

ETSI GR CIM 011 V1.1.1 (2021-04)

Context Information Management (CIM);
NGSI-LD Testing Framework: Test Purposes Description

Language (TPDL)

Disclaimer

The present document has been produced and approved by the cross-cutting Context Information Management (CIM) ETSI
Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP REPORT

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)2

Reference
DGR/CIM-0011v111

Keywords
API, IoT, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

Executive summary .. 4

Introduction .. 4

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definition of terms, symbols and abbreviations ... 6

3.1 Terms .. 6

3.2 Symbols .. 6

3.3 Abbreviations ... 7

4 Criteria for Test Purpose Description Language (TPDL) selection ... 7

4.1 Purpose ... 7

4.2 Criteria list .. 8

5 Candidates analysis .. 9

5.1 Analysis .. 9

5.1.0 Foreword ... 9

5.1.1 TTCN-3 .. 9

5.1.2 Robot framework .. 13

5.1.3 Karate .. 16

5.1.4 OpenAPI™ ... 19

5.1.5 SoapUI .. 20

5.1.6 Dredd .. 22

5.1.7 Postman .. 24

5.1.8 Selenium ... 24

5.1.9 Cucumber .. 24

5.2 Synthesis and proposal ... 25

Annex A: Change History ... 27

History .. 28

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)4

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) cross-cutting Context
Information Management (CIM).

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The present document presents an analysis of candidate languages to be used for development of test suites by ETSI
ISG CIM team of experts who developed the present document. A list of criteria, covering the whole chain from
requirements extraction, test purpose drafting, abstract test suites and execution production has been developed. The
language candidates, identified from expert's knowledge, desk research and interviews with ETSI CTI members have
been analysed. They are shortly described in the present document and compared in respect with the criteria list. From
that analysis, two languages/framework emerged: TTCN-3 and Robot framework. These candidates have been further
analysed to evaluate their aptitude to cover the whole chain of tests developments and execution. Despite having
TTCN-3 as an ETSI promoted language, the Robot Framework appears for several reasons to be a better suited
candidate.

Introduction
The ISG CIM group has defined an API for exchange of information contextualized in time, space and relation to other
information using a property graph model with the intent that the associated protocol (called NGSI-LD) becomes the
"glue" between all kinds of applications and databases associated with services for Smart Cities, Smart Agriculture,
Smart Manufacturing, etc.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)5

To be successful, the NGSI-LD API specification needs to be well understood and well implemented. The community
of users will not be solely highly professional engineers employed by big companies but will include many small teams
and SMEs and even hobbyists. Therefore, it is essential that the developers have access to not only the standard but also
a test specification and a testing environment to check that their work is (and remains) conformant to the ETSI
NGSI-LD specification.

The developers will usually write integration tests to validate the behaviour of their NGSI-LD implementation, but it is
important to assert compliance to the specification based on a test suite agreed by the group creating the API
specification, i.e. ETSI ISG CIM. Therefore, it is very important to create a set of ETSI-approved test cases.

What is more, the existence of such a test suite will likely help to increase the adoption of the NGSI-LD specification
by giving developers a ready to use and complete set of sample requests.

The present document (report/study) aims at analysing the options which exist for the development of such a test
environment to be adopted by the developer's community. It develops a list of criteria against which, test purpose
description languages are analysed so to provide a recommendation for the forthcoming activities of the ETSI ISG CIM
team of experts who developed the present document.

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)6

1 Scope
The present document is a choice of Test Purposes Description Language (TPDL), with the intention to capture all of
the information required by the Test Template and should be parseable using software.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document, but they assist the
user with regard to a particular subject area.

[i.1] ETSI GS CIM 009 (V1.3.1): "Context Information Management (CIM); NGSI-LD API".

NOTE: Available at
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.03.01_60/gs_CIM009v010301p.pdf.

[i.2] Asha Channenahalli Ramachandraiah, API Testing using Robot Framework, March 13 2019.

NOTE: Available at https://devonblog.com/test-automation/api-testing-using-robot-framework/.

[i.3] Adam Hepner, Parameterizing Your Robot Framework Tests, March 03 2020.

NOTE: Available at https://wonderproxy.com/blog/parameterizing-robot-framework/.

[i.4] OpenAPI Specification: fka Swagger RESTful API Documentation Specification,Version 2.0.

NOTE: Available at https://swagger.io/specification/v2/.

[i.5] ITU-T (Z.160 multipart series): "Series Z: Languages And General Software Aspects For
Telecommunication Systems".

3 Definition of terms, symbols and abbreviations

3.1 Terms
Void.

3.2 Symbols
Void.

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.03.01_60/gs_CIM009v010301p.pdf
https://devonblog.com/test-automation/api-testing-using-robot-framework/
https://wonderproxy.com/blog/parameterizing-robot-framework/
https://swagger.io/specification/v2/

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)7

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
BDD Behavior Driven Development
CD Coding and Decoding
CH Component Handling
CI Continuous Integration
CL Community and License
DO Definition and Organisation
DSL Domain Specific Language
DX Developer eXperience
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
IP Internet Protocol
JRE Java Runtime Environment
JSON JavaScript Object Notation
MIT Massachusetts Institute of Technology
MQTT Message Queuing Telemetry Transport
OAS OpenAPI™ Specification
OS Operating System
PA Platform Adaptor
PRO PROfessional
SA System Adaptor
SOAP Simple Object Access Protocol
SUT System Under Test
TCI TTCN-3 Control Interface
TDL Test Description Language
TEE Test Execution Environment
TL Test Logging
TM Test Management
TOP TDL Open source Project
TP Test Purpose
TPDL Test Purpose Description Language
TRI TTCN-3 Runtime Interface
TTCN Testing and Control Notation
UI User Interface
URL Uniform Resource Locator
VS Visual Studio

4 Criteria for Test Purpose Description Language
(TPDL) selection

4.1 Purpose
The purpose of this clause is to define the list of criteria to be used during the evaluation of the Test Purposes
Description Languages.

For clarity and ease of processing, it has been divided into categories grouping related criteria:

• Definition and Organization of tests (DO): how tests can be written, grouped and organized in a flexible way?

• Developer eXperience (DX): what support is provided to developers working with the TPDL?

• NGSI-LD specific points of attention (NGSI-LD): how it can handle some specific implementation points of
the NGSI-LD API?

