
N
ew

 p
re

se
nt

at
io

n
-

se
e

H
is

to
ry

 b
ox

ETSI ETR 141

TECHNICAL October 1994

REPORT

Source: ETSI TC-MTS Reference: DTR/MTS-00020

ICS: 33.080

Key words: TTCN, conformance testing, guide

Methods for Testing and Specification (MTS);
Protocol and profile conformance testing specifications

The Tree and Tabular Combined Notation (TTCN) style guide

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1994. All rights reserved.

Page 2
ETR 141: October 1994

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETR 141: October 1994

Contents

Foreword ...5

Introduction..5

1 Scope ..7

2 References..8

3 Definitions, symbols and abbreviations ...9
3.1 Definitions ..9
3.2 Symbols ...9
3.3 Abbreviations ...10

4 General ATS design aspects ..11
4.1 Software engineering aspects..11
4.2 Quality assurance aspects...12
4.3 Supporting documents...13

5 Starting ATS development ..15
5.1 Introduction ..15
5.2 Ensuring applicability to different IUTs by ATS parameterization16
5.3 Profile standard parameterization..16
5.4 Application parameterization for embedded ATS ..17

6 Guidelines on naming conventions ...17
6.1 Introduction ..17
6.2 General rules for naming conventions ...18
6.3 Specific rules for naming conventions ...22

6.3.1 Naming test suite parameters/constants/variables test case variables and
formal parameters ...22

6.3.2 Naming timers ...22
6.3.3 Naming PDU/ASP/structured types...23
6.3.4 Naming PDU/ASP/structured types constraints ..23
6.3.5 Naming test suite operations...24
6.3.6 Naming aliases..24
6.3.7 Naming test cases...25
6.3.8 Naming test steps..26

7 Guidelines on type definitions..26
7.1 Use of ASN.1 or tabular format..26
7.2 General guidelines on type definitions ...29

8 Guidelines on test suite operations ...31

9 Guidelines on aliases ..33

10 Guidelines on constraint definitions...34
10.1 Introduction ..34
10.2 Using ASN.1 to specify constraints..35
10.3 Base constraints and modified constraints ..35
10.4 Chaining of constraints ..37
10.5 Parameterization of constraints ...38
10.6 Constraint values and matching mechanisms ...41

11 Guidelines on test cases ...44
11.1 Introduction ..44

Page 4
ETR 141: October 1994

11.2 Assignment of verdicts .. 45
11.3 Test body marker .. 47
11.4 Use of a variable reflecting the protocol machine state .. 47
11.5 Use of test steps ... 48

12 Guidelines on test steps ... 48
12.1 Introduction.. 48
12.2 Construction of test step libraries.. 48
12.3 Level of complexity / nesting level... 51
12.4 Assignment of verdicts .. 52
12.5 Returning values from test steps... 54
12.6 Exit from test steps.. 55
12.7 Parameterization of test steps... 56
12.8 Restrictions on behaviour description ... 57

12.8.1 Sequence of alternatives .. 58
12.8.2 Loops .. 60
12.8.3 Avoiding deadlocks... 61

13 Guidelines on default trees ... 61
13.1 Introduction.. 61
13.2 Straightforward specification of test cases.. 61
13.3 Worst case analysis .. 64

14 TTCN extensions.. 65
14.1 Introduction.. 65
14.2 Declarations .. 65
14.3 Final verdicts ... 66
14.4 RETURN statement .. 66

15 Miscellaneous aspects.. 66
15.1 Introduction.. 66
15.2 ATS structuring and contents list .. 66
15.3 Use of comments .. 66
15.4 Timer durations and units.. 67
15.5 Use of labels/GOTOs.. 67
15.6 PCOs and their names.. 67

Annex A: List of rules ... 68

Annex B: List of examples ... 69

History ... 70

Page 5
ETR 141: October 1994

Foreword

This ETSI Technical Report (ETR) has been produced by the Methods for Testing and Specification
(MTS) Technical Committee of the European Telecommunications Standards Institute (ETSI).

Introduction

The main aspects found within this Tree and Tabular Combined Notation (TTCN) style guide have been
established, discussed and implemented within the completed European second Conformance Testing
Services program (CTS 2) File Transfer, Access and Management (FTAM) project. With the end of such a
project, the responsibility of the maintenance of such Abstract Test Suite (ATS) descriptions falls on
different other organizations e.g. agreement groups (former recognition arrangement), regional workshops
or standardization bodies. This fact, together with the also important aspect of having very similar looking
ATS descriptions, lead the CTS 2 FTAM project to the decision to produce rules for the use of TTCN and
fix them in a handbook (see Annex B of the CTS 2 FTAM pilot trial handbook [31]), which was taken as a
basis for the later work submitted to the European Workshop for Open Systems (EWOS), resulting in
EWOS ETG 025 [19].

This ETR has been developed mainly to focus on a common style which can be used for higher layer
protocols (layer 5 and above) specifically using the Remote Single layer Embedded (RSE) or Distributed
Single Layer (DSL) test method. The current document is an extension of this original style guide with
respect to aspects that were considered to be missing, and with the aim to make it more universal,
especially to make it fully applicable and useful for ATSs on lower layer protocols.

Page 6
ETR 141: October 1994

Blank page

Page 7
ETR 141: October 1994

1 Scope

This ETSI Technical Report (ETR) is intended to support a developer of an Abstract Test Suite (ATS)
using the Tree and Tabular Combined Notation (TTCN). This notation has been defined in
ISO/IEC 9646-3 [3] for the purpose of writing Abstract Test Case (ATC)/ATS descriptions, used to test
Open System Interconnection (OSI) protocols.

Annex E of ISO/IEC 9646-3 [3] defines a TTCN style guide (called, in this ETR, the "ISO TTCN style
guide" to distinguish it from this ETR) which is intended to be used in order to avoid a basic inconsistency
between TTCN styles used by different test suites specifiers. The aim of this ETR goes beyond the
approach of the ISO TTCN style guide. Besides the aspect of re-usage and readability, it also covers the
aspect of quality of ATSs and emphasises the analogy to software development, and by this, the necessity
to make a design before writing an ATS.

The conformance testing methodology is described in ISO/IEC 9646-1 to ISO/IEC 9646-7 [1] to [8] and in
ETS 300 406 [14]. Several tutorials have been developed in the past years, for the complete conformance
testing process (see ETR 021 [18]), as well as for TTCN itself. This TTCN style guide is not a tutorial in
this sense - a tutorial tries to explain what the features of TTCN are, whereas for readers of this ETR, it
is assumed that the features of TTCN are known, therefore, guidelines are given on how to best use
these features to achieve the intended quality aspects.

According to the informative nature of this ETR, no requirements are expressed, but rules are stated
recommending particular procedures or options defined for the TTCN notation. Each rule is followed by
one or more examples, which emphasise the meaning of the rule.

Most of the examples are taken from existing test suites, see e.g. ISO/IEC 8882-2 [9],
ISO/IEC 8882-3 [10], EWOS-PT19/SNI023 [21], File Transfer, Access and Management (FTAM) AFT11
Responder ATS [17], I-ETS 300 313 [15] and I-ETS 300 322 [16], but where appropriate, fictional
elements (i.e. elements not extracted from any test suite) are also introduced.

All test suites except the latter two Integrated Services Digital Network (ISDN) suites are written in the IS
version of TTCN, which is the basis of this TTCN style guide. Because not all of the features of TTCN
have changed from the DIS to the IS version, and because it is within the scope of this ETR to cover
several protocols, especially from the lower layers, examples from ISDN are included. Also, because of
this coverage, the use of one type of example that goes consistently through all the different features of
TTCN discussed in this ETR is not attempted.

Clause 4 treats the general design aspects of an ATS. Clause 5 provides some statements about
parameterization of ATSs from the viewpoint of profiles.

Clauses 6 to 14 provide guidelines for the following subjects:

- naming conventions;
- type definitions;
- test suite operations;
- aliases;
- constraint definitions;
- test cases;
- test steps;
- default trees;
- TTCN extensions.

Clause 15 treats some other aspects that are less comprehensive, but still worth mentioning. Annexes A
and B contain the lists of all the rules and examples including the page numbers where they are stated, to
provide a quick cross-reference.

NOTE: The guidelines described here are not provided in order to restrict the power of TTCN,
or to give preference to a style used by any of the authors, but are provided in order to
ease the production of more uniform looking ATSs, which are simple to read and
understand, and are of a high quality.

Page 8
ETR 141: October 1994

2 References

This ETR incorporates by dated or undated reference, provisions from other publications. These
references are cited at the appropriate places in the text and the publications are listed hereafter. For
dated references, subsequent amendments to or revisions of any of these publications apply to this ETR
only when incorporated in this ETR by amendment or revision. For undated references the latest edition of
the publication referred to applies.

[1] ISO/IEC 9646-1 (1994): "Information technology - OSI conformance testing
methodology and framework - Part 1: General concepts" (see also CCITT
Recommendation X.290 (1991)).

[2] ISO/IEC 9646-2 (1994): "Information technology - OSI conformance testing
methodology and framework - Part 2: Abstract test suite specification". (see also
CCITT Recommendation X.291 (1991)).

[3] ISO/IEC 9646-3 (1992): "Information technology - OSI conformance testing
methodology and framework - Part 3: Tree and tabular combined notation".

[4] ISO/IEC 9646-3 (1994): "Information technology - OSI conformance testing
methodology and framework - Part 3: Tree and tabular combined notation -
Amendment 1: TTCN extensions" (to be published as DAM1).

[5] ISO/IEC 9646-4 (1994): "Information technology - OSI conformance testing
methodology and framework - Part 4: Test realization".

[6] ISO/IEC 9646-5 (1994): "Information technology - OSI conformance testing
methodology and framework - Part 5: Requirements on test laboratories and
clients for the conformance assessment process".

[7] ISO/IEC 9646-6 (1994): "Information technology - OSI conformance testing
methodology and framework - Part 6: Protocol Profile Test Specification".

[8] DIS ISO/IEC 9646-7 (1992): "Information technology - OSI conformance testing
methodology and framework - Part 7: Implementation Conformance
Statements".

[9] ISO/IEC 8882-2: (199x): "Information Technology - Telecommunication and
information exchange between systems - X.25 DTE conformance testing
Part 2: Data link layer conformance test suite" (2nd edition).

[10] ISO/IEC 8882-3 (199x): "Information technology - Telecommunication and
information exchange between systems - X.25 DTE conformance testing
Part 3: Packet layer conformance test suite" (2nd edition).

[11] ISO/IEC 8824 (1990): "Information technology - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1)".

[12] ISO/IEC 8825 (1990): "Information technology - Open Systems Interconnection -
Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1)".

[13] ISO 7776 (1986): "Information processing systems - Data communication -
High-level data link control procedures - Description of the X.25
LAPB-compatible DTE data link procedures".

[14] Draft prETS 300 406 (1994): "Methods for Testing and Specification (MTS);
Protocol and profile conformance testing specifications; Standardization
methodology".

Page 9
ETR 141: October 1994

[15] I-ETS 300 313: "Integrated Services Digital Network (ISDN); Digital Subscriber
Signalling System No. one (DSS1); Abstract Test Suite (ATS) for user of data-
link-layer protocol for general application".

[16] I-ETS 300 322: "Integrated Services Digital Network (ISDN); Digital Subscriber
Signalling System No. one (DSS1); Abstract Test Suite (ATS) for user of
signalling-network-layer protocol for circuit-mode basic call control".

[17] FTAM AFT11 "Responder ATS" (under preparation by EWOS PT 15).

[18] ETR 021 (1991): "Advanced Testing Methods (ATM); Tutorial on protocol
conformance testing (Especially OSI standards and profiles)".

[19] EWOS ETG 025: "The TTCN Style Guide and Quality Criteria - Edition 1 for
EWOS".

[20] EWOS-PT19/SNI021 (1994): "Abstract Test Suite for Transport Class 0".

[21] EWOS-PT19/SNI023 (1994): "Abstract Test Suite for Transport Class 4".

[22] EWOS-PT19/SNI024 (1994): "Abstract Test Suite for Transport Class 2".

[23] EWOS TA/93/008: "EWOS Test Specification Quality Assurance Handbook"
(preliminary title, to be published).

[24] EWOS TA/92/006: "Profile Test Specifications and Conformance Test Reports".

[25] EWOS EGCT/94/063 (1994): "Exception Report, Production of test
specifications for the transport layer in profiles".

[26] EWOS Technical Report ETG 022 (1992): "Test Specifications for Embedded
Protocols in Application Profiles".

[27] EWOS PT08 Report: "Planning for Conformance Testing for FTAM".

[28] EWOS EGCT/92/008: "Liaison Statement from ULCT group to EWOS on FTAM
Functional Test Specification".

[29] EWOS EGCT/91/032: "EWOS/ETSI Scheme for Maintenance of Profile Test
Specifications".

[30] McCall J.A., Richards P.K., Walters G.F. "Factors in Software Quality" Vol. I-III,
Rome Air Development Centre, 1977.

[31] CTS 2 FTAM Pilot Trial Handbook.

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of this ETR the definitions of ISO/IEC 9646 [1] to [8] apply.

3.2 Symbols

The angled brackets around text, "<" "text" ">", are used in examples to indicate that the enclosed text is a
symbolic variable, the value of which is defined elsewhere.

Page 10
ETR 141: October 1994

3.3 Abbreviations

For the purposes of this ETR the following abbreviations apply:

ACSE Association Control Service Element
ASN.1 Abstract Syntax Notation One
ASP Abstract Service Primitive
ATC Abstract Test Case
ATS Abstract Test Suite
CM Coordination Message
CS Conditional Statement
CTS Conformance Testing Services
CTS 2 second CTS program
DSL Distributed Single Layer
EBNF Extended Backus-Naur Form
EGCT (EWOS) Expert Group for Conformance Testing
EWOS European Workshop for Open Systems
FPDU FTAM PDU
FTAM File Transfer, Access and Management
ICS Implementation Conformance Statement
ISDN Integrated Services Digital Network
ISO style guide TTCN style guide defined in Annex E of ISO/IEC 9646-3 [3]
IUT Implementation Under Test
MTC Master Test Component
NM Network Management
PCO Point of Control and Observation
PCTR Protocol Conformance Test Report
PDU Protocol Data Unit
PICS Protocol Implementation Conformance Statement
PIXIT Protocol Implementation Extra Information for Testing
PM Protocol Machine
PTC Parallel Test Component
QoS Quality of Service
RSE Remote Single layer Embedded
SS7 Signalling System No.7
TCP Test Coordination Procedure
TMP Test Management Protocol
TPDU Transport PDU
TSS&TP Test Suite Structure & Test Purposes
TTCN Tree and Tabular Combined Notation
TTCN.GR TTCN Graphical Form
TTCN.MP Machine Processable TTCN
UCS Unconditional Statement

Page 11
ETR 141: October 1994

4 General ATS design aspects

4.1 Software engineering aspects

The objective of software engineering is to provide methods, tools and procedures for controlling the
process of software development and for assuring the development of high-quality software. ATSs can be
seen as software in a more abstract sense. Therefore, some of the procedures and methods defined by
software engineering may also be applicable for the development process of ATSs.

Software engineering is mainly based on the so-called software life-cycle consisting of the following
stages:

- analysis.
In this stage, two sub-phases can be distinguished: planning; and requirements definition. The
requirements definition identifies the basic functions of the software. During planning the project
plan is established containing the life-cycle to be used, the organizational structure of the project,
the preliminary development schedule, preliminary staffing requirements, etc.;

- design.
There are two different types of design activities: the external design; and the internal design. The
external design covers the externally observable characteristics. e.g. high level process structure of
the software product The internal design involves specifying the internal structure and processing
details of the software product;

- coding.
The coding phase is concerned with the translation of the design specifications into source code;

- testing.
The goal of testing is to assess and to improve the quality of the software product;

- operation and maintenance.
As soon as the software product is completed and delivered to customers, the operation and
maintenance phase starts. Activities during this phase involve enhancement of the software
product, adapting the product to new environments and correcting problems.

As can be seen in the following, this software life-cycle also applies for the development of ATSs:

- analysis.
The establishment of a project plan is seen as being very useful for the development of complex
ATSs. The requirements definition for ATSs is given by the conformance requirements expressed
in the base standard or the profile specification, and is reflected in the Implementation
Conformance Statement (ICS) and requirements lists;

- design.
The external design of an ATS, particularly the high level process structure, is already given by the
test suite structure and test purposes document. The internal design of an ATS involves activities
like defining the abstract test method, defining the mapping between test cases and test purposes,
defining structure and objectives for test steps, determination of Abstract Service Primitive (ASP)
types and Protocol Data Unit (PDU) types, determination of constraints to be declared,
determination of parameters being used for test steps and constraints, decision if types are
declared via Abstract Syntax Notation One (ASN.1) or by using the tabular method, etc.;

- coding.
Coding of ATS involves expressing the dynamic behaviour of test cases/steps via test events,
defining ASP and PDU types, declaring constraints, etc.;

- testing.
Testing in the context of ATSs means validating that the test cases/steps within a ATS fulfil the
given purpose/objective. At the moment there are only few tools known supporting the validation of
ATSs to a certain degree;

Page 12
ETR 141: October 1994

- operation and maintenance.
After an ATS has been standardized, defect reports may arise concerning the ATS. The handling of
such defect reports is subject of this operation and maintenance phase.

