
N
ew

 p
re

se
nt

at
io

n
-

se
e

H
is

to
ry

 b
ox

ETSI ETR 225

TECHNICAL October 1995

REPORT

Source: ETSI TC-TE Reference: DTR/TE-01063

ICS: 33.020

Key words: M&HIRS, multimedia platform, MHEG, API, script representation

Terminal Equipment (TE);
Application Programming Interface (API) and

script representation for MHEG;
Requirements and framework

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1995. All rights reserved.

Page 2
ETR 225: October 1995

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETR 225: October 1995

Contents

Foreword ...7

1 Scope ..9

2 References..9

3 Definitions and abbreviations ..10
3.1 Definitions ..10
3.2 Abbreviations ...12

4 General model...13

5 An introduction to the MHEG standard..19
5.1 Multimedia/Hypermedia application requirements...19
5.2 Rationale for standardization of Multimedia and Hypermedia information21
5.3 The MHEG standard objectives...22

5.3.1 MHEG for interchange...22
5.3.2 MHEG for presentation..22
5.3.3 MHEG and minimal resources ..22
5.3.4 MHEG for real-time ...22

5.4 MHEG concepts...23
5.4.1 MHEG classes...23
5.4.2 Overview of the MHEG classes...23

5.4.2.1 Content class...24
5.4.2.2 Multiplexed content class...24
5.4.2.3 Composite class ..24
5.4.2.4 Action class..24
5.4.2.5 Link class...25
5.4.2.6 Script class ..25
5.4.2.7 Descriptor class ...25
5.4.2.8 Container class..25

5.4.3 Run-time objects (called rt-objects)...25
5.4.4 Channels ...25

5.5 The MHEG API ..26
5.6 Extendibility of the MHEG standard ...26

6 Service requirements ..26
6.1 Main categories of services ...26
6.2 Applications of retrieval services except VoD..27

6.2.1 Common characteristics and taxonomy..27
6.2.1.1 Networks..27
6.2.1.2 Terminal Equipment ..27
6.2.1.3 Service attributes ...27

6.2.2 Multimedia retrieval services featuring local application and remote data28
6.2.2.1 Application example: encyclopaedic applications,

electronic libraries and electronic books..............................28
6.2.2.2 Service attributes ...28
6.2.2.3 Networks..28
6.2.2.4 Terminal Equipment ..29
6.2.2.5 Information interchange scenario ..29
6.2.2.6 Application configuration..29
6.2.2.7 Use of MHEG ..29
6.2.2.8 Use of scripts...30
6.2.2.9 Application architecture ...30
6.2.2.10 API requirements...30
6.2.2.11 SIR requirements...31

Page 4
ETR 225: October 1995

6.2.3 Multimedia retrieval services featuring distributed application and
distributed data ... 31
6.2.3.1 Application example: Point of information, Point of sales ... 31
6.2.3.2 Service attributes .. 31
6.2.3.3 Networks ... 32
6.2.3.4 Terminal Equipment.. 32
6.2.3.5 Information interchange scenario.. 32
6.2.3.6 Application configuration ... 32
6.2.3.7 Use of MHEG.. 33
6.2.3.8 Use of scripts .. 33
6.2.3.9 Application architecture... 33
6.2.3.10 API requirements .. 34
6.2.3.11 SIR requirements .. 34

6.2.4 Multimedia retrieval services featuring remote application and remote
data... 34
6.2.4.1 Application example: Interactive telematic training and

education services .. 34
6.2.4.2 Service attributes .. 35
6.2.4.3 Networks ... 35
6.2.4.4 Terminal Equipment.. 35
6.2.4.5 Information interchange scenario.. 35
6.2.4.6 Application configuration ... 35
6.2.4.7 Use of MHEG.. 36
6.2.4.8 Use of scripts .. 37
6.2.4.9 Application architecture... 37
6.2.4.10 API requirements .. 37
6.2.4.11 SIR requirements .. 37

6.3 Applications of distribution services and VoD ... 38
6.3.1 Common characteristics and taxonomy ... 38

6.3.1.1 Networks ... 38
6.3.1.2 Terminal Equipment.. 39
6.3.1.3 Service attributes .. 39

6.3.2 Multimedia distribution services featuring local interactivity 39
6.3.2.1 Application example: EPG .. 39
6.3.2.2 Service attributes .. 40
6.3.2.3 Networks ... 40
6.3.2.4 Terminal Equipment.. 40
6.3.2.5 Information interchange scenario.. 40
6.3.2.6 Service configuration... 40
6.3.2.7 Use of MHEG.. 41
6.3.2.8 Use of scripts .. 41
6.3.2.9 Application architecture... 41
6.3.2.10 API requirements .. 41
6.3.2.11 SIR requirements .. 42

6.3.3 Multimedia distribution services featuring real-time terminal-to-host
interactivity .. 42
6.3.3.1 Application example: teleshopping...................................... 42
6.3.3.2 Service attributes .. 43
6.3.3.3 Networks ... 43
6.3.3.4 Terminal Equipment.. 43
6.3.3.5 Information interchange scenario.. 43
6.3.3.6 Service configuration... 44
6.3.3.7 Use of MHEG.. 44
6.3.3.8 Use of scripts .. 44
6.3.3.9 Application architecture... 45
6.3.3.10 API requirements .. 45
6.3.3.11 SIR requirements .. 45

6.3.4 Multimedia services featuring on-line video retrieval 46
6.3.4.1 Application example: iVoD .. 46
6.3.4.2 Service attributes .. 47
6.3.4.3 Networks ... 47
6.3.4.4 Terminal Equipment.. 47
6.3.4.5 Information interchange scenario.. 47

Page 5
ETR 225: October 1995

6.3.4.6 Application configuration..48
6.3.4.7 Use of MHEG ..50
6.3.4.8 Use of scripts...50
6.3.4.9 Application architecture ...50
6.3.4.10 API requirements...50
6.3.4.11 SIR requirements...51

6.4 Applications of conversational services ...51
6.4.1 Common characteristics and taxonomy..52

6.4.1.1 Networks..52
6.4.1.2 Terminal Equipment ..53
6.4.1.3 Service attributes ...53

6.4.2 Multimedia conversational services featuring videoconferencing53
6.4.2.1 Application example: multimedia videoconferencing...........53
6.4.2.2 Service attributes ...54
6.4.2.3 Networks..54
6.4.2.4 Terminal equipment...54
6.4.2.5 Information interchange scenario ..54
6.4.2.6 Application configuration..54
6.4.2.7 Use of MHEG ..55
6.4.2.8 Use of scripts...55
6.4.2.9 Application architecture ...55
6.4.2.10 API requirements...56

6.4.3 Multimedia conversational services featuring videotelephony56
6.4.3.1 Application example: Interactive games based on the

videotelephony service ..56
6.4.3.2 Service attributes ...56
6.4.3.3 Networks..56
6.4.3.4 Terminal Equipment ..56
6.4.3.5 Information interchange scenario ..57
6.4.3.6 Application configuration..57
6.4.3.7 Use of MHEG ..57
6.4.3.8 Use of scripts...57
6.4.3.9 Application architecture ...58
6.4.3.10 API requirements...58
6.4.3.11 SIR requirements...58

6.4.4 Multimedia conversational services featuring user-to-machine
communication ..58
6.4.4.1 Application description: real-time control for domestic or

business premises...58
6.4.4.2 Service attributes ...59
6.4.4.3 Networks..59
6.4.4.4 Terminal Equipment ..59
6.4.4.5 Information interchange scenario ..59
6.4.4.6 Application configuration..59
6.4.4.7 Use of MHEG ..60
6.4.4.8 Use of scripts...60
6.4.4.9 Application architecture ...60
6.4.4.10 API requirements...60
6.4.4.11 SIR requirements...61

7 Functional requirements on the MHEG API ..61
7.1 Synthesis of application requirements ...61

7.1.1 Function targets and families ..61
7.1.2 Classification of application requirements...63

7.2 Model and terminology...64
7.2.1 Terminology...64
7.2.2 Levels of abstraction of the API...64

7.3 Functional scope of MHEG API ...66
7.3.1 Mapping application functional requirements to MHEG API primitives66
7.3.2 Functions to be provided by the MHEG API..67

8 Technical requirements on the MHEG API ...67
8.1 Guidelines for API specification ...68

Page 6
ETR 225: October 1995

8.2 Technical requirements on the MHEG API specification .. 68
8.2.1 Portability .. 68
8.2.2 Genericity.. 69
8.2.3 Conformance testability .. 69
8.2.4 Implementability.. 69
8.2.5 Language bindings ... 69
8.2.6 Message encoding.. 70
8.2.7 Conformance testing .. 71

8.3 Technical options .. 72
8.3.1 IEEE OSI abstract data manipulation ... 72
8.3.2 OMG CORBA Interface Definition Language ... 73
8.3.3 Use of IDL for the MHEG API definition.. 73
8.3.4 Use of ASN.1 .. 74
8.3.5 Recommendations.. 74

9 Methodology for the specification of the MHEG API... 75
9.1 Summary of methodology ... 75
9.2 Object-oriented analysis of the MHEG API ... 75

9.2.1 Object types.. 75
9.2.2 Non-object types... 77
9.2.3 Analysis of behaviour functions .. 77
9.2.4 Operations .. 78

10 SIR functional requirements ... 81
10.1 Synthesis of application requirements... 81

10.1.1 Terminology .. 82
10.1.2 Scripting Languages, Scripts and Script Interchange Representation 83

10.2 Functional scope of SIR .. 84

11 Technical requirements on the MHEG SIR .. 84
11.1 Technical requirements on the MHEG SIR specification .. 84
11.2 Technical options .. 85

11.2.1 Architecture Neutral Distribution Format (ANDF) ... 85
11.2.2 p-code... 85
11.2.3 Other options - intermediate languages.. 85
11.2.4 Conclusion .. 86

11.3 Guidelines for drafting the MHEG SIR standard ... 86
11.4 Possible implementation example using p-code... 86

11.4.1 The p-code stack machine ... 86
11.4.2 Relationship between script engine and MHEG engine 87
11.4.3 The p-code data types .. 87
11.4.4 Extension mechanisms using a Call instruction ... 88
11.4.5 SIR instructions... 88
11.4.6 SIR Header ... 88
11.4.7 Declaration of variables .. 88
11.4.8 Stack management... 88
11.4.9 Conversions.. 88
11.4.10 Byte manipulation and logical operators... 88
11.4.11 Control structures ... 89
11.4.12 Subroutine definition ... 89
11.4.13 Additional instructions... 89

11.5 Aspects relating to the notation for interchange.. 90

History ... 91

Page 7
ETR 225: October 1995

Foreword

This ETSI Technical Report (ETR) has been produced by the Terminal Equipment (TE) Technical
Committee of the European Telecommunications Standards Institute (ETSI).

ETRs are informative documents resulting from ETSI studies which are not appropriate for European
Telecommunication Standard (ETS) or Interim European Telecommunication Standard (I-ETS) status. An
ETR may be used to publish material which is either of an informative nature, relating to the use or the
application of ETSs or I-ETSs, or which is immature and not yet suitable for formal adoption as an ETS or
an I-ETS.

Page 8
ETR 225: October 1995

Blank page

Page 9
ETR 225: October 1995

1 Scope

This ETR analyses the requirements for a standardized Application Programming Interface (API) and
script representation and provides the framework for this future standardization work to be performed
within ETSI. This ETR:

- defines a generic reference model describing the functional architecture of multimedia applications;

- details which new services and applications will benefit from the target ETSs;

- indicates why those services and applications require the development of these ETSs;

- investigates how those applications and services are likely to use the API and script representation;

- specifies the functions that should be provided by the API and script representation;

- identifies the technical requirements on the API and script representation; and

- evaluates technical options for the definition of the API and script representation, making
recommendations accordingly and listing the identified open issues.

2 References

This ETR incorporates by dated or undated reference, provisions from other publications. These
references are cited at the appropriate places in the text and the publications are listed hereafter. For
dated references, subsequent amendments to or revisions of any of these publications apply to this
ETR only when incorporated in it by amendment or revision. For undated references the latest edition of
the application referred to applies.

[1] ITU-T Draft Recommendation T.170: "AVI - System: General Introduction,
Principles, Concepts and Models".

[2] ISO/IEC DIS 13522-1: "Information Technology - Coding of Multimedia and
Hypermedia Information".

[3] ITU-T Recommendation I.113 (1993): "Vocabulary of terms for broadband
aspects of ISDN".

[4] ITU-T Recommendation I.112 (1993): "Vocabulary of terms for ISDNs".

[5] CCITT Recommendation Q.9 (1988): "Vocabulary of switching and signalling
terms".

[6] ETR 173 (1995): "Terminal Equipment (TE); Functional model for multimedia
applications".

[7] CCITT Recommendation X.208 (1988): "Specification of Abstract Syntax
Notation One (ASN.1)".

[8] CCITT Recommendation X.209 (1988): "Specification of basic encoding rules
for Abstract Syntax Notation One (ASN.1)".

[9] ISO/IEC 8879: "Standard Generalized Markup Language (SGML)".

[10] ETR 181: "Terminal Equipment (TE); Multimedia Portfolio; A compilation of
multimedia applications and services provided by ETSI members".

[11] ETR 227: "Multimedia applications and services; Inband and outband signalling
protocols; A survey".

Page 10
ETR 225: October 1995

[12] ETR 084 (1993): "Terminal Equipment (TE); Multimedia & Hypermedia
Information Retrieval Services (M&HIRS), Investigation of candidate
architectures for M&HIRS".

[13] ITU-T Recommendation I.374 (1993): "Framework Recommendation on
”network capabilities to support multimedia services”".

[14] Draft ITU-T Recommendation F.MDS (02/94): "Multimedia distribution services
baseline document".

[15] ITU-T Recommendation I.211 (1993): "B-ISDN service aspects".

[16] ETR 228 (1995): "Terminal Equipment (TE); Broadband Multimedia Information
Retrieval Service".

[17] ETR 176 (1995): "Terminal Equipment (TE); Interworking and interoperability of
retrieval services and audiovisual services on narrow band networks".

[18] ITU-T Recommendation T.122 (1993): "Multipoint communication service for
audiographics and audiovisual conferencing service definition".

[19] ISO/IEC 9646 Parts 1 to 5 (1991): "Information Technology - Open Systems
Interconnection - Conformance testing methodology and framework".

[20] ETR 141 (1994): "Methods for Testing and Specification (MTS); Protocol and
profile conformance testing specifications; The Tree and Tabular Combined
Notation (TTCN) style guide".

[21] IEEE Std 1224.2-1993: "Directory Services - API (Language Independent)".

[22] IEEE Std 1224-1993: "OSI abstract data manipulation - API (Language
Independent)".

[23] IEEE Std 1326-1993: "Test methods for measuring conformance to OSI abstract
data manipulation - API (Language Independent)".

[24] ISO/IEC CD 14478-1 (1994): "Presentation Environments for Multimedia
Objects (PREMO)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this ETR, the following definitions apply:

application (when used alone): The same as telecommunication application (see below).

Application Programming Interface (API): A boundary across which application software uses facilities
of programming languages to invoke services. These facilities may include procedures or operations,
shared data objects and resolution of identifiers.

conversational service: An interactive service which provides for bi-directional communication by means
of real-time (no store-and-forward) end-to-end information transfer from user to user. [ITU-T
Recommendation I.113 [3], definition no. 114].

distribution service: Service characterized by the unidirectional flow of information from a given point in
the network to other (multiple) locations. Distribution services are subdivided into two classes: distribution
services without user individual presentation control and distribution services with user individual
presentation control [ITU-T Recommendation I.113 [3], definition no. 119].

distribution service with individual presentation control: A distribution services in which the
information is provided as a sequence of information entities, e.g. frames with cyclical repetition, so that

Page 11
ETR 225: October 1995

the user has the ability to select individual information entities and control the start and order of the
presentation of the information [ITU-T Recommendation I.113 [3], definition no. 120].

function family: Cluster of functional MHEG API requirements that have the same target type (i.e. the
kind of concept on which they apply) and the same type of operation that applies to this concept.

hypermedia: The ability to access monomedia and multimedia information by interaction with explicit links
[ITU-T Draft Recommendation T.170 [1]].

interchange object: The interchangeable multimedia/hypermedia information, encoded according to
ISO/IEC DIS 13522-1 [2], annex A.

interactive service: A service which provides the means for bi-directional exchange of information
between users or between users and hosts. Interactive services are subdivided into three classes of
services: conversational services, messaging services and retrieval services [ITU-T Recommendation
I.113 [3]].

local application: A piece of software which is part of the (telecommunication) application and is running
on the considered equipment.

mh-object: The presentation of an object within the MHEG engine, usuable for internal purposes (e.g.
computation of link conditions).

MHEG application: A piece of software which uses the MHEG API. A MHEG application is therefore a
client of an MHEG engine.

MHEG-using application: An application which involves the interchange of MHEG objects within itself or
with another application (see MHEG).

Multimedia and Hypermedia (M&H) application: An application which involves the presentation of
multimedia information to the user and the interactive navigation across this information by the user.

Multimedia and Hypermedia Information Retrieval Services (M&HIRS): A generic set of services
which provide users with the capability to access and interchange multimedia and hypermedia information.

multimedia application: An application which involves the presentation of multimedia information to the
user.

multimedia: The property of handling several types of representation media.

Multipoint Control Unit (MCU): A device that serves to connect terminals and other MCUs in a
multipoint fashion. A MCU may include the functionality of a terminal as well as that of a MCU.

presentation object: A piece of information which is to be output to/input from the user.

primitive: Basic entry points provided by a provider module to any user module to enable the user module
to access software services supplied by the provider module.

retrieval service: An interactive service which provides the capability of accessing information stored in
database centres. The information will be sent to the user on demand only. The information can be
retrieved on an individual basis, i.e., the time at which an information sequence is to start is under the
control of the user [ITU-T Recommendation I.113 [3]].

rt-object: Copies of mh-objects usable for presentation to the user which are referred to as run-time
objects.

Service Support Unit (SSU): A functional unit that provides the service functions for a given service.

service: That which is offered by an Administration to its customers in order to satisfy a specific
telecommunication requirement [ITU-T Recommendation I.112 [4]].

Page 12
ETR 225: October 1995

software application: A piece of software answering a set of user's requirements and for use by a
computer user.

telecommunication application: A set of a user's requirements [CCITT Recommendation Q.9 [5]].

terminal application: A piece of software running on the terminal and performing the part of the
processing that is required to make the terminal appropriate for user access to the application. The
terminal application is usually the "master" module in the terminal.

user: A person or machine delegated by a customer to use the services and/or facilities of a
telecommunication network [ITU-T Recommendation I.112 [4]].

3.2 Abbreviations

For the purposes of this ETR, the following abbreviations apply:

3PTY Three-Party supplementary service
ADSL Asynchronous Digital Subscriber Line
ANDF Architecture Neutral Distribution Format
AP Access Point
API Application Programming Interface
ASN.1 Abstract Syntax Notation One
ATM Asynchronous Transfer Mode
AVCS Audiovisual Conferencing Service
B-ISDN Broadband Integrated Services Digital Network
CATV Community Antenna Television
CBDS Connectionless Broadband Data Service
CBR Constant Bit Rate
CD Compact Disk
CD-I Compact Disk Interactive
CD-ROM Compact Disc Read Only Memory
CONF Conferencing supplementary service
CORBA Common Object Request Broker Architecture
DAT Digital Audio Tape
DIS Draft International Standard
DQDB Distributed Queue Dual Bus
DRA Defence Research Agency
DSM CC Digital Storage Media - Control Commands
DTD Document Type Definition
DVB Digital Video Broadcasting
EBNF Extended Backus Naur Form
ECU European Currency Unit
EPG Electronic Programme Guide
EWOS European Workshop for Open Systems
FDDI Fibre Distributed Data Interface
FTTH Fibre To The Home
GUI Graphical User Interface
HDSL Hybrid Digital Subscriber Line
ICS Implementation Conformance Statement
IDL Interface Definition Language
IEC International Electrotechnical Commission
IMA Interactive Multimedia Association
ISDN Integrated Services Digital Network
IUT Implementation Under Test
iVoD Interactive Video on Demand
IWU InterWorking Unit
JBIG Joint Bi-level Image Experts Group
JPEG Joint Photographic Experts Group
JTC Joint Technical Committee
LAN Local Area Network
M&H Multimedia & Hypermedia
M&HIRS Multimedia & Hypermedia Information Retrieval Services
MCU Multipoint Communication Unit

Page 13
ETR 225: October 1995

MH Multimedia hypermedia
MHEG Multimedia and Hypermedia information coding Experts Group
MHEG-S Multimedia and Hypermedia information coding Experts Group Script
MHI Multimedia and Hypermedia Information
MPEG Moving Picture Experts Group
N-ISDN Narrowband Integrated Services Digital Network
OMG Object Management Group
OSI Open Systems Interconnection
PC Personal Computer
PCI Programming Communication Interface
PCO Point of Control and Observation
PCTR Protocol Conformance Test Report
PICS Protocol Implementation Conformance Statement
PIXIT Protocol Implementation Extra Information For Testing
PNO Public Network Operator
PoI Point Of Information
PON Passive Optical Network
PoS Point Of Sale
PSPDN Packet Switched Public Data Network
PSTN Public Switched Telephone Network
rt-objects run-time objects
RTE Run-Time Engine
SAF Service Access Function
SGML Standard Generalized Markup Language
SIR Script Interchange Representation
SL Scripting Language
SMDS Switched Multimegabit Data Service
SSU Service Support Unit
SUT System Under Test
sVoD Staggered Video On Demand
TE Terminal Equipment
TTCN Tree And Tabular Combined Notation
TV Television
UTP Unshielded Twisted Pair
VAP Videotex Access Point
VCR Video Cassette Recorder
VHS Video Home System
VoD Video on Demand
WAN Wide Area Network

4 General model

This clause defines a generic reference model describing a functional architecture common to the target
multimedia applications. The model is a refinement of ETR 173 [6] for an MHEG environment. The model
is applicable to all applications that interchange or process Multimedia and Hypermedia (M&H) objects
encoded according to the MHEG standard. The reference model may be applicable in some parts as well
if other coding standards different from MHEG are used but such an investigation is outside the scope of
this ETR.

