Final draft ETS| ES 203 915-13 V1.1.1 (2005-02)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 13: Policy Management SCF

(Parlay 5)

D

2 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Reference
DES/TISPAN-01005-13-0OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
© The Parlay Group 2005.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Contents

Intellectual Property RIGNES.........oo et 9
0 Yo (o SRS 9
1 o010 RSP 10
2 S L= (= 000 P 10
3 Definitions and aDbreVIBLIONS...........eceere ettt e sre e be s e e tesneeneeseeeneeneenreas 10
31 (D= T o T] (0] PP P PP USTORPP 10
3.2 ADDIEVIBLIONS ...ttt bbbt bt ae st e e eeE e e bt e bt e he e b e e e et e Rt eh e e Re e b e R e bt bt eneene e e re e 10
4 POlICY ManagemMENL SCI........c.ooiieee ettt st e st e e re et e sbeeaaesbeessestesaaensesreenaensenreas 11
5 SEOUENCE DIAOIAITIS ...ttt sttt e st eh b s s b s e e s e s e e e s e e he e b e sb e e b e s e e b e s e s e e e seeaenbeabenbeanennennan 11
51 USE Of POIICY REPOSITOIY ...ttt b ettt b et b et sb e b 11
52 Introduce condition and aCtioN INEO FUIE.........co.eierieee et st 13
5.3 (OIS (Y=Y o | OSSR 15
54 Create and MOiTY QOMIBINcceiiieiee et e st et e e e teetesaesaeesaeesaeenseenseenseeseesneessensens 17
55 ASP offering services to prepaid SUDSCIIDEIS.........ooiii e 19
5.6 Create Signature for an evalualion CONLEXL...........ceivevuieieiienieeeesee e seeseesee e e sreesreeaeeseeenseesaesneesseesrens 21
5.7 Request EValuation Of POLICIES.........ccciiieiiece sttt te et ena et e sneesteesseeseenaennennnes 23
5.8 Register for and Receive Notification Of aPOliCy EVENL........ccccoveeieiiiicece e 23
6 (O = ST o = o 1 S 24
6.1 PM ProviSioning SCF Class DiBgraimS........ccuieerireeierieesieseeiesseseeiessessesessessesesse s e s ssesessessesessessessssessenssss 24
6.2 PM Policy Evaluation SCF Class DIiagrams.........cccoureeiirieirienieiesieesie s sse e sse s ssenesnes 26
7 The Service INterface SPECITICALIONS..........cciiiierierieree e 26
7.1 Interface SPECITiCAtiON FOIMELcocui ettt e re e re e sreesteesteeneeeneeeneennes 26
711 INEEITACE ClBSS ...ttt bt b e bbbt bt ae e e e s et b e sb e eb e e he e s e e e e nb e ke sbeeb e e e ennennea 26
7.1.2 =10 T0 0 === ol o (o] S 26
7.13 ParaMELEr GESCITPIIONS.cve ettt ettt b et b et b et b e et e b e et b e bbb 26
714 S (=1 o L= PSR 26
7.2 RS S (= o SRS 27
721 INtErface Class IPINTEITACEci bbbt b e et 27
7.3 S Vel g 11= = o= OSSP 27
731 OVEBIVIBWW ..ttt e ettt ettt e st et e e s e e besaeeaeeaeemeemeeae e EeaReeeeeseemeemeese e teeaeeneeneanseaeeseesaesneeneensenees 27
74 GENENIC SEIVICE INLEITACE ...ttt bbbttt e s bese e eb e s bt eb e e e e s e besbeebesaeenee e ennas 27
74.1 INEEITACE ClaSS IPSEIVICEciieieeie ettt sttt e s esae e s te e aeenteenaessaesteesse e seenseennesneennes 27
74.11 MELNOO SEECAIIDACK() .. .vveveeeiietesieieie ettt sttt se et e see et e sae e ebesbeneenens 27
7.4.1.2 Method setCallbaCkWithSESSIONID() .. .eveveiieiererieeeiesieieie ettt sttt see et s sesbesbeneenens 28
8 Policy Management (PM) INtErfate ClaSSES......cuciiieeie ittt st ere s 28
8.1 PM Provisioning SCF INLErfate CIASSES.......c.ciiiririiiirie ettt 28
811 Interface Class IPPOICYIMBNAGES ..ottt b e b et b e bbb 28
8111 Method CreateDOMEIN()erveuerrereeierie ettt bbb et b e e b bt ebesa e b e b nnenea 29
8112 MELhOA GEIDOMEIN()veueeveteeeterteeet ettt sttt sttt bbb eb e et eb e s b et b e e e e ebese et ebesbe e ebesbennenen 29
8.1.1.3 Method remMOVED OMAIN()c.veeureeieeeeseesee st e st erte e st e s e e s e e e e teesaessaesseesseesseenseenseeneesneesssesseessensseessnns 30
8.1.14 Method getDOMAINCOUNL()eeveeieeieeie e st st se et e st e e e e ste e steeeesreesreesseesseenreennessaessaesseesrens 30
8.1.15 Method getDOMAINITEIALON()vveiveeieeieeie ettt e e e e ste et e e e sre e s reesreesteenseeseesseesneesseesnens 30
8.1.1.6 Method findMatChiNgDOMEINS().......veeueieeieeieere e e e ee e e e te e sreeee e e s e e sreesre e e esteesaesseesseeseens 31
8.1.17 Method CreatE€REPOSITONY (). . vvereereeierieiiesee st e st et e e teetesrae s esteesteesteeeeaseeeseesseesseenseenseeneenseesseesenns 31
8.1.1.8 MethOd GEIREPOSITONY()veeureeeieeiieseeseestee st se et e st et e st et e e tessaesseesaeesseesseeseeseenseensesnaensenssensenn 31
8119 Method remMOVEREPOSITONY() «..eveueeeerrereererterieiesie st ettt et st e et b e b b e bt sbeseebesbese e st sae e ebesbennenen 32
8.1.1.10 Method getREPOSITOIYCOUNL(). ... ceverreueererreeetestese ettt see sttt st et e e b e se b sbe e ebesae e ebesbennenens 32
81111 Method getREPOSITOrYITErAEON().... v erveeeeerrereeieete sttt sttt bbbt sb e et sb e e b sn e eb e b neenea 32
81112 Method SArtTraNSACHION()veueevereeerrerieiet sttt ettt sttt e b e et b e e et ebese e e b sne e ebesbennenen 32
81113 Method COMMITT FANSACHION() . .+..eveeerertereetirtere ettt sttt ettt b et b e eb e b e b se e e b e sbennenea 33
8.1.1.14 [V T= oo =T T g i = 1= ox oo TS 33

ETSI

8.12
8121
8.1.2.2
8.1.23
8124
8.1.25
8.1.3
8.131
8.1.3.2
8.1.33
8.1.34
8.1.35
8.1.3.6
8.1.3.7
8.1.38
8.1.39
8.1.3.10
8.1.311
8.1.3.12
8.1.3.13
8.1.3.14
8.1.3.15
8.1.3.16
8.1.3.17
8.1.3.18
8.1.3.19
8.1.3.20
81321
8.1.3.22
8.1.3.23
8.1.3.24
8.1.3.25
8.1.3.26
8.1.3.27
8.1.3.28
8.1.3.29
8.1.3.30
8.1.331
8.1.3.32
8.1.3.33
8.1.3.34
8.1.3.35
8.1.3.36
8.1.3.37
8.1.3.38
814
8141
8.14.2
8.14.3
8.144
8.1.45
8.1.4.6
8.14.7
8.1.4.8
8.1.4.9
8.1.4.10
81411
8.14.12
8.1.4.13
8.1.5
8.151
8.1.5.2

4 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

INLEITACE ClaSS IPPOIICYveeieeiece ettt ste et e e e e saeesae e taesteesse e seenseeneenneesnns 33
ATETTDULES. ...t e bbbt he et e e e b e s et e b s bt e R e et e e e neesbenbesaeer e e e enne e 34
VK= oo e VAN 1] T 1= S 34
MELhOO SELATIIIULE() ...veveevereeeeie ettt sttt se et sb et et esbe e ebesbeneenens 35
VK= oo e VN 1] 10 1=) SR 35
MELhOO SELATIIIULES() ...veveeeeieie ittt st sttt et e se et et esae e b e sbeneenens 35

