

ETSI GR ENI 056 V4.1.1 (2025-10)

Experiential Networked Intelligence (ENI);
Study on Multi-Agent Frameworks for

Next-Generation Core Networks

Disclaimer

The present document has been produced and approved by the Experiential Networked Intelligence (ENI) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP REPORT

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)2

Reference
DGR/ENI-0056v411_Stud_MultIA

Keywords
6G, AI, AI-native, GenAI

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver/
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definition of terms, symbols and abbreviations ... 7

3.1 Terms .. 7

3.2 Symbols .. 7

3.3 Abbreviations ... 7

4 Background .. 9

4.1 Service Based Architecture .. 9

4.1.1 SBA Reference Model .. 9

4.1.2 Service Based Interface .. 9

4.1.3 Network Function Service Framework ... 9

4.2 Open-Source Multi-Agent Frameworks and Communication Mechanisms ... 10

4.2.1 Introduction... 10

4.2.2 Overview of Existing Multi-Agent Frameworks .. 11

4.2.3 Multi-Agent Communication Mechanisms ... 12

4.2.4 Existing Multi-Agent Protocols .. 14

4.2.4.1 Introduction ... 14

4.2.4.2 Context-Oriented Protocols ... 15

4.2.4.2.1 Introduction ... 15

4.2.4.2.2 Model Context Protocol (MCP) .. 15

4.2.4.3 Inter-Agent Protocols .. 16

4.2.4.3.1 Introduction ... 16

4.2.4.3.2 The Agent-to-Agent (A2A) Protocol ... 16

4.2.4.3.3 Agent Communication Protocol .. 18

4.2.4.3.4 Agent Network Protocol (ANP) .. 18

4.2.4.4 Comparison of Inter-Agent Protocols ... 19

4.3 The Role of MCP and A2A in an ENI System ... 20

5 Multi-Agents System in Core Network .. 21

5.1 Benefits of Multi-Agent Systems ... 21

5.1.1 Energy Consumption and Inference Time .. 21

5.1.2 Modularity and Extensibility .. 21

5.1.3 Robustness .. 21

5.1.4 Distributed Decision-making .. 22

5.2 Design Principles .. 23

5.3 Example AI Agents for the Core Network ... 24

6 Inter-Agent Communication ... 24

6.1 Agent-Based Interface .. 24

6.1.1 Motivation... 24

6.1.2 Definition and Characteristics... 25

6.1.3 Interface Design Principles ... 26

6.2 Key Methods .. 26

6.2.1 Agent-to-User ... 26

6.2.2 Agent-to-ARF ... 27

6.2.2.1 Agent Registration, De-Registration and Update .. 27

6.2.2.2 Agent Discovery and Selection ... 28

6.2.3 Agent-to-Agent ... 30

6.2.4 Agent-to-Resource .. 31

6.2.5 Agent-to-Infrastructure ... 31

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)4

6.3 Agent Communication Model .. 32

7 Multi-Agent Collaboration Mechanism ... 33

7.1 Workflow Orchestration ... 33

7.2 Closed-loop Optimization Mechanism ... 34

7.2.1 Multi-Agent Coordination and Optimization .. 34

7.2.2 Network Feedback Reinforcement Learning .. 35

7.2.3 Multi-Agent Self-Reflection ... 36

7.2.4 Multi-Agent Conflict Resolution .. 37

8 Standard Impact Analysis ... 39

9 Conclusion and Recommendations .. 40

Annex A: More details about the A2A Protocol .. 41

Annex B: AGNTCY™ and Agent Connect Protocol .. 44

History .. 46

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) Experiential Networked
Intelligence (ENI).

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)6

1 Scope
The present document studies Multi-Agent Systems (MASs), which comprise multiple Artificial Intelligence (AI)
agents designed to solve a set of complex tasks collaboratively. It reviews popular existing open-source frameworks to
implement MASs and existing multi-agent topologies, conversation patterns and key design principles. This includes
interface design for collaborative inference, key performance indicators to quantify the performance of MASs, as well
as various workflow options to perform closed-loop optimization between AI agents. While focusing primarily on the
employment of MASs in the next generation mobile networks, the present document explicitly discusses recommended
architectural changes in the design principles of core network together with potential standard impacts.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents may be useful in implementing an ETSI deliverable or add to the reader's
understanding, but are not required for conformance to the present document.

[i.1] 3GPP TS 23.501 (V19.2.1): "System architecture for the 5G System (5GS)".

[i.2] 3GPP TS 29.500 (V19.2.0): "Technical Realization of Service Based Architecture".

[i.3] 3GPP TS 29.501 (V18.3.0): "Principles and Guidelines for Services Definition".

[i.4] IEEE 802.11™: "IEEE Standard for Information Technology--Telecommunications and
Information Exchange between Systems Local and Metropolitan Area Networks--Specific
Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications".

[i.5] 3GPP TS 33.501 (V19.1.0): "Security architecture and procedures for 5G system".

[i.6] J. Kaplan, et al.: "Scaling Laws for Neural Language Models," arXiv preprint arXiv:2001.08361,
2020.

[i.7] Q. Wu, et al.: "AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversations",
Conference on Language Modeling, 2024.

[i.8] T. Guo, et al.: "Large Language Model Based Multi-Agents: A survey of progress and challenges",
arXiv preprint arXiv:2402.01680, 2024.

[i.9] C. Chan, et al.: "Chateval: Towards better LLM-based Evaluators Through Multi-Agent Debate",
arXiv preprint arXiv:2308.07201, 2023.

[i.10] GitHub for the Agent Network Protocol.

[i.11] J. Rosenberg, C. Jennings: "Framework, Use Cases and Requirements for AI Agents", (accessed
on 08 May 2025).

[i.12] ETSI GR ENI 051 (V4.1.1): "Experiential Networked Intelligence (ENI); Study on AI Agents
based Next-generation Network Slicing".

https://standards.ieee.org/ieee/802.11/10548/
https://github.com/agent-network-protocol/AgentNetworkProtocol
https://www.ietf.org/id/draft-rosenberg-ai-protocols-00.html

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)7

[i.13] ETSI GR ENI 016 (07-2021): "Experiential Networked Intelligence (ENI); Functional Concepts
for Modular System Operation".

[i.14] ETSI GS ENI 019 (V4.1.1): "Experiential Networked Intelligence (ENI); Representing, Inferring,
and Proving Knowledge in ENI".

[i.15] Agent Communication Protocol.

[i.16] Anthropic: "Building Effective Agents", 2024.

[i.17] A. Ehtesham, A. Singh, G. K. Gupta, S. Kumar: "A Survey of Agent Interoperability Protocols:
Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent-to-Agent Protocol
(A2A), and Agent Network Protocol (ANP)", arXiv preprint arXiv: 2505.02279, 2025.

[i.18] Y. Lu, J. Wang: "KARMA: Leveraging Multi-Agent LLMs for Automated Knowledge Graph
Enrichment", arXiv preprint arxiv: 2502.06472, 2025.

[i.19] ETSI GS ENI 005 (V4.1.1): "Experiential Networked Intelligence (ENI); ENI System
Architecture".

[i.20] Model Context Protocol (MCP).

[i.21] A2A Protocol.

[i.22] Semantic Versioning.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

5G System: 3GPP system consisting of 5G Access Network (AN), 5G Core Network and UE [i.1]

Customized Service Network (CSN): logical network that is generated on-demand by AI agents in the mobile core
network according to the customers' intents and is comprised of network functions, application functions, 3rd party
APIs, and the associated computing and communication resources

interface: point across which two or more components exchange information [i.19]

Multi-Agent System (MAS): collection of autonomous, interacting agents that work together (or compete) to solve
problems that are too large, dynamic, or complex for any single agent to solve alone

Network Function (NF): 3GPP adopted or 3GPP defined processing function in a network, which has defined
functional behaviour and 3GPP defined interfaces [i.1]

semantic similarity: metric defined over a set of documents or terms that measures the degree to which two linguistic
items share similar meanings through "is-a" relationships (synonymy and hyponymy)

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

3GPP Third Generation Partnership Project
5G Fifth Generation
A2A Agent2Agent

https://agentcommunicationprotocol.dev/introduction/welcome
https://www.anthropic.com/engineering/building-effective-agents
https://modelcontextprotocol.io/
https://a2aprotocol.ai/
https://semver.org/

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)8

ABAC Attribute-Based Access Control
ABI Agent-Based Interface
ACP Agent Communication Proxy
ADK Agent Development Kit
ADP Agent Description Protocol
AI Artificial Intelligence
AMF Access and Mobility Management Function
ANP Agent Network Protocol
API Application Programming Interface
ARF Agent Repository Function
AUSF Authentication Server Function
CN Core Network
CRA Conflict Resolution Agent
CRM Customer Relationship Management
CSN Customized Service Network
E2E End-to-End
HTTP Hypertext Transfer Protocol
ID Identifier
JSON JavaScript Object Notation
JWT JSON Web Token
LLM Large Language Model
LSP Language Server Protocol
MAD Multi-Agent Debate
MAS Multi-Agent System
MCP Model Context Protocol
NAS Non-Access Stratum
NEF Network Exposure Function
NF Network Function
NRF Network Repository Function
NSSF Network Slice Selection Function
NWDAF Network Data Analytics Function
OASF Open Agent Schema Framework
P2P Peer-to-Peer
PCF Policy Control Function
PDU Protocol Data Unit
PnP Plug-and-Play
PLMN Public Land Mobile Network
QoS Quality of Service
RAN Radio Access Network
RAG Retrieval-Augmented Generation
RBAC Role-Based Access Control
RFC Request for Comments
RPC Remote Procedure Call
RTP Real-time Transport Protocol
SBA Service-Based Architecture
SBI Service-Based Interface
SCP Service Communication Proxy
SDO Standards Development Organization
SDK Software Development Kit
SIP Session Initiation Protocol
SLA Service Level Agreement
SM Session Management
SMF Session Management Function
SSE Server-Sent Events
TTL Time to Live
UE User Equipment
UDM Unified Data Management
UPF User Plane Function
URI Uniform Resource Identifier
URL Uniform Resource Locator
UUID Universally Unique Identifier

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)9

4 Background

4.1 Service Based Architecture

4.1.1 SBA Reference Model

The system functionality in a 5G mobile network is achieved by a set of Network Functions (NFs) providing services to
other NFs. To name a few examples, Access and Mobility Management Function (AMF) and Network Slice Selection
Function (NSSF) are NFs providing Namf_Location and Nssf_NSSelection services, respectively. While the former
allows a service consumer to request location information for a specific UE, the latter allows the service consumer NF
to request information about a network slice. As can be seen here, an NF service is a specific capability exposed by a
(service producer) network function to other NFs that are authorized to consume that service. As a design principle,
3GPP requests each of the NF services to be self-contained, acted upon and managed independently from other services
of the same NF.

4.1.2 Service Based Interface

Service-Based Interfaces (SBIs) are used in the 5G SBA to enable communication between NFs. Each SBI can consist
of multiple services. A Service-Based Interface (SBI) represents how the set of services is provided or exposed by a
given NF. This is the interface where the NF service operations are invoked [i.2]. As specified by 3GPP in [i.1], 5G
system architecture contains more than twenty SBIs, including but not limited to Namf, Nsmf, and Nssf exhibited by the
AMF, SMF and NSSF, respectively.

In the 5G SBA, each SBI provides access to multiple services via standardized Application Programming Interfaces
(APIs). As defined in [i.3], each 5G CN SBI API specification is required to include the following information (among
others) for each specified service, purpose of the API, URIs of resources, supported HTTP methods for a given resource
(e.g. HTTP GET), supported representations (e.g. JSON), request body schema(s) (where applicable), response body
schema(s) (where applicable), and supported response status codes.

By following the design principles mentioned above, 5G SBIs are built on explicit service operations, meaning that a
service producer expects a structured and pre-defined input (i.e. service request) upon which it generates a pre-defined
output (i.e. service response). The relationship between the input and output is specified and any deviation leads to
undesired behaviour, such as the rejection of a service request, e.g. due to a syntax error, input size error, followed by
the corresponding HTTP status code of 400 (i.e. bad request).

4.1.3 Network Function Service Framework

As introduced earlier, the SBA consists of multiple NF services offered by different NF instances, typically running on
different machines in a distributed fashion. This mandates a set of mechanisms that allow the NF consumers to know
about the existence of other NF services, as well as their location for interacting with them. To address this, the 3GPP
has defined the NF service framework, which includes a list of mechanisms to enable the use of NF services in the
service-based architecture. These are:

i) NF service registration and de-registration;

ii) NF service discovery;

iii) NF service authorization; and

iv) Inter-service communication [i.2].

For the registration and de-registration of NF services, the Network Repository Function (NRF) plays a central role. In
addition to few other services, the NRF offers Nnrf_NFManagement service and Nnrf_NFDiscovery services that define
how each service producer NF instance informs the NRF of the list of NF services that it supports and how each service
consumer NF instance discovers other NF instances with the potential services they offer, respectively. The registration
of an NF is done by sending a Nnrf_NFManagement_NFRegister request to the NRF that contains the NF profile. The
NF profile contains information related to the NF instance to be registered, such as its NF instance ID and its supported
NF service list. Typically, this is done when the service producer NF instance becomes operative for the first time.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)10

Similar to the registration procedure, the standard allows an NF instance to de-register from the NRF before shutting
itself down or disconnecting from the network in a controlled manner.

In the specific case of SBA security, the NF service authorization is ensured both by the NRF and the NF service
producer. More specifically, the NRF is able to hide the NFs in one trust domain from entities in a different one; and
ensures that the NF discovery and registration requests are authorized. At the service producer-consumer level, each NF
validates the incoming messages, where invalid messages according to the protocol specification and network state are
rejected/discarded [i.5]. This validation typically involves checking a JSON Web Token (JWT) based on the OAuth2.0
framework, which the consumer obtains from the NRF.

The SBA in 5G considers two options for the communication between NF service consumers and producers, namely,
direct- and indirect communication. As the name suggests, while two NFs are able to send messages to directly each
other in the direct communication mode, in case of indirect communication the communication takes place via an
in-between entity called Service Communication Proxy (SCP).

NOTE 1: The SCP centralizes functions like load balancing, routing, and delegate discovery (where the SCP queries
the NRF on behalf of the consumer), simplifying the logic required in each individual NF.