Page 14
ETR 225: October 1995

Figures 1, 2 and 3 show the reference model for terminal-to-host, terminal-to-terminal and terminal-to-
database configurations. Together they form a generic model which is valid for the following three different
configurations for both point-to-point and multipoint communication:

- terminal-to-host;
- terminal-to-terminal;
- terminal-to-database.

For a "terminal-to-host and database" configuration the host may use the end-to-end protocol between
access agents to reference objects or contents at the database. The database has the same structure as
shown in figure 3.

For a terminal-to-host architecture, the Service Support Unit (SSU) to which the terminal may be
connected may also enable the user to select between different applications. The host is connected to the
SSU via the host access network.

For a terminal-to-terminal architecture the SSU to which all terminals are connected may be a Multipoint
Control Unit (MCU) that controls and manages the application and the different terminals. The end-to-end
protocol between an application and a distant MHEG engine is applicable to all terminals. Each terminal
application can use the protocol to communicate with each other terminal engine.

For a "terminal-to-database" or "terminal-to-host and database" structure the database may mainly consist
of an access agent used to locate the referenced objects.

The reference model is valid for all categories of services (retrieval, distribution, conversational) but the
actual implementation of the application architecture may be different.

Page 15
ETR 225: October 1995

Block Terminal

PresentationAgent
(1,1)

AccessAgent
(1,1)

LocalInfoBase
(1,1)

MHEG_Engine
(1,1)

LocalApplication
(1,1)

AccessAgent
(1,1)

LocalInfoBase
(1,1)

Block Host

Block Network

ServiceSupportUnit
(1,)

LocalApplication
(1,1)

MHEG_Engine
(1,1)

System Terminal_to_Host

Figure 1: Application architecture reference model for terminal-to-host configurations

Page 16
ETR 225: October 1995

Block Terminal

PresentationAgent
(1,1)

AccessAgent
(1,1)

LocalInfoBase
(1,1)

MHEG_Engine
(1,1)

LocalApplication
(1,1)

AccessAgent
(1,1)

LocalInfoBase
(1,1)

Block Terminal

Block Network

ServiceSupportUnit
(1,)

LocalApplication
(1,1)

MHEG_Engine
(1,1)

PresentationAgent
(1,1)

System Terminal_to_Terminal

Figure 2: Application architecture reference model for terminal-to-terminal configurations

Page 17
ETR 225: October 1995

Block Terminal

PresentationAgent
(1,1)

AccessAgent
(1,1)

LocalInfoBase
(1,1)

AccessAgent
(1,1)

LocalInfoBase
(1,1)

Block Database

Block Network

ServiceSupportUnit
(1,)

LocalApplication
(1,1)

MHEG_Engine
(1,1)

System Terminal_to_Database

Figure 3: Application architecture reference model for terminal-to-database configurations

In a M&H architecture the following functional units can be identified:

- presentation agent;
- access agent;
- local application interpreter;
- MHEG engine;
- local information base.

Page 18
ETR 225: October 1995

In a M&H architecture the following Interfaces (APIs) can be identified:

a) the services of the presentation agent are offered through the presentation API;
b) the services of the MHEG engine are offered through the MHEG API;
c) the services of the access agent are offered through the access API.

In a M&H architecture the following end to end protocols can be identified:

1) end-to-end protocol between an application - distant MHEG engine;
2) end-to-end protocol between an application - service support function;
3) end-to-end protocol between an access agent - access agent.

The presentation agent manages the presentation of monomedia data, performs data format decoding
and manages the user interaction. It also acts as an interface to external devices like smart card readers,
Video Cassette Recorder (VCRs), etc,... The presentation agent is accessed by its clients (here the
MHEG engine) through the "presentation API" which isolates the software on higher level from the specific
features of the various hardware sub-platforms; the main components of the presentation agent are Joint
Photographic Experts Group (JPEG) decoders, Moving Pictures Experts Group (MPEG) decoders,
Videotex syntax decoders as well as decoders from input devices (keyboard, mouse, voice recognition,
etc,...). The contents to be presented following a request through the presentation API are normally
specified by reference identification; the reference is input to the access agent. The presentation agent is
only present on a terminal.

The access agent manages a directory that enables it to locate the requested content. The content is
either on the local object base because it is resident or has been previously downloaded, or it is located on
a distant memory (distant multimedia database or cache memory in the network); in the latter case, the
access agent automatically sends the appropriate request through the network interface to get the object
or the content. The access agent makes the location of the various objects (multimedia contents, MHEG
objects, scripts, application specific data) totally transparent to its clients, i.e. the processes trying to
access the objects.

The local application manages the logic of a given platform. The application itself will often be distributed
between several platforms (terminals, hosts). The local application is a client of the access agent via the
access API, of the MHEG engine via the MHEG API and of the presentation agent via the presentation
API. The local application may include in some cases a script processor allowing to execute scripts, i.e.
parts of the application which are interchanged during the course of an application. The script processor is
a functional element in charge of executing scripts. It may also be the script itself (if interchanged in
executable form), a script language interpreter or a Script Interchange Representation (SIR) interpreter.

The MHEG engine interprets MHEG objects, manages links between them, triggers actions and orders
objects presentation and access. It is controlled by the application through the MHEG API. The MHEG
services accessible through the MHEG API may be used by any application based on the MHEG standard
to exchange MHEG objects. Just as the presentation agent, the MHEG engine uses the access agent
each time it has to process a referenced MHEG object.

The local information base may be used to store objects, contents, scripts, etc,... permanently or
temporarily on the device. No assumption is made on how those objects are stored and which physical
storage device is used.

The presentation API allows the terminal MHEG engine to access the services offered by the
presentation agent. The services may include primitives like "display data", "accept user input", etc,... The
presentation API is beyond the scope of this ETR.

The MHEG API allows applications to access the services of the MHEG engine. The application may run
locally in the application interpreter or on an remote device. If the application is running on an remote
device it needs to access the API MHEG using the end-to-end protocol "application - distant MHEG
engine". The services may include primitives like "prepare object", "destroy object", etc,... The functional
and technical requirements for the MHEG API are specified in this ETR. The specification of the MHEG
API is to be part of the scope of the standard to be prepared by ETSI.

The access API allows the clients of the access agent (local application, script interpreter, MHEG engine,
presentation agent) to access the services offered by the access agent. The services may include
primitives like "get object", "send object", etc,... The access API is beyond the scope of this ETR.

Page 19
ETR 225: October 1995

The end-to-end protocol "application - distant MHEG engine" allows an application running on a
distant device to communicate with a local MHEG engine. This protocol enables the implementation of
host - terminal configurations. The end-to-end protocol "application - distant MHEG engine" is beyond the
scope of this ETR.

The Service Support Unit (SSU) is a functional unit that handles service specific control parameters and
offers functionality that depends on the particular service. An example for a service support unit is the
MCU in the case of the Videoconferencing service. The functionality handled by the SSU is service
specific and not further described in this ETR.

The end-to-end protocol "application - service support unit" enables the use of the services provided
by the service provider by the terminal application or the user respectively. The end-to-end protocol
"application - service support unit" is beyond the scope of this ETR.

The end-to-end protocol "access agent - access agent" enables the handling, maintenance and
exchange of objects and data in an distributed environment. The end-to-end protocol "access agent -
access agent" is beyond the scope of this ETR.

5 An introduction to the MHEG standard

The following clause presents a general introduction to the MHEG standard. It is derived from the
introductory clause of ISO/IEC DIS 13522-1 [2] ("Information Technology - Coding of Multimedia and
Hypermedia Information").

5.1 Multimedia/Hypermedia application requirements

In the various domains, interactive multimedia systems are perceived to have increased impact on users
through their use of image, video and audio in addition to traditional text information.

The development of these systems is based upon support for multimedia information in the following
areas:

- platforms: emerging compression standards, such as JPEG or MPEG have enabled the
development of dedicated hardware, which in the future will be provided as a standard system
resource;

- storage: the increasing capacity of magnetic and optical disks combined with compression
techniques enables the storage of increasing amounts of high bandwidth information;

- communication: the increasing availability and bandwidth of digital transmission media such as
ISDN and other broadband telecommunication and broadcasting networks enable the appropriate
exchange of large amounts of data.

Using these facilities, it is anticipated that multimedia applications will be designed to run on
heterogeneous platforms and will be interconnected to offer multimedia services. For example, such
applications may include computer supported multimedia co-operative work, multimedia messaging,
electronic publishing and electronic books, audiovisual telematic systems for training and education,
simulation and games, sales and advertising, home shopping, interactive television, Video on Demand
(VoD) applications, and entirely new classes of multimedia applications.

These multimedia applications and services will use large quantities of structured multimedia objects
resident in workstations, stored on digital interchange media, retrieved or distributed from remote sources
through a network. As production of these multimedia data represents a significant investment, it is vital
that it remains applicable in a world of rapidly evolving systems and technologies. In particular, information
should be interchangeable between the data structures supported by different applications.

Page 20
ETR 225: October 1995

MHEG-using applications involve the following application requirements:

- multimedia database retrieval;
- frequent updates of multimedia data;
- manipulation of a set of data elements;
- creation of multimedia documents on a range of workstations;
- composition of multimedia data in time and space;
- association of a pan of a document with some other part of the same or another document (e.g.

hypertext);
- synchronisation with types as follows:

a) elementary synchronisation - two objects are synchronised either both with regard to the
same reference origin time (parallel mode), or one with regard to the other (sequential
mode);

b) chained synchronisation - a set of objects is to be presented one after another in the form of
a chain;

c) cyclic synchronisation - one or more objects will be repetitively presented;

d) conditional synchronisation - the presentation of an object is linked to the satisfaction of a
condition.

- re-use of multimedia data by integration in different documents;
- exchange of multimedia data among heterogeneous systems;
- wide range of users, including closed user groups;
- real-time interactivity including acquisition of multimedia data;
- telecommunication of multimedia data;
- broadcast of multimedia data;
- wide range of data volumes and transfer rates;
- use of a wide range of terminals and workstations, including devices with minimal resources;
- access control, security;
- tariffing;
- copyright, licensing;
- wide range of support materials;
- minimal resources - facilities that the interchange form should provide for a given set of objects

running in limited resources environments to meet their functional specification as determined by its
designer, as follows:

1) ease of specification of the minimum recommended resources needed by the MHEG
application;

2) ease of application - minimum requirements of an application should be easily recognised by
the negotiation process;

3) flexibility - the mechanism should be reliable across a broad range of system configurations
and media formats;

4) informative rather than restrictive - the using application should have the final determination
as to whether a given set of objects is interpretable or not;

5) extensible open - the representation should function correctly as new formats, classes, and
application dependent parameters are added;

6) scalability - trade off among different application platform capabilities, for example, resolution
enhancement relative to presentation time;

7) compositionality - the minimum resource requirements for a given MHEG application should
be combinable in some consistent and predictable manner when applications are combined;

8) graceful degradation - the primary concern of minimal resource systems is the manner in
which degradation can be handled. An application should be able to express its policy with
regards to this issue, for example by using scalability and related mechanisms.

Page 21
ETR 225: October 1995

- real-time interchange and presentation, as follows:

- object placement optimisation - objects which are likely to be accessed simultaneously are
adjacent from the standpoint of the access mechanism;

- progressive access of objects - images may be retrieved and presented in increasing
resolution for systems with significant presentation delay. Scalable versions of objects may
be represented and retrieved for systems with insufficient resources for full fidelity
presentation;

- partial object retrieval - large objects may be retrieved in several portions since the entire
content will not be presented at one time;

- object sequencing - the order in which objects are expected to be presented should be used
by the access mechanism when insufficient throughput would lead to unacceptable delays for
the whole object to be interchanged;

- separate retrieval of object description and object content - the object description should be
retrieved without necessarily retrieving the content so that the system can use information
about a set of objects to optimise the access for this set and resources needed for the
access can be prepared;

- global object index - a table of all objects and their position in an object set should be
provided to support fast lookup of objects;

- object interleaving - objects which are to be retrieved simultaneously may be interleaved so
that large objects do not cause delays for other objects;

- resource requirements for retrieval and presentation by the target system should be available
by lookup rather than by derivation;

- aggregate retrieval - objects may be aggregated into collections so as to be retrieved by one
step rather than through a series of request.

These requirements can be summarised in a set of generic needs:

- application designers and distributors may require application portability in a multi-vendor
environment;

- applications may need to handle multimedia information structured in such a way that real-time
interactivity (including acquisition of multimedia data), as well as real-time interchange of
multimedia data can be ensured;

- applications may need to compose and synchronise multimedia data in space and time;

- applications may need to be able to define links between multimedia data elements;

- applications may need to be able to reuse multimedia data by integration in different contexts;

- applications may need to be able to frequently update the multimedia data, as well as to manipulate
a set of data elements;

- applications may need to be able to be interpreted on different systems, from minimal resources to
non-limited resources systems;

- applications may need to be interchanged and presented in real-time.

5.2 Rationale for standardization of Multimedia and Hypermedia information

The rationale for a standard defining M&H information structures is based on the following considerations:

- standardization only at the level of monomedia information is not sufficient to guarantee application
portability. Applications do not use the monomedia data separately but need to define an associated
set of parameters which are necessary for presentation (such parameters may include identification
of the encoding algorithm applied to the data, decoding parameters relevant to the data, optional
attributes to be used for presentation, etc,...);

Page 22
ETR 225: October 1995

- standardization only at the level of monomedia information is not sufficient for the design and
interchange of M&H information. M&H applications rely on abstractions or data structures which
provide features such as synchronisation links and logical links between monomedia data;

- the design and management of M&H applications in distributed environments will be eased if the
internal details of the information presentation are masked from the application by the use of
appropriate abstractions. The application should only deal with functions such as management of
information distribution, scheduling of presentation, management of the user dialogue and other
high level activities.

The MHEG standard aims to provide generic Multimedia/Hypermedia information structures which fulfil
these requirements and additionally are suited to:

- real-time presentation using multimedia presentation and synchronisation facilities available on the
application platform;

- real-time interchange using communication facilities available on the application platform;

- final form representation in which the information is represented and coded for direct presentation,
without requiring additional processing of its structure.

5.3 The MHEG standard objectives

5.3.1 MHEG for interchange

The MHEG standard is intended to provide interchange facilities for various media types. The media data
may be encoded according to other international standards, e.g. JPEG for still image, MPEG for video, or
may be encapsulated using private and proprietary coding techniques. The interchange units defined by
MHEG are handled by the MHEG system under the control of an application.

In order to support multimedia interchange (as opposed to the interchange of multiple media), the MHEG
standard provides structures for the composition of different media types within a single unit of
interchange.

5.3.2 MHEG for presentation

The MHEG standard is intended to support final form presentation of multiple media types. The standard
provides facilities for the identification of the coding technique to enable the use of the appropriate
presentation resources on a specific platform.

In order to support multimedia presentation, as opposed to the presentation of multiple media, the MHEG
standard provides structures for the composition of different media types in a presentation. This
composition takes the form of time sequencing, spatial positioning and logical interaction between the
media.

In addition, the MHEG standard supports interaction with, and modification of, media data and its
associated presentation attributes, e.g. size, position, volume.

5.3.3 MHEG and minimal resources

The MHEG standard is intended to support the specification of the minimal resources required to present
the encoded data. The MHEG standard provides facilities for the interchange of information relating to
these resources which is provided by the information source.

5.3.4 MHEG for real-time

The MHEG standard is intended to ease the real-time interchange of multimedia information. The MHEG
standard provides facilities to assist a using system in achieving an adequate information flow.

Page 23
ETR 225: October 1995

5.4 MHEG concepts

This subclause provides a general introduction to the MHEG concepts. The following concepts are
presented:

- MHEG class, MHEG objects: The MHEG standard defines object classes. From these classes,
MHEG objects may be instantiated by the object designer and interchanged between applications.
Any number of MHEG objects may be instantiated from a given MHEG class;

- run-time objects (rt-objects): The MHEG model class is an MHEG abstract class which provides
the following MHEG classes: script, content, multiplexed content and composite classes. From
these model classes, model objects may be instantiated by the object designer and interchanged.
In order to reuse the data interchanged in the model objects in different contexts, the object
designer is able to create rt-objects from a given model object; for instance, the same data in a
content object may be presented twice at the same time with different sizes using two rt-content
objects but the content object will be interchanged only once. Any number of rt-objects may be
created from a given model object by the object designer;

- channels: The MHEG standard defines logical spaces in which the rt-objects are presented and
perceived by the user.

5.4.1 MHEG classes

The MHEG standard defines a classification of structures corresponding to units of
multimedia/hypermedia information to be interchanged. This classification is based on an analysis of the
common behaviour and properties of Multimedia/Hypermedia information and takes the form of an object-
oriented approach to the standardization. This approach results in autonomous and reusable information
structures which are generic to Multimedia/Hypermedia applications.

The MHEG classes contain a level of complexity that is compatible with their use as generic structures in
a wide range of applications and domains. It is assumed that the semantics associated with the use of
MHEG classes is defined at the application level and not at the MHEG level.

It should be understood that the use of an object-oriented approach to the definition of MHEG structures
does not imply that a MHEG system should be based upon this approach. As the MHEG standard defines
an interchange format for multimedia/hypermedia information, it makes no assumptions about the internal
representation of MHEG structures or the design of MHEG systems, engines, interpreters, tools or using
applications.

The MHEG standard provides a coded representation of each MHEG class. Instances of these coded
representations are MHEG objects and represent the data to be interchanged and presented by
Multimedia/Hypermedia applications.

The base-coded representation makes use of CCITT Recommendation X.208 [7] and CCITT
Recommendation X.209 [8] and is described in ISO/IEC DIS 13522-1 [2].

An alternate coded representation is provided in the form of a Document Type Definition (DTD) as defined
by ISO/IEC 8879 [9]. This coded representation is isomorphic to the base coded representation and is
described in ISO/IEC DIS 13522-1 [2].

These two notations and encodings Abstract Syntax Notation One (ASN.1) and Standard generalized
Markup Language (SGML) are alternatives used to express the same and unique representation of the
MHEG objects.

5.4.2 Overview of the MHEG classes

The classes defined in the MHEG standard (ISO/IEC DIS 13522-1 [2]) can be used to specify:

- objects containing media information;
- relationships between objects;
- dynamic behaviour of objects;
- information to optimise the real-time handling of objects.
The following instanciable classes are defined in ISO/IEC DIS 13522-1 [2].

Page 24
ETR 225: October 1995

5.4.2.1 Content class

The content class is a model class. It contains, or refers to, the coded representation of media information
together with a parameter set containing information required for content presentation. This parameter set
contains an identification of the coding method and a field for the specification of application-oriented
parameters (e.g. fonts, colour table). The content class specifies also the original size, duration and
volume of the data. These values are expressed using generic space units.

5.4.2.2 Multiplexed content class

The multiplexed content class is a model class which is a sub-class of the content class. It contains, or
refers to, the coded representation of a multiplexed media data together with a description of each
multiplexed stream.

5.4.2.3 Composite class

The composite class is a model class. It provides the support for associating M&H objects with each
other. This mechanism provides a consistent approach to the synchronisation in time and space and
linking of a set of objects. This class provides also the logical structure to describe the list of possible
interactions offered to the user, but does not define the interaction facilities provided by the user interface.
Such interaction may be achieved in a variety of ways for example: graphical user interface, keyboards,
etc,... The MHEG standard does not define the "look and feel" of multimedia interactive presentations,
neither does it propose to change or add concepts to those existing in typical graphical user interface. As
the MHEG standard is generic and independent of platform and implementation, it describes interaction at
a virtual level. It is up to a using application to apply these mechanisms using its specific "look and feel".

5.4.2.4 Action class

The MHEG standard provides an initial behaviour for each MHEG object, rt-object and channel, e.g.
default position of a rt-content. The MHEG standard also provides a means to modify the initial behaviour
of each object by defining a list of elementary actions to be applied on the objects. The modification of the
behaviour is achieved by interchanging the corresponding elementary actions within action objects. The
action objects are used within a link object to describe the link effect.

The action class defines a structure which specifies a synchronised set of elementary actions to be
applied on one or more targets.

The MHEG standard defines elementary actions whose application may affect the following behaviours of
an MHEG object, an rt-object or a channel:

- preparation: actions are provided to control the availability of the MHEG object in the system. For
example, "Prepare" and "Destroy" actions may be applied to add and remove an MHEG object from
the system;

- creation of rt-objects: actions are provided to create rt-objects from a model object;

- presentation: actions are provided to control the progress of the rt-components in the system. For
example, "Run" and "Stop" actions may be applied to control the progression of a time-based
rt-component;

- rendition: actions are provided to control the rendition of the rt-component on the system. These
actions vary according to the media type, for example, "Set Speed" for time-based media and "Set
Size" for visible media;

- interaction: actions are provided to control the results of interaction with a rt-component in the
system. For example, "Set Selectable" and "Set Modifiable" specifies respectively the selectability
and the modifiability of a rt-component;

- activation: actions are provided to control the activation of the rt-scripts in the system.

The MHEG standard also defines a means to retrieve the behaviour of an MHEG object, an rt-object or a
channel:

Page 25
ETR 225: October 1995

- evaluated value: actions are provided to get the behaviour attribute or status value of MHEG
objects, rt-objects and channels. These actions are used to express the link condition in a link
object.

5.4.2.5 Link class

The link class defines a structure which specifies a set of relationships. Each relationship is defined
between one or more "sources" and one or more "targets". The relationship is composed of conditions
associated with the sources (link condition) and actions to be applied to the targets (link effect). The
actions which are described in action objects are to be applied on the targets when the conditions are
satisfied.