Interface Class [PPOHICYDOMEINc..oiiiiieieie ettt sttt b et b e bbb 36
N T o0 (=R 37
Method getParentDOMAIN()c.eiveeererteeerertereet sttt st b st et se e ebesb e e b e see e et e see e ebesae e ebesbennenens 38
Method CreateDOMEIN()erveuerrireeierie ettt b et b e e bt b et esa e b e b e enens 38
MELhOA GEIDOMEIN() -...veueeveteeeterteeet ettt sttt sttt b et b e eb e a e e b e s b e e b se e e et e se e e ebesae e ebesbennenen 39
Method remMOVED OMAIN()c.vveureeieeie e see st e st ste et e st e st e s e e e e teestessaessaesseesseenseenseeneesseesssesseessensseessnns 39
[\V/N= 1 aTe o lo (B To] = [0 1U 11) IS 39
Method getDOMAINITEIALON()veeiveeieeeeeie ettt e e te e rte e e e e s e e sse e teeneeenseesaesneesreesrens 40
Y K= oo o= 1] 01U o) S 40
V= 1 a0 o o (] oo () S 40
MethOd rEMOVEGIOUD() ...vveeeeeereeereesieesieesieesieesteseeseeseesseesseesseesseessesseesseesseesseesseesseeseensesssessenssenssenssnes 41
MeEthOd GELGIOUPCOUNT()vveveeeeeetereeieete sttt sttt ettt st e b e et et se e e b sb e e ebesae e ebesbennenens 41
MethOd GELGIOUPITEIGION()eeveeeeertereeieete sttt sttt st ettt b e et b e e e bt sb et b sae e b e srenenen 41
MELhOd CrEALERUIE()..... vttt b e ekt se et eb e e e b b e ene 41
MELNOA GEIRUIE() ...ttt bbbtk b et b e et b e e bt sb e e bt sb e b e sbennenen 42
MEthOd FEMOVERUIE() ...ttt bbb et b e et eb e s e et e e b e see e ene 42
MEthOd GEIRUIECOUNL() ... veueeveteeeterteiete sttt sttt ettt e b e e bbbt b eb e sa e b e sbe e enea 42
VK= oo e LU =N (= o] () S 43
Method createEVentDEfiNItION()eeieeiie e et nnees 43
Method getEVENtDEfiNITION()eeveeeeree ettt eere e s re e teesaesnaesnaesraesaeas 43
Method remoVEEVENtDEFTNITION()veieeieeieese ettt et naesnaesreesnees 44
Method getEventDefinitioNCOUNL()oieeieereeie e ee et ee et e e enaesnaesreennees 44
Method getEventDefiNitioNITEraLOr()cveieeieereeeieeeeeie s e st eee e snaesnaesreesnees 44
Method CreateV ariallESEL()oeiviirerieeerie ettt b e e b e er e ene 45
Method getV ariabIESEL()erveueererieeete ettt st b e b s a e b b e ene 45
Method remoVEV @TADIESEL()verveeerririeieite et b bbb e ene 45
Method getV ariablESEICOUNL()coveverrereeririereeieste ettt eb s b b e eb e seenen 45
Method getV ariabl ESELITEIELON()eveverreeererieietereere ettt b e eb et b e e eb e e b e e b sreneenen 46
Method <<new>> CreateV ariabl€()cccvice e naees 46
Method <<new>> SetVariabDlEVaUE()ccceieeiiei ettt nneas 46
Method <<new>> getVariabl€TYPE()vcceieerieereeii e eeetesee ettt ee e sre e teere e s e sneesreeneeas 47
Method <<new>> getVariablEValUE()ccuvieiriieieee et nnees 47
K= oo la T VA= T T o] =) SR 47
Method <<new>> remOVEV ATADIE()civeieeieeee et et re e reennees 48
Method <<New>> CreateSIgNAIUIE()vcererieirtereee sttt b e et b e e eb b e b sne e ebesresnenen 48
Method <<NEW>> gELSIGNAEUNE()cverveeerereeietestere et st sttt e e b e et e e b se e ebesee e ebe b neenea 49
Method <<NEW>> reMOVESIGNALUINE()ccveiviiererieietesie ettt b bbbt b e bt sbe e b e neenea 49
Method <<new>> getSigNatUr@COUNT()eoveerrereererieiete st sttt er e e sbe e sbe e neenens 49
Method <<new>> getSigNatUreltErator()cceuerreerereerie sttt b e ebe e neenen 49

INterface Class IPPOICYGIOUPc.citiieieierieeete sttt sttt ettt b e et b e et b e e bt s benn et sbe bt b s 50
ATETTDULES. ...ttt b et b bt ae e e e b e b s et e bt s ae e b e et et e e e e sbeebesaeere e e e e 51
Method getParentDOMEIN()coieeierie e ettt ee e sre e saeesseeneeenreennessaesneesseesrens 52
Method gEtParentGIrOUD()eeveeieeieriesee st e st e et e s et e e e tessee s e sreesreesaeeseeneeeneeensesnaesneesseesanns 52
Y K= e Lo o= 1] 01U o) S 52
V= 1 oo o (] oo () SR 53
MethOd rEMOVEGIOUD() ...uveeuveeeeeereesieesieesteesteesteesteetesseesseesseaseeseesteessesneesseesseesseesseenseensenssessenssenssenssnes 53
MEthOd GELGIOUPCOUNT()vveeveeeieeterieieete sttt sttt st et b et b e b b e bt b e se bt sbeseebesae e ebesbennenens 53
MeEthOd GELGIOUPITEIGION() eeveeeeeerereeieete sttt ettt se bbbt r e b b e bt b se b sbese b e sae e b e sbeneenen 53
MELhOA CrEALERUIE() ... vttt b e ettt se et b e e e b b e eneas 54
MELNOO GEIRUIE() ...ttt bbbt b e et b e et b e e bt s b e b sbe e b e b e e enens 54
MEthOd FEMOVERUIE()cvieeeiiteieeieete ettt b et b e et b e et b e e et sa e e b e sbe e ene 54
VK= 1o o la T LU = o RS 55
VK= oo e LU =N (= o] () S 55

Interface Class | PPOII CYREPOSITONYciiiiierieei e ee e see sttt see e se e s e e aeeteesaessaesteeste e teeseensesneesnes 55
ATETTDULES. ... bbbt bbbt he e e e e e b s et e bt s bt eh e et e e e neesbeebeeaeere e e e e e 56
Method getParentREPOSITONY() ...veveeiereeiie e sttt et te e s e s re e saeene e e snaesraesnaesreesaeas 57

ETSI

8.153
8.154
8.1.55
8.1.5.6
8.15.7
8.1.58
8.1.5.9
8.1.5.10
8.1.5.11
8.1.5.12
8.1.5.13
8.1.5.14
8.1.5.15
8.1.5.16
8.1.5.17
8.1.6
8.16.1
8.1.6.2
8.1.6.3
8.1.64
8.1.6.5
8.1.6.6
8.1.6.7
8.1.6.8
8.1.6.9
8.1.6.10
8.1.6.11
8.1.6.12
8.1.6.13
8.1.6.14
8.1.6.15
8.1.6.16
8.1.6.17
8.1.6.18
8.1.6.19
8.1.6.20
8.1.6.21
8.1.7
8171
8.1.7.2
8.1.7.3
8.1.8
8.181
8.1.9
8.191
8.1.9.2
8.1.93
8.1.10
8.1.10.1
8.1.10.2
8.1.10.3
8.1.10.4
8.1.10.5
8.1.10.6
8111
81111
8.1.12
8.1121
8.1.13
8.1.131
8.1.14
8.1.14.1

