modification is complete.

NOTE 1: This is an optimistic flow, fault conditions are not considered.
NOTE 2: Aspects of service continuity during and after upgrade are not the core subject of this use case and are not

described in this flow.
NOTE 3: Refer to clause 7 for discussion of how this can be achieved.

6.3 Cloud-native VNF scaling

6.3.1 Overview

NFV-MANO orchestrates the scaling in and out of VNFs. In relation to scaling operations for a cloud-native VNF, it is
valuable to estimate the VNF availability for the following reasons.

A VNF scaling out operation may not only be triggered to meet current and future traffic, but also to meet the VNF
availability requirements.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)18

In practice, the purpose of scaling in a VNF is to avoid resource over-allocation through reducing unnecessary service
capacity. In preparation for a scaling in operation, an evaluation of VNF availability can be used to predict if this
operation may violate the availability requirements.

The Availability Estimation and Analysis Function can help decide if scaling operations are appropriate at a specific
time.

Also, as part of any scaling operation, NFVO/VNFM is expected to supply CISM with the appropriate Kubernetes®
configurable attributes. These attributes indicate the expected number of MCIOs that are provisioned to satisfy the
availability requirements.

6.3.2 Containerized VNF scaling out

6.3.2.1 Introduction

A VNF scaling out may be necessary to reach the desired availability requirements for the VNF. The CISM will
continuously monitor the CaaS metrics as input for availability evaluation for each containerized VNF (see clause 6.2
for details). The Availability Estimation and Analysis Function (AEAF) is proposed to use the information from the
CISM for performing the VNF availability evaluation, and recommending to VNFM if a scaling out can be triggered.

This use case will explore how VNF availability evaluation can be used in cloud-native VNF scaling out.

6.3.2.2 Actors and roles

Table 6.3.2.2-1 describes the actors and roles of VNF availability evaluation for a containerized VNF scaling out
operation.

Table 6.3.2.2-1: Actors and roles of VNF availability evaluation for a containerized VNF scaling out

Role Description
1 VNFM VNF Manager managing one or more VNF instances of the NS instance.
2 CISM CIS Manager managing one or more container infrastructure services.
3 AEAF Availability Estimation and Analysis Function responsible for performing the VNF availability

evaluation/estimation. The function might or might not be part of NFV-MANO.

6.3.2.3 Pre-conditions

Table 6.3.2.3-1 describes the use case pre-conditions.

Table 6.3.2.3-1: Pre-conditions of VNF availability evaluation for a containerized VNF scaling out

Pre-condition Additional description
1 The VNF is working normally.
2 The AEAF is equipped with models and algorithms and is

ready to perform availability estimation for the containerized
VNFs.

3 The VNFM intends to initiate a scaling out operation for a
containerized VNF (for example, to tackle a surge of traffic).

6.3.2.4 Post-conditions

Table 6.3.2.4-1 describes the use case post-conditions.

Table 6.3.2.4-1: Post-conditions of VNF availability evaluation for a containerized VNF scaling out

Post-condition Additional description
1 VNFM has been informed of the VNF availability

evaluation results.
If the analysis results show that the availability requirement
of the VNF cannot be met after scaling out, AEAF may
recommend that the scaling be increased further.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)19

6.3.2.5 Flow description

Table 6.3.2.5-1 describes the use case flow.

Table 6.3.2.5-1: Flow description of VNF availability evaluation for a containerized VNF scaling out

Actor/Role Action/Description
Begins when VNFM VNFM proposes a scaling out operation for a containerized VNF and derives a list of

impacted VNFCs.
See notes 1 and 2.

Step 1 VNFM → AEAF VNFM requests AEAF to perform the availability estimation for the proposed
addition of VNFC(s).

Step 2 AEAF AEAF reads the VNFD to fetch information needed to infer the availability of the
impacted VNFC(s).

 Step 3 to Step 4 are repeated for each impacted VNFC.
Step 3 AEAF → CISM AEAF fetches information from CISM related to the VNFC, for example number of

MCIOs and status of these MCIOs.
Step 4 AEAF AEAF estimates the availability of the VNFC as a result of the scaling out. See

note 3.
Step 5 AEAF → VNFM AEAF responds to VNFM with the analysis result. This analysis result may contain a

recommendation that the scaling be increased further.
Ends when VNFM VNFM has been informed of the availability estimation results related to the

proposed scaling out operation which optionally include recommendation by AEAF.
NOTE 1: This is an optimistic flow, fault conditions are not considered.
NOTE 2: Aspect of VNF availability evaluation after the scaling out operation (to confirm if the VNF provides its services

according to the availability requirement as desired) is not the core subject of this use case and is not
described in this flow.