A multitude of software engineering techniques are defined applicable for the different phases of a
software life-cycle. Some of these techniques may (and should) be used in the ATS development process.
Examples are: stepwise refinement design; structured coding techniques; testing via inspections.

Some of the aspects mentioned are handled in other clauses of this ETR in more detail.

4.2 Quality assurance aspects

The quality of ATSs written in TTCN is an important aspect and the style of writing ATSs can affect the
quality in many ways.

As mentioned in subclause 4.1, the production of an ATS is similar to the production of software. For the
latter, quality models have been developed in recent years, e.g. by McCall [30]. The material presented in
this subclause is essentially taken from the EWOS test specification quality assurance handbook, EWOS
TA/93/008 [23], in which the applicability of the quality model for software production in McCall [30] to ATS
development has been investigated1) and the model has been developed further.

NOTE: The applicability of EWOS TA/93/008 [23] goes far beyond the verification of a TTCN
style.

Table 1 lists the quality factors contributing to the overall quality of an ATS. All factors, except perhaps
"Correctness (F1)", are directly affected by the recommendations given in this ETR. Syntactic and
semantic correctness is assumed from an ATS, whether or not the author(s) make use of a style guide,
but it is not the direct aim of such a guide.

Table 2 gives a set of more concrete criteria having an influence on the quality factors. Table 3 gives the
relation of which quality criterion is applicable to which quality factor.

The rules and recommendations stated in this ETR are intended to support at least one quality criterion,
but the rules are not intended to originate from the convenience of an author. However, it lies in the nature
of the criteria (respectively in the ATS production itself), that extensive stressing of the use of some of the
criteria may limit the usage of other criteria. Such conflicts cannot be solved in a style guide, but the
weightings of the quality factors need to be defined according to the individual policy and requirements of
an ATS development project.

Table 1: Quality factors

No Factor Definition
F0 Usability the effort required to learn and understand an ATS.
F1 Correctness the extent to which an ATS satisfies its specification and fulfils the user's

mission objectives.
F2 Maintainability the effort required to locate and fix an error in an ATS.
F3 Testability the effort required to test an ATS to ensure it performs its intended function.
F4 Flexibility the effort required to modify an ATS.
F5 Portability the effort required to transfer an ATS from one system environment to

another.
F6 Reusability the extent to which an ATS can be used within other applications (profiles or

protocols, test methods).

1) McCall [30] identifies a total of 11 factors for software programs. According to EWOS Test Specification Quality Assurance
Handbook [23], efficiency, integrity, interoperability and reliability are not seen to be factors for the quality of ATSs.

Page 13
ETR 141: October 1994

Table 2: Quality criteria

No Criterion Definition
C0 Traceability those attributes of an ATS that provide a link from the requirements to the

realization with respect to the specific development and operational
environment.

C1 Completeness those attributes of an ATS that provide full realization of the required
functionality.

C2 Consistency those attributes of an ATS that provide a uniform design techniques and
notation.

C3 Simplicity those attributes of an ATS that provide a realization of functionality in the
most understandable manner (usually the avoidance of practices which
increase complexity).

C4 Generality those attributes of an ATS that provide breadth to the defined functionality.
C5 Instrumentation those attributes of an ATS that provide for the possibility to identify errors or

unexpected situations.
C6 Self-descriptiveness those attributes of an ATS that provide an explanation of the realization.
C7 Operability those attributes of an ATS that determine the operation and procedures

concerned with the operation of the ATS.
C8 Training those attributes of an ATS that provide a transition from current operation or

initial familiarization.
C9 System independencethose attributes of an ATS that determine its dependency on the system

environment.

Table 3: Applicability of quality criteria

Usability (F0) Flexibility (F4)
- operability (C7); - generality (C4);
- training (C8). - self descriptiveness (C6).

Correctness (F1) Portability (F5)
- traceability (C0); - self descriptiveness (C6);
- completeness (C1); - system independence (C9).
- consistency (C2).

Maintainability (F2) Reusability (F6)
- consistency (C2); - generality (C4);
- simplicity (C3); - self descriptiveness (C6);
- self descriptiveness (C6). - system independence (C9).

Testability (F3)
- simplicity (C3);
- instrumentation (C5);
- self descriptiveness (C6).

4.3 Supporting documents

In previous ATS development projects it has become obvious that the existence of only the ISO-structured
ATS document (see ISO/IEC 9646-3 [3]) is not sufficient. The reasons for this are mainly due to the fact
that the development of an ATS should be treated like any other (software development) project, where it
is required that as well the code itself other supporting documents exist. Examples of ATS supporting
documents are:

- ATS development document;
- test realizing document;
- ATS cross reference document;
- ATS exception document.

At least the ATS development document and the test realizing document should be produced during/after
ATS development.

Page 14
ETR 141: October 1994

Similar to software development projects there are design decisions that should be fixed before starting
the development of an ATS. In particular, if there is a team of ATS developers working in parallel on
separate parts of the same ATS, this is a very important aspect in order to assure consistency of the
different parts of the ATS. Some potential candidates for design decisions are as follows:

- naming conventions (see Clause 6);
- type definitions via ASN.1 or tabular method;
- mapping of test purposes to test cases;
- coverage;
- test suite structure;
- verdict assignment;
- test suite parameters;
- test suite variables;
- post/preambles;
- default trees;
- test suite operations;
- test steps (structuring, nesting, etc.);
- constraints;
- use of timers.

The design decisions taken should be unambiguously documented in the ATS development document.
The ATS development document is a "living document". That means that during the development of an
ATS, the need for additional design decisions may arise, or existing design decisions may have to be
changed to meet unforeseen requirements. In each case, the ATS development document needs to be
updated and the updated document should be made available to each developer involved in the ATS
development.

The above list cannot be exhaustive as, dependent on an ATS scope, additional design decisions may be
required. For instance, if a protocol makes use of checksums, there should be a decision about how
checksums are handled within the ATS.

Documenting all design decisions in the ATS development document makes the ATS maintenance easier.
An ATS maintainer may not have been involved in the ATS development. Therefore, if there is a need for
changes within the ATS after its completion, the maintainer can get a better understanding of the ATS by
carefully studying the ATS development document.

During the development of an ATS, a document should be prepared containing cross reference lists.
There may be cross reference lists for the following relations:

a) test case ←→ test step;
b) test case/step ←→ constraint;
c) test case/step ←→ test suite operation;
d) test case/step ←→ test suite variable;
e) test case/step ←→ test suite parameter;
f) test case/step ←→ timer.

As a minimum, the ATS cross reference document should contain relations a) and b). Cross reference
lists, especially for relation b), would allow ATS developers and maintainers to easily identify the effect of a
change on the test suite. It is strongly recommended that TTCN tools should support the preparation of
such cross reference lists in future.

Before starting the preparation of the ATS development document and the ATS cross reference
document, a contents checklist should be made available. The contents checklist should contain all the
topics being covered by the corresponding document. After completion, the document can then be
checked for completeness via the contents checklist.

Page 15
ETR 141: October 1994

As already mentioned, both the ATS development document and the ATS cross reference document
support the ATS maintenance. The information contained in both documents may also be helpful for the
test realizer. In addition to this information, a test realizing document should be prepared after completion
of the ATS. The test realizing document should contain specific information useful for realizing the tests,
i.e. when mapping the ATS to an ETS. Such information may be:

- timers used within the ATS and their value range;
- time critical test cases;
- parameterization/chaining of constraints;
- usage of modified constraints;
- PDU encoding, i.e. reference to the standards that the PDUs are derived from, assumptions on

Test Management Protocol (TMP), if used (e.g. kind of transfer: serial; parallel; inbound; outbound);
- assumptions on initialization/resetting of upper tester, if used;
- reference list of documents the development of the ATS was based upon;
- reference to Protocol Conformance Test Report (PCTR) proforma;
- exceptions.

If the exceptions detected during ATS development are of more general nature (i.e. not only concerning
test realization) the exceptions should be described in a separate document, the ATS exception report.
Such exceptions may be:

- test purposes not realized;
- restrictions on test suite parameters;
- shortcomings of TTCN influencing the ATS development;
- ambiguities of the base standard/profile (the ATS development is based on) influencing the ATS

development;
- differences to already existing ATS based on the same base standard/profile;
- defect reports raised (concerning standards the ATS development is based on).

An example for such an ATS exception report is EWOS EGCT/94/063 [25], prepared by the EWOS
project team on the production of test specifications for the transport layer in profiles (EWOS PT19).

In ETS 300 406 [14], it is stated that documentation of the conventions used in the ATS shall be provided.
This documentation should contain as much information as possible, in order to help humans to
understand the ATS. In this sense, all four documents discussed above contain information which can be
used as input to the ATS conventions documentation.

NOTE: The notion of "document" in this context includes the possibility that the related
information is part of the ATS specification document.

5 Starting ATS development

5.1 Introduction

The ATS production phase can be regarded as consisting of three phases:

a) starting phase;
b) test development phase;
c) ATS maintenance phase.

While topics a) and c) are outside the scope of this document, topic b) is discussed in more detail2). Since
the starting phase has some influence on the test development phase, this phase is discussed in this
subclause in some detail.

The starting phase comprises aspects as:

- determination of conformance requirements;
- achievement of the appropriate test coverage of the conformance requirements by defining suitable

test groups;
- development of test group objectives;

2) Topic c) is only covered in so far that rules are given in order to ease the later maintenance process.

Page 16
ETR 141: October 1994

- development of test purposes reflecting the test group objectives;
- determination of test suite parameters.

Some of the decisions made during the starting phase directly influence the ATS development and should
therefore be documented in the ATS development document.

At the end of the starting phase a Test Suite Structure & Test Purposes (TSS&TP) document will be
available, clearly outlining the test suite structure and the set of test purposes applicable to a complying
ATS. However, Such a TSS&TP document does not handle last aspect given above, i.e. the determination
of test suite parameters. Test suite parameters are constants derived from the Protocol Implementation
Conformance Statement (PICS) and/or Protocol Implementation eXtra Information for Testing (PIXIT).
Some ideas concerning test suite parameterization are discussed below.

Experience has shown that parameterization of an ATS is an efficient mechanism:

- to ensure applicability to different Implementations Under Test (IUTs);
- to make use of existing test cases, to realize a profile-specific ATS;
- to realize specific parts of application layer ATSs for common parts of embedded ATSs.

These three aspects need to be considered in advance of the test development phase as later changes to
the ATS may result in an expensive task.

Subclauses 5.2 to 5.5 give an indication of why test suite parameterization is considered an efficient
mechanism with respect to the aspects given above.

5.2 Ensuring applicability to different IUTs by ATS parameterization

The parameterization of an ATS, on parameters varying from IUT to IUT, is obvious and already
introduced in various existing ATSs. Nevertheless it should be noted that besides these more obvious IUT
specific parameters like:

- address parameter;
- access parameter;
- passwords.

Also other parameters should be considered, which are subject to change and therefore should not be
fixed. Such parameters can be divided into two classes:

a) test suite parameters which are dependent upon operating system;
b) test suite parameters for determining the type of protocol parameters.

Class a) parameters result from the fact that an implementation maps certain parameters onto underlying
operating system parameters and is therefore limited to these requirements. Examples are: a file name
which should not start with a number; a password to contain at least one graphical symbol; etc. As the
content of such a parameter is not the subject of testing, it should not be fixed within an ATS, but should
be described in the test realizing document.

Class b) parameters result from the fact that alternative choices for types of parameters are defined in the
protocol standard, e.g. passwords may be graphic or octet strings, content of files may be
graphic/printable/visible strings. In most cases a specific profile/functional standard (in the following,
abbreviated by "profile standard") will limit the amount of choices to one alternative or to a reduced set of
alternatives. Within an ATS for this profile standard, these restrictions will not result in any testing
problems, provided that the alternatives are chosen within these limits. However, the extension of such an
ATS to a different profile standard, using different restrictions, will result in a problem. Therefore, a
warning should be given in the ATS development document or in the exception report.

5.3 Profile standard parameterization

As most of the currently available standardized protocols reach a size and complexity which does not
make sense to be implemented in full, arrangements (profile standards) have been agreed for subsetting
the full functionality of the protocol into smaller units which can be implemented more easily.

Page 17
ETR 141: October 1994

ATSs (and also resulting ETSs) very often are developed on the basis of market requirements arising
from the availability of profile standards. In this case, a real base standard ATS, covering all conformance
requirements expressed in the relevant base standard, only exists if the set of profile standards for the
protocol covers the whole functionality of the base protocol. This means that the development of a real
base standard ATS is a stepwise approach.

If a new profile standard is defined, then it may contain capabilities and options which are also included in
some already available profile standards. If there is an ATS available covering these profile standards,
then the test cases covering test purposes concerning the capabilities and options common to both the
new profile standard and the already available set of profile standards can also be used for the new profile
standard. This means that only test cases for capabilities and options which are not common, need to be
added to the ATS.

For profile testing, only parts of an ATS developed in this way may be useful, i.e. test cases applicable to
the specific profile have to be selected from the set of all test cases contained in the ATS. In TTCN, test
case selection expressions have been foreseen for this purpose. Such selection expressions are mainly
based on test suite parameters and test suite constants.

It is difficult to provide more specific rules, but as a minimum, a set of test suite parameters which are
directly related to profile standards should be considered. Such parameters should be used carefully and
kept as test suite parameters, together with some notes on restrictions, outlined in the ATS development
document or in the exception report. In addition, if possible, sets of these parameters should be created,
which may then be exchanged from one profile standard to another.

List of possible candidates:

- functional units;
- Quality of Service (QoS) criteria (e.g. transport QoS);
- parameter for classification of service (e.g. in FTAM transfer or access class);
- type of bearer service provided (ISDN);
- defined objects (e.g. in Network Management (NM) managed objects).

5.4 Application parameterization for embedded ATS

As application layer testing always includes the testing of the embedded layer protocols (not always fully
exhaustive) it is desirable to have common embedded layer ATS specifications (the so-called common
part) which are, as far as possible, application layer independent. Such common embedded layer ATS
specifications then can be complemented by ATS specifications covering the application protocol specific
aspects (the so-called specific part). Since the common part and the specific part cannot be absolutely
independent, both parts need to be aligned. One way to achieve this is via test suite parameters. Test
suite parameters used for aligning common and specific parts should be described in detail in the ATS
development document. EWOS has produced a technical report and a technical guide (see EWOS ETG
022 [26]) in which various parameterization techniques are described.

6 Guidelines on naming conventions

6.1 Introduction

The problem of agreeing naming conventions is known from many types of activities, and the reasons for
such conventions are similar for authors of TTCN ATSs. Normally, there are multiple authors involved,
sometimes these authors are from different organizations, the maintenance is usually performed by
different people than the creation, the implementation can be expected to be in different environments and
on different test tools, etc.

Each of the quality factors of table 1 (except "Correctness (F1)") may be affected by naming conventions.
It is known, however, that there are nearly as many naming conventions or preferences as there are
authors. This ETR provides some general principles and give some generic examples to use the limited
character set of TTCN identifiers within useful naming schemes to contribute to the quality factors.

NOTE: The uniqueness of names for different TTCN objects is assumed to be understood by
the reader of this ETR, since it is a requirement from ISO/IEC 9646-3 [3].

Page 18
ETR 141: October 1994

6.2 General rules for naming conventions

Rules 1, 2 and 3 contain general requirements that naming conventions in an ATS should fulfil.

RULE 1: Statement of naming conventions

Naming conventions should be explicitly stated.

Naming conventions should not exist only for a single ATS, and the reader of an ATS should not be forced
to "derive" the rules implicitly They naming conventions should be part of the ATS conventions contained
in the ATS specification document.

RULE 2: Coverage of naming conventions

Naming conventions stated should, as a minimum, cover the following TTCN objects:

- test suite parameters/constants/variables;
- test case variables;
- formal parameters;
- timers;
- PDU/ASP/structured types;
- PDU/ASP/structured types constraints;
- test suite operations;
- aliases;
- test case/test step identifiers.

There may be TTCN object types for which there are so few instances defined in a particular ATS, that an
explicit naming convention does not appear to be necessary, e.g. for Points of Control and Observation
(PCOs). But in ATSs of "normal" size, there are so many instances of the objects given in rule 2, that
naming conventions for these objects seem to be appropriate.