The source and target can be instances of any MHEG class, including link class and action class
instances. The source and targets can also be any rt-objects.

Instances of the link class are used to specify the time sequencing, spatial positioning or logical interaction
between MHEG objects and rt-objects.

5.4.2.6 Script class

The script class is a model class. It defines a container for complex relationships between MHEG objects
and rt-objects, defined by a non-MHEG language. The MHEG standard does not define the scripting
language itself, but provides the script class to encapsulate a script and an indication of the language
used.

The evaluation of the requirements for a scripting language or a SIR is within the scope of this ETR.

It is assumed that the scripting language used in a script object is able to reference MHEG objects,
rt-objects and to access their attributes.

5.4.2.7 Descriptor class

The descriptor class defines a structure for the interchange of resource information about a single or a set
of other interchanged objects. The described objects are called related objects. The information can be
used to facilitate a correspondence between the resources required to present the objects and the
resources available to the system, or to perform a negotiation between the source of the MHEG objects
and the presentation site.

5.4.2.8 Container class

The container class provides a container for regrouping M&H data into a single interchange unit.

5.4.3 Run-time objects (called rt-objects)

For the purpose of reusing model objects (script, content, multiplexed content and composite objects) in
different presentations or activations, a clear separation is made between the interchanged model object,
which contains the reusable data or composition, and the rt-object corresponding to a specific view of the
“model” data or composition.

The rt-objects (rt-script, rt-content, rt-multiplexed content and rt-composite objects) are created by the
object designer using the MHEG "new" action. The presentation or activation of a rt-object does not affect
the model object, this allows the reuse of a same model object in different rt-objects.

5.4.4 Channels

A channel is a logical space in which the rt-components (rt-content, rt-multiplexed content and
rt-composite objects) are presented and perceived by the user. The channels are created by the object
designer using an MHEG action. The object designer provides the desired mapping of the channels within
the descriptor object. The channels are mapped to the real world by the MHEG engine.

Page 26
ETR 225: October 1995

5.5 The MHEG API

The MHEG standard does not define an API for the handling of objects in a system. This will be defined
as part of the further work within TC-TE.

5.6 Extendibility of the MHEG standard

The scope of the classes defined in the MHEG standard is compatible with their use in a wide range of
applications and domains. It is recognised that certain applications may require specific functionality not
directly provided by the classes. For example, an application may require the use of specialised resources
available on a given platform. In this case, additional resources which are not provided directly by the
MHEG standard may be associated to the MHEG objects. This association is not defined by the MHEG
standard but may be defined by other standards or applications using one of the following techniques.
These techniques do not change the coded representation of the facilities defined by the MHEG standard.

a) A using application may define new additional elementary actions to be targeted to MHEG objects
or rt-objects. The new elementary actions do not modify the MHEG action class.

NOTE 1: The new elementary actions are ignored by "basic" MHEG engines which support only
the facilities defined by the MHEG standard.

b) A using application may define new additional attributes of the objects. Two extensions may be
provided by the using application without changing the MHEG object representation:

1) a using application creates its own classes by derivation of the MHEG classes. These
classes are considered as using application classes and are no longer MHEG classes. A
"basic" MHEG engine does not recognise these new classes;

2) additional elementary actions may be provided by the using application as in a) in order to set
a new attribute to an MHEG object target. A "basic" MHEG engine ignores the action, an
extended one takes them into account, and thereby introduces the new attribute.

c) A using application may define new additional media types, the MHEG standard allows the
definition of proprietary media types which are provided by the using application.

NOTE 2: For example, a using application may create and manipulate new attributes such as
payment or colour or it may vary some speech modulation parameter in an audio
object.

6 Service requirements

6.1 Main categories of services

The applications that interchange M&H information can be classified in to three broad families allowing
combinations between them. The three families are:

- the retrieval family;
- the distribution family;
- the conversational family.

NOTE: For the studies carried out in this ETR it was found more appropriate to describe the
VoD service together with the services of the distribution family, although it clearly
belongs to the retrieval family.

This subclause investigates each different family and its special functional requirements on the MHEG API
and on the SIR. The goal is that the API and the SIR that will be the result of the requirements evaluated
in this ETR is applicable to the broadest possible range of M&H applications.

Each family of application is subdivided into different categories that are described in terms of
architecture, information transfer scenario, specific TE, etc,... Each category is developed on the basis of
an example of "pilot" application selected according to the following criteria:

Page 27
ETR 225: October 1995

- interest received up to now from ETSI (ETR 181 [10] and ETR 227 [11]);

- interest publicly claimed up to now from Public Network Operators (PNOs) and commercial
application providers, according to the expected market.

The summary of the specific requirements of all presented applications will then form the basis for general
functional requirements of M&H applications on the API and SIR.

6.2 Applications of retrieval services except VoD

6.2.1 Common characteristics and taxonomy

In all retrieval applications, the user employs a terminal to communicate with a M&HIRS. The application
may either run on the users TE or on a remote host or may be distributed between several different
entities. Objects which contain data belonging to an application may be stored in a local database, in one
or several remote databases, or in a distributed database they may consist of local and remote databases
as well. ETR 084 [12] gives further details of M&HIRS candidate architectures.

Following the multimedia portfolio that was launched by TC-TE,

- most M&HIRS will be mainly used by professional/enterprise users, but some will be
dedicated to residential users;

- a number of used terminals will not be dedicated to M&HIRS but will also have facsimile,
messaging service and Videotex access capabilities.

Important service/application parameters are:

- establishment of the communication on demand;
- establishment of the communication around the clock;
- user identification;
- access/control priority right management;
- local storage of information;
- local processing of information;
- all the user terminals are not on the same network;
- use of several services/media simultaneously;
- variable allocation of bandwidth for the media;
- authentication/signature;
- copyright protection/copy control;
- charging;
- heterogeneous multimedia platforms;
- all contents shared by all terminals.

6.2.1.1 Networks

According to the multimedia portfolio, some user terminals are likely to connect to retrieval services via the
Public Switched Telephone Network (PSTN). Integrated Services Digital Network (ISDN) or Broadband
ISDN (B-ISDN) are, however, the most widely envisaged. Other target networks include Local Area
Network (LAN), Wide Area Network (WAN), Community Antenna Television (CATV) and Internet. For
most services, the transmission rate requirements should not exceed 2 Mbit/s. ITU-T Recommendation
I.374 [13] gives further information on 64 kbit/s and B-ISDN expected network capabilities.

6.2.1.2 Terminal Equipment

As half of the M&HIRS will be dedicated to professional/enterprise users, the TE is likely to be PC-based.
For specific applications (tourist information, etc,...) public terminals are best suited. Residential users
may access M&HIRS using multi-functional dedicated terminals.

6.2.1.3 Service attributes

The following service attributes characterise applications based on retrieval services:

- terminal-to-host, or terminal-to-database architecture;

Page 28
ETR 225: October 1995

- bi-directional asymmetric communication;
- information is supplied on demand (high level of interactivity);
- most often point-to-point connections.

M&HIRS involve a wide variety of possible information and control exchange scenarios. In a given
application, M&H objects can be stored either in a remote database or locally in the terminal. A scenario
where objects are distributed, i.e. can be stored in both places as well.

M&H applications may be available on the terminal as well as on a host. Applications that are distributed
between the terminals and the host may also be available. Taking into account the previous
considerations, M&HIRS can be separated into three different categories where every combination of
these main categories can occur. The categories are:

a) application running on the terminal retrieving M&H objects from a remote database (this is
developed in subclause 6.2.2);

b) distributed application between terminal and host exchanging M&H objects (this is developed
in subclause 6.2.3);

c) applications running on the host sending M&H objects to the terminal (this is developed in
subclause 6.2.4).

6.2.2 Multimedia retrieval services featuring local application and remote data

This category comprises all scenarios where the application logic is on the terminal device operated by the
user and M&H data is stored in the network or on an M&H database connected to the network.

6.2.2.1 Application example: encyclopaedic applications, electronic libraries and electronic
books

The following features characterise encyclopaedic applications, electronic libraries and electronic books
from a user's perspective. A user:

- consults a core encyclopaedia on CD-ROM, updates (subscription) through regular downloads, hot
topics available on-line;

- consults yellow pages, tourist guides using electronic publishing of MHI material.

The following application parameters are required:

- user identification required;
- local storage of information;
- authentication/signature;
- copyright protection/copy control;
- charging.

6.2.2.2 Service attributes

The following service attributes characterise this category of applications:

- terminal-to-database configuration;
- bi-directional asymmetric communication;
- establishment of the communication around the clock;
- establishment of the communication on demand;
- information is supplied on demand;
- point-to-point connection.

6.2.2.3 Networks

According to the complexity of data all networks mentioned in subclause 6.2.1.1 are possible candidates
starting with the PSTN at a transmission speed of 9,6 kbit/s. If the application design demands frequent
retrieval of M&H objects, networks with a higher data throughput (such as ISDN) are preferable.

Page 29
ETR 225: October 1995

6.2.2.4 Terminal Equipment

The TE for this application is likely to be PC-based.

6.2.2.5 Information interchange scenario

Most of the MHEG objects are stored on a local database at the user's site. Hot topics are stored in the
M&H database and are transmitted to the terminal on user request. Updates of the locally stored MHEG
objects are available at the database as well and are transmitted to the terminal on the user’s request.
The connection establishment will, in most cases, be handled automatically by the local application. The
services offered by the SSU will be used to connect the terminal to the desired database.

6.2.2.6 Application configuration

The terminal is owned by the user. The SSU is operated by the service provider and responsible for
connecting the terminal to the desired M&H database. The M&H database is operated by the information
provider.

Figure 4 below shows the configuration of encyclopaedic applications, electronic libraries and electronic
books.

Databases

MHEG objects
contents

CD-Rom

(2)

(3)

Object or contents
requests

Network

(1)

SSU

Figure 4: Specific configuration of encyclopaedic applications, electronic libraries and electronic
books

The following communication channels are used in the example figure above:

(1) MHEG object, or content request from terminal to database;
(2) MHEG objects and data content from database to terminal;
(3) external input and output devices connected to the terminal.

Application requests for objects that are not present at the terminal result in network requests for the
corresponding objects. The access agent in the terminal provides a data directory function and locates the
requested data.

6.2.2.7 Use of MHEG

Much material that is currently published on paper could be enhanced by the integration of audiovisuals
and by being available possibly in a hypertext manner over a telecommunication network. For example,

Page 30
ETR 225: October 1995

tourist guides and yellow pages could be a mixed sales and advertising application. MHEG is an
appropriate standard to support such hypertext architectures in a distributed environment.

MHEG objects are stored mainly on the storage devices at the terminal. Objects that are requested from a
remote source contain additional new information. The access agent in the database is able to interpret
the MHEG object reference correctly and can use this information to locate the objects requested from the
terminal at the different physical databases. The information provider generates his information by means
of a MHEG object generator and stores it on his database which is connected to the SSU.

6.2.2.8 Use of scripts

In this application example scripts are most likely to be used for the updating of the terminal application.
This allows the application provider to provide a large number of users simultaneously with a new
application release in a very convenient way.

6.2.2.9 Application architecture

The application architecture corresponds to the terminal-to-database configuration presented in the
general model.

6.2.2.10 API requirements

Table 1 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Table 1

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier
Handling ü

Behaviour ü

Exception ü

Page 31
ETR 225: October 1995

6.2.2.11 SIR requirements

Table 2 gives an overview of the SIR functionalities that are required in this particular application.

Table 2

Function family Needed
external device control ü

external device control for data
acquisition
manipulation of MHEG objects ü

access to external data ü

access to external advanced
calculation capability
computations, variable handling and
control structures

ü

6.2.3 Multimedia retrieval services featuring distributed application and distributed data

This category comprises all scenarios where the application logic and the M&H data are distributed
between the terminal device and a host with a possibly associated M&H database.

6.2.3.1 Application example: Point of information, Point of sales

The following features characterise point of information and point of sales applications from a user's
perspective. A user:

- consults information booths with a city guide including street maps and orientation help. The
information is regularly updated (traffic situation, cinema and restaurant programmes, special
events...) from a remote source and may be combined with advertising (ITU-T Recommendation
F.740 gives similar examples);

- does tele-transactions (ticket and other reservations);
- does telebanking transactions (money orders);
- does teleshopping.

The following application parameters are required:

- local storage of information;
- local processing of information;
- authentication/signature;
- access/control priority right management;
- copyright protection/copy control;
- charging;
- all the user terminals are not on the same network;
- use of several services/media simultaneously;
- variable allocation of bandwidth for the media;
- heterogeneous multimedia platforms.

6.2.3.2 Service attributes

The following service attributes characterise this category of applications:

- terminal-to-host configuration;
- bi-directional asymmetric communication;
- establishment of the communication around the clock;
- establishment of the communication on demand;
- information is supplied on demand;
- point-to-point connection.

Page 32
ETR 225: October 1995

6.2.3.3 Networks

According to the complexity of data, all networks mentioned in subclause 6.2.1.1 are possible candidates
starting with PSTN at a transmission speed of 9,6 kbit/s. If the application design requires frequent
retrieval of M&H objects, networks with a higher data throughput (ISDN) are preferable.

6.2.3.4 Terminal Equipment

Public or private information and transaction terminals will form a significant part of the used TE.
Dedicated terminals for residential users and PC-based terminals are likely to be used as well.

6.2.3.5 Information interchange scenario

MHEG objects are stored on a local database at the user's site as well as on M&H databases connected
to the host. According to specific applications or sub application parts of a given application these objects
are interchanged among the involved units. There is also a need to exchange control information using an
end-to-end protocol for M&H applications.

6.2.3.6 Application configuration

The terminal is owned by the user. The SSU is operated by the service provider and responsible for
connecting the terminal to the selected host. The host and its associated M&H database are operated by
the information provider.

Figure 5 below shows the configuration for point of information and point of sales applications.

Local
object
base

Smartcard
readerCD-Rom

Host

(1) (2) (3) (4)

(5)

(6)

(7)

Databases

SSU Network

Figure 5: Specific configuration for point of information and point of sales applications

The following communication channels are used in the example figure above:

(1) Application control data from host to terminal;
(2) Application control data from terminal to host;
(3) MHEG objects and data content from terminal to host;
(4) MHEG objects and data content from host to terminal;
(5) MHEG object, or content request from host to database;
(6) MHEG object, or content from database to host;

Page 33
ETR 225: October 1995

(7) external input and output devices connected to the terminal.

Application requests for objects that are not present at the terminal result in network requests for the
corresponding objects.

In this example the storage of object and application logic may be distributed. The application may start on
the terminal, then in a specific application part, the application logic may be taken over by the host. After
termination of this application part, the control is returned back to the terminal.

The user’s terminals are connected to a network which allows the exchange of commands with a remote
application and the exchange of data corresponding to the application. These data can be stored on one
or on several databases. From the front-end point of view the user is only working on one database. Data
can be stored on the local object base as well. These objects may either by downloaded through the
network or distributed by any other means (CD-ROM, floppy disk, etc,...). For the user the storage location
of the object is only important with regard to response times and network costs.

The following scenarios can be identified:

- an application uses the same objects in every session (Telebanking, Tourist Guide, etc,...). In this
case the application should have a means to store objects in the terminal between sessions and to
maintain the objects that belong to it in the terminal (version numbers, date, etc,...);

- the number of objects is very big, e.g. for sales catalogues. In this case the application needs to
identify objects that have been supplied previously on a storage media and make them available for
the current application.

An important requirement for such applications is to have an interface to the external environment. Input
devices such as smartcard readers, VCRs and TV cameras should be accessible. Communication
between MHEG objects and such devices should be facilitated by the SIR. An example for the use of such
device is a smartcard reader that may be used to give access to a telebanking application.

6.2.3.7 Use of MHEG

The association of attractive audiovisuals, showing the products to best advantage, with the stock control
and ordering process is a natural commercial evolution. The use of audiovisual interfaces makes it
possible for the public to use computer based real-time information systems. For example a kiosk where
information is accessed through Videotex or locally from Compact disk (CD).

MHEG objects contain the hyper-link information as well as all functionality needed to implement a
Graphical User Interface (GUI). They contain presentation and navigation information.

6.2.3.8 Use of scripts

In this application example scripts may be used to provide the following functionality:

- arithmetic operations, e.g. price reckonings;

- interface to non-standard external devices, e.g. smart card readers;

- upgrading of the terminal's capabilities, e.g. distribution of new software release, new device
drivers, etc,...

6.2.3.9 Application architecture

The application architecture corresponds to the terminal-to-host configuration presented in the general
model.

Page 34
ETR 225: October 1995

6.2.3.10 API requirements

Table 3 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Table 3

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour ü

Exception ü

Table 4 gives an overview of the API functionalities that are required by the host in this particular
application.

Table 4

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour ü

Exception ü

6.2.3.11 SIR requirements

Table 5 gives an overview of the SIR functionalities that are required in this particular application.

Table 5

Function family Needed
external device control ü

external device control for data
acquisition
manipulation of MHEG objects ü

access to external data
access to external advanced
calculation capability

ü

computations, variable handling and
control structures

ü

6.2.4 Multimedia retrieval services featuring remote application and remote data

This category comprises all scenarios where the application logic is provided by a host and the multimedia
information is provided by a database. Both control and data information is then interchanged through the
networks to the terminal.

6.2.4.1 Application example: Interactive telematic training and education services

The following scenarios characterise interactive telematic training and education applications from a
user's perspective. A user:

Page 35
ETR 225: October 1995

- consults pre-edited multimedia courseware;

- interacts with simulations;

- asks for an explanation of some demonstrated process and gets it through additional hyperlinks in
the lessons;

- makes personal annotations about lessons;

- forwards remarks about some aspects of lessons to the lesson preparer or author.

The following application parameters are required:

- user identification;
- access/control priority right management;
- all the user terminals are not on the same network;
- use of several services/media simultaneously;
- variable allocation of bandwidth for the media;
- charging.

6.2.4.2 Service attributes

The following service attributes characterise this category of applications:

- terminal-to-host configuration;
- bi-directional asymmetric communication;
- establishment of the communication around the clock;
- establishment of the communication on demand;
- information is supplied on demand;
- point-to-point connection.

6.2.4.3 Networks

According to the complexity of data, all networks mentioned in subclause 6.2.1.1 are possible candidates
except the PSTN which might not offer sufficient data throughput to cope with the frequent transmission of
M&H objects. It is most likely that ISDN will be used.

6.2.4.4 Terminal Equipment

Even though a large number of users of this particular application will belong to the residential user group,
the TE is likely to be PC-based.

6.2.4.5 Information interchange scenario

MHEG objects are stored on M&H databases connected to the host. To start the lesson the user
establishes connection to the SSU and selects the desired application. According to the application part
(chapter), specific objects are transmitted to the terminal. There is also a need to exchange control
information using an end-to-end protocol for M&H applications. User inputs are sent to the host following
specific trigger events.

6.2.4.6 Application configuration

The terminal is owned by the user (student). The SSU is operated by the service provider and responsible
for connecting the terminal to the selected host. The host and the associated M&H database are operated
by the information (lesson) provider.

Figure 6 shows the application architecture of interactive training and education scenarios.

Page 36
ETR 225: October 1995

Local
object
base

Host

(1) (2) (3) (4)

(5)

(6)

(7)

Databases

SSU Network

Figure 6: Specific configuration for interactive training and education scenarios

The following communication channels are used in the example figure above:

(1) Application control data from host to terminal;
(2) Application control data from terminal to host;
(3) MHEG objects and data content from terminal to host;
(4) MHEG objects and data content from host to terminal;
(5) MHEG object, or content request from host to database;
(6) MHEG object, or content from database to host;
(7) external input and output devices connected to the terminal.

The terminal provided to a user is connected to a network which allows the exchange of commands with a
remote application and the reception of data corresponding to the application. These data can be stored
on one or on several databases. From the user's point of view, he is only working on one database. The
user can make personal annotations that are stored between sessions on his local database. The MHEG
objects are transmitted in real-time. By answering questions and asking for additional information the user
can browse his way through the database. Data may be available in different formats and represent
different types of media. The local storage of object in this example is not a main feature of the system.

6.2.4.7 Use of MHEG

The extension of data processing and telematics to support audiovisuals makes it a more attractive tool to
educators since it improves the interface with the students. There is also a need to exchange audiovisuals
between tools and to re-use audiovisuals in other applications. The audiovisuals should be structured in
such a way that they can be updated, modified and personalised easily.

MHEG objects contain the hyperlink information as well as all functionality needed to implement a GUI.
They contain presentation and navigation information.

Page 37
ETR 225: October 1995

6.2.4.8 Use of scripts

In this application example scripts may be used to provide the following functionality:

- interface to non-standard external devices for simulations.

6.2.4.9 Application architecture

The application architecture corresponds to the terminal-to-host configuration presented in the general
model.

6.2.4.10 API requirements

Table 6 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Table 6

Function family Needed
Session ü

Directory
Interchange ü

Accessor
Modifier
Handling
Behaviour ü

Exception ü

Table 7 gives an overview of the API functionalities that are required by the host in this particular
application.

Table 7

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour
Exception ü

6.2.4.11 SIR requirements

Table 8 gives an overview of the SIR functionalities that are required in this particular application.

Page 38
ETR 225: October 1995

Table 8

Function family Needed
external device control ü

external device control for data
acquisition
manipulation of MHEG objects
access to external data
access to external advanced
calculation capability
computations, variable handling and
control structures

ü

6.3 Applications of distribution services and VoD

This subclause describes the characteristics of MHEG-using applications which are based on distribution
or on-line video retrieval services. It evaluates and analyses their requirements (functional and technical)
in terms of MHEG API and script representation.

6.3.1 Common characteristics and taxonomy

This family gathers a range of applications provided to the general public at their home premises. Such
applications may cover the whole spectrum of general interest themes (sales and advertising, training and
education, entertainment, news and information...). ITU-T Draft Recommendation F.MDS [14] gives
examples of applications and scenarios.