More specifically, when using direct communication, an NF service consumer sends a service discovery request to the
NRF using the Nnrf_NFDiscovery service. After having received the necessary information about the producer of the
requested service (and the NF instance producing it), the corresponding service is invoked by sending messages directly
to the NF service producer. When the communication takes place indirectly, then the SCP is responsible for routing
messages between the service consumer and producer. The SCP is sometimes implemented in a distributed manner
(e.g. there can be multiple SCPs between the service consumer and producer NFs).

NOTE 2: An NF is configured with its serving SCP(s).

4.2 Open-Source Multi-Agent Frameworks and Communication
Mechanisms

4.2.1 Introduction

AI Agents are software applications that utilize Large Language Models (LLMs) to interact with humans (or other AI
Agents) for purposes of performing tasks [i.11]. While an LLM provides the core capacity for language understanding,
reasoning, and generation, an AI Agent is more accurately defined as a software entity that encapsulates this cognitive
core within a broader system, enabling it to perceive its environment, make autonomous decisions, and execute actions
to achieve specified goals.

The transition from a simple LLM-powered application to a true AI Agent is marked by the introduction of several key
architectural components and capabilities. Foremost among these are planning and reasoning faculties dedicated to the
strategic use of available resources. These resources are not limited to internal knowledge but extend to a diverse array
of external utilities, including software tools, Application Programming Interfaces (APIs) for accessing web services
and databases, and extensive document corpuses for retrieval-augmented generation. The agent's defining characteristic
is its ability to formulate a plan, select the appropriate tool for a given sub-task, execute that tool, observe the outcome,
and reason about the next step in a cyclical process. This iterative loop of thought and action moves the system from a
passive, input-output mechanism to a proactive, goal-oriented problem solver.

While single-agent systems represent a powerful paradigm, their capabilities are inherently bounded. As the complexity
of tasks increases, a single agent sometimes encounters significant bottlenecks. These limitations include a finite
context window, which restricts the amount of information the agent holds in its working memory, and the challenge of
effectively selecting from an ever-expanding suite of tools, which leads to poor or inefficient decision-making. Multi-
Agent Systems (MASs) have emerged as a direct architectural response to these challenges, designed to solve problems
that are beyond the capacity of any individual agent.

The following clauses provide a brief overview of existing open-source frameworks to implement Multi-Agent Systems
(MASs) and discuss different topologies and patterns for agent-to-agent communication within a MAS.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)11

4.2.2 Overview of Existing Multi-Agent Frameworks

Multi-agent frameworks have emerged as powerful tools for developing complex AI systems, enabling multiple agents
to collaborate and solve tasks beyond the capabilities of individual models. There are various open-source frameworks
available to implement multi-agent systems. Some prominent examples are AutoGen, CrewAI, and LangGraph. Each
framework offers unique strengths, catering to different needs in multi-agent system development.

AutoGen focuses on a multi-agent conversation framework where agents communicate with each other to accomplish
tasks. Its core philosophy is that complex tasks are orchestrated and automated by framing them as structured dialogues
between a collection of capable, customizable, and "conversable" agents. This approach simplifies the development of
complex LLM workflows by abstracting them into automated chats. These agents are conversable, customizable, and
are able to integrate LLMs, humans, and tools. It supports both static and dynamic conversations, allowing for flexible
interaction patterns based on the workflow. AutoGen emphasizes human involvement, enabling human feedback and
judgment in the decision-making process. This is particularly useful for tasks requiring human oversight.

CrewAI is another example of open-source multi-agent frameworks. CrewAI is an open-source Python framework
designed to facilitate the creation of autonomous AI agent teams that collaborate on complex tasks. Its core philosophy
is built around the intuitive and powerful metaphor of a "crew" of agents working together, much like a human project
team or a company with specialized departments. This approach emphasizes role-based agent design, where each agent
is defined by a specific role, a clear goal, and a detailed backstory. These narrative elements are not merely descriptive;
they serve as a form of meta-prompting that guides the agent's behaviour, decision-making, and collaborative style.
CrewAI organizes agents into roles with specific goals and tools. It uses event-driven workflows to manage agent
interactions dynamically, while supporting conditional logic and state management. In contrast to AutoGen, which
integrates human feedback more prominently, CrewAI focuses more on autonomous agent collaboration.

LangGraph is an open-source AI agent framework built on top of LangChain, designed to create, deploy, and manage
complex generative AI workflows. LangGraph is an open-source library, built by the creators of LangChain, designed
to orchestrate agentic and multi-agent workflows by modelling them as cyclical graphs. This graph-based paradigm is a
direct and powerful response to the inherent limitations of the linear, sequential execution models (or "chains") that
characterized early LLM applications. Many complex reasoning processes, such as chain-of-thought or ReAct (Reason
and Act) patterns, are naturally cyclical. LangGraph provides the primitives to build these cycles explicitly, enabling
more flexible, robust, and sophisticated agent behaviours. It utilizes a graph-based architecture, where workflows are
structured as directed graphs consisting of nodes and edges. In LangGraph, workflows are modelled as graphs, enabling
branching, looping, and conditional logic. This makes it ideal for handling complex interactions and dynamic decision-
making. LangGraph also supports running multiple tasks simultaneously for a more efficient workflow execution.

Agent Development Kit (ADK) is an open-source, flexible, and modular framework designed to simplify the creation,
orchestration, evaluation, and deployment of AI agents. It is model-agnostic and deployment-agnostic, allowing
integration with various frameworks and environments. It is a code-first toolkit designed to bring the discipline and
practices of traditional software development to the world of AI agents. It provides a flexible and modular framework
for defining agent logic, tool integrations, and orchestration directly in code (primarily Python, with Java support as
well), emphasizing crucial software engineering principles like testability, versioning, and modularity.

Each of these frameworks supports a large variety of existing LLMs, such as GPT-4, Llama3, and Mistral. Table 4.2.2-1
compares these four multi-agent frameworks.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)12

Table 4.2.2-1: Comparison of AutoGen, CrewAI, LangGraph, and ADK

Feature AutoGen CrewAI LangGraph ADK

Philosophy Multi-Agent
Conversation

Autonomous Agent
Teams

Stateful Graph-Based
Workflows

Code-First Software
Engineering

Primary
Abstraction

Conversable agents
engaging in
automated "chats"

A "crew" of agents with
defined roles, goals, and
tasks

A cyclical graph of
nodes (agents or
functions) and edges
(control flow)

Agents as modular,
testable software
components defined
directly in code

Control vs.
Autonomy

Balances both;
supports dynamic,
LLM-driven
conversations but
allows for
human-in-the-loop
control

Offers a dual model:
Crews for high autonomy
and Flows for granular,
event-driven control

High developer control;
the graph structure and
conditional edges need
to be explicitly defined
by the developer.

High developer control;
promotes deterministic
logic and orchestration,
treating agents as
versioned code assets.

Communication
Model

Internal
Orchestration:
Focuses on patterns
like group chat and
nested chat within a
single system

Internal Orchestration:
Manages collaboration
within a crew via
sequential or parallel
processes

Internal Orchestration:
Models agent
interactions as state
transitions within a self-
contained graph

External Interoperability:
Natively supports the A2A
protocol for
communication between
disparate, remote agent
systems

Key
Differentiator

Seamless
human-in-the-loop
integration and
dynamic
conversational
patterns

Intuitive role-playing
metaphor and the duality
of autonomous Crews
vs. controlled Flows

Explicit, cyclical, and
stateful graph
architecture enabling
durable and observable
execution

The A2A protocol for
building open,
interoperable, and
distributed agent services

Ideal Use Cases

Interactive problem-
solving, tasks
requiring human
oversight, rapid
prototyping of
conversational
agents

Business process
automation, modelling
real-world teams,
applications requiring a
balance of creativity and
structure

Complex, long-running
tasks, workflows
requiring robust error
handling and looping,
applications needing
deep observability

Building enterprise-grade,
standalone agentic
microservices intended to
collaborate with external,
multi-vendor systems

4.2.3 Multi-Agent Communication Mechanisms

Multi-Agent Communication Patterns

AutoGen mentions different multi-agent conversation patterns (depicted in Figure 4.2.3-1):

• Two-agent chat: considers two agents that exchange messages one-after-another, i.e. first Agent A then
Agent B. An example of the two-agent chat pattern is a customer support scenario where a client and a
specialist communicate.

• Sequential chat: involves a sequence of chats between two or more agents. This pattern extends the two-agent
chat by chaining multiple conversations together. It is designed for tasks with interdependent steps. This
approach is particularly useful for tasks requiring a sequence of inter-dependent multi-agent conversations
(i.e. when they have to run one after the other). An example of a sequential chat is when Agent A tells Agent B
"Retrieve pointcloud data of Central Park" followed by Agent A requesting Agent C to "Plot a 3D map based
on the pointcloud data". Note that the second task depends on the result of the first one.

• Nested chat: According to this pattern, one agent holds the current conversation while invoking conversations
with other agents depending on the content of the current message and context. This is useful for creating a
hierarchical structure of agents, as the nested agents are not allowed to communicate directly with other agents
outside the same group.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)13

• Group chat: Involves more than two agents in a single conversation thread, sharing the same context. Each
agent participating in the group chat is typically specialized for a particular task, such as a 'code generator',
'code reviewer', and a 'code executor'. In a group chat pattern, the agents do not talk directly with each other.
Instead, everything is managed by the 'Group Chat Manager', which is a special agent that uses an LLM to
orchestrate the conversation flow. The group chat manager selects an agent from the group as the "speaker",
and then the speaker agent talks to the manager. The manager then broadcasts the message to all agents and
chooses the next speaker. Therefore, group chat follows a publish-subscribe communication model, where
each participating agent is a publisher and a subscriber of the same topic with the manager serving as the
message broker.

Figure 4.2.3-1: Visualization of two-agent chat, sequential chat and nested chat patterns

The communication pattern plays an important role in determining the performance of a MAS. For a given task, the
MAS with different conversation patterns may output different results. Therefore, it is important to design the
customized conversation patterns for various network services.

Multi-Agent Topologies

LangGraph mentions different multi-agent topologies that are used to design and implement multi-agent systems. In the
following, each AI agent is represented as a graph node, where the agent-to-agent messages are passed from one graph
node to another. The following content does not necessarily imply a distributed implementation where nodes (i.e. AI
Agents) are physically decoupled from each other, meaning, they are running on different machines. On the contrary, it
studies different multi-agent topologies from a conceptual point-of-view, without diving deep into technical
implications, which are discussed later in clause 6, when the agent-to-agent communication implies actual data
transmission between different network nodes.

Single Agent: For completeness, the simplest topology possible is considered when there is only a single agent.
Figure 4.2.3-2a) shows that the AI agent has an LLM inside, which is the sub-component of an AI agent making it an
intelligent system that solves various complex tasks. Moreover, an AI agent has multiple tools that are available to be
called to assist task execution and output generation (e.g. web search tool). No agent-to-agent communication takes
place in this topology.

Network: As depicted in Figure 4.2.3-2b), when each AI agent can directly talk to all other AI agents in the multi-agent
system, then this is called the "network" topology. This is similar to "complete graph" from graph theory, where each
pair of distinct vertices is connected by a unique edge.

Supervisor: The supervisor topology is illustrated in Figure 4.2.3-2c) which contains a supervisor agent deciding which
agent needs to be called next. This means the supervisor agent is operating as a task scheduler and handoffs to other
agents. The agents that are not in the supervisor role are allowed to only communicate with the supervisor agent, which
corresponds to the "star topology" from graph theory. This pattern is highly effective for task delegation where a central
intelligence is needed to orchestrate the workflow. It is analogous to AutoGen's GroupChatManager and is
implemented in LangGraph by having a supervisor node that uses conditional edges to route to the appropriate worker
node. The decision mechanism is implementation-specific, ranging from a turn-based policy like round robin or a more
advanced policy that utilizes the LLM of the supervisor agent. A special case of this is using a tool-calling LLM as the
supervisor, where each worker agent is exposed as a "tool" that the supervisor chooses to call when needed.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)14

a) Single Agent b) Network c) Supervisor

Figure 4.2.3-2

Hierarchical: As the name suggests, this topology allows the design of a multi-agent system as a hierarchical (or tree)
structure and is used to implement more complex workflow control. The "hierarchical" topology is considered as a
supervisors of supervisors. Hence, it is considered as a generalization of the "supervisor" architecture. The main
motivation behind this topology over the supervisor is the same behind multi-agent systems over single-agent systems,
which is the increased scalability. More specifically, a single supervisor is likely to start making poor handoff decisions
due to a growing context. This renders the decision-making of the supervisor very complex to keep track of and calls for
a division of responsibilities among multiple supervisors, while each supervisor is managing a smaller team of
specialized agents. Figure 4.2.2-3a) shows an example multi-agent system following the hierarchical topology.

Custom: The topology of the multi-agent system typically uses a custom architecture, where each agent communicates
only with a subset of agents. This topology represents a hybrid approach that provides a balance between rigid structure
and complete dynamism. The communication paths are explicitly defined, but they do not conform to a simple star or
tree structure. The multi-agent collaboration allows a hybrid combination of explicit and dynamic workflow control. In
other words, while some agents deterministically handoff to a specific agent, some agents are allowed to decide which
agent to call next. Figure 4.2.2-3b) depicts a multi-agent system with a custom topology.

a) Hierarchical b) Custom

Figure 4.2.3-3

4.2.4 Existing Multi-Agent Protocols

4.2.4.1 Introduction

The need for multi-agent collaboration created a new scenario for communication between different software
components over the Internet. This calls for the standardization of further protocol development to facilitate the
deployment of multi-agent systems. This has been rightfully recognized by the industry leading to a rapid stream of
open-source efforts towards agent-to-agent communication. Some prominent examples are A2A [i.21], Model Context
Protocol (MCP) [i.20], Agent Connect Protocol (by AGNTCY™), Agent Network Protocol (ANP), and Agent
Communication Protocol. [i.17] contains further information about agent interoperability and provides details on a set
of selected multi-agent communication protocols. In [i.11], the multi-agent communication protocols are located on top
of the application layer protocols such as HTTP, SIP, and RTP.

Modern agent protocols are broadly organized along a key architectural distinction:

1) context-oriented protocols, which standardize how a single agent interacts with external tools and data, and

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)15

2) inter-agent protocols, which enable multiple autonomous agents to collaborate as peers.