Page 19
ETR 141: October 1994

RULE 3: General properties of naming conventions

a) Protocol standard aligned

When there is a relationship between objects defined in the ATS and objects defined in the
protocol standard, e.g. PDU types, the same names should be used in the ATS if this does not
conflict with the character set for TTCN identifiers or with other rules. In case of a conflict, similar
names should be used.

b) Distinguishing

The naming conventions should be defined in such a way, that objects of different types appearing
in the same context, e.g. as constraint values, can be easily distinguished.

c) Structured

When objects of a given type allow a grouping or structuring into different classes, the names of
these objects should reflect the structuring, i.e. the names should be composed of 2 or more
parts, indicating the particular structure elements.

d) Self-explaining

The names should be such that the reader can understand the meaning (type/value/contents) of
an object in a given context. When suffixes composed of digits are used, it is normally useful to
have some rule expressed explaining the meaning of the digits.

e) Consistent

The rules stated should be used consistently throughout the document, there should be no
exceptions.

f) Appropriate name length

Following the above rules extensively may occasionally lead to very long names, especially when
structuring is used. The names should still be easily readable. When TTCN graphical form
(TTCN.GR) is used, very long names are very inconvenient.

NOTE: Also, test tools may not be able to implement very long identifier names, which is an
important aspect in this context.

Page 20
ETR 141: October 1994

EXAMPLE 1: Sample of simple naming schemes applicable to individual TTCN object
classes.

The items of this example are used to show some possibilities to define distinct
naming classes, using the restricted character set allowed for TTCN identifiers.
Indication of preference to use a specific naming scheme for a given class of
TTCN objects is not intended. The naming convention chosen for a particular
TTCN object class should be unique and should be used consistently for that
class.

a) Use only capital letters, separating name parts with "_" when appropriate.
This convention is used for test suite parameters or test suite constants in
some test suites. Specific examples are:

LCI (logical channel identifier);
TVC_OR_OVC (two-way or outgoing logical channel);
CREF (call reference).

b) Use prefixes like "TSP_" (for test suite parameter) or "TSC_" (for test
suite constant), following a) otherwise. An example is:

TSP_fname1 (name of first file);
TSP_SP_A (signalling point code A).

c) Use capital letter for first character of a name part, lower case or digits for
the other characters; separate name parts by "_" when appropriate. This
is used e.g. for test suite variables in some test suites. An example is:

Ready_To_Receive.

d) Like c), but use only lower case characters and possibly digits. This is
used as a convention for test case variables or formal parameters in
some test suites. An example is:

sls_code (signalling link selection code).

e) Like c), but without usage of "_" as separator. This is the ASN.1-manner
of naming. An example is:

FileIdentifier (file identifier).

Variations of c), d) and e) are possible, where only the first part of the name
starts with lower case character, e.g.:

- fileIdentifier; or
- file_Identifier.

NOTE: See Annex E of ISO/IEC 8824 [11] for examples and hints to naming of ASN.1 objects.

Page 21
ETR 141: October 1994

EXAMPLE 2: Suffixes composed of digits.

Use digits to indicate starting and ending state of a preamble:

PREAMBLE_<nn>_<mm>;

<nn>: 1 or 2 digits to indicate the protocol state in which the
preamble starts;

<mm>: 1 or 2 digits to indicate the protocol state in which the
preamble ends.

EXAMPLE 3: Structured naming scheme for ISDN data link ASPs.

<ASP type>: DL_<ASP name><ASP suffix>

<ASP name>: EST (ESTABLISH); or

REL (RELEASE); or

DAT (DATA); or

UDAT (UNIT DATA)

<ASP suffix> RQ (REQUEST); or

IN (INDICATION); or

CO (CONFIRMATION).

EXAMPLE 4: Structured naming scheme for FTAM and Association Control Service Element
(ACSE) ASPs.

<ASP type>: F_<FASP name><ASP suffix>; or

A_<AASP name><ASP suffix>; or

<others>.

<FASP name>: <FPDU name>;

<FPDU name>: INI (INITIALIZE); or

TER (TERMINATE); or

<others>.

<AASP name>: ASC (ASSOCIATE); or

RLS (RELEASE); or

<others>.

<ASP suffix> req (REQUEST); or

ind (INDICATION); or

rsp (RESPONSE); or

cnf (CONFIRMATION).

Page 22
ETR 141: October 1994

6.3 Specific rules for naming conventions

The following rules contain some specific recommendations for particular TTCN object types.

6.3.1 Naming test suite parameters/constants/variables test case variables and formal
parameters

RULE 4: Specific naming rules for test suite parameters/constants/variables test case
variables and formal parameters

a) The name should reflect the purpose/objective the object is used for.
b) If the type is not a predefined one, it is useful that the name reflects the type, too.
c) It could be useful, that the individual naming conventions are not the same for all object classes

this rule applies to.
e.g. use upper case letters for test suite parameters/constants, and use one of the other
possibilities presented in example 1 for other object classes.

EXAMPLE 5: Names for parameters and variables.

a) MOD8
Test suite constant indicating "modulo 8" counting;

b) IUT_ACTS_DTE
Test suite parameter indicating that the IUT acts as a DTE;

c) Loop_Count
Test case variable used for counting repetitions in a test case;

d) a_ascreq
Formal parameter of type "A_ASCreq".

6.3.2 Naming timers

RULE 5: Specific naming rule for timers

If the timer is not defined in the protocol to be tested, the name should reflect the objective of the timer
used for testing.

NOTE: There is no need to indicate the object type "timer" in the name, since timers only occur
together with timer operations.

EXAMPLE 6: Timer names:

a) START TRESP
Start waiting for response from the IUT;

b) CANCEL INACT
Cancel inactivity timer.

Page 23
ETR 141: October 1994

6.3.3 Naming PDU/ASP/structured types

RULE 6: Specific naming rule for PDU/ASP/structured types

As far as applicable, derivation rules or mapping tables should be used to relate the names of the types to
the corresponding objects in the protocol or service definition.

NOTE: There may be types, e.g. erroneous PDU types, that do not relate to an object in the protocol
or service definition.

EXAMPLE 7: PDU/ASP/structured types.

Used in ATS Used in protocol/service description

a) DL_EST_RQ DL-ESTABLISH-REQUEST;

b) SETUP Setup;

c) Clear_Confirmation CLEAR CONFIRMATION;

d) ERROR -;

e) CDPN Called party number;

f) FINIRQ F-INITIALIZE request;

6.3.4 Naming PDU/ASP/structured types constraints

RULE 7: Specific naming rule for PDU/ASP/structured types constraints

Rules should be stated to derive the names from the names of the corresponding type definitions.

It is often possible to use the type name plus an appropriate suffix reflecting the specific constraint value.
In case of lengthy names, useful abbreviations or a defined numbering scheme can be chosen.

EXAMPLE 8: PDU/ASP/structured types constraints.

Type Name Constraint name Comment

a) result Result_success (result is "success");

b) Clear_Confirmation CLRC_0 (basic clear confirmation);

c) Packet_Header HDR_ANY_QD (header with any Q/D-bit);

d) HEADER_8073 HD_8073_CR_INVCLASS (8073 CR header with
invalid class);

e) FINIRQ FINIRQbase (F-INITIALIZE request
base constraint).

Page 24
ETR 141: October 1994

6.3.5 Naming test suite operations

RULE 8: Specific naming rule for test suite operations

The name should reflect the operation being performed.

i.e. the name should indicate an activity, not a status. This can be achieved e.g. by using appropriate
prefixes like "check", "verify", etc.

EXAMPLE 9: Test suite operation names.

a) set_result (set result value);

b) VER_VALID_HDR (verify valid header format);

c) CONCAT_FIELDS (concatenate 2 bit fields to form a single one);

d) ck_svc_fn (check service class against functional unit).

6.3.6 Naming aliases

RULE 9: Specific naming rule for aliases

The name should reflect that aspect of its expansion, that is important in the situation where the alias is
used. Derivation rules should be provided to derive the alias name from its macro expansion or from the
name of an embedded ASP/PDU.

See also Clause 9.

EXAMPLE 10: Alias names.

ASP/PDU identifier Alias Identifier

a) DL_ESTABLISH_REQ EST_REQ

The important aspect is the ASP as a whole, and the alias is only a short
form of the name;
ASP/PDU identifier Alias Identifier

b) DL_DATA_IND CALLP

The important aspect in the situation where this alias is used is the call
request packet embedded in the ASP, and the alias name reflects the
embedded PDU type.

NOTE: The alias identifier needs to be different from the PDU type identifier.

Page 25
ETR 141: October 1994

6.3.7 Naming test cases

In this context, the naming of test cases has 2 parts:

- test case identifier;
- test group reference.

The grouping/structuring of test purposes is performed in the TSS&TP document. It is a requirement from
ISO/IEC 9646-2 [2], that the naming scheme of the test cases follow the naming scheme in the TSS&TP
document. With respect to the naming of the constituents of the test group reference, no guidance is
given here, except that it is recommended that the suite identifier is included in the test group reference,
therefore, also implicitly identifying the protocol tested in the ATS.

With respect to the naming of the test case identifier and its relation to the test group reference, no explicit
rule is expressed, but 2 basic examples are presented.

EXAMPLE 11: Test case names.

Test group reference Test case identifier

a) FTAM/R/CA/WR/ FTAM_R_CA_WR_1

The test case identifier reflects the complete path of groups in which it is
contained. A suffix distinguishes the test cases (and the test purposes) of
the lowest level subgroup;

Test group reference Test case identifier

b) R1/R1_Proper/ P1_101

In this example coming from the X.25 test suite ISO/IEC 8882-3 [10], the
test suite identifier is unfortunately not included in the test group
reference, but the "P" in the test case identifier identifies the "X.25 packet
level" at least. The groups in the suite are mainly related to X.25 states
like "R1", and these states are numbered starting from 1. The "1" after the
"P" in the identifier corresponds directly to the group associated to state
R1, which in fact is group 1. The groups are divided into "proper",
"improper" and "inopportune" subgroups. The "1" after the "_" in the
identifier corresponds to the subgroup "proper". The remaining 2 digits in
the identifier are used to number the test cases within the subgroup.
Information about the groups and their numbering is contained in the
"Test suite information" clause of the ATS ISO/IEC 8882-3 [10].

Page 26
ETR 141: October 1994

6.3.8 Naming test steps

RULE 10: Specific naming rule for test steps

The name should reflect the objective of the test step.

EXAMPLE 12: Test step names.

a) LC_VERIFY

Verify that the received logical channel number is not yet in use;

b) D1_PVC_PREAMBLE

Put the IUT in state D1, only used for PVC logical channels;

c) UTIL_Rec_data(num,size:INTEGER)

Lower tester is expecting to receive "num" TSDUs of "size" octets;

d) Resconnect

Lower tester establishes an FTAM association.

7 Guidelines on type definitions

7.1 Use of ASN.1 or tabular format

One of the basic decisions to be taken when writing an ATS is whether or not to use the ASN.1 format for
type definitions. ASN.1 was created mainly for the needs of user-oriented data communications, and is
therefore more common in higher layer protocols than in lower layer protocols. However, some of its
features also makes ASN.1 useful for the lower layer protocols. Except for the meta-type PDU, every type
and constraint value expressed in tabular TTCN format can also be expressed in ASN.1. The lack of PDU
can be easily overcome in ASN.1 by defining a particular type containing all PDU types of the ATS as
alternatives, using the CHOICE feature, as shown in example 13.

EXAMPLE 13: Use of CHOICE to simulate the meta-type PDU.

ASN.1 ASP type definition
ASP Name : ANY_PACKET
PCO Type :
Comments : Choice of all possible PDU types in the X.25 packet layer

Type definition
CHOICE {

callRequest, -- call request packet
callConfirm, -- call confirmation packet
clearRequest -- clear request packet
clearConfirm, -- clear confirmation packet
data -- data packet

}

ANY_PACKET can be used instead of PDU in a type declaration, when
appropriate.

NOTE: The application of ANY_PACKET and PDU is still not completely equivalent: in TTCN
it is not allowed to refer to subfields of a field having type PDU, while this is possible for
subfields of a field having type ANY_PACKET .

Page 27
ETR 141: October 1994

Except for the use of CHOICE, there are other features in ASN.1 going beyond the possibilities of tabular
TTCN, e.g.:

- OPTIONAL
to indicate optional elements (while in tabular TTCN, all structured type elements, PDU fields and
ASP parameters are optional by definition);

- DEFAULT
to give a default value to an element inside a type definition;

- SET or SET_OF
to specify sets of values without giving a requirement for the order in which they appear;

- sub-typing
to restrict possible values of a type with respect to a parent-type.

Because of the more powerful methods of specifying types and values, some experts recommend the use
of only ASN.1 for these purposes in TTCN ATSs. This ETR does not make this recommendation, but
highlights some advantages, and also some problem areas for the use of ASN.1.

There is one aspect that restricts the generality of the use of ASN.1 in TTCN ATSs compared to the
tabular method: types referred to in an ASN.1 type declaration may only be other ASN.1 types (e.g. see
production 57 in Annex A of ISO/IEC 9646-3 [3]), while types referred to in a tabular TTCN type definition
may be any other type, defined in ASN.1 or in tabular format. This leads to a problem of compatibility in
assignments and expressions, shown in example 14.

EXAMPLE 14: Compatibility of ASN.1 and tabular types.

(TCVAR1:= ASP1.par2).

What happens if the test case variable TCVAR1 has been defined as an OCTET
STRING type using ASN.1, while parameter par2 has type OCTETSTRING, but
the ASP ASP1 is defined using the tabular format?

Another problem could arise with the global meaning of named numbers defined in ASN.1. Example 15
shows the declaration of an INTEGER type including a named number list.

EXAMPLE 15: Type with named number list.

ASN.1 type definition
Type name : INT
Comments :

Type definition
INTEGER {

on(0),
off(1)

}

Unlike e.g. the names of the elements of a SEQUENCE, the identifiers on and off have a global meaning
in the ATS (see ISO/IEC 9646-3 [3], A.4.2.6). Since these named numbers have no meaning for the type,
but only for value references of that type, the implicit use of those global elements could be circumvented
by defining INT as an INTEGER without named values, but also defining on and off as test suite
constants, and using these constants as constraint values for INT, when appropriate.

For the ENUMERATED type, named numbers are also used, but in this case they are a mandatory part of
the type declaration. So one should either accept the enclosed global names, or replace the
ENUMERATED type by an INTEGER type (when applicable).

The ASN.1 feature of sub-typing allows to specify a type by giving a subset of values of a parent-type.
This is similar to the type & restriction for tabular TTCN simple types, but is more general and more
powerful. The restriction for a simple type can be a length restriction (for strings), an integer range, and a
simple value list, where the latter can only contain literal values (as opposed to values with a name, like

Page 28
ETR 141: October 1994

test suite constants). Sub-typing in ASN.1 can also be applied to types with a substructure, and the values
of a value list need not be literal values. See example 16.

EXAMPLE 16: Use of sub-typing.

ASN.1 type definition
Type name : iut_addr
Comments : Address of IUT

Type definition
address(ShortIUTAddr, LongIUTAddr) -- where address is a structured address format

NOTE: Giving a value list inside a type acts like an OR condition, when a field of this type is
contained in a PDU (and the PDU constraint does not further restrict the allowed value
to a single one). In this way, a single line could be used in some dynamic behaviour to
replace several received event lines, each one specific to a single value of the value
list.

Rule 11 now gives some criteria related to the use of ASN.1:

RULE 11: Selecting the ASN.1 format for type definitions

a) If the protocol standard uses ASN.1 to specify the PDUs, the ATS specifier should also use
ASN.1.

b) If the protocol standard does not use ASN.1, check carefully whether features of ASN.1 that the
tabular format of type definition does not present are necessary in the ATS, or could ease the
design and understanding of the definitions as a whole. Check especially whether fields or
parameters have to be specified, the order of appearance of which, in a received ASP/PDU,
cannot be predicted. If any of these conditions apply, use ASN.1 for type and ASP/PDU type
declarations.

c) Use the option of "ASN.1 ASP/PDU type Definitions by Reference" whenever applicable.
d) Example 14 shows a compatibility problem that could occur, when ASN.1 type declarations as well

as tabular type declarations are used in an ATS. Use the ATS Conventions to describe how this
compatibility problem is handled in the ATS, i.e. whether in expressions and assignments entities
defined in ASN.1 are only related to entities defined in ASN.1 or not.

EXAMPLE 17: Selection of ASN.1 type definitions.

The conformance test suites ISO/IEC 8882-2 [9] and ISO/IEC 8882-3 [10] for
the X.25 layers 2 and 3 use the ASN.1 format of structured type and PDU type
definitions, although the protocol is not specified using ASN.1.

Page 29
ETR 141: October 1994

7.2 General guidelines on type definitions

Rule 12 gives some more guidelines on type definitions, independently of whether ASN.1 is used or not.