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)8

• Test Execution Environment (TEE): what are the characteristics of the Test Execution Environment provided
by the TPDL?

• Community and License (CL): under which conditions is the TPDL available and how well it is supported?

4.2 Criteria list
Definition and organization of tests

1) Is the programming language similar enough to "normal English" that it can be partially or completely used to
define the Abstract Tests in NGSI-LD Test Purposes Descriptions specifications?

2) How can the final list of test cases written in the TPDL be extended (under conditions compatible with ETSI
IPR rules) by contributions from a developer community?

3) How "easy" it is to write HTTP API tests (is there a DSL? are there existing functions to make assertions on
the result?)

4) Is it possible to group/organize tests in a suite (shall/may, subscription/entity, etc.)?

5) Is it possible to reuse fixture (parameterized) data between tests?

6) Is it possible to reuse functions/components between tests?

Developer experience

1) What is the IDE support to develop tests with the TPDL (syntax highlighting, code completion, run tests
directly from the IDE, etc.)?

2) Can the programming language be executed in a software environment which is familiar to most web
developers, e.g. Eclipse™, or does it run as a stand-alone?

NGSI-LD specific points of attention

1) Is it able to check that after an entity creation/update and a matching subscription the notifications are
correctly delivered to the IP/port specified in the subscription?

2) Is it able to check that notifications are received over MQTT (ETSI GS CIM 009 [i.1])?

3) How can it be integrated with authentication (and authorization) concerns (even though it is out of scope of the
present document (report/study))?

Test Execution Environment

1) Is the Test Execution Environment offering tools familiar to the developer community such as display of
results in a browser window and writing full results in log files, etc.

2) Is it possible to run the NGSI-LD software and the Test Execution Environment on the same host?

3) Can the tooling environment be integrated with continuous integration tools (e.g. Jenkins™)?

4) Is it possible, in the execution environment, to run individual test cases as well as specific sets or the entire set
of test cases?

5) Is the execution environment able to generate error messages in case the test case cannot be executed due to
any cause, including malformed definition of the test case?

6) Can it supply detailed step-by-step logs and overall summary of pass/fail/skip?

7) After a complete test suite generates errors/fails, can individual failed tests be re-tried?

8) Is it possible to have the full details of requests and responses (payloads, headers)?

9) Is it possible to define if the suite continues or aborts (or forks?) after a failed test?

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)9

Community and license

1) What is the strength of the community behind the TPDL (number of committers, frequency of releases,
roadmap, etc.)?

2) Is it available as Open Source or free runtime license? If so, under which license?

5 Candidates analysis

5.1 Analysis

5.1.0 Foreword

Here is the complete list of tools considered for the TPDL. Some already appear to not be the right tool for the needs of
the NGSI-LD Test Suite but they have been considered for completeness of the study.

Candidate Homepage Rationale
TDL & TTCN-3 http://tdl.etsi.org

http://www.ttcn-3.org/
Test purpose description language
and abstract test language developed
and used within ETSI

Robot Framework https://robotframework.org/ Widely used tool for conformance and
interoperability testing

Karate https://intuit.github.io/karate/ Offers natively a DSL that allows
testing RESTful APIs

OpenAPI™ based tooling https://www.openapis.org/ The NGSI-LD exposes an OpenAPI™
representation that could be a base
for testing

SoapUI https://www.soapui.org/ Commonly used tool to interact with
SOAP Web services, it has since
evolved to interact with RESTful APIs

Dredd https://dredd.org/en/latest/ Recent project that aims at validating
an API against an OpenAPI™
description

Postman https://www.postman.com Widely used tool to interact with
RESTful APIs

Selenium/Cucumber https://www.selenium.dev/ Commonly used tool to test web-
based application, it has since evolved
to allow testing RESTful APIs

Javascript™ based tooling (Mocha,
Chai, etc.)

 Environment already used by some
Open Source implementations of
NGSI-LD

5.1.1 TTCN-3

1) Is the programming language similar enough to "normal English" that it can be partially or completely used to
define the Abstract Tests in NGSI-LD Test Purposes Descriptions specifications?

TTCN-3 addresses not only the language for specifying tests but also the interfaces that control and adapt a test to any
given environment. It provides a syntax for the definition of tests independent of any application domain. The abstract
nature of a TTCN-3 test system makes it possible to adapt a test system to any test environment. This separation
significantly reduces the effort required for maintenance allows experts to concentrate on what to test and not on how.
The standardization of TTCN-3 means that users are not forced to rely on the use of one proprietary tool.

The language part is actually handled by TDL, which is close to normal English. TDL allows to generate skeletons for
the Abstract Test Suite. Those skeletons have then to be manually enhanced and protocol bindings have to developed.

http://tdl.etsi.org/
http://www.ttcn-3.org/
https://robotframework.org/
https://intuit.github.io/karate/
https://www.openapis.org/
https://www.soapui.org/
https://dredd.org/en/latest/
https://www.postman.com/
https://www.selenium.dev/

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)10

2) How can the final list of test cases written in the TPDL be extended (under conditions compatible with ETSI
IPR rules) by contributions from a developer community?

TTCN-3 is a standardized testing technology developed and maintained by ETSI and specifically designed for testing
and certification. The ETSI TTCN-3 standards have also been adopted by the International Telecommunication Union
(ITU-T) in the Z.160 series [i.5]. The test cases can be maintained in a Git repository, allowing contributions from a
developer community.

3) How "easy" it is to write HTTP API tests (is there a DSL? are there existing functions to make assertions on
the result?)

The standardized interfaces make it possible for a suite of TTCN-3 tests to be adapted to execute in a range of different
environments, platforms or operating systems including HTTP API tests. Writing HTTP API tests requires the
development of a System Adaptor (SA) for HTTP protocol which may be complex along with the corresponding
Coding and Decoding (CD) for adapting message-based communication to and from the SUT, and SUT action
operations and encoding and decoding data associated with message-based communication within the TEE according to
the following TTCN3 system architecture.

Figure 5.1.1-1: TTCN-3 elements

• TTCN-3 Control Interface (TCI):

- Test Management (TM): Overall management of the test system, test system user interface, execution of
tests, provider of parameters.

- Test Logging (TL): Handling of all log events of the test system.

- Coding and Decoding (CD): Encoding and decoding data associated with message based or procedure-
based communication within the TEE.