The main common feature within the family is therefore its market target - residential users. This leads to
several consequences:

a) moving video is a key attraction factor for this market. Moving video should feature at least
VHS-quality;

b) interactivity is the major added value of the new services. Interactivity should be simple and intuitive
(i.e. easy to learn and remember) rather than rich and complex;

c) the services should be accessed from mass-market, low-cost terminals. Following a) and b), TE
should be based mainly on TV and set-top box, interactivity being provided by a remote control pad.
However, PC-based platforms should also be envisaged;

d) the services should be accessible via a public network widely available in residential areas, thus
based on a physical network with which the general public is connected for either TV distribution or
telephone communication;

e) interworking with the currently existing services aimed at the general public, i.e. TV distribution and
Videotex-like retrieval services, should be taken into account especially concerning the design of
appropriate customer premises equipment.

6.3.1.1 Networks

Different service architectures are possible according to the underlying service and availability at home
premises. There are however some common trends:

- the distribution network (terminal access network) is likely to be based (at a first stage) on existing
physical networks, either telephone Unshielded Twisted Pair (UTP) or CATV coax cable. In the
former case (interactive network basis), distribution capabilities may be provided using ADSL or
Hybrid Digital Subscriber Line (HDSL). In the latter case (distribution network basis), there are
different possible architectures, some of them including fibre, interactive capabilities being provided
using either PSTN modem or cable return channel. Fibre To The Home (FTTH) Passive Optical
Network (PON) and wireless access networks may be used at a later stage;

Page 39
ETR 225: October 1995

- the transport network (database access network) is likely to be based on Asynchronous Transfer
Mode (ATM) whenever high and flexible bandwidth is required, i.e. for multimedia information
retrieval services.

6.3.1.2 Terminal Equipment

The TE should integrate itself as easily as possible in the existing home environment and should,
therefore, be based on TV set, set-top-box and remote control pad, together with the appropriate network
interfaces. According to the application, this basis may either be enhanced by additional equipment such
as a smart card reader, VCR, digital mass storage device, or replaced with microcomputer-based
equipment.

6.3.1.3 Service attributes

The family of applications can be divided in three categories, according to the attributes of the underlying
services (ITU-T Recommendation I.211 [15]):

- distribution with local interactivity: these applications rely on new versions of the plain old TV
distribution service featuring MPEG-2 digital video encoding and multiplexed streams of multimedia
data;

- distribution combined with interactivity: in these applications, use of the former service is completed
by use of a retrieval service, especially for transaction purposes;

- on-line retrieval: these applications use a service dedicated to the on-line distribution of audiovisual
information on a broadband network.

6.3.2 Multimedia distribution services featuring local interactivity

This category brings together applications of the regular TV distribution service which are made possible
by the digital encoding of broadcast audiovisual information. Multimedia information is being multiplexed
with the audiovisual information and transferred to the terminal. The user can then navigate through this
information.

The selected pilot application in this category is the Electronic Programme Guide (EPG) or TV guide.

Among other application examples in this category, the "broadcast multimedia magazine" also receives
significant interest from the actors of the home market.

6.3.2.1 Application example: EPG

The EPG application is a basic one which is made necessary by the availability of many channels that the
use of digital compression techniques in video broadcasting will soon make possible. This application both
aims at helping users to find their way across the plethora of available events and at helping broadcasters
to promote their programme supply and their public image.

The user of this application can ask for the presentation of information about the programmes and events
on his TV screen. He can navigate through this information using his remote control pad. This information
may be structured and presented to the user in several ways, according to the application design. In
addition to traditional TV functions (audiovisual display, zapping, access control), the user can for
instance:

- select a channel from a mosaic of available programmes within the whole network or within a
bouquet;

- consult the timetable of next events within one or several programmes;

- ask for the display of information (duration, theme, target public, summary, language...) on a given
event;

- search among the next events according to one or several criteria (theme, type of event, target
public, language...), e.g. using scrolled lists;

Page 40
ETR 225: October 1995

- program his VCR so as to record a selected event;

- etc,...

6.3.2.2 Service attributes

The service attributes are the following:

- distribution with individual user presentation control;
- user-to-host;
- on demand (selection);
- unidirectional;
- access around the clock;
- broadcast/multicast.

6.3.2.3 Networks

The distribution network should be any network that is used for TV distribution and allows the transmission
of digital information.

6.3.2.4 Terminal Equipment

The basic TE is based on regular TV and specific set-top-box.

6.3.2.5 Information interchange scenario

The interactive information may be transferred either in a specific channel or in a data stream multiplexed
within a channel, using several modes:

- it may be broadcast in a cyclic mode. This is the ideal mode as long as the channel bandwidth
allocated to the information makes it possible to satisfy the combined requirements regarding the
information size, access frequency and access delay. In this mode, the terminal can nevertheless
perform local storage either in a lasting (i.e. up to the next version of the object) or temporary (i.e.
up to the end of the session) fashion to improve further access to this particular information;

- it may be downloaded if needed, either at a pre-set time or according to a downstream signalling
protocol.

6.3.2.6 Service configuration

The different roles of the application are:

- programme providers (broadcasters): they both act as application and information providers; they
are called service providers in the Digital Video Broadcasting (DVB) vocabulary;

- the network operator (carrier), which may also act as an application provider e.g. if there is a
reserved EPG channel; with respect to the ITU-T vocabulary, the network operator is the service
provider;

- users.

The service configuration involves a host and a terminal.

The presentation objects are provided by the programme provider.

The host is provided by the programme provider.

The terminal is provided by the user, although he will usually buy or rent it to either the service operator or
an independent vendor, in the latter case according to specifications established by the service operator.

Page 41
ETR 225: October 1995

6.3.2.7 Use of MHEG

MHEG provides an appropriate way to represent the broadcast presentation and navigation information. It
complements the standards for the transfer and encoding of audiovisual, access control and event
information data by providing a value-added multimedia man-machine interface. MHEG meets the
requirements since interchange takes place in real-time (though presentation does not necessarily) and
terminals cannot cope with non-final form objects due to their minimal (processing or storage) resources.

MHEG objects are interchanged between host and terminal via the distribution network.

MHEG objects express presentation and navigation of the EPG information. They can also express part of
the information (e.g. event summary) as well as some additional presentation (e.g. programme provider
logo). They should be pre-edited, but some automatic updating may take place.

MHEG objects may be stored on the terminal mass storage, whether pre-loaded (if MHEG is used as the
representation means for the terminal's built-in interface) or stored in a lasting or temporary fashion.

6.3.2.8 Use of scripts

The application may need to interchange scripts to provide several added-value functions:

- to allow external device control, e.g. VCR programming (the user navigates through the TV Guide
and selects an event for recording). It is not yet clear whether a specific SIR is mandatory or
MHEG-1 specific profiles could be actually used for controlling external devices (other than regular
presentation devices);

- to perform some computations such as interpretation of database-like requests. The MHEG
representation is not appropriate for the data on which such computations apply. Scripts should
then rather use the application-specific data being transferred within the multiplex in non-MHEG
form, though MHEG objects would still provide the display of, and navigation through, this
information;

- (unlikely in this application context) to upgrade the terminal's capabilities (e.g. distribute new
software release, new device drivers...).

6.3.2.9 Application architecture

The functional architecture which applies to this application is the one appropriate for terminal-to-host
configurations (see figure 1).

6.3.2.10 API requirements

Table 9 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Table 9

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor
Modifier ü

Handling
Behaviour ü

Exception ü

Table 10 gives an overview of the API functionalities that are required by the host in this particular
application.

Page 42
ETR 225: October 1995

Table 10

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour
Exception ü

6.3.2.11 SIR requirements

Table 11 gives an overview of the SIR functionalities that are required in this particular application.

Table 11

Function family Needed
external device control ü

external device control for data
acquisition

ü

manipulation of MHEG objects ü

access to external data ü

access to external advanced
calculation capability
computations, variable handling and
control structures

ü

6.3.3 Multimedia distribution services featuring real-time terminal-to-host interactivity

These applications extend the category described above by adding remote interaction capabilities to the
user terminal. During or after having navigated through the broadcast information, the user can interact
with the host, e.g. to achieve a transaction.

The selected application in this category is teleshopping, also called home shopping.

Another application pertaining to this category is staggered Video on Demand (sVoD).

6.3.3.1 Application example: teleshopping

When the user selects a particular teleshopping programme channel using his regular TV equipment, he
can access the following functions:

- view audiovisual broadcast advertising consisting for instance of commercial presentations;

- navigate through a hypermedia catalogue (including especially extensive information on the
currently advertised product);

- fill in and forward product order forms.

Among possible providers:

- mail order companies (selling general purpose home equipment, e.g. refrigerator, shoes);
- supermarkets;
- travel agencies (e.g. hotel rooms, flights);
- real estate agencies.

Page 43
ETR 225: October 1995

6.3.3.2 Service attributes

The service attributes are the following:

a) for the distribution service:
1) distribution with individual user presentation control;
2) user-to-host;
3) on demand (selection)/permanent;
4) unidirectional;
5) access around the clock;
6) broadcast/multicast.

b) for the interactive service:
1) retrieval;
2) user-to-host;
3) on demand;
4) bi-directional asymmetric;
5) user identification required;
6) partial encryption required;
7) point-to-point.

This service attributes description assumes that two separate services are being used and accessed from
the TE. However, depending on the operator's involvement, there might be only one (combined) service.
Data broadcasting and real-time audiovisual broadcasting may also be provided as two separate services
by the operator.

6.3.3.3 Networks

The distribution network may be any network used for TV distribution and allowing the transmission of
digital information. The interactive access may be provided either via the cable return channel or (more
likely) via the PSTN.

6.3.3.4 Terminal Equipment

The basic TE is based on regular TV and set-top-box. This basis should be completed by integrating a
modem (for interactive network access), some authentication device (e.g. smart card reader) allowing to
control transactions, and possibly some local mass storage device, either rewritable (e.g. digital tape, flash
memory extensions) or not (e.g. CD-ROM).

6.3.3.5 Information interchange scenario

This application mixes broadcast advertising and data downloading. While the audiovisual sequence is
broadcast, presentation objects multiplexed on the same channel are being interchanged between host
and terminal via the distribution network, possibly also between terminal and host via the interactive
access network.

Presentation objects may be interchanged in three ways:

- non-real-time interchange (i.e. downloading) of the catalogue structure (the "hypermedia web") and
other key elements such as the order form. Hypermedia links may be accessed at any time from
everywhere. Cyclic access delay should be limited to one search (i.e. getting the right multimedia
page). This information may be updated e.g. once a day;

- on-line cyclic broadcasting of the multimedia entries matching the catalogue "pages". The pages
corresponding to (or somehow linked to) the product currently been advertised by the broadcast
commercial presentation have higher priority, which means there that they may be broadcast
several times more often than others;

- the completed order form may be forwarded in MHEG format so as to allow further consultation.
However, such MHEG objects should base on an appropriate non-media data format to allow
subsequent handling.

Some MHEG objects will be stored on the terminal mass storage in a lasting or temporary fashion.

Page 44
ETR 225: October 1995

6.3.3.6 Service configuration

The actors are:

- programme providers (broadcaster): the home shopping channel provider, is both the application
and information provider (service provider in DVB terms);

- the network operator (carrier);

- users.

The service configuration involves a terminal, a host and a database.

The host and the database are provided by the programme provider.

The terminal is provided by the user.

The MHEG objects are provided by the programme provider.

The information contents are stored on a database which is provided by the programme provider. Unlike
the first category of applications, the database is likely to manage not only the catalogue information but
also the pre-recorded audiovisual sequences that are being broadcast (live broadcast on teleshopping
channel being quite unlikely).

The MHEG objects used by the host application may be either stored on the host or on the database.

6.3.3.7 Use of MHEG

MHEG provides an appropriate way to represent the broadcast presentation and navigation information. It
completes the standards for the transfer and encoding of audiovisual, access control and event
information data by providing a value-added multimedia man-machine interface. MHEG is adequate for
the need since interchange takes place in real-time (though presentation does not necessarily) and
terminals cannot cope with non-final form objects due to their minimal (processing or storage) resources.

MHEG objects are interchanged between host and terminal via the distribution network.

MHEG objects are pre-edited. They express presentation and navigation of the catalogue. How the
catalogue information (prices, product codes...) itself is represented is an open issue.

6.3.3.8 Use of scripts

The application may need to interchange scripts:

- to allow external device control, e.g. of a smart card reader (the user navigates through the
catalogue and validates his order form using a pre-defined code or credit card transaction);

- to perform some computations such as interpretation of database-like requests, possibly with some
intelligent natural or visual language interpreter (e.g. show me all refrigerators manufactured by
European companies and priced at less than 500 ECU), order form reckoning (e.g. how much do I
have to pay, shipping and taxes included). To allow these computations, the non-media data
representation of the catalogue (other than links and presentation) information should be
appropriate.

Page 45
ETR 225: October 1995

6.3.3.9 Application architecture

The application architecture corresponds to the terminal-to-host configuration presented in the general
model.

Transaction management (which might be considered as some sort of script, although this is not relevant
to SIR purposes) consists of two functions:

- real-time acknowledgement of the transaction;
- provision for subsequent (manual or automatic) dealing with the user order (charging, sending...).

The terminal is functionally similar to the base terminal for the EPG application, but incorporates some
additional features, for instance:

- it integrates an external device interface (to smart card reader);
- the access agent also provides interactive terminal-to-host exchange for transactions;
- the access agent may provide access to additional external mass storage (e.g. Digital Audio Tape

(DAT), CD-ROM).

6.3.3.10 API requirements

Table 12 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Table 12

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour ü

Exception ü

Table 13 gives an overview of the API functionalities that are required by the host in this particular
application.

Table 13

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour
Exception ü

6.3.3.11 SIR requirements

Table 14 gives an overview of the SIR functionalities that are required in this particular application.

Page 46
ETR 225: October 1995

Table 14

Function family Needed
external device control
external device control for data
acquisition

ü

manipulation of MHEG objects ü

access to external data ü

access to external advanced
calculation capability
computations, variable handling and
control structures

ü

6.3.4 Multimedia services featuring on-line video retrieval

On-line video retrieval services are a specific instance of M&HIRS (see ETR 084 [12]), also sometimes
referred to (improperly) as "broadband Videotex".

This is a new generation of retrieval applications aimed at the home market, especially resulting from the
combined technological progress in digital video compression, high-speed interactive networks and
microcomputer hardware. They will usually provide their users with:

- information (encyclopaedia, news);
- shopping, reservation services;
- training;
- entertainment (video, games).

As for Videotex, some of these applications will also address the business market, whose requirements
(access networks, TE) should therefore also be taken into account.

The most representative M&HIRS application is interactive Video on Demand (iVoD).

Other significant applications aimed at the residential market and using on-line video retrieval services
include:

- tele-karaoke;

- multimedia catalogue consultation (with transactional functions such as reservation or purchase);
- news on demand;

- see also ETR 228 [16] and ETR 176 [17].

6.3.4.1 Application example: iVoD

A VoD application provides residential users with the ability to select among a catalogue of pre-recorded
programmes (films, news bulletins, sport events, music clips, documentaries, previews), to receive the
chosen programme on a TV set and navigate through it using control commands.

The catalogue of available programmes may have a tree or multi-criterion structure. It may federate the
catalogues of several content providers (i.e. programme providers). The service operator may also act as
one content provider.

To access the application, the user needs to press a channel selection or specific service key on his
remote control pad. Navigation through the catalogue is provided via a graphical man-machine interface
whose features may depend on the terminal's capabilities. Text, geometric figures and icon display,
interaction with scrolling lists and buttons are the most common features. Display of trailers of the
programme may or may not be provided by the application.

Page 47
ETR 225: October 1995

The service allows to book a programme beforehand so as to reserve the resources for a specified time.
During the programme retrieval, navigation through the programme is allowed using functions which
resemble VCR commands (play, fast forward, rewind, pause...) possibly with extensions enabled by digital
coding (e.g. direct access to a sequence).

This application is either a specific instance or a using application of a more general multimedia
information retrieval service (see ETR 228 [16]). However, unlike most existing retrieval applications, VoD
is especially oriented towards residential users and requires specific elements in its architecture to cope
with the bandwidth requirements of moving video. M&HIRS TE should anyway provide access to other
retrieval services (e.g. a "traditional" Videotex service) of interest to residential users.

6.3.4.2 Service attributes

Connection to the service is established on demand. The service should be accessible around the clock. It
is user-to-host, point-to-point and bi-directional asymmetric. The iVoD underlying service therefore clearly
belongs to the retrieval services family (see ETR 181 [10]).

User identification and authentication are required. This may lead to some information encryption. The
service should provide facilities for charging. Protection against copy should also be provided to preserve
the content providers' interests.

Interworking with other retrieval services and transactional capabilities are required.

6.3.4.3 Networks

Candidate networks for such a service include the following:

- terminal access may be provided by the PSTN (e.g. through a Videotex Access Point (VAP) with
Packet Switched Public Data Network (PSPDN) as transport network), ADSL, HDSL or CATV
return channel;

- host-to-terminal sporadic transfer of MHEG objects during the transactional phase may be provided
by ADSL, HDSL or CATV in digital mode;

- host-to-terminal Constant Bit Rate (CBR) transfer of audiovisual sequences during the retrieval
phase (content distribution) may be provided by ADSL, HDSL, satellite or CATV in digital mode;

- host access and host-to-database communication may use PSDN, Narrowband-ISDN (N-ISDN) or
the transport network;

- database access (content transport) may use B-ISDN, Fibre Distributed Data Interface (FDDI) or
ATM-based LAN.

6.3.4.4 Terminal Equipment

The typical user terminal consists of a digital TV set combined with an interaction device (usually a remote
control pad) and a dedicated set-top-box which is in charge of all logical functions (other than TV display),
integrating a communication device for navigation functions, a smart card reader (optional) for
identification and authentication purposes, as well as such extensions as VCR, CD-ROM (or CD-I), game
console, etc,...

The terminal may also be based on a personal computer equipped with appropriate reception, decoding
and communication devices.

Page 48
ETR 225: October 1995

6.3.4.5 Information interchange scenario

A session usually consists of two different phases, possibly separated in time:

- the transactional phase is a database navigation application. The results of user interaction are
transmitted from terminal to host, possibly as MHEG objects. Multimedia presentation information is
then transmitted from host to terminal. It consists of MHEG objects expressing text, graphics and
still, also possibly audiovisual sequence, display as well as requests for selection. Information flows
are sporadic, so this phase should use variable bitrate channels to allow resource optimisation. The
outcome of the phase is the transaction which specifies that the selected programme will be sent to
the user's terminal at the specified time;

- the retrieval phase consists in transmitting the requested programme to the terminal. This uses a
constant bitrate appropriate to the perceptive quality of the audiovisual sequence. Casually, user
requests for navigation inside the programme will be transmitted from terminal to host, possibly as
MHEG objects (or also possibly MPEG Digital Storage Media - Control Commands (DSM-CC). This
will lead to some processing and influence the audiovisual sequence being transferred to the
terminal.

6.3.4.6 Application configuration

The actors are:

- information provider: makes the titles available;
- application provider: provides the application;
- service operator: provides access to the service;
- user.

The front-end (SSU) is provided by the service operator. The host (application server) is provided by the
application provider. The database (contents server) is provided by the information provider. The terminal
is provided by the user.

MHEG objects expressing navigation through the application (e.g. directory) are provided by the
application provider.

NOTE: In other M&HIRS applications, MHEG objects expressing the information itself are
provided by the information provider.

The information contents are stored on video databases.

The directory of available titles and the information access procedures are supplied to users through the
host.

Page 49
ETR 225: October 1995

Application
Server

distribution

network

access
networknetwork

Terminal

Contents
Server

transport

Front-end

(Host)
(Database)

(SSU)

Set-top-box

Figure 7: Application configuration

The service front-end receives incoming calls from the user. The communication is then established
between terminal and front-end. As the SSU, the front-end performs the access control and charging
functions.

The front-end then opens an interactive dialogue channel between the terminal and application server
(host), with which the terminal communicates for the transaction phase. MHEG objects are transmitted
between terminal and host; there should therefore be MHEG engines at these locations. It uses an
application script (program), MHEG objects intended for presentation to the user and directory information
possibly stored in a database. This directory information needs to be frequently updated. During the
transaction phase, trailers may be sent to the terminal. It is then likely that a connection similar to that
used in the retrieval phase is set up.

For the retrieval phase, a distribution (unidirectional) channel is opened from the contents server
(multimedia database) to the terminal to transmit the video data. A command channel is opened between
the application server and the contents server. A transport channel is opened between the contents server
and the front-end (acting as a gateway between the transport and distribution networks).

Page 50
ETR 225: October 1995

6.3.4.7 Use of MHEG

MHEG objects are interchanged bi-directionally between host and terminal via the interactive access
network, possibly also via the distribution network (if different).

MHEG objects express navigation and presentation information:

- during the information selection phase, navigation through the directory of available titles (directory
presentation, trailers, user selection, user transactional information);

- during the retrieval phase, presentation and structure of the retrieved information;

- in other M&HIRS applications, navigation through the information may also occur during the
information retrieval phase.

6.3.4.8 Use of scripts

It is useful to interchange scripts to allow external device control, e.g. smart card reader (the user
validates his choice of a programme using a card transaction) or VCR programming/triggering.

In M&HIRS applications other than VoD, scripts may be interchanged also:

- to compute game results;
- to perform local simulations based on user-provided data;
- etc,...

6.3.4.9 Application architecture

The application architecture corresponds to the terminal-to-host configuration presented in the general
model.

Transaction management consists in acknowledging and recording the order and preparing requests
(toward the databases and toward the service resource management and charging management units) for
dealing with it.

6.3.4.10 API requirements

Table 15 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Table 15

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour ü

Exception ü

Table 16 gives an overview of the API functionalities that are required by the host in this particular
application.