RULE 12: Further guidelines on type definitions

a) Use simple type or ASN.1 type definitions whenever an object of a base type with given
characteristics (length, range, etc.) will be referenced more often than once.

b) Use the optional length indication in the field type or parameter type column of structured type and
ASP/PDU type definitions whenever the base standard/profile restricts the length.

NOTE 1: This can often be achieved by references to simple types.

c) Map the applicable ASPs/PDUs from the service/protocol standard to corresponding ASP/PDU
type definitions in the ATS.

NOTE 2: It may happen that not all ASPs/PDUs of a service/protocol standard are applicable to a
particular ATS for the related protocol. It may also happen that additional ASP/PDU type
declarations are necessary, e.g. to create syntactical errors.

d) Map the structure of ASPs/PDUs in the service/protocol standard to a corresponding structure in
the ATS.

NOTE 3: This mapping is not always one-to-one, e.g. because a field in the PDU definition of the
protocol standard is always absent under the specific conditions of an ATS. But it should
normally not happen, that a structured element in the protocol standard is expanded using
the "<-" macro expansion, so that the individual fields are still referenced, but the structure is
lost in the ATS.

EXAMPLE 18: Use of simple/ASN.1 type definitions.

The conformance test suite ISO/IEC 8882-3 [10] defines the ASN.1 type
"Address" as HEX STRING (SIZE 1 .. 15). All ASN.1 type/ASN.1 PDU type
declarations containing an address, refer to this type and the allowed length
range of the address is implicitly covered for each reference.

EXAMPLE 19: Mapping of PDU types in the protocol specification.

The conformance test suite ISO/IEC 8882-2 [9] maps all frames defined in the
protocol standard ISO 7776 to corresponding ASN.1 PDU type definitions,
keeping the structure with respect to subfields (I_Frame, RR, RNR, REJ, SABM,
SABME, DISC, DM, UA, FRMR). Four additional ASN.1 PDU types are declared
to create erroneous frames (Unformated_Frame_Type, RR_L, RNR_L and
REJ_L).

Page 30
ETR 141: October 1994

EXAMPLE 20: Specific type definition samples.

The following 5 tables give samples of specific type definition.

Structured type definition
Type name : CAUSE_TYPE
Comments : CAUse information element

Element name Type definition Comments
CAU_I OCTETSTRING[1] Identifier
CAU_L OCTETSTRING[1] Length
CAU_E3_LOC OCTETSTRING[1] Location
CAU_CV OCTETSTRING[1] Cause value
CAU_DI OCTETSTRING[1] Diagnostics

PDU type definition
PDU name : REL
PCO type :
Comments : RELEASE message

Field name Field type Comments
PD OCTETSTRING[1] Protocol discriminator
CR CREF_TYPE Call reference
MT OCTETSTRING[1] Message type
CAU CAUSE_TYPE Cause
FAC OCTETSTRING[2..252] Facility
DSP DSP_TYPE Display
UUI OCTETSTRING[2..131] User-user information
Detailed comments :
This PDU has global significance when used as the first clearing PDU. The CAU field is mandatory if the
REL PDU is the first clearing PDU or if the REL PDU is sent as result of Timer T305 expiry. The fields
FAC, DSP and UUI are optional.

ASN.1 type definition
Type name : I_Field
Comments : Information Field of an I Frame, containing unformatted data or an

X.25 packet
Type definition

CHOICE {
unformatted OCTETSTRING(SIZE(1..4100)),
packet PDU_LIST -- List of allowed PDU types

}

ASN.1 PDU type definition
PDU name : I_Frame
PCO type :
Comments :

Type definition
[0] SEQUENCE {

addressFrame_address
control I_Control
user_data I_Field

}

ASP type definition
ASP name : N_UNITDATA_REQ
PCO type : NET
Comments : (Connectionless) network service data request

Parameter name Parameter type Comments
NS_SRC_ADDR NETADDR Source address
NS_DEST_ADDR NETADDR Source address
NS_USERDATA PDU NS user data containing Transport PDU (TPDU)

Page 31
ETR 141: October 1994

8 Guidelines on test suite operations

Within the currently available IS version of TTCN, test suite operations may be described simply by using
natural language. As natural language is known to lead to definitions which are:

- non-precise;

- ambiguous.

The use of natural language within ATSs should be avoided. As long as the standardization bodies do not
provide and require a precise specification language, the developer of an ATS is free to use any
specification language in test suite operations, but the ATS developer should always keep in mind the
possible deficiencies mentioned above3).

Nevertheless, so far, the developer of a test suite operation should consider the following rules:

RULE 13: Specification of test suite operations

a) Use a test suite operation only if it cannot be substituted by other TTCN constructs.

b) Write down the rationale/objective of the test suite operation.
Reference standards if applicable.

c) Classify and simplify algorithm.
Split test suite operation if too complex.

d) Choose an appropriate specification language depending on the rationale/objective:
- predicates for Boolean tests;
- abstract data types for manipulation of ASN.1 objects;
- programming languages for simple calculation.

e) Check/proof the test suite operation:
- is the notation used known/explained;
- are all alternative paths fully specified;
- is the test suite operation returning a value in all circumstances;
- are error situations covered (empty input variables, etc.).

f) State some evident examples.

NOTE: Test suite operations are not allowed to have any side effects (see also
ISO/IEC 9646-3 [3], section 10.3.4), which particularly means that the values of test
suite/test case variables may not be altered in a test suite operation.

3) In the ISO/IEC 9646-3 [3] TTCN PDAM2 editing meeting, it was decided that the proposed BNF as well as the use of free
text is allowed to specify test suite operations. PDAM2 was progressed to the DAM status.

Page 32
ETR 141: October 1994

EXAMPLE 21: Test suite operations.

Test suite operation definition
Operation name : VP_LENGTH(hd:HEADER_8073)
Result type : INTEGER
Comments : Result is the length of the variable part in a TPDU

Description
VP_LENGTH(hd:HEADER_8073)
{
 return (HEX_TO_INT(hd.LI) - LENGTH_OF(hd.FIXED_PART);
}
Detailed comments :

The test suite operation is only applicable if hd has a structure that contains at least the 2 string
components LI and FIXED_PART, and if LI is non-empty.

The LI field in the header of the 8073 TPDU contains the total length of the header. The test suite
operation extracts the contents of this field, converts it into a number and subtracts the length of the
subfield FIXED_PART of the header (see ISO/IEC 8073 13.2).

Example:

VP_LENGTH(hd) = 0 if the header contains no variable part.

NOTE: The user data of the TPDU (if existing) are not contained in the variable part.

Test suite operation definition
Operation name : is_element_in_seqof (list: seqoftype ; el: eltype)
Result type : BOOLEAN
Comments : returns TRUE if el exists in list; FALSE otherwise

Description
is_element_in_seqof (list: seqoftype ; el: eltype)
BEGIN

IF (list == {}) /* {} stands for empty sequence of */
THEN return(FALSE)

IF (el == head(list))
THEN return(TRUE)
ELSE return(is_element_in_seqof(tail(list), el))

END

Examples:
head({A}) = A
head({A,B}) = A
tail({A}) = {}
tail({A,B}) = {B}

is_element_in_seqof({} , C) = FALSE
is_element_in_seqof({A} , A) = TRUE
is_element_in_seqof({A} , C) = FALSE
is_element_in_seqof({A,B} , A) = TRUE
is_element_in_seqof({A,B} , B) = TRUE
is_element_in_seqof({A,B} , C) = FALSE

Page 33
ETR 141: October 1994

9 Guidelines on aliases

TTCN is provided in the graphical format mainly to support an easy understanding of the test descriptions,
particularly the dynamic behaviour descriptions, by human readers. When a service description is defined
for a protocol to be tested in an ATS, the SEND and RECEIVE events in the behaviour description will be
associated to service primitives rather than PDUs, which are the more important aspect in protocol testing.
When, additionally, static chaining is used in the constraint of such a statement line, the reader will not
have a good understanding of that statement without checking the constraint declaration.

The concept of aliases means essentially that ASPs (and PDUs, if appropriate) may be renamed, such
that the main aspect of an ASP (or a PDU) in a behaviour line is apparent from the new name, i.e. the
alias. In many cases the "main aspect" is an embedded PDU the type of which is reflected by the alias
name.

NOTE: An ASP (or PDU) may have more than one alias, since normally PDUs of several
types can be embedded in a single ASP (or PDU).

EXAMPLE 22: Declaration and usage of aliases.

Alias definitions
Alias name Expansion Comments

I_IAM MTP_TRANSFER_INDICATION MTP_TRANSFER_INDICATION service primitive used
to carry an ISUP IAM message.

I_ACM MTP_TRANSFER_REQUEST MTP_TRANSFER_REQUEST service primitive used to
carry an ISUP ACM message.

I_ANM MTP_TRANSFER_REQUEST MTP_TRANSFER_REQUEST service primitive used to
carry an ISUP ANM message.

I_REL MTP_TRANSFER_REQUEST MTP_TRANSFER_REQUEST service primitive used to
carry an ISUP REL message.

I_RELC MTP_TRANSFER_INDICATION MTP_TRANSFER_INDICATION service primitive used
to carry an ISUP RELC message.

Page 34
ETR 141: October 1994

Usage of Aliases in the dynamic behaviour description:

Test step dynamic behaviour
Test step name : ISUP_ORI_CALL_1
Group : ISUP/ORI_CALL/
Objective : To verify that a call can be successfully completed and cleared
Default : AnyOtherEventExpected
Comments : Set up successfully an ISUP connection and release it after

verification of the connection
No. Label Behaviour description Constraints ref Verdict Comments
1 ? I_IAM MTRANSI(IAM_

SPEECH)
1)

2 ! I_ACM MTRANSR(ACM_
Basic)

2)

3 ! I_ANM MTRANSR(ANM_B
asic)

3)

4 +CHECK_CONNECTIVITY 4)
5 ! I_REL MTRANSR(REL_

cause16)
5)

6 ? I_RELC MTRANSI(RELC_B
asic)

PASS 6)

Detailed comments :

1) Receive an MTP transfer indication ASP containing the IAM message with "speech"
transfer capability.

2) Send an MTP transfer request ASP containing the Basic ANS message.
3) Send an MTP transfer request ASP containing the Basic ACM message.
4) Use test step CHECK_CONNECTIVITY to verify that speech is possible.
5) Send an MTP transfer request ASP containing the REL message with cause code 16.
6) Receive an MTP transfer indication ASP containing the RELC message.

10 Guidelines on constraint definitions

10.1 Introduction

Constraint definitions within TTCN form an important and typically voluminous part of an ATS. Due to the
amount of constraints which are to be expected within an ATS, it is very important that this information is:

- readable; and
- structured.

Both aspects are very important to allow a developer of an executable test suite or a person maintaining
the ATS to easily obtain the relevant information. More than for the other TTCN object types already dealt
with in this ETR, the development of a general concept, in the sense of software engineering, is required
for the constraints part. Some features allowed in constraint specification are "contradicting" or "opposing",
like:

a) whether or not to use ASN.1;
b) use of base/modified constraints;
c) static/dynamic chaining;
d) parameterized/"constant" constraints.

Page 35
ETR 141: October 1994

Except in a), the conflict results to a large extent in more/less readable constraint references in the
dynamic behaviour description on the one side, and more/less numerous and voluminous constraint
declarations on the other side. This conflict cannot be solved generally, but it needs an individual strategic
treatment in the development of an ATS, i.e. a design like a module in software development.

In the following subclauses, the individual aspects of a) to d) are treated by giving some rules and
examples. In addition, some examples for specifying individual constraint values, especially wildcards, are
given.

The general result of the discussion in this subclause is expressed in rule 14:

RULE 14: General aspects of specifying constraints

a) Develop a design concept for the complete constraints part, particularly with respect to the
"conflicting" features as indicated in items i) to iv) and including naming conventions (see
Clause 6).

b) Make extensive use of the different optional "Comment" fields in the constraint declaration tables
to highlight the peculiarity of each constraint.

NOTE: TTCN allows compact table formats for specifying constraints, particularly for
non-ASN.1 constraint declarations. These compact tables normally allow to find a
referenced constraint more quickly, but the editor has to provide many different table
formats. The quick reference can also be achieved, when a cross reference document
is created (see subclause 4.3). No preference is expressed in this ETR for a particular
table format.

10.2 Using ASN.1 to specify constraints

ASN.1 as specified in ISO/IEC 8824 [11] is a dual concept of specifying types on the one side and values
of these types on the other side. Therefore all arguments given in Clause 7 apply for constraints too, and
no separate rules are given here.

10.3 Base constraints and modified constraints

This subclause applies to ASP/PDU/structured Type constraints independently of whether ASN.1 is used
or not.

Modified constraints refer to a base constraint in their derivation path, so base constraints exist but
modified constraints may not. The basic question is whether modified constraints should be defined in an
ATS and what the relation between base constraints and modified constraints is, if the latter are used.

Modified constraints are particularly useful when the value of a single field or of a small number of fields
are different with respect to a given constraint. When a base constraint focuses on the minimum
requirements, the modified constraint focuses the view on the changed parameter/field and avoids
redundant information. A disadvantage can occur when a base constraint has to be changed during
development or maintenance and the modified constraints basing on this constraint are automatically
changed, too. Side effects on test case behaviour and test case selection may occur in this case.

Modified constraints do not provide a new technical means to specify constraints values, but only a means
for a shorter presentation.

NOTE: Some Conformance Testing Services (CTS) projects (e.g. CTS 4 Signalling System
No.7 (SS7)) exclude the use of modified constraints in their ATS design document.

Page 36
ETR 141: October 1994

This discussion gives rise to rule 15:

RULE 15: Relation between base constraints and modified constraints

a) Define different base constraints for the send- and receive direction of a PDU (when applicable).

b) Use modified constraints preferably when only a small number of fields or parameter values are
altered with respect to a given base.

NOTE 1: For SEND events the creation of a further modified constraint can sometimes be avoided, if
an assignment is made in the SEND statement line, thus overwriting a particular constraint
value.

c) Design the relation between base constraints and modified constraints always in connection with
parameterization of constraints (see the two subsequent subclauses).

NOTE 2: Additional parameters in a constraint, introduced to avoid the declaration of further
base/modified constraints can reduce the amount of constraints needed in an ATS, but then
the constraint reference is getting more and more unreadable.

d) When modified constraints are used, keep the length of the derivation path small.
The length of the derivation path (resulting from the number of dots in it) is a kind of nesting level,
and it is known from experience that a length greater than 2 is normally difficult to overview and
maintain.

EXAMPLE 23: Definition of a base and modified PDU constraint.

PDU constraint declaration
Constraint name : SCNbase (pcn: PDU)
PDU type : SCN
Derivation path :
Comments : Base session connect constraint

Field name Field value Comments
Connection_Identifier -
Connect_Accept_Item Connect_Accept_Itembase
Session_User_Requirements FU_duplex_only
Calling_Session_Selector TSP_Clg_Sess_SEL
Called_Session_Selector TSP_cld_Sess_SEL
Enclosure_Item -
User_Data -
Extended_User_Data pcn

Definition of a PDU modified constraint:

PDU constraint declaration
Constraint name : SCN001 (pcn: PDU)
PDU type : SCN
Derivation path : SCNbase.
Comments : Derived session connect constraint for use of session sync minor FU

Field name Field value Comments
Session_User_Requirements FU_duplex_minsync

Page 37
ETR 141: October 1994

10.4 Chaining of constraints

As already mentioned in subclause 7.1, the meta-type PDU defined in TTCN has no counterpart in ASN.1.
Disregarding this small difference, this subclause is independent of whether or not ASN.1 is used.

ASPs and PDUs may refer to other PDUs as their parameter or field types, which in turn may refer to
other PDUs and so on. This is the principle of chaining. Theoretically the length of such a chain is not
restricted in TTCN, but practically it is restricted by the protocol and PCOs employed.

In this subclause the typical situation is considered, where a particular ASP type contains a parameter
(often called "user data") of type PDU. This means that the ASP can carry different PDU types. The
conclusions in this subclause are also valid for longer chains or when PDU is replaced by a specific PDU
type.

The target point here is the situation, when the ASP-PDU chain is getting specified a value, particularly a
value for the parameter of type PDU. ISO/IEC 9646-3 [3] shows the 2 possibilities in subclause 11.4:

1) the value given to the parameter of type PDU is the name of a particular PDU constraint.
This is called static chaining , because the value for the embedded PDU is given statically in the
constraint declaration, and is the same for each constraint reference in the dynamic behaviour
description.

NOTE: The embedded PDU can still be parameterized with respect to one or more of its
subfields, yielding a "dynamic" effect for these fields at least.

2) the value given to the parameter of type PDU is the name of a formal parameter of type PDU,
declared in the ASP constraint declaration.
This is called dynamic chaining , because the embedded PDU is given a value, when a PDU
constraint is passed to the ASP constraint as actual parameter in the dynamic behaviour
description.