- Component Handling (CH): Distributing and communication between parallel test components.

• TTCN-3 Runtime Interface (TRI):

- System Adaptor (SA): Adapts message based or procedure-based communication to and from the SUT,
and SUT action operations.

- Platform Adaptor (PA): Implements TTCN-3 external functions and provides a TTCN-3 test system with
a single notion of time.

http://www.etsi.org/
http://www.ttcn-3.org/
http://www.itu.int/en/ITU-T/Pages/default.aspx
http://www.itu.int/en/ITU-T/Pages/default.aspx

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)11

4) Is it possible to group/organize tests in a suite (shall/may, subscription/entity, etc.)?

The language is organized into:

• Module: The top-level container in a test suite is a module. It is usually a file.

• Component: A component is an execution entity. A test case or a function is executed on a component.

• Port: Components communicate with each other or with the SUT through ports that are mapped to each other.

• Test case: A test case is a sequence of sends and receives. When a message is sent to the SUT (System Under
Test) several possible replies can be received.

• Alternative: Since a test case is a sequence of stimuli followed by a set of possible responses, the notation
includes alternatives. It is a compact way to list all the possible alternatives in a scenario.

• Template: The template construct aims at defining the parameters values when sent or verifying the parameter
values when received. The template allows complex verification in a single statement so that the test case stays
legible.

• Verdict: The verdict is the result of a test case execution. It has 5 possible values: none, pass, inconclusive,
fail, error.

Hierarchy of groups allows to define any needed structure.

5) Is it possible to reuse fixture data between tests?

Yes. It is possible to define global variables that will be accessible from all tests and keywords. The variables can also
be defined on suite, test case or keyword level.

6) Is it possible to reuse functions/components between tests?

It is possible to reuse TTCN3 Modules, Components, Ports and Templates between tests.

7) Does it support data-driven approach?

Data-driven tests can be created in TTCN3 using its Rich type system and Data and signature templates with built-in
matching mechanisms.

Developer experience

1) What is the IDE support to develop tests with the TPDL/Abstract Test Suite (syntax highlighting, code
completion, run tests directly from the IDE, etc.)?

Requirements:

• A TTCN-3 test suite.

• A TTCN-3 tool, i.e. a TTCN-3 compiler (or interpreter) plus execution environment.

• Optionally implementations of test execution control, logging, and codecs.

• A SUT Adaptor implementing the means of communication required by SUT interfaces.

• A Platform Adaptor implementing a timing model and external functions (if there any defined in the test suite).

This support is typically provided by TTworkbench (a commercial product) and Titan (Open Source but with limited
features and no support for all the usual OS, e.g. there are no binaries for macOS®).

There is also a specific IDE, packaged as an Eclipse plugin, for writing the TP based on TDL/TOP.

2) Can the programming language be executed in a software environment which is familiar to a majority of web
developers, e.g. Eclipse™, or does it run as a stand-alone?

Yes. For instance, Eclipse IDE for Titan and TTworkbench, it depends on the chosen tool.

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)12

NGSI-LD specific points of attention

1) Is it able to check that after an entity creation/update and a matching subscription the notifications are
correctly delivered to the IP/port specified in the subscription?

Yes. The corresponding test could be written in TTCN3.

2) Is it able to check that notifications are received over MQTT (ETSI GS CIM 009 [i.1])?

An MQTT adapter need to be implemented in order to receive notification over an MQTT broker.

3) How can it be integrated with authentication (and authorization) concerns (even though it is out of scope of the
present document)?

Authentication and authorization tests can be written in TTCN3 and tested if needed.

4) Possibility/difficulty to add a new protocol binding?

TTCN3 has an abstraction over the protocol binding.

Test Execution Environment

1) Is the Test Execution Environment offering tools familiar to the developer community such as display of
results in a browser window and writing full results in log files, etc.

TTCN3 is a test specification language and not a programming language, however existing implementation (open
source or commercial) offer some tools to display the result in graphical or log formats. But the current state for each
tool is not known and would require more investigation.

2) Is it possible to run the NGSI-LD software and the Test Execution Environment on the same host?

Yes. However, they do not support all the usual environments for developers (e.g. there are no Titan binaries for
macOS®).

3) Can the tooling environment be integrated with continuous integration tools (e.g. Jenkins™)?

Most tools offer command line for test execution and could be easily integrated with continuous integration tools like
Jenkins™.

4) Is it possible, in the execution environment, to run individual test cases as well as specific sets or the entire set
of test cases?

It is possible to select all test suites, a specific test suite or a specific test case.

5) Is the execution environment able to generate error messages in case the test case cannot be executed due to
any cause, including malformed definition of the test case?

Yes. Tests details and assertions result are displayed.

6) Can it supply detailed step-by-step logs and overall summary of pass/fail/skip?

Yes.

7) After a complete test suite generates errors/fails, can individual failed tests be re-tried?

They can be retried one by one.

8) Is it possible to have the full details of requests and responses (payloads, headers)?

Yes. A log file can be created for each request that contains the request full details.

9) Is it possible to define if the suite continues or aborts (or forks?) after a failed test?

Yes. During a test campaign, it is possible to define conditions to stop, continue or retry.

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)13

Community and license

1) What is the strength of the community behind the TPDL (number of committers, frequency of releases,
roadmap, etc.)?

The unique open source implementation Eclipse Titan provided limited features, weak graphical interface, and not well
documented. It is nowadays providing new release regularly every 3 months (roughly)

TTCN-3 is specified by ETSI and used in different technical committees inside ETSI (ITS, 3GPP, oneM2M, etc.).

2) Is it available as Open Source or free runtime license? If so, under which license?

TTCN-3 is fully available as Open Source.

For the runtime environment:

• Eclipse Titan (Open Source): A TTCN-3 compilation and execution environment with an Eclipse-based IDE.
Titan consists of a core part, executing in a UNIX®/Linux®-like environment and a set of Eclipse plug-ins.

NOTE 1: UNIX® is a registered trademark of The Open Group.

NOTE 2: Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

• TT Workbench (Commercial): A full-featured integrated test development and execution environment (IDE)
for any kind of test automation project. This powerful, user-friendly tool allows to test software products and
services regardless of technology, operating system, or implementation domain.

• There are other tools but the team of experts who developed the present document had not enough resources to
evaluate them: http://www.ttcn-3.org/index.php/tools.

