
N
ew

 p
re

se
nt

at
io

n
-

se
e

H
is

to
ry

 b
ox

ETSI ETR 125

TECHNICAL March 1994

REPORT

Source: ETSI TC-TE, EWOS Reference: DTR/TE-06013
EWOS ETG 005

ICS: 33.080

Key words: OSI, directory

Introduction to OSI Directory functional standards

ETSI
European Telecommunications Standards Institute

ETSI Secretariat

Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE
Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE
X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: secretariat@etsi.fr

Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16

Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the
foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1994. All rights reserved.

Page 2
ETR 125: March 1994

Whilst every care has been taken in the preparation and publication of this document, errors in content,
typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to
"ETSI Editing and Committee Support Dept." at the address shown on the title page.

Page 3
ETR 125: March 1994

Contents

Foreword ...5

1 Introduction..5

2 OSI Directory...5

3 The Directory Information Base (DIB) ...6

4 Use of the Directory for specific purposes ..8

5 Static capabilities of co-operating DSAs ...8

6 Directory functional standards...8
6.1 Directory A-profiles ..9
6.2 Directory F-profiles...9

7 ETSI Technical Reports for the Directory..10
7.1 Error Handling for the Directory ...10
7.2 Security architecture for the directory ..10
7.3 Interconnection of Directory Management Domains..10

8 Conformance...11

Annex A: Object classes and DIT structure..12

Annex B: Requirements on matching rules for attributes ...16

History..18

Page 4
ETR 125: March 1994

Blank page

Page 5
ETR 125: March 1994

Foreword

ETSI Technical Reports (ETRs) are informative documents resulting from ETSI studies which are not yet
appropriate for European Telecommunication Standard (ETS) or Interim European Telecommunication
Standard (I-ETS) status. An ETR may be used to publish material which is either of an informative nature,
relating to the use or application of ETSs or I-ETSs, or which is immature and not yet suitable for formal
adoption as an ETS or I-ETS.

This ETR has been produced by the Terminal Equipment (TE) Technical Committee of the European
Telecommunications Standards Institute (ETSI). More specifically, it is the result of a joint effort of experts
from the European Workshop for Open Systems (EWOS) EGDIR and ETSI STC-TE 6 (Directory
systems). Due to the similarity of objectives, EWOS and ETSI have agreed to issue common texts. The
EWOS equivalent to this ETR is known as EWOS Technical Guide (ETG) 005.

1 Introduction

This ETR is intended to give an introduction to the OSI Directory profile work. This version of the ETR is
mainly concerned with the European work as specified in M-TI-02. Later versions may be directed toward
the International Standardized Profiles (ISPs) work, especially when the current European profiles (ENVs)
are replaced by the ISPs.

The Directory functional standards described in this ETR are based on the 1988 edition of OSI Directory
specifications, as specified in the International Standard ISO/IEC 9594:1990, Parts 1 to 8, and in the
CCITT X.500 1988 Series of Recommendations. These specifications have been developed jointly by
ISO/IEC and CCITT, and they are, in the context of functional standards, referred to as the base
specifications.

In addition, this ETR introduces other Directory ETRs developed in conjunction with the profile work.

This ETR also includes annexes of a more tutorial nature intended to explain some areas that have been
proven to be a little difficult for those not deeply involved in the Directory standardization work.

ISO/IEC and CCITT have completed a new edition of the Directory specifications referred to as the 1992
edition, and it was expected to be available during 1993. This edition will be the subject for future profile
work.

2 OSI Directory

The Directory specifications comprise an OSI Application Layer standard specifying principles, protocols,
and procedures for storage and retrieval of information about "objects".

Objects can be anything that can be given one or more unambiguous names and for which it is of interest
to store information for later retrieval.

The Directory is not intended to be a general purpose database, but has mainly been developed for
storing information about objects relevant in the telecommunications arena, such as OSI application-
entities, persons, files, distribution lists, etc. The information stored about objects is typically information
relevant for communications involving those objects.

The Directory specifications provide a model for the information structure, specify protocols for
communication between open systems about directory information and specify procedures that allow the
directory information to be distributed among any number of open systems, including procedures for
navigation to the open system containing the information to be accessed.

An open system can locally maintain its part of the directory information using any suitable database
technique.

An object represented by the Directory always has a so-called distinguished name, which is the "primary"
name for the object. In addition, it can also have one or more alias names.