5 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Method CreatEREPOSITONY (). e vvereererieriteiieiee st e st et ete e e seesrae s e e steesteesseeeesseesseesseesseenteesseeseessensseesenns 57
MethOd GEIREPOSITONY()veeuveeeieeiieseeseestee st se et e st e et e e tessaesseesaeesseesaeesseenseenseensessaenseessensenn 58
Method reMOVEREPOSITONY()veeuvereeeseesieesee st et ete et e et e et et e e e teesteetesaesseesseesseesseenseesesseessenssanssens 58
Method getREPOSITOIYCOUNT().......veereerieesieeseeseesteete et e see st este e e e e eteeeeseesseesseesseesseenseennessaesseesseeseens 58
Method gEtREPOSITONYITEIrGLON(). ... eivverreerieeseesie et ete et et e st e e e e e e e eae e sreesreesreesseeseenseessessaesneesseessens 58
(VK= 1o e o= 1= @] o 1o o) R 59
MEthOd GELCONAITION() ... veveueerereeeet ettt sttt sttt e et b e et b e et b e se et eb e sae e ebesbeneenea 59
Method remoVECONDITION()......cerveerrerieiete ettt b bbbt sb e e bt b e b e e b e sbennenea 60
Method getCoNditiONCOUNL()cveverrereeierrerieeeete sttt ettt b e et e et e e b see e b sreneenea 60
Method getCoNitiONITEIEEON()eveverreeererieiere sttt eb e et eb e et b e e b et besa e eb e b neenea 60
MELhOO CrEAIEACTION() ...vveiteeeteit ettt b et b b e b bt b e b e eb e se e e et e sae e b e sbenneneas 60
V=1 g oo o o 1 o g SR 61
Method rEMOVEACTION()veeieeieeie ettt ettt e st e e e e te et e s aesseesneesaeenseenseensesnaenseessennsens 61
[\V/T= 1o e lo VA ox o (@ U | { () SRS 61
(VK= 1o e o v oo o g1 == o) ISR 62
Interface Class IPPOIICYRUIE............ui i sttt e st et e e be e reeteeneesneesnes 62
ATETTDULES. ...ttt bbb bt h e e e e e b s bt e bt s bt eh e et et e ne e sbenbesaeere e e et e 64
MEthOd GEIPar€NEGIOUD()vveevereeeerterieieete sttt st se ettt sttt ettt st b e et b e se bt b e seeseebesae e ebesbennenea 66
Method getParentDOMAIN()c.eiveeererreeereriereet sttt st sb e eb e e b b et ebe e e e ebesee e ebeseeneebesbennenens 66
Method Create@CONAITION() ... cveverreeeterieiet ettt ettt b e et et se et se e ebesne e b e sbeneenen 66
MEthOd GELCONAITION() .+..eveveueerereeeet ettt sttt sttt et b e et b e et se et eb e sre e b e sbennenea 67
Method remoVECONDITION()......cerveerrerieiete ettt b et eb e et e eb e b snenea 67
Method getCOoNAItiONCOUNL()eveuerrereeiertereeeete sttt sttt eb bbb se b b se b sb e e ebesae e ebesbennenea 67
(VK= 1o o o (@Xe] o [N uTola] 1 L= o) ISR 68
(VK= 1o e o == (=YY ot i o o) S 68
V=1 g oo o o 1 o g SR 68
MethOd FEMOVEACTION()veeieeieeieeie ettt s ettt e e st et e s te e teeteseesseesaeesneeseenseensessaenseessensenn 69
[\V/T= 1o o lo VA ox o (@ U | { () SR 69
(VK= 1o e o ¥ oo o g1 (= o) PSS 69
Method setValidityPeriodConditionBYNaME()cccrerriririeine ettt 69
Method setValidityPeriodCoNditioN()ccreererieerereese e e eb e seene 70
Method getValidityPeriodCondition()cooeerereeerererereere e eb e 70
Method unsetValidityPeriodConditioN()eoeerereeerieeee ettt eb e neene 70
Method SEECONITIONLISI() +..veueereeeeeterteeet sttt sb e et b e et b et sae e b e e e enen 70
(VK= 1o e lo T (@] o [Koo I) TS 71
VK= oo IS 7 ok o | N) SR 71
VK= 1o o o 7o o g I SR 71
Interface Class [PPOIICYCONITIONeccuieieeiesiiee et e st teen e e reeteenesneeenes 72
ATETTDULES. ...ttt b et b bt ae e e e b e b s et e bt s ae e b e et et e e e e sbeebesaeere e e e e 73
Method getParentREPOSITONY() ...eeveeiereeiee e it esie et et sre e s e sne e ne e e sneesnaesnaesreesaeas 73
Method QEtPar€NERUIE()cueiuieeeiitiee ettt b e e b e sa e b b nnenea 74
Interface Class |pPolicy TimePeriodCONitiON ..ot 74
N T o0 =SS 75
Interface Class IPPOICYACIIONc.iiieiieeete ettt bbb et sb e 77
N T o0 =SS 78
Method getParentREPOSITONY()cceerreirrerieiete ettt sttt et b e et b e et eb e e e b sbeneenen 78
Method gEIPareNtRUIE()ccveeieeie ettt ae e s sre e teeae e e snteeneesnaesneesreesennn 79
Interface Class |pPOIICYEVENIDEfI NITIONccviiie e 79
ATITTDULES. ...ttt et b e bt e b e bt bt e h e e e et e s et e bt e ae e s e e e e b e besbenbeeneene e e entes 79
Method SetReqUITEdALLIIDULES()veeeeiee e enneesreesnees 80
Method SetOPtiONAIATIITDULES()eocveeeiee et sne et e e e ssaesnaesreennees 80
Method getReqUITEAATIIDULES()ccveeereiee ettt esn e snaesnaesreennees 8l
Method getOptioNal ATEIIDULES()c.eiviieeirieeee ettt b e 81
Method getParentDOMAIN()c.civereererreeeterteiete sttt se et se e sb e e e st b e e bt sbeseebeebesae e ebesbeneenens 81
Interface Class |PPOliCYEVENTCONITION..........coiirieiriereerte ettt 82
N T o0 =TSR 82
Interface Class | pPoliCyEXPressionCONGiTiON ..ot 83
ATITTDULES. ...ttt et b e bt e b e bt bt e h e e e et e s et e bt e ae e s e e e e b e besbenbeeneene e e entes 83
Interface Class |PPOIICYEVENTACON...........cvecieiecie et e see e s sae et e e e e e teenteesse e teeteeneeeneesnes 84
ATITTDULES. ...ttt et b e bt e b e bt bt e h e e e et e s et e bt e ae e s e e e e b e besbenbeeneene e e entes 84
Interface Class | PPOli CYEXPIrESSIONA CHION.........ccuiiiiiieeeeseeseeesee e e steesteeaesae s e e se e teestees e eseeneesneesnes 85
ATITTDULES. ...ttt et b e bt e b e bt bt e h e e e et e s et e bt e ae e s e e e e b e besbenbeeneene e e entes 85

ETSI

6 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.15 Interface Class |PPOIICYITEIGLONcccueeeeeeeeeete e ee sttt ee e te e et eereesse e te e se e teeseennesneennes 86
8.1.15.1 AEITDULES. ...ttt bbbt bbbt e bbbt et 86
8.1.15.2 MEENOO GEELISI() -nvveveereieietet sttt b bt b e n et 87
8.1.16 Interface Class |PPOIICYSIGNELUIE...........ccveiiei e e ettt ee e se et e et et e e saessaeste e se e teeseeneesneesnes 87
8.1.16.1 AETTDULES. ...ttt bttt bbbt R bR e Rt n e 88
8.1.16.2 Method <<new>> setlNPUEV @@l €S()cccveieerece e snees 89
8.1.16.3 Method <<new>> SEtOULPULY @TADIES()cvevereriiieierieete ettt 89
8.1.16.4 Method <<new>> getiNPULV ariabl €5()eoeiririeiieee e eb e 89
8.1.16.5 Method <<new>> getOULPULY @@l €5()crveerrireeirereierie ettt eb e e 20
8.1.16.6 Method <<NeW>> SEGIOUPNEIMES()c.eivirieeiriireeieste sttt sttt et sb et sb e e bbb b e neenens 20
8.1.16.7 Method <<new>> SEPOIICYROIES()oviviiiiiiiriee bbb 20
8.1.16.8 Method <<new>> getGrOUPNEIMIES()eieeieeieerieeieeteeeeseestees e e e seeseeseesreesaeesseeseeneesseesseesseesseessens 91
8.1.16.9 Method <<new>> getPOliCYROIES()c.eicueieeieerie e e aaesraesreesnees 91
8.1.16.10 Method <<new>> getParentDOMAIN()ccceieereeieiiisiese e ee e sre e e e e e sneenae e sreesreenneas 91
8.2 PM Policy Evaluation SCF INterface ClaSSes........cvcuiiieiieriieie e st se et sreesteste e e e ae e enseseesneesnes 91
821 Interface Class |PPOIICYEVAIMENAGESccciieiieieeie e ste e se e seesre e et e st e te e te e teeteeneesneesnes 92
8211 Method <<KNEW>> EVAIPOLICY() .voveeierieiie ettt et ae e s esne e snaennaesreenneas 92
8212 Method <<new>> eValPOIICYREG() -..eveuerrereeeererieiete sttt b e s b e eb e e neene s 93
8213 Method <<new>> abOrEVaIPOIICYREG()cerrireeerierieiee et s 93
8214 Method <<new>> generateEVENT()ooveerrerieirtereee ettt b s b e eb e e ene 94
8215 Method <<new>> CreateNOLIfiCaTON()ceerreieeereeiee e eb e 94
8216 Method <<new>> destroyNOLIfiCEION()crvererrerierereieteriee et s ene 95
822 Interface Class IPAPPPOIICYDOMEINciuiiiiriiieie ettt sb e e 95
8221 (VK= 1ol = oTo g\ o Ko o] o) S 95
8.2.2.2 Method <<NeW>> eValPOlICYRES()cioveieeiee ettt esre e neannaesreennees 95
8.2.2.3 Method <<NEW>> VAIPOLICYEIT()vviieiee e ie et ete e stte st e e te e s saeesaeeae e sneessaessaesseesnens 96
9 State TranSitionN DIBOIAMS........cciiieeie ettt e e e et e et et e e e s besae e besreessesbeeasesesseennesreenes 96
9.1 PM Provisioning SCF State Transition DiagramsS........c.coereeririeeriineereseeeesesieesse s esse s seeesnes 96
9.2 PM Policy Evaluation SCF State Transition DiagraimS........c.ccevereeeriireeerieesiesieesieseese s 96
10 PM SEIVICE PrOPEITIES.ottt sttt b bbb e s et s e e b e bt b nb e s e b ebenseane e e nnene e 96
N DT = B = 11 (o PSSP 97
111 Policy Management Data DEfiNITIONS..........c.ccueiieieie et et e e e e tesae e e sreesneesneeseenneens 97
11.1.1 QLI oL 0) FTon Y@ o o] i T i 1Y o L= SRS 97
11.1.2 TPPolicyConditioNLISEEIEMENT ..o 97
11.1.3 TPPOl CYCONAITIONLISE. ...ttt bbbt bt b st benn e 98
1114 TPPOl CYCONAITIONT YR ...ttt sttt ettt b et b bbbtk e b e et b et b st 98
11.15 TPPOICYACHONLISIEIEIMENLcuecvieieeieteet et bbbttt bbb e 98
1116 TPPOH CYACH ONLISE.....cteeeeteeeit ettt bbbt b et b e bt b e et b e st e b et e b b 98
11.1.7 TPPOI CY A CH ONT Y.tttk ettt h bbbkt b h e sb s s e b e b e st e b et s b e e e bt eb e e st ebe e e 98
11.1.8 QLI 0] T s Y < o | USSR 98
11.1.9 LI 0] T xS =Y AT o o 1SS SR 99
11.1.10 TPPOHCYKEYWOITUSEL........cocueeieeie ettt te e e s e st este e e e e e e ssaesseesseesaeesaesneesaeesnnenseansennsenns 100
11.1.11 QI 010 T onY =l o SR 100
11.1.12 0] 0] FT0nY D To 0 ¢ o USSR 100
11.1.13 IPPOlTCYDOMAINRESeceiitiet bbbt b bbb bbb 100
11.1.14 I PPOlTCYREDOSITONYeuviueetiiteeetirteeet ettt ettt bbbt bbbt b bt b e bbb e e et eb et sb e b 100
11.1.15 I PPOlTICYREPOSITONYRES ...ttt bbbt b et b bbb 100
11.1.16 [PPOITICYGIOUD. c.. .ttt bbbt b bbbt b e et b b et b e bbb 100
11.1.17 I PPOlTICYGIOUDPRES ...ttt bbbt bbb et b et b b 100
11.1.18 IPPOIICYRUIE ...ttt bbb bbbt b e et b et b e e st b et e 100
11.1.19 IPPOIICYRUIERES ...ttt b et b et een et 100
11.1.20 I PPl CYEVENIDEF I NITIONc.eee ettt et esseesseesteestesneesneesneesaeenseensenns 100
11.1.21 IPPOlICYEVENDEfI NITIONRES ...t te e ae e s e e saeenreenneens 100
11.1.22 L0 TAN o] o] oL oxY/ I T 1 4 o PR 101
11.1.23 IPAPPPOIICYDOMAINRES ..ot st e te et e s s aessaesreesaeeseesnnesaeesneenseesenns 101
11.1.24 0] 0] FTonY /@] o £ e o S PR 101
11.1.25 IPPOlICYCONTITIONRES ...t bbb 101
11.1.26 I PPl CY TIMEPETOACONMITION ...ttt b e 101
11.1.27 IpPolicy TimePeriodConditiONRES ..o 101
11.2 Data Typesfor PM VariabIES.......c..coiiiiiee ettt 101