5.1.2 Robot framework

Definition and organization of tests

1) Is the programming language similar enough to "normal English" that it can be partially or completely used to
define the Abstract Tests in NGSI-LD Test Purposes Descriptions specifications?

Yes, Robot Framework allows testers to easily write automated test scripts using a Human-readable, keyword-driven
syntax; also supporting Gherkin.

2) How can the final list of test cases written in the TPDL be extended (under conditions compatible with ETSI
IPR rules) by contributions from a developer community?

The test cases can be maintained in a Git repository, allowing contributions from a developer community.

3) How "easy" it is to write HTTP API tests (is there a DSL? are there existing functions to make assertions on
the result?

Robot provides some libraries that provide a DSL for testing HTTP APIs:

• RequestsLibrary: https://github.com/MarketSquare/robotframework-requests.

• RESTinstance: https://github.com/asyrjasalo/RESTinstance/.

• HTTPRequestLibrary: https://github.com/Hi-Fi/robotframework-httprequestlibrary.

• HTTPLibrary: https://github.com/peritus/robotframework-httplibrary (API documentation:
http://peritus.github.io/robotframework-httplibrary/HttpLibrary.html): last commit is 7 years ago.

RequestLibrary is the most active of the four, with 33 contributors, and an activity peak for one year. It seems
HttpLibrary.HTTP is often used in conjunction with RequestsLibrary.

RESTinstance integrates support for JSONPath, which allows for powerful matching of JSON payloads (e.g. String
$[0].myProp.value "value of my prop").

http://www.ttcn-3.org/index.php/tools
https://github.com/MarketSquare/robotframework-requests
https://github.com/asyrjasalo/RESTinstance/
https://github.com/Hi-Fi/robotframework-httprequestlibrary
https://github.com/peritus/robotframework-httplibrary
http://peritus.github.io/robotframework-httplibrary/HttpLibrary.html

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)14

HTTRequestLibrary has no real activity for about 2 years (only dependencies upgrade) and its associated DSL is far
less fluent than the one provided by RequestLibrary (e.g."Should Be Equal As Strings ${resp.status_code} 200" to
check a response code status vs "Status Should Be 200 ${resp}" with RequestLibrary).

4) Is it possible to group/organize tests in a suite?

Yes, Robot Framework test cases are created using test case tables in test case files. Such a file automatically creates a
test suite from all the test cases it contains. Test case files can be organized into directories, and these directories create
higher-level test suites. These directories can then be placed into other directories creating an even higher-level suite.

5) Is it possible to reuse fixture data between tests?

Yes. It is possible to define global variables that will be accessible from all tests and keywords. The variables can also
be defined on suite, test case or keyword level. It can be also set using the setup and teardown (on test case or test suite
level).

6) Is it possible to reuse functions/components between tests?

Yes. Keywords and other Python™ (language) implemented functions can be reused between tests.

7) Does it support data-driven approach?

Data-driven tests can be created in Robot Framework using the test template functionality. Test cases with template
contain only the arguments for the template keyword. Instead of repeating the same keyword multiple times per test
and/or with all tests in a file, it is possible to use it only per test or just once per file.

Developer experience

1) What is the IDE support for the TPDL?

It has its own editor (RIDE) but there are plugins/extension for most common editors as well (Visual Studio Code,
Eclipse™, IntelliJ™, etc.). Recommended: Intellisense extension for Visual Studio Code:

• IntelliJ™: https://plugins.jetbrains.com/plugin/7415-robot-framework-support/versions.

• Eclipse™: https://nokia.github.io/RED/.

• VS Code: https://marketplace.visualstudio.com/items?itemName=TomiTurtiainen.rf-intellisense (no support
for any of the above HTTP libraries).

2) Can the programming language be executed in a software environment which is familiar to a majority of web
developers, e.g. Eclipse™, or does it run as a stand-alone?

Since it is built in Python™ language, it can be used and further extended using Python™ or Java™. It can also easily be
launched on the command line or via some shell scripting.

NGSI-LD specific points of attention

1) Is it able to check that after an entity creation/update and a matching subscription the notifications are
correctly delivered to the ip/port specified in the subscription?

It should be possible with the usage of available libraries (PythonRemoteServer, SSHLibrary, ...). Other Python™
functions can be implemented if needed.

2) Is it able to check that notifications are received over MQTT (ETSI GS CIM 009 [i.1])?

Robot has an MQTT library: https://github.com/randomsync/robotframework-mqttlibrary. It allows to subscribe to a
topic and validate a message is received (at least). However, it needs an MQTT broker to be launched as part of the test
suite.

3) (Keep in mind authentication and more generally security, etc. even if out of scope of the present document).

Robot allows to easily bind an authentication process as part of each or some requests, for instance to get an access
token in the case of an OpenID Connect authentication.

https://plugins.jetbrains.com/plugin/7415-robot-framework-support/versions
https://nokia.github.io/RED/
https://marketplace.visualstudio.com/items?itemName=TomiTurtiainen.rf-intellisense
https://github.com/randomsync/robotframework-mqttlibrary

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)15

Test Execution Environment

1) Is the Test Execution Environment offering tools familiar to the developer community such as display of
results in a browser window and writing full results in log files, etc.

Robot Framework generates an HTML report. It has statistics based on tags and executed test suites, as well as a list of
all executed test cases. It allows the possibility to navigate to more detailed information by adding links to the log files.
The overall test execution status is easily seen by the report's background color: green if all critical tests pass, and bright
red otherwise. For people that like dashboards, results can even be presented in a Grafana dashboard
(https://cognitiveqe.com/robot-framework-test-results-in-grafana-postgresql/).

2) Is it possible to run the NGSI-LD software and the Test Execution Environment on the same host?

Yes. The Test Execution Environment requirements are simple (Python™) and it can also be executed in Docker.

3) Is the Test Execution Environment available as open source or free runtime license?

Yes, Robot Framework is open source.

4) Can the tooling environment be integrated with continuous integration tools (e.g. Jenkins™)?

Yes, their execution can be configured in CI tools such as Gitlab and Jenkins™. In Jenkins™, there is a plugin to collect
and publish Robot Framework execution results.

5) The possibility, in the execution environment, to run individual test cases as well as specific sets or the entire
set of test cases.

