

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11)

ETSI Standard

Telecommunications and Internet converged Services and
Protocols for Advanced Networking (TISPAN);

NGN Congestion and Overload Control;
Part 2: Core GOCAP and NOCA Entity Behaviours

�

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 2

Reference
DES/TISPAN-03034-2-NGN-R3

Keywords
control, quality, protocol

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.

3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 3

Contents

Intellectual Property Rights .. 7

Foreword ... 7

1 Scope .. 8

2 References .. 8

2.1 Normative references ... 8

2.2 Informative references .. 9

3 Definitions and abbreviations ... 9

3.1 Definitions .. 9

3.2 Abbreviations ... 9

4 Control Architecture ... 10

4.1 Description of NOCA Components .. 10

4.2 Detailed Description of NOCA Components and Behaviour ... 12

4.2.1 Overview .. 12

4.2.2 Control Adaptor (CAProcess) ... 14

4.2.2.1 Control Adaptor Data .. 14

4.2.2.2 CAProcess signals ... 15

4.2.2.3 Control Adaptor Behaviour ... 15

4.2.2.4 Generating Control Adaptor Input .. 19

4.2.3 Control Distribution (SDL: CDProcess) ... 19

4.2.3.1 Control Distribution data ... 19

4.2.3.2 Control Distribution Signals ... 20

4.2.3.3 Control Distribution Behaviour ... 20

4.2.4 CDRestriction ... 23

4.2.4.1 CDRestriction Data ... 24

4.2.4.2 CDRestrictor Signals ... 24

4.2.4.3 CDRestrictor Behaviour .. 25

4.2.5 Restrictor Manager (RMProcess) ... 28

4.2.5.1 Restrictor Manager Data ... 28

4.2.5.2 Restrictor Manager Signals ... 29

4.2.5.3 Restrictor Manager Behaviour .. 30

4.2.6 Restrictor .. 33

4.2.6.1 Restrictor data ... 33

4.2.6.2 Restrictor signals ... 34

4.2.6.3 Restrictor behaviour .. 34

4.2.7 GOCAP Transport .. 35

4.2.7.1 The structure of the GOCAP transport layer. .. 35

4.2.7.2 Channel Manager .. 37

4.2.7.2.1 Channel Manager Data .. 37

4.2.7.2.2 Channel Manager Signals .. 37

4.2.7.2.3 Channel Manager Behaviour ... 38

4.2.7.3 Shim Process ... 39

4.2.7.3.1 Shim Process Signals ... 39

4.2.7.3.2 Shim Process Behaviour .. 39

4.2.7.4 GocapListener ... 40

4.2.7.5 SessionHandler .. 40

5 GOCAP over Diameter .. 40

5.1 Introduction .. 40

5.2 Use of the Diameter base protocol ... 41

5.2.1 Advertising GOCAP support .. 41

5.2.2 Securing Diameter messages .. 41

5.2.3 Accounting functionality .. 41

5.2.4 GOCAP commands... 41

5.2.4.1 AA-Request (AAR) command .. 41

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 4

5.2.4.2 AA-Answer (AAA) Command ... 42

5.2.4.3 Profile-Update-Request (PUR) command ... 42

5.2.4.4 Profile-Update-Answer (PUA) command ... 42

5.2.4.5 Session-Termination-Request (STR) command .. 43

5.2.4.6 Session-Termination-Answer (STA) command .. 43

5.2.4.7 Abort-Session-Request (ASR) command .. 43

5.2.4.8 Abort-Session-Answer (ASA) command .. 43

5.2.5 AVP definitions .. 44

5.2.5.1 Auth_Scope ... 44

5.2.5.2 AVP GOCAP-Body .. 44

5.2.6 Restrictions on AVP values .. 44

5.2.6.1 Auth-Request-Type ... 44

5.2.6.2 Auth-Session-State AVP ... 45

5.3 Procedures to be used with Diameter messages ... 45

5.3.1 Introduction... 45

5.3.2 Diameter ChannelManager ... 45

5.3.3 Diameter Shim .. 46

5.3.3.1 Diameter Shim data ... 46

5.3.3.2 Diameter shim behaviour .. 46

5.3.3.3 Generating PUR messages .. 49

5.3.4 Diameter Listener ... 50

5.3.4.1 Diameter session initiation .. 50

5.3.4.2 Diameter session termination .. 51

5.3.4.3 Gocap commands .. 51

5.3.5 Diameter Session Handler .. 52

5.3.6 GOCAP Timers .. 52

5.4 Diameter MSC charts ... 53

5.4.1 Simple Diameter session ... 53

6 GOCAP over SIP ... 56

6.1 General ... 56

6.2 Overview .. 56

6.2.1 GOCAP Slave ... 56

6.2.1.1 Subscription .. 56

6.2.1.2 Receiving Notifications ... 57

6.2.2 GOCAP Master ... 57

6.2.2.1 Subscription .. 57

6.2.2.2 Notification ... 58

6.3 Detailed procedures .. 58

6.3.1 Introduction... 58

6.3.2 GOCAP Master ... 59

6.3.2.1 SIP ChannelManager .. 59

6.3.2.2 SIP Shim ... 60

6.3.2.2.1 SIP Shim data .. 60

6.3.2.2.2 SIP shim behaviour .. 60

6.3.2.2.3 Generating NOTIFY messages .. 62

6.3.3 GOCAP slave.. 63

6.3.3.1 SIP Listener ... 63

6.3.3.1.1 SIP Session initiation ... 64

6.3.3.1.2 Session termination ... 65

6.3.3.1.3 Gocap commands .. 65

6.3.3.2 SIP Session Handler .. 65

Annex A (normative): ASN.1 data types and signal definitions ... 67

A.1 ASN.1 definitions ... 67

A.2 Signals .. 69

A.3 SDL description .. 70

Annex B (normative): Congestion_Control event package .. 71

B.1 Event Package Name .. 71

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 5

B.2 Event Package Parameters .. 71

B.3 SUBSCRIBE Bodies .. 71

B.4 Subscription Duration... 71

B.5 NOTIFY Bodies ... 71

B.6 Notifier Processing of SUBSCRIBE Requests... 71

B.7 Notifier Generation of NOTIFY Requests ... 71

B.8 Subscriber Processing of NOTIFY Requests ... 72

B.9 Subscriber Generation of SUBSCRIBE Requests .. 72

B.10 Handling of Forked Requests ... 72

B.11 Rate of Notifications .. 72

B.12 State Agents .. 72

B.13 Use of URIs to Retrieve State .. 72

Annex C (normative): XML Schema .. 73

C.1 Introduction .. 73

C.2 XML Schema specification .. 73

Annex D (informative): Generating System_state data .. 77

D.1 Introduction .. 77

D.2 Background .. 77

D.3 Modelling CPU load ... 78

D.4 Single processing system.. 79

D.4.1 Arrival rate and Goal rate ... 79

D.4.2 Scheduling the update .. 80

D.4.3 Updating the arrival rate ... 80

D.4.4 Updating the goal rate .. 80

D.4.5 Variables... 82

D.4.6 Initialisation .. 82

D.4.7 Configurable Parameters .. 83

D.5 Multiple processing subsystems ... 83

D.5.1 Scheduling the update .. 85

D.5.2 Updating the arrival rate ... 85

D.5.3 Updating the goal rate .. 85

D.5.4 Special design considerations ... 86

D.5.4.1 AS unavailability .. 86

D.5.4.2 Late or missing updates .. 86

Annex E (informative): Message Sequence Charts (Transport Independent) 87

E.1 Adding sources ... 87

E.1.1 Overview .. 87

E.1.2 Data flows for addition of a source .. 89

E.2 Deleting sources ... 91

E.3 Overload onset and abatement ... 92

E.3.1 Overview of overload onset and abatement ... 92

E.3.2 Detailed view of data flows in overload ... 94

E.4 Audit ... 95

E.5 Switching to local restriction .. 96

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 6

Annex F (informative): Adaptation behaviour discussion.. 99

F.1 Adaptation algorithm behaviour ... 99

F.2 Adaptation and control termination .. 102

F.3 Capacity Modification Factor ... 103

Annex G (informative): Bibliography ... 104

History .. 105

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 7

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and Internet
converged Services and Protocols for Advanced Networking (TISPAN), and is now submitted for the ETSI standards
Membership Approval Procedure.

The present document is part 2 of a multi-part deliverable covering NGN Overload and Congestion Control as identified
below:

Part 1: "Overview";

Part 2: "Core GOCAP and NOCA Entity Behaviours";

Part 3: "Overload and Congestion Control for H.248 MG/MGC";

Part 4: "Adaptative Control for the MGC";

Part 5: "ISDN overload control at the Access Gateway".

http://webapp.etsi.org/IPR/home.asp

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 8

1 Scope
The present document describes the core features of the NGN Overload Control Architecture (NOCA) and the Generic
Overload Control Application Protocol (GOCAP). While it is usual for the architectural components to be specified
separately from the protocols that are used to communicate between them, the performance requirements of overload
controls are such that the coupling between architecture, protocol and implementation is very strong. This means that
the present document specifies the architecture, entity behaviours and protocol for the core NOCA/GOCAP together.
The way GOCAP and the NOCA entities are deployed to control traffic that uses a specific application protocol is
profiled via additional small shim specifications.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• Non-specific reference may be made only to a complete document or a part thereof and only in the following
cases:

- if it is accepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are indispensable for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] ETSI TS 182 018: "Telecommunications and Internet converged Services and Protocols for
Advanced Networking (TISPAN); Control of Processing Overload; Stage 2 Requirements".

[2] IETF RFC 3588: "Diameter Base Protocol".

[3] IETF RFC 4005: "Diameter Network Access Server Application".

[4] ETSI TS 133 210: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); LTE; 3G security; Network Domain Security (NDS); IP
network layer security (3GPP TS 33.210)".

[5] ETSI TS 129 329: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); LTE; Sh interface based on the Diameter protocol; Protocol
details (3GPP TS 29.329 version 8.4.0 Release 8)".

[6] IETF RFC 3265: "Session Initiation Protocol (SIP)-Specific Event Notification".

http://docbox.etsi.org/Reference

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 9

2.2 Informative references
The following referenced documents are not essential to the use of the present document but they assist the user with
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including
any amendments) applies.

[i.1] ETSI ES 283 039-4: "Telecommunications and Internet converged Services and Protocols for
Advanced Networking (TISPAN); NGN Overload Control Architecture; Part 4: Adaptative
Control for the MGC".

[i.2] IETF RFC 4662: "A Session Initiation Protocol (SIP) Event Notification Extension for Resource
Lists".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 182 018 [1] and the following apply:

application: software component(s) running on a system to provide service to end users or support the management of
the system

NOTE: In the present document the term application excludes those software components that implement the
NOCA.

application protocol: protocol used to enable application instances to communicate

control variable: time-varying parameter used to control actuators in a feedback loop, calculated on the basis of the
target and measured values of some system quantity

feedback loop: control mechanism where the result of changing an actuator is used ("fed back") into the algorithm used
to calculate future changes

load control: mechanism for controlling the workload of a system

overload: system workload exceeds a defined threshold of the processing capacity of that system

source: system that generates workload for another system

target: system that receives workload from another system

workload: amount of processing work a system has to perform

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AAA AA-Answer
API Application Programming Interface
ASA Abort-Session-Answer
ASR Abort-Session-Request
AVP Attribute-Value Pair
CA Control Adaptor
CD Control Distribution
CDR CDRestriction
CEA Capabilities-Exchange-Answer
CER Capabilities-Exchange-Request
CM Channel Manager
FQDN Fully Qualified Domain Name
GOCAP Generic Overload Control Application Protocol

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 10

IP Internet Protocol
ISUP Integrated Service Digital Network User Part
NGN Next Generation Network
NOCA NGN Overload Control Architecture
PUA Profile-Update-Answer
PUR Profile-Update-Request
RM Restrictor Manager
SCTP Stream Control Transmission Protocol
SDL Specification and Description Language
SIP Session Initiation Protocol
SLA Service Level Agreement
STA Session-Termination-Answer
STR Session-Termination-Request
TCP Transmission Control Protocol

4 Control Architecture

4.1 Description of NOCA Components

Figure 1: Control components implementing a feedback control path

The NGN Overload Control Architecture (NOCA) aims to provide feedback based processing load control for hosts that
implement the functionality of NGN (and other) networks. Each feedback control loop indicated by the ovals in
Figure 1, comprises three key NOCA components, the Control Adaptor, Control Distribution and Restrictor. The
objective of the feedback loops is to enable the protected host to operate at the optimum load by restricting excess
workload originating from its nearest neighbours, so the restrictors are usually (though not always) located at those
nearest neighbours.

Control Adaptor:

 The control adaptor receives data from the host system describing the current workload and system capacity
and uses this to derive a global leakrate which is passed to the control distribution. The control adaptor then
adjusts the global leak rate, in order that the current workload converges to a goal value equal to the system
capacity.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 11

Control Distribution:

 The control distribution component shares the global leak rate between the restrictors on the basis of simple
local policies. These policies enable defined service levels or fairness requirements to be realised. The control
distribution uses the Generic Overload Control Application Protocol (GOCAP) to transmit leak rate
information to restrictors on remote hosts.

Restrictor:

 The restrictor is a leaky bucket rate limiter that is request priority aware. It is controlled by the leak rate
received from the control distribution component and restricts the workload presented to the host which the
control is protecting.

The components and functions shown in Figure 1 should be thought of as being located above the top level of the
protocol stacks running at the overloaded target (the GOCAP Master) and sources (GOCAP Slaves). As an example,
two communications application instances running on the source and target may use ISUP to communicate with each
other in establishing and clearing-down voice calls. Beneath ISUP, the protocol stack (in descending order) could be
SIP-I/TCP/IP.

In general, a host may be the source of excess processing load for other hosts as well as the target of excess processing
load from those other hosts. This means that a single host typically implements all the control components, together
with additional components to manage them. The components at a fully functional (from a GOCAP perspective) host
are shown in Figure 2.

Management
Function

Comms App/
Host OS

GOCAP Enabled Node

Control
Distribution

Control
Adaptor

Restrictor
Manager

LRLR
Restrictor

GOCAP

ProtocolProtocol

GOCAP

Figure 2: Structure of a GOCAP enabled host, arrows denote information flow - dashed arrows
represent replies to requests

Figure 2 introduces an additional NOCA component, the restrictor manager. This component is responsible for
co-ordinating multiple restrictors while providing a single interface to the host/application. All the NOCA components
are described in greater detail in the next clause.

Figure 2 also shows that internal interfaces are required between NOCA components and the network management
system for configuration, status enquiries, control statistics etc. Also shown are the interfaces between the host OS
and/or communications applications which are used for admission queries (used to reduce workload) and for the
protected system to send the data required to drive the control adaptor.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 12

4.2 Detailed Description of NOCA Components and Behaviour

4.2.1 Overview

In the following clauses, the behaviours and attributes of the NOCA will be described in detail. To assist that
description, SDL diagrams are included. The signals and data types used in the SDL diagrams are defined in Annex A.

NOTE: The present document uses SDL to describe the required behaviour, but does not enforce a particular
method of realisation. SDL diagrams included in the present document are not meant to imply a particular
implementation in terms of processes/threads, message passing or function/procedure calls. In many cases
the signals given in the SDL diagrams may just be interpreted as function/procedure calls. The
implementer is free to realise this behaviour in the most appropriate and efficient way.

Figure 3 shows a representation in SDL of a GOCAP system with the explicit addition of a GOCAP signalling channel
between the GOCAP master and a remote slave (remote_gs). Figure 4 shows the key components of a GOCAP master -
a host that is protected from overload by restrictions on GOCAP slaves. Note that the Control Distribution function has
been split into two elements in Figure 4, the CDProcess and the CDRestriction. This is to help separate the description
of the leakrate calculation elements of the Control Distribution (in the CDProcess) from those aspects that relate to the
management of a particular restriction (the CDRestriction). Figure 5 gives a similar view of a GOCAP slave - a host
that implements restrictors to limit the flow of requests.

get_audit

active_restrictions,
restrictor_status,
comms_error

restrictor_status

audit

active_restrictions

new ,
set_rate,
halt, audit

active_restrictions,
restrictor_status

up, dow n,
use_channel,
restrictor_status

open, close, new ,
set_rate, halt

add_src,
del_src,

update_src

CDR_Id,
CDR_error

restrictor_status

new ,
set_rate,
halt

comms_error,
restrictor_status

use GocapSignals;
use GocapTypes;

local_gs:gocapSlave

Gocap_Transport

remote_gs:gocapSlave

gm:gocapMaster

1(1)

gocapSlave

gocapMaster

admit,reject

master_app

agate

request

admit,reject

slave_app

agate

request

restrictor_status

egate

system_state

sys_mon

sgate

System GOCAP

GSSM

lgate

rgate

egate

mgmt

egate

GMSAP

mgate GSSAP

rgate

GMSM

Figure 3: A representation of the GOCAP system using SDL

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 13

There is a single CDProcess
for a GOCAP master

restrictor_statusrestrictor_status

To the remote
restrictor manager

To the local
restrictor manager

new ,
set_rate,

halt

new ,
set_rate,

halt

up,dow n,
use_channel,
restrictor_status

up,dow n,
use_channel,
restrictor_status

open, close, new ,
set_rate, halt

open, close, new ,
set_rate, halt

There is one CDRestriction
process for each controlled
 source

CDR_Id,
CDR_error

CDR_Id,
CDR_error

update_CDR,
halt_CDR,

delete_CDR

CDRestriction

add_src,
del_src,
update_src

add_src,
del_src,
update_src

System load
informationupdate_origin

terminate,
glr_update

CDProcess
/*Control Distribution*/

system_state

sgate
system_mon

system_stateCAProcess
/* Control Adaptor*/

1(1)use GocapTypes;
use GocapSignals;

Block Type gocapMaster

egate

master

mgate

local

lgate

Figure 4: Signals and channels for a GOCAP Master. A node that hosts a
GOCAP Master will usually host a GOCAP Slave too

restrictor_error

new ,set_rate,
halt, audit

active_restrictions

/* Notes
This functionality is implemented on all
GOCAP enabled sources.

*/

ok,fail,
expired

update,
test,

confirm,
delete

active_restrictions

rgate

1(1)

RMProcess
/* The restrictor

manager process */

new , set_rate,
halt, audit

use GocapSignals;

admit,reject

app

agate

admit, reject

request

request

egate

restrictor_error

Restrictor

Block Type gocapSlave

rmr

slave

Figure 5: A GOCAP Slave, showing restrictor management

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 14

4.2.2 Control Adaptor (CAProcess)

The purpose of the Control Adaptor is to master the adaptation of a control variable, which is translated into restriction
values by the distribution function, such that the arrival rate of requests associated with that Control Adaptor converges
on some goal arrival rate.

4.2.2.1 Control Adaptor Data

Each control adaptor shall be provisioned with the following parameters:

• the termination interval, terminationPending, used to identify when adaptive control should cease;

• control initiation factor, u, used to scale the initial value of the control variable;

• a minimum significant arrival rate change, d; and

• the effective origin scalar, a, used to modify the adaptation behaviour when the system capacity falls below the
sum of the capacity guarantees offered to the sources.

The use of the origin scalar parameter, a, is discussed in detail in Annex F.

Each control adaptor shall maintain the following state data:

• the control variable, C (also known as the global leakrate);

• the previous value of the control variable, oldC;

• a periodically-updated estimate of the total arrival rate of service requests, Y;

• the previous estimate of the arrival rate of service requests, oldY;

• periodically updated values for total arrival rate goal, G, for service requests to that resource;

• the previous value of the total arrival rate goal, oldG;

• the current smallest si/wi ratio multiplied by W, the sum of the weights, R, as signalled from the Control

Distribution; and

• the current sum of static capacity allocations, S, as signalled from the Control Distribution.

The use of R and S is described in more detail in Annex F.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 15

4.2.2.2 CAProcess signals

Table 1: Signals sent or received by the Control Adaptor Process

Signal Dirn Comments
system_state(Y Real, G Real)

recv Received periodically by the CA process from thesystem. It informs the CA of
the current work arrival rate, Y, and the goal work arrival rate (or the system
capacity), G, and effectively drives the control adaptation. For simple systems
where the host is servicing only one request type, the work arrival rate may
simply be the rate at which requests are arriving. For hosts which service a
variety of different request types, the work arrival rate is a weighted mean
arrival rate, where the weights represent the processing effort associated with
servicing each request.

update_origin(S Real, R Real) recv Received from the Control Distribution and defines the origin used for the
adaptation algorithm. S is the sum of the static capacity allocations for the
controlled restrictors and R is the smallest s/w ratio of all the restrictions
multiplied by W, the sum of the weights. The motivation for this origin correction
is described in Annex F.

glr_update(C Real, f Real) send When the overload control is active (CA in state "adapting" or "terminating"), the
glr_update signal shall be sent by the CA process to the Control Distribution
whenever the control variable is updated. This will cause the Control
Distribution to calculate updated restriction rates for all the active sources that
are loading the host. C is the control variable, also known as the global leak
rate, and f is the capacity modification factor.

terminate send When the CA has determined that the overload is over, it sends this signal to
the Control Distribution. This halts the remote restrictions.

4.2.2.3 Control Adaptor Behaviour

The Control Adaptor shall behave as shown in Figures 6 and 7. It has five states:

• Passive: In this state the control adapter shall receive periodically updated estimates of the workload arrival
rate, Y, and the goal workload arrival rate (or system capacity), G, (via the system_state signal). If the arrival
rate exceeds the goal arrival rate, then the control adapter shall:

- set the control variable, C, to the value of the goal arrival rate times the control initiation factor, C = uG;

- send the Control Distribution a glr_update signal with control variable value, C, and that the capacity
modification parameter value, f, where;

 ⎟
⎠

⎞
⎜
⎝

⎛=
S

aG
f ,0.1min .

- set oldC, oldY and oldG to the values of C, Y and G respectively;

- enter the "adapting" state.

• Adapting: In the "adapting" state the Control Adapter shall monitor the arrival rate, Y, and the goal arrival rate,
G, adapting its internal state whenever a system_state signal arrives as follows:

If (Y - oldY < d) and (oldY < oldG) and (Y < G) then

⎟
⎠

⎞
⎜
⎝

⎛=

=
=

=
=
=

S

aG
f

GoldG

YoldY

tempC

ColdC

oldCtemp

,1min:

:

:

:

:

:

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 16

 Send the Control Distribution a glr_update signal with control variable value, C, and the capacity
modification parameter value, f.
Arm a timer that expires after a time terminationPending.
Enter the "terminating" state.

Otherwise:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −−+=

⎟
⎠

⎞
⎜
⎝

⎛=

=
=
=

Y

G
RSf

Y

CG
GC

S

aG
f

GoldG

YoldY

ColdC

1,max:

,1min:

:

:

:

 Send the Control Distribution a glr_update signal with control variable value, C, and the capacity
modification parameter value, f.

• Terminating: The Control Adapter shall continue to monitor the arrival rate, Y, and the goal arrival rate, G,
adapting its internal state whenever a system_state signal arrives as follows:

If (Y - oldY < d) and (oldY < oldG) and (Y < G) then:

⎟
⎠

⎞
⎜
⎝

⎛=

=
=

=
=
=

S

aG
f

GoldG

YoldY

tempC

ColdC

oldCtemp

,1min:

:

:

:

:

:

 Send the Control Distribution a glr_update signal with control variable value, C, and the capacity
modification parameter value, f.

Otherwise:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −−+=

⎟
⎠

⎞
⎜
⎝

⎛=

=
=
=

Y

G
RSf

Y

CG
GC

S

aG
f

GoldG

YoldY

ColdC

1,max:

,1min:

:

:

:

 Send the Control Distribution a glr_update signal with control variable value, C, and the capacity
modification parameter value, f.
Reset the termination pending timer.
Enter the "adapting" state.

 If the timer expires, the Control Adaptor shall enter the "wait_TP" state.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 17

• wait_TP: The purpose of the "wait_TP" state is to synchronise control termination with a system_state signal.
When that system_state signal arrives, the current arrival rate, Y, shall be compared with the goal arrival rate,
G, and if Y ≤ G, the Control adaptor shall send a terminate signal to the Control Distribution and enter the state
"wait_TP2".
If Y > G, then the Control Adaptor shall:

� Update the internal state as follows:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −−+=

⎟
⎠

⎞
⎜
⎝

⎛=

=
=
=

Y

G
RSf

Y

CG
GC

S

aG
f

GoldG

YoldY

ColdC

1,max:

,1min:

:

:

:

� Send the Control Distribution a glr_update signal with control variable value, C, and the capacity
modification parameter value, f.

� Enter the "adapting" state.

• wait_TP2: The purpose of the "wait_TP2" is to sample the unrestricted workload arrival rate before returning
to the "passive" state. When the system_state signal arrives, the current arrival rate, Y, shall be compared with
the goal arrival rate, G, and if Y ≤ G, the Control adaptor shall enter the state "passive".
If Y > G, then the Control Adaptor shall send a glr_update signal with the current control variable value, C,
and the capacity modification parameter value, f, (i.e. with recalculating C or f) and enter the state "adapting".
This is equivalent to restarting the adaptation at the same point as when the termination pending timer expired.

In all states, the Control Adaptor shall record updates of the current adaptation origin data sent from the Control
Distribution. On receipt of an update_origin signal, no action (other than updating the adaptation origin parameters, S
and R) need be taken.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 18

system_state
(Y,G)

adapting

glr_update(C,f)
to CDProcess

true

temp := oldC;
oldC := C;
C := temp;
oldY := Y;
oldG := G;
if (S > a*G) then
 f := a*G/S
else
 f := 1.0
f i;

falseY < (oldY + d)
and oldY < oldG

and Y < G

oldC := C;
oldY := Y;
oldG := G;
if (S > a*G) then
 f := a*G/S
else
 f := 1.0
fi;
C := C*G/Y + f*(S - R)*(1.0 - G/Y);
C := call maximum(C,G);

glr_update(C,f)
to CDProcess

terminating

/******* Configurable Parameters ***********/
DCL
 a, /* origin offset parameter <= 1.0 */
 /* (See Annex B) */
 d, /* Smallest significant arrival rate change */
 u /* Initiator factor - scales the initial value of C */
 Real;

/* ... and the termination pending period */
DCL terminationPending Duration;

passive

system_state
(Y,G)

Y > G

C := u*G;
if (S > a*G) then
 f := a*G/S
else
 f := 1.0
f i;
oldC := C;
oldY := Y;
oldG := G;

true

passive

false

glr_update(C,f)
to CDProcess

adapting -

update_origin(S,R)
/* From CDProcess */

*
adapting

DCL
 C, /* Control_variable*/
 oldC, /* old control variable value*/
 Y, /* Current arrival rate */
 oldY, /* Previous arrival rate */
 G, /* Goal Arrival Rate */
 oldG, /* Previous Goal Value */
 R, /* Smallest s/w ratio from CD */
 S, /* Sum of capacity allocations */
 temp, /* To allow sw aps */
 f Real; /* Capacity Modif ier */

 timer TP; /* for termination Pending */...
R := 0.0;
S:=0.0;

set(now + terminationPending,TP)

use GocapSignals;

1(2)Process

(1,1)

CAProcess

Figure 6: The Control Adaptor states passive and adapting

NOTE: Initialisation details are omitted.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 19

temp := oldC;
oldC := C;
C := temp;
oldY := Y;
oldG := G;
if (S > a*G) then
 f := a*G/S
else
 f := 1.0
f i;

true

We've terminated the control -
now w ait w hile w e sample
the arrival rate

Wait here as w e w ant to
synchronise the terminate
signal w ith a system_state
update

TP

adapting

reset(TP)

terminating

glr_update(C,f)
to CDProcess

falseY < (oldY + d)
and oldY < oldG

and Y < G

system_state
(Y,G)

oldC := C;
oldY := Y;
oldG := G;
if (S > a*G) then
 f := a*G/S
else
 f := 1.0
fi;
C := C*G/Y + f*(S - R)*(1.0 - G/Y);
C := call maximum(C,G);

glr_update(C,f)
to CDProcess

terminating

w ait_TP

system_state
(Y,G)

Y > G

passive

false

glr_update(C,f)
to CDProcess

adapting

true

terminate
to CDProcess

Y > G

false

true

system_state
(Y,G)

w ait_TP2

The overload has come
back so start adapting
w here w e left off

Just in case the overload
comes back before w e
turn off the restrictions

2(2)Process CAProcess

(1,1)

Figure 7: The Control Adaptor states terminating, wait_TP and wait_TP2
showing the terminating behaviour

4.2.2.4 Generating Control Adaptor Input

There are two key inputs for the CA, the target arrival rate and the actual arrival rate. These two parameters are
delivered to the CA via the signal system_state(arrRate, goal) which is received from the environment (i.e. from outside
the defined GOCAP system). While it is a normative requirement that the GOCAP CA uses this data to ensure that the
adaptation of the control is rapid, the manner in which these parameters are calculated depends on the internal
architecture of the protected device. Annex D contains a discussion of possible approaches to deriving these parameters.