Several independent directories may be created. However, if the names of the objects represented by
these directories are all drawn from the same name space, i.e., all names are assured to be different,

Page 6
ETR 125: March 1994

such directories can be merged into one directory - The Directory (spelled with a capital D). It is also
called the global Directory, and it is global in two respects. It is world-wide, and it is common for all
possible usages. The base specification assumes such a global Directory.

The set of Directory functional standards described ensures that complying Directory implementations can
be integrated into a single Directory.

The element within an open system maintaining and communicating about Directory information is called
a Directory System Agent (DSA). A DSA is, in OSI terms, an application-process. The collection of DSAs
comprises the Directory. As a special case, the Directory may consist of just a single DSA. Such a non-
distributed Directory is called a centralised Directory. The DSA in a non-distributed Directory is called a
Centralised DSA; a DSA being part of a distributed Directory is called a Co-operating DSA.

DSAs in different open systems communicate with each other using an OSI Application Layer protocol
called the Directory System Protocol (DSP).

An open system can access the Directory by establishing an application-association with one of the DSAs
in the Directory. The element of an open system performing that access is called a Directory User Agent
(DUA), and represents a single user. An open system may have any number of DUAs. A DUA
communicates with a DSA using an Application Layer protocol called the Directory Access Protocol
(DAP). The Directory gives a DUA access to Directory information independent of the location of that
information and the location of the DUA.

The communication between a DUA and a DSA is always initiated by the DUA and the DSA will never
send anything unsolicited to a DUA (except possibly for an A-ABORT). Therefore an inoperative DUA, in
contrast to an inoperative DSA, only affects the local user, and only the local user puts requirements on
the availability of the DUA.

When a DUA or a DSA sends a request to a DSA to access Directory information in a distributed
Directory, and that DSA contains none or only part of the information in question, it can continue to
operate in either of two modes:

a) it can forward the request to another DSA supposedly more capable of handling the request and
eventually combine the received reply with local results before sending a single result back to the
originator. This mode of operation is called Chaining mode. As a special case, identical requests
may be chained by a DSA to two or more other DSAs either in parallel or sequentially in order to
fulfil a single incoming request;

b) the DSA can return information to the requester about DSAs better able to handle the request. This
mode is called referral mode.

The decision to use referral mode, chaining mode, or a combination of the two may be taken
independently for each Directory operation.

3 The Directory Information Base (DIB)

An object is represented in the Directory by an entry. An entry is an abstraction of the information stored
about the object it represents.

The complete information maintained by the Directory is called the Directory Information Base (DIB).

Every entry in the Directory has a unique name, which is also a name for the corresponding object. The
Directory entries are organized into a hierarchical structure, and the entry names reflect that hierarchy.
This hierarchical structure can be depicted as a reversed tree, where each node in the tree is an entry.
This is illustrated in figure 1. This model of the information structure is called the Directory Information
Tree (DIT). The root of the tree is not a real entry, and it has no name. In principle, the naming hierarchy
could be arranged in any arbitrary way, but it has been established that the naming hierarchy has to reflect
the way names are allocated by naming authorities. As allocation of names is mostly a national
undertaken, the first level below the root is made up of entries representing countries. The Directory
specification dictates that the country codes defined in ISO 3166 shall be used. Recognised international
organizations can also be represented by entries just below the root, but this requires an international
registration to ensure unique names for such organizations.

Page 7
ETR 125: March 1994

The next level under country entries may reflect localities within the country, like counties, but may also
represent organizations having unique names within the country. The latter case is shown in figure 1.
Entries below country entries have a name composed of the country name plus one additional naming
component, which has to be unique within the country.

This principle continues
down through the tree. In
figure 1 the next level
represents organizational
units and the lowest level
is the organizational
person. There could be
many more objects
represented, like OSI
application-process entries
just below an organization
entry. The tree could of
course be much deeper
and does not need to have
the same depth
everywhere. For each level
going down, a new naming
component is added, and
this component has to be
unique with respect to the
immediately superior entry.
The naming component
added for each level going
down is called the Relative

Distinguished Name (RDN) for the entry in question. An entry name is thus the concatenation of all the
RDNs from the root down to and including the entry itself.

Entries at the bottom of the tree are called leaf entries.

An entry directly representing an object is called an object entry, and the name of the object entry is the
distinguished name for the object it represents.

The DIT may contain alias entries. An alias entry points to an object entry, and the alias entry name is an
alternative, or alias name for the object represented by that object entry. An alias entry cannot have any
subordinate entries, i.e., it is always a leaf entry.