NOTE 3: Refer to clause 7 for discussion of how this can be achieved.

6.3.3 Containerized VNF scaling in

6.3.3.1 Introduction

Typically, scaling in of a VNF is initiated as a result of resource over-allocation. This scaling in is implemented by
removing VNFC instances that are deemed to be unnecessary. During any VNF scaling in, there is a risk for VNF
availability because redundancy is typically reduced as the number of VNFC instances reduces. Therefore, availability
estimation before the scaling in operation is needed. This scaling in operation is to be cancelled if the Availability
Estimation and Analysis Function (AEAF) estimates that the desired availability requirement of the VNF cannot be met
after the operation.

This use case will explore how VNF availability evaluation can be used in cloud-native VNF scaling in.

6.3.3.2 Actors and roles

Table 6.3.3.2-1 describes the actors and roles of the VNF availability evaluation for a containerized VNF scaling in
operation.

Table 6.3.3.2-1: Actors and roles of VNF availability evaluation for a containerized VNF scaling in

Role Description
1 VNFM VNF Manager managing one or more VNF instances of the NS instance.
2 CISM CIS Manager managing one or more container infrastructure services.
3 AEAF Availability Estimation and Analysis Function responsible for performing the VNF availability

evaluation/estimation. The function might or might not be part of NFV-MANO.

6.3.3.3 Pre-conditions

Table 6.3.3.3-1 describes the use case pre-conditions.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)20

Table 6.3.3.3-1: Pre-conditions of VNF availability evaluation for a containerized VNF scaling in

Pre-condition Additional description
1 The VNF is working normally. The container infrastructure is managed using

Kubernetes® (CISM).
2 The AEAF is equipped with models and algorithms and is

ready to perform availability estimation for the
containerized VNFs.

3 The VNFM is going to initiate a scaling in operation for a
containerized VNF (for example, to optimize resource
over-allocation).

6.3.3.4 Post-conditions

Table 6.3.3.4-1 describes the use case post-conditions.

Table 6.3.3.4-1: Post-conditions of VNF availability evaluation for a containerized VNF scaling in

Post-condition Additional description
1 VNFM has been informed of the VNF availability estimation

results.
If the analysis result shows that the desired availability
requirement of the VNF cannot be met after scaling in,
it can be recommended by AEAF to cancel this
operation.

6.3.3.5 Flow description

Table 6.3.3.5-1 describes the use case flow.

Table 6.3.3.5-1: Flow description of VNF availability evaluation for a containerized VNF scaling in

Actor/Role Action/Description
Begins when VNFM VNFM proposes a scaling in operation for a containerized VNF and derives a list of

which VNFCs will be impacted.
See notes 1 and 2.

Step 1 VNFM → AEAF VNFM requests AEAF to perform the availability estimation for the proposed
removal of VNFC instances.

Step 2 AEAF AEAF reads the VNFD to fetch information which is needed to infer the expected
availability of the impacted VNFCs.

 Step 3 to Step 4 are repeated for each impacted VNFC.
Step 3 AEAF → CISM AEAF fetches information from CISM related to the VNFC, for example number of

MCIOs and status of these MCIOs.
Step 4 AEAF AEAF estimates the availability of the impacted VNFC as a result of the scaling in.

See note 3.
Step 5 AEAF → VNFM AEAF responds to VNFM with the analysis result. This analysis result may contain

a recommendation to cancel the scaling in operation.
Ends when VNFM VNFM has been informed of the availability estimation results related to the

proposed scaling in operation which optionally include recommendation by AEAF.
NOTE 1: This is an optimistic flow, fault conditions are not considered.
NOTE 2: Aspects of VNF availability evaluation during and after scaling in operation are not the core subject of this

use case and are not described in this flow.
NOTE 3: Refer to clause 7 for discussion of how this can be achieved.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)21

7 Functionalities of AEAF

7.1 Evaluation request
As part of the use cases for containerized VNF software modification and scaling, VNFM determines which VNFCs of
a VNF will be impacted and expresses the proposed changes in the evaluation request sent to the AEAF. The evaluation
request also contains a reference to the Helm chart and Kubernetes® manifests where AEAF can find the related
Kubernetes® configuration parameters for the proposed containerized VNF software modification or scaling.