4.2.3 Control Distribution (SDL: CDProcess)

A server protected by GOCAP shall implement a Control Distribution. It is created and configured when the GOCAP
subsystem is started. It is the responsibility of the Control Distribution to take the control variable mastered by the
control adapter and generate leak rates to send to restrictors. The Control Distribution process does not communicate
with the restrictor manager directly; it maintains a reference to the appropriate CDRestriction process for each
restriction it manages. The CDRestriction hides the channel management functionality from the CD.

4.2.3.1 Control Distribution data

The Control Distribution shall hold and maintain the following data:

 W : The total of the weights allocated to all the controlled sources.
S : The total of the capacity guarantees allocated to all the controlled sources.
R : W multiplied by the smallest s/w ratio, used for setting the adaptation origin.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 20

The following additional data shall be held for each restriction managed by that Control Distribution:

 SEQUENCE {
 restn PId, /* A reference to the CDRestriction process that handles this restriction */
 serial Integer /* A serial number used to refer to this restriction. */
 w Real, /* The restriction weight used to calc leakrates */
 s Real, /* The capacity guarantee */
 static Boolean /* A flag which when "true" means that the leakrate is set "manually" and */
 /* when "false" means the leakrate is updated in alignment to the GLR. */
 }

4.2.3.2 Control Distribution Signals

The Control Distribution process sends or receives the signals described in Table 2.

Table 2: Signals sent or received by the Control Distribution

Signal Dirn Comments
add_src(src src_data) recv Received from the environment, this signal describes a new controlled source

which may consist of a number of identifiable request flows. In a statically
configured GOCAP, all these signals would come during start-up. In
dynamically configured GOCAP, these signals may appear at any time, driven
by request flows recognised by the application.

del_src(i Integer) recv Received from the environment, this signal describes a controlled source that
is no longer required. This is used for dynamic source removal when
operating in an environment where sources come and go, or to remove a
static restriction.

update_src(i Integer,
 new_s Real,
 new_w Real)

recv Received from the environment, this signal changes the weight and capacity
guarantee for a controlled source that already exists. This enables an
application to implement more flexible resource allocation policies.

CDR_Id(I Integer) send Is returned to the sender of the add_src signal with the serial number of the
created restriction.

CDR_error send Is returned to sender of an add_src, del_src or update_src signal if there was
an error processing the signal.

update_origin(S Real,
 R Real)

send Sent to the Control Adaptor (CAProcess) and defines the origin used for the
adaptation algorithm. S is the sum of the individual capacity allocations, si,

and R is W multiplied by the smallest si/wi ratio of all the dynamic sources.

This data is used by the CA to modify the origin used for the adaptation and
to calculate the capacity modification factor,f. The motivation for this origin
correction is described in Annex F.

glr_update(C Real, f Real) recv Received from the Control Adaptor whenever the control variable is updated.
The C is the new control variable and f is the capacity modification parameter.

terminate recv When the CA has determined that the overload is over, it sends this signal to
the Control Distribution. This halts the remote restrictions.

update_CDR(r Real) send After the CD has created a restrictor on the slave, the leak rate can be
amended using the restrictor_update signal, where the parameter "r" is the
new rate.

halt_CDR send This is sent to the CDRestriction process to turn the restriction off.
delete_CDR send Sent to the CDRestriction when the restriction is no longer required.

4.2.3.3 Control Distribution Behaviour

The behaviour of the control Distribution shall be as described in Figures 8 and 9. The Control distribution has a single
state, "idle". The behaviour resulting from each of the input signals is as follows:

glr_update:
When a glr_update signal is received from the Control Adaptor which contains a new value of the control
variable, C, and the capacity modification parameter f, then the Control_Distribution shall, for each controlled
restriction;

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 21

calculate new leakrate, ri, using the expression:

 ()fSC
W

w
fsr i

ii −+= ,

where W is the sum of all the weights, wi, and S is the sum of all the capacity guarantees, si.

� send an update_CDR signal with the new leakrate to the CDRestriction specified for that source.

terminate:
 If the Control_Distribution receives a "terminate" signal from the control adaptor, the Control distribution
shall, for each controlled restriction, send a halt_CDR signal to the relevant CDRestrictor.

 If an add_src, update_src or del_src signal arrives, it shall be handled as specified in "any" below.

add_src:
If an add_src signal arrives the Control Distribution shall:

- create a unique serial number that can be used to refer to this restriction;

- create a new CDResriction to handle this source. (The CDRestriction provides the interface between the
Distribution Function and the whatever transport logic is used to control the restrictions.);

- create an entry in the local database for this restriction using the data in the signal;

- send a CDR_Id signal to the sending process with the serial number of the new restriction;

- if the restriction is static, send an update_CDR(s) signal to the newly created CDRestriction in order to
start restricting at the rate specified by the s parameter in the src data from the add_src signal;

- otherwise, update local values of normalisation constant, W, the total guarantees, S, and the W*min(s/w)
ratio, R, and send an update_origin(S, R) signal to the Control Adaptor.

update_src:
If an update_src signal arrives then the Control Distribution shall:

- find the matching record in the local database;

- update the s and w with the new values specified in the signal;

- if the restriction is static, send an update_CDR(s) signal to the specified CDRestriction in order to set the
restriction leakrate to that specified by the s parameter;

- otherwise:

� update the values of the normalisation constant, W, the total guarantees, S, and W*min(s/w) ratio,
R, as described in Figure 9;

� send an update_origin(S, R) signal with the S and R values to the Control Adaptor.

del_src:
If a del_src signal arrives then the Control Distribution shall:

- find the matching restriction in the local database;

- if the restriction is not static:

� update the values of the normalisation constant, W, the total guarantees, S, and W*min(s/w) ratio,
R, as described in Figure 9;

� send an update_origin(S,R) signal with the new S and R values to the Control Adaptor;

- send a delete_CDR signal to the CDRestriction for that src; and

- delete the restriction information from the local database.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 22

NOTE: A "controlled source" is treated as a single source by the Control Distribution. The data that describes a
source may refer to multiple data flows (multiple signatures each associated with a restrictor splash). A
real source, i.e. a different host, may be represented as a single "controlled source" or as several,
depending on how the applications want to control load from that source. For example, SIP REGISTER
messages and SIP INVITE messages from a particular host may be treated as:

� (a) separate flows from the same controlled source, in which case the total aggregate flow is
controlled; or

� (b) separate controlled sources, in which case each message type is controlled separately.

Additional transitions for state "idle"
are described on the next page

Empty = rSetEmpty = rSet

true

i:=take(q);
q:=del(i,q);

true

i:=take(q);
q:=del(i,q);

idle

W:=0.0;
S:=0.0;
R:=0;
N:=0;
rSet := Empty;

1(2)

use GocapSignals;

/* A database of the restrictions that w e distribute leakrates to */
CDDatabase ::= SEQUENCE OF
 SEQUENCE {
 restn PId, /* The CDRestriction process w e use to communicate */
 serial Integer, /* The serial numner of this restriction */
 w Real, /* The restriction w eight used to calc leakrates */
 s Real, /* The capacity gaurantee */
 static Boolean /* If true, Restriction is controlled manually */
 };
IntegerSet ::= SET OF Integer;

dcl cddb CDDatabase; /* The restriction database */

dcl rSet IntegerSet; /* A set holding valid local restriction IDs */

glr_update(C,f)

idle

q:=rSet;

Empty = q

true

/* Calculate new leak rate */
rate := f * cddb(i).s +
 cddb(i).w * (C - f*S)/W;

update_CDR(rate)
to cddb(i).restn

terminate

idle

cddb(i).static

false

false

false

cddb(i).static

halt_CDR
to cddb(i).restn

true

Empty = q

q:=rSet;

idle

false

/* Local variables */
dcl W Real; /* the sum of all the w eights */
dcl S Real; /* the sum of all the capacity guarantees */
dcl R Real; /* the smallest s/w ration of all the sources */
dcl N Integer; /* The number of restrictions w e are managing */
dcl C Real; /* The global leakrate */
dcl f Real; /* capacity factor */
dcl src SourceData; /* Information about a new source */
dcl rate Leakrate; /* A calculated leak rate - temp variable */
dcl i Integer; /* a loop variable */
dcl q IntegerSet; /* A set used to iterate over all the valid IDs */

Process

(1,1)

CDProcess

false

true

false

true

Figure 8: The behaviour of the Control Distribution when handling signals from the CAProcess

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 23

restnID.master := myGocapID;
restnID.num := i

/* Provisioned Data */
dcl myGocapID GOCAPID;

rSet := del(i, rSet);

false

cddb(i).static

idle

true

update_CDR(src.s)
to cddb(i).restn

 W := W + src.w ;
 S := S + src.s;

false
src.static

true

i:=0;

idle

del_src(i)

i in rSet

W := W - cddb(i).w ;
S := S - cddb(i).s;

delete_CDR
to cddb(i).restn

update_origin
(S,R)

idle

update_origin
(S,R)

CDR_Id(cddb(i).serial)
to sender

CDRestriction(restnID,src)

false

cddb(i).restn := offspring;
cddb(i).static:= src.static;
cddb(i).w := src.w ;
cddb(i).s := src.s;
cddb(i).serial := i;

i in rSet

i := i+1;

add_src(src)

idle

/**********************************
 We use the local restrictor serial number to track each restriction.
 We use rSet to hold the set of IDs in use to simplify iteration etc.
**********************************/
dcl restnPId PId;
dcl new _s Real; /* A temp variable for capacity allocation */
dcl new _w Real; /* A temp variable for w eight allocation */
dcl restnID RestrictionID; /* A temp variable to hold the restrictionID */

update_src
(i,new _s,new _w)

2(2)

/* Update the restn data */
cddb(i).w := new _w ;
cddb(i).s := new _s;

idle

update_origin
(S,R)

W := W + cddb(i).w ;
S := S + cddb(i).s;

i in rSet

true

CDR_error(i,invalidID)
to sender

idle

false

cddb(i).static

false

update_R

/*******************************
We have a procedure to
recalculate R, the smallest
s/w ratio, w hen required.
*******************************/

update_CDR(new _s)
to cddb(i).restn

idle

true

update_R

update_R update_R

Process CDProcess

(1,1)

true

true

false

Figure 9: Adding, updating and removing controlled sources from the Control Distribution

4.2.4 CDRestriction

The CDRestriction represents the restrictor for the CDProcess and handles the instantiation of restrictions on local or
remote GOCAP slaves. It is a requirement that GOCAP be able to interoperate with systems that do not support
GOCAP, or in situations where the GOCAP signalling stream becomes unusable, without unfairly acting against those
system that do support GOCAP. To this end, if a host does not support GOCAP, or if two way communication between
the GOCAP master and a GOCAP slave cannot be established, the CDRestriction will automatically instantiate the
restriction on the local host (as an ingress restriction) so that non conforming sources do not gain unfair advantage. The
separation of this behaviour into the CDRestriction means that Control Distribution does not need to maintain per
restriction state regarding the behaviour of the GOCAP protocol. The CDRestriction tracks the availability of the
signalling path to the remote GOCAP slave (states *_up and *_down) and whether a restriction has actually been
instantiated or not (states active_* and idle_*). A state diagram for the CDRestriction is shown in Figure 10.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 24

Figure 10: State diagram for the CDRestriction process. The signals "ok" and "error"
represent a "restrictor_status" signal with status value "ok" or not "ok" respectively

4.2.4.1 CDRestriction Data

Each CDRestriction process shall hold and maintain the following data:

chanID : A reference to the Shim responsible for handling signalling to the remote host.

localActive : A flag set when there is a local restrictor instantiated by this CDRestriction.

r : Data for the restriction managed by the CDRestriction process.

The Restriction data structure, used to store r, is shown below (and in more detail in Annex A, where there is a full
ASN.1 definition) :

Restriction ::= SEQUENCE {
 resID RestrictionID,
 signatureList SEQUENCE OF
 SEQUENCE {
 splash Real,
 signature Signature },
 duration Duration,
 restrictionType RestrictionType ,
 leakrate Leakrate
};

NOTE: The only restriction type defined in the present document is the floatingPointLeakyBucket as described in
clause 4.2.6.

4.2.4.2 CDRestrictor Signals

The Control Distribution process sends or receives the signals described in Table 3.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 25

Table 3: Signals sent or received by the CDRestrictor

Signal Dirn Comments
update_CDR(r Leakrate) recv Indicates that the leak rate for the restrictor has changed to the new value r.
halt_CDR() recv Indicates that the restriction should be deleted.
delete_CDR() recv Indicates that the restriction should be deleted and the CDRestriction

processes terminated (i.e. control of that source is not required in the
future).

open(a AddressList,
 b ShimType)

send Request a reference to a GOCAP shim to handle signalling to the remote
host. This will, if necessary, initiate a new signalling channel between the
GOCAP master and the remote slave. The parameters a & b are derived
from the source definition data provided to the CDRestriction on
instantiation.

Close() send Inform the shim that the signalling channel to the remote slave is no longer
required.

new(r Restriction) send Request for the instantiation (creation) of a restriction (i.e. rate limiter) by a
GOCAP slave. The parameter r contains all the information required to
create a restriction.

set_rate(i restrictionID,
 r leakrate)

send Request an update to the leak rate of an existing restriction. Parameter i is
the unique restriction ID (GOCAPID and local serial number) and r is the
new leakrate.

halt(i restrictionID) send Request the deletion of an existing restriction.
Up recv Indicates that the signalling channel to the remote GOCAP slave is

available.
Down recv Indicates that the signalling channel to the remote GOCAP slave is

unavailable.
use_channel(c PId) recv Received in response to an "open" signal, the parameter c is a reference to

the GOCAP shim that will handle signalling to the remote slave.
restrictor_status(
 i restrictionID,
 s RestrictionStatus)

recv Received in response to a "new", "set_rate" or "delete" request and
indicates if the requested change was successful. Parameter i is the
restriction ID and s is the restriction status, one of ok, invalidGOCAPID,
scopeViolation, invalidAddressType, invalidType,

internalError, invalidID or unknownID.

4.2.4.3 CDRestrictor Behaviour

The behaviour of the CDRestrictor (CDR) shall be as described in Figures 11, 12 and 13.

On instantiation, the CDR shall use the provided source data to generate the data needed to describe the restriction that
it manages. It shall also send an open signal to the GOCAP Channel Manager in order to obtain a reference, chanID, to
the shim that handles communication between the CDR and the remote restrictor manager. The CDR shall then go to
state "idle_down" The behaviour in each of the states is as follows:

"idle_down" & "idle_up":

• In these states the restriction is not active.

• If an up signal arrives the CDR shall move to state "idle_up".

• If a down signal arrives the CDR shall move to state "idle_down".

• If an update_CDR is received the CDR shall:

- update its definition of the restrictor with the new leakrate;

- set the timer T1 to half the restrictor duration;

- send a new signal with the restrictor definition to the local restrictor manager (if is state "idle_down") or
the remote restrictor manager via the shim (if in state "idle_up");

- if in state "idle_down", set the localActive flag to true; and

- then enter state "wait_down" from "idle_down" or "wait_up" from "idle_up".

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 26

If a delete_CDR signal arrives, the CDR shall, if its chanID is not null, send a close signal to the shim. In any
case, the CDR shall then terminate.

w ait_dow n

set(now +r.duration/2,T1)set(now +r.duration/2,T1)

/* local data */
dcl r Restriction; /* Data relating to this restriction */
dcl chanID PId; /* The process ID ofthe channel w e use to talk to the slave */
timer T1; /*Used to refresh the restriction after duration/2 has elapsed. */
dcl localActive Boolean; /* Used to indicate w hether a local restriction is active. */

/* temp variables */
dcl rate Leakrate;
dcl stat RestrictionStatus;
dcl rid RestrictionID;

use GocapSignals;
use GocapTypes;

1(3)

open
(src.addrs,src.shim)

init

use_channel
(chanID)

idle_dow n

r.flow s := src.flow s;
r.resID := myID;
r.duration := src.duration;
r.restrictionType := src.rType;
localActive := false;

idle_dow n

up

idle_up

update_CDR(rate)

r.leakrate := rate;
localActive := true

new (r)
via local

w ait_up

new (r)
via master

r.leakrate := rate

update_CDR(rate)

idle_dow n

dow n

idle_up

close

delete_CDR

idle_dow n,
idle_up, errored

/*--------------------------------------
 Note:
 If this restriction is a local restriction w e get null as the chanID and w ill never
 receive the "up" signal.
 This means that w e need to check that the chanID is valid before w e try to
 close the channel w hen w e are in a dow n state.
---------------------------------------*/

null =chanID

false

true

*

Process

(0,); fpar myID RestrictionID, src SourceData;

CDRestriction

Figure 11: The CDRestriction process behaviour with no active restriction

"wait_down":

 In state "wait_down" the CDR is waiting for a reply from the local restrictor manager to the new signal. If a
restrictor_status signal arrives, the CDR shall inspect the restriction status and if it has value ok move to state
"active_down". Any other value of the restriction status shall cause the CDR to enter state "errored". No other
signals are processed in state "wait_down", but signals are preserved for processing in the next state.

"errored":

 If a delete_CDR signal arrives, the CDR shall, if its chanID is not null, send a close signal to the shim. In any
case, the CDR shall then terminate.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 27

localActive := false

true

false

localActive

true

halt(r.resID)
via local

false
localActive

elsestat

else

errored

stat

From the local slave
Should not block!

*

w ait_dow n

restrictor_status
(rid,stat)

2(3)

active_dow n

*

active_up

dow n

w ait_up

restrictor_status
(rid,stat)

w ait_dow n

new (r)
via local

set(now +
 r.duration/2,T1);

ok

localActive := true

Process CDRestriction

(0,); fpar myID RestrictionID, src SourceData;

ok

Figure 12: Checking the creation of new restrictions

"wait_up":

• in state "wait_up" the CDR is waiting for a reply from the remote restrictor manager to a new signal. If a
restrictor_status signal arrives, the CDR shall inspect the restriction status and, if it has value ok, move to state
"active_up", destroying any local restriction. Any other value of the restriction status, or the arrival of a down
signal, shall cause the CDR to:

• create a local restrictor, if none exists; and

• enter the state "wait_down".

No other signals are processed in state "wait_up", but signals are preserved for processing in the next state.

"active_up":

• In state "active_up" the CDR is controlling an active restriction on a remote host.

• When an update_CDR signal arrives, or timer T1 expires, the CDR shall set timer T1 to half the restriction
duration and sends a set_rate signal to the shim for forwarding to the remote GOCAP slave, finally returning
to state "active_up".

• When a halt_CDR signal arrives, the CDR shall cancel (reset) timer T1, send a halt signal to the shim to
forward to the remote slave, and move to state idle_up.

• When a delete_CDR signal arrives, the CDR shall send a halt signal to the shim to forward to the remote slave,
send a close signal to the shim and then terminate.

• When a restrictor_status signal arrives, the CDR shall inspect the restriction status and if it has value ok , stay
in state "active_up". If the status is unknownID, then the CDR shall send a new signal with the restrictor
definition to the remote restrictor manager (via the shim), set the timer T1 to half the restrictor duration and
shall then enter state "wait_up". Any other value of the restriction status, or a down signal, shall cause the
CDR to send a new signal with the restrictor definition to the local restrictor manager, set the localActive flag
to true, set the timer T1 to half the restrictor duration and enter state "wait_down".

"active_down":

• In state "active_down" the CDR is controlling an active restriction on a local host.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 28

• When an update_CDR signal arrives, or timer T1 expires, the CDR shall set timer T1 to half the restriction
duration and sends a set_rate signal to the local GOCAP slave, finally returning to state "active_down".

• When a halt_CDR signal arrives, the CDR shall cancel (reset) timer T1, send a halt signal to the local slave,
send a close signal to the shim if defined (if chanID is not null), and move to state idle_down.

• When a delete_CDR signal arrives, the CDR shall send a halt signal to the shim to forward to the remote slave,
and then terminate.

• When an up signal arrives, the CDR shall send a new signal with the restrictor definition to the remote
restrictor manager (via the shim), set the timer T1 to half the restrictor duration, send a halt signal to the local
slave and shall then enter state "wait_up".

• A restrictor_status signal is ignored in state "active_down".

localActive := false

localActive := true

restrictor_status signals
are ignored in this state

close

halt(r.resID)
to chanID

delete_CDR

idle_up

halt(r.resID)
to chanID

active_up

set_rate(r.resID,r.leakrate)
to chanID

set(now +r.duration/2,T1)

T1,
update_CDR(r.leakrate)

active_up

halt_CDR

reset(T1)

restrictor_status
(rid,stat)

unknow nID stat

active_upw ait_up

new (r)
to chanID

set(now +
 r.duration/2,T1);

ok

dow n

w ait_dow n

new (r)
via local

set(now +
 r.duration/2,T1);

else

set(now +
 r.duration/2,T1);

reset(T1)

true

false

null =
chanID

close

halt(r.resID)
via local

delete_CDR

idle_dow n

halt(r.resID)
via local

active_dow n

set_rate(r.resID,r.leakrate)
via local

set(now + r.duration/2,T1)

T1,
update_CDR(r.leakrate)

w ait_up

up

active_dow n

new (r)
to chanID

halt_CDR

Need to account for
loopback restrictions

3(3)Process CDRestriction

(0,); fpar myID RestrictionID, src SourceData;

Figure 13: CDRestriction behaviour when the restriction it represents is active

4.2.5 Restrictor Manager (RMProcess)

The Restrictor Manager is responsible for storing the currently active restrictions and enabling applications to query
those restrictions.

4.2.5.1 Restrictor Manager Data

The RMProcess shall be provisioned with three data items that provide default parameters for new restrictors. These
are:

 priorities : a Real array of 0..15 priority thresholds.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 29

 initialFill : A real parameter that sets the initial value of the bucket fill for new restrictors. The parameter may
be zero, but more usually will be similar to the threshold in the priorities array that corresponds to normal
priority requests.

 maxFill : A real parameter that sets the maximum allowed value of the bucket fill in restrictors. The parameter
maxFill shall always be greater than the highest threshold in the priorities array, and it is recommended that it
be set to twice the highest priority.

The RM shall also maintain a database of restrictions. The implementation of that database is implementation
dependent, but the interface to the database is defined in terms of six primitive actions. Each record in the database
associates a Restriction data structure (see the ASN.1 data definitions in Annex A) with the ID of the leaky bucket
restrictor. The Restriction data structure, expanded out to atomic types, is shown below:

Restriction ::= SEQUENCE {
 resID SEQUENCE { -- a RestrictionID type
 master GOCAPID,- Unique Master identification string.
 num Integer - The serial number of the CDRestriction process
 }, -- End of RestrictionID
 flows SEQUENCE OF -- Flows type
 SEQUENCE {
 splash Real,
 -- The amount the restrictor fill is incremented
 -- when a request from this flow is accepted.
 signature SEQUENCE { -- a Signature type
 appSrcs SEQUENCE OF Address,
 -- The IP addresses of source(slave) as
 -- understood by the applications on the
 -- host on which the restrictor is being
 -- created.
 appDests SEQUENCE OF Address,
 -- The IP addresses of destination(master) as
 -- understood by the applications on the host
 -- on which the restrictor is being created.
 appLabel ApplicationLabel,
 -- e.g. "SIP" or "SIP.REGISTER" etc
 appAddrs SEQUENCE OF ApplicationAddress,
 -- A list of application layer addresses, e.g.
 -- SIP URIs, phone numbers. Some addresses may
 -- wildcarded e.g. "*.bt.com"
 addrType ApplicationAddressType
 -- Type of application address - needed for
 -- address handing and for wildcard rules that
 -- apply to that address type.
 }, -- End of Signature Type
 }, -- End of Flows type
 duration Duration, -- How long the restriction is valid for.
 restrictionType RestrictionType,
 leakrate Leakrate -- The rate at which work may be forwarded

 };

NOTE: The only restriction type defined in the present document is the floatingPointLeakyBucket as described in
clause 4.2.6.

The database shall be implemented so that efficient retreival of information is possible on the basis of resID and of
matches between the signatureList and application request signatures.

4.2.5.2 Restrictor Manager Signals

The signals received and sent by the Restrictor Manager are described in Table 4.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 30

Table 4: Restrictor Manager Signals and Events

Signal Dirn Comments
new(r Restriction) recv On receipt, the RMProcess shall create the appropriate restrictor and add the

restriction data, associated with the restrictor ID into its database of
restrictions. This signal will usually come from the GSlave SessionHandler
(having received the request from a GOCAP Master), but may also be
invoked by an application or by management action.

set_rate(
 id RestrictionID,
 r Leakrate)

recv A request to change the leak rate of a particular restriction. The RestrictionID
is used to locate the data relating to that restriction in the database, so that
the restrictor process ID can be retrieved. The new leak rate is then passed to
the restrictor via a update(Leakrate) signal.

halt(rid RestrictionID) recv This signal is used to delete a particular restrictor. The RestrictionID, rid, is
used to locate the information relating to that restriction in the database, so
that the restrictor process ID can be retrieved. The database entry is then
deleted and the restrictor process ID is used to terminate the restrictor
process.

audit(c CCID) recv Retrieve a list of restrictions that have been instantiated on behalf of the
specified GOCAP master. On receiving this signal, the RM process will
search its database of restrictions and return a list of restrictions via the
active_restrictions signal.

restrictor_status(
 rid RestrictionID,
 stat RestrictionStatus)

send After a new, set_rate or halt signal, the Restrictor Manager shall return the
result of the request via a restrictor_status signal. The value of rid is as
specified in the original request (even if the restrictor does not exist) and
status is one of ok, invalidID or deleted.

active_restrictions(
 auditList
 RestrictionList)

send In response to an audit request (audit signal) the restrictor Manager shall
return a list of all the active restrictions for the specified GOCAP master.

request(
 sig Signature,
 p Priority)

recv Received from any application that wants check to see if it safe to forward a
request. The Signature is used by the RM to establish with restrictions apply
and the priority reflects the request priority and affects the chances of
rejection as described in clause 4.2.6.3.

admit send Sent to the application if the service request should be admitted.
reject send Sent to the application is the service request may be rejected.
test(splash Real,
 p Priority)

send This signal is sent to a particular restrictor to check if the restrictor will admit
the request.

update(r Leakrate) send Sent to a particular restrictor in order to update its leakrate.
confirm(splash Real) send Sent to each restrictor that was involved in a particular request analysis to

update its state appropriately given the overall result. The single parameter is
the splash - the amount to increase the bucket fill.

delete send Sent to a restrictor process to kill it.
ok recv Received from the restrictor as a response to a test signal. It signals that the

application request may be admitted.
fail recv Received from the restrictor as a response to a test signal. It signals that the

application request may not be admitted.
expired recv Received from the restrictor when its lifetime timer expires.