Due to the way Directory names are structured, an object's distinguished name is part of the distinguished
name of any subordinate object. However, if an object has an alias name, this alias name can replace the
distinguished name as prefix for names for subordinate objects and thus allows alternate, or alias names,
also for the subordinate objects.

The DIT can be distributed among DSAs in a general way. A contiguous part of the DIT wholly contained
within one DSA is called a naming context. To allow navigation to specific entries, a DSA must have some
minimum knowledge about naming contexts in other DSAs in order to perform proper chaining or to return
valid referrals.

The Directory information contained by a Directory entry is modelled as a number of user attributes, each
attribute holding an attribute type identification and one or more attribute values. Each object entry
belongs to a specific object class characterising the type of object it represents. A list of the types of user
attributes an entry must and may hold is part an object class specification (see Annex A for further
details).

The main function of the Directory is to provide information related to attributes. Attributes are carried as
part of the protocol exchanges. It is therefore necessary to have complete agreement on the syntax of the
attributes between the DSAs holding the attributes and the DUAs accessing them. It is only necessary in
special cases to attach semantics to an attribute as part of the Directory specifications, and this is when
the value of an attribute affects the operation of the Directory (e.g. Alias Object Name).

Root

C=DKC=GB

O=Fallit A/S

OU=Sale

O=Broke Ltd

OU=
Research

OP=
Smith

Name = { C=GB, O=Broke Ltd, OU=Sale, OP=Smith }

Figure 1 - Directory Information Tree (DIT)

Page 8
ETR 125: March 1994

Entries must hold a special Object Class attribute that characterises it and other entries of the same type.
From this attribute it can be deduced which other mandatory attributes must be part of the entry and which
optional attributes can be part of the entry.

4 Use of the Directory for specific purposes

The Directory can be used for many different purposes. A Message Handling System (MHS) user may
wish to map the Directory name of an Originator/Recipient to its O/R address; an FTAM user may want to
map file names into locality information; etc. Accordingly, the Directory may contain entries related to a
wide variety of different usages. However, it is believed that the naming strategy for many applications will
have common elements allowing some standard name form at the top of the DIT, and only the leaf entries
or entries close to leaf entries will have application specific forms of name components.

The structure of naming and the content of attributes is regulated by the Directory Schema; each DSA is
regulated by a subset of the Directory Schema, which is termed a Subschema. The Subschema for a
particular DSA is in turn regulated by the DSA's Administrative Authority.

A basic set of object classes is considered of general applicability independent of the specific use of the
Directory. Such a set of object-classes is standardized by the Directory specification [ISO/IEC 9594-7 |
CCITT X.521] - "Selected Object Classes".

Other standards may define object classes for specific use. As an example, MHS-specific object classes
are defined by [ISO/IEC 10021-2 | CCITT X.402-1988] - "MOTIS (Message Handling Systems) - Overall
Architecture".

5 Static capabilities of co-operating DSAs

DSAs co-operating to provide a Directory Service can have different static capabilities. The static
capabilities of a DSA reflect what capabilities have been implemented and possibly can be invoked, and
not what capabilities are used for a specific operation. A static capability that has been implemented is
also referred to as a supported capability.

A DSA shall, according to the base specifications, as minimum support either the DAP or DSP and may
support both.

The static DAP capabilities of a DSA are independent of its static DSP capabilities. Even in the case
where a DSA tries to protect a DUA from referrals it cannot in general do that completely and has to be
able to submit referrals on the DAP, if the DAP is supported. It is therefore possible to define a DAP profile
independent of the DSP capabilities. Such a profile is defined by the Functional Standard A/DI1.

A DSA may have static capabilities as 1) the acceptor of an operation on the DSP or 2) as both the
requester and the acceptor of an operation. The Functional Standard A/DI2 specifies the profiles for these
two cases. The case where a DSA is acting only as a requester on the DSP is a theoretical possibility that
is out of scope of A/DI2.

A DSA that supports the DAP only can only work in referral mode. However, if a DSA restricts access by
DUAs not being within a specific domain, and if knowledge of this DSA is made available outside this
domain, such a DSA is required to support at least incoming chained requests.

A DSA that supports the DSP only as the acceptor can receive and act on chained requests, but cannot
issue chained requests, and will therefore respond with referrals, if appropriate, on the DSP.

A DSA, that supports the DSP both as the requester and as the acceptor, has the capability to chain
requests.

6 Directory functional standards

Several functional standards have been defined for the OSI Directory. Each of these functional standards
gives a profile for a particular area, selecting options within the scope of the base specifications. These
functional standards also provide material that summarises or clarifies particular aspects of the base
specifications.