For detailed specification of Helm chart as TOSCA-based NFV descriptors for containerized implementations, refer to
the clause 6 of ETSI GS NFV-SOL 001 [i.12].

7.2 Evaluation methods

7.2.1 Introduction

The availability evaluation of cloud-native VNFs depends on the collection of indicators across the application,
Container Infrastructure Service (CIS) and related infrastructure.

For cloud-native VNFs, ETSI GS NFV-IFA 027 [i.14] has provided some typical performance measurement metrics.
Related metrics collected by VNFM can be used to observe the status of VNFs, VNFCs, internal and external
connection points of VNF instances.

The container infrastructure service related metrics monitored by Kubernetes® are given in clause 5. Some of these
metrics are useful for measuring the availability of MCIOs.

NOTE: Kubernetes® does not explicitly provide the metrics of CIS clusters and nodes, but focuses on those
related to pods status. For measuring the availability of nodes and clusters which provide the environment
hosting the containerized implementations, ETSI GS NFV-IFA 027 [i.14] can be used to provide some
metrics related to virtualised compute, storage and network resources.

7.2.2 Evaluation methods classified by measured object

7.2.2.1 VNF

A VNF may be composed of one or multiple VNF Components (VNFC). For combining these VNFCs, different
dependencies are possible, such as parallel, serial and a mix of these two. For related calculation methods, refer to the
clause 5.2.2 of ETSI GS NFV-REL 003 [i.11].

7.2.2.2 VNFC

A VNFC may be composed of a pool of VNFC instances. A need for redundancy implies that the size of the pool is
greater than the minimum pool size needed to provide the desired service.

In this case, if at least n (� ≥ 1) instances of the same VNFC are needed to provide the desired service (for capacity or
other reason), to ensure this VNFC could provide its service satisfactorily, a pool of m (� ≥ �) active instances of this
VNFC is needed.

If the availability of each VNFC instance is ������������ , the availability of this VNFC may be calculated (according
to the binomial distribution) as:

 ����� = ∑
�
�
�������������

� ∗�
��� (1 − ������������)��� (5)

which provides the probability that n or more instances (within this m-size pool) of this VNFC are providing the desired
service at a sampling time point during this VNFC's working period.

As described in clause 4.2, an MCIO can be mapped to a VNFC and an MCIO instance could be a Pod, a Deployment,
or a StatefulSet, etc. in Kubernetes®.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)22

As Kubernetes® natively only supports active-active redundancy mechanisms (see note) for VNFCs, all Managed
Container Infrastructure Objects (MCIO) are considered as active from the Kubernetes® perspective.

NOTE: To achieve active-standby for containerized VNFCs, it is possible to add additional enhancements acting
as the traffic (or service requests) entry point for Kubernetes managed workloads to achieve
active-standby for containerized applications. These additional enhancements are out of the scope of the
present document.

Therefore, for containerized implementation, the availability of a VNFC instance could be one of the following:

 ���������	�
� � ��������	�
� � ���� (6a)

 ���������	�
� � ��������	�
� � ����������� (6b)

 ���������	�
� � ��������	�
� � ���	�������� (6c)

7.2.2.3 Pod, Deployment and StatefulSet

To estimate the availability of a pod, AEAF needs to estimate the MTBF and MTTR for this pod. This can be based on
historical information for similar pods, which may be collected from laboratory environments or from live network
environments. Similarly, the availability of pod groups (Kubernetes® Deployments or Kubernetes® StatefulSets) may be
estimated based on historical information for similar pod groups.

Kubernetes® provides its log system which is particularly useful for debugging pod problems and monitoring cluster
activity. However, the native functionality provided by Kubernetes® is usually not enough for a complete historical
information solution. But Kubernetes® can be integrated with cluster and cross-cluster monitoring and logging
solutions, which provide separate backend to collect, store, and analyse this historical information.

When a single pod's failure is detected by Kubernetes®, it will be terminated and replaced by a new pod providing the
desired service. When failure of a pod (or pods) leads to a group of pods providing unavailable or degraded service, the
healing/replacement of this pod group will be executed by Kubernetes®. Figure 7.2.2.3-1 shows the restoration sequence
for a failed pod group. Figure 7.2.2.3-2 shows the restoration sequence for a degraded pod group.