4.2.5.3 Restrictor Manager Behaviour

The restrictor manager shall be created and configured when the overload control is armed. It manages 0 or more active
restrictors. The dynamic behaviour of the Restrictor Manager shall be as described in the SDL diagram of the RM
process, shown in Figure 14 and an admission request from an application shall be handled as described in Figure 15.

The restrictor manager shall instantiate and delete restrictors as requested by control distribution components (either
local or remote), by the management system or by a local application.

A restriction request, new(Restriction), contains a Restriction data structure that gives the restrictor_ID and one or more
specific restriction "signatures" (source node, target node, application_label, application_address list), each with a
request splash. Some fields may be wild carded - e.g. for node load control, the application_label and
application_address fields are likely to contain wildcards. When the Restrictor Manager is requested to start a
Restrictor, it shall do the following:

1) delete any existing restrictor with the same restrictionID;

2) instantiate and initialise the Restrictor; and

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 31

3) add the Restriction data to its database of restrictions, associated with the restrictor process ID.

When the restrictor manager is requested to stop a restrictor, via a halt(RestrictionID), the restrictor manager shall
remove the restrictor from its database of restrictions and delete the corresponding restrictor.

The restrictor manager shall receive restrictor updates via an set_rate(RestrictionID,Leakrate) signal. The restrictor
manager shall use the restrictorID to retrieve the restrictor process ID from its restriction database, and then send a
update(Leakrate) message to the restrictor.

The Restrictor Manager shall send a restrictorStatus signal to indicate the outcome of a new, set_rate or halt request as
shown in Figure 14.

The applications on the host will query the restrictor manager to establish if a request may be forwarded to another host,
or if an incoming request should be rejected by sending a request(Signature, Priority) signal to the Restrictor Manager.
The signal from the application supplies a restrictor signature (source node, target node, application_label) and a request
priority. The restrictor manager shall look for restrictions in its restriction database that match that request signature.
(Multiple matches are possible because restrictor signature fields may be wildcarded.) For each matching restriction it
shall retrieve the restrictor process ID and the splash appropriate to the request and then interrogate each of the
restrictors in turn, as shown in Figure 15, sending an "admit" signal to the application if all the restrictors admit the
request or "reject" signal if one or more restrictors rejected the request. If there is no match, then the query is granted,
and the restrictor manager shall send the "admit" signal to the application.

The management function or local applications may also request the creation and destruction of local restrictors by the
restrictor manager, allowing the network operator to use the NOCA infrastructure for statically defined (i.e. not driven
by a NOCA control adaptor) restrictions as required.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 32

deleteRestriction(rid)

delete
to rpid

f indRestrictor
(r.resID,rpid,err)

/*Get the Restrictor
processID from the

RestrictionID */

err

restrictor_status
(rid,deleted) to sender

restrictor_status
(rid,ok) to sender

restrictor_status
(rid,ok) to sender

Note: An additional transition
is def ined on Page 2.

active_restrictions
(auditList) to sender

getChannelRestrictions
(connexID,auditList)

getChannelRestrictions
/* Take a GOCAP ID and
f ind all the restrictions
that originate from that

connection*/

audit
(connexID)

/* Note
These 5 procedures have defined interfaces, but detailed behaviour is lef t to the implementor */

f indRestrictor
/* Take a RestrictionID and
return the restrictor PId */

findMatchingRestrictors
/* Take an application
request signature, and
return a list of matching
restrictor PIds - each

associated w ith a
request splash*/

use GocapTypes;

/* These quantities are initialised and
maintained by the RMProcess logic */
dcl rList ApplicableRestrictors;
dcl auditList RestrictionList;
dcl result, allow , err Boolean;
dcl sig Signature;
dcl p RequestPriority;
dcl r Restriction;
dcl rid RestrictionID;
dcl rpid , app PId;
dcl rate Leakrate;
dcl connexID GOCAPID;

ready

ready

new (r)
/* From SMHandler */

set_rate(rid,rate)
/* From SMHandler */

halt(rid)
/* From SMHandler */

Restrictor
(r.leakrate, priorities, initialFill,

maxFill, r.duration, r.resID)

/* Create the
restrictor process*/

1(2)

findRestrictor
(rid,rpid,err)

/*Get the Restrictor
processID from the

RestrictionID */

saveRestriction
/* Take restrictor data and

restrictor PId and save them*/

saveRestriction
(r,of fspring)

update(rate)
to rpid

deleteRestriction
/* Take a RestrictionID and

remove the restriction
from the database*/

findRestrictor
(rid,rpid,err)

/*Get the Restrictor
processID from the

RestrictionID */

delete
to rpid

expired(rpid,rid)
/*It's time expired!*/

/* Notes:
This describes the restrictor manager
behaviour. The initilisation behaviour is
ommitted for clarity.
*/

/* These quantities shall be provisioned */

dcl priorities PriorityList;
dcl initialFill Real; /* The initial bucket fill */
dcl maxFill Real; /* The max allow ed bucket fill */

/* N.B Bucket thresholds in the priorities array shall all be less than maxFill. */

deleteRestriction(rid)

err false

restrictor_status
(rid,invalidID) to sender

trueerrfalse true

Process

(1,1)

RMProcess

true

false

Figure 14: Restrictor management behaviour for the Restrictor Manager

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 33

/* A loop variable */
dcl n Integer;

ready

admit
to app

ready

2(2)

f indMatchingRestrictors
(rList,sig)

ready

request(sig,p)
/* From the application */

admit
to app

reject
to app

app := sender;
n := 0;

ready

true

n := n - 1
/* We loop through again */

confirm(rList.list(n).splash)
to rList.list(n).restrictor

n > 0

true
rList.cnt > n

n:=n+1
/*Loop through each restrictor*/

fail
/*from restrictor*/

*ok
/*From restrictor*/

w ait

test(rList.list(n).splash,p)
to rList.list(n).restrictor

rList.cnt = 0

/* Note:
This implementation of the admitRequest
procedure does not allow for restrictors
that increase fill on request rejection.
*/

Process RMProcess

(1,1)

false

true

false

false

Figure 15: The request admission behaviour of the Restrictor Manager

4.2.6 Restrictor

The Restrictor shall be a multi-threshold, continuously leaking, leaky bucket rate limiter as described below. Rate
limiters have the following advantages:

• Rate limiters support the SLA management function of NOCA.

• It is relatively simple to implement multi-level request priorities using leaky buckets.

• Rate limiters place an upper limit on the rate of requests reaching the overloaded resource.

4.2.6.1 Restrictor data

Restrictors are created and destroyed by the Restrictor Manager as required. Each instance of a restrictor shall maintain
the information described in Table 5.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 34

Table 5: Restrictor Data

SDL Name Type Initial value Notes
fill Real > 0.0 Specified by the

RestrictorManager
This is the bucket fill.

maxFill Real > 0.0 Specified by the
RestrictorManager

It is recommended that this be set to be twice the largest threshold.

lastUpdate Time current time A record of when the fill parameter was last updated.
pList Real[] >0.0 Specified by the

RestrictorManager
A vector of floating point fill thresholds, pList(i) is the threshold for the
ith priority.

r Real ≥0.0 specified by
requestor

The leak rate in s-1.

lifetime Duration specified by
requestor

The restriction is expired if not refreshed in an interval of length
Duration.

4.2.6.2 Restrictor signals

Table 6: Restrictor Signals and Events

Signal Dirn Comments
test(splash Real,
 p Priority) recv From the Restrictor Manager to check if the restrictor will admit a request.

update(r Leakrate) recv Update the leak rate of the leaky bucket.

confirm(splash Real) recv Confirms the application level success of a service request. The parameter is
used to increase the fill of the leaky bucket.

delete recv Sent to a restrictor process to kill it.
ok send A request has been accepted by the restrictor.
fail send A request has been rejected by the restrictor.
expired send The restrictor lifetime timer has expired.

4.2.6.3 Restrictor behaviour

There are a number of ways of implementing leaky buckets, and it is up to the implementer to select a suitable
technique. All implementations shall be functionally identical to the implementation described in Figure 16 and in the
SDL files supplied with the present document.

The restrictor shall admit a request of priority i and weight splash if the current fill+ splash is less than or equal to the ith
threshold, pList[i]. After a request has been accepted, the fill of the leaky bucket shall be increased by the amount
splash.

The fill of the bucket is continuously reduced at a rate of leakrate. In real implementations, of course, the fill does not
change continuously; rather the fill is updated whenever the state of the bucket is sampled.

When the Restrictor is created, and whenever the leak rate of the restrictor is updated, the timer T1 shall be set to expire
after a time lifetime. If the timer expires, the Restrictor shall inform the Restrictor Manager via an "expired" signal. The
Restrictor Manager will then delete the restriction data associated with this restrictor and then terminate the restrictor.
This prevents the restrictor from persisting if, due to some error, a message to delete the restrictor does not arrive.

A key point to note is that the restrictors used for GOCAP shall have a two step request acceptance, an initial test, and a
confirmation step only taken after the restrictor manager has established whether the request has been admitted. This is
because when the application makes an admission request to the restrictor manager, there may be multiple restrictors
that apply to that request, all of which must admit the request in order for the request to be successful.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 35

else

fill > maxFill

f ill := maxFillf ill := 0.0

/* Notes
This describes the implementation of a leakey bucket rate
limiter that does not require th explicit use of timers.
It is described here in terms of one process for each
restriction. Other implemenation are possible and w ould be
acceptable.
N.B it is assumed that the granularity of the time based
function and operators is appropriate. Time values must be
in seconds, and include fractional seconds.
*/

1(1)

use GocapSignals;
use GocapTypes;

idle

update
(new _r)

test
(splash,p) conf irm

(splash)
delete

dcl new _r Leakrate;
dcl last_time Time;
dcl f ill, splash Real;
dcl p RequestPriority;
dcl t Duration;
timer T1;

set(now +lifetime,T1);

f ill := fill - r*(now - last_time);
last_time := now ;
r := new _r;

f ill := fill +(CALL Uniform(-0.5,0.5));
/* Uniform(-0.5,0.5) is a
function that returns a
random number in the
range -0.5 <= x <= 0.5 */

set(now + lifetime, T1);
f ill := initialFill;
last_time := now ;

'f ill'

idle

f ill := f ill - r*(now - last_time);
last_time := now

fill < 0.0

idle

true

f ill := 0.0

f ill < 0.0

f ill + splash
> pList(p)

false

fail
to parent

ok
to parent

true false

f ill := f ill + splash

false

idle

true

fill := maxFill

f ill > maxFill

T1

expired(self,resID)
to parent

idle

Process

(0,); fpar r Leakrate, pList PriorityList, initialFill Real, maxFill Real, lifetime Duration, resID RestrictionID;

Restrictor

Figure 16: Leaky bucket implementation

4.2.7 GOCAP Transport

4.2.7.1 The structure of the GOCAP transport layer.

Figure 3 shows that the remote GOCAP slave and the local GOCAP master communicate via a GOCAP_transport. This
transport represents the GOCAP signalling path and Figure 17 shows the key components for of the GOCAP-transport
module. It defines two blocks, the GMaster and the GSlave together with a third that represents the actual transport
functions (e.g. Diameter transport functions as defined in RFC 3588 [2] or SIP transport functions as defined in
RFC 3265 [6]). The function of the GMaster is to encode the commands new, set_rate and halt from the CDRestriction
and audit requests from the management in messages of the relevant transport protocol. The GSlave decodes the
transport protocol messages to generate the equivalent new, set_rate, halt and audit requests to the remote Restriction
Manager.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 36

Signals on this channel
 depend on the transport
mechanism used

Signals on this channel
 depend on the transport

mechanism used

GSSM

restrictor_status,
comms_error

GMaster GSlave

transport
/* Different mechanisms are possible, e.g. Diameter, SIP Subscribe/Notify */

...

... ...

up, dow n,
use_channel,
restrictor_status

GMSAP

open, close, new ,
set_rate, halt

new ,set_rate,
audit, halt

GSSAP

active_restrictions,
restrictor_status

active_restrictions,
restrictor_status,
comms_error

GMSM

get_audit

1(1)Block Type gocapTransport

Figure 17: GOCAP transport between CDRestriction on Master (GMSAP)
 and Restrictor Manager on Slave (GSSAP)

There is a single
channel manager

There is one GocapShim for
 each controlled GOCAP
Slave

GMSM

comms_error,
restrictor_status,
active_restrictions

...

mxxx

xxx

...

open

use_channel

new ,
set_rate,
halt, close

use GocapSignals;

close_channel

new _ref,
get_audit,

GMSAP

up,dow n,
restrictor_status

xxxShim

ChannelManager

comms_error

get_audit

/* Local signals */
SIGNAL
 close_channel(PId),
 new _ref(PId);

1(1)Block GMaster

Figure 18: The relationship between ChannelManager and GocapShim in GMaster

Figure 18 shows how the GMaster entity behaviour may be described in terms of two different processes. There is a
single instance of the channel manager, which is responsible for the creation and management of the GocapShims and
there are zero or more shims, of which there is one shim for each GOCAP slave that this master communicates with.
Figure 19 shows how the GSlave entity behaviour may be described in terms of two different processes. There is a
single instance of a GocapListener and a SessionHandler instance for each GOCAP master that communicates with this
slave. The GocapListener is responsible for the creation and management of SessionHandlers and the adjudication of
restrictor scope claims.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 37

comms_error

restrictor_status

active_restrictions,
restrictor_status

new ,
set_rate,
halt, audit

...

...

...

...

SessionHandler
/* One process per
GOPCAP Master */

GocapListener
/* Listens for GOCAP messages

and manages creation and deletion
of individual sessions */

1(1)Block xxxGSlave

xxx

sxxx

GSSAP

GSSM

Figure 19: The GocapListener and SessionHander elements of the GSlave

4.2.7.2 Channel Manager

The role of the Channel Manager is to manage the protocol shims that implement the transport of the GOCAP signalling
flow between the CDRestriction process and the remote restrictor. It also provides a redirection facility so that requests
can be directed at the correct shim instance.

4.2.7.2.1 Channel Manager Data

The channel manager shall be provisioned with the following data:

• myID The unique GOCAP ID of the host;

• siglist A list of restrictor scopes for which this GOCAP Master can create restrictions.

The Channel Manager shall also maintain a database of created shim instances linked to the transport address each shim
is associated with.

4.2.7.2.2 Channel Manager Signals

The Channel Manager process sends or receives the signals described in Table 7.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 38

Table 7: Signals sent or received by the Channel Manager

Signal Dirn Comments
open(a AddressList,
 s ShimType)

recv A request from a CDRestriction process for a reference to a shim process to
handle GOCAP signalling to a remote host.

use_channel(p PId) send A signal to a CDRestriction specifying the process ID of the shim process to
use.

new_ref(p PId) send Indicates a new user of a shim to that shim, so that it can maintain its
reference count.

get_audit(a AddressList,
 s ShimType,
 p PId)

recv &
send

The management system can request a audit of remote restriction
instantiated on behalf of this GOCAP Master. The management initially
sends the audit request to the Channel Manager, which uses the address
information to identify the relevant shim instance and forwards the audit
request to that shim. The parameter, p, is the process ID of the entity that
the audit result should be sent to.

close_channel(p PId) recv A signal from a shim instance indicating that its reference count is zero and
that it is about to terminate.

comms_error(a AddressList,
 s ShimType,
 e CommsError)

send A signal to indicate that there is some error.

4.2.7.2.3 Channel Manager Behaviour

The Channel Manager (CM) shall be created and configured when the overload control is armed. It shall manage 0 or
more shim processes. The dynamic behaviour of the CM) shall be as described in Figure 20, where the transport
mechanism used for GOCAP is "xxx", which is a placeholder for any defined GOCAP transport mechanism.

The CM has a single state, "idle". The behaviour resulting from each of the input signals is as follows:

open_channel(addrs, shim):

 If shim is local then the CM shall simply send a use_channel signal with the processed parameter set to
null.

 If shim is of a type recognised by the CM then it shall check its local database to see if a suitable shim
instance already exists. If a shim process is found, the process ID of that shim shall be sent to the
requesting CDRestriction via a use_channel signal and the shim will be informed that it has another user
by sending the CDRestriction process ID to the shim in a new_ref signal. If there is no suitable shim, the
CM shall create a new instance of the appropriate type, add that instance to its local database and return
the process ID of that instance in a use_channel signal.

 If shim is not of a type recognised by the CM it shall send a comms_errror signal to the management
interface and send a null process ID in a use_channel signal to the requesting CDRestriction.

close_channel(chanID):

 On receipt of a close_channel signal the CM shall delete the data relating to the shim with process ID
equal to chanID from its local database.

get_audit(addrs, shim, reqp):

 On receipt of a get_audit signal, the CM will search in its local database for a suitable shim to service the
request based on the addrs and shim parameters. If a suitable shim is found, the signal is forwarded to
that shim for treatment. If a suitable shim is not found, a comms_error is sent to the process expecting
this audit result (process ID reqp) with the error field initialised to link_down.

NOTE: A particular implementation may extend GOCAP functionality by defining additional shim types, to
enable NOCA entities to communicate over other protocols or to interface with local overload controls
(such as ES 283 039-4 [i.1], etsi_nr).

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 39

/* Channel manager for GOCAP shim type xxx.
xxx may be "diameter", "sip_sub_not" or any other
protocol that has been defined in a shim spec.

comms_error(null,
null, linkDow n) to reqp

true

false

chanID = null

use GocapTypes;

new _ref(sender)
to chanID

xxx

idle

getChannel
(addrs, shim, chanID)

chanID = null

chanID := offspring

xxxShim
(myID, sender, siglist)

saveChannel
(addrs,shim,chanID)

use_channel(chanID)
to sender

false

/* w e have three procedures for maintaining a local database
that links the transport addresses of the slave message
handler to the process ID of the coressponding message
handling shim */

Received from the environment
(i.e. the management system)

idle idle

deleteChannel(chanID)

close_channel
(chanID)

get_audit(addrs,shim,
reqp) to chanID

getChannel
(addrs,shim,chanID)

idle

/* Provisioned data */
dcl myID GOCAPID;
dcl siglist AuthScopeList;

use_channel(null)

shim

/* local temp variables */
dcl addrs AddressList;
dcl shim ShimType; /* Local, native etc*/
dcl chanID, reqp PId;

get_audit
(addrs,shim,reqp)

open
(addrs,shim)

idle getChannel saveChannel deleteChannel

comms_error
(addrs, shim, unknow nTransport)

elselocal

idle

use_channel(null)

1(1)Process

(1,1)

ChannelManager

true

Figure 20: The GOCAP channel manager behaviour

4.2.7.3 Shim Process

Figure 18 shows how the GMaster is implemented with a single Channel Manager and a number of Shim processes to
implement the communication between Master and Slave. This Clause describes the requirements that have to be met
by all shim types.

4.2.7.3.1 Shim Process Signals

Any shim process shall be capable of receiving the following signals: new, set_rate, halt, close, new_ref, get_audit. It
shall also be capable of generating, comms_error, up and restrictor_status. A shim process may optionally generate
close_channel, down and active_restrictions signals if appropriate.

4.2.7.3.2 Shim Process Behaviour

The detailed behaviour of any particular shim process depends on its purpose, but all shim processes shall meet the
behavioural requirements described in this clause.

If a shim receives new signal from a CDRestriction with process ID p, it shall send either a restrictor_status signal or a
down signal to p. A restrictor_status signal shall contain information regarding the success or failure of the request in
the status field. The down signal is sent if communication with the remote GOCAP slave is not established, or has
failed. The delay between receiving the new signal and sending a response shall not exceed some system defined time
limit (this is because the CDRestriction process blocks in the "wait_up" state after sending a new signal).

If a shim receives a set_rate or halt signal it may respond with a restrictor_status message.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 40

If a shim receives a new_ref signal, it shall increment an internal reference count and add the included process ID to the
list of CDRestriction processes it is permitted to communicate with.

If a shim receives a close signal, it shall delete the sender from its list of CDRestriction processes it is permitted to
communicate with.

If a shim receives a get_audit signal it should attempt to obtain from the GOCAP slave a list of all the current
restictions associated with the Gocap Master. It shall then generate towards the process indicated in the get_audit signal
either an active_restrictions signal, containing the list obtained from the slave, or if it is unable to obtain such a list, a
comms_error signal.

A shim process may send an up or a down signal at any time to any process in its list of CDRestriction processes it is
permitted to communicate with. The down signal should be sent if the shim looses communication with the GOCAP
slave; the up signal should be sent when communication is re-established.

4.2.7.4 GocapListener

The detailed behaviour of the GocapListener is tightly bound to the protocol being used to transport the GOCAP
primitives. Its role may be summarised as:

• It listens for GOCAP messages from the transport layer and directs the messages to the appropriate session
handlers.

• It polices the scope claimed by Gocap Masters. A scope clause in a new session request that overlaps with an
existing scope clause from a different GOCAP master will result in the new session request being rejected.

• It handles GOCAP transport session sessions, particularly it maintains a view of the health of the connection
between the Master and the Slave.

4.2.7.5 SessionHandler

The detailed behaviour of the SessionHandler is tightly bound to the protocol being used to transport the GOCAP
primitives. Its role may be summarised as:

• It translates the transport dependent signalling into new, set_rate, halt and audit signals that it forwards to the
Restrictor Manager.

• It encodes resulting restrictor_status and active_restrictions into messages in the supported protocol so that the
GOCAP Master can track the outcome of or each request.

• It ensures that new restriction requests conform to the agreed scope between the Master and the Slave (i.e. it is
the SessionHandler that should reject rejections from a GOCAP Master that exceed the agreed scope of the
session).

5 GOCAP over Diameter

5.1 Introduction
Clause 4 describes the components and behaviour of a GOCAP system. It also describes the information flows needed
to support the control. This clause describes how the required information is sent across the network between the
GOCAP Master and Slave using Diameter. A similar mechanism is described in clause 6 which uses a SIP
Subscribe-Notify mechanism. Other mechanisms may be defined separately. The choice of a particular mechanism for a
particular application depends on the nature of the hosts and the protocols that they already support. Of course,
whichever mechanism is chosen, the behaviours of the hosts and therefore of the overload control will be the same.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 41

5.2 Use of the Diameter base protocol
The Diameter Base Protocol as specified in RFC 3588 [2] shall apply except as modified by the defined GOCAP
application specific procedures, commands and AVPs. Unless otherwise specified, the procedures specified in
RFC3588 [2] (including error handling and unrecognized information handling) are unmodified.

In addition to the AVPs defined within clause 5.2.5, the Diameter AVPs from the Diameter base application
(RFC 3588 [2]) are reused within the Diameter messages of the GOCAP application. Accounting functionality
(Accounting Session State Machine, related command codes and AVPs) is not used in the GOCAP interface.

The GOCAP application is defined as an IETF vendor specific Diameter application with application ID 16777254,
where the vendor is ETSI. The vendor identifier assigned by IANA to ETSI
(http://www.iana.org/assignments/enterprise-numbers) is 13019.

With regard to the GOCAP protocol, the GOCAP Slave acts as a Diameter server, in the sense that it is the element that
handles restriction requests for a particular realm. The GOCAP Master acts as the Diameter Client, in the sense that is
the element requesting restrictions to be instantiated. A Master (Diameter client) can only send requests to manipulate
restrictions on the GOCAP slave (Diameter server) if the Master has already initiated a Diameter session with the Slave
using the AGR command.

NOTE: Diameter routing (proxying) for GOCAP sessions is only allowed if the proxies themselves are
engineered such that processing overload of the proxies is impossible.

5.2.1 Advertising GOCAP support

The GOCAP Master and Slave shall advertise the support of GOCAP specific Application by including the value of the
application identifier (16777254) in the Auth-Application-Id AVP and the value of 13019 (ETSI) in the Vendor-Id AVP
of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands as specified in RFC 3588 [2], i.e.
as part of the Vendor-Specific-Application-Id AVP. The Capabilities-Exchange-Request and Capabilities-Exchange-
Answer commands are specified in the Diameter Base Protocol.

5.2.2 Securing Diameter messages

For secure transport of Diameter messages, see TS 133 210 [4].

5.2.3 Accounting functionality

Accounting functionality (accounting state machine, related command codes and AVPs) are not used in the present
document.

5.2.4 GOCAP commands

Existing Diameter command codes from the Diameter base protocol RFC 3588 [2] and the NASREQ Diameter
application (RFC 4005 [3]) are used with the GOCAP specific AVPs. A GOCAP specific Auth-Application id is used
together with the command code to identify the GOCAP messages.

NOTE 1: The notion of NAS (Network Access Server) is not used here, NASREQ is just used for protocol
purposes, not for its functional meaning.

NOTE 2: Diameter routing (proxying) for GOCAP sessions is only allowed if the proxies themselves are
engineered such that processing overload of the proxies is impossible.

5.2.4.1 AA-Request (AAR) command

The AAR command, indicated by the Command-Code field set to 265 and the 'R' bit set in the Command Flags field, is
sent by a GOCAP master (Diameter client) to a GOCAP slave (Diameter server) in order to obtain authorisation to
request restrictions within the scope(s) specified.

http://www.iana.org/assignments/enterprise-numbers

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 42

Message Format:

 <AA-Request> ::= <Diameter Header: 265, REQ, PXY >
 <Session-Id>
 {Auth-Application-Id}
 {Origin-Host}
 {Origin-Realm}
 {Destination-Host}
 {Destination-Realm}
 {Auth-Request-Type}
 {Auth-Session-State}
 {Auth-Scope}
 *[Proxy-Info]
 *[Route-Record]

5.2.4.2 AA-Answer (AAA) Command

The AAA command, indicated by the Command-Code field set to 265 and the 'R' bit cleared in the Command Flags
field, is sent by the Slave to the Master in response to the AAR command. Each scope which has been authorised is
described in the Auth-Scope AVP. If no scope AVPs are included in the reply, then the original request has failed.

Message Format:

 <AA-Answer> ::= <Diameter Header: 265, PXY >
 <Session-Id>
 {Auth-Application-Id}
 {Origin-Host}
 {Origin-Realm}
 {Auth-Request-Type}
 {Auth-Session-State}
 {Result-Code}
 [Auth-Scope]
 [Error-Message]
 [Error-Reporting-Host]

5.2.4.3 Profile-Update-Request (PUR) command

This PUR command, indicated by the Command-Code field set to 307 and the 'R' bit set in the Command Flags field, is
sent by a GOCAP master to a GOCAP slave in order to create, update, delete or audit one or more GOCAP restrictors
on the Slave. This command is defined in TS 129 329 [5] and used with additional AVPs defined in the present
document.

Message Format:

 <PU-Request> ::= <Diameter Header: 307, REQ, PXY >
 <Session-Id>
 {Auth-Application-Id}
 {Origin-Host}
 {Origin-Realm}
 {Destination-Host}
 {Destination-Realm}
 {GOCAP-Body}
 *[Proxy-Info]
 *[Route-Record]

5.2.4.4 Profile-Update-Answer (PUA) command

The PUA command, indicated by the Command-Code field set to 307 and the 'R' bit cleared in the Command Flags
field, is sent by the Slave to the Master in response to the PUA command. The message describes the result of the PUR.
Note that the GOCAP-Body AVP is present only when required in order to describe an error, or to return specific
information (such as the result of an audit request). This command is defined in TS 129 329 [5] and used with
additional AVPs defined in the present document.