Page 9
ETR 125: March 1994

The primary objective of the selections made by the functional standards is to ensure or promote
interworking at several levels, by:

a) avoiding situations where elements of the Directory do not co-operate properly in the provision of
the Directory service;

b) avoiding situations where two distinct but otherwise similar elements of the Directory behave
inconsistently under a particular set of circumstances;

c) ensuring that DSAs have a minimum level of capability, so that user expectations of the Directory
can be uniformly fulfilled.

There are two sets of Directory profiles defined by these functional standards. One set, the A-profiles,
relates to protocol and distributed operations capabilities. The other set, the F-profiles, relates to
information and naming structure.

6.1 Directory A-profiles

A number of A-profiles has been defined which are concerned with the following implementation options
related to protocol and distributed operation capabilities:

A/DI1 - ENV 41210 Directory Access:
(A/DI11 & A/DI12 DUA Support of Directory Access & DSA Support of Directory Access)

In the M-IT-02 taxonomy, these two functional standards, A/DI11 and A/DI12,
are identified separately to align with the corresponding ISO/IEC TR 10000-2
taxonomy for ISPs. However, only one functional standard, A/DI1 - "Directory
Access" with the combined scope of A/DI11 and A/DI12, has been developed
and it specifies a profile of the DAP Protocol as it applies both to Centralised
and Co-operating DSAs; it also specifies a profile of the Abstract Service
Definition of DSAs within the scope of [ISO/IEC 9594-3 | CCITT X.511].

A/DI2 - ENV 41212 Directory System Protocol:
(A/DI21 & A/DI22 DSA - Responder Role & DSA - Initiator Role)

In line with above only one functional standard, A/DI2 - Directory System
Protocol, has been developed. This functional standard specifies a profile for the
DSP protocol.

A/DI31 - ENV 41217 Behaviour of DUAs for Distributed Operations:
This functional specifies a profile of the dynamic behaviour of the DUA in
respect to referrals, i.e., when the DUA has to execute a series of operation to
perform a specific user request.

A/DI32 - ENV 41215 Behaviour of DSAs for Distributed Operations:
This functional standard provides requirements, guide-lines and clarification on
how DSAs are to participate in distributed operations in the Directory; it
augments the material provided by [ISO/IEC 9594-4 | CCITT X.518].

For a centralised Directory the Functional Standard A/DI1 by itself profiles the externally visible behaviour
of the accessed DSA. For a distributed Directory a co-operating DSA behaviour is profiled by the
Functional Standard A/DI32 together with Functional Standards A/DI1 and/or A/DI2, depending on
whether the DSA supports the DAP, the DSP or both.

The Directory A-profiles are organized in such a way that an implementation may claim conformance to
any of the functional standards without necessarily claiming conformance to the other ones. However, it is
recommended that an implementation claims conformance to all relevant functional standards.

6.2 Directory F-profiles

The purpose of the Directory F-profiles is to define groups of object classes for recognised usages of the
Directory, and to define the naming structure and the use of attributes for the selected object classes.

A DSA may claim conformance to a subset of F-profiles, depending on what applications should be
supported. It is likely that the number of F-profiles will increase as new applications are found.

Page 10
ETR 125: March 1994

A major aspect of Directory F-profiles is to avoid unnecessary variety in the way information is structured
as new usages are introduced. Therefore the F/DI11 Profile is intended to provide schema definitions
usable by a wide variety of applications.

F/DI11 - ENV 41512 Common Directory Use:
This functional standard specifies a profile of the Schema, within the scope of
[ISO/IEC 9595-6,-7 | CCITT X.520, X.521]. It specifies Naming- and Structure
rules, Object Classes, Attribute Types, Attribute Syntaxes and their properties
and implications, to be supported by conforming DSAs. This Functional
Standard is intended to provide naming structure rules to be general applicable
by a wide variety of Directory usages. Other Directory F-profiles are expected,
as far as possible, to rely on this naming structure and only to specify the
provision of more specific information.

Other F-profiles relate to specific application areas not covered by the Directory specifications. The
currently proposed profiles are:

F/DI2 This Functional Standard specifies Object Classes, the Attribute Types and
Syntaxes, as relating to X.400 systems. This profile is specified as an increment
to F/DI1.

F/DI3 As F/DI2, but for FTAM systems.