NOTE: AGNTCY™ is an open-source infrastructure stack for building and managing the "Internet of Agents."
While it is not a communications protocol, it is still of interest in the present document. Hence, it is
described in Annex B.

4.2.4.2 Context-Oriented Protocols

4.2.4.2.1 Introduction

LLMs have been designed to predict the next word given an input sequence; therefore, they are not capable of
performing an action on behalf of the user, as by definition LLMs do not possess the tools to do so. Software developers
overcame this shortcoming of LLMs by combining them with external tools so that they can do more than responding to
a text input with a text output. For instance, when combined with appropriate tools, LLMs gain the ability to fetch
information from the internet and present it to the human user. However, this approach comes with the significant
challenge that as the number and variety of tools increase, it becomes very difficult for the developer to support tool
invocation by LLMs, since each tool comes with its own custom API. This means, the LLM has to be able to send and
receive messages to invoke the tool based on a format that is tool-specific. In addition to the implementation difficulty
mentioned above, this also introduces an additional point of failure as the LLM may end up attempting erroneous
utilization of the tool APIs and lead to hallucinations.

Context-oriented protocols address the fundamental challenge of how a single LLM-based agent acquires the external
context (e.g. data from databases, information from APIs, or the ability to execute functions) that are necessary to
complete its tasks. They provide a standardized bridge between the agent's reasoning capabilities and the outside world
of tools and resources.

4.2.4.2.2 Model Context Protocol (MCP)

Tackling these challenges, MCP aims to simplify how LLMs access external tools, databases, and services by serving as
an intermediate layer between an LLM and the tools. It is often described as a "USB-C port for AI" providing a single,
standardized way to plug models into the vast ecosystem of external context they need to perform complex tasks. The
protocol was created to address the significant challenge of fragmentation, where every AI model and external tool
required a custom, brittle integration, hindering scalability and creating isolated "digital silos" [i.20].

The MCP has been designed around a client-server architecture inspired by the Language Server Protocol (LSP), which
standardized how development tools integrate programming language support. The protocol uses JSON-RPC 2.0 for its
messaging format. The MCP protocol implements a bidirectional connection between an MCP client and a MCP server.
The MCP server exposes to the MCP client three types of capabilities, namely, tools, prompts, and resources.
Resources are contextual data such as files or database records, that are used by the AI model or presented to the user.
For instance, an MCP resource can be text, binary, and image file. Tools are executable functions that the AI model
calls to perform actions, such as sending a message, running a database query, or interacting with an API. Prompts are
templated messages or that guide the user or the AI model through a specific process.

An MCP client can query the resources of an MCP server by sending a 'resources/list' request and after receiving the
necessary information, such as the name of the resource, its description, and URI, it sends a 'resources/read' request to
fetch the resource content by specifying its URI. Similarly, MCP servers expose tools in a similar and standardized
manner to an MCP client. A tool has a name that serves as a unique identifier for the tool, a description for the client to
understand its main purpose, and an inputSchema (JSON) defining the expected parameters for the tool. Similarly, a
client can discover the available tools by sending a 'tools/list' request to the MCP server and can call them using the
'tools/call' endpoint. MCP supports dynamic tool life-cycle management, where new tools can be added or removed
during runtime. Moreover, MCP allows servers to notify clients about changes in its tools or resources
(e.g. 'notifications/resources/list_changed').

The MCP protocol defines two transport mechanisms for communication between an MCP client and an MCP server:
standard input and output (stdio) and streamable HTTP. The stdio transport can be used when the client and server are
located on the same host. In such a setting, the client launches the MCP as a subprocess. The server reads from its
standard input to receive MCP messages from the client and responds by writing to its standard output. The streamable
HTTP transport is useful for the typical deployment scenario when the client and server are not co-located, i.e. when the
MCP server is running remotely. It is also possible to use streamable HTTP transport when the client and server are
running on the same host.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)16

The streamable HTTP transport supports stateless connections, which is particularly useful for microservices
architecture and the server offers simple tools to be called by the clients. When used, the MCP server provides a single
HTTP endpoint path, e.g. "https://<server-ip-addr>/mcp", to which the clients send their HTTP POST and HTTP GET
messages in JSON-RPC format.

An example client-to-server JSON-RPC message body to invoke a server tool that adds two integers 'a'=22 and 'b'=11
looks as follows:

 {"jsonrpc": "2.0", "id":1, "method": "tools/call", "params":{"name": "add", "arguments":{"a": 22, "b": 11}}}

It is important to mention that MCP mandates the client to include certain information in the HTTP header, more
specifically, in the Accept and Content-Type fields, which is not shown in the example above for presentation purposes.
The reader can refer to the official MCP website for more information. It is important to mention that in contrast to
Server-Sent Events (SSE), streamable HTTP utilizes a single HTTP endpoint for both requests and responses, i.e.
bi-directional communication, thus, eliminating the necessity to manage separate endpoints for requests and responses.

The protocol's open nature and its direct solution to a widespread industry problem led to rapid and broad adoption.
This industry backing, combined with a rich open-source ecosystem, has solidified MCP's position as the de facto
standard for agent-to-tool communication. This widespread support has enabled a variety of powerful use cases, from
internal enterprise assistants that access proprietary Customer Relationship Management (CRM) data to academic tools
that perform semantic searches across research libraries.

4.2.4.3 Inter-Agent Protocols

4.2.4.3.1 Introduction

While MCP excels at connecting a single agent to its tools, inter-agent protocols address the next level of complexity:
enabling multiple, independent agents to communicate, coordinate, and collaborate to solve problems that are beyond
the scope of any single agent.

4.2.4.3.2 The Agent-to-Agent (A2A) Protocol

The Agent-to-Agent (A2A) protocol is an open standard designed to enable seamless communication and collaboration
between AI agents, regardless of the platform, framework, or company that created them. The project is currently
hosted by the Linux Foundation to ensure neutral, community-driven governance. The protocol's core mission is to
break down the "digital silos" that isolate agentic systems, allowing them to collaborate as peers rather than just
interacting as tools [i.10]. Put another way, A2A is a protocol developed that aims to standardize how multiple AI
agents collaborate, regardless of the underlying multi-agent framework or vendor.

A2A is strategically positioned to complement, not replace, other key standards like the Model Context Protocol
(MCP). While MCP excels at connecting a single agent to its external tools and data sources, A2A focuses on the next
layer of interaction: enabling multiple, independent agents to delegate tasks and work together on complex problems.
The recommended architectural pattern is to use MCP for an agent's internal connections to resources and A2A for its
external communications with other agents [i.10].

The A2A protocol builds on established and widely adopted web standards to ensure easy integration into existing IT
stacks. It uses JSON-RPC 2.0 over HTTP(S) for standardized communication, with support for real-time updates and
streaming via Server-Sent Events (SSE).

A defining principle of A2A is opacity. Agents are allowed to collaborate without needing to expose their internal
memory, proprietary logic, or the specific tools they use. This enhances security, protects intellectual property, and
simplifies interactions, as agents do not need to understand each other's internal workings to collaborate effectively. The
protocol is also modality-agnostic, designed to support rich data exchange including text, audio, video, and structured
JSON data.A2A considers three actors of a multi-agent system:

i) a user, which is either a human or a service that is utilizing a multi-agent system to accomplish certain tasks;

ii) a client, which is a service, an agent, or an application that is requesting an action from a remote agent on
behalf of the user;

iii) a remote agent that is acting as the A2A server.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)17

A2A protocol supports both pull-based and push-based communication. This means, A2A not only supports the
standard request-response patterns or polling for updates, but also streaming updates through SSE and push
notifications are also supported. An example of pull-based communication is when a client polls a remote agent (server)
to retrieve the latest status of a long-running task or to initiate a new task for the remote agent to perform. Alternatively,
in the example of long-running tasks, a remote agent can push notifications to the client, e.g. HTTP-based SSE.

For authentication and authorization, A2A does not transmit identity information as a part of the A2A payload
(i.e. in-band), but it obtains materials (such as tokens) out-of-band and transmits materials in HTTP headers. The only
information for authentication that is transmitted in the A2A payload is the authentication requirements, which can be
sent by an A2A server. Every client request is authenticated by a remote agent to prevent unauthorized access and is
responded to by standard HTTP response codes.

A2A introduces the concept of an AgentCard for agent discovery purposes. An AgentCard is published by remote
agents and contains information about the AI agents such as their capabilities, skills, and authentication requirements.
An example format for the AgentCard is JSON. The key fields of AgentCard are listed in Table 4.2.4.3.2-1.

Table 4.2.4.3.2-1: Key fields of an AgentCard

Field Name Type Required Description
name string Yes Human-readable name of the agent.

description string Yes A human-readable description of the agent. Used to
assist users and other agents in understanding what the
agent is able to do.

url string Yes A URL where the agent is hosted at.
provider AgentProvider No Information about the agent's provider.
iconUrl string No A URL to an icon for the agent.
version string Yes The version string for the agent or its A2A

implementation.
documentationUrl string No URL to human-readable documentation for the agent.

capabilities AgentCapabilities Yes Specifies optional A2A protocol features supported
(e.g. streaming).

securitySchemes { [scheme: string]:
SecurityScheme }

No Security scheme details used for authenticating with this
agent.

security { [scheme: string]:
string[]; }[]

No Security requirements for contacting the agent.

defaultInputModes string[] Yes Input Media Types accepted by the agent.
defaultOutputModes string[] Yes Output Media Types produced by the agent.

skills AgentSkill[] Yes Array of skills. Mandatory to have at least one if the
agent performs actions.

supportsAuthenticated
ExtendedCard

boolean No Indicates support for retrieving a more detailed Agent
Card via an authenticated endpoint.

Among these, the provider field of type AgentProvider includes the name of organization and the URL for the
provider's website. The skills field, which is an array of AgentSkills, describes a specific capability, function, or area of
expertise the agent performs or addresses. An AgentSkill object further includes the following fields listed in
Table 4.2.4.3.2-2.

Table 4.2.4.3.2-2: Key fields of AgentSkill

Field Name Type Required Description
name string Yes Human-readable name of the agent.

id string Yes Unique skill identifier within this agent.
name string Yes Human-readable name of the skill.

description string Yes Detailed skill description.
tags string[] Yes Keywords and/or categories for discoverability.

examples string[] No Example prompts or use cases demonstrating skill
usage.

inputModes string[] No Media types accepted for this specific skill, overriding
defaults.

outputModes string[] No Media types produced by this specific skill, overriding
defaults.

More details on A2A protocol specification and key protocol data objects are summarized in Annex A.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)18

4.2.4.3.3 Agent Communication Protocol

The Agent Communication Protocol (ACP) is an open standard for inter-agent communication and governed by the
Linux Foundation to ensure vendor-neutral, community-driven development [i.15]. Its primary goal is to solve the
challenge of a fragmented AI ecosystem, where agents are often built in isolated "silos" using incompatible frameworks.
ACP provides a universal language that allows these disparate agents to discover, understand, and collaborate with one
another, aiming to become a foundational "HTTP for AI agents.

ACP's design is intentionally simple, flexible, and aligned with modern web development practices to lower the barrier
to adoption. Its architecture is built on three core principles:

1) REST-based Communication: Unlike protocols that use JSON-RPC, ACP is explicitly RESTful. It uses
standard HTTP conventions, verbs, and status codes for communication. This design choice makes it easy to
integrate into existing production environments and allows developers to interact with agents using common
tools like curl or Postman without needing specialized libraries or SDKs.

2) Async-First Design: The protocol is optimized for asynchronous communication, which is ideal for the
long-running, complex tasks common in agentic workflows. While async is the default, synchronous requests
are also fully supported for simpler, immediate interactions.

3) Developer Ergonomics: ACP prioritizes a straightforward developer experience. While official SDKs for
Python and TypeScript are available for convenience, they are not required for interaction, reflecting the
protocol's lightweight and accessible nature.

ACP uses standard MIME types to identify content, making the protocol inherently extensible. This allows agents to
exchange any form of data - including text, images, audio, video, or custom binary formats - without requiring any
changes to the protocol itself. The protocol is designed to support both stateless interactions and stateful, long-running
sessions. This allows agents to maintain context and history across multiple interactions when needed, which is critical
for complex collaborative tasks.

A key differentiator for ACP is its support for both online and offline agent discovery. Agents are able to be discovered
online via a standard REST endpoint. Uniquely, they also support offline discovery, where an agent's metadata and
capabilities are embedded directly into its distribution package. This allows other agents to discover it even when it is
inactive or running in a scale-to-zero cloud environment.

Table 4.2.4.3.3-1 describes its core protocol objects:

Table 4.2.4.3.3-1: Key Objects of ACP

Object Name Description

Agent A model describing an agent's capabilities, including its name and description. This is used for
discovery without exposing internal implementation detail.

Run Represents a single execution of an agent with specific inputs. A run is either synchronous or
asynchronous and is able to stream intermediate and final outputs.

Message The fundamental structure for communication. A message consists of an ordered sequence of
MessagePart objects to form a complete, multi-modal exchange.

MessagePart An individual unit of content within a Message, such as text, an image, or structured JSON data.

Await A mechanism that allows an agent to pause its execution to request additional information or input
from the client before resuming its task.

Session Enables agents to maintain state and conversation history across multiple interactions using a
unique session identifier.

4.2.4.3.4 Agent Network Protocol (ANP)

The Agent Network Protocol (ANP) is an open-source communication protocol with the ambitious vision of becoming
the "HTTP of the agent internet era." Developed by an open-source team from China, ANP aims to create a truly open,
secure, and efficient collaboration network for billions of intelligent agents. It seeks to fundamentally reshape the digital
landscape from a "platform-centric" model, where data is locked in silos, to a "protocol-centric" one where every agent
discovers, connects, and interacts with any other node without barriers.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)19

ANP's design is a radical departure from protocols that build upon existing client-server web infrastructure [i.10]. It
argues that for a true "Internet of Agents" to exist, the foundational layers of identity and negotiation needs to be
re-examined. To achieve this, ANP is built on a distinctive three-layer architecture that systematically addresses these
core challenges:

1) Identity and Secure Communication Layer. This is the foundational layer of ANP and its most critical
differentiator. Instead of relying on centralized or federated identity systems like OAuth, this layer uses the
W3C® Decentralized Identifiers (DIDs) specification. This allows any two agents, regardless of their platform
or creator, to establish a secure, end-to-end encrypted communication channel and verify each other's identity
without needing a central authority. This decentralized, peer-to-peer trust model is the cornerstone of ANP's
vision for an open and secure agent web.