ETSI

7 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

11.2.1 BN 010 T on YA S 101
11.2.2 TPPOHCYV BISEL......ee ettt sttt sttt b e e se bt st e st e be s e e st e be st e st e b e s ene b e st eneebeneensenes 101
11.2.3 QI 0] TTonY (= oo o LY 0= 2SS 101
11.2.4 QI 0] x-S 102
11.25 BN oo MoV A I8/ = | o S 102
11.2.6 BN oL 0) T on YA I8 = S 102
11.2.7 TPPOHCYNBMEV BIUE.......c.eeuiitieeiiiterie ettt et b et b e s bt e b e et b et e e bt sn e ens 102
11.2.8 TPPOHCYNBMEV BIUELISE ...ttt bbbttt e et b et se s 103
11.3 eBNF for Condition and ACHION EXPrESSIONS.........coueeririeiriirieiriesiee st b et be e sbe b e 103
11.31 2 F ST ol I L g« o o SR 103
11.32 Definitions Of CONSLANT (LITEralS)oveveeriieeiriieereeee st 103
11.3.3 (D T Yo Ko] o= = (o] = PR 103
11.34 Allowable arithmetic expressions & PrediCates.ceciecrieeriereere e ee e see e e esreesaeenseeeeens 104
11.35 ACCESSING VaTBIIES. ...ttt sttt et e s esbe et e et e e teestesntesneesaeesneanseanseensenns 104
11.3.6 Allowable Condition and ACLiON EXPrESSIONS.........cccicveiieiieieeieseesee e etesaeseeseeseeesaesesseesseesseenseensenns 104
114 EXAMPIE SCENAITOSccuvieieeie ettt ettt e st e e e e st e s e e s e e s ae e teesteeaeessaesse e seenteensesaeesseesseenseenseenteansesnansnnas 105
115 EXAMPIE XML SCENAITOSeeieeeieeeiieeie e ee st ee st e e s e ee st sae e ste e ae e e s se et e enteentesseesseesseesseenseenseenseensesnsessaesaens 107
12 Policy Management EXCEPLiON ClaSSES.........coviieeierieieiesieeee s see st sie e esee st sre et eeeseesneeseeseeenes 108
Annex A (normative): OMG IDL Description of Policy Management SCF...........cccceevevvevenene. 109
Annex B (informative): Java API Description of the Policy Management SCF..........cccccocveninene 110
Annex C (informative): Contents of 3GPP OSA R6 Policy Managementccccoovvnerenicnenene 111
Annex D (informative): Description of Policy Management for 3GPP2 cdma2000 networks......112
[IR R €= g 1= o= o1 o R 112
D S o= o) Lo (o= o1 o T 112
D.21 ClAUSE L: SCOPEcveteueetesteie ettt ettt sttt ettt s st b bt b e bt b e e st e b e s e s e b e b e s e b e R e ae e b e b e e e bt b e b e bt e b e b e st e b e b et e be b e 112
D.2.2 ClalSE 2: REFEIBINCESeei ettt ettt st et e e et e st e e e e st e besaeebeeneeneensensesaesaeeneeneeneeseens 112
D.2.3 Clause 3: Definitions and abreViations.............oiiiiiieieiee s see st ae e see e eneeseens 112
D.24 Clause 4: Policy Management SCFcoiiiiiieiereeries sttt ettt st b e b b 112
D.25 Clause 5: SEUENCE DIAOIEMSceiuirieieiirieietertee sttt b bbbt b bbb e e e bt b e s e st e b e b st ebe b ees 112
D.2.6 Clause 6 Class DIiagramS........ccueieeiieieeesieseeseesteesaeateestesseesteesteetesssesseesseesaeeseanseassesssessenssesssesssensseenseanes 112
D.2.7 Clause 7: The Service Interface SPeCIfiCaliONS.........vccv e 112
D.2.8 Clause 8: Policy Management INterface ClaSSeS........ccuuiieiirierie e see s este et s e et 113
D.2.9 Clause 9: State TranSitioN DIiagramScc.vccuieiiiiesieesieseesee e e sae e e e e saeete e e reeste e teestessaesseesseesseensesneesnns 113
D.2.10 Clause 10: Data DEfiNITIONS........cceieeeeiereeriesie ettt et bbbt e e se e s s besbe b e saeese e s esbesbesbeeseeneenneseen 113
D.2.11 Clause 11: Policy Management EXCEPLiON ClaSSES........cccccviieieeieeieeriesieesesseesteesteeteesae e sseesreeseeseesnnesnes 113
D.2.12 Annex A (normative): OMG IDL Description of Policy Management SCF ..o 113
Annex E (informative): RECOrd Of ChANGES......ciiirieriiee e 114
O 1= 1 = 0TSSP 114
E.1l1 N B ettt ettt e et e e e e b e e e e ate e e e aaee e R eeeeeanEeeeeaaeee e e heeeeeanEeeeeanteeeeanneeeeanteeeeaneeeeeanreeeeareeeaan 114
E.L2 DEPIECAIE.......oeeceeeeeceeeeeeeec e sees s s s s s st s es s s s s st en s s s saes s en s s es s seen e 114
E.1.3 1110)Y7="o SRS 114
i V= 0o P 114
E2.1 T PSSR 114
E.2.2 DL o= o7 1= o PSPPSR 115
E.2.3 1Y T T3 1= PSPPSR 115
E24 1110)Y7="o SRS 115
IR T I T = W D= 1 a0 S 115
E3.1 N B ettt ettt e et e e e e b e e e e ate e e e aaee e R eeeeeanEeeeeaaeee e e heeeeeanEeeeeanteeeeanneeeeanteeeeaneeeeeanreeeeareeeaan 115
E.3.2 1Y T T3 1= PSPPSR 115
E.3.3 REMOVEX. ...ttt b e bbbt b et e e e e e e R e e b e eh e eb e e et eae e e e e et e seeebeeneene e e ennas 115
S VLo oy . o o= (=TSR 116
EA41 N B ettt e e et e e s b e e e e a b et e e e —eee e e R eee e e R EeeeeaneeeeaheeeeeanEeeeeanteeeeanneeeeenaeeeeateeeeaanneeeeareeeaan 116
E4.2 (DL o < or = o IO TSP PSP PP STPROSURPRRON 116

ETSI

8 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

E.4.3 1770 T 1= S 116
E4.4 REMOVEX. ...t bttt b bbbt bt et e b e Ao e R e e bt e bt e bt e et eae e e e e e besaeebeeneene e e ennas 116
R (e = oo S 116
E5.1 L SR 116
E.5.2 1Yo o 1= SRS 116
ES5.3 1110)Y7="o SRS 117
G 1 1 S 117
[1S 0] YOS 118

ETSI

9 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN), and is now submitted for the ETSI standards
Membership Approval Procedure.

The present document is part 13 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 203 915) is structured in the following
parts:

Part1: "Overview";

Part 2. "Common Data Definitions";
Part 3: "Framework";

Part 4. "Cdll Control";

Part 5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF";

Part 13: " Policy Management SCF";
Part 14: "Presence and Availability Management SCF";
Part 15 "Multi-media Messaging SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document formspart of the Parlay 5.0 set of specifications.

The present document isequivalent to 3GPP TS 29.198-13 V6.2.0 (Release 6).

ETSI

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

10 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

1 Scope

The present document is part 13 of the Stage 3 specification for an Application Programming I nterface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Policy Management Service Capability Feature (SCF) aspects of the interface. All
aspects of the Policy Management SCF are defined here, these being:

. Sequence Diagrams.

. Class Diagrams.

. Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

. IDL Description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

The referenceslisted in clause 2 of ES 203 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 203 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 5)".

ETSI ES 203 915-2: "Open Service Access (OSA); Application Programming Interface (API); Part 2: Common Data
Definitions (Parlay 5)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 203 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 203 915-1 apply.