7 ETSI Technical Reports for the Directory

In addition to the actual profiles a number of Directory ETRs has been developed or is under
development. Beyond this ETR, the following ETRs are available.

a) ETR 124 - Error Handling for Directory;

b) ETR 097 - Security Architecture for the Directory;

c) ETR xxx - Interconnection of Directory Management Domains (still under development).

7.1 Error Handling for the Directory

A number of errors can be detected by a DSA during its execution of Directory requests. The base
specifications have defined a few error categories, each category with a number of different error codes
that can be returned in response to Directory requests.

The base specifications are not very particular on how and when to use the different error codes, and the
purpose of ETR 124 is to give further guidance on that subject by identifying error conditions and
recommending an appropriate error to be returned for each such error condition.

7.2 Security architecture for the directory

The purpose of this ETR on Directory Security is to identify the security threats that are specific to
Directory, to list procedures on how to protect against such security threats and to specify capabilities to
be implemented in DSAs to provide tools for such procedures.

7.3 Interconnection of Directory Management Domains

For a European wide, and in the end a world wide, Directory Service to be effective, it is not sufficient for
all involved parties to conform to relevant standards and profiles. It is necessary to have a number of
agreements among operators of Directory Management Domains. The ETR on Interconnection of
Directory Management Domains (under study) describes the types of agreements necessary and
proposals for some of these agreements, such as service agreements.

Page 11
ETR 125: March 1994

8 Conformance

Conformance requirements for DUAs are specified in ISO/IEC 9494-5 CCITT X.519, section 9.1.
Additionally, a DUA implementation may claim conformance to:

- functional standard A/DI31.

Conformance requirements for DSAs are specified in ISO/IEC 9494-5 CCITT X.519, section 9.2.

A co-operating DSA implementation may additionally claim conformance to:

- any combination of the functional standards A/DI1, A/DI2, and A/DI32; and

- zero or more F-profiles.

Conformance to an A-profile addresses the required functionality of implementations. Note that it is
possible to conform to the base specifications, without conforming to an A-profile. Conformance to a base
specification mainly embraces the question of protocol conformance, thus allowing a response like
"unwillingToPerform" on nearly all types of requests. In contrast, conformance to an A-profile also
demands provision of the functionality associated with the protocol elements. A conforming
implementation should act upon a certain protocol element (classified as "supported" by the A-profile
under question) as indicated (implicitly or explicitly) by the base specifications.

F-profiles address the scope of information supported by conforming implementations, and the structure
of this information. Implementations claiming conformance to particular F-profiles are required to support
all the object classes, attribute types and related properties that are defined within those profiles.

Note, that these rules do not restrict conforming implementations to this scope. They may support
information outside this scope, as entries of object classes not defined within the F-profile(s) under
question or entries of an object class defined within the profile, but not obeying the defined structure or
naming rules (e.g. a person as an immediate subordinate to country or an entry with more than four
organizationalUnits within its name). Such entries are outside the scope of the F-profiles, and thus there
are no conformance requirements for access to such entries.

This allows conforming implementations:

a) to support additional F-profiles or other functional standards defining Directory usage with different
scope; and

b) to support private applications, which have requirements for information structured quite differently
than generally applicable structure rules. Such private information must be located in a separate
part of the DIT, obeying other structure and naming rules than defined within the F-profile(s) to
which the implementation claims conformance.

Page 12
ETR 125: March 1994

Annex A: Object classes and DIT structure

The 1988 edition of the Directory specifications includes some rudimentary Directory schema concepts
concerning object classes and DIT Structure. It has been found necessary to expand those concepts
during the development of ENV 41512. The 1992 edition of the Directory specifications has adopted these
concepts and further progressed them.

The 1992 edition of the Directory specifications has introduced restrictions not violated by ENV 41512, but
not expressed explicitly by ENV 41512 either. It would be beneficial to recognise these restrictions when
developing FDI profiles, even for the 1988 edition of the Directory specifications.

A number of groups are developing Directory FDI profiles based on the principles described in
ENV 41512, but these principles require some background knowledge, and this section of the document
therefore has two purposes:

1) explore which 1992 concepts can be used directly for FDI profiles based on the 1988 edition of the
Directory specifications without requiring non-1988 features to be implemented; and

2) to provide a general tutorial on the subject.

A (Directory) object represented in the Directory is a reflection of certain aspects of some "real world"
object. Different aspects of the same real world object can be viewed as different Directory objects.
Examples of such real world object are countries, organizational persons, OSI application-entities, etc.