2) Meta-Protocol Layer. This innovative layer addresses the challenge of protocol negotiation. It defines a
standard for how agents dynamically and automatically negotiate which application-layer protocols they will
use for a specific interaction. This allows the agent network to be self-organizing and adaptable; new, more
efficient communication methods need to be adopted by agents over time without requiring a rigid, top-down
update to the entire protocol standard.

3) Application Protocol Layer. This top layer provides the mechanisms for agents to describe and discover
capabilities. It is built on semantic web specifications and includes two key components:

a) Agent Description Protocol (ADP): A standardized way for agents to document their own capabilities
and interfaces in a structured, machine-readable format.

b) Agent Discovery Protocol: Specifies how agents find each other and establish connections, effectively
acting as a "search engine protocol" for the agent internet.

ANP's unique architecture provides four key features that distinguish it from other agent communication protocols:

1) Decentralized Peer-to-Peer (P2P) Model: ANP is fundamentally agent-centric and P2P, allowing any agent to
directly connect with any other agent as an equal.

2) Identity-First Security: By building on a foundation of decentralized identity, ANP prioritizes verifiable trust
and security from the ground up.

3) AI-Native and Efficient: The protocol is designed for AI-native interaction, allowing agents to communicate
via APIs and protocols rather than inefficiently simulating human interaction with web interfaces.

4) Extensibility and Interoperability: The layered structure is modular, allowing each layer to be upgraded
independently. Through its meta-protocol, it theoretically bridges to existing protocols, providing the services
to implement the necessary identity standards.

4.2.4.4 Comparison of Inter-Agent Protocols

Table 4.2.4.4-1 compares A2A, ACP, and ANP.

Table 4.2.4.4-1: Comparison of A2A, ACP, and ANP

Feature A2A ACP ANP

Primary Goal
Standardize inter-agent

collaboration and task delegation,
especially for enterprise use.

Provide a simple, universal, and
developer-friendly protocol for

inter-agent communication.

Build a foundational,
decentralized, and secure P2P
network for a future "Internet of

Agents."
Architectural Style JSON-RPC 2.0 over HTTP(S). RESTful HTTP. 3-layer decentralized P2P.

Discovery
Mechanism

AgentCard JSON file at a
well-known endpoint.

Online (REST endpoint) and
Offline (embedded metadata).

Agent Discovery Protocol based
on semantic descriptions.

Security Model
OpenAPI authentication schemes

(out-of-band tokens).
Standard HTTP authentication

methods.
W3C® Decentralized Identifiers

(DIDs).

Key Differentiator
Task-oriented lifecycle; agent

opacity; enterprise-grade security
and features.

Lightweight REST-based
simplicity; no SDK required;

unique offline discovery feature.

Decentralized identity-first model;
meta-protocol for dynamic

negotiation; ambitious P2P vision.
Session Linux Foundation Linux Foundation Chinese Open Source team

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)20

The ENI initiative aims to define a cognitive network management architecture that uses AI to automate and optimize
network operations. This system is based on a hierarchical, closed-loop "Observe-Orient-Decide-Act" (OODA) model
composed of modular functional blocks. Given these requirements, the Agent-to-Agent (A2A) protocol is the best fit for
the ETSI ENI architecture. Brief rationale is:

1) ENI is fundamentally an enterprise-grade system for telecom operators. A2A is explicitly designed for such
environments, with a focus on enterprise-grade security and long-running, stateful tasks. Its use of established
standards like JSON-RPC and OpenAPI security schemes provides a stable and trusted foundation.

2) The ENI System is responsible for executing complex, state-of-the-art network management operations. A2A's
Task object, with its well-defined lifecycle, is perfectly suited for managing and tracking these operations
(e.g. reconfiguring a network slice, predicting a fault, or optimizing resources). This provides a more
structured and robust model for the ENI control loop than ACP's more general-purpose approach.

3) The telecom landscape is inherently multi-vendor. A2A's principle of opacity is a critical advantage here. It
allows functional blocks from different vendors to collaborate and delegate tasks without having to expose
their proprietary internal logic or tools. This directly supports the modular, functional block design of the ENI
architecture and aligns with key software design principles like loose coupling.

4) The AgentCard provides a clear and effective mechanism for the various functional blocks within the ENI
system to discover each other and understand their specific capabilities, which is essential for a complex,
modular architecture.

4.3 The Role of MCP and A2A in an ENI System
MCP and A2A are designed to be complementary, not competitive.

MCP serves as the agent-to-tool communication layer. Its primary function is to provide a standardized way for a single
functional block (acting as an agent) within the ENI architecture, defined in [i.19], to connect to and use its necessary
external resources, data, and APIs. For example:

• A Data Ingestion block would use MCP to connect to various network data sources, such as telemetry streams,
fault logs, and performance metric databases.

• A Cognition Framework block would use MCP to access the pre-processed data stores and to call specific
machine learning models or analytics functions as tools.

• An Output Generation block would use MCP to connect to the APIs of network management and orchestration
systems to execute a configuration change.

In essence, MCP handles the "vertical" integration, connecting an agent to the specific tools it needs to perform its
individual function.

A2A serves as the agent-to-agent communication layer. Its role is to enable the different, independent functional blocks
within the ENI architecture to collaborate, delegate tasks, and communicate with each other as peers. A2A provides the
"horizontal" integration that connects the modular components of the ENI system into a cohesive whole. For example:

• When the Cognition Framework block predicts an impending network fault, it would use A2A to send a Task
to the Core Business Logic block to decide on a course of action.

• The Core Business Logic block would then use A2A to delegate sub-tasks to other specialized blocks, such as
instructing a Network Slice Management block to reallocate resources.

• This communication is managed through a structured, stateful process, which is ideal for the complex,
multi-step workflows of the ENI control loop.

By using both protocols, the ETSI ENI architecture benefits from a clear and robust separation of concerns:

1) MCP standardizes how each individual agent accesses its tools.

2) A2A standardizes how all the agents collaborate with each other.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)21

5 Multi-Agents System in Core Network

5.1 Benefits of Multi-Agent Systems

5.1.1 Energy Consumption and Inference Time

A single agent responsible for all ENI tasks - from real-time fault detection to long-term capacity planning and service
orchestration - would need to be a massive, highly generalized model. According to the scaling laws of AI [i.6], such a
model would require an enormous number of parameters to perform adequately across this diverse range of tasks. This
results in consistently high inference latency, massive computational resource requirements, and significant energy
consumption for every decision, regardless of its complexity. For instance, in the context of an AI agent-based mobile
core network, these tasks include service orchestration, resource scheduling, and tool invocation.

In contrast, a MAS employs multiple agents with distinct roles that collaborate to achieve common goals. Often, this
takes the form of a federation of smaller, highly specialized agents. While there is communication overhead between
agents, this is often outweighed by the immense efficiency gains of using optimized models for specific tasks. The ENI
system uses a small, rapid agent for real-time anomaly detection at the network edge and a larger, more comprehensive
model for non-real-time trend analysis in a central cloud. This targeted allocation of computational resources is far more
efficient than running a single, oversized model for every task. This also reduces inference latency, resource usage, and
energy consumption.

5.1.2 Modularity and Extensibility

Single-agent systems, which employ a single generalized AI agent for all tasks, have certain limitations. For instance, a
single-agent system sometimes performs poorly when it comes to deciding which tool to use to perform the task at hand
if there are too many tools at the agent's disposal. Another prominent example is the rapid growth of context that the
agent needs to keep track of. In addition, since the AI agent is utilized for all tasks that it is expected to solve, it lacks
the specialization for a variety of tasks from different domains leading to deterioration of inference accuracy and task
completion rate. A user interacting with one agent might require the agent to perform a task that is beyond its
capabilities, requiring the agent to interact with a different agent that has the appropriate capabilities.

A MAS architecture embodies modern software design principles like loose coupling and high cohesion [i.13]. Each
agent is a self-contained functional block, analogous to a microservice. This makes the entire ENI system easier to
develop, test, and maintain. More importantly, it allows for true plug-and-play extensibility. If a new network
technology is introduced, a new specialized agent is able to be developed and integrated without destabilizing the entire
system. This is crucial for the long-term evolution of a network management platform.

MASs allow conversations between different specialized agents(i.e. a multi-agent chat, where each agent is focused on
one or a set of specific sub-task(s)). By designing agents for specific tasks, multi-agent systems leverage the unique
strengths of each agent, improving overall decision quality and system performance. This approach has been shown to
improve the overall performance of the system, explained through the fact that LLMs have demonstrated the ability to
solve complex tasks, when these are broken into simpler sub-tasks [i.7]. Furthermore, such a highly modular
architecture renders the life-cycle management of AI agents easier, as it simplifies the process of development, testing
and maintenance of such systems. Moreover, it is straightforward to introduce new agents into the system in a
Plug-and-Play (PnP) manner, when the system is expected to tackle novel complex problems [i.8]. Similarly, those
agents whose service is not needed anymore is typically removed from the system during runtime. These render MASs
a significantly flexible and extensible system compared to single-agent systems.

5.1.3 Robustness

Single-agent systems face significant decision-making risks due to potential knowledge gaps and cognitive biases,
which sometimes leads to incorrect decisions, especially in situations, when the AI agent is requested to solve an
unknown and novel task. Furthermore, these systems have poor fault tolerance; if the agent is compromised or fails,
service continuity is severely impacted.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)22

In contrast, MASs effectively address these challenges. On one hand, decision errors made by an agent are sometimes
mitigated or corrected through collaboration mechanisms among multiple agents [i.9]. These mechanisms include multi-
agent debate, closed-loop optimization, and reflection, which are effective mechanisms to allow agents to cross-validate
and refine their decisions. These render the system more adaptive and improve the overall performance at task
completion by reducing the likelihood of persistent errors.

On the other hand, MASs offer enhanced fault tolerance. In case of failures of an agent, the system is able to continue to
operate by dynamically reassigning roles so that the remaining agents take over the tasks that the failed agent is
expected to do. This redundancy and adaptability make MASs more robust in decision-making and more resilient to
failures compared to single-agent systems.

The robustness of a MAS goes beyond simple redundancy. It enables cognitive resilience. In a single-agent system, a
failure or a cognitive bias in the model leads to a total system failure. In a MAS, the failure of one agent is not
catastrophic. For example, if a primary "Fault Prediction Agent" fails, the system dynamically reroutes its data to a
secondary instance or even a less-specialized "Anomaly Detection Agent" to provide degraded but continuous service.
Furthermore, a MAS is able to implement cognitive cross-validation. An agent's decision is optionally debated or
verified by other agents, mitigating the risk of a single point of cognitive failure and reducing the impact of
hallucinations or biases in any one model.

5.1.4 Distributed Decision-making

Single-agent systems are inherently centralized, with all decisions made by a single entity. This centralized approach
makes it challenging to handle hierarchical decisions across different tasks, as it often requires a broad understanding of
the entire system and its complexities.

In contrast, multi-agent systems offer a flexible and distributed decision-making framework. They deploy agents with
diverse roles in different locations to support both local, real-time decision-making and global, non-real-time decision-
making. For instance, agents responsible for scheduling network resources are typically strategically placed near the
functions running relevant services. This proximity allows them to make prompt decisions in response to changes in
function status or network conditions, ensuring adaptability and efficiency. As the system grows or evolves, multi-agent
architectures are able to easily scale by adding new agents or reconfiguring the existing ones, thereby enhancing
distributed decision-making capabilities.

However, the true power of MASs is enabling distributed cognition. For instance, the ENI System, specified in [i.19], is
composed of various functional blocks that need to work in concert. A MAS provides the natural framework for this.
For example, a "Performance Monitoring Agent" that detects a Service-Level Agreement (SLA) violation does not act
in isolation. It initiates a collaborative workflow:

1) It communicates its findings to a "Fault Correlation Agent" to identify the root cause.

2) Together, they consult a "Network Knowledge Graph Agent" to understand dependencies.

3) Once a hypothesis is formed, they delegate the remediation task to a "Network Slice Management Agent" to
execute the necessary changes.

This collaborative process, where specialized agents share evidence and delegate tasks, is the essence of a cognitive
system in action.

MASs also prevent cognitive overload. For example, a single agent would be overwhelmed by the data torrent during a
major network event (e.g. a fibre cut or a traffic surge for a live sporting event). A MAS architecture allows a "Manager
Agent" to dynamically spawn multiple instances of a "Log Analysis Agent" to process the data in parallel, ensuring that
insights are generated in a timely manner.

A final, but very important, point is that MASs reflect the cognitive architecture of an ENI System. A MAS is the only
architectural paradigm that truly enables the system to be cognitive, rather than just automated. For example, an ENI
System is based on an enhanced OODA (Observe-Orient-Decide-Act) closed control loop. A single-agent system is a
cognitive black box. It observes and acts, but the "orient" and "decide" phases are opaque processes within a single
model. In contrast, a MAS externalizes this cognitive process. Different agents represent different stages of cognition:
some agents observe (data ingestion), others orient (data processing, correlation, prediction), and others decide and act
(policy management, output generation). The communication and collaboration between these agents is the cognitive
workflow. This makes the system more transparent, auditable, and aligned with the foundational principles of ENI.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)23

5.2 Design Principles
The adoption of a Multi-Agent System (MAS) architecture is fundamental to realizing the vision of ENI. While a
single, monolithic AI system presents a seemingly simpler approach, a MAS is uniquely suited to deliver the cognitive,
resilient, and scalable capabilities that network automation demands. The design of a MAS for a mobile core network
that is aligned with the ENI System architecture [i.19] is guided by a set of core principles to ensure that it is
autonomous, resilient, scalable, transparent, and trustworthy. These principles include:

• Hierarchical Autonomy and Federated Control Loops. A mobile core network requires both high-level
stability and rapid, localized agility. A flat agent architecture very likely results in chaotic and difficult
behaviour to govern, while a single, monolithic control system tends to be unresponsive and brittle. The ENI
architecture's model of nested inner and outer control loops provides the solution. This directly translates into a
principle of hierarchical autonomy, where high-level "Orchestrator Agents" manage long-term goals and
delegate tasks to teams of specialized agents that operate in faster, more localized control loops.