Message Format:

 <PU-Answer> ::= <Diameter Header: 307, PXY >
 <Session-Id>
 {Auth-Application-Id}
 {Origin-Host}
 {Origin-Realm }
 {Result-Code}

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 43

 [GOCAP-Body]
 *[Proxy-Info]
 *[Route-Record]

5.2.4.5 Session-Termination-Request (STR) command

The STR command, indicated by the Command-Code field set to 275 and the 'R' bit set in the Command Flags field, is
sent by the GOCAP master to inform the slave that an authorized session shall be terminated.

Message Format:

 <ST-Request> ::= < Diameter Header: 275, REQ, PXY >
 < Session-Id >
 { Origin-Host }
 { Origin-Realm }
 { Destination-Host }
 { Destination-Realm }
 { Termination-Cause }
 { Auth-Application-Id }
 *[Proxy-Info]
 *[Route-Record]
 *[AVP]

5.2.4.6 Session-Termination-Answer (STA) command

The STA command, indicated by the Command-Code field set to 275 and the 'R' bit cleared in the Command Flags
field, is sent by the GOCAP slave to the master in response to the STR command.

Message Format:

 <ST-Answer>::= < Diameter Header: 275, PXY >
 < Session-Id >
 { Origin-Host }
 { Origin-Realm }
 [Result-Code]
 [Error-Message]
 [Error-Reporting-Host]
 *[Failed-AVP]
 *[Proxy-Info]
 *[AVP]

5.2.4.7 Abort-Session-Request (ASR) command

The ASR command, indicated by the Command-Code field set to 274 and the 'R' bit set in the Command Flags field, is
sent by the GOCAP slave to inform the master that all restrictor resources for the authorized session have become
unavailable.

Message Format:

 <AS-Request> ::= < Diameter Header: 274, REQ, PXY >
 < Session-Id >
 { Origin-Host }
 { Origin-Realm }
 { Destination-Realm }
 { Destination-Host }
 { Auth-Application-Id }
 { Abort-Cause }
 *[Proxy-Info]
 *[Route-Record]
 *[AVP]

5.2.4.8 Abort-Session-Answer (ASA) command

The ASA command, indicated by the Command-Code field set to 274 and the 'R' bit cleared in the Command Flags
field, is sent by the GOCAP master to the slave in response to the ASR command.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 44

Message Format:

 <AS-Answer> ::= < Diameter Header: 274, PXY >
 < Session-Id >
 { Origin-Host }
 { Origin-Realm }
 [Result-Code]
 [Error-Message]
 [Error-Reporting-Host]
 *[Failed-AVP]
 *[Redirected-Host]
 [Redirected-Host-Usage]
 [Redirected-Max-Cache-Time]
 *[Proxy-Info]
 *[AVP]

5.2.5 AVP definitions

The following tables summarize the AVPs used in the present document, beyond those defined in the Diameter Base
Protocol RFC 3588 [2].

Table 8 describes the Diameter AVPs mandated in the present document, their AVP Code values, types, possible flag
values and whether the AVP may or not be encrypted. The Vendor-Id header of these AVPs shall be set to ETSI
(13019).

Table 8: Diameter AVPs Defined in the present document

 AVP Flag rules (note 1)
Attribute Name AVP

Code
Defined Value Type (note 2) Must May Should

not
Must
not

May Encr.

Auth-Scope 620 5.2.6.1 UTF8String MV P Yes
GOCAP-Body 621 5.2.6.2 UTF8String MV P Yes
NOTE 1: The AVP header bit denoted as "M" indicates whether support of the AVP is required. The AVP header bit

denoted as "V" indicates whether the optional Vendor-ID field is present in the AVP header. For further
details, see RFC 3588 [2].

NOTE 2: The value types are defined in RFC 3588 [2].

5.2.5.1 Auth_Scope

This AVP is used by the GOCAP for two purposes.

1) For the master to claim a restrictor address space, using command AAR, for which it will request restrictions.

2) For the Slave to return those signatures for which authorisation is granted via an AAA.

NOTE: If no Auth_Scope AVPs are present in an AAA this indicates that no scope has been authorised.

The Auth_Scope AVP (AVP code 620) is of type UTF8String and contains the XML element <authScopeList> as
defined in Annex C.

5.2.5.2 AVP GOCAP-Body

This AVP is used by the GOCAP master or slave to exchange GOCAP information relating to restrictors on the
GOCAP slave.

The GOCAP-Body AVP (AVP code 621) is of type UTF8String and contains XML <requestList> for PUR messages
and an XML <responseList> for PUA messages. These XML elements are as defined in Annex C.

5.2.6 Restrictions on AVP values

5.2.6.1 Auth-Request-Type

This AVP shall only take the value AUTHORIZE_ONLY for this application.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 45

5.2.6.2 Auth-Session-State AVP

This AVP shall only take the value STATE_MAINTAINED for this application.

5.3 Procedures to be used with Diameter messages

5.3.1 Introduction

Clause 4.2.7 describes the generic behaviour of a Gocap transport. This clause describes how that behaviour is
enhanced to support Gocap signalling over a Diameter connection. Diameter distinguishes between transport
connections, which enable peers to exchange Diameter messages, and sessions, which are logical associations at the
application layer, in this case between Gocap masters and slaves, identified by the Session-Id AVP. For the purposes of
the present document, it is assumed that the Diameter transport connections are already established over a reliable
transport and with appropriate security.

Normative
Normative

restrictor_status,
comms_error

get_audit

active_restrictions,
restrictor_status,
comms_error

active_restrictions,
restrictor_status

new ,set_rate,
audit, halt

open, close, new ,
set_rate, halt

up, dow n,
use_channel,
restrictor_status

AAR,PNR,STR,ASA
AAA,PNA,STA,ASR

AAA,PNA,STA,ASRAAR,PNR,STR,ASA

Diameter

GSlave
/*Diameter*/GMaster

/*Diameter*/

1(2)Block GocapTransport

mdiam
sdiam

GMSAP GSSAP

GMSM GSSM

Figure 21: GocapTransport modified to support Diameter

5.3.2 Diameter ChannelManager

The channel manager for Diameter is the same as that specified in Clause 4.2.7.2, except that it creates a DiameterShim,
if one does not already exist, in response to a open(,"diameter") signal, see Figure 22.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 46

There is a single
channel manager

There is one DiameterShim for
each controlled GOCAP Slave

GMSM

comms_error,
restrictor_status,
active_restrictions

AAA,PNA,STA,ASR
err,RAR

mdiam

diameter

AAR,PNR,STR,ASA

open

use_channel

new ,
set_rate,
halt, close

use GocapSignals;

close_channel

new _ref,
get_audit,

GMSAP

up,dow n,
restrictor_status

diameterShim

ChannelManager
/* for diameter */

comms_error

get_audit

/* Local signals */
SIGNAL
 close_channel(PId),
 new _ref(PId);

1(1)Block GMaster

Figure 22:Transport block of a Gocap master using Diameter

5.3.3 Diameter Shim

The Diameter Shim is responsible for maintaining the application session between the GOCAP Master and the GOCAP
Slave. This session may be a concatenation of a number of Diameter application sessions.

5.3.3.1 Diameter Shim data

The Diameter Shim shall maintain the following data:

• myID : The GOCAP ID of the master, passed to the Diameter Shim on instantiation.

• sigList : A list of one or more restriction signatures that make up the scope of the session, passed to the
DiameterShim on instantiation. A slave will refuse to create restrictions that are incompatible with the
restriction scope agreed at session initiation.

• clientList : a database of references to CDRestriction entities that are using this shim. The first CDRestriction
entry is passed to the Diameter Shim on instantiation. This list includes all the entities that need to be notified
of changes in the session state.

• sessionID : This is created by the Diameter Shim on instantiation and is updated whenever a new Diameter
session is created. The sessionID shall be globally and eternally unique and shall be used to form the
Session-ID AVP.

5.3.3.2 Diameter shim behaviour

The Diameter Shim is responsible for a GOCAP application session, which may extend over multiple concatenated
Diameter sessions. The GOCAP application session has two main states, "up" and "down" which reflect the state of
communication between the GOCAP Master and the GOCAP Slave. There are three other transient states,
"opening_down", and "wait_close", which may be thought of as sub states of "down", and "opening_up", which may be
thought of as a sub state of "up".

On instantiation, the Diameter Shim shall create an AAR message, using its sigList to generate the Auth-Scope AVP,
and send it to the GOCAP Slave. It shall then start timer T10 and enter the state "opening_down".

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 47

The behaviour of the Diameter Shim in each state shall be as follows:

In state "opening_down":

• It shall send a down signal in response to any new, set_rate or halt signals received from a CDRestriction.

• When a PUA message arrives, if the PUA Session-ID does not match the current local sessionID, discard the
message otherwise, if the PUA Result-Code is set to DIAMETER_SUCCESS then change to state up.

• It shall add the details of any new CDRestriction it receives via a new_ref signal to its clientList.

• If T10 expires, the Diameter Shim shall set timer T12, send a comms_error(DiameterTimeout10) signal to the
management and enter the state "down".

• If an AAA message is received, the Diameter shim shall reset timer T10 and inspect the value of the
Result-Code AVP. If the Result-Code has value:

 DIAMETER_SUCCESS:
The Diameter Shim shall set timer T13, send an up signal to each of the CDRestrictions in the clientList
and enter state "up".

 DIAMETER_PARTIAL_SUCCESS:
The Diameter Shim shall set timer T13, send an up signal to each of the CDRestrictions in the clientList,
send a comms_error(PartialScopeDeclined) signal to the management system and enter state "up".

 else:
The Diameter Shim shall set timer T12, send a comms_error(DiamSessionRejected) signal to the
management and enter the state "down".

• If an ASR message is received the Diameter Shim shall send a down signal to each of the CDRestrictions in its
clientList, send an ASA message to the slave, increment the sessionID in accordance with [2], set timer T12
and enter state "down".

• If a close signal is received, remove the sender from the clientList and, if the client list is now empty, the
Diameter shim shall set timer T14, send an STR message to the slave and enter state "wait_close".

In state "down":

• It shall send a down signal in response to any new, set_rate or halt signals received from a CDRestriction.

• When a PUA message arrives, if the PUA Session-ID does not match the current local sessionID, discard the
message otherwise, if the PUA Result-Code is set to DIAMETER_SUCCESS then change to state up.

• It shall add the details of any new CDRestriction it receives via a new_ref signal to its clientList.

• If T12 or T13 expires, the Diameter Shim shall set timer T10, send an AAR signal to the slave and enter the
state "opening_down".

• If an AAA message is received, the Diameter shim shall inspect the value of the Result-Code AVP. If the
Result-Code has value:

 DIAMETER_SUCCESS:
The Diameter Shim shall set timer T13, send an up signal to each of the CDRestrictions in the clientList
and enter state "up".

 DIAMETER_PARTIAL_SUCCESS:
The Diameter Shim shall set timer T13, reset timer T, send an up signal to each of the CDRestrictions in
the clientList, send a comms_error(PartialScopeDeclined) signal to the management system and enter
state "up".

 else:
The Diameter Shim shall send a comms_error(DiamSessionRejected) signal to the management

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 48

• If an ASR message is received the Diameter Shim shall send a down signal to each of the CDRestrictions in its
clientList, send an ASA message to the slave, increment the sessionID in accordance with [2], set timer T12
and enter state "down".

• If a close signal is received, remove the sender from the clientList and, if the client list is now empty, the
Diameter shim shall set timer T14, send an STR message to the slave and enter state "wait_close".

In state "up":

• Handle new, set_rate, halt and audit signals as described in clause 5.3.3.3.

• When a PUA message arrives, if the PUA Session-ID does not match the current local sessionID, the Diameter
Shim shall discard the message, otherwise, if the PUA Result-Code is set to DIAMETER_SUCCESS then the
Gocap Shim shall extract the GOCAP-Body AVP and, for each of the entries in the responseList element, send
a restrictor_status(rid, status) signal to the relevant CDRestrictor.

• It shall add the details of any new CDRestriction it receives via a new_ref signal to its clientList and send an
up signal to that CDRestriction.

• If T11 expires, the Diameter Shim shall set timer T12, send a down signal to each of the CDRestrictions in its
clientList and enter the state "down".

• If an ASR message is received the Diameter Shim shall send a down signal to each of the CDRestrictions in its
clientList, send an ASA message to the slave, increment the sessionID in accordance with [2], set timer T12
and enter state "down".

• If a close signal is received, remove the sender from the clientList and, if the client list is now empty, the
Diameter shim shall set timer T14, send an STR message to the slave and enter state "wait_close".

• If T13 expires, the Diameter Shim shall set timer T10, send an AAR signal to the slave and enter the state
"opening_up".

In state "opening_up":

• Handle new, set_rate, halt and audit signals as described in clause 5.3.3.3.

• When a PUA message arrives, if the PUA Session-ID does not match the current local sessionID, the Diameter
Shim shall discard the message, otherwise, if the PUA Result-Code is set to DIAMETER_SUCCESS then the
Gocap Shim shall extract the GOCAP-Body AVP and, for each of the entries in the responseList element, send
a restrictor_status(rid, status) signal to the relevant CDRestrictor.

• It shall add the details of any new CDRestriction it receives via a new_ref signal to its clientList and send an
up signal.

• If T10 expires, the Diameter Shim shall set timer T12, send a down signal to each of the CDRestrictions in its
clientList and enter the state "down".

• If an AAA message is received, the Diameter shim shall reset timer T10 and inspect the value of the Result-
Code AVP. If the Result-Code has value:

 DIAMETER_SUCCESS:
The Diameter Shim shall set timer T13 and enter state "up".

 DIAMETER_PARTIAL_SUCCESS:
The Diameter Shim shall set timer T13, send a comms_error(PartialScopeDeclined) signal to the
management system and enter state "up".

 else:
The Diameter Shim shall send a comms_error(DiamSessionRejected) signal to the management , set
timer T12 and enter state "down"

• If an ASR message is received, the Diameter Shim shall send a down signal to each of the CDRestrictions in
its clientList, send an ASA message to the slave, increment the sessionID in accordance with [2], set timer T12
and enter state "down".

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 49

• If a close signal is received, remove the sender from the clientList and, if the client list is now empty, the
Diameter shim shall set timer T14, send an STR message to the slave and enter state "wait_close".

In state "wait_close":

• If T14 expires, the Diameter Shim shall terminate.

• If an ASA message is received, the Diameter Shim shall terminate.

5.3.3.3 Generating PUR messages

PUR messages carry GOCAP commands (new, set_rate, halt and audit) between Master and Slave. A PUR message
may contain more than one command and so there are two possibilities open to an implementation; send one PUR
message for each individual new, set_rate, halt or audit request it receives or send one PUR message containing data for
multiple Gocap requests. The first option is simplest but, because a Gocap Master may have multiple restrictions on the
same slave, generating one diameter message per restriction every time the Control Distribution updates may be an
unacceptable waste of resources. The solution is to define a flag, building, which is false unless the Diameter shim is
currently assembling data for a PUR message. When the flag is true, gocap requests will be cached until a timer expires,
at which point to PUR message containing one or more gocap commands is sent and the building flag is set to false.

There is no problem with sending multiple commands in the same PUR message if the commands are for different
restrictions. If there are multiple commands for a single restriction however, there may be an issue as there is no explicit
ordering of individual commands within a single PUR message. This is solved by using the actions described in Table 9
(those marked "N/A" are message combinations that cannot occur).

Table 9: Handling multiple requests with the same restriction ID

Initial
command

Subsequent
command

Safe Actions

new any N/A
set_rate new N/A
set_rate set_rate Replace the initial command with the subsequent command.
set_rate halt Replace the set_rate with the halt.
halt new Immediate despatch of the PUR containing the halt request and putting the new request in

the next PUR (see note)
halt set_rate N/A
halt halt N/A
NOTE: In principle we could replace the halt with the new, but the new may fail (e.g. due to scope violation) thus

leaving the original restriction in place. Triggering immediate despatch of the PUR with halt and putting the
new in the next PUR is the only safe solution.

The behaviour of the Diameter Shim in states "up" and "opening_up" shall be as follows:

When a new, set_rate, halt or audit signal is received and the building flag false is false then the Diameter Shim shall:

• Set the building flag to true.

• Set the timer T15.

• Cache the signal data.

When a new, set_rate, halt or audit signal is received and the building flag is true then the Diameter Shim shall:

• if the new request does not have the same restriction ID as a cached one or is an audit request, add it to the
cached requests;

• if the new request has the same restriction ID as a cached one and Table 9 allows replacement, replace the
cached request with the new request;

• if the new request has the same restriction ID as a cached one and Table 9 does not allow replacement,
generate the PUR message data based on the cached data and send to the slave, set timer T11, move the cached
request data to the messageDatabase indexed via the PUR message End-to-End Identifier, set timer T15 and
cache the new request;

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 50

• if the timer T15 expires, generate the PUR message data based on the cached data and send to the slave, set
timer T11, set building flag to false and move the cached request data to the messageDatabase, indexed via the
PUR message End-to-End Identifier.

Generating the PUR message from the cached results is a straightforward mapping of the data in the requests to the per
request data elements described in the XML for the Gocap-Body AVP.

5.3.4 Diameter Listener

The DiameterGocapListener listens for Diameter messages which are destined for that GOCAP Slave, see Figure 23. It
is responsible for instantiating Diameter Message Handlers to process messages between Diameter and the Restrictor
Manager. Each Diameter Message Handler represents a Diameter session. The Diameter Listener maintains a database
of Diameter Session Handlers which it can search on the basis of session-ID or origin-host. It shall also keep track of
the claimed scope of each current session.

SigList ::= SEQUENCE OF Signature;
SIGNAL new _sigs(SigList);

comms_error

restrictor_status

active_restrictions,
restrictor_status

new ,
set_rate,
halt, audit

PNA

PNR,
close,

new _sigs

AAR,PNR,STR,ASA

AAA,PNA,STA,ASR

DiamSessHandler
/* One process per
GOCAP Master */

DiameterListener
/* Listens for Diameter

messages. */

1(1)Block GSlave

diameter

sdiam

GSSAP

GSSM

Figure 23: Transport block of a Gocap slave using Diameter

5.3.4.1 Diameter session initiation

When the Diameter Listener receives an AAR message, it shall examine the Origin-Host AVP, Session-ID AVP and the
Auth-Scope AVP(s). If the Session-ID does not correspond to a known session, it is a new session request, otherwise it
is a session renewal.

In the case of a new session, the Diameter Listener shall examine its Diameter Session database to see if a session
already exists for that origin-host. If one is found then that session shall be terminated by sending an ASR (with the
appropriate Session-ID AVP) to the origin-host, the restrictions associated with that session shall be deleted by sending
a close signal to the corresponding Diameter Session Handler and the data associated with that session shall be removed
from the Diameter Session database including the associated scope granted to that session and the per session timer, Ts.

The Diameter Listener shall then parse the Auth-Scope AVPs and generate a list of accepted signatures. The list of
accepted signatures consists of those signatures that do not overlap with signatures already granted to other GOCAP
sessions and defines the scope of the session.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 51

If none of the signatures in the AAR Auth-Scope AVP are granted, the request has failed and the Result-Code AVP of
the AAA shall be set to DIAMETER_AUTHORIZATION_REJECTED (=5003) and the AAA shall not contain an
Auth-Scope AVP.

If all of the signatures are granted, then the request has succeeded and the Result-Code AVP of the AAA shall be set to
DIAMETER_SUCCESS (=2001) and the Auth-Scope AVP shall contain an AuthScopeList element containing the
granted scope.

If only some of the signatures are granted, the request has been partially fulfilled and the Result-Code AVP of the AAA
shall be set to DIAMETER_ LIMITED_SUCCESS (=2002) and the Auth-Scope AVP shall contain an AuthScopeList
element containing the granted scope.

In all cases where the request has not failed, the Diameter Listener shall:

• set the Authorization-Lifetime AVP and Auth-Grace-Period AVP of the AAA shall be set to appropriate
values;

• set the per session timer Ts to expire after Authorisation-Lifetime + Auth-Grace-Period; and

• if it is a new session, create a new Diameter Session Handler, otherwise, send a new_sigs signal containing the
list of accepted signatures to the existing Diameter Session Handler.

5.3.4.2 Diameter session termination

At the slave, a session may be terminated in three ways.

1) An STR message is received from the Gocap Master.

2) The timer Ts expires.

3) An AAR message is received with a new session-ID, any existing session with the same origin-host will be
terminated (as described in the previous clause).

When an STR is received, the Diameter Listener shall:

• send an STA message to the origin-host;

• send a close signal to the Diameter Session Handler handling the specified session if it exists; and

• delete the data relating to the session and release any scope granted to the session.

When the timer Ts expires, the Diameter Listener shall:

• locate the data associated with the session to which Ts belongs;

• send an ASR message to the Gocap Master;

• on receipt of the ASA from the GOCAP master, send a close to the Diameter Session Handler handling the
session.

The behaviour when the Diameter Listener receives an AAR from a host with an open session is defined in the previous
clause.

5.3.4.3 Gocap commands

The Gocap commands, new, set_rate, halt and audit are transported in PUR messages. When a PUR message arrives at
the Diameter Listener, it shall verify that the session is known and is valid (i.e. it is not a session for which an ASR has
been sent). If the session is known and valid, the PUR message shall be passed to the session handler for that session,
otherwise the Diameter Listener shall send as PUA message with the Result-Code AVP set to
DIAMETER_UNKNOWN_SESSION_ID and shall not include the GOCAP-Body AVP.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 52

5.3.5 Diameter Session Handler

The Diameter Session Handler is responsible for extracting the Gocap commands from PUR messages and collating the
results, see Figure 23. The Diameter Session Handler is instantiated by the Diameter Listener when the Diameter
session between the master and the slave is initiated. On instantiation, the Diameter session handler is proved with a list
of valid signature scopes and the Master GocapID appropriate to the session.

When a PUR message arrives at the session handler it shall:

1) parse the XML body to extract the requestList and the GOCAP ID of the Master.

2) initialise XML data for the responseList.

3) For each new restriction request in the newRestrictions element of the XML requestList:

a) Build a Restriction data structure, (The XML data structure "Restriction", defined in Annex C, is very
similar to the ASN.1 data structure "Restriction", defined in Annex A. The Gocap ID that is missing
from the XML Restriction can be obtained from requestList.)

b) Verify that the restrictor signatures are within the scope for this session.

c) If the restriction request is in scope, use the extracted data to send a new signal to the restrictor
manager; capturing the resulting restrictor_status signal to generate data for the ResponseList.

d) Update the response list entry for this request.

4) For each leak rate update request in the restrictionUpdates element of the XML requestList:

a) Build a new_rate(i RestrictionID, r Leakrate) signal from the XML data.

b) Send the new_rate signal to the restrictor manager.

c) Capture the resulting restrictor_status signal and update the response list entry for this request.

5) For each restrictor deletion request in the deletions element of the XML requestList:

a) Build a halt(i RestrictionID) signal from the XML data.

b) Send the halt signal to the restrictor manager.

c) Capture the resulting restrictor_status signal and update the response list entry for this request.

6) Generate the Gocap-Body XML data for the PUA message using the response list data generated. The
Result-Code AVP of the PUA message generated by session handler shall always be DIAMETER_SUCCESS
(=2001).

If a new_sigs signal is received by the Diameter Session Handler, then the local list of valid signature scopes is replaced
by those contained in the new_sigs signal.

If a close signal is received by the Diameter Session Handler then it shall:

• send an audit signal to the restrictor manager, specifying the GocapID of the Gocap Master for this session;

• wait for the resulting restriction_list signal;

• for each restriction in the restriction list, extract the restriction ID, i, and send a halt(i) signal to the Restrictor
Manager; and

• terminate.

5.3.6 GOCAP Timers

Table 10 describes the timers used to support Gocap over Diameter.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 53

Table 10: Timers used to support Gocap over Diameter

Timer Process Location Purpose
T10 DiameterShim Master Maximum period to wait for an initial AA-Answer after sending

an AA-Request to the remote slave. When T10 expires, the
Master will enter the "down" state.

T11 DiameterShim Master Maximum period to wait for an answer message after sending
the request in the "up" state. When T11 expires, the Master will
enter the "down" state.

T12 DiameterShim Master Delay after entering the "down" state before attempting to
restart the session using a AA-Request.

T13 DiameterShim Master Time to next AA-Request attempt - This is like an application
session heartbeat.

T14 DiameterShim Master Maximum time to stay in wait_close state for an ST-Answer
message. When this timer expires, the GocapShim shall delete
itself.

T15 DiameterShim Master The maximum time to wait between receiving new, set_rate,
halt or audit signal and sending the PUR message containing
the request to the slave.

Ts DiameterListener Slave The duration of this timer is the Authorisation-Lifetime + Auth-
Grace-Period. If the Master does not renew an authorization
session before this timer expires, the session is lost.

5.4 Diameter MSC charts
This clause contains a number of message sequence charts providing informative illustration of some GOCAP scenarios
when used with Diameter transport.

5.4.1 Simple Diameter session

Figure 24 provides a detailed view of the creation of a Diameter transport connection, and GOCAP's use of the transport
connection to authorise and then to use a Diameter session for transport of GOCAP application messages.

Figure 24 does not show a complete end-to-end scenario. Instead it concentrates on the processes GocapShim (at the
master) and GocapListener and SessionHandler (at the slave) and their use of Diameter. The ChannelManager and
RMProcess processes are shown, and signals to and from CDRestriction processes on the GOCAP Master are shown, to
provide a context for signals and messages at the transport layer.

The states shown as green ellipses are states of the Diameter connection state machines described in section 5.6 of
RFC 3588 [2]. RFC 3588 [2] does not specify details of the establishment of the network connection (IP), its security
mechanism (IPsec) or the transport connection (SCTP) because these are out of scope of Diameter. This connection
establishment processing is summarised in the exchange of Conn-Req and Conn-Ack. Diameter processing starts with
the exchange of CER and CEA, taking the Diameter transport connection to state Open. At this stage, GMaster and
Gslave peer Diameter transport state machines are in Diameter state Open. They are able to carry application messages
to open, use and close Diameter sessions.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 54

closed

Wait-Conn-Ack

closed
Conn-ReqStart

Conn-Ack

CER

R-Open
CEA

Wait-I-CEA

I-Open

AAR

opening_down

Diameter client
connection

Diameter server
connection

idle

AAA

PNR

up

GocapShim
encapsulating

Diameter
client session

GocapListener

Channel
Manager

open

use_channel
(chanID)

create

up

F
ro
m
/T
o
 C
D
R
es
tr
ic
tio
ns

new

RMProcess

new

idle

create

idle

SessionHandler

PNR

Stop DPR

closed

closing DPA

closed

wait_close

STR

STA

PNA

PNR

PNA

close

restrictor_status
set_rate

update

restrictor_status

close
audit

active_
restrictions

wait_f inal
_audit

PNA

PNR

PNA

PNR

PNA

halt

haltPNR

PNA

restrictor_status

restrictor_status

wait_new

wait_update

wait_halt

ready

restrictor_status

restrictor_status

close_channel

Figure 24: Use of Diameter transport

The states shown as blue ellipses are states of GOCAP SDL processes described in clause 4. States of GocapShim and
of SessionHandler respectively can be identified with states of the stateful client state machine and stateful server state
machine required by section 8.1 of RFC 3588 [2] for a Diameter authorisation session, although the state names are not
identical. Table 11 shows the correspondence.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 55

Table 11: Correspondence between GOCAP states and RFC 3588 [2] authorisation session states

 GOCAP Section 8.1/
RFC 3588 [2]

Client
(GocapShim)

Non-existent
(pre-creation);

down
Idle

opening_down Pending
up/opening_up Open

wait_close Discon

Server
(SessionHandler)

Non-existent
(pre-creation,

post-
termination)

Idle

idle Open

In operation, and as described in detail in clause E.1, a new CDRestriction sends signal open to ChannelManager. If
there is no existing GOCAP channel to the slave responsible for restricting this source, ChannelManager creates a new
GocapShim. At initialisation, GocapShim sends an AA-Request (AAR) message, including the restriction scope, via
Diameter transport. GocapShim transitions to state "opening". The arrival and authorisation of the AAR at the
GocapListener causes creation of a SessionHandler process on the slave which will handle subsequent GOCAP
application messages at the slave end for this session (a single GOCAP master-slave relationship). GocapListener sends
an AA-Answer (AAA). The arrival of the AAA at the master causes the GocapShim to transition to state "up".