An object class is the specification of a type of Directory object that can be represented by entries in the
Directory. An object class specification includes a list of what attributes shall and what attributes may be
held by an entry created according to that object class, i.e., the specification includes a list of mandatory
and optional attributes. For an object class to be useful it has to be officially registered within the user
community in which it is used. As a part of this registration it is given a unique identifier in the form of an
ASN.1 object identifier.

Object classes can be defined and registered by any committee or organization that has been authorised
to allocate ASN.1 object identifiers. This includes all committees defining International Standards and
International Standardized Profiles; Regional Workshops (such as EWOS); CCITT; private organizations;
etc.

These possibilities can, of course, lead to a proliferation of object
classes, some of which may be closely related in the sense that
they represent similar real world objects and specify almost the
same set of attributes. To minimise such proliferation and to
minimise redundant specifications, the concept of inheritance, and
in particular multiple inheritance, has been invented. Object class
inheritance allows one object class to inherit attributes of one or
more other object classes. This is illustrated in figure A.1, where
object class B is said to be a subclass of object class A. The
concept of deriving subclasses can be extended to derive
subclasses of subclasses to any depth. Object class C in figure A.1
is a subclass of object class B, and is also said to be a subclass of
object class A.

Object class A is said to be a superclass of object classes B and C,
whilst object class B is a superclass of object class C. Object class
A is said to be a direct superclass of object class B, and so is object
class B of object class C.

The object class (type) hierarchy illustrated in figure A.1 should not be confused with the entry (instance)
hierarchy represented by the DIT. In the latter, an entry superior/subordinate pair has not an inheritance
relationship.

Object Class

Object Class

Object Class
A

B

C

Figure A.1: Object Class Inheritance

Page 13
ETR 125: March 1994

Figure A.2 illustrates further the
concept of inheritance. Object class B
is here a subclass of object class A.
Object class B does not only include
the mandatory and optional attributes
listed as part of its specification, but
also inherits those of the object class A
specification not already part of the
object class B specification. In case the
object class B specification directly
includes a particular attribute and
inherits the same attribute from a
superclass, this does not result in
multiple occurrences of the same
attribute type. A mandatory
specification takes presence as
illustrated by Attr-3 in figure A.2. The
object class B to the right in figure A.2
shows the result of object class B being
a subclass of object class A.

An object class that is a subclass of
other subclasses specifies as part of its
specification what object class it has as
direct superclass (or object classes if it
has several direct superclasses - see
later). When defining such a particular
subclass, all attributes specified by its direct superclass, and possible other superclasses, are known.
There is no need to repeat them when specifying the subclass (except when wanting to make otherwise
optional attributes mandatory), although it is allowed. This is one of the purposes of the subclass concept,
to avoid redundant specifications. Figure A.2 illustrates this principle.

A Directory entry is created
according to some particular
object class. Taking figure A.1
as an example, an entry can
be created from any of the
object classes A, B, and C. If
an entry is created from
object class A, it has only the
A-properties. If created from
object class C, it has the
combined properties of A, B
and C. Although the entry is
created according to object
class C, it is said to belong
not only to C, but also to A
and B.

Multiple inheritance implies that an object class can have more than one direct superclass. In figure A.3,
object class D has three direct superclasses, A, B, and C. Object class D therefore inherits all the attribute
types specified for object classes A, B, and C.

According to the 1988 edition of the Directory specifications an entry can only be created from a single
object class. This has lead to the concept of unregistered object classes, which means object classes that
have not been assigned ASN.1 object identifiers. An unregistered object class can be defined, as
illustrated in figure A.4, where a set of specific entries shall have the properties of more than one object
class that do not have a superclass/subclass relationship.

Attr-1

Attr-2

Attr-3

Attr-4

Object Class A Specification

Object Class B Specification

Attr-3

Attr-5

Attr-1

Attr-2

Attr-3

Attr-5

Attr-6

Attr-4

Attr-6

Object Class B

Mandatory attribute

Legend:

Optional attributes

Figure A.2: Inheritance of attributes

Object Class

Object Class

Object ClassObject Class
A B C

D

Figure A.3: Multiple Inheritance

Page 14
ETR 125: March 1994

In case the unregistered object does not add any
new attributes as part of its own specification,
the entry shown has exactly the combined
attributes of object class A and B specifications.

The 1988 edition of the Directory specifications
allows unregistered object classes to add
additional attributes not part of its superclasses.
The 1992 edition has removed that capability by
removing the concept of unregistered object
class. Unregistered object classes should
therefore not by any standardization body be
used for adding additional attributes. The 1992
edition has added another mechanism to add
such additional attributes, but this mechanism
cannot be used by an 1988 implementation.