Basically one can say that dynamic chaining is the parameterization of ASPs or PDUs with respect to
embedded PDUs, and all the advantages and disadvantages of parameterized constraints apply (see also
subsequent subclause). Dynamic chaining can reduce the number of constraint declarations considerably,
but as additional parameters are introduced, the constraint reference can get less readable.

Rule 16 gives some guidance how to use of static and dynamic chaining, followed by an example.

RULE 16: Static and dynamic chaining

a) Make a careful evaluation of which embedded PDUs are needed in ASPs/PDUs, in which (profile)
environment the ATS may operate and which kind of parameterization for other parameters/fields is
needed, to find an appropriate balance between the use of static and/or dynamic chaining in a
particular ATS.

b) When the ATS is used in different profile environments and the types and values of embedded
PDUs cannot be predicted, dynamic chaining is normally the better choice.

c) When static chaining is used, chose the name of the ASP/PDU constraint such that it reflects the
peculiar value of the embedded PDU (see also the clause on naming conventions).

Page 38
ETR 141: October 1994

EXAMPLE 24: Static chaining of constraints.

ASP constraint declaration
Constraint name : n_datreq_cr
ASP type : N_UNITDATA_REQ
Derivation path :
Comments : (Connectionless) network service data request containing a

CR TPDU constraint as constraint value of the NS_USERDATA
parameter.

Parameter name Parameter type Comments
NS_SRC_ADDR LOCAL_NET_ADDR(LOCAL_N

ET_ADDR_LEN)
Network address of tester

NS_DEST_ADDR REMOTE_NET_ADDR(
REMOTE_NET_ADDR_LEN)

Network address of IUT

NS_USERDATA CR_8073 Base constraint for the CR TPDU

EXAMPLE 25: Dynamic chaining of constraints.

ASP constraint declaration
Constraint name : n_datreq(tpdu: PDU)
ASP type : N_UNITDATA_REQ
Derivation path :
Comments : (Connectionless) Network Service Data Request containing an TPDU

passed by the formal parameter tpdu.
Parameter name Parameter type Comments

NS_SRC_ADDR LOCAL_NET_ADDR(LOCAL_N
ET_ADDR_LEN)

Network address of tester

NS_DEST_ADDR REMOTE_NET_ADDR(
REMOTE_NET_ADDR_LEN)

Network address of IUT

NS_USERDATA tpdu Formal parameter containing TPDU

10.5 Parameterization of constraints

Parameterization of constraints in the sense of subclause 11.3 in ISO/IEC 9646-3 [3] means the inclusion
of formal parameters in the constraint declaration, which get concrete values by passing actual
parameters in the constraint reference in the dynamic behaviour description (the dynamic chaining is a
kind of special case for parameterization).

NOTE: The use of test suite parameters in the "value" column of a constraint declaration is not
understood as "parameterization" of the constraint, as it is seen as "parameterization
of the ATS" (see Clause 5).

Some constraints fields (e.g. sequence numbers) need to be parameterized, because their value is
determined dynamically. Apart from these "necessary" parameterizations, the typical antagonism that has
to be considered is, that the total number of declared constraints can be reduced drastically by using
parameterization, but that a big number of parameters can make the constraint reference unreadable.

In some ATSs, an "indirect parameterization" is used: some fields are given the value "?" or "*", and an
assignment or a Boolean expression containing the reference to this field is applied in the behaviour
description. This shifts the parameterization away from the constraints reference. Systematic use of this
possibility is made e.g. in the X.25 data link layer ATS ISO/IEC 8882-2 [9] (see also example 28).

Page 39
ETR 141: October 1994

Rule 17 gives some hints to the problem of parameterization, followed by several examples.

RULE 17: Parameterization of constraints

a) Make a careful overall evaluation of which field/parameter values are needed in ASPs and PDUs to
find an appropriate balance between the aim of a comparably small number of constraint
declarations and readable and understandable constraint references.

b) Keep the number of formal parameters small.
Keep in mind, that the number of formal parameters in structured/ASN.1 types Constraints will add
up to the total number of ASP/PDU constraints.
A clear border for the number of formal parameters cannot be stated, but it is known from
experience that a number bigger than 5 normally cannot be handled very well.

EXAMPLE 26: Parameterized constraint (tabular format).

PDU constraint declaration
Constraint name : RL3(cref, cval:BITSTRING)
PDU type : REL
Derivation path :
Comments : RELEASE message constraint with call reference and cause value

passed as parameters
Field name Field value Comments

PD '00001000'B Protocol discriminator
CR cref Call reference parameterized by cref
MT '01001101'B Message type RELEASE
CAU CAU1(CVAL) Cause information element (structured type)

parameterized by cval = cause value
FAC - Facility absent
DSP - Display absent
UUI - User-user information absent

EXAMPLE 27: Parameterized constraint (ASN.1 format).

ASN.1 PDU constraint declaration
Constraint name : INT_L1(lcif:INTEGER)
PDU type : Interrupt
Derivation path :
Comments : Long interrupt CCITT 1980

Constraint value
{

header HDR_G(lcif)
-- header parameterized with current logical channel

user_data UD_INTERR
-- user_data given by test suite parameter

}

Page 40
ETR 141: October 1994

EXAMPLE 28: Different kinds of constraint parameterization.

This example is basically taken from the X.25 Data Link Layer ATS
ISO/IEC 8882-2 [9]. The Receive Ready (RR) PDU is declared in the following
way:

ASN.1 PDU type definition
PDU name : RR
PCO type :
Comments : Receive ready

Type definition
SEQUENCE {

addressOCTET STRING(SIZE(1)) -- address field
nr BIT STRINGT(SIZE(3)) -- sequence number field
pf BIT STRINGT(SIZE(1)) -- poll/final Bit
control BIT STRINGT(SIZE(4)) -- control field identifying the PDU

}

A constraint for the PDU is defined as follows:

ASN.1 PDU constraint declaration
Constraint name : RR_31
PDU type : RR
Derivation path :
Comments : Send constraint for RR command with P=1

Constraint value
{

addressADDR_A -- TS constant, value = '03'O
nr - -- sequence number is set using assignments
pf P1 -- TS constant, value = '1'B
control '0001'B -- fixed value

}
Detailed comments :
In the original X.25 ATS the field value of the nr field is "?" which appears to be a bad style for a send
constraint, because it is a potential candidate for a test case error if the "?" is not replaced by a specific
value before the constraint is sent.

The address field can have two possible values: ADDR_a and ADDR_B. The pf field also can have two
possible values: P0 and P1. The nr field will contain a sequence number, dynamically determined from the
Test Case Variable VR. Three further constraints have been defined to cope for the possible combinations
(only used for sending). The use of the PDU/constraint in some dynamic behaviour is like the following:

No. Label Behaviour description Constraints ref Verdict Comments
n L!RR (RR.nr:= VR) RR_31

Page 41
ETR 141: October 1994

If parameterization of all of the 3 variable fields was used, only one constraint could replace the four
constraints mentioned above:

ASN.1 PDU constraint declaration
Constraint name : RR_1(addr:OCTET STRING; n_r, p_f: BIT STRING)
PDU type : RR
Derivation path :
Comments :

Constraint value
{

addressaddr
nr n_r
pf p_f
control '0001'B -- fixed value

}

and the use of this PDU/constraint would be:

No. Label Behaviour description Constraints ref Verdict Comments
n L!RR RR_1(ADDR_A,V

R,P1)

10.6 Constraint values and matching mechanisms

While the previous subclauses treated the building up and structuring of constraints, this subclause
focuses on values given to individual fields or parameters inside constraints.

The constraint values used in a concrete ATS are dictated by the particular circumstances, and no general
rule can be given whether a field is absent or not, etc. Rule 18, therefore, concentrates on the optional
elements of the constraint value specification:

RULE 18: Constraint values

a) Use comments to highlight the peculiarity of the value, especially when the value is a literal, whose
meaning is not apparent.

b) Use test suite constants instead of literals, when appropriate.
Normally not all literals can be defined as Test Suite Constants, but a rule by thumb is: if a literal
value of a given type occurs more than once (as a constraint value or more generally in an
expression), then it is useful to define it as a Test Suite Constant, letting the name reflect the value.

c) Use the length attribute when possible and when the length is not implicit in the value itself or given
by the type definition (e.g. for strings containing "*").

Values in constraints for the SEND event need to evaluate to a specific value (see subclause 11.5 of
ISO/IEC 9646-3 [3]). Specific values are expressions containing:

- literal values;
- test suite constants;
- test suite parameters;
- formal parameters; and
- test suite operations.

Page 42
ETR 141: October 1994

For values in RECEIVE events additional matching mechanisms are defined (see table 5, in subclause
11.6.2 of ISO/IEC 9646-3 [3]). The following list of examples is focusing on these additional matching
mechanisms. They are used:

- instead of values;
- inside values; and
- with attributes.

The examples as a whole are not intended to form consistent constraints, though only two tables are
used, one for the ASN.1 format and one for the tabular format. PDU constraints are chosen, but the
individual values/matching mechanisms are also applicable to ASP constraints and structured/ASN.1
types Constraints respectively. Each example is commented inside the table, including the indication of
the related field/parameter type.

Page 43
ETR 141: October 1994

EXAMPLE 29: Constraint values and matching mechanisms using the tabular format.

PDU constraint declaration
Constraint name :
PDU type :
Derivation path :
Comments :

Field name Field value Comments
lc_id COMPLEMENT(LCN_ACTIVE) Type: INTEGER. All logical channel numbers

except that of the currently active logical
channel (LCN_ACTIVE) are accepted.

User_Data - Type OCTETSTRING. The user data field is
expected to be absent.

d_bit ? Type: BITSTRING[1]. The D-bit shall be present
as part of the general format identifier, but its
value may be any value ('0'B or '1'B in this
case).

CallingAddr CLG_IUT IF_PRESENT Type: callingAddr. The "calling address"
information element may be present or not. If it
is present, its contents need to be the calling
address of the IUT.

S22_VAL '*'O[TMP_S22_LEN] The TMP parameter S22_VAL may contain any
octets, but the length should be equal to the
value of test suite parameter TMP_S22_LEN.

cause_val (NORMAL_CLR,CALL_REJ,
NORMAL_UNSPEC)

Type: BITSTRING. Each of the 3 cause values
given by the referenced test suite constants is
accepted.

lc_id (LTC .. HTC) Type: INTEGER. All logical channel numbers in
the range between test suite parameter LTC
and test suite parameter HTC are accepted.

control_field '001?1111'B Type: BITSTRING. The P/F bit (position 4) in
the control field may be set to 0 or 1.

ud '02*'O[1 .. 128] The user data field is expected to contain the
value '02'O (subsequent protocol identifier =
"syntax-based videotex") in the first octet,
followed by any other octets up to a maximum
total length of 128 octets.

LI INT_TO_HEX(LENGTH_OF
(VARIABLE_PART)+LENGTH_OF
(FIXED_PART) + 1, 2)

TYPE of LI: HEXSTRING. The formal
parameters VARIABLE_PART and
FIXED_PART are of type OCTETSTRING. The
contents of the length indicator field LI is
calculated from the values of the formal
parameters.

Page 44
ETR 141: October 1994

EXAMPLE 30: Constraint values and matching mechanisms using the ASN.1 format.

Example 29 also applies to the ASN.1 format. Therefore, only features specific
to ASN.1 are presented in this example.

ASN.1 PDU constraint declaration
Constraint name :
PDU type :
Derivation path :
Comments :

Constraint value
{
facilitiesFAC_FSRC IF_PRESENT -- Fast Select Reverse Charging)
 -- Type: Facility_Field (SET). If the facility field is present in the PDU, it should have the
 -- indicated value
}

or

Constraint value
{
facilitiesSUPERSET(FAC_AE,FAC_BCUG)
 -- Type: Facility_Field (SET). At least the facilities "Address Extension" and
 -- "Basic Closed User Group" are expected in the facilities field.
}

or

Constraint value
{
facilitiesSUBSET(FAC_AE,FAC_BCUG)
 -- Type: Facility_Field (SET). No facility or one or both of the indicated facilities are expected.
 -- No other facility than "address extension" and "basic closed user group" may be present in
 -- the facilities field.
}

11 Guidelines on test cases

11.1 Introduction

As test cases are defined to specify all sequences of foreseen test events necessary in order to achieve
the test purpose, they form the main part of an ATS. A test case is structured into three parts:

- preamble,
the sequence of test events to put (if necessary) the IUT into the desired stable testing state in
which the test body starts;

- test body,
the sequence of test events (starting in a stable testing state) for achieving the test purpose;

- postamble,
the sequence of test events to put the IUT into the desired stable testing state if the test body ends
without being there 4).

Different test cases may use the very same partial sequence of test events. Such partial sequences of test
events may be defined within named subdivisions called test steps. A test step is similar to a procedure or
subroutines in higher programming languages. The test step concept enables test cases being
modularized. In the extreme case a test case may only consist of a sequence of test step names together
with some control flow information, built from conditions on test body and state variables and finally the
assignment of a verdict.

4) In the most standardized protocols the postamble will simply contain a abort/disconnect event to return to the idle state of the
protocol machine.

Page 45
ETR 141: October 1994

This clause will therefore focus on the following aspects:

- assignment of verdicts;
- use of a test body entry marker;
- use of a state variable;
- use of test steps,

whilst the test step specific aspects are handled in a separate Clause.

11.2 Assignment of verdicts

The objective of a test case is to achieve a given test purpose. Therefore, after having executed a test
case there should be a statement of successful/unsuccessful completion of the test purpose, i.e. a final
verdict has to be assigned within the test case. The sequence of test events achieving the test purpose
builds the test body, i.e. the final verdict should not be assigned before the end of the test body (otherwise
the test case will be terminated without achieving the test purpose). From this point of view a final verdict
should not be assigned within the preamble. On the other side the final verdict may depend upon some
events included in the test postamble, but should not depend only upon test events within the test
postamble (in this case the sequence of test events achieving the test purpose is totally included in the
test postamble, in contradiction to ISO/IEC 9646-3 [3]). In such a situation a final verdict cannot be
assigned within the test body, but a preliminary verdict should be assigned.

Preliminary results are recorded in the conformance log. Thus they may be used as support for analyzing
the test results or as diagnostic support for test operators during test campaigns identifying that a certain
point has already been achieved. For this it may be helpful to assign the preliminary result "(PASS)" after
a sequence of specific events within the test case. Thus by analyzing the conformance log of a
"non-passing" test case it can be seen which sub-sequence of test events was responsible for changing
the original preliminary result "(PASS)". To see if the original preliminary result was still valid when
entering the test body the entry point of the test body should be recorded in the conformance log.

Care should be taken by setting preliminary results. If the sequence of events between two succeeding
preliminary results contains a large amount of events, then the preliminary results recorded in the
conformance log may be of minor help for analyzing the test result. On the other side, if for each event a
preliminary result is assigned, the big amount of recorded preliminary results may make the analysis of
the conformance log more difficult and does not help.

Page 46
ETR 141: October 1994

EXAMPLE 31: Setting of preliminary results within test cases.

Test case dynamic behaviour
Test case name: P6_306
Group : PACKET/P3/Inopportune/
Purpose : Verify the IUT clears an Interrupt packet received in state P3
Default :
Comments : Test case for the X.25 packet level protocol
No. Label Behaviour description Constraints ref Verdict Comments
1 +P1_PREAMBLE(TVC_OR_IVC) 1
2 !CALL START TD_RESP CALL_0(LCI)
3 ?TIMEOUT TD_RESP
4 Body !INT START TD_RESP INT_0(LCI) (P) 2
5 +P3_INOPP 3
6 +R1_POSTAMBLE 4

...
Detailed comments:
1) put the IUT in state P1;
2) send interrupt packet;
3) handle the response to inopportune packets sent from the IUT while in state P3;
4) verify the IUT is in state R1 for VCs and D1 for PVCs.

In example 31 the setting of the preliminary verdict "(PASS)" is associated with the end of the preamble
and the beginning of the test body.

When assigning verdicts special attention should be given to the fact that the default tree of a test case
will have to cover all abnormal situation as unexpected alternative events and timeouts. Such events may
result in different verdicts depending on the fact if the test body has already been reached or not when the
default tree is entered (see also later clause about default trees).

Example 32 illustrates the combination of events and verdicts in relation to the test body. Special attention
should be given to the column entitled Default which represents default behaviour on unsuccessful events.
According to the position of the corresponding successful events in either the preamble or the test body
the preliminary result "(INCONC)" or "(FAIL)" is assigned in the default part.

EXAMPLE 32: Relation between verdict assignment and test body.

Test Purpose Preamble Verdict Test Body Verdict Default Verdict
Accept FTAM
Connection

(empty) F-INIT(+) PASS F-INIT(-)
TIMEOUT

(FAIL)
(INCONC)

Select File F-INIT(+) (PASS) F-SELECT(+) PASS F-INIT(-)
F-SELECT(-)
TIMEOUT

(INCONC)
(FAIL)
(INCONC)

Open File F-INIT(+)
F-SELECT(+)

(PASS)
(PASS)

F-OPEN(+) PASS F-INIT(-)
F-SELECT(-)
F_OPEN(-)
TIMEOUT

(INCONC)
(INCONC)
(FAIL)
(INCONC)

(+) corresponds to the successful event.
(-) corresponds to the unsuccessful event.