Page 51
ETR 225: October 1995

Table 16

Function family Needed
Session ü

Directory ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour
Exception ü

6.3.4.11 SIR requirements

Table 17 gives an overview of the SIR functionalities that are required in this particular application.

Table 17

Function family Needed
external device control ü

external device control for data
acquisition

ü

manipulation of MHEG objects ü

access to external data ü

access to external advanced
calculation capability
computations, variable handling and
control structures

6.4 Applications of conversational services

This subclause describes the characteristics of MHEG-using applications which are based on
conversational services. It evaluates and analyses their functional requirements in terms of MHEG API
and script representation.

There are three service types that can be classified as multimedia in this way, and that will be described in
greater detail. These three service types are as follows:

- videotelephony;
- videoconferencing;
- real-time control (or telecontrol).

The Videotelephony service provides communication for the transfer of voice/sound, moving pictures, and
video scanned still images and documents between two locations (e.g. teleeducation, teleshopping,
tele-advertising).

The service attributes are:

- person-to-person;
- demand/reserved/permanent;
- point-to-point/point-to-multipoint;
- bi-directional symmetric/bi-directional asymmetric.

The Videoconference service provides multipoint communication for the transfer of voice/sound, moving
pictures, and video scanned still images and documents between two or more locations (e.g.
teleeducation, teleshopping, tele-advertising).

Page 52
ETR 225: October 1995

The service attributes are:

- person-to-group;
- group-to-group;
- demand/reserved/permanent;
- point-to-point/point-to-multipoint;
- bi-directional symmetric/bi-directional asymmetric.

The real-time control (telecontrol) service provides multipoint communication for the transfer of data, still
and moving images; and for real-time control between one site and a number of remote sites.

The service attributes are:

- person-to-machine;
- demand/reserved/permanent;
- point-to-point/point-to-multipoint;
- bi-directional symmetric/bi-directional asymmetric.

6.4.1 Common characteristics and taxonomy

This family brings together a range of applications for domestic users and for businesses alike. Such
applications cover areas as videotelephony, videoconferencing, real-time control, outside broadcasting
and games networks.

The main common features within the family is real-time user-to-user communication, although some
users can be machines (such as ovens) or processors (for games). Other significant aspects of the family,
are as follows:

- communication between users is generally symmetrical when the users are human, otherwise it
tends to be asymmetrical with a greater bandwidth of information coming from the machine than
going to it;

- the communication configuration can be a point-to-point (videotelephony), consecutive point-to-
multipoint (videoconferencing) or point-to-multipoint (real-time control) and there can be a mixture
of configurations in both directions of transmission (i.e. in real-time control, the control direction is
consecutive point-to-point, whereas the monitor direction is multipoint-to-point);

- for most of the TE used in the applications (other than for videoconferencing equipment or real-time
control equipment, etc,...), the equipment used is a multifunctional PC platform;

- the applications should be accessible via a public network available in residential areas and
business communities.

6.4.1.1 Networks

The speed and availability of each of the applications is different depending on the availability of networks.
The types of networks that can be used, is given in table 18:

Table 18

Multimedia Conversational
Service

Target User Group Possible Networks Used

Videotelephony Domestic and business PSTN, ISDN, B-ISDN
Videoconference Business ISDN, B-ISDN
Real-time control (telecontrol) Domestic and business PSTN, ISDN, B-ISDN

ISDN is the ideal network minimum requirement for these applications, although PSTN can be used with a
modem (V.34 gives 28,8 kbit/s full-duplex over a switched connection) but this will restrict the application.
Switched Multimegabit Data Service (SMDS), Connectionless Broadband Data Service (CBDS) and
Frame Relay networks are not suitable as they are not isochronous by nature and cannot easily
communicate voice and video.

Page 53
ETR 225: October 1995

6.4.1.2 Terminal Equipment

For domestic use, the TE should be either a low-cost videotelephone or a multifunctional PC. For
business use, other than for special videoconference equipment etc,... a PC platform should be used.

For Videotelephony dedicated videotelephones or PCs with videotelephony capabilities at either end of
connection will be used. For Videoconferencing dedicated videoconference equipment or (exceptionally)
PCs with videoconference capabilities will be used. In non point-to-point sessions, an MCU will be used
(as part of the PNO videoconference service). Real-time control (telecontrol) services will use dedicated
terminals or PCs at human end of connection with dedicated telecontrol unit at either end. Connected to
the telecontrol unit will be sensors, cameras, transducers and configurable devices, etc,...

6.4.1.3 Service attributes

Conversational services can be categorised into four distinct categories, as follows:

1) moving pictures (video) and sound;
2) sound;
3) data;
4) document.

Of these only 1) contains services that can be classified as multimedia, although in certain applications all
four categories of service can be included in a single session.

The three applications can be categorised according to table 19:

Table 19

Application From controlling users point of
view

From other users point of view

Videotelephony conversational service conversational service
Videoconference conversational service with local

interactivity and remote retrieval
conversational service

Real-time control (telecontrol) conversational service with local
interactivity and remote retrieval

conversational service

6.4.2 Multimedia conversational services featuring videoconferencing

For videoconferencing service, this subclause gives an explanation of the application and describes the
service attributes, applicable networks and TE, the service and functional architecture and the
requirements for, and use of, MHEG and scripts.

The service can be viewed as an extension of the Audiovisual Conferencing Service (AVCS) using MHEG
multimedia objects and real-time video.

6.4.2.1 Application example: multimedia videoconferencing

The following features characterise applications based on the videoconference service from a user's
perspective. A participant of a videoconference can:

- communicate with the other participants seeing their talking head image on his terminal device;
- establish private connections with other participants;
- perform joint document editing together with other participants;
- interchange documents or data with other participants;
- perform database enquiries to a connected database;
- get system information on the ongoing conference.

A special role in a videoconference is assigned to the conductor. The conductor, if present in a
conference, is a participant who controls certain aspects of the conference: control of application
invocation, control of communication between conductor-controlled applications, control over conference
participants and conference termination. There is either zero or one conductors in a conference. A

Page 54
ETR 225: October 1995

participant becomes conductor by grabbing the conductor token after connecting to the conference, or by
requesting or accepting conductorship from the current conductor.

The main service attributes/parameters are as follows:

- each PC or workstation user can see and/or modify the same window content, whether it be
graphics, text, pictures, moving pictures or any combination of them;

- all content data is not necessarily shared by all conference locations, as for example, some
multimedia conference systems would not have videoconferencing, but only multipoint telephony
and other data facilities;

- the conference room can be equipped to display the media types (i.e. text, graphics, images, etc,...)
shared by the PC/workstations.

6.4.2.2 Service attributes

The service attributes are the following:

- person-to-person, person-to-group, group-to-group;
- demand/reserved/permanent;
- point-to-point/point-to-multipoint;
- bi-directional symmetric/bi-directional asymmetric;
- interworking with information and retrieval and messaging services (including file transfer).

6.4.2.3 Networks

Ideally ISDN (typically three basic access of N-ISDN, equivalent to 384 kbit/s of digital bandwidth) or
B-ISDN, should be used for this application. The use of LANs as terminal access networks is likely. The
use of PSTN is unlikely as its performance would be frustrating for the users.

6.4.2.4 Terminal equipment

This application is primarily for business use. Either dedicated videoconference equipment or workstations
(including PC-based platforms) should be used.

6.4.2.5 Information interchange scenario

The Multipoint Conference Unit (MCU) takes the incoming data stream from the user that has the baton
and distributes the data stream to all users. The conductor notifies the MCU as to which user has the
baton so it can replicate the appropriate data stream.

The database stores all forms of information (including the MHEG objects containing the M&H
information) which can be retrieved or updated as part of the videoconference session (via the MCU).
MHEG objects can be generated at the terminal in real-time as well and distributed via the MCU.

6.4.2.6 Application configuration

The AVCS description defines the roles of the actors, but in general:

- all users can act as application and information providers with the conductor having a special role;

- some users (especially those in videoconference studios) can only act in a restricted manner and
are seen and heard but cannot manipulate data, text graphics or other media.

The presentation objects are provided by all users (on a basis decided by the conductor).

The MCU is provided by the network operator.

The TE is provided by the user, although the equipment itself may be bought, rented or leased.
Videoconference studio equipment can also be bought, rented or leased, although very often the studio is

Page 55
ETR 225: October 1995

hired for a small duration especially for the conference. The studio could belong to the network operator or
some other organization.

Audio Visual Conferencing Service

MCU
IWU

Database

Network

Figure 8: Application configuration

This multimedia conferencing service is based on PC or workstations in a multipoint configuration. A MCU
is essential for multipoint configurations. The information is transmitted over ISDN (typically three basic
access of N-ISDN, equivalent to 384 kbit/s of digital bandwidth) and will use ITU-T Recommendation
T.122 [18] to orchestrate the session. Interworking capabilities with a videoconferencing room can also be
included or could be part of a videoconference session. Each participant in a multimedia conference can
be connected to a public database. Local storage (CD-ROM, CD-I, etc,...) can also be used.

6.4.2.7 Use of MHEG

MHEG objects are interchanged between users via the MCU or to/from the database which stores MHEG
objects. The MHEG objects stored on databases are most likely to be pre-edited whereas the objects
interchanged between the terminals may be created in real-time. During a conference objects may be
updated (e.g. agenda).

6.4.2.8 Use of scripts

The use of scripts in videoconference is regarded as being rather unlikely.

6.4.2.9 Application architecture

The application architecture corresponds to the terminal-to-terminal configuration presented in the general
model.

Page 56
ETR 225: October 1995

6.4.2.10 API requirements

Table 20 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Table 20

Function family Needed
Session ü

Directory
Interchange ü

Accessor ü

Modifier ü

Handling
Behaviour ü

Exception ü

6.4.3 Multimedia conversational services featuring videotelephony

For the videotelephony service, this subclause gives an explanation of the application and describes the
service attributes, applicable networks and TE, the service and functional architecture and the
requirements for, and use of, MHEG and scripts.

6.4.3.1 Application example: Interactive games based on the videotelephony service

The following features characterise interactive applications based on the videotelephony service from a
users perspective. A user can:

- communicate with the other user seeing his talking head image on his terminal device;
- play an interactive game involving real-time interactions of both users (e.g.: tennis simulation).

Another videotelephony application is tele-tutoring: a user (tutor) can take over the other user's screen
display, exchange files, talk with the other user, see his talking head, etc,...

6.4.3.2 Service attributes

The service attributes are the following:

- person-to-person;
- demand/reserved;
- point-to-point;
- bi-directional;
- symmetric.

6.4.3.3 Networks

Ideally ISDN (typically one basic access of N-ISDN, equivalent to 128 kbit/s of digital bandwidth) or
B-ISDN should be used for this application. If two B-channels are used, the video image would occupy
one B-channel and the voice and other information, the second B-channel.

The use of PSTN is possible although the performance using currently available encoding techniques
would be frustrating for the users.

6.4.3.4 Terminal Equipment

This application is for an domestic use. Either dedicated videotelephony equipment or PC-based platforms
should be used.

Page 57
ETR 225: October 1995

6.4.3.5 Information interchange scenario

In addition to the services offered by videotelephony, MHEG objects enabling the simulation game need to
be interchanged between the two terminals. The application logic for the game is based on one terminal.
After the establishment of the connection the users might wish to start the game. Then the objects that
represent the game environment and the players need to be transmitted to the other terminal. Both of the
users may then interact on the objects that represent the tennis players. The interaction needs to be
exchanged in real-time to make sure that both of the users have the same situation on their screens. The
MHEG objects may contain sound data to make the simulation more realistic, as well as graphical data to
represent the players and the game environment.

6.4.3.6 Application configuration

The different roles of the application are as follows:

- both users can act as application and information providers.

The TE is provided by the user, although the equipment itself may be bought, rented or leased.

Network

Figure 9: Application configuration

Videotelephony is generally point-to-point between two users only. If ISDN supplementary services are
used Three-Party supplementary service (3PTY) or Conferencing supplementary service (CONF), the
application configuration would be similar to AVCS.

6.4.3.7 Use of MHEG

MHEG provides the appropriate way to implement and represent the objects needed for the simulation.
During a game the objects are interchanged and manipulated.

MHEG objects express the game environment as well as the players. The basis for the game is the user
interaction on the objects. The actions applied to the objects to change them according to the game
situation are interchanged as objects as well.

6.4.3.8 Use of scripts

Scripts are used to control the players. An rt-script is associated with each rt-object to control its
movement and presentation. For that purpose, advanced calculation facilities and access to the MHEG
API primitives are needed.

Page 58
ETR 225: October 1995

6.4.3.9 Application architecture

The application architecture corresponds to the terminal-to-terminal configuration presented in the general
model.

6.4.3.10 API requirements

Table 21 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Table 21

Function family Needed
Session ü

Directory
Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour ü

Exception ü

6.4.3.11 SIR requirements

Table 22 gives an overview of the SIR functionalities that are required in this particular application.

Table 22

Function family Needed
external device control ü

external device control for data
acquisition
manipulation of MHEG objects ü

access to external data
access to external advanced
calculation capability

ü

computations, variable handling and
control structures

ü

6.4.4 Multimedia conversational services featuring user-to-machine communication

For real-time control service, this subclause gives a full explanation of the application and describes the
service attributes, applicable networks and TE, the service and functional architecture and the
requirements for, and use of, MHEG and scripts.

6.4.4.1 Application description: real-time control for domestic or business premises

In this, application control and monitoring of domestic and/or business premises is made possible.
Connection to successive sites allows a single human controller to check and regulate temperature and
air conditioning in each site; or to open and close doors and windows; or even to monitor road traffic and
indicate diversions. Video surveillance may be used as part of this application.

The human controller can continuously monitor each of the sites and only change any settings at a site
when necessary. For this reason the type of network connection for each site can be split into the
monitoring function (telesurveillance) and the control function (tele-action).

Attached to each site controller is storage, which holds the characteristics of the site and other information
related to the site. In this way, each site can be accessed by a number of different human controllers
without the need for each terminal to store every single detail of all possible sites.

Page 59
ETR 225: October 1995

6.4.4.2 Service attributes

In this application, the monitoring and control activities, for each site, may be configured differently, as
shown in table 23:

Table 23

Network Configuration for
monitor and control functions

Monitoring Activity Control Activity

As Needed Point-to-Point
Demand

Point-to-Point
Demand

Mixed Point-to-Multipoint
Reserved/Permanent

Point-to-Point
Demand/Reserved

Permanent Point-to-Multipoint
Reserved/Permanent

Point-to-Multipoint
Reserved/Permanent

Connection to the service is established on demand, reserved or permanent as required. The service
should be accessible around the clock. It is user-to-controller, point-to-point (or point-to-multipoint, in
some applications) and generally bi-directional asymmetric (or symmetric if no video monitoring function is
used).

6.4.4.3 Networks

Ideally ISDN (typically one, two or three basic accesses of N-ISDN) or B-ISDN should be used for this
application. The use of PSTN is possible although the performance would be very slow if video
surveillance was used as part of the application.

6.4.4.4 Terminal Equipment

The most appropriate TE for this application is a PC platform. A dedicated terminal can be used but it
would need the functionality of a PC.

6.4.4.5 Information interchange scenario

The site plan showing the position of all monitoring and controllable devices are stored at each site. The
human controller interrogates all monitoring devices at the site and information flows from the control box
into the human controller's terminal and is displayed. Based on the readings expected by reference to the
stored information at the remote site (or situation as shown by video surveillance), the human controller
might elect to change one, or more, of the settings at the site. In which case, control information is passed
to the control box and the settings changed accordingly. The human controller can then interrogate the
reading to check that the change in setting has been activated.

Another way of running the application is for the settings to be read on a rotation basis and displayed
sequentially on the terminal. When the human controller sees a reading is not within the limits, control
information can be passed to correct the situation.

6.4.4.6 Application configuration

In general:

- the terminal acts as an application and information generator;
- the control box and the associated store act as information providers with the control box also

acting on the information (control information) supplied by the terminal.

The presentation objects are provided by the remote store and the terminal.

The TE is provided by the user, although the equipment itself may be bought, rented or leased. The
control and monitor equipment is generally of special design although it may include standard equipment,
such as cameras, ovens and refrigerators.

A simple configuration of a real-time control application is given in figure 10.

Page 60
ETR 225: October 1995

Database

Network

Control Unit

Oven

Thermometer
Transducer

Thermostat

Solenoid

Figure 10: Application configuration

6.4.4.7 Use of MHEG

MHEG objects are interchanged bi-directionally between the control box store and the terminal via the
access network.

MHEG objects express the presentation information, and the information of the monitoring devices.

6.4.4.8 Use of scripts

It is useful to interchange scripts:

- to allow external device control, e.g. ovens, cameras, door controls, VCR programming etc,...;
- to compute results of setting changes;
- to perform local simulations based on proposed changes in settings, etc,...

6.4.4.9 Application architecture

The application architecture corresponds to the terminal-to-terminal configuration presented in the general
model.

6.4.4.10 API requirements

Table 24 gives an overview of the API functionalities that are required by the terminal in this particular
application.

Page 61
ETR 225: October 1995

Table 24

Function family Needed
Session ü

Directory
Interchange ü

Accessor ü

Modifier ü

Handling
Behaviour
Exception ü

6.4.4.11 SIR requirements

Table 25 gives an overview of the SIR functionalities that are required in this particular application.

Table 25

Function family Needed
external device control ü

external device control for data
acquisition

ü

manipulation of MHEG objects ü

access to external data
access to external advanced
calculation capability

ü

computations, variable handling and
control structures

7 Functional requirements on the MHEG API

This clause discusses and specifies the functions that the MHEG API standard should support in order to
meet the requirements of the target M&H applications.

For this purpose, this clause:

- provides a synthesis of the application requirements as resulting from clause 6;
- presents a functional model and terminology applicable to the MHEG API;
- discusses and states the scope of the MHEG API from a functional perspective.

NOTE: There can be several MHEG engines in an application, all of them providing the MHEG
API. In the following clauses, whenever the semantics of use of the MHEG API are
discussed, "the MHEG engine" always refers to the particular MHEG engine that
provides the MHEG API under use.

7.1 Synthesis of application requirements

This subclause provides a synthesis of the requirements of the target applications developed in clause 5,
as regards the manipulation and interchange of MHEG objects. All these requirements are functional
requirements.

7.1.1 Function targets and families

For the purpose of describing these functional requirements, the functions are clustered into families
characterised by their target type (i.e. the kind of concept on which they apply) as well as the type of
operation that applies to this concept. This set of families is believed to cover the whole range of common
application needs.

The target types are the following:

Page 62
ETR 225: October 1995

- MHEG object;
- set of the MHEG objects;
- MHEG engine entity;
- set of the MHEG engine entities;
- the MHEG engine.

MHEG object is the target for functions that apply to one MHEG interchange object, i.e. an object which is
encoded in MHEG format and currently available to the application, i.e. stored or interchanged in any
accessible location.

Set of the MHEG objects is the target for functions that apply to the whole set or part of the set of all the
objects which are encoded in MHEG format and currently available to the application, i.e. stored or
interchanged in any accessible location.

MHEG engine entity is the target for functions that apply to one MHEG entity currently available to and
under control of the MHEG engine, i.e. an MH-object, an rt-object or a channel handled by the MHEG
engine.

Set of the MHEG engine entities is the target for functions that apply to the whole or part of the set of all
MHEG entities handled by the MHEG engine, i.e. available MH-objects, rt-objects (including sockets)
and/or channels.

The MHEG engine is the target for functions that apply to the MHEG engine globally.

The following function families are defined:

- session;
- directory;
- interchange;
- accessor;
- modifier;
- handling;
- behaviour;
- exception.

The session functions are related to the communication between MHEG using application and MHEG
engine via the API. These functions are targeted at the MHEG engine. Examples are "open
communication session" (possibly subsumes "start MHEG engine"), "close communication session"
(possibly subsumes "stop MHEG engine"), get MHEG engine resource capabilities.

The directory functions deal with the management of MHEG objects and their availability to the
application. These functions are targeted either at the set of MHEG objects or at a specific MHEG object.
Examples are "list available objects", "select objects (matching certain criteria based for instance on
attributes or location)", "add/remove object (to/from application availability)", "associate object with alias".

The interchange functions deal with the modification of the location of an MHEG object available to the
application. These functions are targeted at an MHEG object. Examples are "send (or deliver) object",
"retrieve (or pre-load) object", "store object".

The accessor functions allow to retrieve the value of an attribute of an MHEG object available to the
application. These functions are targeted at an MHEG object. Examples are "get version number", "get
MHEG ID", "get owner", "get content classification".

The modifier functions allow to modify (update) the value of an attribute of an MHEG object available to
the application. These functions are targeted at an MHEG object. Examples are "set version number", "set
MHEG ID", "set owner", "set content classification".

The handling functions deal with the handling of MHEG entities. They are targeted at the set of entities
handled by the MHEG engine. Examples are "list open channels", "select available objects (matching
certain criteria based for instance on status or type)".

Page 63
ETR 225: October 1995

The behaviour functions have semantics that match MHEG actions. They are targeted at an MHEG
entity, i.e. an MH-object, an rt-object (including a socket) or a channel available to the MHEG engine.
Examples are "get current speed", "set current speed", "run rt-object", "prepare/destroy MH-object",
"new/delete rt-object", "return numeric/MH-object", "get availability status". Unlike the other ones that
match MHEG actions being sent to MHEG entities, the return functions are designed to allow the MHEG
using application to handle events generated by the MHEG engine after the triggering of a return action.

The exception functions allow to handle errors notified by the MHEG engine on the occurrence of an
unexpected situation.

Table 26: Function families according to targets

Family/Target MHEG engine set of MHEG
objects

MHEG object set of MHEG
engine entities

MHEG engine
entity

Session ü

Directory ü ü

Interchange ü

Accessor ü

Modifier ü

Handling ü

Behaviour ü

Exception ü

7.1.2 Classification of application requirements

Not all applications need be provided with all families of functions. This is summarised in table 27.