The 1992 edition of the Directory specifications
allows an entry to be created from more than
one object class, thus having the combined
characteristics of the object classes from which
it is created following the same rules as for
inheritance. This is illustrated in figure A.5. This

capability removes the necessity to define an unregistered object class.

If unregistered object classes are not used to add additional attribute types, the situation depicted in figure
A.4 is completely equivalent to the one depicted in figure A.5. They are just different description
techniques. It should not make any difference for an implementation. A profile based on the 1988 edition
could therefore, if it chooses to, use this particular 1992 concept and does not necessarily have to define
unregistered object classes.

The hierarchy of entries in the DIT should be
regulated in some way by applying certain rules
as to how entries of different object classes
should be placed with respect to each other. An
example of such a rule is to specify that an OSI
application-process entry shall be below either a
locality entry, an organization entry or an
organizational unit entry. The Directory
specifications or the ENVs do not mandate
particular rules, but ENV 41512 suggests how
such rules for structure and naming can be
documented. It will be up to the user
communities what particular rules they want.
However, ENV 41512 does specify some
minimum rules for naming and structure, which a
conforming DSA has to support. For a particular
entry it has to be decided what attribute type or
attribute types have to be used for naming, i.e.,
to be used for Relative Distinguished Name. The
base Directory specifications and ENV 41512

give some recommendations on what attribute(s) should be used for naming, and they should be followed
unless there are very good reasons for the opposite.

In figure A.5 (or figure A.4) an entry is created from two object classes A and B. It is obvious that only one
of these object classes can determine the entry's location in the DIT and only one object class can
determine its name component. Otherwise conflicting rules for the same entry could be the result. This
has lead to the concept of different categories of object classes. An object class is called a structural
object class if it has rules for structure and naming as part of its specification. An object class that has no
such associated structure rules is called an auxiliary object class. An entry is created from exactly one
structural object and from zero or more auxiliary object classes as illustrated in figure A.6.

Object Class

Object Class

Object Class
A B

Unregistered

Entry

Figure A.4: Unregistered Object Class

Object Class Object Class
A B

Entry

Figure A.5: Entry creation from Multiple Object Classes

Page 15
ETR 125: March 1994

It should be noted that a structural object class that is a subclass of another structural object class does
not automatically inherit the rules for naming and structure.

The structural object class
is the object class that
actually represents the
corresponding real world
object, while auxiliary object
classes, as the name
indicates, do not in
themselves represent a
particular real world object,
but only represents
additional attributes that can
be associated with some
structural object class to
supplement its specification.

Let us assume we have a
type of real world object for
which we want to define an
object class. There may be
available a more generic

structural object class, that captures the major semantics of the object in question and most of the needed
attributes, but we want to add some additional attributes. We now have two techniques available:

1) we can define a (structural) subclass to the more generic structural object class that includes the
additional attributes; or

2) we can define an auxiliary object class specifying the additional attributes and then combining that
with the generic structural object class.

Which of the two techniques that should be used depends on the circumstances and has to be judged for
each particular case. If the set of attributes to be added is generally applicable to a number of cases, an
auxiliary object class should be defined, as it can be combined with different structural object classes. If,
however, the rules for structure and naming defined for the more generic object class do not apply for the
situation at hand, a subclass being a structural object class has to be defined.

Object Class Object Class

Entry

Object Class
Structural AuxiliaryAuxiliary

Figure A.6: Object Class Categories

Page 16
ETR 125: March 1994

Annex B: Requirements on matching rules for attributes

This annex has been included because it contains valuable information for developer of F-profiles and for
implementors, and it has not been possible to include it into any of the current F-profiles.

In the Directory, apart from matching Distinguished Name components, there are two primary motivations
for the design of matching rules for equality:

- support of search; and

- support of administration of the Directory.

The second item is to do with the adding and removal of attribute values:

- two attribute values that match for equality cannot coexist in the same attribute; and

- to remove a specific attribute value, the value (or a value that matches it for equality) must be
supplied in the modify-entry operation.

The search requirement is relatively unrestrictive - a purported value must match stored values in such a
way that attributes that would be expected to match do match; for convenience, the matching rule may
cause attributes to be returned that have matching values that do not precisely match the purported value.
An example of this is with the Presentation Address attribute, which matches if the supplied network-
addresses form a subset of the stored network-addresses, given that the P-, S- and T-selectors all match.