Page 47
ETR 141: October 1994

Example 32 shows that the test body of the first test purpose forms the preamble of the second test
purpose and that the test body and preamble of the second test purpose builds the preamble for the third
test purpose. Furthermore it can be seen that the verdict assigned to a certain event depends on the
position of the event within the test case (here preamble/test body/default). This can be seen, e.g., in the
second test case assigning a preliminary result "(FAIL)" in case of a F-SELECT(-) (failure in test body)
whereas the third test case will assign a preliminary result "(INCONC)" on event F-SELECT(-)
(unsuccessful select in preamble).

RULE 19: Verdict assignment in relation to the test body

Make sure that verdict assignment within a default tree is in relation to the test body. If an unsuccessful
event arising in the test body is handled by the default tree, then assign a preliminary result "(FAIL)" within
the corresponding behaviour line of the default tree. If the position of the unsuccessful event is not in the
test body, assign a preliminary result "(INCONCLUSIVE)". If the behaviour line handling the unsuccessful
event is a leaf of the default tree, assign a final verdict instead.

11.3 Test body marker

As already mentioned, verdict assignment within a default tree may be dependent on the fact if the test
body has been reached before the default tree is entered. Therefore, information should be transferred to
the default tree whether the test body has been entered or not. For transferring this information to the
default tree a label marking the test body entry (as recommended by Annex E of ISO/IEC 9646-3 [3])
cannot be used.

A very convenient way to make default trees know whether the test body has been entered or not is using
a test body variable. This may be a Boolean test case variable being set to TRUE when the test body is
entered and having the value FALSE otherwise.

It is the decision of the test suite developer on which way to mark the entry of the test body. This may be
via a test suite/case variable, via a label or by simply adding special comments.

RULE 20: Test body entry marker

The entry of the test body should be marked.

11.4 Use of a variable reflecting the protocol machine state

It might be very helpful to use a variable reflecting the current state of the Protocol Machine (PM). Such a
variable can be used in order to decide which specific action may be chosen next. There are protocols
which allow optional behaviour states. Behaviour states can be easily treated by using a variable within
TTCN. In addition, at the end of the test this mechanism can be used to decide which postamble needs to
be used in order to reach the testing idle state.

RULE 21: State variable

For realizing test purposes dependent on protocol states, use a variable to reflect the current state of the
IUT.

A test suite variable instead of a test case variable being used for reflecting the current state of a
state-oriented protocol machine could provide an additional control flow mechanism in the following way:

- each time a test case is left, a variable is set to a value reflecting the assumed state when leaving
the test case;

- each time a test case is entered, the variable will be checked to verify whether a starting state for
this test case is given.

By using this mechanism the consistency of the test case initializing sequence can be assured.

Page 48
ETR 141: October 1994

11.5 Use of test steps

Test steps are seen to be more and more important in the development of ATSs as they ease the way of
writing ATCs by just attaching a certain already defined test step. Besides easing the writing of ATCs the
readability is also increasing, as long as the test step names are created following certain understandable
naming conventions.

As already mentioned in the introduction of this Clause, a test step comprises a sequence of test events
which may be used by different test cases. Thus, it is obvious to use test steps wherever the same
sequence of test events is used by different test cases. By doing this, the readability of the test cases is
improved. For improving the structure and the readability of test cases it may even be useful to define a
test step for a sequence of test events which is used only once within a single test case, e.g. by
expressing preambles and postambles via test steps, or in state oriented protocols when test purposes "...
check that the IUT has reached state X" are defined. For realizing such test purposes it makes sense to
combine all test events being used for checking if state X has been reached within a test step and to
attach this test step within the respective test cases instead of repeating the corresponding event
sequence.

RULE 22: State checking event sequences

Combine event sequences used for checking a state of the IUT within test steps.

12 Guidelines on test steps

12.1 Introduction

Similar to subroutines in programming languages, conventions should be stated to allow easy combination
of test steps and to guarantee that no errors are introduced by combining test steps.

This Clause will try to state guidelines how to write test steps. Major aspects which are dealt with are:

- multiple usage/construction of test step libraries;
- level of complexity/nesting level;
- assignment of verdicts;
- returning values from test steps;
- exit from test steps;
- parameterization of test steps;
- restrictions on behaviour description.

12.2 Construction of test step libraries

During the development of ATSs it became more and more important that available test steps were
written in such a way that they might be used in multiple instances (re-use of test steps), i.e.:

- called more then once;
- used as preamble/postamble (or part of it) in ATCs;
- used in other ATSs, resulting in the re-usage of a test step library in other ATSs.

In order to allow such usage, general rules applying to all test steps which should form such a test step
library should be given. These rules apply to the following aspects:

- treatment of verdict assignment;
- easy adaptation to test case needs;
- straightforward, no error case treatment.

Page 49
ETR 141: October 1994

The "treatment of verdict assignment" aspect is very important. For details see later subclause.

For "easy adaptation" of test steps to the needs of a certain instance it is essential that constraints used
are parameterized in a suitable form. Other relevant aspects, e.g. the repetition argument within an
existing loop, should be considered as possible candidates for test step parameterization to reach easy
adaptation.

RULE 23: Easy adaptation of test steps to test cases

For easy adaptation of a test step to test case needs, parameterize the constraints used within a test step.

"Straightforward, no error case treatment" supports the sequencing of several test steps. Consider the fact
that if a test step treats more than one alternative, events resulting in different states could increase the
complexity and therefore the actions/alternatives of the following test steps. If it is of no need for the test to
continue after receipt of a specific event (e.g. if the test step objective was to establish the connection, the
failure of the connection establishment is not of interest) the event should be treated in the default tree
resulting in INCONCLUSIVE or FAIL depending on the fact if the test body was reached or not (see
subclause above).

Example 33 illustrates a test step which might be used in various instances. The way it is written allows
the combination with other similar test steps as it covers parameterization as well as the treatment of only
relevant events.

EXAMPLE 33: Reusable test step - resconnect.

Test step dynamic behaviour
Test step name : Resconnect (a_ascreq: A_ASCreq; a_asccnf: A_ASCcnf)
Group : FTAM/Step-LIB/
Objective : Establish an FTAM association
Default : DEF(L)
Comments :
No. Label Behaviour description Constraints ref Verdict Comments
1 L!A_ASCreq a_ascreq 1
2 START A 2
3 L?A_ASCcnf a_asccnf 3
4 CANCEL A 4
5 (F_STATE:=CON) 5
Detailed comments:
1) send constraint to establish connection;
2) start a timer in order to treat the situation where IUT does not respond;
3) await confirmation that connection is established;
4) cancel timer after receiving expected event;
5) set state variable to corresponding state.

The following aspects allow the above test step to be used in a test step library:

- parameterized constraints,
variants are possible;

- timer is started,
timeout will occur if IUT does not respond;

- straightforward,
no other events except those related to the test step objective are treated;

- setting of state variable,
may allow certain action in later behaviour (e.g. in default to reach idle state to finish test);

- no setting of any result.

But, the events not covered:

- TIMEOUT;
- alternative events (connection not established, aborts, etc.),

need to be treated in the default tree (see subclause 13.3).

Page 50
ETR 141: October 1994

In contrast to example 33 the following test step could not be used for building such a test step library.

EXAMPLE 34: Non-reusable test step - resconnect.

Test step dynamic behaviour
Test step name : Resconnect
Group : FTAM/Step-LIB/
Objective : Establish an FTAM association
Default : DEF(L)
Comments :
No. Label Behaviour description Constraints ref Verdict Comments
1 L!A_ASCreq A_ASCreqbas

(PCP001
(FINIRQ005))

1

2 L?A_ASCcnf A_ASCcnf501
(PCPA501
(FINIRP505))

(P) 2

3 L?A_ASCcnf A_ASCcnf501
(PCPRbase
(FINIRPbase))

(F) 3

Detailed comments :
1) send constraint to establish connection;
2) await confirmation that connection is established;
3) await negative confirmation that connection is not established.

The following aspects are not covered in example 34:

- constraints are not parameterized via test step parameters,
no different instances, variations not possible;

- the calling test case itself will not have any knowledge about the alternative chosen (line 2 or 3):
- no state variable set;
- not straight forward;

- no timer is started,
test will never stop if IUT does not respond;

- setting of results:
- unclear result, the calling test case may need analysis of result to determine next action;
- test step can not be used as preamble as preliminary result may be set to FAIL (should only

be set to INCONCLUSIVE or PASS).

Page 51
ETR 141: October 1994

12.3 Level of complexity / nesting level

In order to ensure that test steps are readable and easy to understand, complexity of test steps should be
kept at a level as low as practical. Structuring aspects to reach low complexity could be:

- atomic confirmed service primitives based on one send and one receive action:
- sequence of a service request and a service indication primitive;
- sequence of a service response and a service confirmation primitive;

- test event sequences building a "logical" unit:
- loops of test events;
- sequence of test events for checking a particular state of the IUT;
- etc.

RULE 24: Minimizing complexity of test steps

Minimize the complexity of test steps either by restricting the objective of a test step to atomic confirmed
service primitives or by separating event sequences which build different "logical" units into different test
steps.

Besides minimizing the complexity of test steps the level of nesting of test steps should be kept small.
Experience has shown that a nesting level greater than 3 results in dependencies and complexities which
should be avoided 5).

Only some circumstances (i.e. the use of a test management protocol or the substitution of a multiply
used complex instruction) may justify the use of a greater nesting level.

RULE 25: Nesting level of test steps

Keep the nesting level of test steps to a minimum.

Restricting the nesting level of test steps to a certain level has the additional advantage that recursive tree
attachments are not possible. Recursive tree attachment are allowed by TTCN. The use of recursive tree
attachments result in expanded behaviour trees with one infinite sequence of events. On the other hand,
the execution of a test case should be finite in each case. Therefore, special care has to be taken that a
test case including recursive tree attachment results in finite test execution by using counters or Boolean
expressions. But using recursive tree attachments in conjunction with counters or Boolean expressions
makes a test step much more complex. Therefore, the use of recursive tree attachments should be
avoided. The same test behaviour can be reached by defining loops which are much easier to control.

RULE 26: Recursive tree attachment

Avoid recursive tree attachment. Where possible, use loops instead of recursive tree attachments.

Instead of using a test step of high complexity within a test case it would be more convenient to use a
corresponding sequence of test steps reflecting specific atomic behaviour or building "logical" units. In
examples 35 and 36, an example for both correct and incorrect structuring of test steps with respect to the
objective "specific atomic behaviour" is given.

5) Within the FTAM responder ATSs developed in CTS2 a nesting level of 1 was kept. The only test step used within others
was the one for sending an ABORT FPDU.

Page 52
ETR 141: October 1994

EXAMPLE 35: Well structured test steps.

Test case: SAMPLE_I
+STEP_A
 +STEP_B
 +STEP_C

Test step: STEP_A Test step: STEP_B Test step: STEP_C
!Send_AA !Send_BA !Send_CA
 ?Receive_AB ?Receive_BB ?Receive_CB

The structure chosen:

- is based on test steps structured according the atomic behaviour aspect;
- allows easy production of other test cases based on these test steps;
- is easy to read and to understand as the level of complexity is kept low.

EXAMPLE 36: Not well structured test steps.

Test case: SAMPLE_I
+STEP_a

Test step: STEP_a Test step: STEP_b
!Send_AA !Send_BA
 ?Receive_AB ?Receive_BB
 +STEP_b !Send_CA

 ?Receive_CB

The test steps in example 36 are not well structured in the following sense:

- structuring is not sequential,
test step STEP_a calls STEP_b;

- complexity is not atomic,
test step STEP_b is too complex;

- structuring does not allow construction of other test cases using the first part of test step STEP_b.

12.4 Assignment of verdicts

As already stated in previous subclauses, it is very important that the assignment of verdicts within test
steps is treated very carefully in order to allow multiple usage and construction of test step libraries.

It is obvious that no final verdict should be set within a test step as this would automatically terminate the
ATC and would contradict the possibility of combining test steps.

If used, the setting of preliminary results should be treated very carefully in order to allow an easy
combination of test steps. Multiple settings of preliminary results, e.g. in a first step to INCONCLUSIVE
and then to PASS would be more confusing than helping, as the second assignment does not affect the
result variable (see table 6 in ISO/IEC 9646-3 [3]).

Setting of a preliminary FAIL result would contradict the re-usage of this test step at a different position,
e.g. it could not be used as part of a preamble for another test case (this could falsify the test report as a
FAIL verdict was assigned without reaching the test body).

Page 53
ETR 141: October 1994

Setting of preliminary PASS results within the test step can be useful for analyzing the conformance log.
Therefore, if it is the intention of the test suite specifier to include preliminary results in the test suite for
supporting the analysis of the conformance log, at least one preliminary PASS result should be set at the
leaf of the "passing" event sequence of the test step.

When specifying test steps without any assignments of verdicts, the problems concerning multiple usage,
falsified test reports, etc. can be avoided. But there may be situations in which the assignment of verdicts
within a test step is of advantage:

- improvement of readability;
- support for test operator;
- additional information for supporting the analysis of conformance test reports.

There may also be situations where it is meaningful to combine a sequence of test events into a test step
which mainly contribute to the building of the final verdict. For instance, by realizing test purposes "... and
check that IUT has reached state X" , it may be reasonable to combine the event sequence for checking
if state X has been reached in a test step. For such test steps it cannot be avoided that at least a
preliminary FAIL is set. In this case the test suite specifier should take care not to use the respective test
step within a preamble. Example 37 shows such a test step.

EXAMPLE 37: Test step for verifying the IUT has reached a given state.

Test step dynamic behaviour
Test step name : P6_POSTAMBLE
Group : PACKET/P6_POSTAMBLE/
Objective : Verify the IUT is in state P6 after the test body has successfully

completed
Default :
Comments : Sample from the ATD for the X.25 Packet Level Protocol
No. Label Behaviour description Constraints ref Verdict Comments
1 !CLEARC START TD CLRC_0(LCI)
2 REPEAT LTS_TIMEOUT_TD UNTIL [FLAG] 1)

LTS_TIMEOUT_TD
3 ?TIMEOUT TD (FLAG:= TRUE) 2)
4 ?CLEAR CLR_1(LCI) 3)
5 ?OTHERWISE CANCEL (FLAG:= TRUE) (F) 4)
Detailed comments :
1) wait some time and check the events; test case variable FLAG initialized to FALSE;
2) stop waiting;
3) CLEAR is accepted (due to the possible expiry of the T21 timer in the IUT);
4) other events are not accepted.

RULE 27: Verdict assignment within test steps

If verdicts are assigned within a test step, guarantee at least the partial (i.e. not general) re-use of the test
step.

Page 54
ETR 141: October 1994

12.5 Returning values from test steps

The semantic given to test steps does not consider the return of any value from test steps. Nevertheless it
may be necessary for a test step to pass some information to the calling test case (e.g. about a session
point synchronization number, or the number of data blocks read) by setting a test suite/case variable.
Such conventions should be stated in detail within the test step.

EXAMPLE 38: Test step returning values.

Test step dynamic behaviour
Test step name : UTIL_IUT_tpdu_size
Group : Utilities/
Objective : TMP_Set up a connection from IUT to LT, negotiate TPDU size and

send one TPDU with the negotiated size. The test suite variables
LOCAL_TPDU_NR and REMOTE_TPDU_NR will be incremented
according to the number of sent and received TPDUs

Default : DefBody
Comments : Simplified sample from ATS for transport class 4 showing usage of

return values
No. Label Behaviour description Constraints ref Verdict Comments
1 +PRE_IUT_con_vsize 1
2 +UTIL_IUT_data_vsize 2
3 (LOCAL_TPDU_NR:=

 LOCAL_TPDU_NR+1)
3

Detailed comments :
1) establish a transport connection from the IUT to the LT and negotiate TPDU size;
2) send a TMP PDU to IUT, to let IUT send one TPDU with the negotiated TPDU size;
3) increment LOCAL_TPDU_NR by one.

Page 55
ETR 141: October 1994

12.6 Exit from test steps

Real exits as found in programming languages cannot be produced within TTCN. Nevertheless, the
cutting (i.e. no-execution) of certain alternative test events may be seen as such and should be avoided.
Generally a test step should only result in a stable well defined state (indicated by a state variable). This
allows the test case to perform the corresponding required action afterwards.

EXAMPLE 39: Test step resulting in different states - Iniope_rat_cha.