Table 27: Application requirements for function families

Application/Family Session Directory Interchange Accessor
T H T H T H T H

Encyclopaedia ü ü ü ü

PoI/PoS ü ü ü ü ü ü ü ü

Telematic training ü ü ü ü ü ü

EPG ü ü ü ü ü ü ü

Teleshopping ü ü ü ü ü ü ü ü

iVoD ü ü ü ü ü ü ü ü

Videoconference ü ü ü

Videotelephony ü ü ü

Telecontrol ü ü ü

Application/Family Modifier Handling Behaviour Exception
T H T H T H T H

Encyclopaedia ü ü ü

PoI/PoS ü ü ü ü ü ü ü ü

Telematic training ü ü ü ü ü

EPG ü ü ü ü ü ü

Teleshopping ü ü ü ü ü ü ü

iVoD ü ü ü ü ü ü ü

Videoconference ü ü ü

Videotelephony ü ü ü ü

Telecontrol ü ü

Abbreviations: T: Terminal
H: Host

Page 64
ETR 225: October 1995

7.2 Model and terminology

This subclause describes the terminology applicable to the API, and illustrates the different levels of an
API using an indicative diagram.

7.2.1 Terminology

An API consists of primitives , i.e. basic entry points provided by a provider module to any user module
to enable the user to access software services supplied by the provider. These modules are pieces of
software, although they can use services provided by computer hardware or other electronic equipment.

In the present case, the MHEG API gives access to MHEG object manipulation services. MHEG
engines are the providers, whereas MHEG applications are the users. One MHEG engine may provide
its software services to several applications. An MHEG engine can therefore be viewed as a server ,
whereas MHEG applications are the clients of the MHEG object manipulation service.

An API primitive is used to transfer some information between its user and its provider. This information
consists of control and/or data. The information may be forwarded either from a client to its server or from
the server to one of its clients. The information may be generated by its sender either on its own initiative
or as a reply to a formerly issued primitive. The following terms are used:

- a request is a primitive issued by the client on its own initiative to forward information to the server;

- a response is a primitive issued by the server as a reply to a request to forward information to the
client;

- a notification is a primitive issued by the server on its own initiative to forward information to the
server.

Different kinds of requests may be considered:

a) requests that require no response are called asynchronous requests ;

b) requests that do not require an immediate response are called deferred synchronous requests ;

c) requests that require an immediate response, until which the client process cannot proceed, are
called synchronous requests .

Whether synchronous or asynchronous, requests may result in processing that will in turn trigger
notifications.

7.2.2 Levels of abstraction of the API

The concept of "Level of abstraction" is complex with several (possibly non-conflicting) uses. Usage of
"Level of abstraction" implies variation in the amount of functionality offered to the calling program by each
invocation.

The same service may be provided by multiple API specifications which differ in level of abstraction (see
example).

EXAMPLE: A less abstract (primitive level) API specification for MHEG may provide the
application programmer low level primitives that, if applied in the right sequence,
result in a dynamic effect on the screen. On the other hand a more abstract API
specification (function level) may provide a simple, single subroutine call
providing this very specific animation effect.

More abstract (higher level) APIs are closer to application semantics, but less abstract APIs (lower level)
are more "primitive" and therefore fit more applications requirements (hence allowing more application
portability) with a smaller number of primitives.

Page 65
ETR 225: October 1995

Three levels of abstraction can be identified:

- the function level;
- the primitive level;
- the message level.

Only the part for use by a client software application is considered, although it is likely to be implemented
in a symmetric way on the server (MHEG engine) side.

MHEG application

MHEG engine

messages primitives

F
P
M

P
M

Figure 11: Communication between MHEG application and MHEG engine

At the function level , the software application needs to access the MHEG object manipulation and
interchange functions in the most practical way. If this optional level exists, it aims at providing the
application designer with a high-level, application-oriented representation of the MHEG object
manipulation and interchange functions, as matching the expressed requirements. This level is
application-dependent and language-dependent. For instance, if the applications are to be written in C++,
they might make use of a C++ class library whose classes match application-oriented concepts and
whose public methods encapsulate primitive level calls to provide MHEG object manipulation and
interchange functions. Such a library might provide for example a scene object class (provided the
application uses such concepts) for representing the particular MHEG composite rt-objects handled by the
application. This class would provide public methods for creating, modifying and presenting the scene.
These functions would in turn call such API requests as "new rt-composite", "set rt-composite attributes"
and "run rt-composite" to perform the corresponding tasks. The library might also associate each object
class with an event handler to deal easily with the functions of the return family. The function level is
defined by the application-oriented semantics of the functions.

The primitive level consists of basic, low-level, MHEG-representation-oriented entry points of the MHEG
engine as defined by the future MHEG API standard. It corresponds to an implementation of the API on a
given platform, using a given programming language. This level is language-dependent but application-
independent and system-independent. It will usually match one-to-one API primitives with procedures,
subroutines, functions, methods, messages or whatever mechanism is provided by the programming
language. This implementation is therefore dependent on a programming language binding, i.e. a way of
mapping API primitives to programming language constructs. The primitive level is defined by the syntax
and MHEG-oriented semantics of the API primitives.

At the message level , the information forwarded by the API primitives need be interchanged between
software modules in a system-dependent way. The interchanged data are called messages. The message
encoding will usually be system-dependent and possibly language-dependent, but
application-independent. The message level is defined by the coded representation of the messages
according to the primitives syntax.

Page 66
ETR 225: October 1995

application-

dependent

function

level

primitive

level

message

level

language-

dependent

system-

dependent

request response notification

message message

encoding

syntax

application semantics

MHEG semantics

Figure 12: Levels of implementation of the MHEG API

The guideline for selection of the right level of abstraction for the API is to stay as low-level as possible as
long as it remains platform-independent.

7.3 Functional scope of MHEG API

The MHEG API is the interface that any MHEG engine conforming to the MHEG API standard should
provide to MHEG applications. The scope of the MHEG API is to provide applications with functions for
the manipulation and interchange of MHEG objects. This subclause discusses and recommends which
function families should actually be specified in the MHEG API standard and required from MHEG
engines.

There are two questions arising from the requirements summarised in subclause 7.1:

- how do the application-required functions map to the MHEG API primitives?
- what functions should the MHEG API provide among the listed families?

7.3.1 Mapping application functional requirements to MHEG API primitives

Application designers are likely to base themselves on high-level services provided by the above
described function level. Which services should be provided, in terms of which concept abstractions such
services should be defined, is likely to be dependent on the application domain. Whether such services
should be standardized is an open issue.

The MHEG API should lie at the lowest, most basic level of functional abstraction. The semantics of the
MHEG API primitives should therefore be MHEG-oriented rather than application-oriented. For instance,
most primitives of the behaviour function family would match MHEG elementary actions. The MHEG API
should support any application requirement for MHEG object manipulation and interchange, so that a
higher-level interface could always be built upon the API without any necessary modification of the MHEG
engine interface. A function should not be provided as a primitive if it can be expressed in terms of other,
more basic primitives.

Functions that might optionally be provided by MHEG engines to ease the design or maintenance of client
software applications, but are not required for such applications to run, should not be required from an
MHEG engine and are therefore considered as outside the scope of the future standard. The following
functions belong to this excluded category:

- monitoring of the use of MHEG objects by an MHEG engine;

Page 67
ETR 225: October 1995

- history of the handling of MHEG objects by an MHEG engine;
- browsing through the MHEG objects currently handled by an MHEG engine.

7.3.2 Functions to be provided by the MHEG API

ISO/IEC DIS 13522-1 [2] does not standardize the MHEG engine functionality, but nevertheless makes
some assumptions on what functions an MHEG engine should provide. The MHEG engine is responsible
for the handling of interchanged MHEG objects. The responsibility for the interchange of MHEG objects is
not clearly allocated to the MHEG engine nor to any other defined module.

With respect to the reference model developed in clause 4, it can be assumed that the MHEG object
interchange functionality will be performed by the access agent, which provides services to MHEG
engines and other modules, including MHEG applications.

ISO/IEC DIS 13522-1 [2] proposes an indicative list of the functions that could be provided by an MHEG
engine as an interface to its using application. This description assumes that the MHEG engine is
responsible only for the processing of MHEG objects and its interactions with the using applications.

The question therefore arises as to whether the MHEG API should provide the following functions families
(see subclause 7.1):

- directory;
- interchange;
- accessor;
- modifier.

Indeed, it could be argued that:

- accessor and modifier function families might be provided by the application itself, provided it
integrates an MHEG parser;

- interchange and directory function families might be provided by the access agent.

As concerns accessor and modifier function families, integrating an MHEG parser in every application
would not be an optimal solution in any case. Since the MHEG engine is able to parse MHEG objects, it
would be a lot easier if it could provide the associated services through the MHEG API.

As concerns interchange and directory function families, providing them through the MHEG API could
facilitate their use by the application, especially for the host application as real-time sending of MHEG
objects is involved. Moreover, such functions are part of the scope of the "API for manipulation and
interchange of M&H information".

On another hand, the semantics of these functions are highly dependent on the application architecture as
concerns where and how the objects can be stored, interchanged or managed in a directory. Such
location and transfer mode information is under the control of the access agent.

The best solution for those directory and interchange functions which depend on the location and transfer
mode is therefore as follows:

- these functions have a default trivial behaviour which is determined by the MHEG engine, e.g. store
object stores it on the local disk;

- these functions may be called with one optional parameter (of undetermined type) which is a
symbolic identifier provided by the access agent and representing the location, transfer channel or
whatever allows to identify where and how storage, interchange or directory management takes
place.

As a conclusion, all the function families described in subclause 7.1 should be provided by the MHEG API.

8 Technical requirements on the MHEG API

This clause addresses the technical aspects of the MHEG API standard definition.

Page 68
ETR 225: October 1995

For this purpose, this clause:

- analyses general API specification guidelines;
- states the technical requirements on the MHEG API and their consequences;
- discusses technical options allowing to meet these technical requirements.

8.1 Guidelines for API specification

ISO/IEC JTC1 N 2965 recommends guidelines for API standardization. It first provides a definition of what
an API is, as follows:

"An API is a boundary across which application software uses facilities of programming languages
to invoke services. These facilities may include procedures or operations, shared data objects and
resolution of identifiers. A wide range of services may be required at an API to support applications.
Different methods may be appropriate for documenting API specifications for different types of
services.

The information flow across the API boundary is defined by the syntax and semantics of a particular
programming language, such that the user of that language may access the services provided by
the application platform into the syntax and semantics of the programming language.

An API specification documents a service and/or service access method that is available at an
interface between the application and an application platform."

Following the ISO/IEC JTC1 N 2965, an API may be specified as:

- the description of a programming language;

- a language-specific API specification, i.e. a description of the semantics of a set of functionality in
the syntax and data types of an existing programming language;

- a language-independent API specification, i.e. a description of the semantics of a set of functionality
in an abstract syntax using abstract data types.

The latter is also known as an abstract API specification . The advantage of such a specification is that it
serves as a reference to assure consistency across several language bindings. Indeed, the primary
function of an API in the multimedia platform definition is to support application portability (as given in
ISO/IEC JTC1/SC18/WG1 N 1632).

The abstract API specification is therefore the most appropriate one to define an API which should be
made available to client software that may use any programming language, as recommended by ISO/IEC
JTC1 N 2965:

"Where a standardization project for an API specification includes multiple language bindings with
common interface characteristics, the use of language-independent API specification should be
strongly encouraged".

8.2 Technical requirements on the MHEG API specification

The MHEG API standard should meet the following requirements:

- portability;
- genericity;
- conformance testability;
- implementability.

8.2.1 Portability

The portability requirement can be expressed as follows: the MHEG API standard should enable MHEG
applications to use the MHEG object manipulation and interchange service provided by MHEG engines in
a way independent of:

- the programming language used for the MHEG application;

Page 69
ETR 225: October 1995

- the underlying operating system.

To meet the portability requirement, as stated in subclause 8.1, it is recommended to develop an abstract
API specification, i.e. a language-independent API specification describing the semantics of the API
functionality in an abstract syntax using abstract data types. This definition should be independent of both:

- the mechanism used for interchanging information between the API user and the API provider, i.e.
the messages that are exchanged as the result of triggering API primitives;

- the actual encoding of these messages.

8.2.2 Genericity

The genericity requirement can be expressed as follows: the MHEG API standard should provide
appropriate support to cover all the common requirements of MHEG applications.

To meet the genericity requirement, as discussed in subclause 7.3, it is recommended that the MHEG API
should lie at the most basic level. As far as possible, the primitives defined by the MHEG API should
match MHEG elementary actions and the data types used by the MHEG API should match MHEG data
types. This guarantees to maximise the range of MHEG object manipulations made available to
applications.

8.2.3 Conformance testability

The conformance testability requirement can be expressed as follows: the MHEG API standard should
make it as easy as possible to ensure the conformance of MHEG engines to the MHEG API standard, i.e.
the correct provision of this API by an MHEG engine under test, and also possibly (subject to discussion)
the conformance of MHEG applications to the MHEG API standard, i.e. the correct use of this API by an
MHEG application under test.

To meet the conformance testability requirement, it is recommended that the ETSI methodology be
followed and that conformance testing standards be used whenever applicable.

The methodology recommends the following approach:

1) state clear static conformance requirements;
2) state clear dynamic conformance requirements;
3) specify conformance testing procedures allowing to implement these test purposes.

ETSI standardization processes make use of standards (especially ISO/IEC 9646 Parts 1 to 5 [19]) for the
conformance testing specification of protocols. There is currently no standard for the conformance testing
specification on APIs. Whether the currently used standards can apply to APIs is an unresolved issue. For
the MHEG API, the statement of conformance requirements and test purposes will allow to decide upon a
methodology for conformance testing specification.

Conformance testing is discussed in subclause 8.2.7.

8.2.4 Implementability

The implementability requirement can be expressed as follows: the MHEG API standard should take into
account simplicity and clarity both in the definition and the formulation to make implementation of
conforming MHEG engines as easy as possible.

To achieve the implementability requirement, it is recommended that both language bindings and
message encoding rules be easy to deduce from the abstract API specification. This is discussed in the
subclauses 8.2.5 and 8.2.6.

8.2.5 Language bindings

To achieve portability, an abstract API specification should be developed. However, to achieve
implementability, language bindings should be easy to deduce from this abstract specification.

Page 70
ETR 225: October 1995

Among recommended policies of ISO/IEC JTC1 N 2965 revised (05/94):

"The use of common, standardized methods where available for the specification of language-
independent API specification should be encouraged".

"Where a standardization project for an API specification includes a language-independent API
specification, the language-independent API specification shall be progressed together with at least
one language binding that depends on the language-independent API specification".

Possible language bindings to be progressed together with the MHEG API specification include the
following languages, which are the most likely to be used for programming MHEG applications:

- binding with a widespread, preferably object-oriented, programming language; C++ would appear
the best choice;

- binding with a scripting language; this imposes the choice of a proprietary scripting language;

- binding with the future standard SIR; this relates it to the script representation work item.

8.2.6 Message encoding

Messages refer to the structure (syntax) and encoding of the bits of information which are interchanged
both ways between implementations of the API user and the API provider considered as independent
systems.

In a number of cases, the actual structure and encoding of the messages does not matter as long as they
are understood by both the API user and the API provider. This happens in most cases where the API
user (MHEG application) and the API provider (MHEG engine) both are pieces of software running on the
same computer system, e.g. on the terminal. In this event, whoever provides an MHEG engine for public
use (e.g. a software vendor) may for instance provide with it a set of client libraries to be linked with any
MHEG application, so that every library enables the application to access the MHEG API in one particular
programming language, under a particular operating system. There could for instance be an MHEG API
client library for C++ under Macintosh, one for C++ under Windows, one for Visual Basic under Windows,
each of them implementing the MHEG API by an MHEG application written in that particular language on
this particular system, without care for the actual way messages are encoded and interchanged.

In some cases however, being able to encode messages in a standard way and knowing how to do it may
be a relevant issue. This is especially the case wherever the MHEG API has to be used by an application
that does or may not run on the same computer as the MHEG engine. Since the primary objective of this
standardization being performed by ETSI is to allow the use of MHEG by telecommunication applications,
such distributed configurations should not be excluded. In such cases, underlying operating systems may
differ and such problems as byte ordering have to be taken into account.

The MHEG API standard should then recommend at least one standard-based method for encoding
messages that are interchanged between MHEG applications and MHEG engines as the result of
triggering API primitives.

Page 71
ETR 225: October 1995

8.2.7 Conformance testing

Among recommended policies of ISO/IEC JTC1 N 2965 revised (05/94):

"API conformance requirements should include sufficient level of specification that verification test
methods can be readily derived.The use of API specification methods that support the use of
automated test procedures should be encouraged".

All implementations of the MHEG API need to be tested to determine whether they conform to the MHEG
API specification that results from the work of this project team. It would be ideal if standardized abstract
test suites could be developed for the MHEG API for use; by suppliers or implementors in self-testing; by
telecommunications administrations or PNOs; or by third party testing organizations. This would lead to
compatibility and wide acceptance of test results produced by different test laboratories, and thereby
minimise the need for repeated conformance testing of the same implementation.

The standardization of test suites has been defined and there exists a common testing methodology,
together with appropriate testing methods and procedures, within document ISO/IEC 9646 Parts 1 to 5
[19] and ETR 141 [20]. The document is applicable to the different phases of the conformance testing
procedure, these phases being characterised by three major activities, as follows:

- the specification of abstract test suites for particular Open Systems Interconnection (OSI) protocols;

- realisation of the means of executing specific test suites;

- the conformance assessment process carried out by a test laboratory culminating in the production
of a Protocol Conformance Test Report (PCTR), which gives the results in terms of the protocol
specification and test suite used.

To evaluate the conformance of a particular implementation, it is necessary to have a statement of the
capabilities and options which have been implemented, for the relevant protocol, so that the
implementation can be tested for conformance against those requirements only. Such a statement is
called a Protocol Implementation Conformance Statement (PICS). In a PICS there should be a distinction
between the following categories of information:

a) information related to the mandatory, optional and conditional static conformance requirements of
the protocol itself;

b) information related to the mandatory, optional and conditional static conformance requirements for
multi-layer dependencies.

If a set of interrelated protocols has been implemented in a system, a PICS is needed for each protocol. A
System Conformance Statement will also be necessary, itemising all protocols in the system for which
distinct PICS is provided.

The test notation recommended to be used for telecommunications is the Tree and Tabular Combined
Notation (TTCN). TTCN is designed to meet the following objectives:

a) to provide a notation in which abstract test cases can be expressed in standardized test suites;

b) to provide a notation which is independent of test methods, layers and protocols;

c) to provide a notation which reflects the abstract testing methodology defines in ISO/IEC 9646 Parts
1 to 5 [19].

Due to the generic nature of the MHEG API being defined by the project team coupled, and the fact that a
standardized protocol does not exist for the MHEG API, the above methodology cannot be used. There is
another conformance testing methodology that can be used in these circumstances, and this involves the
use of a PIXIT and other Points of Control and Observation (PCOs). With this method, the test laboratory
will require information relating to the Implementation Under Test (IUT). The IUT, in this case, is the
MHEG API interface whereas the System Under Test (SUT) is the system containing the MHEG Engine,
the application and other software and hardware, as appropriate to the particular implementation. The
implementor will complete a Protocol Implementation eXtra Information for Testing (PIXIT) proforma from
which it should be possible to stimulate, control and monitor the MHEG API interface. This will involve

Page 72
ETR 225: October 1995

applying stimuli at other interfaces within the SUT to cause an action at the MHEG API interface. This
method, however, whilst it can be used by individual implementor for in-house testing, is not suitable for
conformance testing purposes as the other interfaces of the SUT are not standardized and can vary from
being other software modules to being interfaces to television cameras. It is obvious that this would
involve test houses in acquiring vast amounts of test equipment to cope with the variety of interfaces that
they would ever encounter.

Due to a number of factors: that the MHEG API definition will be generic; events at the interface are not
predictable and no standardized protocol is being defined; that the implementation of the Application and
MHEG Engine could be such that the MHEG API interface is not indistinguishable; and that the project
team do not want to constrain implementations, there is a high possibility that under certain sets of
conditions that no conformance testing is possible.

The only way in which conformance testing is possible is that under test conditions the Application is
replaced by test software and the MHEG API is designed so that some form of predictability is added
(such as an acknowledgement primitive in response to a request). The merits of including special
primitives for test purposes only (either switched on during testing or as part of run-time) can be disputed
and is for further study. For those cases where testing is possible, it will be necessary to write generic test
purposes in plain language for the MHEG API interface. These can then be converted into TTCN or
C/C++ etc,... depending on the implementation. The selection of the tests can be then based on the
completion of an Implementation Conformance Statement (ICS) by the implementor. Future work in this
area is dependent on liaisons with the appropriate groups within ETSI, EWOS, ISO/IEC/JTC 1/SC21
etc,...

Further information on abstract test suites, ICS, PICS, PIXIT and TTCN can be found in ISO/IEC 9646
Parts 1 to 5 [19] and its referenced documents.

8.3 Technical options

This subclause discusses technical choices allowing to meet the technical requirements on the MHEG API
definition as expressed and discussed in subclause 8.2.

To follow the recommendations expressed in subclauses 8.1 and 8.2.5, abstract API specification
methods, preferably standardized ones, should be identified; selection among them would then occur
according to their allowing to meet the technical requirements.

ETSI has up to now addressed specification and conformance testing methods for protocols, as well as
general architectures for PCIs; however, specification of high-level APIs is rather a new dimension of ETSI
work, especially brought in the framework of specifying a core multimedia toolbox; API specification
methodologies has therefore not yet been addressed.

8.3.1 IEEE OSI abstract data manipulation

ISO/IEC JTC1/SC21 is responsible for the specification of APIs within ISO. General guidelines are under
development (ISO/IEC JTC1 N 2965). However, no standard abstract API specification method has been
standardized. Current standards or draft standards for abstract API specifications in the OSI world (see
IEEE Std 1224.2-1993 [21]) use a method is defined by IEEE Std 1224-1993 [22].