Robot Framework test cases are created in files and directories, and they are executed by giving the path to the file or
directory in question to the runner script. A set of tests can be selected by referring a specific folder or file from a lower
level. It is also possible to give paths to several test case files or directories at once, separated with spaces. Tests can
also be associated with tags, that can be included or excluded on run instructions.

6) The execution environment should generate error messages in case the test case cannot be executed due to any
cause, including malformed definition of the test case

Robot Framework provides logs on console and on the report. Different log levels can be set: for instance, the log level
can be set to debug or trace to get more information on the console.

7) Can it supply detailed step-by-step logs and overall summary of pass/fail/skip?

Yes, Robot Framework contains a statistics table with the total number of pass/fail tests, as well as the result for each
test. Each individual test can be expanded to see in detail each step executed and its logs.

8) After a complete test suite generates errors/fails, can individual failed tests be re-tried?

Yes. It is possible to select tests by previous status (--rerunfailed or --rerunfailedsuites) and re-try the failed tests. It is
also possible to select them by names (--test or --suite options). Results from both runs can be merged in a single report
at the end with "rebot".

9) Is it possible to have the full details of requests and responses (payloads, headers)?

Yes. It is possible to do it by using the keyword "output", from the rest library, to output the request (URL, method,
headers, body, etc) and the response (status, body, seconds).

10) Is it possible to define if the suite continues or aborts (or forks?) after a failed test?

Continuing the suite is the default behavior. However, it is possible to stop the suite after a failed test case by passing
the -exitonfailure option parameter when launching the suite.

Community and license

1) Is the TPDL available as Open Source?

Yes, Robot Framework is a generic open-source automation framework released under Apache License 2.0. Most of
libraries and tools are also published as Open Source software.

https://cognitiveqe.com/robot-framework-test-results-in-grafana-postgresql/

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)16

2) What is the strength of the community behind the TPDL (number of committers, frequency of releases,
roadmap, etc.)?

Robot Framework is actively supported, with many industry-leading companies using it in their software development.

At the date (19.06.2020), their GitHub project has 4.8 K stars and more than 100 contributors, major releases at around
twice a year (they usually have pre-releases from alpha and beta versions in between) and a roadmap for 3 more
versions (v3.2.2, v3.3 and v4.0) with 124 issues open. It is used by more than 2 300 other projects. The last version is
3.2.1, it has been released on May 2020 the 4th. At the time of this writing, there are 129 issues 35 pull requests opened,
but also 3 128 issues and 315 pull requests closed.

Other resources

• API Testing using Robot Framework [i.2], see https://devonblog.com/test-automation/api-testing-using-robot-
framework/.

• Parameterizing Your Robot Framework Tests [i.3], see https://wonderproxy.com/blog/parameterizing-robot-
framework/.

• Robot test suite developed by the ETSI GS MEC group: https://forge.etsi.org/rep/mec/gs032p3-robot-test-
suite.

5.1.3 Karate

Karate is an "open source tool to combine API test-automation, mocks, performance-testing and even UI automation
into a single, unified framework".

It uses the BDD syntax popularized by Cucumber. It exposes a DSL that ease testing an HTTP API and has first-class
support for JSON. The BDD language is a normal English programming language for tests.

Definition and organization of tests

1) Is the programming language similar enough to "normal English" that it can be partially or completely used to
define the Abstract Tests in NGSI-LD Test Purposes Descriptions specifications?

The programming language is quite readable and expressed in English.

For instance, here is a simple feature:

Feature: karate 'hello world' example
Scenario: create and retrieve a cat
Given url 'http://myhost.com/v1/cats'
And request { name: 'Billie' }
When method post
Then status 201
And match response == { id: '#notnull', name: 'Billie' }

So, it can at least partially be used to define the Abstract Tests in NGSI-LD Test Purposes Descriptions specifications.

2) How can the final list of test cases written in the TPDL be extended (under conditions compatible with ETSI
IPR rules) by contributions from a developer community?

The test cases can be maintained in a Git repository, allowing contributions from a developer community. The test cases
are plain text files which can easily be extended or improved.

3) How "easy" it is to write HTTP API tests (is there a DSL? are there existing functions to make assertions on
the result?, etc.)

Karate is natively designed to test HTTP APIs. As such, it defines a domain specific language that offers the vocabulary
needed to easily test an HTTP API test.

4) Is it possible to group/organize tests in a suite?

Karate allows to put tags (https://intuit.github.io/karate/#tags) on features.

https://devonblog.com/test-automation/api-testing-using-robot-framework/
https://devonblog.com/test-automation/api-testing-using-robot-framework/
https://wonderproxy.com/blog/parameterizing-robot-framework/
https://wonderproxy.com/blog/parameterizing-robot-framework/
https://forge.etsi.org/rep/mec/gs032p3-robot-test-suite
https://forge.etsi.org/rep/mec/gs032p3-robot-test-suite
https://intuit.github.io/karate/

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)17

5) Is it possible to reuse fixture data between tests?

Fixture data can be reused between different tests.

6) Is it possible to reuse functions/components between tests?

Functions can be defined in Javascript™ or Java™ and then called from features. Features can also be reused by other
features (e.g. a feature to create an entity that will then be used for query testing).

7) Does it support data-driven approach?

Karate supports a data driven approach to tests (https://intuit.github.io/karate/#data-driven-tests), called a scenario
outline. It can also use a dynamic scenario outline where the test data is resolved at run-time.

Developer experience

1) What is the IDE support for the TPDL?

Karate benefits from the Gherkin support already available in many IDEs. Among them, it has a specific support in
IntelliJ™, Eclipse™ and VS Code (https://github.com/intuit/karate/wiki/IDE-Support).

2) Can the programming language be executed in a software environment which is familiar to a majority of web
developers, e.g. Eclipse™, or does it run as a stand-alone?

The programming language can be executed inside an IDE, but it can also easily be executed on the command line or
via shell scripting. As it is written in Java™, it only requires to have a JRE installed on the host.

NGSI-LD specific points of attention

1) Is it able to check that after an entity creation/update and a matching subscription the notifications are
correctly delivered to the ip/port specified in the subscription?

Karate does not natively offer a support to create and start a listening HTTP server as part of a test and check for the
data it receives.

However, it is possible to leverage the Async support (https://intuit.github.io/karate/#async) in order to wait for and
check received notifications.