At this stage a Diameter session is authorised and available for transmission of GOCAP application messages
encapsulated in Diameter PUR/PUA messages between the GOCAP master and the GOCAP slave.

GocapShim and SessionHandler are peers for the exchange of GOCAP application messages encapsulated in Profile
Update Request (PUR) and Profile Update Answer (PUA) messages, though GocapShim communicates directly with
Diameter at the master whilst messages are routed via GocapListener at the slave.

For example, in the first example of a PUR message above, CDRestriction sends signal new(r) to GocapShim, which
encapsulates it as a PUR and sends it via Diameter transport and GocapListener to SessionHandler. SessionHandler
decapsulates it and forwards the "payload" (the new(r) signal) to RMProcess. RMProcess creates the Restrictor and
returns its identifier in signal restrictor_status to SessionHandler. SessionHandler encapsulates the restrictor_status
signal in the PUA response and sends it via GocapListener to GocapShim. GocapShim decapsulates it and sends signal
restrictor_status to the relevant CDRestriction process.

In the second example of a GOCAP application-layer message using the transport, a CDRestriction sends signal
set_rate with two parameters, a RestrictionID and a new leak rate. GocapShim encapsulates it into a PUR and sends via
Diameter and GocapListener to SessionHandler. SessionHandler decapsulates the payload and forwards to the
RMProcess. A PUA transport-level acknowledgement is returned by SesssionHandler including a restrictor_status
signal which is decapsulated by GocapShim at the master and forwarded to the CDRestriction.

In the third example message exchange, CDRestriction sends signal halt to GocapShim. Transport-level processing is
similar to that already discussed for new and set_rate.

Finally a close signal is shown, from a CDRestriction to the GocapShim. If this CDRestriction is the only remaining
CDRestriction using the GocapShim, the GocapShim sends Session Termination Request (STR) via Diameter to
GocapListener, and transitions to state "pending". Processing of STR differs from processing of PUR, because STR
affects the status of the session rather than merely using the session. On receiving STR, GocapListener sends close to
SessionHandler, returns Session Termination Answer (STA) to GocapShim, and terminates. On receiving STA,
GocapShim terminates.

On receiving signal close, SessionHandler audits RMProcess for active restrictions and halts any which are found. In
the example shown, there are no active restrictions, so SessionHandler may terminate immediately.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 56

6 GOCAP over SIP

6.1 General
This clause describes an implementation of GOCAP where GOCAP information is embedded in the SIP protocol in the
body of the SUBSCRIBE and NOTIFY methods described in RFC 3265 [6].

NOTE: This implementation is primarily - but not exclusively - intended to be used between entities that are
already supporting the SIP protocol for other purposes (e.g. SIP Application Servers).

The GOCAP Master shall implement the role of a notifier as defined in RFC 3265 [6].

The GOCAP Slave shall implement the role a subscriber as defined in RFC 3265 [6].

Both entities shall support the "congestion_control" event package defined in Annex B.

6.2 Overview

6.2.1 GOCAP Slave

6.2.1.1 Subscription

GOCAP slaves manage a list of GOCAP Masters with which they need to subscribe to the "congestion_control" event.
A GOCAP slave may also associate a scope to each of the GOCAP Masters in the list. This scope determines the list of
signatures in a restrictor that the GOCAP slave can accept from the GOCAP master.

When the system is started a GOCAP slave shall send an initial SUBSCRIBE request to each of the GOCAP masters in
the list. A GOCAP slave shall also send an initial SUBSCRIBE request each time a new GOCAP Master is added to the
list.

NOTE 1: Optimization of the subscription procedures using resource lists (RFC 4662 [i.2]) and/or implicit
subscriptions is outside the scope of the present specification release.

On sending a SUBSCRIBE request, the GOCAP Slave shall populate the header fields as follows:

1) a Request URI set to the SIP URI that identifies the entity acting as the GOCAP Master;

2) a From header field set to the GOCAP Slave's SIP URI;

3) a To header field set to the SIP URI that identifies the entity acting as the GOCAP Master;

4) an Expires header field set to a network specific value desired for the duration of the subscription;

5) a Contact header field set to contain the IP address or FQDN of the entity where the GOCAP slave resides;

6) an Event header field set to the "congestion_control" event package;

7) the Accept header field shall include the MIME type identifier that corresponds to the registered MIME type
for XML documents representing restrictors (application/vnd.etsi.overload-control-policy-dataset+xml).

NOTE 2: Sending of scope information in the SUBSCRIBE request is not supported in the present document
release.

Upon receipt of a 2xx response to the SUBSCRIBE request, the GOCAP slave shall store the information for the
established dialogue and the expiration time as indicated in the Expires header field of the received response.

The GOCAP slave shall automatically refresh the subscription when half of the time indicated by the Expires header
field has expired. If a SUBSCRIBE request to refresh a subscription fails with a non-481 response, the GOCAP slave
shall still consider the original subscription valid for the duration of the most recently known "Expires" value according
to RFC 3265 [6]. Otherwise, the GOCAP slave shall consider the subscription invalid and start a new initial
subscription according to RFC 3265 [6].

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 57

6.2.1.2 Receiving Notifications

Upon receipt of a NOTIFY request on the dialogue which was generated during subscription to the
"congestion_control" event package, the GOCAP slave shall look for a message body with a content-type header field
indicating "application/vnd.etsi.overload-control-policy-dataset+xml". Other message bodies shall be ignored.

The GOCAP slave shall parse the XML document contained in the message body and process each element in the
<requestList> element sequentially. Syntactically invalid elements shall be ignored and shall not cause the processing of
the XML document to stop as long as other elements can be extracted from the XML document.

For each element in the sequence <newRestrictions>, provided that the addresses in the
<restriction>.<flowList[*]>.<signature>.<appDests> fields are in scope, the GOCAP slave shall
create a new restrictor with the contents of the other sub-elements.

NOTE 1: The GOCAP Master may compare the addresses contained in the <appDests> field with the source
address of the NOTIFY request and/or the contents of the P-Asserted-Identity header field to determine
whether these addresses are in scope.

For each element in the sequence <restrictionUpdates> for which the <resID> is already known, the GOCAP slave shall
update the restrictor description with the new leak rate from the <leakrate> field.

For each element in the sequence <deletions> the GOCAP slave shall remove the restrictor information associated to
the restrictor identifier.

In case an error occurs during the processing of any element in the <requestList> the appropriate <error> sub-element is
added to the corresponding element in the <responseList>. This shall not cause the processing of the XML document to
stop.

NOTE 2: When the GOCAP slave receives the NOTIFY request with a Subscription-State header field containing
the value "terminated", the GOCAP slave considers the subscription to the "congestion_control" event
package terminated (i.e. as if the GOCAP slave had sent a SUBSCRIBE request to the GOCAP master
with an Expires header field containing a value of zero).

After all elements have been processed, the GOCAP slave shall return a 200 OK response to the NOTIFY request. The
GOCAP slave shall append a message body to the 200 OK response. The content-type header field shall indicate
"application/vnd.etsi.overload-control-policy-dataset+xml" and the message body shall contain an XML document with
a <responseList> element.

6.2.2 GOCAP Master

6.2.2.1 Subscription

If the request comes from an unauthorised or unexpected source, the GOCAP Master shall generate a "403 forbidden"
response to the SUBSCRIBE request.

If the request comes from an authorised source the GOCAP Master shall:

1) Determine whether the GOCAP Slave is willing to subscribe or unsubscribe to the "congestion_control" event:

- If the Expires header field is greater than zero, create a subscription context.

- If the Expires header field is set to zero, remove the associated subscription context.

2) Generate a "200 OK" response to the SUBSCRIBE request with the following settings:

- an Expires header field, set to either the same or a decreased value as the Expires header field in
SUBSCRIBE request; and

- the Contact header field set to an identifier uniquely associated to the SUBSCRIBE request and
generated within the GOCAP master, that may help the GOCAP master to correlate refreshes for the
SUBSCRIBE.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 58

3) In case of an initial subscription, determine the list of restrictors applicable to the GOCAP slave, create an
XML document gathering all applicable restrictors and send a NOTIFY request following the procedures
described in clause 6.2.2.2. If no applicable restrictor is active when the subscription request is received, an
empty document is attached to the NOTIFY request.

6.2.2.2 Notification

Each time a restrictor is created, modified or deleted the GOCAP Master shall send a NOTIFY request to all GOCAP
slaves having subscribed to the congestion_control event if the restrictor is applicable to them.

Upon creation, removal or modification of a restrictor, the GOCAP Master shall determine the list of GOCAP slaves to
which the restrictor is applicable among those that have an active subscription to the congestion_control event. The
GOCAP Master shall then create an appropriate XML document and transmit it to each GOCAP slave using a NOTIFY
request. If multiple restrictors applicable to the same GOCAP slave need to be manipulated almost at the same time the
GOCAP Master should consider sending a single NOTIFY request.

When sending a NOTIFY request to a GOCAP slave, the GOCAP Master shall:

1) set the Request-URI and the Route header field to the saved route information during subscription;

2) set the Event header field to the "congestion_control" value;

3) in the body of the NOTIFY request, include a <restrictionList> with as many as elements as required to
represent the restrictors to be created, modified or removed. Restrictors to be removed are represented with a
<duration> element set to 0.

The GOCAP Master shall then wait for a 200 OK response. If the 200 OK from the slave is not received, or if the
200 OK contains a <responseList> element with 1 or more entries indicating an error, the GOCAP Master shall assume
that the restrictions have not been applied.

If the NOTIFY request fails (as defined in RFC 3265 [6]) the GOCAP Master shall consider the subscription terminated
and remove all associated context information. If a non 200-class response with a retry-after header field is received, the
GOCAP Master shall resend the request after the specified time.

In case a GOCAP slave is removed from the list of authorized sources or a subscription context needs to be deleted as a
result of a management action, GOCAP Master shall send a NOTIFY request to the GOCAP slave with the
"Subscription-State" header field set to "terminated" to this GOCAP slave.

6.3 Detailed procedures

6.3.1 Introduction

Clause 4.2.7 describes the generic behaviour of a Gocap transport. This clause describes how that behaviour is
enhanced to support Gocap signalling using SIP. For the purposes of the present document, it is assumed that the SIP
messages are carried over a reliable transport and with appropriate security.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 59

Normative
Normative

restrictor_status,
comms_error

get_audit

active_restrictions,
restrictor_status,
comms_error

active_restrictions,
restrictor_status

new ,set_rate,
audit, halt

open, close, new ,
set_rate, halt

up, dow n,
use_channel,
restrictor_status

NOT, SIP_Resp
SUB,SIP_resp

SUB, SIP_RespNOT, SIP_Resp

SIP

GSlave
/*SIP*/GMaster

/*SIP*/

1(2)Block GocapTransport

msip
ssip

GMSAP GSSAP

GMSM GSSM

Figure 25: GocapTransport to support SIP

6.3.2 GOCAP Master

6.3.2.1 SIP ChannelManager

The channel manager for SIP is the same as that specified in clause 4.2.7.2, with the following additional capabilities;

• It creates a SIPShim instance, if one does not already exist, in response to an open(,"sip_sub_not",) signal, see
Figure 26.

• It routes incoming SUBSCRIBE requests to the appropriate SIPShim instance.

On receipt of an incoming SUBSCRIBE request, the channel manager shall check whether the value of the From header
field corresponds to a SIPShim instance, otherwise it shall return a SIP 403 "Forbidden" response.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 60

There is one SIPShim for
each controlled GOCAP Slave

There is a single
channel manager

SUB

1(1)

/* Local signals */
SIGNAL
 close_channel(PId),
 new _ref(PId);

get_audit

comms_error

ChannelManager
/* for SIP */

SIPShim

up,dow n,
restrictor_status

GMSAP

new _ref,
get_audit,

close_channel

use GocapSignals;

new ,
set_rate,
halt, close

use_channel

open

NOT

mdiam

SIP_Resp

comms_error,
restrictor_status,
active_restrictions

GMSM

SIP_Resp

Block GMaster

Figure 26: Transport block of a Gocap master using SIP

6.3.2.2 SIP Shim

The SIP Shim is responsible for maintaining the application session between the GOCAP Master and the GOCAP
Slave. This session may be a concatenation of a number of SIP event subscriptions. The behaviour of the SIP shim shall
comply with the procedures described in RFC 3265 [6].

6.3.2.2.1 SIP Shim data

The SIP Shim shall maintain the following data:

• myID: The GOCAP ID of the master, passed to the SIP Shim on instantiation.

• sigList: A list of one or more restriction signatures that make up the scope of the session, passed to the
SIPShim on instantiation. A slave will refuse to create restrictions that are incompatible with the restriction
scope.

• clientList: a database of references to CDRestriction entities that are using this shim. The first CDRestriction
entry is passed to the SIP Shim on instantiation. This list includes all the entities that need to be notified of
changes in the session state.

• peerID: This contains the identity of the slave in the form of a URI to be included in the To and From header
fields.

• SubscriptionID: This includes the "Call-ID" value and the "tag" used in the "From" header field of
SUBSCRIBE requests and the "To" header field of NOTIFY requests. This values are set by the
ChannelManager upon receipt of the initial SUSCRIBE request.

6.3.2.2.2 SIP shim behaviour

The SIP Shim has two main states, "up" and "down" which reflect the state of communication between the GOCAP
Master and the GOCAP Slave and two transient states "opening_down" ans "wait_close". On instantiation, the SIP
Shim shall start timer Tinit and enter the state "opening_down".

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 61

The behaviour of the SIP Shim in each state shall be as follows:

In state "opening_down":

• It shall send a down signal in response to any new, set_rate or halt signals received from a CDRestriction.

• It shall add the details of any new CDRestriction it receives via a new_ref signal to its clientList.

• If Tinit expires, the SIP Shim shall start timer Tguard, send a comms_error(TimeoutTinit) signal to the
management and enter the state "down".

• If a SUBSCRIBE request is received, the SIP shim shall:

- If the Expires header field is greater than zero, stop timer Tinit, send an "up" signal to each of the
CDRestrictions in the clientList and enter state "up" and request the Channel Manager to generate a
"200 OK" response to the SUBSCRIBE request with the following settings:

� an Expires header field, set to either the same or a decreased value as the Expires header field in
SUBSCRIBE request; and

� the Contact header field set to an identifier uniquely associated to the SUBSCRIBE request and
generated within the GOCAP master, that may help the GOCAP master to correlate refreshes for
the subscription.

- If the Expires header field is equal to zero, the SIP shim shall request the Channel Manager to return a
200 OK response, send a comms_error(abnormalEvent) signal to the management, start timer Tguard and
enter the state "down".

• If a close signal is received, remove the sender from the clientList and, if the client list is now empty, the SIP
shim shall start time Tclose and enter the "wait_close" state.

In state "down":

• It shall send a down signal in response to any new, set_rate or halt signals received from a CDRestriction.

• It shall add the details of any new CDRestriction it receives via a new_ref signal to its clientList.

• If Tguard expires, the SIP Shim shall start time Tclose and enter the "wait_close" state.

• If a SUBSCRIBE request is received, the SIP shim shall:

- If the Expires header field is greater than zero, stop timer Tinit, send an "up" signal to each of the
CDRestrictions in the clientList, start timer Tsub, enter state "up" and request the Channel Manager to
generate a "200 OK" response to the SUBSCRIBE request with the following settings:

� an Expires header field, set to either the same value as the Expires header field in the SUBSCRIBE
request or to Tsub if the received value is greater than Tsub; and

� the Contact header field set to an identifier uniquely associated to the SUBSCRIBE request and
generated within the GOCAP master, that may help the GOCAP master to correlate refreshes for
the subscription.

- If the Expires header field is equal to zero, the SIP shim shall request the Channel Manager to return a
200 OK response, send a comms_error(abnormalEvent) signal to the management, start timer Tguard and
enter the state "down".

• If a close signal is received, remove the sender from the clientList and, if the client list is now empty, the SIP
shim shall start time Tclose and enter the "wait_close" state.

 In state "up":

• Handle new, set_rate, halt and audit signals as described in clause 5.3.3.3.

• When a 200 OK response to a NOTIFY request arrives, the Gocap Shim shall extract the message body and,
for each of the entries in the responseList element, send a restrictor_status(rid, status) signal to the relevant
CDRestrictor.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 62

• It shall add the details of any new CDRestriction it receives via a new_ref signal to its clientList and send an
up signal to that CDRestriction.

• If Tsub expires, the SIP Shim shall set timer Tguard, send a down signal to each of the CDRestrictions in its
clientList and enter the state "down".

• If a non 200-class response to a NOTIFY request is received with a retry-after header field, the SIP Shim shall
resend the request after the specified time.

• If a SUBSCRIBE request with the Expires header field is set to zero is received, the SIP Shim shall send a
down signal to each of the CDRestrictions in its clientList, request the Channel Manager to send a 200 OK
response to the slave, set timer Tguard and enter state "down".

• If a close signal is received, remove the sender from the clientList and, if the client list is now empty, the SIP
shim shall timer Tguard, send a NOTIFY request with the "Subscription-State" header field set to
"terminated", start timer Tclose and enter the state "wait_close".

In state "wait_close":

• On expiry of Tclose, the SIPShim shall terminate.

• On receipt of a 200 OKresponse to a NOTIFY request the SIPShim shall terminate.

• If the NOTIFY request fails (as defined in RFC 3265 [6]) the SIP shim shall send a
comms_error(unableToClose) signal to the management and shall terminate.

• If a non 200-class response with a retry-after header is received, the SIP shim shall resend the request after the
specified time and restart time Tclose.

6.3.2.2.3 Generating NOTIFY messages

NOTIFY messages carry GOCAP commands (new, set_rate, halt and audit) between Master and Slave. A NOTIFY
request may contain more than one command and so there are two possibilities open to an implementation; send one
NOTIFY request for each individual new, set_rate, halt or audit request it receives or send one NOTIFY request
containing data for multiple Gocap request. The first option is simplest but, because a Gocap Master may have multiple
restrictions on the same slave, generating one SIP request per restriction every time the Control Distribution updates
may be an unacceptable waste of resources. The solution is to define a flag, building, which is false unless the SIP shim
is currently assembling data for a NOTIFY request. When the flag is true, gocap requests will be cached until a timer
expires, at which point to NOTIFY request containing one or more gocap commands is sent and the building flag is set
to false.

There is no problem with sending multiple commands in the same NOTIFY request if the commands are for different
restrictions. If there are multiple commands for a single restriction however, there may be an issue as there is no explicit
ordering of individual commands within a single NOTIFY request. This is solved by using the actions described in
Table 12 (those marked "N/A" are message combinations that cannot occur).

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 63

Table 12: Handling multiple requests with the same restriction ID

Initial
command

Subsequent
command

Safe Actions

New Any N/A
Set_rate New N/A
Set_rate set_rate Replace the initial command with the subsequent command.
Set_rate Halt Replace the set_rate with the halt.
Halt New Immediate despatch of the NOTIFY containing the halt request and putting the new

request in the next NOTIFY (see note).
Halt set_rate N/A
Halt Halt N/A
NOTE: In principle we could replace the halt with the new, but the new may fail (e.g. due to scope violation) thus

leaving the original restriction in place. Triggering immediate despatch of the NOTIFY with halt and putting the
new in the next NOTIFY is the only safe solution.

The behaviour of the SIP Shim in states "up" shall be as follows:

When a new, set_rate, halt or audit signal is received and the building flag false is false then theSIP Shim shall:

• Set the building flag to true.

• Set the timer T15.

• Cache the signal data.

When a new, set_rate, haltor audit signal is received and the building flag is true then the SIP Shim shall:

• if the new request does not have the same restriction ID as a cached one or is an audit request, add it to the
cached requests;

• if the new request has the same restriction ID as a cached one and Table 12 allows replacement, replace the
cached request with the new request;

• if the new request has the same restriction ID as a cached one and Table 12 does not allow replacement,
generate the NOTIFY request data based on the cached data and send to the slave, set timer T11, move the
cached request data to the messageDatabase indexed via the NOTIFY request End-to-End Identifier , set timer
T15 and cache the new request;

• if the timer T15 expires, generate the NOTIFY request data based on the cached data and send to the slave, set
timer T11, set building flag to false and move the cached request data to the messageDatabase, indexed via the
NOTIFY request End-to-End Identifier.

Generating the NOTIFY request from the cached results is a straightforward mapping of the data in the requests to the
per request data elements described in the XML document to be included in the message body.

The SIP shim shall then wait for a response to the NOTIFY request. If the NOTIFY request fails (as defined in
RFC 3265 [6]) the SIP shim shall enter the "down" state. If a non 200-class response with a retry-after header is
received, the SIP shim shall resend the request after the specified time.

6.3.3 GOCAP slave

6.3.3.1 SIP Listener

The SIPGocapListener listens for SIP messages which are destined for that GOCAP Slave, see Figure 27. It is
responsible for instantiating SIP Session Handlers to process messages between SIP and the Restrictor Manager. Each
SIP Session Handler represents a SIP dialogue. The SIP Listener maintains a database of SIP Session Handlers which it
can search on the basis of Call-ID, To or From header fields. It shall also keep track of the scope of each current
session.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 64

new _SUB

comms_error

GSSM

restrictor_status

active_restrictions,
restrictor_status

GSSAP

new ,
set_rate,
halt, audit

SIP_Resp

NOT,
close

NOT, SIP_Resp

sdiam

sip

SUB, SIP_Resp

1(1)

SIPListener
/* Listens for SIP

messages. */

SIPSessHandler
/* One process per
GOCAP Master */

Block GSlave

Figure 27: Transport block of a Gocap slave using SIP

6.3.3.1.1 SIP Session initiation

Upon receipt of an internal request to initiate a GOCAP session, the SIP Listener shall send a SUBSCRIBE request as
specified in clause 6.2.1.1.

The SIP Listener shall then wait for a response from the GOCAP Master.

If a 2xx response is received, the SIP Listener shall set the per session timer Ts to a value greater than the expiration
time contained in the 2xx response and create a new SIP Session Handler and the subscription timer Tsub to the half of
the value received in the expire header field.

If Tsub expires the SIP Listener shall send a SUBSCRIBE request to refresh the subscription.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 65

6.3.3.1.2 Session termination

At the slave, a session may be terminated in three ways:

• A NOTIFY request with the "Subscription-State" header field set to "terminated"is received from the Gocap
Master.

• The timer Ts expires.

• Management action.

When a NOTIFY request with the "Subscription-State" header field set to "terminated" is received, the SIP Listener
shall:

• send an 200 OK response to the Master;

• send a close signal to the SIP Session Handler handling the specified session if it exists; and

• delete the data relating to the session and release any scope granted to the session.

When the timer Ts expires, the SIP Listener shall:

• Locate the data associated with the session to which Ts belongs.

• Send an SUBSCRIBE request with the Expires header field is set to zero to the Gocap Master.

• On receipt of a 2XX response from the GOCAP master, send a close to the SIP Session Handler handling the
session.

6.3.3.1.3 Gocap commands

The Gocap commands, new, set_rate, halt and audit are transported in NOTIFY messages. When a NOTIFY message
arrives at the SIP Listener, it shall verify that it corresponds to an active subscription. If the subscription is known and
valid, the NOTIFY message shall be passed to the session handler for that dialogue, otherwise the SIP Listener shall
send an appropriate SIP 400- or 500-class response as specified in RFC 3265 [6].

6.3.3.2 SIP Session Handler

The SIP Session Handler is responsible for extracting the Gocap commands from NOTIFY messages and collating the
results, see Figure 27. The SIP Session Handler is instantiated by the SIP Listener when the SIP dialogue between the
master and the slave is initiated. On instantiation, the SIP session handler is proved with a list of valid signature scopes
and the Master GocapID appropriate to the dialogue.

When a NOTIFY message arrives at the session handler it shall:

• Parse the XML body to extract the requestList and the GOCAP ID of the Master.

• Initialise XML data for the responseList.

• For each new restriction request in the newRestrictions element of the XML requestList:

a) Build a Restriction data structure.

b) Verify that the restrictor signatures are within the scope for this session.

c) If the restriction request is in scope, use the extracted data to send a new signal to the restrictor
manager; capturing the resulting restrictor_status signal to generate data for the ResponseList.

d) Update the response list entry for this request.

• For each leak rate update request in the restrictionUpdates element of the XML requestList:

a) Build a new_rate(i RestrictionID, r Leakrate) signal from the XML data.

b) Send the new_rate signal to the restrictor manager.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 66

c) Capture the resulting restrictor_status signal and update the response list entry for this request.

• For each restrictor deletion request in the deletions element of the XML requestList:

a) Build a halt(i RestrictionID) signal from the XML data.

b) Send the halt signal to the restrictor manager.

c) Capture the resulting restrictor_status signal and update the response list entry for this request.

• Generate the XML body for the 200 OK response using the response list data generated.

If a new_sigs signal is received by the SIP Session Handler, then the local list of valid signature scopes is replaced by
those contained in the new_sigs signal.

If a close signal is received by the SIP Session Handler then it shall:

• send an audit signal to the restrictor manager, specifying the GocapID of the Gocap Master for this session;

• wait for the resulting restriction_list signal;

• for each restriction in the restriction list, extract the restriction ID, i, and send a halt(i) signal to the Restrictor
Manager; and terminate.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 67

Annex A (normative):
ASN.1 data types and signal definitions

A.1 ASN.1 definitions
GOCAPID ::= Octetstring;
 -- TBD after advice from NN&A experts
 -- How about a FQDN? How would that interact
 -- with DNS based load balancing?

Address ::= Octetstring;
 -- TBD after advice from NN&A experts

AddressList::=SEQUENCE OF Address ;

TransportType::=ENUMERATED{UDP,TCP,SCTP,...};

ApplicationAddress ::= Octetstring;
 -- As above - this needs NN&A input.
 -- Expect a contitional type depending on
 -- the ApplicationAddressType.