Figure 7.2.2.3-1: Example of restoration sequence for a failed pod group service

Failure
detecte

Pod group
service restored

Failure
detection

Healing/replacement of the failed pod group service

Time to restore service

P
od

 g
ro

up

se
rv

ic
e

av
ai

la
bi

lit
y

Pod group
service failure

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)23

Figure 7.2.2.3-2: Example of restoration sequence for a degraded pod group service

Taking the Figure 7.2.2.3-1 as an example, one can see that the MTTR is not only affected by the time to respond to a
failure, but also the non-zero time needed to detect that a failure has occurred. In a live network, it is not possible to
measure this time, because the management system is not aware of the failure itself, but is only informed when a failure
has been detected. However, to gain a good estimation of the failure detection delay, it is possible to deliberately inject
faults in a laboratory environment and measure the typical delay until the management system detects the fault.
Multiple classes of faults may need to be injected (for example connectivity, storage, processor) because each class may
have a different typical delay until detection.

The typical time from failure detection to service restoration can be measured by observing historical data for similar
pods (or pod groups), especially the Kubernetes® state transitions.

Assuming complete availability of the infrastructure used to deploy the pod (see Formula (1)), AEAF may estimate the
availability of a single pod as:

 ���� �
�������

���������������
 (7)

MTBFpod may be estimated by historical analysis of similar pods.

AEAF may estimate the MTTR of a single pod as:

 ������� � �����������	����
 ������������	���� (8)

As mentioned above, DetectionTimepod cannot be calculated based on information from the live network, but it may be
estimated based on offline information.

AEAF may estimate the RestorationTime of a single pod as:

 ������������	���� � ��������� � ���������� (9)

Where Treadypod is the time Kubernetes® sets the attribute kube_pod_status_ready = true, and Tfailedpod is the time
Kubernetes® sets the attribute kube_pod_status_ready = false.

For a Deployment, it is a more realistic scenario that service is degraded, but has not completely failed. Thus,
Figure 7.2.2.3-2 is more suitable for this situation. In this case, AEAF may estimate the availability (����������),
MTTR and MTBF of a Deployment the same way as for the estimation of pod availability, refer to the related earlier
text and formulae (7) and (8).

AEAF may estimate the RestorationTime of a Deployment as:

 ������������	���� � ��������� � ������������ (10)

Degradation
detected

Pod group
service restored

Degradation
detection Healing/replacement of the degraded pod group service

Time to restore service

P
od

 g
ro

up

se
rv

ic
e

av
ai

la
bi

lit
y

Pod group
service

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)24

Where Treadydep is the time Kubernetes® sets the attribute kube_pod_status_ready = true for all pods of this
Deployment, and Tfaileddep is the time Kubernetes® sets the attribute kube_pod_status_ready = false for at least one pod
of this Deployment.

A StatefulSet provides guarantees about the ordering and uniqueness of a set of stateful pods. If at least one pod of this
StatefulSet failed, the StatefulSet is assumed to be unavailable. Therefore, Figure 7.2.2.3-1 is more suitable for this
situation. In this case, AEAF may estimate the availability (�
	�	���
�), MTTR and MTBF of a StatefulSet the same
way as for the estimation of pod availability, refer to the related earlier text and formulae (7) and (8).

AEAF may estimate the RestorationTime of a StatefulSet as:

 ������������	�

 � ������

 � �������

 (11)

Where Treadyss is the time Kubernetes® sets the attribute kube_pod_status_ready = true for all pods of this StatefulSet,
and Tfailedss is the time Kubernetes® sets the attribute kube_pod_status_ready = false for at least one pod of this
StatefulSet.

7.2.2.4 Node

To estimate the availability of a node, AEAF needs to estimate the MTBF and MTTR for this node. This can be based
on vendor information and historical information for similar nodes, which may be collected from laboratory
environments or from live network environments. Figure 7.2.2.4-1 shows the restoration sequence for a failed node.

Figure 7.2.2.4-1: Example of restoration sequence for a failed node

The typical time from failure detection to service restoration can be measured by observing historical data for similar
nodes.

AEAF may estimate the availability of a single node as:

 ����� �
��������

�����������������
 (12)

The vendor may provide an estimation of MTBFnode, or it may be estimated by historical analysis of similar nodes.

AEAF may estimate the MTTR of a single node as:

 �������� � �����������	�����
 ������������	����� (13)

Similar to the description for pods, the DetectionTimenode cannot be calculated based on information from the live
network, it may be estimated based on offline information gathered by fault injection experiments, etc.