2) Is it able to check that notifications are received over MQTT (ETSI GS CIM 009 [i.1])?

Same as the point above.

3) (Keep in mind authentication and more generally security, etc. even if out of scope of the present document).

Karate allows to easily bind an authentication process as part of each or some requests, for instance to get an access
token in the case of an OpenID Connect authentication.

Test Execution Environment

1) Is the Test Execution Environment offering tools familiar to the developer community such as display of
results in a browser window and writing full results in log files, etc.

Yes, Karate benefits from the underlying Cucumber tool to offer tests reports in different formats (HTML, JSON, etc.).
It can also be easily extended with custom formatters. Some screenshots are available in
https://intuit.github.io/karate/#test-reports.

2) Is it possible to run the NGSI-LD software and the Test Execution Environment on the same host?

Yes, both can run on the same host.

3) Is the Test Execution Environment available as open source or free runtime license?

Yes, the Test Execution Environment is available as Open Source.

https://intuit.github.io/karate/
https://github.com/intuit/karate/wiki/IDE-Support
https://intuit.github.io/karate/
https://intuit.github.io/karate/

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)18

4) Can the tooling environment be integrated with continuous integration tools (e.g. Jenkins™)?

Yes, the environment can be invoked via a script (it requires having a JRE installed on the host), thus it can be
integrated in a CI tool.

5) The possibility, in the execution environment, to run individual test cases as well as specific sets or the entire
set of test cases.

Karate allows to choose to run one or more features (via a name or by specifying a path), or a set of features selected (or
excluded) via tags.

6) The execution environment should generate error messages in case the test case cannot be executed due to any
cause, including malformed definition of the test case.

Yes, the execution environment displays meaningful error messages in case the test case cannot be executed.

7) Can it supply detailed step-by-step logs and overall summary of pass/fail/skip?

Yes, the generated reports include a detail of all the steps, with the statuses. They also display the overall summary of

the last execution.

8) After a complete test suite generates errors/fails, can individual failed tests be re-tried?

It is possible to rerun individually the failed tests when the Test Execution Environment is launched from an IDE like

Eclipse™ or VS Code. It does not seem to be possible when tests are run from the command line.

9) Is it possible to have the full details of requests and responses (payloads and headers)?

Yes, the generated reports include the full details of requests and responses (request and response bodies and headers).

10) Is it possible to define if the suite continues or aborts (or forks?) after a failed test?

Karate continues the test suite if a test fails, it does not allow to abort the test suite in such case (see

https://stackoverflow.com/questions/54699292/how-to-configure-karate-to-stop-execution-when-any-scenario-fails).

Community and license

1) Is the TPDL available as Open Source?

Yes, Karate is available as Open Source under the MIT license.

2) What is the strength of the community behind the TPDL (number of committers, frequency of releases,
roadmap, etc.)?

At the time of this writing (March 2021), the GitHub project has 3,4 K stars and 37 contributors, new releases every few
months but no clearly defined roadmaps for in-progress and future versions. It is used by more than 1 100 other
projects. The last version is 0.9.5, it has been released on February 2020 the 16th. At the time of this writing, there are
47 issues and 0 pull requests opened, but also 1 009 issues and 165 pull requests closed.

The contributors page also shows that the activity is mainly driven by one person.

https://stackoverflow.com/questions/54699292/how-to-configure-karate-to-stop-execution-when-any-scenario-fails

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)19

Figure 5.1.3-1: Karate GitHub users

5.1.4 OpenAPI™

OpenAPI™ is mainly a specification to define the contract of a RESTful HTTP API.

However, it also provides some tooling related to testing (https://openapi.tools/#testing). They are mainly aimed at
bootstrapping some test data based on an OpenAPI™ specification file. But there also exists some tools that are able to
generate test cases based on this same specification file.

As the NGSI-LD API already provides an OpenAPI™ specification file (versioned in https://forge.etsi.org/rep/NGSI-
LD/NGSI-LD and exposed on https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/gitlab/NGSI-LD/NGSI-
LD/raw/develop/spec/updated/full_api.jsonht), it is interesting to experiment the existing generation tools, at least to
bootstrap the structure of the tests cases and alleviate this tedious task.

This was the same process that was envisioned by the STF 576 (Methodology for RESTful APIs specs and testing,
https://portal.etsi.org/STF/STFs/STF-HomePages/STF576), where an OpenAPI™ specification file is meant to be used
as a basis for the generation of a skeleton Abstract Test Suite that could be then derived and enriched to form the final
Abstract Test Suite. The proprietary capability extension provided by the OAS could also be used to add NGSI-LD
specific metadata on each API (e.g. whether it is a mandatory endpoint, or to transmit group/subgroup information).

https://openapi.tools/
https://forge.etsi.org/rep/NGSI-LD/NGSI-LD
https://forge.etsi.org/rep/NGSI-LD/NGSI-LD
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/gitlab/NGSI-LD/NGSI-LD/raw/develop/spec/updated/full_api.json
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/gitlab/NGSI-LD/NGSI-LD/raw/develop/spec/updated/full_api.json
https://portal.etsi.org/STF/STFs/STF-HomePages/STF576

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)20

5.1.5 SoapUI

Definition and organization of tests

1) Is the programming language similar enough to "normal English" that it can be partially or completely used to
define the Abstract Tests in NGSI-LD Test Purposes Descriptions specifications?

It is not possible to change the text that define the assertions. Tests are added by using assertions that are predefined and
completing with the value desired.

2) How can the final list of test cases written in the TPDL be extended (under conditions compatible with ETSI
IPR rules) by contributions from a developer community?

Install SoapUI, import Project, make the changes and then save the project (.xml format).

EXAMPLE: https://raw.github.com/SmartBear/soapui-sample-projects/master/GoogleMaps/Google-Maps-
soapui-project.xml.

3) How "easy" it is to write HTTP API tests (is there a DSL? are there existing functions to make assertions on
the result?)

There are predefined assertions.

4) Is it possible to group/organize tests in a suite (shall/may, subscription/entity, etc.)?

Yes. SoapUI structures functional tests into three levels; TestSuites, TestCases and TestSteps. But it is not possible to
define TestSuites in different hierarchy levels (e.g: one higher level TestSuite that includes lower level TestSuites).

5) Is it possible to reuse fixture data between tests?

Groovy scripts can be written to setup a required state and teardown at the end.