ETSI

11 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

4 Policy Management SCF

It is expected that more and more OSA services will use policies to express operationa criteria. It is also expected that
network providers will host policy-enabled services that have been written by 3™ party application service providers. In
order to manage policy information, control accessto it and to regquest evaluation of policies a policy management
service is needed. Consistent with this, a policy management provisioning manager, |pPolicyManager, and a policy
evaluation manager, |pPolicyEvaManager have been defined.

APIs have been defined to offer provisioning services. These include APIsto create, update or view policy information
for any policy enabled service. Similarly APIs have been defined to facilitate interactions between clients (e.g. a 3"
party application) and the policies of any policy enabled service. These include APIs to subscribe to policy events, to
request evaluation of policies and to request the generation of policy events. All APIs conform to an underlying policy
information model that is a derived from the policy core information model defined by the IETF in RFC 3460.

Clientsthat perform administrative tasks of behalf of a policy enabled service, e.g. create, update or delete policy
information must obtain access to |pPolicyManager viathe Framework. Administrative tasks may then be performed
through methods supported by IpPolicyManager. Similarly, clients that need to invoke evaluation of policies of a
specific policy enabled service may do so by obtaining access to |pPolicyEvalManager via the Framework.

Consistent with the above the Policy Management Service supports two classes of service interfaces for policy
provisioning and policy evaluation. These are the PM Provisioning SCF and the PM Policy Eva uation SCF
respectively.

Examples of policy enabled servicesinclude: A load balancing service that uses policies to manage application loads on
the network, a charging service that determines charging criteria based on policies, a call management service that uses
policies to direct end-user callsto appropriate call agents, etc.

Information in the present document is organized as follows:

. The Sequence diagrams give the reader a practical idea of how PM provisioning and PM eval uation SCFs are
used by clients.

. The Class relationships clause shows relationships between the various interfaces supported by the PM
provisioning and PM evaluation SCFs respectively.

. The Interface specification clauses describe in detail each of the interfaces shown within the Class diagram
clause.

. The Data Definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part ES 203 915-2.

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

5 Sequence Diagrams

5.1 Use of Policy Repository

The example shown here shows the use of a Policy Repository. The repository is meant to hold unattached conditions
and actions. The Network Operator can populate the repository with the conditions and actions that it can support.
These may indeed be based on 'off-line' negotiations with the application developer. The application developer uses the
conditions and actions in the Policy Repository to create rules for his own application. In the example application logic
represented by AppLogicl belongs to the Network Operator, whereas the application logic represented by AppLogic2
belongs to the ASP. This example uses the same conditions, actions, and rules as the ASP example.

ETSI

12 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

AppLogicl AppLogic2 : IpPolicy Manager : IpPolicy Repository - IpPolicy ExpressionAction : IpPolicy R ue

‘ : IpPolicy ondition

? ? o
|

‘ IpPolicy Domain

1: startTransaction()

2: createRepository () 3: new()

4: createQondition()

L

)

6: createAction()
|

8 commitTransaction()

9: startT,)

10: get Rqusimry() /IT

11: getRepostory Count()

12: getConditionCount()

13: getConditionlterator()

‘ 14: getCondition()

15: getActionC aunt()

16: getActionlterator()

17: getAction()

[
18: creal%Dum ain()

T
24 createRule() ‘
t

22: setConditionList()

23: setActionList()

l
24: com ml#ransacnon()
T

] |

|
|
|
¢
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

\
|
\
|
\
\
|
|
|
|
|
|
\
\
\
\
\

-y =y 1

1. The creation of the repository by the Network Operator takes place within one transaction.
2: The method createRepository isinvoked on the |pPolicyManager interface to create a new repository.

3: Asaresult of the createRepository method a new instance of the I pPolicyRepository interfaceis created. Its
interface reference is returned as return parameter of the createRepository method.

4: The Network Operator creates an unattached condition in the new repository by invoking the createCondition
method. For simplicity reasons, thisis the same condition as in sequence 8 of the ASP example. The same condition
attributes apply.

5: A new instance of the |pPolicyExpressionCondition interface is created.

6: The Network Operator creates an unattached action in the repository. Again, thisisthe same action asin
sequence 10 of the ASP example. The same action attributes apply.

7: A new instance of the IpPolicyExpressionAction interfaceis created.

ETSI

13 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8: The Network Operator is finished with creating and populating the repository and closes the transaction.

9: Now that arepository exists, the ASP application can open a transaction to start creating a rule based on the
conditions and actions stored in the repository.

10: The application invokes the getRepository to obtain areference to the top-level repository. The returned referencein
this case is the reference to the new repository just created by the Network Operator.

11: The application can invoke the getRepositoryCount method on the | pPolicyRepository interface to check whether
there are any sub-repositories available. Thisis not the case for this example.

12: Before trying to obtain al available conditions in this repository the application retrieves the number of conditions
by invoking the method getConditionCount.

13: The application can nhow invoke the getConditioniterator method to obtain the reference to an iterator that contains
the names of each of the conditions contained by this repository that the application is authorized to see. Asthe previous
method only return one available condition, this would be only one name, i.e. " SufficientCredit".

14: A reference to the condition can be obtained by invoking getCondition, with the condition name from the iterator as
input parameter.

15: Similar to 12.
16: Similar to 13.
17: Similar to 14.

18: At this point in time the application has the names and references to the unattached condition and action from the
repository it wantsto use to create the rule. First adomain is created by invoking the createDomain method on the
IpPolicyManager interface.

19: A new instance of the IpPolicyDomain interface is created.
20: The application invokes createRule to create a rule within the domain that was just created in flow 18 and 19.
21: A new instance of the IpPolicyRule interface is created.

22: By invoking the method setConditionList, the application can now apply the condition from the repository to this
rule, by passing the condition reference, obtained by getCondition in flow 14, as an input parameter.

23: Similarly the application can apply the action to the rule by invoking setActionList.

24:Finally, once theruleis created using the condition and action from the policy repository, the transaction can be
closed.

5.2 Introduce condition and action into rule

This sequence diagram describes how a specific policy rule is managed. A rule consists generally of conditions and of
actions, the latter being evaluated if all conditions evaluate to true.

This sequence includes:

- creation of a condition and introduction of it into therule;

- retrieval of an already defined action object from arepository and introduction into the rule;
- establishing a transaction bracket.

Presumption: the Application got a reference to the group, e.g. by having performed the sequence " create and modify
domain" asin clause 5.4.

ETSI

14 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

: (Logical o . IpPolicyRule o o
View:: Application) IpPolicyGroup IoPolicyManager IpPolicyRepository

‘ ‘1: startTransaction()

2: createRule() ‘

¢
|

commitTransaction()

L
‘4: startTransaction()‘
M \ \
5: createC#)ndition() ‘
6‘: commitTransactio/n%
T ‘ 7: getRepository() ‘
I I
L ‘ 8: get}\ction()
‘9: startTransaction()‘
10: setActionList
1 petiontist()

T

- 11: setConFitionList() |

| 1

1%: commitTransaction$)
T T

w
|
|
| | J
|
|
|
|

1. Opensthe transaction bracket.

2: creates arule object in the group by passing the name as parameter. The method returns the reference to the new rule
object.

3: Closesthe transaction bracket.
4: Opens the transaction bracket.

5: After having created the rule object one can "fill" it with actions and conditions. Here a condition is created on the
rule object, thus becoming a part of the rule. Conditions defined in such away cannot be reused in other rules. For this
the repository approach should be used.

Parameters passed are the condition name and the condition type.
Returns areference to this condition object.

Note that: the type of condition object that isto be created must be one of those specified in TpPolicyConditionType,
clause 11.1.4.

ETSI

15 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

The method createCondition() is used to create a new instance of a condition type in the repository or rule. This method
passes the name of the condition, the type of the condition and an appropriate set of attribute-value pairs. Note that it is
necessary to include, within the conditionAttributes argument of createCondition(), all those attribute-value pairs that
are not inherited from IpPolicyCondition - if the inherited attribute-value pairs are included in this argument then their
assigned values will override the values assigned prior to this assignment. Thus, for example, if the new condition type
to be created is TpPolicyExpressionCondition, then the attribute named "Expression” and its value must be included in
conditionAttributes (also see clause 8.1.12). Note that this call may throw an exception if the value of "Expression” is
not parsable.

The steps to create an action object instance are similar to those taken to create a condition object instance. We use the
method createAction() to create a new action instance. Note that an action object must be one of those specified in
TpPolicyActionType, clause 11.1.7. It is necessary to include al the attribute-val ue pairs that are not inherited from
IpPolicyAction, in the actionAttributes argument of createAction().

6: Closes the transaction bracket.

7: Now we're using the repository approach, i.e. reusable condition or action objects. In this example we reuse an
action.

For that purpose we ask at the IpPolicyManager interface for areference to a named repository.
The repository name is passed.
Returns the reference to the repository.

8: If we know already the name of the action object one retrieves the action directly by passing the name as parameter.
Otherwise one has to retrieve the name first by using an action iterator.

Returns areference to the action object.
9: Opensthe transaction bracket.

10: Now, the action(s) must be assigned to the rule. Furthermore and different to the conditions, one has to assign an
ordering number to the action.

Passed parameter is the action list, which is alist of action reference/ sequence pairs.

11: After having created or retrieved all needed conditions they must be assigned to the rule. Thisis done by passing the
list of condition to that method.

Thisisexplicitly done by passing TpPolicyConditionList again consisting of TpPolicyConditionListElements which
contains the reference the | pPolicyRule object created with message 2.