Test step dynamic behaviour
Test step name : Iniope_rat_cha(foperq:FOPERQ; foperp:FOPERP; fratrq:FRATRQ;

fratrp:FRATRP; fcharq:FCHARQ; fcharp:FCHARP)
Group : FTAM/Step-LIB/
Objective : Receive either F-OPEN-Request, F-READ-ATTRIBUTE-request or

F-CHANGE-ATTRIBUTE-request in state SELECT; send
corresponding response State is changed from SELECT to OPEN if
F-OPEN is received and unchanged otherwise

Default : DEF(L)
Comments : Sample showing a test step resulting in different states
No. Label Behaviour description Constraints ref Verdict Comments
1 START A 1
2 L?P_DTind P_DTind510

(foperq)
2

3 L!P_DTreq P_DTreq010
(foperp)

2.1

4 (F_STATE:=OPEN) 2.2
5 L?P_DTind P_DTind511

(fratrq)
3

6 L!P_DTreq P_DTreq011
(fratrp)

3.1

7 L?P_DTind P_DTind512
(fcharq)

4

8 L!P_DTreq P_DTreq012
(fcharp)

4.1

Detailed comments :
1) start inactivity timer;
2) receive F-OPEN-Request:

2.1) send response FPDU;
2.2) set variable to OPEN state;

3) receive F-READ-ATTRIBUTE-Request:
3.1) send response FPDU;

4) receive F-CHANGE-ATTRIBUTE-Request:
4.1) send response FPDU.

Example 39 shows a test step resulting in two different states:

- the new OPEN state (if expected OPEN FPDU was received);
- the previous (SELECT) state.

The test case should perform the corresponding required action depending on the value of the state
variable.

Page 56
ETR 141: October 1994

12.7 Parameterization of test steps

Test steps may be parameterized. By selecting appropriate actual parameter values the test step can be
adapted to the special needs of a test case.

In conjunction with parameterized constraints being used as actual parameter values of a test step
(passing parameterized constraints) the parameterization of test steps is a very powerful mechanism. For
testing protocols of the lower layers, many test purposes deal with testing the behaviour of the IUT on
receipt of invalid PDUs being of the same PDU-type but differing in PDU field values. By defining a
respective PDU constraint having parameters for each PDU field which may differ during the test
campaign the constraint may be used as a formal parameter of a test step which takes some specific
actions. The very same test step can be used in different test cases by simply adapting the actual
parameters of the constraint to the needs of the test case. This is illustrated in example 40.

EXAMPLE 40: Using parameterized constraints as test step parameters.

PDU constraint declaration
Constraint name : tpdu_cc(code:CODETYPE; checksum:CHECKSUMTYPE)
PDU type : TPDU_CC
Derivation path :
Comments : PDU constraint for checking reaction of IUT on receiving a CC PDU

with an invalid value for field code or checksum
Field name Field value Comments
Li '00001010'B
Code code constraint parameter
Cdt '0100'B
Dst_ref 'ABCD'O
Src_ref 'ABCE'O
Class '40'H
Checksumcode '11000011'B
Checksumlength '00000010'B
Checksum checksum constraint parameter

Test step dynamic behaviour
Test step name : TPDU_IB_PDUCC(ivpdu:TPDU_CC)
Group : TRANSPORT4/Step-LIB/
Objective : Send invalid CC PDU to IUT and check response
Default : DEF(L)
Comments : Sample showing usage of parameterized constraints as test step

parameter
No. Label Behaviour description Constraints ref Verdict Comments
1 L!TPDU_CC ivpdu 1
2 L?TPDU_DR tpdu_dr (P) 2

Detailed comments :
1) send invalid CC PDU;
2) receive DR from IUT.

Page 57
ETR 141: October 1994

Test case dynamic behaviour
Test case name : T4_BE_IB_WFCC_5
Group : TRANSPORT4/BE/IB/WFCC/
Purpose : Verify that the IUT in state WFCC discards a PDU with an invalid

TPDU code
Default : DEF(L)
Comments : Sample for attaching a test step with a parameterized constraint as

an actual parameter
No. Label Behaviour description Constraints ref Verdict Comments

1 + PRE_IUT_WFCC 1
2 +TPDU_IB_PDUCC(tpdu_cc('0100'B,

 CheckSum))
2

Detailed comments:
1) put IUT into state WFCC;
2) attach test step TPDU_IB_PDUCC; the actual parameter CheckSum is a test suite variable

with a valid checksum value; '0100'B is not a valid PDU code.

RULE 28: Parameterized test steps

Use parameterized test steps to ensure re-use of test steps within test cases for different needs.

12.8 Restrictions on behaviour description

The series ISO/IEC 9646 [1] to [8] requires that test results achieved by using the same ATS for testing a
specific IUT are comparable. From this requirement three further requirements can be derived:

- test execution shall be deterministic,
during the test campaign the upper/lower tester should never have the choice between two send
events;

- test results shall be independent from time,
results achieved during a test campaign shall not depend on performance of the test system, on
performance of the underlying service provider or on performance of the TMP/Test Coordination
Procedure (TCP) between upper and lower tester;

- execution of a test case shall be finite,
a test result shall be achieved after a finite number of events has occurred.

A further requirement not outlined by ISO/IEC 9646-3 [3] but also very important in specifying ATSs is that
an event in an alternative sequence should be able to be reached.

TTCN does not take into account these requirements, i.e. the TTCN semantic allows the specification of
ATSs which do not fulfil these requirements. In the following, some guidance is given on how to use TTCN
to fulfil the outlined requirements.

Page 58
ETR 141: October 1994

12.8.1 Sequence of alternatives

Two classes of TTCN statements can be distinguished:

a) unconditional statements (UCSs):
- send events;
- assignments to variables;
- timer operations;
- GOTO;
- REPEAT;

b) conditional statements (CSs):
- receive events;
- timeout events;
- OTHERWISE event.

If an UCS is followed by an UCS in the same sequence of alternatives, then the second UCS is never
reached as can be seen in example 41.

EXAMPLE 41: Alternative sequence including two UCSs.

Test case dynamic behaviour
Test case name: P9_206
Group : PACKET/P6/IMPROPER/P06/
Purpose : Verify the IUT discards too long incoming call packet (user data field

of 17 or 129 octets) received in state P6
Default :
Comments : Modified test case for the X.25 packet level protocol
No. Label Behaviour description Constraints ref Verdict Comments

.....
n !CALL CALL_U129(LCI)

m !CALL CALL_U17(LCI) 1

Detailed comments:
1) the send event in line m will never be executed.

From this, rule 29 can be derived.

RULE 29: Combining statements in a sequence of alternatives

If there is no Boolean expression included in an alternative sequence, a statement of type UCS should
never be followed by a statement of type UCS or CS within a sequence of alternatives.

Many problems concerning the reachability of alternatives are caused by using overlapping relational
expressions as alternatives in an alternative sequence.

Page 59
ETR 141: October 1994

EXAMPLE 42: Alternative sequence 1 including overlapping relational expressions.

Test step dynamic behaviour
Test step name : RelationalExpression1
Group :
Objective :
Default :
Comments :
No. Label Behaviour description Constraints ref Verdict Comments
1

n [a>5] 1

m [a<=5] 1

o [a=5] 1

Detailed comments:
1) "a" may be a test suite variable or a test suite parameter of type INTEGER.

The first two relational expressions cover the whole range of values for "a". Therefore, the third alternative
of the alternative sequence can never be reached.

EXAMPLE 43: Alternative sequence 2 including overlapping relational expressions.

Test step dynamic behaviour
Test Step Name : RelationalExpression2
Group :
Objective :
Default :
Comments :
No. Label Behaviour description Constraints ref Verdict Comments
1

n [a>5] 1

m [a>6] 1

Detailed comments:
1) "a" may be a test suite variable or a test suite parameter of type INTEGER.

In example 43, the second alternative will never be reached since the relational expression in line m is a
restriction of relational expression in line n.

From examples 42 and 43, rule 30 can be derived:

RULE 30: Using relational expressions as alternatives

a) A relational expression should never restrict the value range of a preceding relational expression
in the same alternative sequence using the same variable.

b) The value range of a relational expression should be different from the whole value range of all
preceding relational expressions in the same alternative sequence using the same variable.

Page 60
ETR 141: October 1994

12.8.2 Loops

To fulfil the requirement that the execution of a test case shall be finite, it needs to be guaranteed that the
execution of a loop will terminate. If the termination condition only depends on the behaviour of the IUT,
then the termination of the loop cannot be guaranteed in each case. This is shown in example 44.

EXAMPLE 44: Non-terminating loops.

Test step dynamic behaviour
Test step name : SampleStep
Group : SAMPLE/STEP/
Objective : Put the logical channel into the Data Transfer State P4 (D1)
Default :
Comments : Sample illustrating a possible candidate for an endless loop
No. Label Behaviour description Constraints ref Verdict Comments

 !RESET RST_0(LCI)

P4D1PR ?RESETC RSTC_1(LCI)

 ?RESET RST_0(LCI)

 ?DATA DAT_1A(LCI,PR)
 GOTO P4D1PR
 ?RR RR_1(LCI)
 GOTO P4D1PR

After having sent a packet of type "RESET" the tester expects an acknowledgement packet of type
"RESET" or type "RESETC" from the IUT. If the IUT sends a packet of type "DATA" or "RR" (correct but
not expected IUT behaviour) then this packet will be received, the tester will execute the GOTO statement
and continue on waiting for an acknowledgement packet of the expected types. Therefore, if the IUT only
sends packets of type "DATA" or "RR" the loop will never terminate.

From the scenario discussed above the following rule 31 can be derived.

RULE 31: Loop termination

Do not use conditions for terminating loops, which depend only on the behaviour of the IUT.

Page 61
ETR 141: October 1994

12.8.3 Avoiding deadlocks

If a tester sends a PDU to the IUT expecting a given response of the IUT, then the tester should take into
consideration that the IUT may send a different PDU to the expected one, or that the IUT will react
incorrectly by sending no PDU back. If this is not taken into account in specifying the ATS used, then the
tester will wait for an infinite time for the expected IUT response. To avoid such deadlock situations, rule
32, outlined below, is given.

RULE 32: Avoiding deadlocks

a) Make sure that each alternative sequence of receive events contains an OTHERWISE statement
(without any qualifier) for each PCO.

b) Make sure that each alternative sequence of receive events contains at least one TIMEOUT event
(implying that a corresponding timer was started).

NOTE: An OTHERWISE statement and a TIMEOUT event should, at least, be treated in the
default.

13 Guidelines on default trees

13.1 Introduction

Default trees form a set of alternatives which are thought to be of less interest for the actual test case.
Therefore, the default tree can be thought of as a tree attachment of a similar default test step attached as
an additional last alternative to every set of alternatives. Because of this, the construction of the default
tree can be derived by analyzing the following aspects:

- straightforward specification of test cases;
- worst case analysis of the protocol.

These two aspects are handled in the following subclauses in more detail.

13.2 Straightforward specification of test cases

Preambles should only emphasise the paths leading to the test body. All other alternatives which would
result in the test body not being reached can be handled within the default tree. This may happen on
receipt of ASPs/PDUs not matching any given constraint. As such events are not of interest (as they do
not comply to the test purpose) they can be simply summarized by a general receive TTCN statement
combining all ASP or PDU types allowed to be received on this PCO without analysing any parameters.
This can be done by defining a CHOICE over all allowed ASP or PDU types, as shown in example 45.

The OTHERWISE construct cannot be used for this purpose as the OTHERWISE also matches
syntactically and/or semantically invalid ASPs/PDUs received on the PCO concerned, which should in all
cases result in a FAIL verdict.

Page 62
ETR 141: October 1994

EXAMPLE 45: Type and constraint definition for a general matching ACSE and presentation
ASP.

ASN.1 ASP type definition
ASP name : ACSE_PRES_SP
PCO type : APSAP
Comments : Choice of all possible ACSE and presentation service primitives

applicable for the FTAM layer
Type definition

CHOICE {
[1] A_ASSOCIATE_Request,
[2] A_ASSOCIATE_Indication,
[3] A_RELEASE_Request,
[4] A_RELEASE_Indication,
[5] A_ABORT_Request,
[6] A_ABORT_Indication
[7] A_P_ABORT_Indication,

 [8] P_DATA_Request,
[9] P_DATA_Indication,
[10] P_SYNC_MINOR_Request,
[11] P_SYNC_MINOR_Indication,
[12] P_RESYNCHRONIZE_Request,
[13] P_RESYNCHRONIZE_Indication

}

ASN.1 ASP constraint declaration
Constraint name : AP_MATCH_ANY
ASP type : ACSE_PRES_SP
Derivation path :
Comments : accept any valid incoming ASP from ACSE/Presentation PCO

Constraint value
?

NOTE 1: This example uses ASN.1 for the type definitions and constraint declarations. In case
where an ATS is only using tabular format this would add a new level of complexity. In
this case the possible solution is to define tabular constraints containing the "?" for
each possible tabular PDU (or ASP) type and then to use these as set of alternatives
on the same level within the default.

Some protocols can easily be transferred from each possible state of the protocol machine to the idle
state of the protocol machine by just calling a particular service primitive, e.g. DISCONNECT request or
an association ABORT. Therefore, the same postamble can be used for each test case referring to such a
protocol. In this case it is very convenient to realize the postamble within the default tree. This default tree
may simply consist of the general MATCH (as described above) followed by an ABORT/DISCONNECT
request event. This is illustrated in example 46. The OTHERWISE is included afterwards to treat the
remaining unexpected invalid ASPs/PDUs. Example 46 shows a first approach for a default tree for use
within the FTAM ATSs:

- if the test body is reached then the result variable is set to FAIL in case of the general MATCH;

- if the test body is not reached then the result variable is set to INCONCLUSIVE in case of the
general MATCH;

- in case of OTHERWISE the result variable is always set to FAIL.

NOTE 2: The correct assignment of the verdict depends on the setting of the test body variable
(see rule 19).

The result variable is always set to INCONCLUSIVE if the inactivity timer (here A) has expired, when a
reaction of the IUT is expected. This is due to the fact that it cannot be determined whether the IUT is in
error, or would respond if the timer value is increased.

Page 63
ETR 141: October 1994

NOTE 3: Also, only in case of a connection (state variable is not equal to "no connection") the
abort is sent to return to the IDLE state of the protocol machine.

It should be also recognized that no test step is used within the default tree to hide the sending of the
ABORT, because it is not allowed to use test steps within the default tree (see ISO/IEC 9646-3 [3],
subclause 14.18.1).

EXAMPLE 46: First approach for a FTAM default tree.

Default dynamic behaviour
Default name : DEF (X: APSAP)
Group : FTAM/DEFAULT-LIB/
Objective : Illustrate first approach for default
Comments :

No. Label Behaviour description Constraints ref Verdict Comments
1 X?ACSE_PRES_SP [TEST_BODY=TRUE] AP_MATCH_ANY (FAIL) 1
2 [F_STATE<>NONE] 1.1
3 X!A_ABRreq A_ABRreqbase

(FUABRQbase)
R 1.1.1

4 [F_STATE = NONE] R 1.2
5 X?ACSE_PRES_SP [TEST_BODY=FALSE] AP_MATCH_ANY (INCONC) 2
6 [F_STATE<>NONE] 2.1
7 X!A_ABRreq A_ABRreqbase

(FUABRQbase)
R 2.1.1

8 [F_STATE = NONE] R 2.2
X?OTHERWISE (FAIL) 3

10 [F_STATE<>NONE] 3.1
11 X!A_ABRreq A_ABRreqbase

(FUABRQbase)
R 3.1.1

12 [F_STATE = NONE] R 3.2
13 ?TIMEOUT A (INCONC) 4
14 [F_STATE<>NONE] 4.1
15 X!A_ABRreq A_ABRreqbase

(FUABRQbase)
R 4.1.1

16 [F_STATE = NONE] R 4.2
Detailed comments :
1) if test body is reached, then verdict is FAIL if anything unexpected (but valid) is reached:

1.1) and 1.1.1) if association is established (PM state is not NONE) abort association;
1.2) if no association is established simply end test case;

2) if test body is not reached, then verdict is INCONCLUSIVE if anything unexpected (but
valid) is reached:
2.1) and 2.1.1) if association is established (PM state is not NONE) abort association;
2.2) if no association is established simply end test case;

3) if anything else is received (which is not valid) the verdict is FAIL:
3.1) and 3.1.1) if association is established (PM state is not NONE) abort association;
3.2) if no association is established simply end test case;

4) if TIMEOUT then the inactivity timer has expired resulting in INCONCLUSIVE
(i.e. IUT did not respond in time => reason unknown/uncertain):
4.1) and 4.1.1) if association is established (PM state is not NONE) abort association;
4.2) if no association is established simply end test case.

RULE 33: Straightforward specification of test cases

a) Use only event sequences leading to the test body within a preamble.
b) Handle all event sequences not leading to the test body within the default tree of the test

case/step.
c) If the very same event sequence can be used to transfer the IUT from each possible state to the

idle state, then realize this event sequence as a postamble.