• Cognition and Continuous Learning. The system is required to be truly cognitive, not merely automated.
This requires agents to possess self-reflection and self-optimization capabilities, enabling them to monitor their
performance, learn from interactions, and continuously improve their behaviour over time. This principle
mandates the inclusion of explicit feedback loops and integration with MLOps pipelines to ensure the system
adapts to the complex, evolving network environment.

• Comprehensive Observability and Explainability. For operators to trust an autonomous system, they need
to be able to understand its behaviour and the reasoning behind its decisions. This requires:

- Observability: Implementing end-to-end tracing to monitor the flow of tasks across multiple agents.

- Explainability [i.19]: Cognition Agents are required to support decisions that have associated
explanations for how the decision was arrived at (e.g. identifying the key factors in a prediction). This is
critical for debugging and building operator confidence, as well as regulatory compliance.

• High Cohesion and Loose Coupling [i.13]. In a system responsible for a nation's communication
infrastructure, failures are required to be isolated, and components need to be independently scalable and
upgradeable. High cohesion dictates that each agent has a single, well-defined responsibility that is logically
self-contained (e.g. a "Fault Prediction Agent"). Loose Coupling ensures that agents interact only through
standardized, asynchronous interfaces, preventing fragile dependencies and allowing components to be
replaced or updated without causing a system-wide ripple effect.

• Structured and Stateful Collaboration. The core function of the MAS is to execute complex network
processes. This necessitates more than simple communication; it demands structured, goal-oriented
collaboration, including:

- Workflow-Driven Collaboration: The architecture is required to support explicit and dynamic workflows,
allowing tasks to be allocated, negotiated, and coordinated in a way that adapts to changing goals and
contexts.

- Stateful, Long-Running Task Management: Core network operations (e.g. provisioning a service, healing
a fault) are inherently long-running and stateful. The communication backbone is required to natively
support the management of these complex tasks through their entire lifecycle, a key feature of protocols
like A2A.

- Standardized Interfaces: To enable this collaboration, the system is required to implement flexible and
reliable interfaces for communication between agents, using standardized protocols to facilitate efficient
information exchange. In particular, a MAS is required to be accessible only using ENI External
Interfaces [i.19].

• Agent Opacity and Explicit Discovery. An agent from one vendor needs to be able to collaborate with an
agent from another without revealing its proprietary logic, internal memory structure, or specific tool
implementations. This concept of opacity is crucial for both intellectual property protection and system
modularity. It corresponds to information hiding, which is a foundational aspect of encapsulation [i.13]. To
enable collaboration between these "black box" agents, their capabilities need to be explicitly advertised
through a standardized discovery mechanism, such as the A2A's AgentCard.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)24

• Protocol Agnosticism using a Semantic Abstraction Layer. While telecommunications standards evolve
over years and decades, AI and agent standards evolve over months. Tightly coupling the core logic of a
network management system to a specific, volatile protocol is a significant architectural risk. Adhering to the
Dependency Inversion Principle [i.13], the MAS is required to isolate its core logic from the underlying
communication technologies. This is achieved by building agents against a stable, internal semantic model and
using Protocol Adapters to translate to and from on-the-wire formats.

• Data-Centric Architecture. The intelligence of the MAS is dependent on the quality and accessibility of its
data. The data pipeline needs to be treated as a first-class architectural component. This involves implementing
a canonical data model based on ENI standards [i.14], robust data governance, and efficient data processing
mechanisms to ensure that agents are operating on high-quality, reliable information.

5.3 Example AI Agents for the Core Network
In addition to the four AI agents presented in [i.12] (i.e. namely, planning agent, assemble agent, connection agent, and
execution agent), the following contains some other example AI agents to be utilized in a next-generation core network.
These include:

• Charging Agent: This AI agent is responsible for calculating the costs associated with various services
provided by the AI core. It ensures accurate and transparent billing based on service usage.

• Trustworthiness Agent: This agent monitors the actions and outputs of other core network agents to verify their
compliance with relevant regulations, such as the EU AI Act. Its primary goal is to prevent potential
violations, which in turn could threaten the integrity or operation of the overall system or compromise
subscriber privacy or security.

• Critic Agent: The Critic Agent evaluates the joint policies and contributions of each agent involved in a
collaborative task. It provides rewards to individual agents based on their performance throughout task
execution, thereby facilitating the continuous improvement and evolution of the multi-agent system.

6 Inter-Agent Communication

6.1 Agent-Based Interface

6.1.1 Motivation

As described in clause 4.1.2, service-based interfaces are imperative interfaces that expose a set of standardized services
provided by network functions. They require structured and pre-defined input and generate pre-defined output.
However, AI Agents do not mandate such a rigid interface. The interaction between multiple AI agents is much more
flexible and is typically in the form of intents. These sometimes are provided in different modalities, such as text,
image, and audio.

NOTE: Text will provide the most robust intent. This is because it is validated using a traditional (i.e. non-AI)
parser if the input is structured as described in clause 6.9 of [i.19]. However, there is no equivalent
mechanism for other modalities, such as image, audio, and video.

Thanks to the strong inference and reasoning capability of AI Agents, AI agents are able to understand the task, divide
it into sub-tasks if necessary, and through the available tools, they are able to perform the necessary actions to complete
the task autonomously. As an example, they are able to retrieve the required knowledge through a web search tool, or
interact with other agents to let the other agents solve a sub-task and use the returned result to complete the remaining
sub-tasks. As a result, these aspects call for new interfaces with features different than in the (imperative) service-based
architecture to enable inter-agent communication in an agent-based mobile core network.

However, it is important to mention that the output generated by AI agents that are based on LLMs is non-deterministic.
In particular, when two inputs have the same semantics but vary in the exact expression or they are identical but the
context is different, the output of an AI agent is typically different due to the inherent statistical prediction mechanism
of the LLM.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)25

6.1.2 Definition and Characteristics

As it has been showcased in [i.12], a multi-agent-based core network architecture accommodates multiple AI agents
that flexibly customize network services. To enable a multi-agent core network architecture that is able to flexibly
customize network services, as shown in [i.12], agents require a well-defined way to communicate. Therefore, an
'Agent-Based Interface' (ABI) is defined as the shared boundary across which agents exchange information. An ABI
specifies the allowed interactions by exposing methods, each with a corresponding input and output schema, without
revealing internal implementations.

NOTE 1: This is standard practice in modern API frameworks. The input schema serves as a request contract, and
the output schema serves as a response contract.

As depicted in Figure 6.1.2-1, there are mainly five types of interfaces for an agent-based core network architecture.
These ABIs are characterized by their purpose and endpoints:

• Agent-to-User: the interface between the user and a network agent (e.g. it is used for users to initiate a service
request or update an existing service).

NOTE 2: As this interface indicates an interaction with domain external to the mobile network, security
requirements are expected to be different and more stringent than for a purely internal one. The present
document does not discuss security aspects in detail, which are to be studied in a further document.

• Agent-to-ARF the interface between a network agent and an agent repository ("Agent Repository Function"
(ARF) in [i.12]), which is responsible for maintaining the information of agents, this interface can be used for
network agents' registration, update, de-registration and discovery.

• Agent-to-Agent: the interface among network agents, which is used for interacting task information when
they work collaboratively.

• Agent-to-Resource: the interface between a network agent and resources, such as tools and data sources. An
interface of this type is used for a network agent to invoke tools or retrieve data, e.g. network data, knowledge
base.

• Agent-to-Infrastructure: the interface between a network agent and the underlying infrastructure, including
RAN, computing platform, etc. It can be used for a network agent to configure the infrastructure.

Figure 6.1.2-1: Five interface types for multi-agent-based mobile core network

NOTE 3: The interface types listed above do not imply any implementation choices. For example, the
agent-to-agent interface is not necessarily a point-to-point interface. For example, it is possible to use the
semantic bus from [i.19], which supports indirect communication with routing capabilities.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)26

6.1.3 Interface Design Principles

The future core network faces more and diverse usage scenarios. This requires interfaces of the multi-agent- based core
network to be flexible enough to adapt to each new scenario without having to be re-design. It also enables consumers
to learn how to use the interface without needing to be programmed explicitly. In addition, operations in the core
network usually have different security or delay requirements. For example, the access to the network operator data has
higher security requirements than that to general knowledge acquisition. Hence, they are usually required to be designed
independently to avoid coupling. Network agents are served as opaque entities without needing to expose their internal
models, tools, memory, and other critical resources.

NOTE: In the following, a consumer is any component that uses or calls that interface to get something done. A
provider is any component that offers a service or capability through an interface.

Thus, the design of interfaces for a multi-agent-based core network follows the below principles:

• Adaptability: Interfaces need to be designed to accommodate new and unforeseen requirements without
necessitating a redesign. This in turn requires:

- Declarative Interaction: Interfaces are required to be declarative, allowing a consumer to specify the
desired outcome (what) rather than the explicit sequence of steps (how). This abstracts away
implementation complexity and permits the provider agent to evolve its internal logic to meet the goal,
enhancing flexibility.

- Semi-structured Schemas: Interfaces should use semi-structured data formats (e.g. JSON, XML) for
message payloads. This allows for the evolution of the data model, such as the addition of new optional
fields, without breaking compatibility for existing consumers.

• Learnability: Interfaces are required to support programmatic discovery to enable dynamic and autonomous
collaboration. A consumer agent is able to programmatically query a provider agent (or a central agent
repository) to determine its capabilities, available methods, and the required input/output schemas for each
method. This principle is fundamental to creating a flexible multi-agent system where agents are able to find
and utilize new tools and services at runtime.

• Encapsulation and Transparency: This principle establishes a balance between abstraction and
accountability through the following sub-principles:

- Encapsulation: An agent is required to hide its internal implementation details, such as its specific AI
models, internal memory structure, and the logic of its tools. This creates a stable, well-defined interface
that separates the public contract from the private implementation, allowing internal components to
evolve without affecting consumers.

- Transparency: While internal logic is encapsulated, the agent is required to not be a completely opaque
"black box." It needs to provide mechanisms for explainability and auditability to ensure trust,
accountability, and regulatory compliance. For any significant action, the system is required to provide a
rationale, allowing operators to understand why a decision was made. This is critical for upcoming
regulatory compliance (e.g. the EU's AI Act), and is also critical for debugging, governance, and building
operator confidence.

• Simplicity: Interfaces should be built upon existing, well-understood standards (e.g. HTTP, JSON-RPC 2.0,
Server-Sent Events) wherever possible. This promotes interoperability, reduces integration complexity for
developers, and allows the system to leverage the mature ecosystem of tools, libraries, and security practices
associated with those standards.

6.2 Key Methods

6.2.1 Agent-to-User

By leveraging advanced agentic AI technology, the next-generation core network is expected to be a service innovation
platform that can flexibly combine various network services, including AI, sensing, computing, communication to
provide new services for users (e.g. UEs, the 3rd party application and vertical industry tenants). Thus, the
Agent-to-User interface needs to support the users to request a new service, query the status of an existing service,
update or delete it. Accordingly, the network agent returns the service status or results to users.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)27

For different types of users, the interface may take various forms. When a user is a UE, it will communicate with the
agents in the CN through a Non-Access Stratum (NAS) interface. This renders the Agent-to-User interface a type of
new NAS interface. However, when a user is a 3rd party application or a vertical industry customer, it will request a
service through an API exposed by the CN. In this case, the Agent-to-User interface is a type of new API.

6.2.2 Agent-to-ARF

6.2.2.1 Agent Registration, De-Registration and Update

As described in [i.12], one of the promising directions for future mobile core network architecture is to design agent
functionality as a multi-agent system, where the mobile network comprises multiple AI agents with heterogeneous
knowledge and skills. For instance, while one of the core network agents is responsible for planning tasks, another one
is responsible for deploying end-to-end slices to deliver the requested service. This calls for a framework to allow
different AI agent instances to register and de-register themselves and their capabilities with a centralized entity such
that other AI agents in the network are able to detect their existence and identify the right agent to interact.

The NRF serves this purpose for network function registration and de-registration in a service-based architecture. The
present document recommends the creation of an Agent Repository Function (ARF) with the functionalities described
for maintaining agent information in an AI agent-based mobile network. When a new AI agent instance wants to
register its profile containing the essential information about the agent, the ARF is the entity that it communicates with.
Similarly, when an already registered agent needs to de-register from the mobile network (e.g. for operational reasons,
such as energy saving), the ARF is again used to perform a de-registration procedure so that other agents will not
discover or will be notified to stop using it. This is illustrated in Figure 6.2.2.1-1

For an agent registration procedure, some important fields that are to be included in an agent profile are agent ID/name,
agent role/description, agent skill(s), and agent tool information. An example agent profile is provided in
Table 6.2.2.1-1.

Table 6.2.2.1-1: Example information contained in an agent profile used when registering an AI Agent

Agent Profile
Agent Name Planning Agent
ID Unique identifier

Agent Role / Description Understand the user input in natural language, decompose the
intent into multiple executable sub-tasks

Agent Skill Task graph generation
Agent Tool Information Web search, weather API, maps API
Endpoint URI(s) Endpoint address(es) of the agent
API Version API Version (e.g. semantic versioning can be used as in [i.22])
Auth scheme Supported authentication scheme
Provider Information about the agent's provider

PLMN ID
Identifier of Public Land Mobile Network (PLMN) that the agent
resides in

Location Location information of the agent

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)28

Figure 6.2.2.1-1: Example procedure between an AI agent and the agent repository function
for agent registration

6.2.2.2 Agent Discovery and Selection

When an agent wants to interact with other agents to perform tasks collaboratively, it needs to discover other available
AI agents that it can interact with. As described in clause 6.1.2, a logically centralized registry (i.e. the ARF stores and
maintains the agent profiles of all registered agents). Therefore, this makes it a suitable candidate for providing the
necessary information to the requester agent about other available agents upon request.

As it is shown in Figure 6.2.2.2-1, the AI Agent interacts with the ARF by providing information about the target to the
ARF. This information contains a description of the task to be performed. Upon receiving the request, the ARF
performs hybrid discovery, which is a combination of filter-based (as in the NRF) and semantic matching between the
provided description and the description of the agents that have already been registered.

NOTE 1: This differs from NRF discoverability, which is filter-based. Semantic discoverability enables better
matching to agent functionality.