If the rule is active, this will then cause the expression defined in the condition to be evaluated (as often as necessary).
Note that the binding between the variables referenced in the expression and the instances of the variable availableis
done each time the expression is evaluated. That is, when evaluating a variable reference, each enclosing domain is
searched in order (from closest to farthest) for a matching variable. If oneisfound, it is used. If no matching variableis
set, the expression condition fails (evaluates to FAL SE).

Activation of actionsis done similarly.

12: Closes the transaction bracket.

5.3 Create event

This sequence shows how policy events are used.
For clarification we list the different policy related objects used:

- IpPolicyEventDefinition: The "template” used to define allowable events. The template is used to define formally a
distinct type of rule condition and rule action, namely, IpPolicyEventCondition and I pPolicyEventAction.

- IpPolicyEventCondition: A special instance of a policy condition used in arule. The condition evaluatesto "True" on
the occurrence of the event instance that is formally associated with it.

ETSI

16 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

- IpPolicyEventAction: A special instance of apolicy action used in arule. The action results in the generation of an
instance of the formal event associated with it.

- TpPolicyEvent: This datatype is passed as a parameter in the formal notification (to a client) of the occurrence of an
instance of an event.

Presumption: the reference to arule has been somehow retrieved.

: (Logical e . . IpPolicyRule ‘ = . : (Logical
View::Application) IpAppPolicyDomain IpPolicyManager |IoPolicyDomain || IpPolicyEventDefinition View::PolicyEng...
‘ 1: startTyansaction() ‘ ‘ ‘ ‘ ‘

I /U
‘ 2:createEventDefir*ition() ‘ ‘ ‘ ‘
L
! ! !)
1 ‘ 3: setRe}quiredAﬂributes() ‘ ‘ ‘ ‘
T T T T
T ‘ 4: setOitionalAnributes() ‘ ‘ /I—ﬁ ‘
‘ 5:createCondition() ‘ ‘ ‘ ‘ ‘
T T L‘J
| | 6:seNaIidityPeriodCo?dition() | ‘ ‘ ‘
‘ ‘ 7:createAction() ‘ ‘ ‘ ‘ ‘
I I u
T ‘ 8: setActionList() ‘ ‘ ‘ ‘ ‘
T 9:com miJTransactio n() ‘ L‘J ‘ ‘ ‘

1. All changes of policy objects must be performed in a transaction bracket. This method opens the bracket.

2: This method creates a new event type. Event definitions describe the attributes of a specific event class, which can
than be instantiated as policy condition or policy event. Returns the reference to the newly created EventDefinition
instance which then can be modified according to ones needs.

3: Now, after having created a new instance of a policy event definition, one can set the required attributes by passing
the respective attribute set ...

4: ... and the optiona attributes. Such attributes may be (...).

5: This createCondition() method creates locally an instance of PolicyTimePeriodCondition defining the validity
period of thisrule.

Returns areference to the new instance of 1pPolicyTimePeriodCondition object.

Using createCondition() assign the appropriate values to relevant attributes of this new instance of
I pPolicyTimePeriodCondition. For example,

TpAttribute.AttributeName = "TimePeriod"
TpAttribute AttributeV alue.SimpleVa ue.StringV alue = " 20000101 T080000/20000131T 120000"
the latter indicating the time period "January 1, 2000, 0800 through January 31, 2000, noon".

6: Using the reference got with createCondition() the validity period is set to rule. Before this created condition will
not become valid.

ETSI

17 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)
7: The assignment of apolicy event is made as for other actions. The difference is the action type passed as parameter:
it MUST be of type I pPolicyEventAction.

Passed parameters are the name of the created action, the action type and the attributes of the action; one of these
attributes refers by name to the event definition as created before in this sequence.

Returns the reference to the newly created action object.
8: This method activates the action (here the action event) for thisrule. After creation this action is not yet active.
The name of the action object is passed.

9: This closes the transaction bracket.

54 Create and modify domain

This sequence describes how:

- atop-level policy domain is created which is then maintained by the policy manager object;

- alist of domains managed by the policy manager isretrieved and a specific domain is accessed;

- how manipulations on this domain (in this example creation of group and removal of arule) are performed;
- how the transaction control is initiated.

Presumption: the Application has received a reference to the IpPolicyManager interface.

ETSI

18 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

: (Logical - a -
View::Application) IpPolicyManager IpPolicylterator IpPolicyDomain

1: startTransaction()

ostcoonds

2:createDomain()

3: commitTransaction()

T
- 4: getDomainlterator()

5: getList(")
L] 6: getDomain()

T 7: startTransaction()

% T — A

: createGroup()

|
|
|
|
|
|
|
|
.

|
|
|

9: removeRule()

L) 10: commitTransaction()

|
|

|
|
|
*
|
|
|
|
|
|

:
\

1. Opensthe transaction bracket.

2: Creates adomain by providing the name of the domain object to be created as parameter. The method returns the
reference to the domain object.

3: Closes the transaction bracket.

4. The user wants to get all domains handled by the policy manager. This method returns a policy iterator object which
can be used to go through the available domains.

5: This method returns the list of domains starting with "index". For efficiency reasons the number of returned entries
can be set with the parameter "numberRequested".

6: After having extracted one of the domain name as returned with getList(), the reference to this specific domain get
be retrieved by passing the domain name with getDomain(). Returns the domain reference.

7: Opensthe transaction bracket.

8: Now, one can act upon the domain, i.e. one can create, modify or delete objects in that domain. Valid objects are
domains, groups, and rules.

In this example one creates a group by passing the name of the group to be created with createGroup().

Returns the reference to the new group.

ETSI

19 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

9: Another action isto remove a rule. We assume here that the name of the rule (which is passed as parameter) is
aready known. Otherwise one has to retrieve the name by using the IpRulelterator interface (the reference is got with
getRulelterator()).

Returns void.

10: Closes the transaction bracket.

5.5 ASP offering services to prepaid subscribers

The example shown here is based on an Application Service Provider (ASP) offering services to the prepaid subscribers
of acertain Network Operator. The ASP discovers that, as part of the business logic of the applicationsit offers, the
prepaid credit of the subscriber needs to be verified with regards to the current charge for the service in order to
determine whether the purchase should be allowed or not. Rather than including this credit check in the business logic
of each and every application that the ASP hasin its service portfolio, the ASP may decide to enable a Policy Rule to be
hosted in the Policy Engine of the Network Operator.

Applogic : IpPolicyManager || IpPolicyDomain | | : IpPolicyGroup | | : IpPolicyRule || - IpPolicyExpressionCondition || _ IpPolicyExpressionAction

1: startTransaction()

2: createDomain()

=

3: new() ‘

Group() ‘ ‘

6: createRule()
L :new

8: createCondition()
|

4: creat

10: crealeA&Llion()

‘ lfl: new()
12: setCondiwionLis(()
\

- — — e]

=
S

: commitTransaction|()

1: For the sake of this example, all activitiesto create a Domain, a Group, and the Rule are contained within asingle
transaction. The method startTransaction is used by the application to open the transaction.

|
|
|
|
|
|
|
|
|
|)
|
|
|
|
|

13: setActi#nLisl()
[

-

2: Therulein thissimplistic exampleis part of asingle group, which in turn is contained within a single domain. The
application creates that domain by invoking the method createDomain. The value of the parameter domainNameis
"eCommerceDomain".

3: Asaresult of the createDomain method a new instance of the IpPolicyDomain interface is created. Itsinterface
reference is returned as return parameter of the createDomain method.

4. Oncethe domainis created agroup is created within that domain. The application invokes the createGroup method,
where the parameter groupName has value " PrePaidGroup”.

ETSI

20 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)
5: Asaresult of the createGroup method a new instance of the I pPolicyGroup interface is created. Its interface
reference is returned as return parameter of the createGroup method.

6: At thispoint in time there exists the "PrePaidGroup™ group within the "eCommerceDomain" domain. The actual rule
can be created, using the method createRule. The parameter ruleName has value " SufficientCreditRule". The new rule
SufficientCreditRule has the following attributes:

- Enabled == TRUE; the policy ruleis currently enabled.

- RuleUsage == NULL; no free-format usage recommendation is provided.

- Priority == 0; default value, as thereisonly onerule.

- Mandatory == TRUE; mandatory rule, evaluation of the expression must be attempted.
- PolicyRoles == PrePaidBalanceCheck. Each rule must be assigned a policy role(s).

- ConditionListType == P_PM_DNF,; digunctive normal form (DNF).

- SequencedActions == 3; do not care, asthereisonly onerule.

7: A new instance of the IpPolicyRuleinterfaceis created. createRule returns the reference to this newly created
interface.

8: Once an instance of IpPolicyRule exists, the actual policy rule can be constructed by means of conditions and
actions. Invoking the method createCondition creates the condition. The parameter conditionName has value
"SufficientCredit". The parameter conditionType hasvalue"P_PM_EXPRESSION_CONDITION", to indicate that the
condition must satisfy certain expressional syntax. The parameter conditionAttributesis a set of structures. For this
example the set contains of only one attribute structure.

- ConditionAttribute. AttributeName = " SufficientCreditExpression”.
- ConditionAttribute. AttributeValue.SimpleValue.StringV alue = "PrePaidCredit > CurrentCharge'”.

Note that the variables " PrePaidCredit” and " CurrentCharge” in the expression of AttributeValue are assumed to be
defined a priori. The value of the expression is derived from the core grammar expressed in the PM information model.