AEAF may estimate the RestorationTime of a single node as:

 ������������	����� � ���������� � ����������� (14)

Failure
detecte

Node service
restored

Failure
detection

Healing/replacement of a failed node

Time to restore service

N
od

e
se

rv
ic

e
av

ai
la

bi
lit

y

Node service
failure

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)25

Where Treadynode is the time Kubernetes® sets the attribute kube_node_status_ready = true for this node, and Tfailednode
is the time Kubernetes® sets the attribute kube_node_status_ready = false for this node.

7.2.2.5 CIS cluster

According to the CIS cluster fault management service interface requirement, when a CIS cluster service failure is
detected by CCM, CCM enables its consumers to collect CIS cluster fault information [i.7]. It is proposed that the
NFV-MANO provides the healing/replacement of a failed CIS cluster.

Figure 7.2.2.5-1 shows the restoration sequence for a failed CIS cluster.

Figure 7.2.2.5-1: Example of restoration sequence for a failed CIS cluster

The typical time from failure detection to service restoration can be measured by observing historical data for similar
CIS clusters.

AEAF may estimate the availability of a CIS cluster as:

 ���
	�� �
��������	�

��������	�
���������	�

 (15)

MTBFcluster may be estimated by historical analysis of similar clusters.

AEAF may estimate the MTTR of a CIS cluster as:

 ������
	�� � �����������	���
	��
 ������������	���
	�� (16)

Similar to the description for nodes, the DetectionTimecluster cannot be calculated based on information from the live
network, it may be estimated based on offline information gathered by fault injection experiments, etc.

AEAF may estimate the RestorationTime of a CIS cluster as:

 ������������	���
	�� � ��������
	�� � ���������
	�� (17)

Where Treadycluster is the time CCM sends notifications in event of the clearance of a fault for a CIS cluster, and
Tfailedcluster is the time CCM sends notifications in event of a fault detected for a CIS cluster.

7.3 Evaluation outputs
Generally, the typical output of the evaluation contains an indicator showing the result on whether the desired
availability requirement of the VNF can or cannot be met after the proposed operation.

Failure
detecte

CIS cluster
service restored

Failure
detection Healing/replacement of a failed CIS cluster

Time to restore service

C
IS

 c
lu

st
er

se

rv
ic

e
av

ai
la

bi
lit

y

CIS cluster
service failure

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)26

In addition, for the containerized VNF software modification use case, this evaluation output may contain a
recommendation to change Kubernetes® configurable attributes before the software modification can proceed. For the
containerized VNF scaling out use case, if AEAF estimates that the availability requirement of the VNF cannot be met
after scaling out, this analysis result may contain a recommendation that the scaling be increased further.

AEAF's evaluation outputs related to the reliability and availability of NFV managed objects can be used by VNFM and
other functional entities to determine appropriate management actions in cloud-native VNF deployment, operation and
maintenance.

7.4 Potential architectural options related to AEAF
Based on the use cases and AEAF functionality, the following architectural options are described for AEAF:

1) The AEAF resides in the VNFM.

2) The AEAF is part of the Management Data Analytics (MDA) function.

3) The AEAF is a new functional block within NFV-MANO.

4) The AEAF lies outside NFV-MANO.

Option #1: The AEAF resides in the VNFM

With this architectural option, the AEAF is co-located with the VNFM. In this scenario, there is no need to standardize
the interface between VNFM and AEAF.

Option #2: The AEAF is part of the MDA function

With this architectural option, the AEAF is one function of the set of MDA functions. ETSI GR NFV-IFA 041 [i.13]
specifies that MDA can provide the capability of processing and analysing the raw data related to network and service
events and status to provide analytics report to enable necessary actions for network operations. For potential options
for integrating MDA functions with NFV-MANO, refer to clause 7.2.2 in ETSI GR NFV-IFA 041 [i.13]. In this
scenario, the interface for the analysis request and response process between VNFM and AEAF is described in
clause 7.2.2 in ETSI GR NFV-IFA 041 [i.13].

Option #3: The AEAF is a new functional block within NFV-MANO

With this architectural option, the AEAF is represented by its own NFV-MANO functional block. In this scenario, a
new interface between VNFM and AEAF needs to be defined.

Option #4: The AEAF lies outside NFV-MANO

With this architectural option, the AEAF is a functional entity external to NFV-MANO. In this scenario, requirements
on the new interface between VNFM and AEAF may be defined, but the definition of the interface is out of the scope of
ETSI ISG NFV.