6) Is it possible to reuse functions/components between tests?

It is possible to reuse other test cases, for example, using the Run TestCase TestStep.

7) Does it support data-driven approach?

Data Source test steps are only available in SoapUI Pro.

Developer experience

1) What is the IDE support to develop tests with the TPDL (syntax highlighting, code completion, run tests
directly from the IDE, etc.)?

SoapUI has its own IDE which allows to create the tests, select the assertions and run the tests.

2) Can the programming language be executed in a software environment which is familiar to a majority of web
developers, e.g. Eclipse™, or does it run as a stand-alone?

SoapUI needs to be installed and has Java™ as a requirement.

NGSI-LD specific points of attention

1) Is it able to check that after an entity creation/update and a matching subscription the notifications are
correctly delivered to the ip/port specified in the subscription?

As long as it is possible to be verified by a Groovy script that would run in the test Tear Down.

2) Is it able to check that notifications are received over MQTT (ETSI GS CIM 009 [i.1])?

As long as it is possible to be verified by a Groovy script that would run in the test Tear Down.

https://raw.github.com/SmartBear/soapui-sample-projects/master/GoogleMaps/Google-Maps-soapui-project.xml
https://raw.github.com/SmartBear/soapui-sample-projects/master/GoogleMaps/Google-Maps-soapui-project.xml

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)21

3) How can it be integrated with authentication (and authorization) concerns (even though it is out of scope of the
present document)?

Authentication tests can be called from other tests, which makes it easy to modify authentication if the requirements
change.

Test Execution Environment

1) Is the Test Execution Environment offering tools familiar to the developer community such as display of
results in a browser window and writing full results in log files, etc.

Exporting to PDF or HTML is only available in the PRO version.

2) Is it possible to run the NGSI-LD software and the Test Execution Environment on the same host?

It should be. SoapUI can be installed in either Linux, macOS® or Windows®.

3) Can the tooling environment be integrated with continuous integration tools (e.g. Jenkins™)?

It is possible by installing SoapUI in the Jenkins™ machine and calling the $SOAPUI_HOME/bin/testrunner.sh.

4) Is it possible, in the execution environment, to run individual test cases as well as specific sets or the entire set
of test cases?

It is possible to select all test suites, a specific test suite or a specific test case.

5) Is the execution environment able to generate error messages in case the test case cannot be executed due to
any cause, including malformed definition of the test case?

The output of the tests and the results of assertions can be seen in the terminal and in a log file.

6) Can it supply detailed step-by-step logs and overall summary of pass/fail/skip?

It is only possible in the PRO version.

7) After a complete test suite generates errors/fails, can individual failed tests be re-tried?

They can be retried one by one.

8) Is it possible to have the full details of requests and responses (payloads, headers)?

Yes. A log file can be created for each request that contains the request full details.

9) Is it possible to define if the suite continues or aborts (or forks?) after a failed test?

No. It is only possible to abort the current test after an error occurs.

Community and license

1) What is the strength of the community behind the TPDL (number of committers, frequency of releases,
roadmap, etc.)?

The SoapUI Open Source project had the latest release (5.5.0) on 11 November 2019. There is a branch for a newer
version (5.6.0) with recent activity but there is no information about any planned release date. According to the release
history, there is a new release once a year. The Github repository has 60 contributors.

2) Is it available as Open Source or free runtime license? If so, under which license?

There is an Open Source version with the basic features. For information, the pricing for the PRO version is available
on the SoapUI website: https://www.soapui.org/tools/soapui-pro/pricing/.

https://www.soapui.org/tools/soapui-pro/pricing/

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)22

5.1.6 Dredd

Definition and organization of tests

1) Is the programming language similar enough to "normal English" that it can be partially or completely used to
define the Abstract Tests in NGSI-LD Test Purposes Descriptions specifications?

No, focus is on validating the API based on the Swagger™/OpenAPI™ definition. It is not standard English, but different
development languages can be used.

2) How can the final list of test cases written in the TPDL be extended (under conditions compatible with ETSI
IPR rules) by contributions from a developer community?

Focus of the OpenAPI 2 [i.4], see https://swagger.io/specification/v2/, is on the definition and validation of an API and
cannot really be used natively to write extendable test cases.

3) How "easy" it is to write HTTP API tests (is there a DSL? are there existing functions to make assertions on
the result?...)?

The tool uses the OpenAPI™ specification to evaluate the implementation versus the specification. No custom tests. The
tool is a specification evaluation tool.

4) Is it possible to group/organize tests in a suite?

Dredd can be integrated in a test suite like grunt, rack or meteor. It can for be integrated in grunt using the following
setup: https://www.npmjs.com/package/grunt-dredd.

5) Is it possible to reuse fixture data between tests?

Yes.

6) Is it possible to reuse functions/components between tests?

The tool is based on the OpenAPI™ specification, but it can use hooks as setup or teardown. These can be reused.

7) Does it support data-driven approach?

No.

Developer experience

1) What is the IDE support for the TPDL?

Any IDE with support for Javascript™.

2) Can the programming language be executed in a software environment which is familiar to a majority of web
developers, e.g. Eclipse™, or does it run as a stand-alone?

Yes, OpenAPI 2 (formerly known as Swagger™) and the different programming languages can be executed in
environments similar to web developers.

NGSI-LD specific points of attention

1) Is it able to check that after an entity creation/update and a matching subscription the notifications are
correctly delivered to the IP/port specified in the subscription?

No.

2) Is it able to check that notifications are received over MQTT (ETSI GS CIM 009 [i.1])?

No.

https://swagger.io/specification/v2/
https://www.npmjs.com/package/grunt-dredd

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)23

Test Execution Environment

1) Is the Test Execution Environment offering tools familiar to the developer community such as display of
results in a browser window and writing full results in log files, etc.

Yes, Hooks can be used to write output to log files.

2) Is it possible to run the NGSI-LD software and the Test Execution Environment on the same host?

Yes, installed via node.js.

3) Is the Test Execution Environment available as open source or free runtime license?

Dredd runs under MIT license https://github.com/apiaryio/dredd.

4) Can the tooling environment be integrated with continuous integration tools (e.g. Jenkins™)?

Yes, examples are given for CircleCI and Travis CI.

5) The possibility, in the execution environment, to run individual test cases as well as specific sets or the entire
set of test cases

Yes.