9: A new instance of the IpPolicyExpressionCondition interface is created.

10: The construction of the rule is completed by creating the action that isto be performed when the condition
expression evaluates to TRUE. The parameter actionName has value "PurchaseAllowed". The parameter actionType
hasvalue"P_PM_EXPRESSION_ACTION" to indicate that the action must satisfy certain expressional syntax. The
actionAttributes are again a set containing of only one structure.

- ActionAttribute. AttributeName = " PurchaseAllowedExpression”.
- ActionAttribute. AttributeV alue.SimpleVa ue.StringValue = " AllowedPurchase == TRUE".
11: A new instance of the IpPolicyExpressionAction interface is created.

12: The attributes for the condition are set by invoking the method setConditionList. The conditionList isalist
consisting of one structure;

- conditionList.Condition == <reference to the IpPolicyCondition interface returned by 9>.

- conditionList.GroupNumber == 1; indicates how the conditions need to be grouped in DNF or CNF in case more
groups of rules exist.

- conditionList.Negated == FALSE.

13: The attributes for the action are set by invoking the method setActionList. The actionList isalist consisting of only
one structure:

- actionList.Action == <reference to the IpPolicyAction interface returned by step 10>.

- actionList.SequenceNumber == 1.

ETSI

21 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

14: The " SufficientCreditRul€" now existsin the "PrePaidGroup” of the "eCommerceDomain™ and is assigned the
policy role of PrePaidBalanceCheck. Therulesis asfollows:

IF" PrePaidCredit > CurrentCharge " THEN "AllowedPurchase == TRUE". This policy ruleis enabled upon creation
and it is mandatory for the policy engine to load this rule (and any other within the PrePaidGroup with policy role of
PrePaidBalanceCheck) upon an evaluation request and then evaluate it.

The class IpPolicyDomain is defined as a generalized aggregation container, enabling PolicyDomains, PolicyGroups,
and PolicyRules to be aggregated in a single container. The following figure shows how this container looks for the
example.

Pol i cyDonai n " eConmer ceDonai n"

+ +
| Pol'i cyCondi tion | | PolicyAction |
| "SufficientCredit"| | "PurchaseAllowed" |
+ +

5.6 Create Signature for an evaluation context

The following sequence diagram shows how a policy signature interface is created within a given (service) domain. A
signature is used to establish the context of a policy evaluation request made by a client. A signature definition includes
the names of input variables that may be used in the evaluation request. It aso includes the name of all output, relevant
policy roles and group names. The latter are used to select exactly those groups and rules that are relevant for the
evaluation reguest.

ETSI

1
2
4.
6
7
8:

22 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

: (Logical o o o
View::Application IpPolicyManager IpPolicyDomain IpPolicySignature

‘ 1: startTransaction()

|
g

T 2: getDomain ‘ ‘

| 9 O | 3: new() |

| 4: createSigpature() | 5: new()
‘ L

T LS: setlnputVariables() ‘

T 7 setOutputVariables()

‘ 8: setGroupNames()

9: setPolicyRoles()

T 10: commitTransaction()

. S S S S A —

\
\
\
1
\
\

. All changes are performed in atransaction bracket.

: Thismethod is used by the client to navigate to the relevant domain.

A new Signature is created within the chosen domain.

- Names of all input variables associated with this signature are specified.
- Names of al output variables associated with the signature are specified.

: Name of the rule Group(s) relevant to the request is specified. This could be aNULL collection but it is advisable to

specify a name(s) for performance reasons.

9

Name of policy rolesthat are used to select rules relevant to the request. This could be aNULL collection but it is

advisable to specify policy role name(s).

10: Transaction is committed. At this stage a new signature has been created under the selected domain.

ETSI

23 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

5.7 Request Evaluation of Policies

The following sequence diagram shows how a client may request the evaluation of policies associated with a pre-paid
service. Assume that rules have been defined asin example 5.5 and a signature has been defined for the
"eCommerceDomain" (see example 5.6). Note that a client needs to access |pPolicyEvalManager in-order to request
rule evaluation.

: (Logical o (Logical View::Policy (Logical
View::Application IpPolicyEvalManager Engine) View::Rule DB

1: evalPoli ‘
evalPolicy() 2: forward request

PolicyRole=PrePaidBalanceCheck

‘ 4: upload & evaluate rules
5: return

6: TpNameValuelList - — —
P o |

3: search |
Select Rules based on:
‘ GroupName=PrePaidGroup

1. Make apolicy evauation request via evalPolicy(). Note that parameters for the method include domain name
(following 5.5 thisis "eCommerceDomain"), signature name and a (sub) set of input variables. Note that, asin example
5.6, the signature determines the context of the request. In thisinstance, the request is made to evaluate rulesin the
PrePaid group using the rule(s) whose policy role has been specified as PrePaidBalance Check.

2. Therequest isforwarded to the Rules Engine.
3: The Rules Engine uploads relevant rules from the rules database.
4. Rules Engine evaluates uploaded rules.

6: Results, i.e. output variable name-value pair(s) are returned to the client in TpNameVauelL ist. Following
example 5.5 the output variable nameis AllowedPurchase and its value is TRUE.

5.8 Register for and Receive Notification of a Policy Event

The following sequence diagram show how a client subscribes to a policy event and receives notification when the
event istriggered. We assume that the policy event has been defined (for a specific domain) asin example 5.3. Assume,
in this case, that the event istriggered when the action part of arule fires. This may happen when, e.g. a pre-defined
threshold (say, a credit limit) is reached causing the conditions of a policy rule to be satisfied thus resulting in the action
part to be executed.

ETSI

24 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

oz (Logigal . - . L= (Logical View::Policy
View::Application) IpAppPolicyDomain IpPolicy EvalManager Engine)
1: createNotification() u
U 2: forward
3: event
‘ 4: reportNotification() < — — J
|

1. Subscribe to a policy event in adomain of choice. Note that the parameters of createNotification are: domain name,
the call back address of the client application. Immediately after createNotification isinvoked a TpAssignmentID is
returned to the client (flow not show in the diagram). The client uses this ID to identify its subscription to the policy

event of choice.
4: When the policy event is triggered, a notification of the event is sent to every client that subscribed to the event.

6 Class Diagrams

Policy Management (PM) comprises of the following SCFs":

. Policy Management Provisioning Service whose Interfaces are used to define policy information, e.g. policy
rules, policy events, etc. and to update and view this information.

. Policy Management Policy Evaluation Service whose Interfaces are used to request evaluation of policies and
for subscription to policy events & to receive to notification of these.

6.1 PM Provisioning SCF Class Diagrams

<<Interfac... <<Interfac...
Ipinterface <} IpService
\
<<Interface>>
IPolicyManeger <<Interface>>

<<Interfac... y Manag |pPolicy EvaManager

IpPolicy

— : S
| —
T T
// ~_
/ T
—

/ —~—

/ —~—

/ T

/ T~
/ ~—
/ ~___

—
<<Interface>> <<Interf ace>> <<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interf ace>>
IpPolicy Domain IpPolicy Action IpPolicy Group IpPolicy Iterator IpPolicy Repository IpPolicy Condition IpPolicy Rule IpPolicy Signature IpPolicy Ev entDefinition
<<Interf ace>> <<Interface>> <<Interface>> <<Interf ace>> <<Interf ace>>
IpPolicy Ev entAction IpPolicy ExpressionAction IpPolicy EventCondition IpPolicy ExpressionCondition | pPolicy TimePeriodC ondition

Figure 1: Policy Provisioning Classes

ETSI

25 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

IpSenice

~ Ipinterface
1=

IpPolicyManager

IpPolicy
CommonName : TpString
PolicyKeywords : TpString Set|
Caption : TpString
Description : TpString

Note: IpPolicyDomain, IpPolicyGroup,
IpPolicyRule, IpPolicyCondition,
IpPolicyAction, IpPolicyEventDefinition
and IpPolicySignature are all derived
from IpPolicy

Pol\cyDonuiNlnPo\ icyDomain

T~

IpPolicyRepository

IpPolicyEventDefinition

RequiredAttributes : TpAttributeSet
OptionalAttributes : TpAttributeSet

IpPolicyGroup
——————1

1
/7

PolicyRuelnPolicyDomain

PolicyEventDefinitioninPolicyRepository

IpPolicySignature
inputvariables :in TpStrirg Set
outputVariables : in TpSting Set
growpNames : in TpString Set
roleNanes : in TpString Set

| PolicyRulelnPolicyGroup
PoMcyGroupl‘nP icyGroup
|

IpPolicyRule
Enabled : TpBoolean
RuleUsage : TpString
Priority: TpInt32
Mandatory: TpBoolean
PolicyRoles : TpString Set
ConditionListType : TpPolicyConditionListType
SequencedActions : Tpint32

PolicyRepositoryInPolicyRepository

PolicyConditioninPgli€yRepository

PolicyActionInPolicyRepository

PalicyRuleValidityPeriodPolicyConditioninPolicyRule

PolicyActi onInPoIicyRule\

IpPolicyCondition

IpPolicyTimePeriodCondition
TimePeriod : TpString
MonthOfYearMask: TpString
DayOfMonthMask : TpString
DayOfWeekMask : TpString
TimeOfDayMask : TpString
LocalOrUtcTime : TpInt32

IpPolicyAction

IpPolicyEventCondition IpPolicyExpressionCondition IpPolicyEventAction IpPolicyExpressionAction

EventDefinitonName : TpString
MatchingAttributes : TpAttributeSet

Expression : TpString

EventDefinitionName : TpString
Attributes : TpAttributeSet

Figure 2: Policy Management Information Model

ETSI

Bxpression : TpString

26 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

6.2 PM Policy Evaluation SCF Class Diagrams

<<Interface>> <<Interface>>
Ipinterface || IpSenice
/\ /\
<<Interface>> <<Interface>>
IpAppPolicyDomain IpPolicyEvalManager

Figure 3: Policy Evaluation Classes

7 The Service Interface Specifications

7.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name | p<name>. The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSve<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

7.1.2 Method descriptions

Each method (APl method 'call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req" suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res" or 'Er r * suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement therelevant | pApp<nane> or

| pSvc<nane> interfacesto provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

ETSI

27 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

7.2 Base Interface

7.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

Theinterfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: Iplnterface.