ApplicationAddressType ::= ENUMERATED {
 pstn,
 uriFqdn,
 uriIP,
 ip,
 ...
};

ApplicationLabel ::= Visiblestring;
 -- The legal content of this string will be
 -- defined in the relevant shim spec - expect
 -- things like "SIP" or "SIP.INVITE"

RestrictionType ::= ENUMERATED {
 floatingPointLeakyBucket,
 ...
};

RestrictionID ::= SEQUENCE {
 master GOCAPID,
 num Integer
};

ShimType ::= ENUMERATED {
 local, diameter, sip_sub_not, ...
};

Leakrate ::= Real ;

Signature ::= SEQUENCE {
 appSrcs SEQUENCE OF Address,
 -- The IP addresses of source(slave) as
 -- understood by the applications on the
 -- host on which the restrictor is being
 -- created.
 appDests SEQUENCE OF Address,
 -- The IP addresses of destination(master) as
 -- understood by the applications on the host
 -- on which the restrictor is being created.
 appLabel ApplicationLabel,
 -- e.g. "SIP" or "SIP.REGISTER" etc
 appAddrs SEQUENCE OF ApplicationAddress,
 -- A list of application layer addresses, e.g.
 -- SIP URIs, phone numbers. Some addresses may
 -- wildcarded e.g. "*.bt.com"
 addrType ApplicationAddressType
 -- Type of application address - needed for
 -- address handing and for wildcard rules that
 -- apply to that address type.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 68

};

AuthScopeList ::= SEQUENCE OF Signature;

Flows ::= SEQUENCE OF
 SEQUENCE {
 splash Real,
 signature Signature
 };

Restriction ::= SEQUENCE {
 resID RestrictionID,
 flows Flows,
 duration Duration,
 -- Duration of control - if control
 -- not updated in this interval, delete it.
 -- The purpose of the parameter is
 -- to prevent restrictons being created and
 -- then forgotten - i.e. never removed.
 -- NB We restrict the range of intervals to be
 -- at least 1 minute but no more than 2 days.
 restrictionType RestrictionType ,
 leakrate Leakrate
};

RestrictionList ::= SEQUENCE OF Restriction;

/* ProcSet ::= SET OF PId; */
newtype ProcSet
 Powerset(PId)
adding operators
 take : ProcSet -> PId;
 /* get an element of the set */
endnewtype;

 SourceData ::= SEQUENCE {
 addrs AddressList, -- of the GOCAP slave
 flows Flows,
 shim ShimType,
 w Real,
 s Real,
 rType RestrictionType,
 duration Duration,
 static Boolean
};

 RestrictionStatus ::= ENUMERATED {
 ok,
 -- The restriction is OK
 invalidGOCAPID,
 -- The GOCAP Comms Channel does not exist
 scopeViolation,
 -- The scope of the restriction is not
 -- appropriate
 invalidAddressType,
 -- The address type is not one the slave
 -- recognises
 invalidType,
 -- The restriction type is invalid
 internalError,
 -- The host has run out of memory etc.
 invalidID,
 -- The restrictor ID is invalid
 unknownID
 -- The restrictor ID has not been created
};
CommsError ::= ENUMERATED {
 invalidGOCAPID,
 unknownTransport,
 linkDown,
 heartbeatLost
 -- There has been a heartbeat reply missed.
};

RequestPriority ::= Integer(0..15);

PriorityList ::= SEQUENCE (0..15) OF Real;

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 69

/* A list of splash:restriction pairs,
 used by the restriction search procedure */
ApplicableRestrictors ::= SEQUENCE {
 cnt Integer(0..65534),
 list SEQUENCE OF
 SEQUENCE {
 restrictor PId,
 splash Real }
};

A.2 Signals
SIGNAL
 open(AddressList, /* The GOCAP address list */
 ShimType), /* How master and slave communicate */

 newRef, /* signal used to maintain the reference count for the message handlers*/

 comms_error(AddressList, /* How we refer to this connection */
 ShimType,
 CommsError), /* The actual problem */

 use_channel(PId), /* the ID of the channel process */

 close_channel(chanID PId),

 /*scope(DiameterSessionID, /* How we refer to this connection */
 /* Signature), /* List of restrictions sigs that match me */

 add_src(SourceData),
 update_src(id Integer,
 s Real, /* The capacity allocated to this source */
 w Real), /* The proportion of free capacity to give to this source */
 del_src(Integer),

 create_r (Restriction),

 restrictor_status(RestrictionID, /* The restriction in question */
 RestrictionStatus), /* The problem */

 CDRestriction_error(PId, /* The CDRestriction in question */
 RestrictionStatus), /* The problem */

 set_rate(RestrictionID, /* restriction serial number */
 Leakrate), /* New leakrate for restrictor */

 halt(RestrictionID),/* restriction serial number */

 close, /* close a channel between Master and Slave */

 add_listener(GOCAPID, /* Slave node ID */
 AddressList), /* Address:ports to listen on */

 get_audit(AddressList,ShimType,PId),
 audit(GOCAPID),

 active_restrictions(RestrictionList),
 new_ref(PId),
 new(Restriction),

 glr_update(Real, /* The new global leak rate (control variable) */
 Real) , /* The capacity factor */

 request(sig Signature, /* The signature of the application level request */
 p RequestPriority) , /* The request priority (set by application) */

 admit, reject; /* GOCAP responses to request message */

SIGNAL
 /* Used by system to update the Control Adaptor */
 system_state(Real, /* The actual arrival rate of work into the system */
 Real), /* The goal arrival rate */

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 70

 /* Used by the Control Distribution to update the SLA allocation in the CA. */
 update_origin(S Real, /* The total capacity guarantees offered by the system */
 R Real), /* Smallest s/w ratio source managed by the CD */

 /* to switch the control off - from CA to CD */
 terminate,

 /* Signals from RMProcess to restrictors */
 test(Real,RequestPriority),
 update(Leakrate),
 delete,
 confirm(Real),
 /* Restrictor responses */
 ok,fail,expired(PId,RestrictionID);

SIGNAL
 update_CDR(Leakrate),
 halt_CDR,
 delete_CDR, CDR_Id(Integer),
 CDR_error(Integer, RestrictionStatus),
 up,
 down;

A.3 SDL description
The current draft of the SDL description is contained in archive es_28303902v030100m0.zip which accompanies the
present document.

NOTE: The file GOCAP_xxx_2_4_4a.cbf is in the binary format of Cinderela SDL.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 71

Annex B (normative):
Congestion_Control event package

B.1 Event Package Name
The name of this package is "congestion_control". As defined in RFC 3265 [6], this value appears in the Event header
field present in SUBSCRIBE and NOTIFY requests for this package.

B.2 Event Package Parameters
No parameters are defined for this event package.

B.3 SUBSCRIBE Bodies
This package defines no use of the SUBSCRIBE request body. If present, it shall be ignored.

B.4 Subscription Duration
The duration of a subscription is specific to SIP deployments and no specific recommendation is made by this Event
Package.

B.5 NOTIFY Bodies
The NOTIFY body shall contain overload control information. The package specification does not mandate any specific
contents and syntax for overload control information. The overload control information to be carried depends on the
overload control mechanism in use.

The NOTIFY body shall include a content corresponding to a MIME type specified in the 'Accept' header of the
SUBSCRIBE.

B.6 Notifier Processing of SUBSCRIBE Requests
A successful SUBSCRIBE request results in a NOTIFY. The SUBSCRIBE request for the overload control event
should be either authenticated or transmitted over an integrity protected SIP communication channels.

If the identity of the entity sending the SUBSCRIBE message is not allowed to receive overload control information,
the notifier shall return a 403 "Forbidden" response.

If none of MIME types specified in the Accept header of the SUBSCRIBE is supported, the Notifier should return 406
"Not Acceptable" response.

B.7 Notifier Generation of NOTIFY Requests
As specified in RFC 3265 [6], the Notifier shall always send a NOTIFY request upon accepting a subscription.
Depending on the used overload control mechanism, this may contain a body. For instance, if the overload mechanism
is based on reporting the load status, the first NOTIFY should contain a body reporting the current load status.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 72

If the SUBSCRIBE was received over an integrity protected SIP communications channel, the Notifier should send the
NOTIFY over the same channel.

If an Accept header was received in the SUBSCRIBE message, the body type of the NOTIFY request shall correspond
to one of the ones that were indicated in this header.

B.8 Subscriber Processing of NOTIFY Requests
Upon receipt of a NOTIFY request with a Subscription-State header field containing the value "terminated", the
subscriber shall remove all previously received load control information and process all calls without applying any
restriction.

The subscriber shall discard unknown bodies. If the NOTIFY request contains several bodies, none of them being
supported, it should unsubscribe. A NOTIFY request that does not contain a body shall be ignored.

The way subscribers process supported bodies depends on the overload mechanism in use.

B.9 Subscriber Generation of SUBSCRIBE Requests
The subscribe message shall contain the Event header set to "congestion_control" and the Accept header indicating the
supported MIME types.

B.10 Handling of Forked Requests
This Event package allows the creation of only one dialog as a result of an initial SUBSCRIBE request as described in
section 4.4.9 of [6]. It does not support the creation of multiple subscriptions using forked SUBSCRIBE requests.

B.11 Rate of Notifications
The rate of notifications for overload control information will depend on the overload mechanism in use. Hence, the
event package specification does not specify a throttling or minimum period between NOTIFY requests.

B.12 State Agents
State agents are not applicable to this Event Package.

B.13 Use of URIs to Retrieve State
This Event package does not make use of URIs to retrieve state information.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 73

Annex C (normative):
XML Schema

C.1 Introduction
This annex defines an XML schema for representing documents containing overload control policy data sets. The
MIME type for documents conforming to this schema is the following:

 application/vnd.etsi.overload-control-policy-dataset+xml

C.2 XML Schema specification
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:org:etsi:ngn:params:xml:ns:overloadcontrol"
xmlns:ss="urn:org:etsi:ngn:params:xml:ns:overloadcontrol"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="requestList" type="ss:RequestList" />

<xs:element name="responseList" type="ss:ResponseList" />

<xs:element name="authScopeList" type="ss:AuthScopeList" />

<xs:complexType name="RequestList">
 <xs:sequence>
 <xs:element name="connectionHandle" type="ss:CCID"/>
 <xs:element name="newRestrictions" type="ss:NewRestrictionList"/>
 <xs:element name="restrictionUpdates" type="ss:UpdateList"/>
 <xs:element name="deletions" type="ss:DeletionList"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="ResponseList">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="element" type="ss:RestrictorInfo" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="AuthScopeList">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="element" type="ss:Signature" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="NewRestrictionList">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="element" type="ss:Restriction" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="UpdateList">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="element" type="ss:Update" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="DeletionList">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="element" type="ss:RestrictionID" />
 </xs:sequence>
</xs:complexType>

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 74

<xs:complexType name="Update">
 <xs:sequence>
 <xs:element name="resID" type="ss:RestrictionID" />
 <xs:element name="leakrate" type="ss:Leakrate" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="Restriction">
 <xs:sequence>
 <xs:element name="reqID" type="xs:integer" />
 <xs:element name="flowList" type="ss:FlowList" />
 <xs:element name="duration" type="ss:Duration" />
 <xs:element name="restrictionType" type="ss:RestrictionType" />
 <xs:element name="leakrate" type="ss:Leakrate" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="RestrictorInfo">
 <xs:sequence>
 <xs:element name="reqID" type="ss:RequestID" />
 <xs:element name="masterResID" type="ss:RestrictionID" />
 <xs:element name="slaveResID" type="ss:RestrictionID" />
 <xs:element name="error" type="ss:RestrictionStatus" />
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="RestrictionStatus">
 <xs:restriction base="xs:token">
 <xs:enumeration value="OK" />
 <xs:enumeration value="invalidCCID" />
 <xs:enumeration value="scopeViolation" />
 <xs:enumeration value="invalidAddressType" />
 <xs:enumeration value="invalidRestriction" />
 <xs:enumeration value="invalidType" />
 <xs:enumeration value="internalError" />
 <xs:enumeration value="invalidRestrictionID" />
 <xs:enumeration value="unknownRestrictionID" />
 </xs:restriction>
</xs:simpleType>

<xs:complexType name="Address">
 <xs:choice id="IPAddressType">
 <xs:element name="ipv4" type="ss:IPv4Address"/>
 <xs:element name="ipv6" type="ss:IPv6Address"/>
 </xs:choice>
</xs:complexType>

<xs:simpleType name="IPv4Address">
 <xs:restriction base="xs:string">
<xs:pattern value="((1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])\.){3}(1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])" />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="IPv6Address">
 <xs:restriction base="xs:string">
 <!-- Fully specified address -->
 <xs:pattern value="[0-9A-Fa-f]{1,4}(
 :[0-9A-Fa-f]{1,4}){7}"/>
 <!-- Double colon start -->
 <xs:pattern value=":(:[0-9A-Fa-f]{1,4}){1,7}"/>
 <!-- Double colon middle -->
 <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,6}
 (:[0-9A-Fa-f]{1,4}){1}"/>
 <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,5}
 (:[0-9A-Fa-f]{1,4}){1,2}"/>
 <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,4}
 (:[0-9A-Fa-f]{1,4}){1,3}"/>
 <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,3}
 (:[0-9A-Fa-f]{1,4}){1,4}"/>
 <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,2}
 (:[0-9A-Fa-f]{1,4}){1,5}"/>
 <xs:pattern value="([0-9A-Fa-f]{1,4}:){1}
 (:[0-9A-Fa-f]{1,4}){1,6}"/>
 <!-- Double colon end -->

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 75

 <xs:pattern value="([0-9A-Fa-f]{1,4}:){1,7}:"/>
 <!-- Embedded IPv4 addresses -->
 <xs:pattern value="((:(:0{1,4}){0,3}(:(0{1,4}|
 [fF]{4}))?)|(0{1,4}:(:0{1,4}){0,2}
 (:(0{1,4}|[fF]{4}))?)|((0{1,4}:)
 {2}(:0{1,4})?(:(0{1,4}|[fF]{4}))?)
 |((0{1,4}:){3}(:(0{1,4}|[fF]{4}))?)
 |((0{1,4}:){4}(0{1,4}|[fF]{4})?)):
 (25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?[0-9])
 \.(25[0-5]|2[0-4][0-9]|[0-1]?[0-9]?
 [0-9])\.(25[0-5]|2[0-4][0-9]|[0-1]?
 [0-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|
 [0-1]?[0-9]?[0-9])"/>
 <!-- The unspecified address -->
 <xs:pattern value="::"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="ApplicationAddress">
 <xs:annotation>
 <xs:documentation>
 Application layer address, e.g. SIP URI, phone number.
 Some addresses may be wildcarded using a delimited regular expression. The regular
 expression shall take the form of Extended Regular Expressions (ERE) as defined in
 chapter 9 in IEEE 1003.1-2004 Part 1 [60]. The delimiter shall be the exclamation
 mark character ("!").
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string" />
</xs:simpleType>

<xs:simpleType name="ApplicationAddressType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="pstn" />
 <xs:enumeration value="uriFqdn" />
 <xs:enumeration value="uriIP" />
 <xs:enumeration value="ip" />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="ApplicationLabel">
 <xs:restriction base="xs:string" />
</xs:simpleType>
<!-- The legal content of this string will be defined in the relevant shim spec
expect things like "SIP" or "SIP.INVITE" -->

<xs:simpleType name="RestrictionType">
 <xs:union memberTypes="xs:token">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="floatingPointLeakyBucket" />
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

<xs:simpleType name="Leakrate">
 <xs:restriction base="xs:double" />
</xs:simpleType>

<xs:complexType name="AddressList">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="element" type="ss:Address" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="CCID">
 <xs:sequence>
 <xs:element name="masterID" type="ss:GOCAPID" />
 <xs:element name="slaveID" type="ss:GOCAPID" />
 </xs:sequence>
</xs:complexType>

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 76

<xs:simpleType name="RestrictionID">
 <xs:restriction base="xs:integer" />
</xs:simpleType>

<xs:simpleType name="GOCAPID">
 <xs:restriction base="xs:string" />
</xs:simpleType>

<xs:complexType name="Flow">
 <xs:sequence>
 <xs:element name="signature" type="ss:Signature" />
 <xs:element name="splash" type="xs:double" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="Signature">
 <xs:sequence>
 <xs:element name="appSrcs">
 <xs:annotation>
 <xs:documentation>
 The IP addresses of source(slave) as understood by the
 applications on the host on which the restrictor
 is being created.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="element" type="ss:Address" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="appDests">
 <xs:annotation>
 <xs:documentation>
 The IP addresses of destination(master) as understood by the
 applications on the host on which the restrictor
 is being created.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="element" type="ss:Address" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="appLabel" type="ss:ApplicationLabel" />
 <xs:element name="appAddrs">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="element" type="ss:ApplicationAddress" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="addrType" type="ss:ApplicationAddressType" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="FlowList">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="element" type="ss:Flow" />
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="Duration">
 <xs:restriction base="xs:integer"/>
</xs:simpleType>

<xs:simpleType name="RequestID">
 <xs:restriction base="xs:integer"/>
</xs:simpleType>

</xs:schema>

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 77

Annex D (informative):
Generating System_state data

D.1 Introduction
The description of the GOCAP behaviours in clause 4 assume that the application/operating system provide GOCAP
with two key pieces of data via the system_state signal, the current workload arrival rate and the target arrival rate.
Driving the GOCAP adaptation algorithm from these two metrics enables GOCAP to adapt very quickly. The
generation of these parameters is not a normative part of the GOCAP specification as it depends on the application
behaviour and the server architecture.

Some applications always show very little variation in the processing time per request. In these cases the goal arrival
rate may simply be a configurable parameter which is normally left constant. Performance testing would determine the
best value. However there are risks with this approach, e.g. CPUs can fail and therefore if failure cannot be detected
automatically a sudden reduction in capacity would result without a corresponding reduction in the goal rate. The risk
can be reduced by setting a rate which assumes that one fewer CPUs is available, but clearly this does not allow the
available capacity to be fully utilised.

Some servers support multiple applications or applications where the processing time per request varies significantly
between different requests however, and in these cases the target arrival rate will need to be recalculated continuously
so as to reflect changes in the mix of request types or request complexity in real time. In the following clauses some of
the issues that this calculation raises are discussed and a particular solution based on a continuous estimate of the work
per request is presented.

D.2 Background
GOCAP aims to control overload of processing resources within a server. Let each request (e.g. call) imply occupying
the processing resource for a mean timeτ, then we have according to Little's Law:

 τΛ=D (D.1)

where D is the total workload demand and Λ is the mean arrival rate, after any restrictive control has been applied. If
the number of servers (e.g. CPUs) is M, and we have a goal occupancy (due to requests) of Ω* (usually a configurable
parameter), then:

 ** DM =Ω (D.2)

is the goal workload rate; and

 ** D=Λ τ (D.3)

gives the goal arrival rate, *Λ . However, τ may change depending upon the request mix (i.e. relative numbers of
requests of different complexity) and hence Λ also has a dependence upon the mix. We will show a way to measure the
mean CPU time per request, τ/M, and the mean arrival rate Λ hence derive the goal rate Λ*.

When there is sufficient demand GOCAP's adaptation algorithm converges to the above solutions, distributing the
workload between each source i with rate λi so that:

 ∑ ∑ == *Dd iii τλ (D.4)

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 78

The mean processing timeτi for source i is almost always unknown at the source itself, although sometimes the expected
processing effort for each request may be estimated according to its identified request type. This variation of processing
time may (or may not) be factored in using the splash weight pi of the leaky bucket restrictor since the maximum
throughput of the bucket satisfies:

i

i
i p

r=λ (D.5)

where ri is the leak rate of the bucket and pi/ri represents the time τi.

NOTE: The GOCAP restrictor specification in clause 4.2.6.1 allows different request types to be recognised,
using the request signatures. A different splash value may apply to each signature. The splash can be
thought of as relating request processing effort for that request type and is proportional to 1/τ .

D.3 Modelling CPU load
The simplest model of the dependence of CPU utilisation upon arrival rate at constant mix (request complexity) would
be linear through the origin (zero occupancy at an arrival rate of zero). However a background/admin load that is
independent of request arrival rate is usually present, which can be relatively large, so a better model is linear with
non-zero occupancy at zero arrival rate. Furthermore CPU utilisation can be quadratic as a function of request rate, this
quadratic behaviour being due to a dependence upon context holding time, although the 'quadratic term' is small when
the context holding time is small in which case the relationship then looks almost linear.

call arrival rate

C
P
U
 o
c
c
u
p
a
n
c
y

goal

(target)

occupancy

Figure D.1: Convergence of adaptation (linear CPU dependence with
non-zero intercept at 0 arrival rate, mix constant)

From the viewpoint of ensuring 'convergence' to the specified CPU threshold these models of varying complexity do
not matter, although they can affect the rate of convergence. It is adequate to assume the simplest model, which just
requires computing the average CPU time per request (Figure D.1 shows the linear dependence case). This is just as
well, since it may not easy to identify which processes have the request rate dependence. However faster convergence
can be obtained if the background/admin occupancy can be separately measured (in real-time), or if not, a configurable
constant is included to represent the occupancy at a request rate of zero. Similar considerations apply if the true
relationship is quadratic, although the theoretically convergence is then not monotonic (see Figure D.2).

NOTE: Monotonic convergence is purely increasing from below the goal (or decreasing from above it). In
practice, due to stochastic variation and changing goal rates, convergence can always oscillate between
above and below the goal under any scheme.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 79

There is another factor, and that is the above relationships assume that the traffic 'mix', i.e. complexity, remains the
same as the arrival rate changes. Whilst this is true if the probability of admitting a request by the overload is
independent of the type of request, it will not in general be the case with GOCAP because some sources are rate limited
by a rate controller, whereas others below the rate limit are not. But again, convergence to the threshold is still
guaranteed because as the CPU load gets closer to the threshold the changes in the arrival rate, and hence the mix, get
smaller and smaller (this can be proved by substituting request rate in terms of processor occupancy in the expression
for the GOCAP adaptation).

call arrival rate

goal

(target)

occupancy

Figure D.2: Convergence of adaptation (quadratic CPU dependence
with non-zero intercept at 0 arrival rate, mix constant)

In conclusion, given all these factors, the simplest convergence scheme is most appropriate, where the CPU cost per
request is computed and used to estimate the request arrival rate at which the maximum CPU threshold is attained.

A potential issue with measuring CPU load is that it may show significant variability, and this is often because the
background/admin workload is not well scheduled on the processors. In terms of 'macro-level' scheduling, automated
process workload should be spread out over time, and this will help to reduce the variability. In addition at the
'micro-level' a good processor priority scheduling scheme is beneficial if not essential, so that critical response time
requirements for request processing traffic are met.

D.4 Single processing system
First we consider the functions required to derive the arrival and goal rates required by GOCAP at each update, when
the node subject to overload just consists of a single pool of processing resource. This forms the basis when extending
to multiple pools of processing resource (multiple processing systems) considered in clause D.5.

D.4.1 Arrival rate and Goal rate
There needs to be a function that monitors the total request arrival rate and the CPU occupancy of the system and uses
this to derive the following over each time interval between control updates:

• Total average (smoothed) request arrival rate (MeanArrivalRate);

• Estimate of the arrival rate (GoalArrivalRate) that would result in a CPU occupancy equal to a configured
maximum (MaxRequestCPU_Occupancy).

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 80

D.4.2 Scheduling the update
A simple way to initiate an update of the arrival rate and the goal rate is to do so periodically with a constant time
interval. This will work if sudden surges in the offered load do not occur, either because of the nature of the traffic or
because the traffic has previously been processed is subject to appropriate load controls already. But it is difficult to
guarantee that such sudden surges in traffic will not occur, e.g. if failover traffic is to be handled.

An alternative and more robust method is to determine that updates are performed either if a time threshold is exceeded
or a request count threshold exceeded. In this way if a sudden surge in the request rate occurs it is quickly detected and
an update forced. Such a method is not quite so straightforward to implement in the multiple processing system case.

D.4.3 Updating the arrival rate
Whenever an update is made the count of requests since the last update (ArrivalCount) and the time since then is used to
compute the average arrival rate over the interval (ArrivalRate). This may be smoothed geometrically using a parameter
pA (0<pA≤1):

 MeanArrivalRate := pA×ArrivalRate + (1-pA)×MeanArrivalRate

D.4.4 Updating the goal rate
The processing effort per request is determined by using the integrated CPU utilisation over the update time interval
(which operating systems generally provide) and the computed arrival rate, but it is only re-evaluated if:

• sufficient requests have been received, i.e. greater than a configurable parameter (say ArrivalCountMin); and

• the measured CPU occupancy is sufficiently high, i.e. greater than another configurable parameter (say
SysMinCPU).

The reason for this is that when these values are low we expect greater inaccuracy. Furthermore when this is the case
overload should not occur and re-evaluation of them is therefore not essential, i.e. the last values from the previous
update can be used.

In reality the total CPU consumption of a request (request) may be complex, being made up of discrete mid-request
processing events and a final clearing event, but there are so many variables and unknowns that determine these, many
of which are unpredictable due to network or user behaviour, that it is impractical to incorporate them explicitly into a
load monitoring function. The method below uses the idea that the mean CPU utilisation per request can be estimated
over a time interval, and whilst this will vary because of these factors, smoothing coefficients can be used to
accommodate this variability, particularly if due to a sudden change in arrival rate or request mix.

The mean number of requests in progress on a CPU is given by (using Little's Law):

 Ω= Mλτ

where:

λ Request arrival rate (MeanArrivalRate)

τ Total CPU time per request (mean for all request types)

M Number of CPUs

Ω Relative occupancy due to request processing (0≤Ω≤1)

and integrating with respect to time of length T since the last update we get the following for the CPU time per request
per CPU:

T

T

M λλ
τ Ω=Ω= (D.6)

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 81

which therefore gives:

 PerRequestCPU_Time := RequestCPU_OccupancyIntegral / ArrivalCount

where RequestCPU_OccupancyIntegral is the measured CPU occupancy due to request processing integrated over time,
which is obtained from the total measured occupancy by subtracting that due to the background load. The background
load may be characterised by a pre-configured value NoRequestsCPU_Occupancy if not easily measured in real time. If
the background load is estimated in real time, a lower bound should be used (which could be the measured value
multiplied by a coefficient less than 1) to avoid 'overshooting' when estimating the next value of the goal rate from
below (see the discussion in clause D.3, including quadratic behaviour).

This should then be geometrically smoothed to give the value MeanPerRequestCPU_Time, using either the smoothing
coefficient pD or pU, depending upon whether PerRequestCPU_Time goes down (D) or up (U) relative to the smoothed
value, i.e.:

if PerRequestCPU_Time < MeanPerRequestCPU_Time

 MeanPerRequestCPU_Time := pD×PerRequestCPU_Time + (1-pD)×MeanPerRequestCPU_Time

Otherwise:

 MeanPerRequestCPU_Time := pU×PerRequestCPU_Time + (1-pU)×MeanPerRequestCPU_Time

Since:

Mτ

λ Ω= (D.7)

the goal rate is then the rate that will reach the maximum allowable occupancy:

GoalArrivalRate := MaxRequestCPU_Occupancy / MeanPerRequestCPU_Time

NOTE: Some OSs provide measurement of relative CPU occupancy Ω, and others the traffic utilisation MΩ, and
therefore the MaxCallCPU_Occupancy should use corresponding units.

We should also bound the result between configurable minimum and maximum parameters:

GoalArrivalRate := min{max {MinArrivalRate,GoalArrivalRate},MaxArrivalRate}

Using two different smoothing coefficients is important, because it allows some robustness to a changing request mix.

Consider that a sudden surge in the arrival rate could result in an unrepresentatively low value of
PerRequestCPU_Time, because an update is forced after only a batch of request initiations, and therefore the CPU load
due to request continuation or completion would not yet be measured. Without smoothing this would otherwise result in
an unrealistically high value of the GoalArrivalRate. But by smoothing the decrease, i.e. choosing a sufficiently low
value of pD, it is only allowed to slowly increase.

Conversely, consider what would occur if the mix suddenly became more complex (only likely if there was a sudden
overload to a specific service), resulting in a larger value of PerRequestCPU_Time. In order to avoid overload the
GoalArrivalRate should be reduced, but smoothing would imply a more gradual increase in
MeanPerRequestCPU_Time resulting in a higher than desirable GoalArrivalRate. To avoid this if necessary we can set
pU=1, or more generally set pU > pD.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 82

D.4.5 Variables

Table D.1: Summary of variables used in clause D.4.4

Variable Description/purpose
ArrivalCount Count of request arrivals to the system, used to derived the GoalArrivalRate

and reset to 0 after each update.
ArrivalRate The average arrival rate to the system, using ArrivalCount and the duration

since the last update (SystemUpdateInterval).
MeanArrivalRate The smoothed estimate of the request arrival rate using the geometric

smoothing coefficient pA.
GoalArrivalRate Estimate of the arrival rate, given the current mix, that will just meet the

maximum CPU allowed for requests, MaxRequestCPU_Occupancy.
RequestCPU_OccupancyIntegral Relative (%) system CPU occupancy due to requests integrated over time

since the last time system occupancy was measured.
= SysRequestCPU × (NOW-LastOccupancyUpdateTime)

TotCPU_OccupancyIntegral Relative (%) total system CPU occupancy integrated over time since the last
time system occupancy was measured.
= SysTotCPU × (NOW-LastOccupancyUpdateTime)

LastOccupancyUpdateTime Last time at which CPU occupancy measurement was captured.
PerRequestCPU_Time The CPU time per request per CPU over the last control interval. This is only

computed if there are sufficient arrivals (greater than ArrivalCountMin) and the
measured CPU occupancy is sufficiently high (greater than SysMinCPU).