6) The execution environment should generate error messages in case the test case cannot be executed due to any
cause, including malformed definition of the test case

Yes.

7) Can it supply detailed step-by-step logs and overall summary of pass/fail/skip?

With custom code in hooks

8) After a complete test suite generates errors/fails, can individual failed tests be re-tried?

No.

9) Is it possible to have the full details of requests and responses (payloads and headers)?

Yes.

10) Is it possible to define if the suite continues or aborts (or forks?) after a failed test?

Yes.

Community and license

1) Is the TPDL available as Open Source?

Yes: https://github.com/apiaryio/dredd

2) What is the strength of the community behind the TPDL (number of committers, frequency of releases,
roadmap, etc.)?

https://github.com/apiaryio/dredd
https://github.com/apiaryio/dredd

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)24

Figure 5.1.6-1: Strength of the community behind Dredd

5.1.7 Postman

Postman is a toolset for the development and the testing of APIs. It contains a set for automated testing, but it is created
in the closed and proprietary Postman environment and cannot be integrated in other environments.

5.1.8 Selenium

Selenium is a toolset for web browser automation that uses the multiple techniques to remotely control browser
instances and emulate a user's interaction with the browser. It allows users to simulate common activities performed by
end-users such as entering text into fields, selecting drop-down values and checking boxes, clicking links in documents,
mouse movement, and arbitrary JavaScript™ execution.

Selenium is used for front-end testing of websites therefore not adapted for NGSI-LD conformance testing.

5.1.9 Cucumber

Cucumber is a software tool that supports Behavior-Driven Development (BDD). It allows expected software behaviors
to be specified in a logical language that customers can understand and promote BDD practices across an entire
development team, including business analysts and managers. Gherkin is the language that Cucumber uses to define test
cases. It is designed to be non-technical and human readable, and collectively describes use cases relating to a software
system.

Cucumber is used for BDD testing to bridge the gap between business and technical people by collaborating on
executable specification, therefore it not adapted for NGSI-LD conformance testing.

What is more, it is actually considered via Karate which provides a DSL for API testing above the Cucumber/Gherkin
couple.

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)25

5.2 Synthesis and proposal
Tool Synthesis

TTCN-3 & TDL
It covers the expected criteria. However, it is a complex environment and has a
higher learning curve compared to other tools. There are also some uncertainties
about the development environment.

Robot Framework
Robot covers the totality of the requirements and offers nice features to describe the
tests purposes as "normal English". What is more, it is supported by a very large
community of contributors and users.

Karate

Karate covers the large majority of the requirements. It has however two major
weaknesses: it does not natively offer support for asynchronous checking, nor MQTT
binding and the development effort behind Karate is mainly driven by one single
person (even if it is extending, Karate is still young).

OpenAPI™ based tooling
OpenAPI™ does not provide the expected tooling and environment. However, it has to
be considered as a complementary tool to be used in the global process of the test
suite management.

SoapUI SoapUI is very limited in the features it provides, even when considering the PRO
version. It is also a closed environment, with few to no possibility to extend and adapt.

Dredd Dredd is interesting in the way it binds to an OpenAPI™ specification file. But it misses
a lot of the expected requirements and it is still a very young product.

Postman Closed and proprietary environment not adapted to what is looked for.
Selenium Not adapted to API conformance testing.

Cucumber/Gherkin Not adapted, see Karate for API testing DSL.

Therefore, two tools meet most or all of the expected requirements:

• Robot Framework.

• TDL & TTCN-3.

However, some key points were identified in favor of Robot Framework:

• A larger community in general, and especially a larger pool of contributors.

• The existence of library to integrate protocols other than HTTP (e.g. Robot already offers a library to bind to
MQTT brokers).

• The native flexibility in defining custom keywords can be of great help when translating from Test Purposes
(and Test Plan) to Test Cases.

• The development and runtime environments are easy to learn and familiar to many developers (Python™).

• The execution environment is simple to set up.

• Some Specialist Task Forces (STF) inside ETSI are already using this tool.

About TDL & TTCN-3, it has been identified as a less suited candidate for the following reasons:

• Smaller community than Robot.

• It implies a lot more to handle and learn, resources are less accessible. That of course implies major risks in
costs for NGSI-LD Test Purposes Descriptions & NSGSI-LD Test Suite specifications.

• There are major risks related to IDEs:

- Titan is the only known Open Source IDE but it can only be installed on some platforms (e.g. not on
macOS® which is nowadays very used among the developer community). Currently, it evolves quite
regularly, but its state of implementation of the specification is not exactly know and it can be considered
as a sort of single point of failure.

- Another specific IDE is needed for TOP: https://labs.etsi.org/rep/top/ide.

• TOP only generates a skeleton, so that implies manual work afterward to complete the executable test cases.

https://labs.etsi.org/rep/top/ide

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)26

• TTCN-3 is the Abstract Test Suite above the protocol binding (HTTP, MQTT, etc.), so the Executable Test
Suite with the protocol binding has to be implemented (there exists some partial code for HTTP, nothing for
MQTT for instance).

In conclusion, the Robot Framework is chosen.

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)27

Annex A:
Change History

Date Version Information about changes
September 2020 0.1.1 Milestone A
October 2020 0.2.0 Update TDL & TTCN-3 analysis, add recommendations
October 2020 0.3.0 Change document from GS to GR
October 2020 1.0.1 Align version with expectation from the ToR

October 2020 1.0.1 Final review and analysis of TPDL, recommendations from the team of experts who
developed the present document

March 2021 1.1.0 Final version
March 2021 1.1.1 Technical Officer review for EditHelp Publication pre-processing

ETSI

ETSI GR CIM 011 V1.1.1 (2021-04)28

History

Document history

V1.1.1 April 2021 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Criteria for Test Purpose Description Language (TPDL) selection
	4.1 Purpose
	4.2 Criteria list

	5 Candidates analysis
	5.1 Analysis
	5.1.0 Foreword
	5.1.1 TTCN-3
	5.1.2 Robot framework
	5.1.3 Karate
	5.1.4 OpenAPIŽ
	5.1.5 SoapUI
	5.1.6 Dredd
	5.1.7 Postman
	5.1.8 Selenium
	5.1.9 Cucumber

	5.2 Synthesis and proposal

	Annex A: Change History
	History