Page 64
ETR 141: October 1994

13.3 Worst case analysis

In the first approach all non-matching PDU constraints were considered to be treated within the default
tree. This is normally not sufficient because protocols may allow other protocol elements which need to be
treated as well. These PDUs may be sent either in any state of the protocol machine (e.g. ABORTS) or in
specific states (e.g. FTAM F_CANCEL during data transfer).

In addition, depending on the kind of PDU received, or even on the value of a PDU parameter, a certain
corresponding postamble needs to be executed in order to terminate the test case. In case of example 46,
the ABORT would require an empty postamble as no further action is required, in contrast to the
F-CANCEL which would require the association to be aborted (therefore, it could be handled by the
general MATCH as well).

Example 47 below completes the FTAM default tree example. It may be necessary to consider all ABORT
alternatives (user and provider aborts on each level) for diagnostic reasons by specifying more detailed
constraints. This aspect is not considered within example 47.

EXAMPLE 47: Complete example for a FTAM default tree.

Default dynamic behaviour
Default name : DEF (X: APSAP)
Group : FTAM/DEFAULT-LIB/
Objective : Illustrate first complete default
Comments :

No. Label Behaviour description Constraints ref Verdict Comments
1 X?A_ABRind [TEST_BODY=TRUE] A_ABRind501 FAIL 1
2 X?A_ABRind [TEST_BODY=FALSE] A_ABRind501 INCONC 2
3 X?ACSE_PRES_SP [TEST_BODY=TRUE] AP_MATCH_ANY (FAIL) 3
4 [F_STATE<>NONE]
5 X!A_ABRreq A_ABRreqbase

(FUABRQbase)
R

6 [F_STATE = NONE] R
7 X?ACSE_PRES_SP [TEST_BODY=FALSE] AP_MATCH_ANY (INCONC)
8 [F_STATE<>NONE]
9 X!A_ABRreq A_ABRreqbase

(FUABRQbase)
R

10 [F_STATE = NONE] R
11 X?OTHERWISE (FAIL)
12 [F_STATE<>NONE]
13 X!A_ABRreq A_ABRreqbase

(FUABRQbase)
R

14 [F_STATE = NONE] R
15 ?TIMEOUT A (INCONC)
16 [F_STATE<>NONE]
17 X!A_ABRreq A_ABRreqbase

(FUABRQbase)
R

18 [F_STATE = NONE] R
Detailed comments :
1) an Abort is received and the test body is reached resulting in FAIL;
2) an Abort is received and the test body is not reached resulting in INCONCLUSIVE;
3) the remaining lines are as for example 46.

Page 65
ETR 141: October 1994

14 TTCN extensions

14.1 Introduction

The applicability of the conformance testing methodology and framework defined in the series
ISO/IEC 9646 [1] to [8] was originally limited to peer-to-peer communication. But the scope of OSI is not
restricted to such peer-to-peer configurations, it also covers so-called multi-party configurations.
Multi-party configurations exist within the OSI network management, for OSI network routeing, within OSI
transaction processing and also for ISDN. There are some extensions to ISO/IEC 9646 [1] to [8] being
standardized handling the specific aspects resulting from testing multi-party configurations. One of these
extensions handles concurrency in TTCN. Concurrency in TTCN is not only applicable for specifying test
cases in a multi-party configuration, but also for the definition of test cases handling
multiplexing/de-multiplexing and splitting/recombining for both single-party and multi-party configurations.

In the following, some guidelines concerning these TTCN extensions are given. Because the
standardization of the extensions is still in progress and there is little practical experience in handling the
extensions, the given guidelines should be regarded as preliminary guidelines which may be expanded
in the future, when real ATS examples are available.

14.2 Declarations

There is a series of new declaration types supported by the extensions, e.g. test component declarations,
test component configuration declarations, demultiplexing declarations, coordination point declarations,
coordination message constraints declarations. For all these new declarations the guidelines on naming
conventions given in Clause 6 should be taken into account.

Special care should be taken to avoid recursion when declaring the test component configuration types.
Such recursion may lead to deadlocks as shown in example 48.

EXAMPLE 48: Test component configuration.

Test component declarations
Component name Component role No. PCOs No. CPs Comments

MTC1 MTC 0 3 Master test component
TC1 PTC 1 3 Parallel test component 1
TC2 PTC 1 3 Parallel test component 2
TC3 PTC 1 3 Parallel test component 3

Test Component Configuration Declaration
Components used PCOs used CPs used Comments

MTC1 MCP1, MCP2, MCP3
TC1 L1 MCP1, CP1, CP3 TC1 is coordinated with TC2, TC3
TC2 L2 MCP2, CP1, CP2 TC2 is coordinated with TC1, TC3
TC3 U MCP3, CP2, CP3 TC3 is coordinated with TC1, TC2

In the configuration given above the following deadlock situation can arise. TC1 waits on a Coordination
Message (CM) from TC2 on CP1, TC2 waits on a CM from TC3 on CP2 without having sent a CM to TC1
on CP1 and TC3 waits on a CM from TC1 on CP3 without having sent a CM to TC2 on CP2. In this
situation none of the parallel test components will proceed and wait forever for a CM. Such deadlock
situations can only be detected by using timers within the parallel test components which delimit the
waiting period or within the main test component for controlling the process of the parallel test
components. Having detected a deadlock situation it can be resolved by sending an appropriate CM. To
avoid such deadlock situations, recursive test component configurations should not be declared.

RULE 34: Test component configuration declaration

Avoid recursive test component configuration declarations.

Page 66
ETR 141: October 1994

14.3 Final verdicts

Final test verdicts assigned in a Parallel Test Component (PTC) have only local significance, i.e. only the
PTC assigning the verdict will be terminated, all other test components will proceed. In contrast to this, the
Master Test Component (MTC) and all PTCs will be terminated if a test verdict is assigned in the MTC. To
ensure that a test step can be re-used in the MTC and/or the PTCs, the setting of final test verdicts within
the test steps should be avoided. A test step containing a test verdict would result in the termination of
only the PTC in which the test step is attached, whilst the very same test step being attached in the MTC
would result in the termination of all test components. For test steps where the assignment of a final test
verdict cannot be avoided the test suite specifier should take special care that the test step is either used
only in PTCs or only in the MTC and not in both.

14.4 RETURN statement

The TTCN extensions define a RETURN statement, to be used only in default trees. According to the
operational semantics of TTCN, a RETURN construct is handled in the following way, by expanding a
default tree:

- the RETURN is replaced by an ACTIVATE followed by a GOTO construct with a label being placed
at the head of the current set of alternatives.

However, this should not (but can) result in an endless loop.

RULE 35: Default trees with RETURN statement

Special care should be taken by using a RETURN statement within a default tree in order to avoid an
endless loop resulting from the expansion of the default tree.

15 Miscellaneous aspects

15.1 Introduction

The following subclauses pick up miscellaneous singular aspects, which are worthwhile mentioning, but
which are not so extensive that "guidelines" need to be given.

15.2 ATS structuring and contents list

ISO/IEC 9646-3 [3] requires that a conforming ATS contains the following parts in the specified order:

Part 1) suite overview;
Part 2) declarations part;
Part 3) constraints part; and
Part 4) dynamic part.

In addition, ETS 300 406 [14] requires ATS conventions to be contained in an ATS specification (see also
subclauses 4.1 and 4.3). Apart from this, it appears to be very helpful for the reader, if:

a) the ATS has a comprehensive contents list, i.e. the list covers also the subclauses; and
b) the subclauses of the parts 1) to 4) above appear in the order in which they are defined in

ISO/IEC 9646-3 [3].

15.3 Use of comments

It is recommended that an ATS is commented using the possibilities given in TTCN. This aspect is
important in order to ensure that ATSs are readable, easy to maintain and able to be standardized. As the
way of writing comments very much depends on personal style and subjective arguments no style is
recommended within this ETR. Nevertheless ATS authors should always keep in mind that comments
should:

- help executable test suite realizers;
- help ATS maintainer;
- contain references to base standards for clarifying decisions made.

Page 67
ETR 141: October 1994

Specifically, the last aspect gets more and more important if test laboratories have to run test campaigns
and need to justify verdicts within test reports.

15.4 Timer durations and units

Timeout values are expressions. The following is recommended with respect to these expressions:

a) whenever possible use a test suite parameter as the duration;
b) when a duration derived from another duration is used, like e.g. "HALF_T1", then define a new

timer and a new test suite parameter whenever possible, instead of using the same timer in the
behaviour description and overwriting its value by an explicit expression;

c) when the duration of a timer is a small INTEGER in a given unit, then use in preference the next
smaller unit (e.g. if a duration is one second, use the unit "ms " instead).

15.5 Use of labels/GOTOs

The use of GOTOs within specification/programming languages is usually thought to be bad style. This is
because of the problem that GOTOs may violate the normal control flow and normally need a lot of
restrictions and limitations within the definition of the language. This can also be seen within TTCN, which
limits the definition and usage of labels.

NOTE: These restrictions are neither checked within the Extended Backus-Naur Form (EBNF)
notation of Machine Processable TTCN (TTCN.MP) nor within the notation used for
TTCN.GR. Such features need to be verified by using tools supporting this kind of
semantic checking.

Therefore, it is recommended that the use of GOTOs is limited as much as possible and treated very
carefully. Whenever possible, the REPEAT construction should be used instead.

15.6 PCOs and their names

ISO/IEC 9646-3 [3] uses the name "L" for the PCO declarations included as examples. This has had the
effect that many ATSs use the same name "L" for their (single) PCO, e.g. ISO/IEC 8882-2 [9] (X.25
layer 2), ISO/IEC 8882-3 [10] (X.25 layer 3), I-ETS 300 313 [15] (ISDN signalling layer 2) and
I-ETS 300 322 [16] (ISDN signalling layer 3). When these ATSs are used as stand-alone test specification
standards, this causes no problem, but when these ATSs are used all together within a profile test
specification, this naming is very inconvenient.

When e.g. an ISDN telematic terminal is tested, then the following connections on the lower layers have to
be established and maintained at the same time :

a) data link connection on the D-channel for the ISDN signalling;

b) network connection on the D-channel for the ISDN signalling;

c) data link connection on the B-channel;

d) network connection on the B-channel for the X.25 packet layer.

This has the effect that in the profile-specific test description behaviour is specified, where different PCOs
with the same names have to be referenced.

Therefore, test suite specifiers should use meaningful PCO names, which are specific for the particular
service accessed.

Page 68
ETR 141: October 1994

Annex A: List of rules

Table A.1: List of all rules

No. Rule Page
1 Statement of naming conventions 18
2 Coverage of naming conventions 18
3 General properties of naming conventions 19
4 Specific naming rules for test suite parameters/constants/variables test case variables

and formal parameters
22

5 Specific naming rule for timers 22
6 Specific naming rule for PDU/ASP/structured types 23
7 Specific naming rule for PDU/ASP/structured types constraints 23
8 Specific naming rule for test suite operations 24
9 Specific naming rule for aliases 24
10 Specific naming rule for test steps 26
11 Selecting the ASN.1 format for type definitions 28
12 Further guidelines on type definitions 29
13 Specification of test suite operations 31
14 General aspects of specifying constraints 35
15 Relation between base constraints and modified constraints 36
16 Static and dynamic chaining 37
17 Parameterization of constraints 39
18 Constraint values 41
19 Verdict assignment in relation to the test body 47
20 Test body entry marker 47
21 State variable 47
22 State checking event sequences 48
23 Easy adaptation of test steps to test cases 49
24 Minimizing complexity of test steps 51
25 Nesting level of test steps 51
26 Recursive tree attachment 51
27 Verdict assignment within test steps 53
28 Parameterized test steps 57
29 Combining statements in a sequence of alternatives 58
30 Using relational expressions as alternatives 59
31 Loop termination 60
32 Avoiding deadlocks 61
33 Straightforward specification of test cases 63
34 Test component configuration declaration 65
35 Default trees with RETURN statement 66

Page 69
ETR 141: October 1994

Annex B: List of examples

Table B.1: List of all examples

No. EXAMPLE Page
1 Sample of simple naming schemes applicable to individual TTCN object classes 20
2 Suffixes composed of digits 21
3 Structured naming scheme for ISDN data link ASPs 21
4 Structured naming scheme for FTAM and Association Control Service Element

(ACSE) ASPs
21

5 Names for parameters and variables 22
6 Timer names 22
7 PDU/ASP/structured types 23
8 PDU/ASP/structured types constraints 23
9 Test suite operation names 24
10 Alias names 24
11 Test case names 25
12 Test step names 26
13 Use of CHOICE to simulate the meta-type PDU 26
14 Compatibility of ASN.1 and tabular types 27
15 Type with named number list 27
16 Use of sub-typing 28
17 Selection of ASN.1 type definitions 28
18 Use of simple/ASN.1 type definitions 29
19 Mapping of PDU types in the protocol specification 29
20 Specific type definition samples 30
21 Test suite operations 32
22 Declaration and usage of aliases 33
23 Definition of a base and modified PDU constraint 36
24 Static chaining of constraints 38
25 Dynamic chaining of constraints 38
26 Parameterized constraint (tabular format) 39
27 Parameterized constraint (ASN.1 format) 39
28 Different kinds of constraint parameterization 40
29 Constraint values and matching mechanisms using the tabular format 44
30 Constraint values and matching mechanisms using the ASN.1 format 44
31 Setting of preliminary results within test cases 46
32 Relation between verdict assignment and test body 46
33 Reusable test step - resconnect 49
34 Non-reusable test step - resconnect 50
35 Well structured test steps 52
36 Not well structured test steps 52
37 Test step for verifying the IUT has reached a given state 53
38 Test step returning values 54
39 Test step resulting in different states - Iniope_rat_cha 55
40 Using parameterized constraints as test step parameters 56
41 Alternative sequence including two UCSs 58
42 Alternative sequence 1 including overlapping relational expressions 59
43 Alternative sequence 2 including overlapping relational expressions 59
44 Non-terminating loops 60
45 Type and constraint definition for a general matching ACSE and presentation ASP 62
46 First approach for a FTAM default tree 63
47 Complete example for a FTAM default tree 64
48 Test component configuration 65

Page 70
ETR 141: October 1994

History

Document history

October 1994 First Edition

February 1996 Converted into Adobe Acrobat Portable Document Format (PDF)

	Foreword
	Introduction
	1	Scope
	2	References
	3	Definitions, symbols and abbreviations
	3.1	Definitions
	3.2	Symbols
	3.3	Abbreviations

	4	General ATS design aspects
	4.1	Software engineering aspects
	4.2	Quality assurance aspects
	4.3	Supporting documents

	5	Starting ATS development
	5.1	Introduction
	5.2	Ensuring applicability to different IUTs by ATS parameterization
	5.3	Profile standard parameterization
	5.4	Application parameterization for embedded ATS

	6	Guidelines on naming conventions
	6.1	Introduction
	6.2	General rules for naming conventions
	6.3	Specific rules for naming conventions
	6.3.1	Naming test suite parameters/constants/variables test case variables and formal parameters
	6.3.2	Naming timers
	6.3.3	Naming PDU/ASP/structured types
	6.3.4	Naming PDU/ASP/structured types constraints
	6.3.5	Naming test suite operations
	6.3.6	Naming aliases
	6.3.7	Naming test cases
	6.3.8	Naming test steps

	7	Guidelines on type definitions
	7.1	Use of ASN.1 or tabular format
	7.2	General guidelines on type definitions

	8	Guidelines on test suite operations
	9	Guidelines on aliases
	10	Guidelines on constraint definitions
	10.1	Introduction
	10.2	Using ASN.1 to specify constraints
	10.3	Base constraints and modified constraints
	10.4	Chaining of constraints
	10.5	Parameterization of constraints
	10.6	Constraint values and matching mechanisms

	11	Guidelines on test cases
	11.1	Introduction
	11.2	Assignment of verdicts
	11.3	Test body marker
	11.4	Use of a variable reflecting the protocol machine state
	11.5	Use of test steps

	12	Guidelines on test steps
	12.1	Introduction
	12.2	Construction of test step libraries
	12.3	Level of complexity / nesting level
	12.4	Assignment of verdicts
	12.5	Returning values from test steps
	12.6	Exit from test steps
	12.7	Parameterization of test steps
	12.8	Restrictions on behaviour description
	12.8.1	Sequence of alternatives
	12.8.2	Loops
	12.8.3	Avoiding deadlocks

	13	Guidelines on default trees
	13.1	Introduction
	13.2	Straightforward specification of test cases
	13.3	Worst case analysis

	14	TTCN extensions
	14.1	Introduction
	14.2	Declarations
	14.3	Final verdicts
	14.4	RETURN statement

	15	Miscellaneous aspects
	15.1	Introduction
	15.2	ATS structuring and contents list
	15.3	Use of comments
	15.4	Timer durations and units
	15.5	Use of labels/GOTOs
	15.6	PCOs and their names

	Annex A:	List of rules
	Annex B:	List of examples
	History