8 Recommendations related to AEAF
This clause provides recommendations for NFV-MANO which are derived from the use cases discussed in clause 6.
The recommendations are made from a reliability and availability point of view.

The term "Availability Estimation and Analysis Function" is used for the purpose to describe the functionality and to
address the entity that is providing that functionality. No assumption is made about what entity or entities can play such
a role. This functionality may be a standalone function or may be part of another function, for example Management
Data Analytics Function (MDAF).

Table 8-1 provides recommendations related to Availability Estimation and Analysis Function.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)27

Table 8-1: Recommendations related to Availability Estimation and Analysis Function

Identifier Recommendation description Reference

Aeaf.001
It is recommended that an Availability Estimation and Analysis Function is provided to
support VNF availability estimation for the containerized VNF software modification
operation.

Clause 6.2.5

Aeaf.002 It is recommended that an Availability Estimation and Analysis Function is provided to
support VNF availability estimation for the containerized VNF scaling out operation. Clause 6.3.2

Aeaf.003 It is recommended that an Availability Estimation and Analysis Function is provided to
support VNF availability estimation for the containerized VNF scaling in operation.

Clause 6.3.3

Aeaf.004
It is recommended that the Availability Estimation and Analysis Function is able to
read the VNFD of the relevant VNF to fetch information needed to infer the availability
of the VNFC(s) which will be impacted by a lifecycle management operation.

Clause 6

Aeaf.005
It is recommended that the Availability Estimation and Analysis Function is able to
fetch information from CISM related to the VNFC(s) impacted by a lifecycle
management operation, for example number of MCIOs and status of these MCIOs.

Clause 6

Aeaf.006

It is recommended that the Availability Estimation and Analysis Function is able to
provide an analysis result for the containerized VNF software modification operation,
which may contain a recommendation to change Kubernetes® configurable attributes
before the software modification can proceed.

Clause 6.2.5

Aeaf.007
It is recommended that the Availability Estimation and Analysis Function is able to
provide an analysis result for the containerized VNF scaling out operation, which may
contain a recommendation that the scaling out level be increased appropriately.

Clause 6.3.2

Aeaf.008
It is recommended that the Availability Estimation and Analysis Function is able to
provide an analysis result for the containerized VNF scaling in operation, which may
contain a recommendation to cancel this scaling in operation.

Clause 6.3.3

9 Conclusion
The present document has studied the reliability evaluation for cloud-native VNFs. Cloud-native configuration
capabilities and metrics related to reliability were introduced in clause 5. In clause 6, three use cases were developed
and analysed with the introduction of the Availability Estimation and Analysis Function (AEAF) and how this function
could support VNF availability estimation for the resiliency assurance of the related operations:

• Containerized VNF software modification.

• Containerized VNF scaling out.

• Containerized VNF scaling in.

Although these use cases are representative from the reliability perspective of the lifecycle management of cloud-native
VNFs, there may be more aspects and use cases which could be considered.

Evaluation requests, methods, and outputs related to the functionalities of Availability Estimation and Analysis
Function were presented in clause 7, together with the potential architectural options for this function within or outside
NFV-MANO.

From the three use cases and the functionality discussion, a set of recommendations were derived in clause 8 to provide
new functionalities and their different aspects in an NFV environment. Implementing these recommendations would
significantly improve the reliability and availability of cloud-native VNFs for the use cases tackled in the present
document.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)28

Annex A:
Existing pod metrics and configurable attributes in
Kubernetes®
Table A-1 shows the existing pod metrics and configurable attributes in Kubernetes®.

Table A-1: Kubernetes® pod metrics and configurable attributes

Metric name Description Type
kube_pod_annotations Kubernetes® annotations converted to

Prometheus labels
Configurable
attributes

kube_pod_info Information about pod Configurable
attributes

kube_pod_ips Pod IP addresses Configurable
attributes

kube_pod_start_time Start time in Unix timestamp for a pod Metrics
kube_pod_completion_time Completion time in Unix timestamp for a pod Metrics
kube_pod_owner Information about the pod's owner Configurable

attributes
kube_pod_labels Kubernetes® labels converted to Prometheus

labels
Configurable
attributes

kube_pod_nodeselectors Indicates the pod nodeSelectors Configurable
attributes

kube_pod_status_phase Pods current phase Metrics
kube_pod_status_ready Indicates whether the pod is ready to serve

requests
Metrics

kube_pod_status_scheduled Indicates the status of the scheduling
process for the pod