MeanPerRequestCPU_Time Smoothed estimate of the CPU time per request per CPU using a
geometrically weighted moving average of PerRequestCPU_Time. Different
updating (smoothing) coefficients are used for increases and decreases.

SysRequestCPU Representation of the measured CPU occupancy over a monitor period due to
request processing, since it usually not possible (and not recommended) to
measure this directly. In any case the total CPU occuapncy needs to be
measured to account for the 'background' (when not carrying any requests).
With this indirect method the value of this variable is computed as follows:
SysRequestCPU := SysTotCPU - NoRequestsCPU_Occupancy
See also SysTotCPU, and the configurable parameter
NoRequestsCPU_Occupancy

SysTotCPU The total measured CPU occupancy over a monitor period.
SystemUpdateInterval Length of time over which the CPU occupancy is monitored and a new

GoalArrivalRate derived. The maximum length of this interval is the
configurable parameter UpdateIntervalMax, but it may be less if the parameter
ArrivalCountMax is also used to trigger an update.

D.4.6 Initialisation
When the system starts neither the PerRequestCPU_Time nor the MeanPerRequestCPU_Time can have been derived
since no measurements have yet been taken. Furthermore the value is only updated when there have been sufficient
request arrivals. It is therefore necessary to initialise the values of these with a configurable parameter
InitialPerRequestCPU_Time (which we have assumed is in ms) which can be determined beforehand by performance
testing:

PerRequestCPU_Time := InitialPerRequestCPU_Time / 1 000

MeanPerRequestCPU_Time := InitialPerRequestCPU_Time / 1 000

The other appropriate initialisations are:

GoalArrivalRate := MaxRequestCPU_Occupancy / MeanPerRequestCPU_Time

GoalArrivalRate := min{max{MinArrivalRate,GoalArrivalRate},MaxArrivalRate}

ArrivalRate := GoalArrivalRate

MeanArrivalRate := GoalArrivalRate

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 83

D.4.7 Configurable Parameters
Table D.2 lists and described the configurable parameters required for the method described in clause D.4.4.

Table D.2: Summary of variables used in clause D.4.4

Parameter Description
MinArrivalRate Minimum arrival rate below which the estimated GoalArrivalRate variable cannot go.
MaxArrivalRate Maximum arrival rate above which the estimated GoalArrivalRate variable cannot go.
InitialPerRequestCPU_Time The initial value for the PerRequestCPU_Time. Once the system has been running

for sufficient update intervals this ceases to have any effect.
pA Geometric smoothing coefficient used to compute the MeanArrivalRate from the most

recent value of ArrivalRate.
pU Geometric smoothing coefficient used to compute the MeanPerRequestCPU_Time, if

it increases (U: Upward). See note 2.
pD Geometric smoothing coefficient used to compute the MeanPerRequestCPU_Time, if

it decreases (D: Downward). See note 2.
MaxRequestCPU_Occupancy Maximum allowable % CPU utilisation for request related processing only(see

note 1).
NoRequestsCPU_Occupancy The CPU occupancy when no requests are being processed ('background' or 'admin'

load). This is being made a configurable parameter because currently this measured
load is highly variable and cannot easily be measured independently.

SysMinCPU The minimum CPU occupancy that is measured for SysTotCPU before a control
update is allowed. See also ArrivalCountMin.

ArrivalCountMin The minimum number of request arrivals required before a control update is allowed.
See also SysMinCPU.

ArrivalCountMax (Optional parameter). The count of requests which if attained before triggers a control
update.

StartTime Optional parameter. This is the start time for the system clock, which may be
hard-coded in the operating system.

UpdateIntervalMax Maximum time interval between updates. The actual time is SystemUpdateInterval,
which may less if ArrivalCount reaches ArrivalCountMax is attained.

NOTE 1: This is per CPU, i.e. relative to all CPUs, so is bounded above by 100 %.
NOTE 2: Normally pU > pD because sudden surges of arrivals could give rise to an unrepresentatively low value of

PerCallCPU_Time over the last interval.

D.5 Multiple processing subsystems
A target node commonly has multiple internal application processing sub-systems to perform application-level
processing, to each of which we will give the generic name Application Subsystem (sometimes called 'back end
processors'), and communication with the network (including protocols at layer 3 and below) is often performed by a
front-end, each subsystem of which we'll give the generic name Communications Subsystem (sometimes called 'front
end processors'). The arrival of new request load is distributed by a load-sharing function on each CS over the AS
group. This architecture is illustrated in Figure D.3. For the proposals here we will assume that the CS capacity is
always sufficiently greater than the AS capacity, in order that GOCAP control always triggers before the CS become
overloaded, and therefore GOCAP monitoring and control works with respect to the AS group. This is a reasonable
assumption because in general it is important that lower-level network protocol functions do not overload first because
control decisions at that level are 'less intelligent' in the sense that knowledge of message data and meaning is limited.
Having said this, it would be possible to extend the methods proposed here, e.g. by monitoring CS utilisation and arrival
rates in order to derive goal rates, depending upon what functions and protocol level are provided on the CS.

Considering how GOCAP functions should be incorporated into this architecture, and the load-sharing function in
particular, we have two fundamental choices of ordering the load-sharing and GOCAP rate control functions:

a) [offered traffic stream ->] load-share -> rate control -> target AS

b) [offered traffic stream ->] rate control -> load-share -> target AS

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 84

These imply the following characteristics:

• a) has a (source) rate controller for each target AS, and therefore each AS would need to be identifiable by
GOCAP restrictions. In general it is undesirable that such architectural detail would be visible outside the
node, which implies that this should be implemented by GOCAP entirely within a node. In contrast for b) at
the point of load-sharing the entire set of AS is seen as a single entity, and therefore regarded as a single node;

• In the case of a) load-sharing is outside of the control loop, which implies that the rate is independently
controlled to each AS. Notice that this means that the update times for each AS can be asynchronous, and
indeed each AS could be in overload at different times. Whereas in b) there can be a single (source) rate
controller for the complete AS group over which the load is shared.

S
tartU

pdate?

S
tartU

pdate?

Figure D.3: Additional functions for a multiple subsystem architecture using GOCAP

In conclusion it really only makes sense to consider option b), which is illustrated in Figure D.3, where the function on
each AS integrating arrival rates and CPU utilisation over time and deriving the arrival and goal rates is termed the AS
Monitor. But since each AS collects these measurements and derives the goal rate independently, we now have to
consider how to amalgamate the request arrival counts/rates and the goal arrival rates. Furthermore, given that each AS
may not have equal capacity (either nominal static or measured dynamic), how should traffic we load-share over them?
Notice that in general there will be several load-sharing instances because there will in general be several CSs.

The answer to this lies in analysing the solution of the equation (steady-state) that determines the required value of the
control variable when in overload.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 85

Each AS has a traffic processing capacity (i.e. goal rate) determined by the maximum allowable relative occupancy and
the number of CPUs (see clause D.4.4), which can be summed (theoretically) to obtain a total goal rate G for the AS
group. Each AS has a proportion q say of that total capacity. If X is the value of the control variable that gives the
solution for the entire AS Group, then (simply by linearity) qX is the required control variable for an AS with capacity
qG (and sum of guaranteed rates qS) which is offered a proportion q of the traffic before rate control is applied. It
follows that we can treat the entire AS group as a single entity in terms of rate control, i.e. before load-sharing, as long
as the load sharing is in the same ratio as the ratio of the individual capacities. A way of doing this is described below.

D.5.1 Scheduling the update
In an analogous way to the single sub-system case (see clause D.4.1), the simplest way to do updates is periodically
with a constant time interval. If each sub-system of the node uses a common clock it is straightforward to schedule
synchronous updates to collect arrival counts and CPU utilisation integrated over the time interval.

If the update time interval is MonitorUpdateInterval and NOW := TimeNow() is the time just after the current update,
then the number of updates since the clock start time, StartTime, is

 N := 1 + Quotient ((NOW - StartTime) / MonitorUpdateInterval)

and the next update is rescheduled for StartTime + N×MonitorUpdateInterval.

Similarly (to clause D.4.1), a more robust approach is to trigger updates either when the request arrival count has
exceeded a threshold or the time since the last update has exceeded a threshold. But now counts of request arrivals are
distributed. In principle request arrival counts could be made on each AS or each CS, but a natural place to make a
count of all requests to an AS is on the AS itself. Now the condition of triggering an update is if the count or timer
thresholds are exceeded on any AS, and it is then necessary for each AS to communicate with each other so that an
update is triggered on one AS is also triggered on every other AS. But this communication may be through an
intermediary, e.g. a function we have called AS Group Accumulator which is required in any case to accumulate
measurements from each AS. In fact often in reality there is not any other direct communication between each AS (or
each CS) because the request load passes between CS and AS.

The triggering arrival count (but not the per AS count itself) could be realised as a separate (and additional) counter on
input to the load sharing function. This has the advantage that the counts are made earlier, before even dispatching
requests to each AS. Note that this involves counting requests from one CS to the AS group, and it is allowable for each
AS to have a different capacity. Roughly speaking, if the count threshold on each of N CS is K it will imply a threshold
of NqK on an AC with load-sharing proportion (relative capacity) q, but there is a dependence upon the load-sharing
algorithm, in particular that it is a 'good' one, i.e. it delivers requests with minimal inter-arrival count variability
between each AS.

D.5.2 Updating the arrival rate
Counts of request arrivals are most simply made on each target AS and used to derive the arrival rate as for the single
sub-system case (see clause D.4.3), because they are required to derive the processing cost per request for each AS, as
for the single processing sub-system (see clause D.4.4). However, now the total arrival rate to the AS group is required.
For this purpose it is convenient to have a process on each CS that collects the (smoothed) arrival rate from each AS
and sums them to obtain the total. We'll refer to this as the AS Group Accumulator.

D.5.3 Updating the goal rate
If the both the arrival count and the processor occupancy is integrated by the OS on each AS, then the goal arrival rate
can be deduced on each AS in the same way as for a single sub-system (see clause D.4.4).

Now, when an update is made, the goal rate for each AS is passed (with the arrival rate) to a process we have termed the
AS Group Accumulator on a CS, which therefore sums the total arrival rate and the total goal rate across the entire AS
Group, as input to the GOCAP Control Adaptor.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 86

D.5.4 Special design considerations

D.5.4.1 AS unavailability

As soon as it is detected that an AS becomes unavailable (this is commonly detected due to a failed request to the
application process on the AS) the AS Group Accumulator should be informed so that it can force an immediate update.
Thus is important because now the load will be shared over one less AS, and thus the potential for overload is greater.
Since an update may just have been performed, in which case insufficient data would have been collected on each AS to
provide statistically significant derived measurements (and in any case, the data for the unavailable AS will have been
lost) the update should be forced using the last collected arrival rates and goal rates. For this the goal rates are summed
over each AS excluding the failed one whereas the arrival rates should include the failed one. This shows that it is
important for the AS Group Accumulator to store the latest arrival and goal rates separately for each AS, and not just
the total after they have been summed.

A means of testing when the AS becomes available again, e.g. by sending a periodic test message to the AS Monitor.
When it does so and traffic is sent to it again, it is not necessary to force an update immediately because there has been
an increase in the available capacity, and the new goal rate will be derived at the next update.

D.5.4.2 Late or missing updates

Whether the update is simply obtained periodically (time threshold only) or with a request count threshold as well, it is
important to allow in the AS Group Accumulator logic for late or missing updates from each AS (e.g. this will occur if
an AS becomes unavailable, or may occur with interrupted communication). This will require counting/checking the
arrival of the updates, and forcing an update if they have all been received, or if not when the timeout expires.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 87

Annex E (informative):
Message Sequence Charts (Transport Independent)
This clause contains a number of message sequence charts providing informative illustration of common GOCAP
scenarios. These message sequence charts do not illustrate all possible paths through the state machines making up the
GOCAP Master and Slave subsystems, as described in the normative SDL of clause 4. In the event of conflict between
the SDL of clause 4 and the message sequence charts here, the SDL takes precedence.

A single GOCAP Master may use a range of different transport methods between itself and the remote GOCAP slaves
with which it communicates. The approach taken in this clause is to describe behaviour down to the lowest level at
which the behaviour remains independent of the transport method.

At the GOCAP Master, the interfaces of the ChannelManager and GocapShim processes to the higher layers are
independent of the transport, even though GocapShim has a number of transport-dependent variants. Hence we describe
behaviour at these interfaces, but no lower.

At the remote slave side we can distinguish at least two possible types of slave:

• The first is a "true GOCAP slave" which implements overload control using behaviour defined in block
GSlave (within Gocap_Transport) and block gocapSlave, using some defined transport mechanism to carry
GOCAP messages. For this case, the interface between process SessionHandler and the higher layers is
independent of the transport, hence this clause describes behaviour at this interface, but no lower.

• The second applies in a case where there is already an overload control mechanism other than GOCAP (for
example, the etsi_nr Package for H.248), operating between the call-processing device where the GOCAP
Master is located, and one or more devices which send traffic to the Master. It may be appropriate for the
GOCAP Master to control traffic from these sources by coordinating the operation of the existing overload
control mechanisms, rather than by instantiating a "true GOCAP slave" at each source. For example, for the
etsi_nr H.248 Package, a single GocapShim might cover traffic from analogue lines across all
H.248-controlled access gateways for which the GOCAP Master server acts as Media Gateway Controller. In
this second case, detailed behaviour at the source is out of scope of GOCAP and will not be described. It
should be understood that any description below of behaviour at the slave, covering the case described in the
preceding bullet, does not apply to the second case.

E.1 Adding sources
This clause shows processing associated with adding information about new sources to a GOCAP Master. New sources
may be added either at system startup or during normal operation, perhaps as a result of a network expansion which
increases the number of application servers. First, an overview is provided based on adding three new sources.
Secondly, the addition of the first source is examined in more detail to illustrate the flow of data in signals and
messages within GOCAP.

E.1.1 Overview
Figure E.1 is a message sequence chart illustrating a scenario in which a management system provides information to a
GOCAP Master concerning three potential sources of load. Throughout the duration covered by the chart, the local
system is not overloaded and hence no Restrictors are created. However, two of the sources are at a remote system
which implements GOCAP, and hence the GOCAP Master requests a GOCAP session with the GOCAP Slave at the
remote system.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 88

add_src

CDProcess Channel
Manager

mgmt

idle

CDR_Id

CAProcess

update_origin

passive

CDR_Id

update_origin

add_src

CDRestriction

open

open

init

init

use_channel(chanID)

use_channel(null)

idle_down

idle_down

GocapShim
create

up

idle_up

create

create

opening

add_src

CDR_Id

update_origin
open

init

use_channel(chanID)

idle_down
up

idle_up

create

up

new_ref

Gocap_Transport

Figure E.1: Adding sources

The scenario starts with the signal add_src from the management entity to the GOCAP System at a host. The
management entity itself is largely outside the scope of GOCAP, which defines only the signals exchanged between the
management entity and the GOCAP system. The management entity may, for example, be external to the GOCAP
system's host, or may be a software entity running on the GOCAP system's host which reads a configuration file and
generates add_src signals on the basis of configuration data.

The add_src signal is routed to the CDProcess (Control Distribution process). CDProcess creates a new CDRestriction
process associated with this source, and passes the SourceData parameter into the new CDRestriction. CDProcess
returns signal CDR_Id to the external management entity, carrying an integer which may be used to refer to the new
CDRestriction process. For a source using a dynamic restriction, CDProcess also recalculates the functions S and R of
the weighting parameters, and sends signal update_origin with these parameters to the CAProcess.

If the source is to be statically restricted, CDProcess sends update_CDR to the CDRestriction which causes immediate
instantiation of a Restrictor. This case is not shown in Figure E.1, but the dynamic creation of Restrictor processes in
response to overload is covered in clause E.4.

The new CDRestriction process sends signal open to the ChannelManager process, with parameters equal to the address
list and shim type from the SourceData, and CDRestriction moves to state "init". The parameters of open allow
ChannelManager to determine whether the source has to be restricted locally, or may be restricted at a remote machine
with which the local machine has a GOCAP association. If the shim type is not "local", ChannelManager calls its
procedure GetChannel. The GetChannel procedure returns an identifier for a GocapShim process mediating
communication with the slave identified in the address list. If this identifier is null, it indicates that no GOCAP
association currently exists with that slave, and hence ChannelManager will create a GocapShim process for that slave.
In parallel with this, ChannelManager returns a use_channel signal with parameter channelID (equal to the process ID
of the GocapShim) to the CDRestriction process so that, when necessary, the CDRestriction may communicate directly
with the associated GocapShim rather than continuing to route messages via ChannelManager. On receiving the
use_channel signal, CDRestriction transitions to state "idle_down".

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 89

A newly created GocapShim will attempt to establish a communication channel with the GOCAP slave, When the
GocapShim has established communication, it sends signal up to the CDRestriction. GocapShim transitions to state
"up". The CDRestriction transitions to state "idle_up". This completes the sequence of actions triggered by the first
add_src signal.

The second add_src signal has ShimType "local", indicating that any restriction will be implemented locally. Signal
flows are identical to those described above, up to the point where the new CDRestriction sends signal open to the
ChannelManager. The ChannelManager recognises the ShimType as "local", does not attempt to open or use a
GocapShim to a remote host, and returns a use_channel signal carrying a null channel identifier to the CDRestrictor.
CDRestrictor will not receive the up signal from any GocapShim. Hence for the moment CDRestrictor will remain in
state "idle_down", and will not transition to state "idle_up".

The third add_src signal has a supported non local ShimType (e.g. "diameter"), similar to the first add_src, and the
AddressList specifying the GOCAP slave is identical to that carried by the first add_src. Signal flows are identical to
those for the first add_src, up to the point where the new CDRestriction sends signal open to the ChannelManager.
ChannelManager's procedure getChannel finds that the AddressList corresponds to an existing GocapShim, so it returns
the identifier of that GocapShim to the CDRestriction and sends a new_ref signal, carrying the process identifier of the
CDRestriction process, to the GocapShim. Because the link status is "up", GocapShim is in state "up" and sends signal
up to CDRestriction in response to new_ref from ChannelManager.

E.1.2 Data flows for addition of a source
Figure E.2 shows more detail of data flows for the addition of the first source described in clause E.1.1.

The signal add_src carries parameter SourceData, containing:

• an AddressList of transport addresses for the GOCAP Slave associated with the source;

• a Flows element consisting of a list of tuples, each one consisting of:

- a signature identifying a GOCAP association between a Master and Slave and a type of load from the
source, together with;

- a "splash", a real increment to a leaky bucket restrictor's fill. The splash is added when a source admits
an instance of that type of load.

• a ShimType element, "local" or the name of a supported Gocap transport type, indicating whether the source is
at a remote system which implements GOCAP and accessed via the specified" transport, or whether a "local"
restrictor has to be created;

• source weighting parameters w and s;

• a RestrictionType element - restricted at present to the single type Floating Point Leaky Bucket;

• a duration to be applied to restrictors for this source; and

• a boolean element "static" indicating whether the restriction is static or adaptive.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 90

add_src(SourceData)
[AddressList, Flows,

ShimType, w Real,
s Real, RestrictionType,

Duration, static Bool]

CDProcess Channel
Manager

mgmt

CDR_Id(Integer)
[ID is index of
CDRestriction
in CDProcess’

Database]

CAProcess

update_origin(
S:Real, R:Real)

passive

CDRestriction

open(AddressList,
ShimType)

init

use_channel(
GocapShimPId)

idle_down

GocapShim

create(
MasterGOCAPID,
CDRestrictionPId,
AuthScopeList)

up

idle_up

create
(restnID,

SourceData)

opening

idle

up

idle

Gocap_Transport

Figure E.2: Adding sources; detailed information flow

When CDProcess creates the new CDRestriction process, the SourceData parameter is passed in. CDRestriction sends a
signal open(AddressList, ShimType) to ChannelManager. CDRestriction obtains the AddressList and ShimType
parameters directly from SourceData.

When the scenario starts, no GOCAP session exists to the specified slave. However ShimType parameter has a
supported, non local value (eg "sip_sub_not") so the ChannelManager creates a GocapShim to manage a new GOCAP
session to the remote slave. The GocapShim is created with the following parameters:

• the GOCAPID of the master, which ChannelManager obtains from configuration - the slave will use this to
ensure uniqueness of the master's restriction identifiers when they are used on the slave;

• the AddressList for the slave, originally from the SourceData parameter of the add_src signal;

• an identifier for the CDRestriction process, which GocapShim will use to send signals direct to CDRestriction;

• and the AuthScopeList of restriction Signatures.

ChannelManager has access to local configuration data from which it can obtain the GOCAPID of the master, and may
derive the AuthScopeList of restriction signatures. The master wishes to establish permission to control any traffic in
the AuthScopeList in advance of creating Restrictors for some subset of this traffic. In many cases the requested scope
will be constructed simply to represent "any traffic to the master", which may be achieved by wildcarding parameters of
the AuthScopeList.

ChannelManager sends signal use_channel to inform CDRestriction of the process ID of the new GocapShim.
CDRestriction will use this to send signals direct to the GocapShim.

The newly created GocapShim will either attempt to establish a communication channel with the GOCAP slave or wait
for such a channel to be established from the slave, depending on the underlying protocol. In this example,
Master-Slave communication is established without problem and the GocapShim sends signal up to its client
CDRestriction, which moves to state idle_up.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 91

E.2 Deleting sources
Figure E.3 shows a scenario where the management entity wishes to delete sources from the GOCAP system at a host.
This might occur in response to network re-arrangements. Sources which cannot contribute to load at a GOCAP Master
should be removed so that their weighting parameters w and s do not lead to incorrect values of the adaptation
parameters S and R, and hence distort the restriction values which GOCAP applies to active sources.

The scenario starts with the management entity sending signal del_src, carrying an integer parameter identifying the
CDRestriction process corresponding to the source, to the CDProcess. CDProcess sends delete_CDR to the identified
CDRestriction. CDProcess also recalculates the adaptation parameters S and R and sends them in signal update_origin
to the CAProcess.

The CDRestriction process, on receiving delete_CDR, sends signal close to the relevant GocapShim if the channelID is
not null, and terminates. If GocapShim receives a close, GocapShim removes its reference to the CDRestriction from its
local database.

del_src

CDProcess
Channel
Managermgmt CAProcess

update_origin

passive

update_origin

del_src

CDRestriction

close

GocapShim

delete_CDR

idle

del_src

update_origin

idle_up

close
delete_CDR

up

delete_CDR

idle_up

idle_down
idle

Gocap_Transport

Figure E.3: Deleting sources

The second del_src refers to a CDRestriction for a source which may only be restricted locally, that is, CDRestriction
has a null channel ID and does not refer to any GocapShim. On receiving delete_CDR, CDRestriction simply
terminates.

The third del_src signal triggers a sequence of processing similar to that triggered by the first del_src. However, when
the CDRestriction sends close to GocapShim, the GocapShim recognises that the CDRestriction which sent the close is
its only remaining client, that is, the only CDRestriction currently using the GocapShim. The behaviour of the
GocapShim and the degree to which restrictions/sessions on a Gocal Slave are tidied up is protocol dependent.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 92

E.3 Overload onset and abatement
This clause shows processing during an overload at the master, resulting in the creation, modification and ultimately the
deletion of Restrictor processes, both remotely at the slave and locally at the master. The first clause (see clause E.4.1)
provides an overview, and the second (see clause E.4.2) provides more detail of data associated with each signal.

E.3.1 Overview of overload onset and abatement
Figure E.4 shows the life-cycle of an overload event in GOCAP. In this diagram, details of the GOCAP transport have
been abstracted into the blue rectangle labelled "Gocap_Transport", which (for this scenario) is viewed as a means to
convey the GOCAP application signals new, set_rate, and halt from CDRestriction processes at the GOCAP master to
the RMProcess at the GOCAP slave, and to convey the restrictor_status signal in the opposite direction.

System
Control
Adaptor

Control
Distributor RMProcess RMProcess

GOCAP Master GOCAP Slave

passive

system_state

system_state glr_update

adapting

idle

update_CDR

activestate

system_state glr_update
update_CDR

terminating

glr_update
system_state

update_CDR

set_rate

TP

wait_TP

terminatesystem_state

wait_TP2
system_state

passive

idle

halt_CDR
halt

CDRestriction

new(r)

wait_down

update_CDR

new(r)

idle_down

idle_up

wait_up

restrictor_status

active_down

active_up

local_gs

remote_gs

create

create
idle

idle

Restrictor

Restrictor

update
set_rate

update

halt
delete

delete

ready ready

idle_down

idle_up

G
ocap_T

ransport

update_CDR

set_rate
update_CDR

halt_CDR

update
set_rate

restrictor_status

restrictor_status

restrictor_status

restrictor_status

system_state glr_update
update_CDR

set_rate
update

set_rate
update

update_CDR

restrictor_status
restrictor_status

system_state glr_update
update_CDR

set_rate
update

set_rate
update

update_CDR

restrictor_status
restrictor_status

restrictor_status
update

System
Control
Adaptor

Control
Distributor RMProcess RMProcess

GOCAP Master GOCAP Slave

passive

system_state

system_state glr_update

adapting

idle

update_CDR

activestate

system_state glr_update
update_CDR

terminating

glr_update
system_state

update_CDR

set_rate

TP

wait_TP

terminatesystem_state

wait_TP2
system_state

passive

idle

halt_CDR
halt

CDRestriction

new(r)

wait_down

update_CDR

new(r)

idle_down

idle_up

wait_up

restrictor_status

active_down

active_up

local_gs

remote_gs

create

create
idle

idle

Restrictor

Restrictor

update
set_rate

update

halt
delete

delete

ready ready

idle_down

idle_up

G
ocap_T

ransport

update_CDR

set_rate
update_CDR

halt_CDR

update
set_rate

restrictor_status

restrictor_status

restrictor_status

restrictor_status

system_state glr_update
update_CDR

set_rate
update

set_rate
update

update_CDR

restrictor_status
restrictor_status

system_state glr_update
update_CDR

set_rate
update

set_rate
update

update_CDR

restrictor_status
restrictor_status

restrictor_status
update

Figure E.4: Overload onset and abatement

Only one GOCAP transport association is shown, between a master and a single slave, for clarity. It should be
understood that there may be multiple slaves implementing restrictors for this master. Similarly, each slave may
implement restrictors for more than one master. A master has a single ChannelManager, but a GocapShim per slave. A
slave has a single GocapListener, but a SessionHandler per master.

In this diagram, a colour code is used for clarity. Green lines and green text refer to a local Restrictor and its associated
CDRestriction process. Blue lines and blue text refer to a remote Restrictor and its associated CDRestriction process.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 93

Sources have already been added as described in clause E.1, so the corresponding CDRestriction processes and a
GocapShim exist before the scenario starts. One restrictor is implemented locally and addressed via the RMProcess at
the master, and the corresponding CDRestriction process therefore starts in state idle_down. The second restriction is
implemented at a remote slave for which there is a GocapShim in state "up" and therefore this CDRestriction starts in
state idle_up.