The ARF supports exact/Boolean filters over profile metadata (e.g. agent type/role, capabilities, API version,
tenant/slice, locality/latency domain, security posture, availability state) to produce a candidate set of agents. The ARF
also supports semantic similarity between the task and each candidate's unstructured profile fields (e.g. role/summary,
skills, tool descriptions).

An example of the semantic matching is the identification and the provision of the top-K most matching agent profiles
(e.g. based on agent roles, agent capabilities, etc.) to the requester. There are two proposed modes of operation:

1) computing semantic similarity or semantic relatedness; and

2) computing a weighted average of filters and semantic matching.

NOTE 2: Semantic similarity is a metric that measures the degree to which two linguistic items share similar
meanings through "is-a" relationships (synonymy and hyponymy). It estimates the strength of the
semantic relationship between units of language, concepts, or instances through numerical description
obtained by comparing information supporting their meaning. In contrast, semantic relatedness is a
broader concept that encompasses any linguistic, functional, and/or thematic relation between two terms.
Semantic relatedness reflects the degree of semantic feature overlap between words and encompasses the
full spectrum of conceptual relationships. Formally, semantic relatedness includes all types of lexical and
functional associations between concepts, such as synonymy (similarity using is-a relationships),
antonymy (oppositional relationships), meronymy (part-whole relationships), hyponymy (a "kind of"
relationship where one term denotes a subtype of another), hypernym (the reverse of hyponymy),
co-hyponymy (terms that share the same hypernym but are not synonymous with each other), polysemy
(a single word form has multiple related senses or meanings), functional associations (co-occurrence in
similar contexts), and thematic relationships (belonging to the same semantic field).

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)29

For example, the concepts router and bandwidth are not semantically similar, because router is a type of equipment,
while bandwidth is a measurement. However, they have a high semantic relatedness score because there is a strong
functional association (routers manage bandwidth) and they co-occur frequently in telecom documentation and
troubleshooting.

The operator configures an Agent Selection Policy that determines whether the ARF returns a candidate set for the
caller to choose from (Mode A: Recommend) or performs the final selection (Mode B: Delegate). In Mode A, the ARF
returns the top-K tuples: {agent_id, score, last_seen, ttl_seconds, health/load_hints}, and the caller selects and is
responsible for retries/failover. In Mode B, the ARF returns selected_agent_id plus decision_reason, optional
considered_candidates, and route_cache_ttl_seconds. In both, responses are required to include policy_id, request_id,
and model_version (if semantic ranking used).

If Mode B fails (SELECTION_FAILED), the caller is required to retry with Mode A unless the policy forbids it from
doing so. For both, if there are no candidates, the ARF returns NO_MATCH with missing_requirements.

It is recommended to use semantic relatedness, as it is more precise.

It is further recommended that the score be computed as a weighted average. This is because lexical relationships and
thematic relationships operate through different cognitive mechanisms. This takes the form:

 Srel = wlex + wfunc + wtheme

where Srel is the final computed score and wlex, wfunc and wtheme are the weighted averages of all lexical, functional, and
thematic relationships used. Functional relationships are often underestimated but can be particularly powerful.
Examples include equipment-function relations (e.g. router performs routing and switching), Service Provider
relationships (e.g. Mobile Service provided by Mobile Network Operator), and technology-standard relations
(e.g. Wi-Fi® uses IEEE 802.11 [i.4]).

It is further recommended that the optimal set of weights is provided from training data.

Figure 6.2.2.2-1 illustrates an optional interaction between the ARF and an AI model to perform the semantic matching
jointly. It is important to note that in the depicted example, the ARF is only responsible for discovering a list of
candidate agents matching the task description, while the requester agent is the entity selecting the final target agent out
of this list. An alternative procedure, which is not illustrated in the present document, is when the ARF selects the target
agent based on the description provided in the first query message before sending the agent profile of the selected agent
to the requester agent.

Figure 6.2.2.2-1: Procedure between an AI agent and the ARF
for the discovery and selection of a target agent

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)30

6.2.3 Agent-to-Agent

The multiple AI agents in core network need to interact with each other to achieve a common goal collaboratively.
Similar to A2A, a network agent may require another agent to perform a task. While executing a task, the network agent
may query the state of an ongoing task, request to update, and cancel it. These can be performed via the methods of a
multi-agent protocol such as the A2A protocol.

Agents interact via a task-centric interface that supports initiating a new task, updating or cancelling an existing task,
querying the status of an ongoing task, and an optional event subscription. Each task is addressable by task_id, traceable
via correlation_id, and follows a well-defined lifecycle (such as submitted, working, completed, cancelled, failed as
defined in A2A and shown in Annex A). The Planning Agent decomposes user intent into subtasks and invokes the
Assemble Agent using message/send with an explicit subtask list, constraints, and expected outputs.

[i.12] considers Planning Agent and Assemble Agent in the reference architecture. The Planning Agent is responsible for
decomposing the user intent into multiple sub-tasks and the Assemble Agent is responsible for selecting proper functions
for each sub-task. After task decomposition step, the Planning Agent requests the Assemble Agent to perform the
function selection task by using the A2A protocol. Figure 6.2.3-1 shows the example request sent by the Planning
Agent.

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "message/send",
 "params": {
 "message":{
 "role": "agent",
 "kind": "message",
 "parts":[
 {
 "kind": "text",
 "text": "Selecting the proper functions from the tool repository to execute the
attached sub-tasks."
 },
 {
 "kind": "data",
 "data":[
 {
 "sub-task id": 1,
 "description": "generate a 3D map from location A and location B"
 },
 {
 "sub-task id": 2,
 "description": "Plan the optimal route from location A to location B"
 }
]
 }
]
 "messageId": "acccde2346-9802-bef32-ceff9365"
 }
 },
 "metadata": {}
}

Figure 6.2.3-1: Example agent-to-agent message compliant with the A2A protocol

NOTE: The names of method and fields in parameters can be different in the future.

Besides, it has been demonstrated in [i.12] that the multi-agent system in Core Network (CN) can be used to
autonomously generate network slices that integrate various network functions and application functions. In this
scenario, in addition to Task exchanged among AI agents in CN, the information about network slices also needs to be
exchanged. Thus, it is required to extend more methods of agent-to-agent interface for the operations associated to new
types of network slices.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)31

6.2.4 Agent-to-Resource

In an agentic core network, agents are required to access the external data services and tools to improve decision-
making. The CN exposes service endpoints for operator data (e.g. UDM/UDR for subscription, AUSF for authentication
vectors, PCF for policy, NWDAF for analytics, NEF/EES for event exposure). Agents often need to:

1) Discover available data resources (capabilities, schemas, access policies).

2) Subscribe to change notifications on specific resources (e.g. "UE policy updated", "QoS flow changed") and
receive asynchronous events.

3) Read/write resource contents via the owning service subject to authorization and audit.

For example, during UE Registration, the responsible agent obtains authentication vectors by invoking AUSF/UDM
services; it does not read authentication data from a shared cache.

Since data classes differ in security, privacy, and latency characteristics (e.g. UE subscription/policy data vs. shared
knowledge bases), the interface is required to be modular, with per-class policies for authorization, retention, and QoS.

Common tools, such as functions and APIs, are published in a Tool Registry (metadata, version, auth scope). Tools are
executed via a Tool Execution Service or delegated to the owning agent. Agents need to query and subscribe to tool
availability and versions. In addition, agents need to be able to remotely execute a tool with explicit inputs, timeouts,
idempotency keys, and billing/quotas.

To enhance reliability, a verification environment (e.g. Sandbox in [i.12]) is introduced in CN to test and verify the
decision results of agents. The Sandbox is required to support shadow/canary execution and offline replay. Agents are
allowed to submit proposed actions for validation and receive test results. Sandbox endpoints are required to be isolated
from production state.

The Model Context Protocol (MCP) specifies how an AI agent (or LLM) interacts with the external tools and data
sources. Therefore, it is able to be used as the agent-to-resource facade for tool/data access.

6.2.5 Agent-to-Infrastructure

The core network relies on RAN and compute/transport infrastructure. Agents interact with these domains to perform:

• RAN control via the Agent-gNB (N2) procedures.

• User plane path management.

• NF/compute lifecycle management.

• Computing and communication resource control

For example, a UE issues a PDU Session Establishment request (NAS to an Agent in CN). The responsible agent
coordinates and invokes the NFs, such as the AMF and the SMF which selects UPF(s) and returns session rules; the
agent sends N2 SM messages to the gNB to create the RAN PDU Session context.

If a request requires reconfiguration of NF instances or compute, the responsible agent issues intent/policy changes and
generates the actions (e.g. scale SMF, adjust UPF placement), which then enforces them.

NOTE: An adaptor is needed to translate the instructions generated by agents to the standard signalling that can
be understood by the infrastructure, the adaptor can be deployed in agents or infrastructure.

Designing the agent-to-infrastructure interface therefore means:

1) control the infrastructure intelligently and autonomously based on the decisions of agents;

2) preserving observability and rollback (idempotent operations, audit logs, and failure handling).

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)32

6.3 Agent Communication Model
An AI agent possesses the autonomy to explore optimal solutions for achieving its goals. Moreover, the capabilities of
AI agents evolve, resulting in non-deterministic outputs. Consequently, interactions among AI agents are inherently
flexible and can vary depending on the agents' outputs.

When the conversation flow between agents is not fixed or pre-defined, the messages generated by the agents do not
specify the receivers. In such a setting, to facilitate efficient multi-agent conversation among a group of agents, an
intermediary entity is required to route the messages based on their content. In the following, this entity is referred as
the Agent Communication Proxy (ACP).

The ACP is responsible for parsing the capability requirements from the message envelope (optionally augmented by
LLM-based hints).

NOTE: The routing mechanisms of ACP can be further studied in the future.

This communication model supports scalability by allowing easy expansion or modification of agent roles and dynamic
adjustment of communication sequences. Additionally, deploying multiple ACPs across different regions enables
parallel message routing, preventing any single ACP from becoming a communication bottleneck.

Taking the agents demonstrated in [i.12] as an example, a "planning agent", which is responsible for decomposing the
complex service request into multiple executable sub-tasks, would transmit the output to the ACP. This message
comprises key fields as depicted in Figure 6.3-1 for improved understanding. After having received the message, the
ACP parses the task description and generates a capability requirement for selecting a target agent. Subsequently, it
sends a request to the ARF with the requirement provided, and receives the profile of the selected target agent as a
response. Finally, it forwards the message originating from the planning agent to the target agent, i.e. assemble agent,
which is another agent from [i.12]. Note that in this example procedure, the ARF performs the selection of the target
agent, instead of sending a list of candidate targets to the ACP.

Figure 6.3-1: Example procedure for indirect agent-to-agent communication where
the agent communication proxy routes messages between two communicating partners

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)33

Alternatively, direct agent-to-agent communication corresponds to the case when there is no intermediary between two
communicating AI agents. In this case, an AI agent that is about to handoff a task to a second agent is required to
determine the most suitable target agent for the task at hand, before sending the message to the destination. Using the
same example from Figure 6.3-1, suppose that the "planning agent" decomposes the complex request and generates the
output message. In order to identify the most suitable target, it first uses an Agent Selection Policy as defined in
clause 6.2.2.2. All A2A interactions (direct or via ACP) are required to apply the Agent Selection Policy. If indirect (via
ACP), then for Mode A, the ARF returns the Top-K tuple, from which the ACP selects under operator policy
(e.g. latency/load/trust), forwards the message, and logs the routing_decision. If Mode B is used, then the ARF returns
selected_agent_id, and the ACP forwards without altering selection. If direct (e.g. agent to agent) communication takes
place, then for Mode A, the requester agent selects from Top-K and handles retries/failover. If Mode B is used, then the
requester uses selected_agent_id and proceeds; on delivery failure it attempts a re-query (policy permitting).

7 Multi-Agent Collaboration Mechanism

7.1 Workflow Orchestration
A workflow in the context of agentic AI refers to the orchestration and coordination of tasks carried out by multiple AI
agents. As defined in [i.16], "workflows are systems where LLMs and tools are orchestrated through pre-defined code
paths". There are a few workflow patterns that are commonly found in existing multi-agent frameworks.

One of the most prominent workflow patterns is when the AI agents in the multi-agent system are activated in a
pre-defined sequence. In their documentation, LangGraph and Agent Development Kit (ADK) refer to this approach as
prompt chaining and sequential pipeline pattern, respectively. It is worth mentioning that while LangGraph achieves
this by defining nodes (agents) and edges (task handoffs) to strictly control the sequence, ADK defines a special type of
agent, i.e. SequentialAgent, which comprises multiple sub-agents (workers) and calls them in the order they are
provided during instantiation. AutoGen implements the Further, CrewAI utilizes sequential processes for the same
purpose where they assign a Task characterized by a task description and expected output to an Agent, where each task
has an AI agent assigned to it. The workflow is initiated in the order the tasks are registered to it. An example usage of
this pattern is a multi-agent system that is comprised of a writer, formatter agent and user agent. These agents perform
an essay writing task given an input prompt, where the agents are triggered in the given order, i.e. writer agent generates
the text based on the description, formatter agent polishes the draft by refining the grammar and user agent presents the
final refined output to the human user, completing the workflow.

The second workflow pattern is the iterative refinement pattern as it has been named in ADK. It refers to the type of
orchestration pattern, where one or more agents work on a task over multiple iteration. To implement the iterative
refinement pattern, ADK defines a special built-in workflow agent type, namely the LoopAgent, which runs one or more
sub-agents repeatedly until a termination condition is met. This is similar to the iterative writing process of a human
writer, which undergoes multiple iterations until the polished document is published. A common example of this pattern
in multi-agent systems is when the workflow involves a code generation and refinement task, which is typically
performed via multiple task handoffs between code generator and code reviewer agents. In LangGraph and AutoGen,
this shows up as the evaluator-optimizer pattern in LangGraph and the reflection pattern by Autogen. In both, one LLM
(or agent) generates, another evaluates and feeds back, iterating until a stop condition is met.