This methodology is based on an object model. Operations are provided as the interface of classes which
have attributes and are hierarchically organized in an inheritance tree.

The abstract API specification uses plain text specification, with each API primitive being described by:

- a synopsis (name of operation, status data type, name and type of input and output parameters);
- a description of the operation semantics;
- semantics of input arguments;
- semantics of output arguments;
- semantics of results;
- errors that may be returned;
- related (cross-referenced) primitives.

Page 73
ETR 225: October 1995

This methodology for abstract API specification is only intended as a standard for the OSI context.
However, it could be adapted to any API specification, including the MHEG API. It allows to meet the
technical requirements as follows:

- portability: the method provides a language-independent specification;

- genericity: It has no influence on the genericity requirement;

- conformance testing: the above mentioned standards are associated with conformance testing
specification standards such as IEEE Std 1326-1993 [23];

- implementability: the above mentioned standards are associated with corresponding language
binding standards.

This methodology allows to apply common sense procedures in a standard way. Its main drawback is that
it does not provide any formal description technique for specifying the MHEG API in an abstract way.
Practically, it therefore does not provide any significant added value as compared to using no standard at
all.

8.3.2 OMG CORBA Interface Definition Language

The Object Management Group (OMG) and X/Open are non-profit, world-wide organizations aiming at
developing public common specifications and encouraging market uptake of object technology (see
document published by the Object Management Group: "Object management architecture guide") and
open systems respectively. As an important milestone towards this objective, they have issued the
Common Object Request Broker Architecture (CORBA) specification (see document published by X/Open
and the Object Management Group: "The common object request broker: Architecture and specification")
of an open architecture enabling objects to interoperate by providing and using services in distributed
environments.

One part of this specification is the Interface Definition Language (IDL). This language is a formal
description technique for specifying the services provided by objects for use by applications or other
objects. IDL can be used independently from the CORBA context. Although object-oriented
communication in distributed environments is actually a technology of some relevance with regard to the
definition of a multimedia core toolbox, this report only considers the use of IDL and its underlying object
model as a context-independent formal description technique for the specification of APIs.

Application of IDL should be based on an underlying object model. Such an object model is defined in
terms of object types which support operations characterising the behaviour of objects. Objects are
instances of object types. Objects may be identified using object references . Non-object types can be
instantiated but do not support operations. Operations are defined by a signature consisting of a name, a
list of input or output parameter types and a list of result types. The set of operation signatures defined
for a type is the interface of that type. Subtyping allows to define type hierarchies, with subtypes
providing their supertypes' interface as a part of their own interface. Operation requests may have
different operational semantics such as synchronous, asynchronous, etc,... Consequences of an operation
request include side effects, results and exceptions .

IDL is the language used to describe the interfaces (i.e. the set of operations) provided by objects. It
consists of lexical conventions, preprocessing directives and an Extended Backus Naur Form (EBNF)
grammar. An IDL specification of an API consists of data type definitions, constant definitions, exception
definitions, interface definitions and module definitions. More detailed examples are developed in
clause 9.

IDL is currently used within ISO for the specification of distributed multimedia environments (see ISO/IEC
CD 14478-1 [24]).

8.3.3 Use of IDL for the MHEG API definition

As shown in clause 7, the MHEG engine interface consists of a set of API primitives that can be organized
into clusters according to which entity provides the interface. Definition of this interface can therefore
logically be structured according to the operation provider. In the MHEG API context, objects that provide
interfaces need not be implemented as separate object implementations. More likely, they would be
internal entities handled by the MHEG engine. As for the MHEG standard, the MHEG API should then

Page 74
ETR 225: October 1995

follow an object-oriented definition methodology without requiring the implementations to use object-
oriented design or programming techniques.

This technique is quite similar to the technique mentioned in subclause 8.3.1. It provides at least
functionally equivalent features. It however provides the following additional features affecting
implementability and portability:

- language binding: guidelines for C language binding of IDL specifications are part of the IDL
specifications; due to the IDL syntax, C++ language binding is also very easy; other language
binding guidelines could be developed in the same way;

- formal description: unlike the technique mentioned in subclause 8.3.1, IDL provides a complete
formal description language which allows a very concise, readable and efficient specification of the
MHEG API. Moreover, this formal description language is also appropriate for automatic
compilation, which means that MHEG API implementations could be automatically generated for a
given language and operating system using appropriate IDL compilers. This of course could be a
major element in facilitating implementability and general use of the standard API rather than any
specific interface.

8.3.4 Use of ASN.1

Abstract Syntax Notation One (ASN.1) is basically a standard notation that allows the definition of the
structure and encoding of data. ASN.1 guarantees the language independence and platform
independence at both the syntax description and encoding levels. The provided base types are close to
those used in programming languages.

As a technique for defining data types, ASN.1 cannot therefore be considered as an appropriate candidate
for the definition of the interface. On the other hand, ASN.1 is appropriate for the definition of the
messages, i.e. the data interchanged between the API user and the API provider.

It is therefore recommended that ASN.1 be used as the method for describing the structure and encoding
of the MHEG API messages, whenever a standard encoding of these messages is required. However, the
conformance requirements on the MHEG API would be only at the primitive, not at the message level. Any
MHEG API implementation could therefore decide whether to provide this base encoding or not, according
to the type of configuration it is expected to function.

Another reason for considering the use of ASN.1 is that ASN.1 is the base coded representation for
MHEG objects. This means that the structure of MHEG object and data types and the encoding of MHEG
objects is defined using ASN.1. Therefore, since most of the data types which will be manipulated by the
API match MHEG data types, use of ASN.1 for the message encoding allows to maximise coding
efficiency, to re-use elements of the MHEG standard specification instead of developing new ones and to
minimise data transcoding requirements from both the MHEG engine and the MHEG applications.

The use of ASN.1 as the message encoding technique has still another application which is the
expression of MHEG API requests in the SIR formulation. In the event that ASN.1 would be chosen as the
base notation for the SIR, invocation of MHEG API requests could be encoded exactly in the same way as
API underlying messages.

8.3.5 Recommendations

As a conclusion, it is recommended that:

- an IDL specification be developed as the normative specification of the MHEG API primitives;

- an ASN.1 specification of the underlying messages be developed as an informative part of the
MHEG API standard.

Since IDL is not a recognised international standard, the formal description of the Interface Definition
Language used should be included as a normative part of the MHEG API standard.

Page 75
ETR 225: October 1995

9 Methodology for the specification of the MHEG API

This clause presents the recommended methodology for the specification of the MHEG API.

9.1 Summary of methodology

To meet the functional requirements and technical requirements presented in clauses 6 and 7, in
accordance with the conclusions presented there, the MHEG API standard drafting activity to occur in the
next phase should proceed according to the following, consecutive steps:

1) (normative) state conformance requirements;

2) (normative) develop the MHEG API object model;

3) (normative) define the complete interface definition language syntax and semantics used for the
MHEG API;

4) (normative) develop an IDL specification of the MHEG API;

5) (informative) develop an ASN.1 specification of the messages underlying the MHEG API;

6) (informative) express guidelines and mechanisms for specifying the language bindings of the
MHEG API, optionally developing the C++ language binding as an example;

7) (informative) express static and dynamic conformance testing purposes, optionally suggesting
guidelines for the derivation of conformance testing procedures from the API specification.

The following should be subject to further standardization work:

- language bindings for one or several common languages, including the SIR;

- conformance testing procedures for both MHEG engines providing the MHEG API and MHEG
applications using the MHEG API.

9.2 Object-oriented analysis of the MHEG API

The object-oriented analysis of the MHEG API is based on an analysis of the MHEG standard. This
standard is currently at DIS proposal level and therefore still subject to change. The results of this
subclause should therefore be reviewed during the MHEG API specification according to possible
changes in ISO/IEC DIS 13522-1 [2].

9.2.1 Object types

It should be remembered that the objects described hereafter are introduced as useful concepts for
specifying the interface, but are not required to be implemented as separate objects. The MHEG API is
specified as an abstract API in terms of operations provided by objects, but implementations of the MHEG
API will be provided by MHEG engine implementations.

NOTE 1: Appropriate naming rules (including prefixing of operation, type or instance names)
should be defined and followed throughout the MHEG API definition.

The base object types are the following:

- MHEGEngine;
- MHEGObjectManager;
- MHEGObject;
- EntityManager;
- Entity.

The MHEGEngine object type interface provides the operations related to the communication between the
MHEG application and the MHEG engine. These operations match the session functions as described in
subclause 7.1.

Page 76
ETR 225: October 1995

The MHEGObjectManager object type interface provides the operations related to the management and
access to the directory of the MHEG objects available to the application. These operations match those
directory functions described in subclause 7.1 that are targeted at the set of available MHEG objects.

The MHEGObject object type interface provides the operations related to the access and interchange of a
single MHEG object. These operations match the interchange, accessor and modifier functions described
in subclause 7.1, as well as those directory functions described in subclause 7.1 that are targeted at a
single available MHEG object. MHEGObject is an abstract type (it cannot have instances) which has
subtypes whose hierarchy follows the hierarchy defined by the MHEG standard, as defined by ISO/IEC
DIS 13522-1 [2], subclause 16.1:

- MHEGAction;
- MHEGLink;
- MHEGModel (abstract);
- MHEGContainer;
- MHEGDescriptor;
- MHEGScript (direct subtype of MHEGModel);
- MHEGComponent (direct subtype of MHEGModel) (abstract);
- MHEGComposite (direct subtype of MHEGComponent);
- MHEGContent (direct subtype of MHEGComponent);
- MHEGMultiplexedContent (direct subtype of MHEGContent).

NOTE 2: MHEGObjects (and their subtypes) match form a) objects as defined in
ISO/IEC DIS 13522-1 [2], subclause 6.2.4, i.e. objects available to the application.

The EntityManager object type interface provides the operations related to the handling of MHEG entities
(mh-objects, rt-objects and channels) by the MHEG engine. These operations match the handling
functions as described in subclause 7.1.

The Entity object type interface provides the operations related to the handling of the behaviour of a single
MHEG entity. These operations match the behaviour functions as described in subclause 7.1. Most of
them match MHEG elementary actions. Entity is an abstract type (it cannot have instances) which has
subtypes whose hierarchy follows the hierarchy defined by the MHEG standard, as defined by ISO/IEC
DIS 13522-1 [2], subclause 16.1:

- mhObject (abstract);
- rtObject (abstract);
- Channel;
- mhAction (direct subtype of mhObject);
- mhLink (direct subtype of mhObject);
- mhModel (direct subtype of mhObject) (abstract);
- mhContainer (direct subtype of mhObject);
- mhDescriptor (direct subtype of mhObject);
- mhScript (direct subtype of mhModel);
- mhComponent (direct subtype of mhModel) (abstract);
- mhComposite (direct subtype of mhComponent);
- mhContent (direct subtype of mhComponent);
- mhMultiplexedContent (direct subtype of mhContent);
- rtScript (direct subtype of rtObject);
- rtComponent (direct subtype of rtObject) (abstract);
- rtComposite (direct subtype of rtComponent);
- rtSocket (direct subtype of rtComponent);
- rtContent (direct subtype of rtComponent);
- rtMultiplexedContent (direct subtype of rtContent).

NOTE 3: mhObjects (and their subtypes) match form b) objects as defined in
ISO/IEC DIS 13522-1 [2], subclause 6.2.4, i.e. objects available to the MHEG engine.

NOTE 4: rtObjects (and their subtypes) match form c) objects as defined in ISO/IEC DIS 13522-
1 [2], subclause 6.2.4, i.e. instances of mhObjects available to the presentation
process.

The exception functions as described in subclause 7.1 are provided as part of the interface of all objects.

Page 77
ETR 225: October 1995

9.2.2 Non-object types

Non-object types are simple or structured types used for expressing the interfaces. Most types are used to
match data types used by the MHEG standard.

Simple non-object types consist of the simple types defined by IDL:

- numeric types: short, long, unsigned short, unsigned long, float, double;
- character types: char, string;
- boolean;
- octet;
- any.

Structured types can be constructed using the sequence, struct, union, array and enum constructs.
ASN.1-IDL data type mapping would help matching MHEG data types to MHEG API data types. Examples
of structured non-object types are:

- generic hook;
- generic reference;
- generic list;
- classification.

9.2.3 Analysis of behaviour functions

The behaviour functions have the following specific features:

- they are provided by a number of different objects;
- they are much more numerous than the other function families;
- they correspond to the actions described in the MHEG standard.

The behaviour function sub-families are summarised in table 28.

Page 78
ETR 225: October 1995

Table 28: Behaviour function sub-families

Behaviour sub-family Interface provider object Corresponding MHEG actions
Postponed rtComponent

Channel
Delay

Returnability not applicable (event) Return
Alias Entity Set Alias
Availability mhObject Prepare

Destroy
Get Preparation Status

Firability mhLink (to be provided by MHEG DIS)
Abort mhLink Abort

(to be provided by MHEG DIS)
Generic value storage mhContent Get/Set Data
Copy mhContent Copy

(to be provided by MHEG DIS)
Multiplexing/demultiplexing mhMultiplexedContent Set Multiplex

Set Demultiplex
Availability rtObject New

Delete
Get Availability Status

Running rtObject Run
Stop
Get Running Status

Termination rtScript Get Termination Status
(to be provided by MHEG DIS)

Passing parameters rtScript Set Parameters
(to be provided by MHEG DIS)

Presentation and structural
dynamism

rtSocket Plug

Channel assignment rtComponent Get/Set Channel Assignment
Perceptability rtComponent Get/Set Opacity

Get/Set Presentation Priority
Temporal rtComponent Get/Set Visible Duration

Get/Set Current Temporal Position
Get/Set Visible Duration Position
Get/Set Speed
Get/Set Timestones
Get/Set Timestone Status

Audible rtComponent (to be provided by MHEG DIS)
Stream choice rtComponent (to be provided by MHEG DIS)
Spatial rtComponent (to be provided by MHEG DIS)
Channel availability Channel New

Delete
Get Availability Status

Channel perceptability Channel Get/Set Perceptability
Selection rtComponent (to be provided by MHEG DIS)
Modification rtComponent (to be provided by MHEG DIS)
Interaction style rtComponent (to be provided by MHEG DIS)

9.2.4 Operations

In the MHEG API specification, primitives should be defined as follows:

- request primitives should be specified as either operations provided by object interfaces or
accessors and modifiers of the attributes provided by object interfaces. Requests will be either
synchronous (client suspended until response is provided), deferred synchronous (response
provided, client not suspended) or asynchronous (no response);

Page 79
ETR 225: October 1995

- response primitives should be specified as the results of the synchronous operations describing
requests;

- notification primitives should be specified as either exceptions that may be raised by requests or as
events. The latter category applies mainly for the return actions, which are part of the behaviour
function category. A syntax for the definition of events (currently not supported by IDL) should be
provided by item 3) as mentioned in subclause 9.1.

The following is an indicative list of the operations and attributes that the interfaces of the objects defined
in subclause 8.2.1 should provide as the MHEG API. This informal list should be completed as necessary
and used as the basis for the formal IDL specification.

MHEGEngine

- OpenSession
- CloseSession
- GetMHEGEngineCapabilities

MHEGObjectManager

- SelectObjects (according to attribute, location and/or other criteria)
- SupplyObject (make it available to the application)
- DeleteObject

MHEGObject

- attribute: logical name(s)
- MHEG attributes: standard version, class identifier, MHEG identifier, name, owner, version, date,

keywords, copyright, licence, comments
- Send
- Retrieve
- Store

MHEGAction

- MHEG attributes: synchro indicator, performances, target set, synchronised actions (attributes
should be organized so as to allow accessing, modifying, adding or removing one identified
elementary action or nested action object within the object)

MHEGLink

- MHEG attributes

MHEGContainer

- MHEG attributes

MHEGDescriptor

- MHEG attributes

MHEGModel

- MHEG attributes

MHEGScript

- MHEG attributes

MHEGComponent

- MHEG attributes

Page 80
ETR 225: October 1995

MHEGComposite

- MHEG attributes

MHEGContent

- MHEG attributes

MHEGMultiplexedContent

- MHEG attributes

EntityManager

- SelectEntities (according to attribute, status or other criteria)

Entity

- attribute: alias(es)

mhObject

- readonly attribute: original MHEG object
- Prepare: takes an MHEG object as argument, sets the original MHEGobject attribute
- Destroy
- readonly attribute: preparation status (modified by Prepare and Destroy operations)

NOTE 1: As recommended by both MHEG and IDL, operations that modify the life status of
objects, i.e. creation and destruction operations, are provided by the created (or
destroyed) object. The original object on which to base for creation (the reference to
an MHEGObject for the creation of an mhObject, the reference to an mhModel for the
creation of an rtObject) is provided as an argument.

rtObject

- readonly attribute: original mhModel
- New: takes an mhModel as argument, sets the original mhModel attribute
- Delete
- readonly attribute: availability status, running status
- Run
- Stop

NOTE 2: List of object operations to be completed according to behaviour table in
subclause 9.2.3.

Page 81
ETR 225: October 1995

10 SIR functional requirements

10.1 Synthesis of application requirements

The requirements for scripts, for the services and applications examined in clause 6, are given in table 29.

Table 29: Requirements for scripts

Scripts required for each
application

Encyclopeadia PoI
PoS

Telematic
training

EPG

External device control ü ü ü ü

External device control for data
acquisition

ü

Manipulation of MHEG objects ü ü

Access to external data ü ü ü

Access to external advanced
calculation capability

ü

Computations, variable handling and
control structures

ü ü ü ü

Key: PoI: Point of Information
PoS: Point of Sale

Scripts required for each
application

Teleshopping iVoD Video-
telephony

Games

Tele-control

External device control ü ü

External device control for data
acquisition

ü ü ü

Manipulation of MHEG objects ü ü ü ü

Access to external data ü ü

Access to external advanced
calculation capability

ü ü

Computations, variable handling and
control structures

ü ü

The overall requirements for the applications above, are as follows:

- external device control;
- external device control for data acquisition;
- manipulation of MHEG objects;
- access to external data;
- access to external advanced calculation capability;
- computations, variable handling and control structures.

The way in which the scripts are implemented needs to be determined.

Page 82
ETR 225: October 1995

10.1.1 Terminology

 V irtual W orld o f
M ultim edia Applica tion

Logical W orld
of M u ltim ed ia
 In form ation
 P rocess ing
 System

 S cene
C reation

P ublishing

m essagescontro l
 data

P resentation
 A pplica tion

 U ser
Interface

 In teractive
M ultim edia S how

P resenter

Scrip t D a ta

Form atter

 R ev isab le
S cene D escrip tion

A pplica tions

 A pplication
S pec ific D ata

 M edia
 S pec ific
P resentation
 D ata

M ode lling

Form atting

Presen ta tion

P hys ical W orld
 o f M ultim edia
 In form ation
 P ub lisher

Figure 13: Production, interchange and use of multimedia

The above figure, originally developed to be a reference model for multimedia, is used in this ETR to
illustrate the process of production, interchange and use of scripts in multimedia applications.

The figure shows a number of information repositories (pertaining to information modelling, formatting and
presentation processes) linked together by common objects or procedural APIs. The figure includes the
following:

- Application Specific Data which is used primarily to interchange information between applications
co-operating in the process of information creation;

Page 83
ETR 225: October 1995

- Revisable Scene Description where application specific semantically meaningful objects are
already associated with information visualisation and presentation specific attributes;

- Media Specific Presentation Data where specified associations between semantics of particular
user application, and visualisation and presentation attributes are already resolved to the form of a
content suitable for multimedia presentation of original information.

Repositories containing revisable scene description, or media specific presentation data, allow through
common and often standardized semantics, to distribute, share, store and retrieve multimedia information
without direct access to an application originating this information. In such context, if information user and
information provider are spatially or temporary separated, two additional processes are introduced,
namely:

a) Scene Creation Process which provides for an application independent platform to integrate
information in the process of visualisation, and for common input platform to a formatter;

b) Information Publishing Process providing for an important and simple way to distribute final form
presentation either:

1) in open public interchange format like MHEG and MHEG-S; or

2) in proprietary format often dedicated to some specific presentation hardware and software.

For precise evaluation of direct environment around MHEG standard, the presentation part of the basic
reference model is split into presentation application and user interface process . In the process the
information verification, they will exchange messages and control information visualising data already
available in some standard or proprietary procedural (script) or descriptive forms.

More than one presentation application can share the same media specific presentation data using one or
more user interface processes. They then constitute the presentation environment .

10.1.2 Scripting Languages, Scripts and Script Interchange Representation

A Scripting Language (SL) is a programming language, however not all programming languages are SLs.
More precisely, the set of SLs is a subset of programming languages. The attributes which differentiate
them are subtle, and often have to do with marketing as well as with technical distinctions. A SL is used in
the Scene Creation Process (see figure 13).

SLs usually display one or more of the following characteristics:

- language syntax and grammar resemble natural (spoken) languages;

- language is usable by people who are not professional programmers;

- language design stresses simplicity over functionality;

- language is application focused, in that it is intended to address the need of one category of
application (language is not "general purpose").

The programs written in SL are called "Scripts ".

The SIR is a coded representation used by an application to interchange scripts in the purpose of their
processing on a remote device. From one script one or several (interpretable or not, executable or not,
reprocessable or not, re-editable or not) may usually be generated. The main advantage a SL offers
compared to the SIR is that to express very easily the desired functionality. A SIR is used in the
Information Publishing Process (see figure 13).

The high level requirements for SLs the applications presented in clause 6 have are very different. It is
therefore very difficult to fulfil them with only one set of functionality. If only the SIR is standardized than
application providers can use a specific SL that is best suited to their application to design scripts and
translate them afterwards into the standardized SIR.

Page 84
ETR 225: October 1995

The SIR should therefore be specified hardware independent using only a basic set of low-level
commands that in their combination are suitable to provide all desired functionality.