Metrics

kube_pod_container_info Information about a container in a pod Configurable
attributes

kube_pod_container_status_waiting Indicates whether the container is currently in
waiting state

Metrics

kube_pod_container_status_waiting_reason Indicates the reason the container is
currently in waiting state

Metrics

kube_pod_container_status_running Indicates whether the container is currently in
running state

Metrics

kube_pod_container_state_started Start time in Unix timestamp for a pod
container

Metrics

kube_pod_container_status_terminated Indicates whether the container is currently in
terminated state

Metrics

kube_pod_container_status_terminated_reason Indicates the reason the container is
currently in terminated state

Metrics

kube_pod_container_status_last_terminated_rea
son

Indicates the last reason the container was in
terminated state

Metrics

kube_pod_container_status_ready Indicates whether the containers readiness
check succeeded

Metrics

kube_pod_container_status_restarts_total Number of container restarts per container Metrics
kube_pod_container_resource_requests Number of requested request resource by a

container
Configurable
attributes

kube_pod_container_resource_limits Number of requested limit resource by a
container

Configurable
attributes

kube_pod_overhead_cpu_cores Pod overhead in regards to CPU cores
associated with running a pod

Metrics

kube_pod_overhead_memory_bytes Pod overhead in regards to memory
associated with running a pod

Metrics

kube_pod_runtimeclass_name_info Runtimeclass associated with the pod Configurable
attributes

kube_pod_created Unix creation timestamp Metrics
kube_pod_deletion_timestamp Unix deletion timestamp Metrics
kube_pod_restart_policy Indicates the restart policy in use by this pod Configurable

attributes
kube_pod_init_container_info Information about an init container in a pod Configurable

attributes

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)29

Metric name Description Type
kube_pod_init_container_status_waiting Indicates whether the init container is

currently in waiting state
Metrics

kube_pod_init_container_status_waiting_reason Indicates the reason the init container is
currently in waiting state

Metrics

kube_pod_init_container_status_running Indicates whether the init container is
currently in running state

Metrics

kube_pod_init_container_status_terminated Indicates whether the init container is
currently in terminated state

Metrics

kube_pod_init_container_status_terminated_rea
son

Indicates the reason the init container is
currently in terminated state

Metrics

kube_pod_init_container_status_last_terminated
_reason

Indicates the last reason the init container
was in terminated state

Metrics

kube_pod_init_container_status_ready Indicates whether the init container readiness
check succeeded

Metrics

kube_pod_init_container_status_restarts_total Number of restarts for the init container Metrics
kube_pod_init_container_resource_limits Number of CPU cores requested limit by an

init container
Configurable
attributes

kube_pod_init_container_resource_requests Number of CPU cores requested by an init
container

Metrics

kube_pod_spec_volumes_persistentvolumeclai
ms_info

Information about persistentvolumeclaim
volumes in a pod

Configurable
attributes

kube_pod_spec_volumes_persistentvolumeclai
ms_readonly

Indicates whether a persistentvolumeclaim is
mounted read only

Configurable
attributes

kube_pod_status_reason Pod status reasons Metrics
kube_pod_status_scheduled_time Unix timestamp when pod moved into

scheduled status
Metrics

kube_pod_status_unschedulable Indicates the unschedulable status for the
pod

Metrics

kube_pod_tolerations Information about the pod tolerations Configurable
attributes

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)30

Annex B:
Change History

Date Version Information about changes

October 2021 0.0.1
Initial draft version including the skeleton of the GR and scope clause:
 NFVREL(21)000141r1, NFVREL(21)000142r2

March 2022 0.0.2 Early draft version including the following approved contributions:
 NFVREL(21)000149r2, NFVREL(21)000165r3, NFVREL(22)000024

July 2022 0.0.3
Early draft version including the following approved contributions:
NFVREL(22)000027r2, NFVREL(22)000038r2, NFVREL(22)000039r4,
NFVREL(22)000045r3, NFVREL(22)000063r1

January 2023 0.0.4

Draft version including the following approved contributions:
NFVREL(23)000005r4, NFVREL(23)000002r2, NFVREL(22)000136,
NFVREL(22)000125r10, NFVREL(22)000096r8, NFVREL(22)000101,
NFVREL(22)000092r2, NFVREL(22)000064r1