Another common multi-agent pattern is parallel fan-out-gather pattern in ADK, which is referred as the parallelization
mechanism for multiple LLMs in LangGraph. As the name suggests, agents run concurrently (i.e. simultaneously) to
perform the same task, often followed by a later agent serving as the aggregator of the results. This approach is
particularly beneficial for tasks where tasks in a workflow which:

• can be performed independently without any direct or indirect information exchange between the concurrent
agents, e.g. via messages or a shared state, respectively, and

• are resource-intensive potentially leading to long task completion duration when not parallelized.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)34

ADK has a built-in workflow agent type to implement parallel fan-out-gather pattern, i.e. the ParallelAgent. It executes
multiple sub-agents concurrently. The ParallelAgent aggregates the results after each sub-agent completed its
execution. ADK also supports communication between agents for more flexible implementation options. For instance, a
shared InvocationContext object or an external database or queue can be used, while the concurrent access needs to be
managed carefully to avoid race conditions, e.g. using locks. An example task where the parallelization is applicable is
a parallelized web research, where each sub-agent performs search based on a different query. In LangGraph, the
parallelization is supported through the concept of supersteps. More specifically, LangGraph models agent workflows
as graphs, the behaviour of which is characterized by three key components, state, nodes, and edges. By composing
nodes and edges, one can create complex workflows that evolve the state over time. As stated in their documentation,
"while nodes do the work, edges define what to do next". LangGraph's underlying graph algorithm is based on message
passing. When a node (e.g. an agent) completes its operation, it sends messages along one or more edges. Thus, the
program is executed in discrete "super-steps", where each super-step is a single iteration over the graph nodes. The
parallelization lies in the fact that the nodes that are part of the same super-step are run concurrently. Nodes in the same
super-step run in parallel (LangGraph uses a message-passing model). For instance, if a node (i.e. an agent) has multiple
outgoing edges according to the workflow, all of the destination nodes are executed parallelly as they are part of the
subsequent superstep.

A very important multi-agent pattern is the human-in-the-loop that integrates the human intervention points within an
agent workflow. This is useful for tasks that require human oversight, approval, or correction that AI cannot perform.
Although the name and the purpose of the human-in-the-loop pattern is consistent among LangGraph, ADK, and
AutoGen, its implementation slightly differs. AutoGen provides a built- UserProxyAgent for human participation.
LangGraph provides a built-in function, interrupt, that pauses the graph at a specific node and resumes it after the
corresponding information is presented to the user and the user input is provided. ADK does not have a built-in agent or
function, and instead relies on custom agents and/or tools to integrate human interaction.

All of the previous patterns that have been introduced so far have a deterministic nature with respect to how the
workflow orchestration is performed. In particular, they are characterized by a fixed sequence of task execution and
agent activation, where each step follows a deterministic and pre-defined order. In the present document, this category
of multi-agent patterns is called "explicit workflow". Explicit workflow is useful when one needs strict control over
how a series of tasks or agents are executed, which in turn improves the predictability and reliability of the system, by
ensuring that tasks are performed in the required order or pattern.

Contrarily, the "dynamic workflow" follows a non-deterministic flow, offering a greater flexibility in task orchestration
and execution. In the case of dynamic workflow, the sequence of tasks and selection of agents are determined at runtime
based on the condition(s), context, and data. In contrast to explicit workflow, dynamic workflows offer flexibility in
routing, agent selection and task execution patterns. A typical scenario for dynamic workflow orchestration is when the
multi-agent system is operating in complex and unpredictable environments, where identifying a deterministic order of
task handoffs beforehand is impractical.

The dynamic workflow calls for runtime decision-making to determine the control flow of processes either in a
centralized or decentralized way. This is best reflected in AutoGen's selector group chat pattern where a group of
agents exchange messages to perform a collaborative task and the decision for the activation order is determined
centrally by a GroupChatManager. The group chat manager selects the next agent to speak using an LLM depending on
the task at hand and the roles of agents participating the conversation. This is achieved by providing a custom prompt to
the manager that provides information about the roles of the participating agents in the group chat, where each agent is
typically specialized for a particular task or domain. This renders the workflow non-deterministic, as the sequence of
agents is determined during runtime. Possible extensions and variations of selector group chat pattern are possible such
as selecting multiple agents at once for a round of conversation, instead of selecting the next speaker one-by-one.

7.2 Closed-loop Optimization Mechanism

7.2.1 Multi-Agent Coordination and Optimization

Figure 7.2.1-1 illustrates the procedure of closed-loop optimization mechanism, which uses the Semantic Bus of ENI to
achieve functions such as task allocation and scheduling, AI agent management, AI agent recommendations and
convergence, AI agent coordination and collaboration, and multi-agent service provision and feedback.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)35

Figure 7.2.1-1: Closed-loop optimization mechanism procedure

Task allocation and scheduling

The present document defines a strategy that uses a MAS to divide complex AI tasks (user requests) into smaller,
manageable sub-tasks that can be assigned to individual AI agents, ensuring that each sub-task is well-defined and that
dependencies between tasks are clearly understood and properly managed.

AI agents' recommendations and convergence

Task allocation, scheduling, and agent assignment are required to run inside an ENI-compliant closed loop with explicit
observe/decide/act boundaries, policy gates, and rollback. Agent selection is required to follow the Selection Policy
defined in clause 6.2.2.2.

AI agents' coordination and collaboration

The present document recommends the development of coordination mechanisms to manage the interactions and
dependencies between AI agents, using centralized or decentralized approaches based on the complexity and scale of
the system. This promotes information sharing and integration among multiple recommended agents, enabling them to
respond to complex tasks and requests as a unified whole.

Multi-agent service provision and feedback

The independent execution and interaction with external systems and users provides functional capabilities for external
applications, responds to user requests, performs tasks, and provides results. In conjunction with continuously
monitoring the performance of MASs enables feedback to be provided to improve their performance.

7.2.2 Network Feedback Reinforcement Learning

Figure 7.2.2-1 shows an architecture where multiple agents receive rewards, for instance considered to fine-tune their
AI models. The public memory records the interactions and output decisions of the agents, as well as the performance
of Customized Service Networks (CSNs) and user feedback. Therefore, the public memory (i.e. shared memory
component between agents) is filled with the experience of multi-agent system.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)36

Figure 7.2.2-1: Network feedback reinforcement learning procedure

The critic agent evaluates the joint policies of all agents participating in the creation of CSN from a global perspective.

Performance-based rewards:

During multi-agent collaboration, different agents typically contribute differently to the CSN creation. However,
feedback from CSNs and users is typically sparse and based on the joint actions of all agents. Therefore, the critic agent
is required to allocate reward incentives, such as counterfactual baselines (e.g. COMA), difference rewards, or Shapley-
value approximations to attribute joint rewards to individual agents based on their specific contributions.

Contribution-aware optimization:

Reward decomposition is required to use a credit-assignment method (e.g. counterfactual advantage, difference
rewards) under Centralized Training, Decentralized Execution Training. This trains with a global critic and deploys
agents that act on local observations. Such training is required to be offline/sandboxed, with shadow validation and
canary rollouts before production use. Different reward signals help agents recognize their role-specific impacts. Each
agent can use their assigned rewards to fine-tune their local models and guide targeted self-improvement.

7.2.3 Multi-Agent Self-Reflection

Apart from model fine-tuning, each agent can also achieve self-reflection through prompt engineering, which is a more
lightweight process. Figure 7.2.3-1 illustrates the procedure of closed-loop agent optimization via self-reflection.

The short-term memory stores various feedback signals, including user feedback, CSN feedback, and verification
results from the sandbox. By analysing the agents' interaction and feedback, the critic agent can send error or
performance-based rewards to the agents. The agents can use these error or reward signals to self-reflect and generate
reflection text, to be stored in the long-term memory. This reflection text captures high-level knowledge derived from
the agents' self-reflection.

In this way, in-context information and feedback from the network can be transformed into long-term memory through
reflection. When making decisions, agents retrieve knowledge from the long-term memory to augment their prompts
and generate decisions. By leveraging this reflected knowledge, agents can improve the quality of their decisions, thus
achieving optimization. It is recommended that reflection only augments prompts. It is recommended not to let
reflection override hard policy or security constraints.

Error signals facilitate the correction of agents' decisions, while reward signals enhance the quality of their decisions.
This dual approach ensures continuous improvement and optimization of the agents' performance.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)37

Figure 7.2.3-1: Procedure of closed-loop optimization by self-reflection

Self-correction by reflection:

When an error occurs in the network, the critic agent can intelligently identify the agent responsible for the error,
analyse the cause, and send the error analysis to the targeted agent. Based on this error feedback, the agent reflects on
its previous decision, generates reflection text that includes strategies to avoid repeating the error, and stores this text in
the long-term memory. By leveraging Retrieval-Augmented Generation (RAG) techniques from the long-term memory,
the agent can use this reflective knowledge to avoid similar errors in the future, thus achieving self-correction.

Self-enhancement by reflection:

Different decisions are associated with varying rewards. By comparing different trajectories and their corresponding
rewards, the agent can summarize performance records related to similar tasks and generate reflection text that outlines
strategies for achieving higher rewards. By storing this knowledge in the long-term memory, agents can use RAG to
improve the quality of their decisions and enhance their performance.

Safety ensured by reflection:

It is recommended that reflections include provenance, confidence, and TTL. It is further recommended that only trusted
reflections (post-validation) are used to influence production prompts. For instance, threshold-based policies can be
considered to filter out reflections with low confidence, which in turn helps to improve safety. It is further recommended
that reflections are not allowed to bypass operator policy or security controls.

7.2.4 Multi-Agent Conflict Resolution

In a multi-agent AI-Core system, multiple agents operate in a distributed fashion to fulfil different parts of an E2E
service request. However, without coordination, conflicts can occur in various forms. Additionally, dynamic changes in
resource availability, component failures, or delayed execution is likely to render static planning and assembling
strategies ineffective, resulting in conflicts and system instability, if unresolved, can severely disrupt system
performance. Therefore, it is recommended to define conflict classes and priorities:

1) Resource contention;

2) topology/order inconsistencies;

3) concurrent state mutation; and

4) policy violations.

This is an exemplary list; refinement and priority assignment (e.g. safety > availability > cost) is for further study.

Take the AI-agent-based core network architecture described in [i.12] as an example. The planning agent is responsible
for decomposing high-level intents or policies into executable tasks and the assemble agent maps the resulting sub-tasks
to the available tools. These occasionally reach a conflicting state because of limited knowledge about runtime
information from other network elements. In such a setting, it is likely that neither agent has the global perspective to
arbitrate between conflicting decisions, handle dynamic runtime failures, or coordinate retries and fallbacks.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)38

To address these challenges, Multi-Agent Debate (MAD) introduces a collaborative and autonomous approach to
resolve conflicts, offering benefits such as decentralized decision-making, flexibility, and avoiding single point of
failure. However, in certain scenarios, particularly in complex and dynamically changing environments, MAD faces
limitations including high communication- and computational overhead, as well as difficulty in reaching convergence.
In such cases, the introduction of a Conflict Resolution Agent (CRA) to detect, arbitrate, and resolve multi-agent
conflicts can be a practical and effective complement to MAD, as demonstrated in [i.18]. Rather than replacing MAD, it
enhances system stability and coordination efficiency, making the two approaches mutually supportive.

It is recommended to keep MAD within time and communication budgets. It is further recommended to fall back to
CRA decision with explainable rationale when non-convergent.

The CRA serves as both the system's conflict detector and resolver. It continuously monitors outputs such as agent
feedback, CSN resource utilization, task dependencies, and compares them to user intent to identify configuration
inconsistencies or resource contention, enabling early detection of potential or actual conflicts. When a conflict is
detected, the agent formulates resolution strategies based on factors like policy priorities, current system load, and task
urgency, while also leveraging agent models to reference historical conflict resolution strategies to inform its decisions.
These strategies often involve halting certain actions, rescheduling tasks, or modifying execution parameters. Once a
strategy is selected, the agent dispatches coordination instructions, which typically includes adjusting execution
sequences, reallocating or modifying resources, and supporting inter-agent negotiation to align objectives and resolve
discrepancies.

Moreover, when the CRA detects a conflict that cannot be resolved autonomously, such as insufficient resources to
satisfy all requested functions, it can request human involvement for the final decision-making. Escalation should
produce options with trade-offs (partial fulfil, degrade, reject) and simulate them in the sandbox first. In other words,
the unresolved issue is forwarded to human operators or intent managers, who can reassess priorities, make trade-offs,
or override automated decisions. Trade-offs include:

• Partial Fulfilment: Provisioning only a subset of the requested functions or serving a reduced number of
customers.

• Service Degradation: Adjusting service performance levels to align with current resource availability or
system constraints.

• Request Rejection or Deferral: Temporarily denying or postponing service requests based on system capacity,
policy constraints, or operational priorities.

Figure 7.2.4-1: Procedure of Multi-Agent Conflict Resolution

Figure 7.2.4-1 illustrates an example procedure of multi-agent conflict resolution in the AI-Core architecture from
[i.12]. The CRA interacts closely with other components of the AI core to form a coherent and adaptive decision-
making system. These can include:

• the communication between the conflict resolution agent and other AI core agents, such as the planning or
assemble agent by monitoring their outputs, thus, identifying potential inconsistencies or conflicts, and
coordinating the synchronization and interactions among agents;

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)39

• running simulations by interacting with the sandbox component to evaluate the feasibility or performance
impact of different conflict-resolution strategies before deployment;

• storing the result of conflict resolutions in public memory, which stores both real-time and historical
knowledge;

• retrieving the historical records of previous conflicts and their resolutions, while also logging new conflict
cases to support continuous learning and future optimization.

The CRA is required to enforce conflict-resolution invariants and use saga-style compensations for partial execution.
When MAD exceeds latency or message budgets or fails to converge, the CRA is required to decide or escalate with
sandbox-simulated alternatives.

8 Standard Impact Analysis
To enable multi-vendor interoperability among AI Agents, in the future core network, various roles of core network AI
Agents and their communication interfaces as well as the new multi-agent communication protocols need to be
standardized.

As described in clause 5.3 and [i.12], different core network AI Agents with distinct roles, skills, and responsibilities are
required for an agent-based next-generation core network. Their logical operational principles are significantly different
from those of the conventional Network Functions (NFs) in the service-based architecture. These AI Agents and their
agent profiles need to be standardized so that they can discover each other. In addition to agents, other shared
components to facilitate agent collaboration and operation, such as shared memory, tool repository and agent repository,
also need to be standardized to support usage by multiple AI Agents.