10.2 Functional scope of SIR

The overall requirements for the applications described in clause 6 of this ETR, are as follows:

- external device control;
- external device control for data acquisition;
- manipulation of MHEG objects;
- access to external data;
- access to external advanced calculation capability;
- computations, variable handling and control structures.

In order to support the application requirements, the SIR chosen should provide the following:

a) the ability of MHEG objects to interface with external processes in a standardized way;
b) the ability to deal with minimal resource constraints.

The functions derived from the application requirements can be split into four areas. These functions
should be expressible by the SIR. The four function areas are as follows:

1) handling of data (variables, collections);
2) operations on data (computing, comparison, assignment, etc,...);
3) co-operation with MHEG objects (sending and receiving actions);
4) co-operation with external processes (activation and deactivation, sending and receiving data,

etc,...).

11 Technical requirements on the MHEG SIR

This clause addresses the technical aspects of the MHEG SIR standard specification.

For this purpose, this clause:

- states the objective and scope of the MHEG SIR, from a technical perspective;
- recommends technical options;
- recommends a technical framework for the drafting of the MHEG SIR standard.

11.1 Technical requirements on the MHEG SIR specification

The technical requirements for the target representation are the following:

- hardware independence;
- final form;
- mechanisms for interfacing with external processes or libraries such as floating point arithmetic

packages (for example to calculate simulations, etc,...);
- compactness (small size of code);
- easy to implement simple and powerful interpreters (reduced instructions set);
- open and extensible structures;
- allowing real-time interchange;
- allowing to be produced by specialised tools;
- resistant to reverse engineering;
- checkability of the syntax of the interchanged data for quality of service purposes;
- checkability of the interchanged data for contamination purposes for security and protection

purposes;
- a non-proprietary representation allowing developers and implementors to be free from copyright

issues.

Page 85
ETR 225: October 1995

11.2 Technical options

11.2.1 Architecture Neutral Distribution Format (ANDF)

One candidate for a SIR is the Architecture Neutral Distribution Format (ANDF) which was developed by
the TDF team at the Defence Research Agency (DRA) in Malvern, UK. This development meets the
requirements of architectural neutrality and is resistant to reverse engineering. An ANDF allows software
developers to develop software as usual in high level languages (C and FORTRAN, etc,...) and then
compile it into a distribution format. In this ANDF form, it is then distributed to users, who use local
compilers specific to their own architectures to compile it to the appropriate object code. DRA's TDF
technology amounts to a new compiler language. ANDF is not primarily intended for real-time interchange.

11.2.2 p-code

Most compilers translate scripts into machine code that a computer can execute directly. With special
compilers programs can be compiled into an alternate format called p-code. p-code produces much
smaller programs than machine code but a computer cannot execute them directly. Instead, programs
compiled into p-code are executed by an interpreter. As a result p-code programs are slower than
machine code programs.

p-code is object code consisting of instructions for a pseudo-machine - an idealised computer architecture
optimised for high-level language execution on small host machines. Object p-code may originate from
any one of a number of source languages (Pascal, FORTRAN, Basic, etc,...). As long as the program has
no native code elements, it is isolated entirely from the host computer and can be executed without
recompilation and indeed without modifications of any kind on most, if not all, host hardware.

When native code is required, there are two ways to generate it. First, the native code can be produced
automatically by a code-generator program that takes the p-code as input and produces equivalent native
code for programmer-designated performance-critical sections. No matter how the native code is
produced, its execution can be interleaved with p-code execution. That is, a program can have both native
and p-code components, and frequent transitions back and forth between the two modes of execution.

11.2.3 Other options - intermediate languages

Kaleida is a joint venture of IBM and Apple. The major product of this company is a scripting language
called Script/X, which is based on object-oriented technology and the C programming language. Script/X
ventures away from the usual scripting language in that it provides for an intermediate language that is
independent of the source language. In theory, script can be developed in any language and then
compiled into Kaleida's proprietary intermediate form. This approach has been applied to programming
languages before: p-code and ANDF are examples of intermediate forms that are currently used by
commercial compilers.

With Script/X, which Kaleida describes as a device independent, object-oriented multimedia description
language, developers can write to a uniform set of APls, independent from any hardware. To make the
applications play on many different machines, Kaleida will create what it calls run-time engines (RTEs) for
each platform. The basis of the company's business is the proprietary-intermediate format and machine-
specific RTEs which Kaleida will license to both hardware manufactures and software developers.

In the hope that authoring tool developers will replace with Script/X their proprietary scripting language for
performance and interchange purposes, and that Script/X will be the industry language of choice for
specification of procedures which might be referenced from HyTime, Kaleida submits the Script/X
specification to Interactive Multimedia Association (IMA) in response to that group's multimedia scripting
language Request for Technology despite the fact that the work on the scripting language is not
complete yet.

Page 86
ETR 225: October 1995

11.2.4 Conclusion

For the Kaleida intermediate forms, work is not complete and they are proprietary in nature.

Given the advantages of p-code, and the fact that ANDF is not primarily intended for real-time
interchange, and furthermore, does not meet the functional and performance requirements, p-code is the
recommended SIR out of the presented options.

11.3 Guidelines for drafting the MHEG SIR standard

To define a SIR that lies on an optimised level between a high level scripting language or programming
language (C, Pascal, etc,...) and a low level assembly language is a very difficult task of this project. The
following guidelines should be taken into account when making the final decision on which level to define
the SIR.

The definition of a SIR too close to the level of a programming language would cause the following
problems:

- the code would not be resistant to reverse engineering;

- the SIR would not be final form so it would not be interpretable in real-time. It would be more difficult
to build SIR interpreters;

- it will not be possible to produce compilers for all different scripting languages that can compile the
scripts into SIR.

The definition of a SIR too close to the level of a the assembly language would cause the following
problems:

a) the SIR would not be as compact as with a high level language;
b) the SIR would not be machine independent.

A recommended approach to develop an optimised SIR is to start on the basis of a near assembly code
language and increase the functionality until all of the requirements for a SIR are fulfilled.

11.4 Possible implementation example using p-code

The following subclauses are based on the assumption that the SIR implementation will use a p-code like
concept. However, most of the described functionality will be similar even if a different solution than a
p-code like stack machine is used.

11.4.1 The p-code stack machine

While machine language consists of instructions for the microprocessor in a computer, p-code consists of
instructions for an imaginary processor that is simulated by an run-time interpreter. This imaginary
processor is known as "stack machine", because it uses a stack for almost all of its operation. In contrast,
the microprocessor in a computer uses its registers for most of the operations and uses the stack
preliminary for function calls.

The stack holds the operands used by the instructions. In assembly language usually a source and a
destination is defined for any instruction, indicating where the operands reside and where to place any
results (see example 1).

EXAMPLE 1: ADD AX, BX

With a stack machine usually no source and destination is defined. Each instruction pops its operands off
the stack and pushes its results back onto the stack (see example 2).

Page 87
ETR 225: October 1995

EXAMPLE 2: The p-code instruction

ADDW

would imply the following operations (using C-like pseudo code):

w2 = pop() // get first operand from the stack
w1 = pop() // get second operand from the stack
push(w1+w2) // place result on the stack.

Omitting the source and destination saves space and helps to make p-code as compact as it is. This is
the main advantage of using a stack machine based pseudo-architecture instead of a register machine
based pseudo-architecture.

The stack can store items of different data types, including integer, real etc,... It replaces the need for the
general purpose registers (AX through DX).

11.4.2 Relationship between script engine and MHEG engine

The information exchange between the script engine and the MHEG engine is handled via the MHEG API.
The Script engine is the client of the MHEG engine and as such can use all the API services offered.
Using this MHEG API primitives a script instance can interact on all available MHEG objects.

With the starting of the execution of each script the script engine has to start a new instance of the script
interpreter. Every instance of this script interpreter should run one instance of a script. The script
instances can exchange information with each other and can communicate with the outside world.
Synchronisation between the script instances may be needed in several specific cases. The
synchronisation could be provided by messages between the script instances and a kind of "Wait for
message" instruction that would suspend the execution of a script instance until a specific message is
received.

11.4.3 The p-code data types

The following aspects should be taken into account when selecting the data types to be used in the p-
code:

- platform independence should be guaranteed;

- a minimal number of data types to support all functionality should be provided. Care should be
taken not to make the p-code too complex by introducing too many different data types;

- basic data types that allow the using application to process any kind of data by bringing application
specific semantics to the used structures should be implemented;

- the expression of more complex data types like records or arrays should be enabled either by
providing access facilities to different offsets within one bytestring, or by defining more complex
ASN.1 like structures;

- harmonization with the data structures of the notation that is used to encode the SIR should be
envisaged.

Taking into account all previously made considerations, the following datatypes are proposed (the list of
data types may be amended or changed according to requirements arising from the actual implementation
of the SIR in later phase of work:

1) integer;
2) real;
3) byte string;
4) character;
5) enumerated;
6) object identifier;
7) object descriptor;

Page 88
ETR 225: October 1995

8) complex data types built from constructors (such as, sequence, set, choice, sequence of, set
of, etc,...).

11.4.4 Extension mechanisms using a Call instruction

The Call instruction enables the invocation of functions or external processes allowing the exchange of
parameters in both ways. The following two scenarios can be identified:

- direct call;
- indirect call.

The direct Calls invokes a function different from the currently executing function. An indirect Call invokes
either a function unknown at design time, a function in a prototype package (library of often used SIR
function to ease development) or any kind of external process. Both Call instructions should support the
exchange of parameters in both directions.

This Call instruction provides a powerful means to interface with external processes and to enlarge the
capabilities of the SIR in order to fulfil the requirement of all different families of services.

11.4.5 SIR instructions

The following subclauses give an overview of the instruction families needed to implement the SIR. The
description of the instructions that might be useful is not exhaustive but can be used as a basis for
standardising the SIR. During the development of a SIR ETS additional instructions are likely to be added
and others are likely to be suppressed.

11.4.6 SIR Header

A header carrying the identification of the script should be defined.

11.4.7 Declaration of variables

The following two categories of variables could be useful:

- global variables;
- local variables.

The lifetime of global variables is the whole activation time of the current instance. The lifetime of local
variables is limited to the execution time of the current subroutine. There should be instructions to declare
global and local variables for each defined data type.

An instruction for the declaration of constants for the basic data types may be available as well.

11.4.8 Stack management

For the stack management Push and Pop instructions should be defined. The number of bytes to pushed
or popped is determined by the variable to which the instruction applies. Instructions to Push or Pop
subparts of byte string are needed as well.

Instructions to clear items from the stack (bytewise or itemwise) should be available as well.

11.4.9 Conversions

Conversion instructions between the different basic data types should be defined.

11.4.10 Byte manipulation and logical operators

Following instructions are applicable only to integer value:

- increment;
- decrement.

Page 89
ETR 225: October 1995

Following instructions are applicable to integer and real:

- add;
- subtract;
- multiply;
- divide.

Following logical operators should be available:

- and;
- or;
- exclusive or;
- not;
- complement to one.

Comparison instruction should be available to compare two items on the stack. A possible implementation
of the compare could be to Pop two elements from the stack and perform a compare on them. Depending
on the results of the compare, defined value is pushed onto the stack.

11.4.11 Control structures

An unconditional jump instruction should be available. The following two possible options are available for
implementing the unconditional jump:

1) the target of the jump is defined by a label;
2) the displacement in number of items is given in the jump instruction itself.

To reduce the code size of the SIR it should be considered to implement various branch instructions. Due
to the fact that branch and case operations will occur very often in the target families of applications a
more extensive instruction set for branch operations might enable the SIR compilers to reduce the code
size significantly. The following branch operations are suggested:

- Branch on Equal;
- Branch on Greater or Equal;
- Branch on Greater Than;
- Branch on Less than or Equal;
- Branch on Less Than;
- Branch on Not Equal;
- Branch on Not Zero;
- Branch on Zero;
- Case.

The Case instruction executes one of several statement blocks depending on the value of an expression.

11.4.12 Subroutine definition

The definition of subroutines within the SIR is especially valuable to reduce program code. A subroutine
should be preceded by a subfunction header and terminated by a return statement.

11.4.13 Additional instructions

An instruction to immediately terminate the execution of the script instance is needed. Also the
suspension of the execution of a script instance should be possible. In both cases the control should be
given back to the calling entity and a parameter exchange between the script instance and the calling
entity should be enabled.

To enable the information exchange and the synchronisation between different scripts a messaging
mechanisms is suggested. For synchronisation purposes a "Wait for message" instruction and a "Send
Message" should be defined.

An instruction that suspends the execution of a script instance for a given time without giving the control
back to the calling entity should be available as well (Wait).

Page 90
ETR 225: October 1995

11.5 Aspects relating to the notation for interchange

A SIR will allow the interchange of instructions as well as some mechanisms for helping with the
interpretation. Two notation methods are possible candidates - ASN.1 and SGML.

Given that SGML is not intended for real-time interchange, and ASN.1 is already used for the coded
representation of MHEG it is proposed to describe the SIR using ASN.1 as a base notation.

Page 91
ETR 225: October 1995

History

Document history

October 1995 First Edition

February 1996 Converted into Adobe Acrobat Portable Document Format (PDF)

ISBN 2-7437-0286-9
Dépôt légal : Octobre 1995

	Foreword
	1	Scope
	2	References
	3	Definitions and abbreviations
	3.1	Definitions
	3.2	Abbreviations

	4	General model
	5	An introduction to the MHEG standard
	5.1	Multimedia/Hypermedia application requirements
	5.2	Rationale for standardization of Multimedia and Hypermedia information
	5.3	The MHEG standard objectives
	5.3.1	MHEG for interchange
	5.3.2	MHEG for presentation
	5.3.3	MHEG and minimal resources
	5.3.4	MHEG for real-time

	5.4	MHEG concepts
	5.4.1	MHEG classes
	5.4.2	Overview of the MHEG classes
	5.4.2.1	Content class
	5.4.2.2	Multiplexed content class
	5.4.2.3	Composite class
	5.4.2.4	Action class
	5.4.2.5	Link class
	5.4.2.6	Script class
	5.4.2.7	Descriptor class
	5.4.2.8	Container class

	5.4.3	Run-time objects (called rt-objects)
	5.4.4	Channels

	5.5	The MHEG API
	5.6	Extendibility of the MHEG standard

	6	Service requirements
	6.1	Main categories of services
	6.2	Applications of retrieval services except VoD
	6.2.1	Common characteristics and taxonomy
	6.2.1.1	Networks
	6.2.1.2	Terminal Equipment
	6.2.1.3	Service attributes

	6.2.2	Multimedia retrieval services featuring local application and remote data
	6.2.2.1	Application example: encyclopaedic applications, electronic libraries and electronic books
	6.2.2.2	Service attributes
	6.2.2.3	Networks
	6.2.2.4	Terminal Equipment
	6.2.2.5	Information interchange scenario
	6.2.2.6	Application configuration
	6.2.2.7	Use of MHEG
	6.2.2.8	Use of scripts
	6.2.2.9	Application architecture
	6.2.2.10	API requirements
	6.2.2.11	SIR requirements

	6.2.3	Multimedia retrieval services featuring distributed application and distributed data
	6.2.3.1	Application example: Point of information, Point of sales
	6.2.3.2	Service attributes
	6.2.3.3	Networks
	6.2.3.4	Terminal Equipment
	6.2.3.5	Information interchange scenario
	6.2.3.6	Application configuration
	6.2.3.7	Use of MHEG
	6.2.3.8	Use of scripts
	6.2.3.9	Application architecture
	6.2.3.10	API requirements
	6.2.3.11	SIR requirements

	6.2.4	Multimedia retrieval services featuring remote application and remote data
	6.2.4.1	Application example: Interactive telematic training and education services
	6.2.4.2	Service attributes
	6.2.4.3	Networks
	6.2.4.4	Terminal Equipment
	6.2.4.5	Information interchange scenario
	6.2.4.6	Application configuration
	6.2.4.7	Use of MHEG
	6.2.4.8	Use of scripts
	6.2.4.9	Application architecture
	6.2.4.10	API requirements
	6.2.4.11	SIR requirements

	6.3	Applications of distribution services and VoD
	6.3.1	Common characteristics and taxonomy
	6.3.1.1	Networks
	6.3.1.2	Terminal Equipment
	6.3.1.3	Service attributes

	6.3.2	Multimedia distribution services featuring local interactivity
	6.3.2.1	Application example: EPG
	6.3.2.2	Service attributes
	6.3.2.3	Networks
	6.3.2.4	Terminal Equipment
	6.3.2.5	Information interchange scenario
	6.3.2.6	Service configuration
	6.3.2.7	Use of MHEG
	6.3.2.8	Use of scripts
	6.3.2.9	Application architecture
	6.3.2.10	API requirements
	6.3.2.11	SIR requirements

	6.3.3	Multimedia distribution services featuring real-time terminal-to-host interactivity
	6.3.3.1	Application example: teleshopping
	6.3.3.2	Service attributes
	6.3.3.3	Networks
	6.3.3.4	Terminal Equipment
	6.3.3.5	Information interchange scenario
	6.3.3.6	Service configuration
	6.3.3.7	Use of MHEG
	6.3.3.8	Use of scripts
	6.3.3.9	Application architecture
	6.3.3.10	API requirements
	6.3.3.11	SIR requirements

	6.3.4	Multimedia services featuring on-line video retrieval
	6.3.4.1	Application example: iVoD
	6.3.4.2	Service attributes
	6.3.4.3	Networks
	6.3.4.4	Terminal Equipment
	6.3.4.5	Information interchange scenario
	6.3.4.6	Application configuration
	6.3.4.7	Use of MHEG
	6.3.4.8	Use of scripts
	6.3.4.9	Application architecture
	6.3.4.10	API requirements
	6.3.4.11	SIR requirements

	6.4	Applications of conversational services
	6.4.1	Common characteristics and taxonomy
	6.4.1.1	Networks
	6.4.1.2	Terminal Equipment
	6.4.1.3	Service attributes

	6.4.2	Multimedia conversational services featuring videoconferencing
	6.4.2.1	Application example: multimedia videoconferencing
	6.4.2.2	Service attributes
	6.4.2.3	Networks
	6.4.2.4	Terminal equipment
	6.4.2.5	Information interchange scenario
	6.4.2.6	Application configuration
	6.4.2.7	Use of MHEG
	6.4.2.8	Use of scripts
	6.4.2.9	Application architecture
	6.4.2.10	API requirements

	6.4.3	Multimedia conversational services featuring videotelephony
	6.4.3.1	Application example: Interactive games based on the videotelephony service
	6.4.3.2	Service attributes
	6.4.3.3	Networks
	6.4.3.4	Terminal Equipment
	6.4.3.5	Information interchange scenario
	6.4.3.6	Application configuration
	6.4.3.7	Use of MHEG
	6.4.3.8	Use of scripts
	6.4.3.9	Application architecture
	6.4.3.10	API requirements
	6.4.3.11	SIR requirements

	6.4.4	Multimedia conversational services featuring user-to-machine communication
	6.4.4.1	Application description: real-time control for domestic or business premises
	6.4.4.2	Service attributes
	6.4.4.3	Networks
	6.4.4.4	Terminal Equipment
	6.4.4.5	Information interchange scenario
	6.4.4.6	Application configuration
	6.4.4.7	Use of MHEG
	6.4.4.8	Use of scripts
	6.4.4.9	Application architecture
	6.4.4.10	API requirements
	6.4.4.11	SIR requirements

	7	Functional requirements on the MHEG API
	7.1	Synthesis of application requirements
	7.1.1	Function targets and families
	7.1.2	Classification of application requirements

	7.2	Model and terminology
	7.2.1	Terminology
	7.2.2	Levels of abstraction of the API

	7.3	Functional scope of MHEG API
	7.3.1	Mapping application functional requirements to MHEG API primitives
	7.3.2	Functions to be provided by the MHEG API

	8	Technical requirements on the MHEG API
	8.1	Guidelines for API specification
	8.2	Technical requirements on the MHEG API specification
	8.2.1	Portability
	8.2.2	Genericity
	8.2.3	Conformance testability
	8.2.4	Implementability
	8.2.5	Language bindings
	8.2.6	Message encoding
	8.2.7	Conformance testing

	8.3	Technical options
	8.3.1	IEEE OSI abstract data manipulation
	8.3.2	OMG CORBA Interface Definition Language
	8.3.3	Use of IDL for the MHEG API definition
	8.3.4	Use of ASN.1
	8.3.5	Recommendations

	9	Methodology for the specification of the MHEG API
	9.1	Summary of methodology
	9.2	Object-oriented analysis of the MHEG API
	9.2.1	Object types
	9.2.2	Non-object types
	9.2.3	Analysis of behaviour functions
	9.2.4	Operations

	10	SIR functional requirements
	10.1	Synthesis of application requirements
	10.1.1	Terminology
	10.1.2	Scripting Languages, Scripts and Script Interchange Representation

	10.2	Functional scope of SIR

	11	Technical requirements on the MHEG SIR
	11.1	Technical requirements on the MHEG SIR specification
	11.2	Technical options
	11.2.1	Architecture Neutral Distribution Format (ANDF)
	11.2.2	p-code
	11.2.3	Other options - intermediate languages
	11.2.4	Conclusion

	11.3	Guidelines for drafting the MHEG SIR standard
	11.4	Possible implementation example using p-code
	11.4.1	The p-code stack machine
	11.4.2	Relationship between script engine and MHEG engine
	11.4.3	The p-code data types
	11.4.4	Extension mechanisms using a Call instruction
	11.4.5	SIR instructions
	11.4.6	SIR Header
	11.4.7	Declaration of variables
	11.4.8	Stack management
	11.4.9	Conversions
	11.4.10	Byte manipulation and logical operators
	11.4.11	Control structures
	11.4.12	Subroutine definition
	11.4.13	Additional instructions

	11.5	Aspects relating to the notation for interchange

	History