March 2023 0.0.5

Draft version including the following approved contributions:
NFVREL(23)000014r2, NFVREL(23)000019r2,
NFVREL(23)000020r1, NFVREL(23)000021r1,
NFVREL(23)000028r5, NFVREL(23)000029r6

May 2023 0.0.6

Draft version including the following approved contributions:
NFVREL(23)000042, NFVREL(23)000043r1,
NFVREL(23)000044r1, NFVREL(23)000046r1,
NFVREL(23)000049r1, NFVREL(23)000052r1,
and the following editorial clean-ups
(a) editorial clean-up in clause 7 related to ordering the equation numbers from equation
No.5 to No.17 correctly;
(b) editorial clean-up in clause 2.2 related to the Editor's Note on confirming that Ref [i,7]
has been published;
(c) editorial clean-up in clause 2.2 related to adding the Ref [i,14] ETSI GS NFV-IFA
027, which is cited in the main text clause 7.2.1, but not appears in the list of references.

June 2023 0.1.0

Stable draft version including the following approved contributions:
NFVREL(23)000062r2, NFVREL(23)000063r2,
NFVREL(23)000064r1, NFVREL(23)000066r1 ,
NFVREL(23)000067;
and the following editorial clean-ups:
a) Delete empty Annex B since it is just a sample format provided by ETSI and never
used;
b) Re-number clause 4.3 to 4.2 since clause 4.2 is deleted in NFVREL(23)000062r2;
c) Remove duplicated text in clause 6.2.2.8 step 6 ("AEAF responds to VNFM with the
analysis result.") since the previous sentence already covers this text. This remove is as
agreed in REL#450 but missed in contribution NFVREL(23)000062's revision r2.

August 2023 0.2.0

Revised stable draft version including the following approved contributions:
NFVREL(23)000076r1, NFVREL(23)000077r1,
NFVREL(23)000078r1, NFVREL(23)000080,
modify all Kubernetes to Kubernetes®,
add that active-standby for containerized workload is out of the scope of the present
document,
amend the scope to add a reference to Kubernetes®,
and editorial clean-ups according to NFVREL(23)000074 comments as rapporteur
actions.

ETSI

ETSI GR NFV-REL 014 V5.1.1 (2023-10)31

History

Document history

V5.1.1 October 2023 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Overview and background
	4.1 General
	4.2 Containerized VNFs

	5 Cloud-native configuration capabilities and metrics related to reliability
	5.1 Kubernetes® objects
	5.2 Management of clusters
	5.2.1 Introduction
	5.2.2 Relevant configuration capabilities
	5.2.3 Relevant metrics

	5.3 Management of pods
	5.3.1 Overview
	5.3.2 Existing configuration capabilities
	5.3.3 Existing metrics

	6 Use cases
	6.1 Introduction
	6.2 Cloud-native VNF software modification
	6.2.1 Overview
	6.2.2 MCIO availability evaluation
	6.2.3 Containerized VNF availability evaluation
	6.2.4 Impact of the availability evaluation
	6.2.5 Resiliency assurance for containerized VNF software modification
	6.2.5.1 Actors and roles
	6.2.5.2 Pre-conditions
	6.2.5.3 Post-conditions
	6.2.5.4 Flow description

	6.3 Cloud-native VNF scaling
	6.3.1 Overview
	6.3.2 Containerized VNF scaling out
	6.3.2.1 Introduction
	6.3.2.2 Actors and roles
	6.3.2.3 Pre-conditions
	6.3.2.4 Post-conditions
	6.3.2.5 Flow description

	6.3.3 Containerized VNF scaling in
	6.3.3.1 Introduction
	6.3.3.2 Actors and roles
	6.3.3.3 Pre-conditions
	6.3.3.4 Post-conditions
	6.3.3.5 Flow description

	7 Functionalities of AEAF
	7.1 Evaluation request
	7.2 Evaluation methods
	7.2.1 Introduction
	7.2.2 Evaluation methods classified by measured object
	7.2.2.1 VNF
	7.2.2.2 VNFC
	7.2.2.3 Pod, Deployment and StatefulSet
	7.2.2.4 Node
	7.2.2.5 CIS cluster

	7.3 Evaluation outputs
	7.4 Potential architectural options related to AEAF

	8 Recommendations related to AEAF
	9 Conclusion
	Annex A: Existing pod metrics and configurable attributes in Kubernetes®
	Annex B: Change History
	History