The present document recommends the prioritization of the following functions for standardization:

1) An Agent Repository Function (ARF) service and Agent Profile schema (ID, capabilities, endpoints, versions,
auth, lifecycle, health, policy tags):

a) The interfaces exposed by AI Agents, including agent-to-user, agent-to-ARF, agent-to-agent, agent-to-
resource, and agent-to-infrastructure interfaces described in clause 6, are required to be standardized to
enable the interactions of various agents, users and infrastructures.

b) This includes the standardization of methods, input and output parameters of each interface.

2) Agent-to-agent task-lifecycle semantics (create/get/update/cancel, idempotency, retries).

3) Agent-to-resource to invoke existing CN NFs (UDM/AUSF/PCF/NWDAF/NEF).

4) Observability/security (correlation IDs, audit, RBAC/ABAC, tenancy).

In addition, new application protocols, such as A2A and MCP, are recommended to be standardized. Transports
(HTTP/3 over QUIC) are recommended to follow existing IETF RFCs; SDOs should define telecom profiles on top
(security, streaming, payloads).

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)40

9 Conclusion and Recommendations
Agentic AI technology is rapidly evolving and is expected to have a significant impact on the next-generation
telecommunication systems, particularly the mobile core. Architectures based on multiple agents offer clear advantages
over single-agent systems, including improved modularity, enhanced robustness, distributed decision-making, and more
efficient energy consumption during training and inference when specialization reduces compute per task and
orchestration overhead is controlled.

In this context, inter-agent communication emerges as a critical topic for next-generation mobile network architectures.
To that end, the present document studies existing multi-agent topologies, workflow orchestration methods and a
selected subset of existing open-source multi-agent frameworks and multi-agent communication protocols. Further, it
defines five types of interfaces for the interaction of core network AI agents with other entities, including those
facilitating communication between agents themselves as well as interfaces connecting users, resources, and
infrastructure to agents. In addition, the mechanisms to improve collaboration between multiple agents are studied in
the context of core network agents. These include the selection of the most suitable workflow orchestration
mechanisms, applying closed-loop optimization methods, such as reinforcement learning based on runtime network
feedback, self-reflection, and conflict resolution among agents.

It is recommended that the adoption of AI agents in mobile core networks is evaluated in a practical study (e.g. through
a proof-of-concept implementation showcasing their key features and capabilities in the context of telecommunication
systems). Since the existing frameworks and multi-agent communication protocols have been designed primarily
without the telecommunication use case in mind, it is of the utmost importance to evaluate whether these sufficiently
capture the needs of a mobile core network. To that end, it is recommended to study and specify (if necessary) a
multi-agent interface and determine if a profile and/or extension of MCP/A2A with telecom semantics is required. If
gaps remain after this effort is completed, then one or more new wire protocols need to be examined.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)41

Annex A:
More details about the A2A Protocol
A2A defines several RPC methods invoked by the A2A client by sending an HTTP POST request to the A2A server's
URL, including:

• message/send: Sends a message to an agent to initiate a new interaction or to continue an existing one.

• message/stream: Sends a message to an agent to initiate/continue a task and subscribes the client to real-time
updates for that task via SSE.

• tasks/get: Retrieves the current state (including status, artifacts, and optionally history) of a previously initiated
task. This is typically used for polling the status of a task or for fetching the final state of a task.

• tasks/cancel: Requests the cancellation of an ongoing task.

• tasks/pushNotificationConfig/set: Sets or updates the push notification configuration for a specified task. This
allows the client to tell the server where and how to send asynchronous updates for the task.

• tasks/pushNotificationConfig/get: Retrieves the current push notification configuration for a specified task.

• tasks/resubscribe: Allows a client to reconnect to an SSE stream for an ongoing task after a previous
connection was interrupted.

Further, A2A defines several protocol data objects that define the structure of data within these JSON-RPC methods.
The most important of these are Task, TaskStatus, Message, Artifact, and Part.

Task represents the stateful unit of work being processed by the A2A server for an A2A client. A task encapsulates the
entire interaction related to a specific goal or request. Table A-1 lists its key fields.

Table A-1: Key fields of a Task

Field Name Type Required Description
id string Yes Server generated unique task identifier (e.g. UUID).

contextId string Yes Server generated ID for context across interactions.
status TaskStatus Yes Current status of the task (state, message, timestamp).

artifacts Artifact[] No Array of outputs generated by the agent for this task.
history Message[] No Optional array of recent messages exchanged.

metadata Record<string, any> No Arbitrary key-value metadata associated with the task.

TaskStatus represents the current state and associated context of a Task. The structure of a TaskStatus is demonstrated
in Table A-2.

Table A-2: Key fields of a TaskStatus

Field Name Type Required Description
state enum Yes Current lifecycle state of the task.

message Message No Optional message providing context for the current
status.

timestamp string No Timestamp when this status was recorded.

The possible states of a task include:

• submitted: Task received by the server and acknowledged, but processing has not yet actively started.

• working: Task is actively being processed by the agent. In certain instances, the client expects further updates
or a terminal state.

• input-required: The agent is paused, awaiting additional input from the client.

• completed: Task finished successfully. Results are typically available in Task.artifacts or TaskStatus.message.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)42

• cancelled: Task was cancelled (e.g. by a tasks/cancel request or server-side policy).

• failed: Task terminated due to an error during processing. TaskStatus.message usually contains error details.

• rejected: Task terminated due to rejection by remote agent. TaskStatus.message typically contains error
details.

• auth-required: Agent is paused, awaiting additional authentication from the client/user to proceed.

• unknown: The state of the task cannot be determined (e.g. task ID is invalid, unknown, or has expired).

The actual content of the communication is carried by three main data objects:

• Message: Represents a single turn in a conversation, such as an instruction, prompt, or reply. It has a role
("user" for the client, "agent" for the server) and contains one or more Part objects.

• Artifact: Represents a tangible output or deliverable generated by the agent during a task, such as a document,
image, or structured data. It also contains one or more Part objects.

• Part: The fundamental content unit. A Part can be simple text (TextPart), a file reference (FilePart), or
structured JSON data (DataPart), enabling rich, multi-modal exchanges.

Message represents a single communication turn or a piece of contextual information between a client and an agent.
Messages are used for instructions, prompts, replies, and status updates, they include the key information listed in
Table A-3.

Table A-3: Key fields of a Message

Field Name Type Required Description
role "user" | "agent" Yes Indicates the sender: "user" (from A2A Client) or

"agent" (from A2A Server).
parts Part[] Yes Array of content parts. It contains at least one part.

metadata Record<string, any> No Arbitrary key-value metadata associated with this
message.

extensions string[] No A list of extension URIs that contributed to this
message.

referenceTaskIds string[] No List of tasks referenced as contextual hint by this
message.

messageId string Yes Message identifier generated by the message
sender.

taskId string No Task identifier the current message is related to.
contextId string No Context identifier the message is associated with.

kind "message" Yes Type discriminator, literal value.

Artifact represents a tangible output generated by the agent during a task and includes the fields listed in Table A-4.

Table A-4: Key fields of an Artifact

Field Name Type Required Description
artifactId string Yes Identifier for the artifact generated by the agent.

name string No Descriptive name for the artifact.
description string No Human-readable description of the artifact.

parts Part[] Yes Content of the artifact, as one or more Part objects.
metadata Record<string, any> No Arbitrary key-value metadata associated with the

artifact.
extensions string[] No A list of extension URIs that contributed to this

artifact.

A Part is a union type representing exportable content as either TextPart, FilePart, or DataPart, the structure of them are
shown in the following tables.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)43

Table A-5: Key fields of a TextPart

Field Name Type Required Description
kind "text" (literal) Yes Identifies this part as textual content.
text string Yes The textual content of the part.

metadata Record<string, any> No Optional metadata specific to this text part.

Table A-6: Key fields of a FilePart

Field Name Type Required Description
kind "file" (literal) Yes Identifies this part as file content.
file FileWithBytes or

FileWithUri
Yes Contains the file details and data/reference.

metadata Record<string, any> No Optional metadata specific to this file part.

Table A-7: Key fields of a DataPart

Field Name Type Required Description
kind "data" (literal) Yes Identifies this part as structured data.
data Record<string, any> Yes The structured JSON data payload (an object or an

array).
metadata Record<string, any> No Optional metadata specific to this data part

(e.g. reference to a schema).

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)44

Annex B:
AGNTCY™ and Agent Connect Protocol
AGNTCY™ is an open-source "collective" that aims to create an open, interoperable internet for agent-to-agent
communication. It aims to standardize how agents declare their skills and discover each other based on searches on
those skills. It introduces an extensible data model, the Open Agent Schema Framework (OASF), describing agent
attributes, capabilities, and metrics to allow standardized discovery and evaluation (e.g. for workflow orchestration).
The OASF defines a taxonomy of agent skills, where each agent skill has a unique identifier, a description and belongs
to a skill category. For instance, under the skill category natural language processing with the category identifier 1,
there are multiple agent skills including but not limited to natural language understanding (with identifier 101), natural
language generation (with identifier 102). Similarly, the multi-modal skill category with category identifier 7, there are
image processing (701), audio processing (702), and any-to-any transformation (703). The OASF defines further
distinguishes between specific agent skills such as image to text (70101), text to image (70102), text to video (70103),
and so on, by relating them to the image processing skill through the way they select their identifiers. However,
according to the current documentation they are all defined as agent skills and they do not introduce a term to
distinguish between image to text skill (70101) and image processing (701).

In addition to the OASF, AGNTCY™ considers the agent connect protocol in order to enable agent-to-agent
communication in a standardized fashion. The agent connect protocol addresses authentication (how a caller
authenticates with an agent), configuration (how to configure a remote agent), invocation (how to invoke a remote agent
providing input for its execution), output retrieval (how to retrieve the result of an agent invocation), interrupt handling
(how agents notify the caller about execution suspension), and error handling for multi-agent communication. The agent
connect protocol specifies the interface that an agent exposes to allow for its invocation and configuration. Although it
specifies methods (i.e. endpoints) for each of these mechanisms (i.e. configuration, invocation, etc.), it does not specify
the format of the data structures that an agent receives or produces.

One of the most important concepts proposed by the is the AGNTCY™ agent manifest. The agent manifest is a
standard format to describe agents, their capabilities, how to deploy and consume them. It is designed to be used by the
agent connect protocol, stored in an agent directory with corresponding OASF extensions. The agent manifest contains
a unique name and a version to identify an agent within the namespace it is part of. In addition, an agent manifest
contains an agent description that describes what the agent is capable of, which in turn helps other AI agents to select
the best agent for multi-agent collaboration. The agent manifest contains a section dedicated to deployments. This
specifies the deployment options that the respective AI agent supports. To elaborate, AGNTCY™ considers three
deployment options for AI agents:

1) Remote service deployment: In this case, the agent does not come as a deployable artifact, but it is already
deployed and available as a service. If the manifest indicates that the remote service deployment option is
supported, then it also provides where the agent is accessible (i.e. the network endpoint), and the
authentication information to be used by the agent connect protocol.

2) Docker deployment: In this case, the agent can be deployed starting from a docker image. If the docker
deployment option is supported, then the manifest also contains the image of the agent container, and the
authentication to be used by the agent connect protocol for this agent.

3) Source code deployment: In this case, the agent can be deployed starting from its code. If the manifest
indicates that the source code deployment of the agent is supported, then it also provides the location of the
source code (e.g. URL), the framework that the source code has been developed with (e.g. LangGraph), and
further framework-specific configuration information necessary to run the agent. See Figure B-1 for an
example agent manifest for an AI agent that supports source code deployment.

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)45

An example part out of an agent manifest is given as follows:

Figure B-1: Example deployment options section in an agent manifest

that belongs to a mail composer agent

{

…

“deployments”: [

“type”: “source_code”,

“name”: “src”,

“url”: “git@github.com:agentcy/mailcomposer.git”,

“framework_config”: {

“framework_type”: “langgraph”,

“graph”: “mailcomposer”

}

]

…

}

ETSI

ETSI GR ENI 056 V4.1.1 (2025-10)46

History

Document history

V4.1.1 October 2025 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Background
	4.1 Service Based Architecture
	4.1.1 SBA Reference Model
	4.1.2 Service Based Interface
	4.1.3 Network Function Service Framework

	4.2 Open-Source Multi-Agent Frameworks and Communication Mechanisms
	4.2.1 Introduction
	4.2.2 Overview of Existing Multi-Agent Frameworks
	4.2.3 Multi-Agent Communication Mechanisms
	4.2.4 Existing Multi-Agent Protocols
	4.2.4.1 Introduction
	4.2.4.2 Context-Oriented Protocols
	4.2.4.2.1 Introduction
	4.2.4.2.2 Model Context Protocol (MCP)

	4.2.4.3 Inter-Agent Protocols
	4.2.4.3.1 Introduction
	4.2.4.3.2 The Agent-to-Agent (A2A) Protocol
	4.2.4.3.3 Agent Communication Protocol
	4.2.4.3.4 Agent Network Protocol (ANP)

	4.2.4.4 Comparison of Inter-Agent Protocols

	4.3 The Role of MCP and A2A in an ENI System

	5 Multi-Agents System in Core Network
	5.1 Benefits of Multi-Agent Systems
	5.1.1 Energy Consumption and Inference Time
	5.1.2 Modularity and Extensibility
	5.1.3 Robustness
	5.1.4 Distributed Decision-making

	5.2 Design Principles
	5.3 Example AI Agents for the Core Network

	6 Inter-Agent Communication
	6.1 Agent-Based Interface
	6.1.1 Motivation
	6.1.2 Definition and Characteristics
	6.1.3 Interface Design Principles

	6.2 Key Methods
	6.2.1 Agent-to-User
	6.2.2 Agent-to-ARF
	6.2.2.1 Agent Registration, De-Registration and Update
	6.2.2.2 Agent Discovery and Selection

	6.2.3 Agent-to-Agent
	6.2.4 Agent-to-Resource
	6.2.5 Agent-to-Infrastructure

	6.3 Agent Communication Model

	7 Multi-Agent Collaboration Mechanism
	7.1 Workflow Orchestration
	7.2 Closed-loop Optimization Mechanism
	7.2.1 Multi-Agent Coordination and Optimization
	7.2.2 Network Feedback Reinforcement Learning
	7.2.3 Multi-Agent Self-Reflection
	7.2.4 Multi-Agent Conflict Resolution

	8 Standard Impact Analysis
	9 Conclusion and Recommendations
	Annex A: More details about the A2A Protocol
	Annex B: AGNTCYŽ and Agent Connect Protocol
	History