The administration requirement applies only to multi-valued attributes (Presentation Address is a single
value attribute); here the requirement is that, whenever possible, the matching rule is "well-behaved" in
having three basic properties:

- A matches A (reflexive property) - always required;

- if A matches B then B matches A (commutative property); and

- if A matches B and B matches C then A matches C (transitive property).

These rules are important for the following reasons:

- The reflexive property is required to remove a particular value.

- Suppose that a value A is placed in the Directory, and sometimes later B places in the same
attribute, where A matches B but B does not match A; since B does not match A, the adding of the
new attribute is successful.

- Using "remove value", quoting a value C that matches both A and B can result in the wrong value
being removed.

- If, on the contrary, B is placed in the Directory first, adding A anomalously fails, since A matches B.

- The requirement of transitivity arises from the desirability, for administrative purposes, to have
values fall into "equivalence classes"; suppose, for example that a (non-transitive) match on
physical size meant that A matches B if and only if A and B differ by less than 1 cm; values could
only be inserted if they were spaces at least 1 cm from any other value; this could be an
unexpected outcome, and thus an unwanted one.

- Now if there were two values A and B that differed by just over 1 cm, attempting to remove A by
specifying C, between A and B could result in removal of B instead.

- In general, transitivity ensures that if a value A was replaced by different but matching value B,
either value can be removed can be removed by using a third (perhaps shorter and convenient)
value C that matches A.

If the matching rule is non-commutative or non-transitive, indexation cannot be used with the attribute
values, and scanning of a set of such values can produce unexpected results.

Page 17
ETR 125: March 1994

Similar, but mandatory, requirements of reflexivity, commutativity and transitivity exist on attributes whose
values are to be found in Distinguished Names.

There is a further implicit requirement that applies to matching rules supporting administration:

Two values A and B shall not match for equality if it is reasonable for them to coexist in the same
attribute;

and conversely:

Two values A and B should ideally match when they both represent a description of the same
logical entity.

Thus, ACI attribute values (holding access control information) do not match even if they have the same
ACI but differ in their identifier; conversely if two facsimile telephone numbers are {F,G}, {F,G'} where F
represents one telephone number and G,G' represent different G3 fax non-basic-parameters, then the two
values could usefully match because they both purportedly describe the same logical entity (a facsimile
machine located by telephone number). This is more obvious if G (say) is empty, and implies that you do
not have to know or read the G3 non-basic-parameters of a value to remove it.

The ACI and facsimile telephone number values are examples of a general situation where a value is
composed of two components, P and Q; P is relevant to discriminating between two values in the sense
that it fully identifies the described logical entity; Q is additional information that is not relevant to
discrimination in this way. Then an appropriate matching rule should state:

{P,Q} and {P',Q'} should match for equality if and only if P and P' match for equality.

A methodology for finding the correct matching rule could take the following steps:

1. Determine what elements of a value represent a basic identifying property of the entity described;
ignore the values of the remainder when matching.

2. Test the rule by attempting to construct two distinct values that differ only in one or more ignored
elements; also attempt to construct two values that are not equivalent although matching on the
ignored values; go back to step 1 if need be.

3. Describe a (potentially non-commutative) matching rule M from these steps.

4. Convert this to a commutative matching rule M' as follows:

- M'(A,B) (i.e., the result of matching A and B) is true if and only if M(A,B) and M(B,A)
are both true.

5. Convert this to a transitive matching rule M" as follows:

- M"(A,B) is true if and only if for each C, M'(A,C) equals M'(C,B).

Usually, steps 4 and 5 will be unnecessary. Step 4 follows because logical AND is commutative. Step 5
follows because if M"(A,B) is true and M"(B,C) is true, for each P, M'(A,P) equals M'(B,P) which equals
M'(C,P), taking into account commutativity.

Page 18
ETR 125: March 1994

History

Document history

March 1994 First Edition

March 1996 Converted into Adobe Acrobat Portable Document Format (PDF)

	Foreword
	1	Introduction
	2	OSI Directory
	3	The Directory Information Base (DIB)
	4	Use of the Directory for specific purposes
	5	Static capabilities of co-operating DSAs
	6	Directory functional standards
	6.1	Directory A-profiles
	6.2	Directory F-profiles

	7	ETSI Technical Reports for the Directory
	7.1	Error Handling for the Directory
	7.2	Security architecture for the directory
	7.3	Interconnection of Directory Management Domains

	8	Conformance
	Annex A:	Object classes and DIT structure
	Annex B:	Requirements on matching rules for attributes
	History