Throughout system operation the system informs the GOCAP CAProcess of the system's load state, Y, and its goal load
G, in the parameters of the system_state signal. Whilst the load state is less than or equal to the goal load, CAProcess
remains in state "passive" and does not send any signal to CDProcess, as shown for the first system_state signal in
Figure E.4. However, the parameters of the second system_state signal have Y>G, that is, the system has become
overloaded. CAProcess calculates the control variable C and capacity modifier f using algorithms described in clause 4,
and sends signal glr_update to CDProcess with parameters C and f. CAProcess enters state "adapting".

On receiving the first glr_update signal, CDProcess applies algorithms described in clause 4 to calculate initial rates for
all the CDRestriction processes based on C, f, and the per-source data stored in CDProcess' restriction database. Signals
update_CDR, with the single parameter "rate", are sent to all relevant CDRestriction processes. Having sent these
update_CDR signals, CDProcess transitions to state "activestate".

On receiving a signal update_CDR in one of its "idle" states (either idle_down or idle_up), each CDRestriction sends
signal new, with a parameter of type Restriction, to the relevant RMProcess. CDRestriction transitions to the
corresponding "wait" state (either wait_down or wait_up). A CDRestriction's being in one of the "down" states implies
no transport connection to a remote GOCAP slave, and a local RMProcess instance responsible for any active Restrictor
processes. In contrast a CDRestriction's being in one of the "up" states implies a transport connection to a remote
GOCAP slave, and a remote RMProcess instance. Figure E.4 shows one instance of each of these cases.

For the case where the slave is at a remote GOCAP system, RMProcess returns signal restrictor_status containing the
Restrictor's identifier to the GocapTransport. GocapTransport (not shown in detail) conveys the restrictor_status signal
to CDRestriction. Receipt of the restrictor_status signal causes CDRestriction to transition from state wait_up to
active_up.

On receiving signal new, the RMProcess creates the Restrictor process with parameters of leakrate, priorities (a real
array of up to 15 thresholds corresponding to different priorities of admission requests), initial fill, maximum fill,
duration, and restrictor ID. The Restrictor initialises and transitions to state "idle".

When the Restrictors are in place, the external system may send signal request into the RMProcess within gocapSlave,
and receive either signal admit or signal reject in response. For clarity, details of this aspect are not shown in
Figure E.4.

As the overload continues, each successive signal system_state from the external system into CAProcess causes
CAProcess to recalculate the "global leak rate" and to send signal glr_update to CDProcess. Signal glr_update carries
revised values of the parameters C and f, respectively the control variable (global leak rate) and the capacity
modification factor. On receiving glr_update, CDProcess recalculates leak rates for all active CDRestriction processes,
and sends signals update_CDR to each CDRestriction carrying the revised leak rate. CDRestriction sends signal
set_rate to the relevant RMProcess, specifying the Restrictor using its identifier as received from RMProcess when the
Restrictor was created. RMProcess forwards the revised leak rate value in a signal update to the Restrictor itself.

When overloading traffic decreases towards the end of the overload event, the system will eventually send a signal
system_state indicating that goal load G is higher than actual load Y, that is, the system is no longer overloaded.
Processing in CAProcess checks that load is declining over at least two successive system_state signals. If so, a
glr_update signal is sent to CDProcess carrying new values of C and f as usual, and these are processed by the rest of
GOCAP as described above. However CAProcess also sets a timer TP (termination pending) and transitions from state
"adapting" to state "terminating".

Signals system_state continue to arrive from the external system whilst CAProcess is in state "terminating". If each
signal indicates that overload is continuing to decline, CAProcess remains in state "terminating", and this is the case
illustrated in Figure E.4. However if the Y and G parameters carried by a system_state signal indicate that overload is
no longer declining, CAProcess may stop the timer TP and transition back to state "adapting".

If CAProcess remains in state "terminating", then eventually timer TP will expire. When it does, CAProcess transitions
into a state "wait_TP" with the objective of synchronising the removal of restrictions to the next system_state signal.
When signal system_state arrives, CAProcess again checks that system load Y is below goal load G. If it is not,
CAProcess transitions back to state "adapting". However, provided Y is less than G, CAProcess sends signal terminate
to the CDProcess, and CAProcess transitions to state wait_TP2 (where it waits to ensure that the system does not
become overloaded following removal of the restrictions).

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 94

Signal terminate causes CDProcess to send signal halt_CDR to every active CDRestriction, and then to transition to the
"idle" state.

On receiving halt_CDR in an active state (active_down or active_up), each CDRestriction sends signal halt, carrying
the RestrictionID as a parameter, to the relevant RMProcess. RMProcess finds the Restrictor from the data in
RestrictionID, and sends signal delete to the Restrictor, causing the Restrictor to terminate.

In CAProcess' state wait_TP2, the next signal system_state is checked, and provided the system is still not overloaded
CAProcess transitions to state passive. However, if the signal system_state indicates that the system is once again
overloaded, CAProcess sends a further glr_update signal to CDProcess, and re-enters state "adapting". Figure E.4
shows the simple case where the system is not overloaded, and CAProcess transitions to state passive.

E.3.2 Detailed view of data flows in overload
Figure E.5 shows more detail of processing and data flow following the first system_state signal which indicates that the
system is in overload, and that following the next system_state signal which results in an update to the newly-
instantiated Restrictor processes. As for the scenario illustrated in Figure E.4, we assume that the Restrictor is at a
remote slave which implements GOCAP. For clarity this message sequence chart shows only the processing relevant to
the creation and update of a Restrictor at a remote slave. Processing for a Restrictor at a local slave is largely a subset of
the processing required for the remote Restrictor.

Signal system_state from the host system to process CAProcess carries parameters Y, the actual arrival rate, and G, the
goal arrival rate. If Y>G, the system is overloaded, causing CAProcess to send glr_update with parameters C, the
control variable, and f, the capacity modification factor, to CDProcess. CAProcess moves to state adapting. CDProcess
calculates per-source rate values and sends update_CDR with a leakrate parameter to each CDRestriction.
CDRestriction sends new, with a parameter of type Restriction, to the RMProcess at the slave. CDRestriction moves to
state wait_up. Because the slave is remote, the message is carried via a network transport.

The parameter of type Restriction, carried by the signal new, contains the following data:

• a RestrictionID containing:

- the local serial number of the restrictor as allocated by CDProcess;

- the master's GOCAPID;

• a Flows element with a signature and a "splash", see clause E.1;

• a duration, the time for which the restrictor is allowed to remain in existence if it is not refreshed;

• a RestrictionType, enumeration, currently with only one possible value "floating point leaky bucket"; and

• a leak rate.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 95

System
Control
Adaptor

Control
Distributor RMProcess

GOCAP Master GOCAP Slave

passive

system_state(
Y:Real, G:Real) glr_update(

C:Real, f:Real)
adapting

idle

activestate

CDRestriction

update_CDR(
rate:Real) new(

r:Restriction)
[RestrictionID,

Flows, Duration,
RestrictionType,

Leakrate]

idle_up

wait_up

active_up

remote_gs

create(
Leakrate,

PriorityList*,
initialFill*,
maxFill*,
duration,

RestrictionID)

idle

Restrictor

set_rate(
RestrictionID,

Leakrate)
update(

Leakrate)

ready

G
ocap_T

ransport
restrictor_status(
RestrictionID, ok)

restrictor_status(
RestrictionID, ok)

system_state(
Y:real, G:Real) glr_update(

C:Real, f:Real)

* : provisioned

update_CDR(
rate:Real)

System
Control
Adaptor

Control
Distributor RMProcess

GOCAP Master GOCAP Slave

passive

system_state(
Y:Real, G:Real) glr_update(

C:Real, f:Real)
adapting

idle

activestate

CDRestriction

update_CDR(
rate:Real) new(

r:Restriction)
[RestrictionID,

Flows, Duration,
RestrictionType,

Leakrate]

idle_up

wait_up

active_up

remote_gs

create(
Leakrate,

PriorityList*,
initialFill*,
maxFill*,
duration,

RestrictionID)

idle

Restrictor

set_rate(
RestrictionID,

Leakrate)
update(

Leakrate)

ready

G
ocap_T

ransport
restrictor_status(
RestrictionID, ok)

restrictor_status(
RestrictionID, ok)

system_state(
Y:real, G:Real) glr_update(

C:Real, f:Real)

* : provisioned

update_CDR(
rate:Real)

Figure E.5: Data flows in overload

Based on this, RMProcess creates a new Restrictor process with the specified leakrate, duration, and restriction ID, with
a provisioned PriorityList of thresholds and provisioned initial and maximum fill levels. RMProcess then stores the
restriction data and the new PId of the Restrictor in its local database. RMProcess returns restrictor_status with the
RestrictionID and status OK to the CDRestrictor process. For remote slaves, this signal is sent via GocapTransport.
CDRestriction moves to state active_up.

The next system_state update from the system causes CAProcess to calculate new values of the control variable C and
capacity modification factor f, sent with signal glr_update to CDProcess. CDProcess calculates new leakrates for each
CDRestriction and sends them with signals update_CDR (only one CDRestriction is shown in the message sequence
chart). CDRestriction sends signal set_rate, with parameters RestrictionID and the rate, to the remote RMProcess via
Gocap_Transport. RMProcess sends signal update to the identified Restrictor supplying parameter Leakrate, and returns
restrictor_status to CDRestrictor via Gocap_Transport.

E.4 Audit
Figure E.6 shows the scenario where the external management system chooses to audit restrictions on slaves. The signal
audit, requesting an audit, may be sent directly into the RMProcess at a local GOCAP slave, or the signal get_audit may
be sent into the ChannelManager within Gocap_Transport to support an audit of restrictors at a remote GOCAP slave.

The signal get_audit sent into ChannelManager carries three parameters of types AddressList, ShimType and
recipientPId. The parameter recipientPID allows the management entity to specify the process which will receive the
list of active restrictions, when it is returned. In Figure E.6 the management entity specifies itself as the recipient.
ChannelManager uses AddressList to select the appropriate GocapShim.

ChannelManager forwards signal get_audit to the selected GocapShim. GocapShim stores recipientPId for use when the
response is received from the remote slave.

GocapShim sends an audit request message (protocol dependent) to the slave's SessionHandler. SessionHandler
forwards signal audit, specifying the GOCAP ID of the requesting master, to the RMProcess.

RMProcess returns signal active_restrictions to SessionHandler, which returns it to GocapShim at the master.
GocapShim parses the reply and sends active_restrictions directly to recipient specified by the external management
system which was the original source of the request.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 96

Processing for the simpler case where the external management system audits the local slave using signal audit, and
specifies the GOCAP ID of the master to which the restrictions apply, is a subset of the processing for audit at a remote
slave.

G
o
cap
_Transp
o
rt

RMProcess RMProcess

local_gs remote_gs

ready ready

mgmt
Channel
Manager

idle

audit(gID)

GocapShim

up

get_audit(AddressList,ShimType,recipientPId)

audit(gId)

active_restrictions
(restrictionList)

active_restrictions
(restrictionList)

active_restrictions
(restrictionList)

SessionHandler

idle

get_audit(
AddressList,
ShimType,
recipientPId)

Figure E.6: Audit

E.5 Switching to local restriction
This clause illustrates the system's reaction following loss of communication with a remote GOCAP peer. Loss of
communication is assumed to occur during overload whilst there is an active Restrictor process at the remote slave. In
cases where the GOCAP communication is not carried with application traffic, certain faults may cause failure of
GOCAP communication whilst traffic remains active from the GOCAP slave to the GOCAP master. For this reason, it
is important that a local Restrictor process is instantiated as soon as the GOCAP master system recognises that it has
lost communication with the remote GOCAP slave. Figure E.7 shows the message sequence.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 97

Control
Distributor RMProcess

RMProcess

GOCAP Master GOCAP Slaves

activestate

glr_update

CDRestriction

active_up

local_gs

remote_gs

idle

set_rate
update

update_CDR

restrictor_status

glr_update

update_CDR

restrictor_status

Restrictor

ready

ready

down
new(r)

wait_down
restrictor_status

active_down

create

idle

Restrictor

set_rate
update

glr_update

update_CDR

GOCAP
Transport

up

wait_up

new(r)

create

idle

Restrictor

restrictor_status

halt
delete

active_up

set_rate
update

restrictor_status

delete

Figure E.7: Switching to local restriction

The starting point for this message sequence is an active overload in which the local GOCAP master has caused the
creation of one Restrictor at a remote slave. Steps leading to this starting point are covered in clause E.3.

The sequence starts with a normal update triggered by the local system's sending signal system_state, though for clarity
only the resulting signal glr_update into CDProcess is shown in Figure E.7. CDProcess calculates per-restriction rates
and sends signals update_CDR to the CDRestriction process. The CDRestriction process sends signal set_rate via
GocapTransport to the remote RMProcess. The remote slave processes the update and eventually returns
restrictor_status "OK" which is forwarded to the CDRestriction.

Immediately following this exchange, the scenario assumes that a communication fault develops inside the Gocap
transport, Following the failure, the master and slave are no longer able to communicate, so processing continues
independently at the two ends.

At the master, the GocapShim sends signal down to each of its CDRestriction clients (for clarity, only one
CDRestriction client is illustrated in Figure E.7). Each CDRestriction which receives signal down sends signal new to
its local RMProcess to initiate creation of a local Restrictor, and enters state wait_down. The RMProcess' handling of
signal new has been covered in clause E.4. The local RMProcess returns restrictor_status "OK" to the CDRestriction
process, which moves to state active_down. Subsequent updates to the rate of the local Restrictor are processed as
described in clause E.4.

At the slave, the behaviour is protocol dependent, but the default behaviour is to continue with any active restrictions
until communication is restored, or the restrictors themselves time out.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 98

When communication has been restored by the GocapTransport, the GocapShim will send an up signal to each of its
CDRestriction clients to indicate this. The CDRestriction will respond by sending a new request to the remote
RestrictorManager, via the GocapTransport. The remote RestrictorManager will analyse the new restriction request, and
will establish that a restriction with that RestrictionID is already active. The Restrictor manager will delete that
restriction, and create a new one as specified in the new request from the CDRestriction, responding to the
CDRestriction with a restrictor_status signal to indicate the outcome.

One the CDRestriction has received a restrictor_status message indicating that the remoter restriction is active, it will
send a halt signal to the local RestrictorManager to delete the local restriction. Subsequent set_rate messages from the
CDRestriction will now be directed towards the remote RestrictorManager by the CDRestriction.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 99

Annex F (informative):
Adaptation behaviour discussion

F.1 Adaptation algorithm behaviour
The adaptation algorithm uses the goal arrival rate and the measured arrival rate to adjust the control variable, C, also
called the global leak rate, which is used by the distribution function to calculate particular restrictor leak rates (see
clause 4.2.3.1). Each source is sent a restriction, ri, such that:

 ()fSC
W

w
fsr i

ii −+= , (F.1)

where:

 f is the capacity modification parameter - described in more detail in clause F.3;

 is is the capacity allocation for the ith restriction;

 iw is the weight of the ith restriction, which is used to allocate spare capacity;

 S is the sum of all the si ;

 W is the sum of all the wi, and

 C is the control variable.

NOTE: Equation F.1 implies that:

 Cr

i

i =∑ . (F.1a)

In principle, for a particular set of originating request rates, there is single value of C which will, after translation into
leak rates, deliver a particular request arrival rate at the target. If A is the set of active sources where the current
restriction ir is less than the actual demand from that source, di, then we can write down an expression for actual arrival
rate Y:

 ∑∑∑
∈∈∉

++=
Ai

i

i
Ai

i

i

Ai

i

i W

w
sfdY (F.2)

The gradient of Y is approximately:

 ∑
∈

≈
Ai

i

i

W

w

dC

dY
. (F.3)

In general, the arrival rate is a monotonically increasing function, Y(C), of the control variable C, and the slope of Y(C)
is non-increasing everywhere to the right of fS (see Figure F.1). The objective of the adaptation function is to find the
value of the control variable, C, such that the achieved arrival rate matches the goal arrival rate, G. The adaptation
algorithm assumes a linear estimate of Y versus C and calculates a new C using similar triangles. So, given the current
value, Ci, of the control variable and the corresponding total request arrival rate,)(ii CYY = , draw a straight line from

the point (Ci, Yi) to the adaptation origin at (X,0), and find the value of C at which this line intersects the horizontal line
Y = G , i.e. the new value of the control variable is given by:

 .
Y

XC

G

XC

i

ii −
=

−+1

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 100

which implies that: ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=+

ii

i
i

Y

G
X

Y

GC
 C 11 (F.4)

Figure F.1: Adaptation of control variable

The issue is the selection of the adaptation origin, X. Figure F.2 shows how setting the adaptation origin to zero can lead
to oscillatory behaviour where Yi is below the goal arrival rate, but Yi+1 is above the goal arrival rate. Using X = fS is

always safe as Y(C) is always convex above fS, but using X < fS will speed the adaptation.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 101

Y(C)

C

G

fS Ci

Yi

Ci+1

Yi

Figure F.2: The effect of choosing the wrong adaptation origin

Using Equations F.2 and F.3 we know the arrival rate when the control variable is C = fS and the gradient at that point
(see Figure F.3).

fSX

∑∑
∈∉

+
Ai

i
i

Ai

i
i sfd

∑
∈

=
Ai

i

i

W

w

dC

dY

C

Y

Figure F.3: Definition of the adaptation origin

We know that the Y(C) is convex for C > fS, and so to ensure convergence we just have extrapolate backwards from
Y(fS) to the axis (of 0 arrival rate) to make sure that the chord from the origin to this curve with control parameter value
C always has a higher gradient than for fSC ≥ . So, from Figure F.3, we can write down an expression that defines an

upper limit on X.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 102

∑

∑∑
∈

∈∉
+

≤−
Ai

i

i

Ai

i

i

Ai

i

i

W

w

sfd

XfS (F.5)

To define X we need to calculate the smallest value of the RHS of Equation F.5. This corresponds di = 0 for Ai ∉ and

A containing only one element, j, where :

⎭
⎬
⎫

⎩
⎨
⎧

= LL ,,,min
2

2

1

1

i

i

j

j

w

s

w

s

w

s

w

s

So we obtain an expression for the adaptation origin that is safe and allows adaptation to be as rapid as possible.

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−=
i

i

w

s
WSfX min (F.6)

Combining Equations F.4 and F.6 we can write down an expression that enables us to calculate new control variable
values:

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−+=+
ii

i

i

i
i Y

G

w

s
WSf

Y

GC
 C 1min1 (F.7)

Using the adaptation origin specified in Equation B6 and given the properties of Y(C), it follows that if CG < Ci , then

CG <= Ci+1 < Ci ; and if CG > Ci, then CG >= Ci+1 > Ci. That is, the sequence of successive values of the control

variable either decreases monotonically and is bounded below by CG, or increases monotonically and is bounded above

by CG. In either case the sequence of C values will therefore converge (theorem in real analysis); and the limit is CG.

F.2 Adaptation and control termination
Figure F.4 shows that the adaptation algorithm will cause the control variable to increase without limit when the
controlled sources, between them, are originating service requests destined for the target server, at a rate less than the
target server's goal arrival rate GY . It would be dangerous to allow this to occur because the sources could suddenly

increase their offered rates to the target and so, in the case when the measured arrival rate is less than the goal arrival
rate, for more than one iteration of the adaptation algorithm, the adaptation behaviour needs to be modified.

Therefore, if the current arrival rate iY is not significantly greater than the previous arrival rate 1−iY , that is, if

ε <− −1ii YY , where the configurable parameter ε, the minimum arrival rate change, is small and positive, then the next

value of the control variable, 1+iC , should revert to 1−iC .

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 103

Figure F.4: Adaptation when sources originate requests at a rate < goal arrival rate

F.3 Capacity Modification Factor
The capacity modification parameter has been introduced to allow the adaptation algorithm to work even if the capacity
of the system falls below the sum total of the static capacity allocations (SLAs) defined in the Control Distribution.
From Equation F.1 we can see that if the control variable falls below S (= ∑si), there is a possibility that some restrictors
will be updated with negative leak rates unless the capacity modification parameter, f, is reduced such that G ≥ fS. The
capacity modification parameter is set by the Control Adaptor in response to update_origin signals from the Control
Distribution.

The Control Adaptor is configured with a parameter called the effective origin scalar, a, which is used to set f and thus
control the ratio G/fS. The capacity modification parameter is calculated using:

 ⎟
⎠

⎞
⎜
⎝

⎛=
S

aG
f ,1min (F.8)

where a is constrained to be less than or equal to 1.

The value of a is chosen to prevent the adaptation becoming locked when, due to some internal failure or configuration
error, G < S. If a is 1, then there is a possibility of the adaptation becoming very slow, or even stalling due to the fact
that the control variable can get very close to the adaptation origin. Setting a < 1, forces fS < G and therefore the
adaptation origin (which is always ≤ fS) to move further away from G.

So when designing policies for setting the wi and si parameters, ensuring that S is significantly less that the nominal

system capacity and that a is set to ensure that is still the case even when there is some loss of processing capacity, will
improve the adaptation of the control.

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 104

Annex G (informative):
Bibliography
ETSI TR 182 015: "Telecommunications and Internet converged Services and Protocols for Advanced Networking
(TISPAN); Next Generation Networks; Architecture for Control of Processing Overload".

ETSI

Final draft ETSI ES 283 039-2 V3.1.0 (2009-11) 105

History

Document history

V3.1.0 November 2009 Membership Approval Procedure MV 20100110: 2009-11-11 to 2010-01-11

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Control Architecture
	4.1 Description of NOCA Components
	4.2 Detailed Description of NOCA Components and Behaviour
	4.2.1 Overview
	4.2.2 Control Adaptor (CAProcess)
	4.2.2.1 Control Adaptor Data
	4.2.2.2 CAProcess signals
	4.2.2.3 Control Adaptor Behaviour
	4.2.2.4 Generating Control Adaptor Input

	4.2.3 Control Distribution (SDL: CDProcess)
	4.2.3.1 Control Distribution data
	4.2.3.2 Control Distribution Signals
	4.2.3.3 Control Distribution Behaviour

	4.2.4 CDRestriction
	4.2.4.1 CDRestriction Data
	4.2.4.2 CDRestrictor Signals
	4.2.4.3 CDRestrictor Behaviour

	4.2.5 Restrictor Manager (RMProcess)
	4.2.5.1 Restrictor Manager Data
	4.2.5.2 Restrictor Manager Signals
	4.2.5.3 Restrictor Manager Behaviour

	4.2.6 Restrictor
	4.2.6.1 Restrictor data
	4.2.6.2 Restrictor signals
	4.2.6.3 Restrictor behaviour

	4.2.7 GOCAP Transport
	4.2.7.1 The structure of the GOCAP transport layer.
	4.2.7.2 Channel Manager
	4.2.7.2.1 Channel Manager Data
	4.2.7.2.2 Channel Manager Signals
	4.2.7.2.3 Channel Manager Behaviour

	4.2.7.3 Shim Process
	4.2.7.3.1 Shim Process Signals
	4.2.7.3.2 Shim Process Behaviour

	4.2.7.4 GocapListener
	4.2.7.5 SessionHandler

	5 GOCAP over Diameter
	5.1 Introduction
	5.2 Use of the Diameter base protocol
	5.2.1 Advertising GOCAP support
	5.2.2 Securing Diameter messages
	5.2.3 Accounting functionality
	5.2.4 GOCAP commands
	5.2.4.1 AA-Request (AAR) command
	5.2.4.2 AA-Answer (AAA) Command
	5.2.4.3 Profile-Update-Request (PUR) command
	5.2.4.4 Profile-Update-Answer (PUA) command
	5.2.4.5 Session-Termination-Request (STR) command
	5.2.4.6 Session-Termination-Answer (STA) command
	5.2.4.7 Abort-Session-Request (ASR) command
	5.2.4.8 Abort-Session-Answer (ASA) command

	5.2.5 AVP definitions
	5.2.5.1 Auth_Scope
	5.2.5.2 AVP GOCAP-Body

	5.2.6 Restrictions on AVP values
	5.2.6.1 Auth-Request-Type
	5.2.6.2 Auth-Session-State AVP

	5.3 Procedures to be used with Diameter messages
	5.3.1 Introduction
	5.3.2 Diameter ChannelManager
	5.3.3 Diameter Shim
	5.3.3.1 Diameter Shim data
	5.3.3.2 Diameter shim behaviour
	5.3.3.3 Generating PUR messages

	5.3.4 Diameter Listener
	5.3.4.1 Diameter session initiation
	5.3.4.2 Diameter session termination
	5.3.4.3 Gocap commands

	5.3.5 Diameter Session Handler
	5.3.6 GOCAP Timers

	5.4 Diameter MSC charts
	5.4.1 Simple Diameter session

	6 GOCAP over SIP
	6.1 General
	6.2 Overview
	6.2.1 GOCAP Slave
	6.2.1.1 Subscription
	6.2.1.2 Receiving Notifications

	6.2.2 GOCAP Master
	6.2.2.1 Subscription
	6.2.2.2 Notification

	6.3 Detailed procedures
	6.3.1 Introduction
	6.3.2 GOCAP Master
	6.3.2.1 SIP ChannelManager
	6.3.2.2 SIP Shim
	6.3.2.2.1 SIP Shim data
	6.3.2.2.2 SIP shim behaviour
	6.3.2.2.3 Generating NOTIFY messages

	6.3.3 GOCAP slave
	6.3.3.1 SIP Listener
	6.3.3.1.1 SIP Session initiation
	6.3.3.1.2 Session termination
	6.3.3.1.3 Gocap commands

	6.3.3.2 SIP Session Handler

	Annex A (normative): ASN.1 data types and signal definitions
	A.1 ASN.1 definitions
	A.2 Signals
	A.3 SDL description

	Annex B (normative): Congestion_Control event package
	B.1 Event Package Name
	B.2 Event Package Parameters
	B.3 SUBSCRIBE Bodies
	B.4 Subscription Duration
	B.5 NOTIFY Bodies
	B.6 Notifier Processing of SUBSCRIBE Requests
	B.7 Notifier Generation of NOTIFY Requests
	B.8 Subscriber Processing of NOTIFY Requests
	B.9 Subscriber Generation of SUBSCRIBE Requests
	B.10 Handling of Forked Requests
	B.11 Rate of Notifications
	B.12 State Agents
	B.13 Use of URIs to Retrieve State

	Annex C (normative): XML Schema
	C.1 Introduction
	C.2 XML Schema specification

	Annex D (informative): Generating System_state data
	D.1 Introduction
	D.2 Background
	D.3 Modelling CPU load
	D.4 Single processing system
	D.4.1 Arrival rate and Goal rate
	D.4.2 Scheduling the update
	D.4.3 Updating the arrival rate
	D.4.4 Updating the goal rate
	D.4.5 Variables
	D.4.6 Initialisation
	D.4.7 Configurable Parameters

	D.5 Multiple processing subsystems
	D.5.1 Scheduling the update
	D.5.2 Updating the arrival rate
	D.5.3 Updating the goal rate
	D.5.4 Special design considerations
	D.5.4.1 AS unavailability
	D.5.4.2 Late or missing updates

	Annex E (informative): Message Sequence Charts (Transport Independent)
	E.1 Adding sources
	E.1.1 Overview
	E.1.2 Data flows for addition of a source

	E.2 Deleting sources
	E.3 Overload onset and abatement
	E.3.1 Overview of overload onset and abatement
	E.3.2 Detailed view of data flows in overload

	E.4 Audit
	E.5 Switching to local restriction

	Annex F (informative): Adaptation behaviour discussion
	F.1 Adaptation algorithm behaviour
	F.2 Adaptation and control termination
	F.3 Capacity Modification Factor

	Annex G (informative): Bibliography
	History