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applnterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applnterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or isno
longer available, the next most recent callback reference available shall be used.

ETSI

28 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

Raises
TpComonExcepti ons, P_I NVALI D | NTERFACE TYPE

7.4.1.2 Method setCallbackWithSessionlID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or cal leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

sessionlD : in TpSessionlD
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpConmmonExceptions, P_I NVALI D SESSION I D, P_I NVALI D | NTERFACE TYPE

8 Policy Management (PM) Interface Classes

8.1 PM Provisioning SCF Interface Classes

The Policy Management provisioning APIs address the following :
The creation, modification and viewing of policy information.

Generally, policy enabled services will be created by a network service provider. A policy service may also be created
by an application service provider (ASP) and hosted in the network. Such services need not be based on published OSA
specifications. However, they will be created using OSA policy management APIs, will conform to the OSA policy
information model and will be accessible via OSA defined interfaces.

8.1.1 Interface Class IpPolicyManager
Inherits from: IpService.

Clients that wish to participate in Policy Management obtain a reference to an instance of the IpPolicyManager interface
from the Framework. Using this reference, clients can obtain areference to a policy domain of interest, iterate through
the names of all policy domains, create a new policy domain, or remove an existing one. Clients can also obtain a
reference to a policy repository, iterate through the names of all policy repositories, create a new policy repository or
remove an existing one.

Note that al operations through Policy Management interfaces are subject to authorization checks - clients will only
have permission to invoke methods as are allowed by the client's privileges as established by a prior agreement between
the owner of the client and the owner of the policy management complex. Similarly, methods will only return data that
the client is authorized to see. For example, if the client is authorized to see some of the top-level domains and not
others, the IpPolicylterator returned by getDomainlterator() will only return those domains that the client is authorized
for.

ETSI

29 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

<<Interface>>

IpPolicyManager

createDomain (domainName : in TpString) : IpPolicyDomainRef

getDomain (domainName : in org::csapi::Common Data::TpString) : IpPolicyDomainRef
removeDomain (domainName : in org::csapi::Common Data::TpString) : void

getDomainCount () : TpInt32

getDomainlterator () : IpPolicylteratorRef

findMatchingDomains (matchingAttributes : in TpAttributeSet) : TpStringSet

createRepository (repositoryName : in org::csapi::Common Data:: TpString) : IpPolicyRepositoryRef
getRepository (repositoryName : in org::csapi::Common Data:: TpString) : IpPolicyRepositoryRef
removeRepository (repositoryName : in org::csapi::Common Data:: TpString) : void
getRepositoryCount () : TpInt32

getRepositorylterator () : IpPolicylteratorRef

startTransaction () : void

commitTransaction () : TpBoolean

abortTransaction () : void

8.1.1.1 Method createDomain()
Create the specified top-level Policy Domain and get a reference to the new instance.

Returns a reference to the domain just created.

Parameters
domai nNanme : in TpString
The name of the domain to create.

Returns
| pPol i cyDomai nRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.1.2 Method getDomain()
Get areference to the specified top-level Domain.

Returns the reference to the domain.

Parameters
domai nNanme : in org::csapi::Comon Data:: TpString
The name of the domain.

ETSI

30 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns
| pPol i cyDomai nRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.1.1.3 Method removeDomain()

Remove the specified top-level domain.

Parameters

domai nNanme : in org::csapi::Comon Data:: TpString
The name of the top-level domain to delete.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.1.4 Method getDomainCount()
Returns the number of top-level Policy Domains contained by the PolicyManager that the client is authorized to see.

Returns the number of domains.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.1.5 Method getDomainlterator()

Obtain areference to an iterator that will return the names of each of the top-level Policy Domains known to the
PolicyManager that the client is authorized to see.

Returns the reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns
| pPol i cyl t er at or Ref

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

31 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.1.6 Method findMatchingDomains()

Ask for the set of domains that contain attributes that match the specified set of attributes that the client is authorized to
see. This could be used, for example, to get alist of al of the domains whose 'Rol€’ is 'QOS.

Returns the names of the matching top-level domains.

Parameters
mat chi ngAttributes : in TpAttributeSet

Returns

TpSt ri ngSet

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.1.7 Method createRepository()

Create the specified top-level Policy Repository and get a reference to the new instance.

Returns areference to the repository just created.

Parameters
repositoryNane : in org::csapi::Conmon Data:: TpString
The name of the Repository to create.

Returns
| pPol i cyReposi t or yRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.1.8 Method getRepository()
Get areference to the specified top-level repository.

Returns areference to the repository.

Parameters
repositoryNane : in org::csapi::Conmon Data:: TpString
The name of the repository.

Returns
| pPol i cyReposi t or yRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

ETSI

32 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.1.9 Method removeRepository()

Remove the specified top-level Policy Repository.

Parameters

repositoryNane : in org::csapi::Conmon Data:: TpString
The name of the top-level Repository to delete.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.1.10 Method getRepositoryCount()
Returns the number of top-level Policy Repositories contained by the PolicyManager that the client is authorized to see.
Returns: The number of repositories.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.1.11 Method getRepositorylterator()

Obtain areference to an iterator that will return the names of each of the top-level Policy Repositories known to the
PolicyManager that the client is authorized to see.

Returns: The reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl terat or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.1.12 Method startTransaction()

Open atransaction. All modifications to the policy information base up to the call to either commitTransaction() or
abortTransaction() will be treated as part of this transaction.

Note that transaction brackets consisting of startTransaction() and commitTransaction() are generally used to perform
changesin an atomic way, i.e. to ensure that either al changes are made persistent or al changes are undone in case of
failure of even asingle action. Any other clients reading data modified by this transaction will see the existing data until
commitTransaction() is called. Any timeouts of this transaction are implementation specific. If atransaction istimed
out, any subsequent attempt to make requests that require a transaction will throw the exception
P_NO_TRANSACTION_IN_PROCESS.

ETSI

33 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Note, however, that the scope of transaction bracketsis extended here: Large transaction brackets can be also useful for
efficiency reasons even if the different actions are not atomic. Creation of a transaction introduces a significant
overhead, reduction of the number of separate transactions reduces this. It is up to the application implementation to
reflect this fact.

Note that transactions can not be nested, that is, a second call to startTransaction() without calling commitT ransaction()
or abortTransaction() in between will result in the exception P_TRANSACTION_IN_PROCESS being thrown during
the second call.

Parameters

No Parameters were identified for this method.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_TRANSACTI ON_I N_PRCCESS

8.1.1.13 Method commitTransaction()

Commit atransaction. All modifications to the policy information base made since the last call to startTransaction() will
be committed.

Returns: TRUE isreturned if the commit succeeded and the policy information base has been updated, FALSE
otherwise.

Parameters
No Parameters were identified for this method.

Returns

TpBool ean

Raises

TpComonExcepti ons, P_NO _TRANSACTI ON_I N_PROCESS

8.1.1.14 Method abortTransaction()

Abort atransaction. All modifications to the policy information base made since the last call to startTransaction() will
be discarded.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcepti ons, P_NO _TRANSACTI ON_I N_PROCESS

8.1.2 Interface Class IpPolicy
Inherits from: I plnterface.

The base interface from which are derived al of the Policy interfaces (except I pPolicyManager). Thisinterface
documents four attributes for describing a policy-related instance. In the same way that the generic attribute accessor
methods are defined in this base interface, these common attributes are documented here as well and each interface that
is derived from IpPolicy will provide support for them.

Note that we could have defined dedicated get/set methods for each attribute, which would have the benefits of
being potentially faster and safer, but this design approach was not taken, primarily to make it simpler to add additional
attributes in the future without having to change the associated Interface.

ETSI

34 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

<<Interface>>

IpPolicy

getAttribute (attributeName : in TpString) : TpAttribute
setAttribute (targetAttribute : in TpAttribute) : void

getAttributes (attributeNames : in TpStringList) : TpAttributeSet
setAttributes (targetAttributes : in TpAttributeSet) : void

8.1.2.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet
This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

8.1.2.2 Method getAttribute()

Get a copy of the specified attribute from the policy object. Note that modifying the returned attribute will not update
the actual attribute of the object. See setAttribute() for that functionality.

Returns: A copy of the attribute.

ETSI

35 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters

attributeNane : in TpString
The name of the attribute to retrieve.

Returns

TpAttribute

Raises

TpComonExcepti ons, P_SYNTAX ERROR, P_NAME SPACE ERROR
8.1.2.3 Method setAttribute()

Set an attribute of a policy object.

Parameters

targetAttribute : in TpAttribute
The attribute to be set in this object.

Raises
TpCommonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON_| N_PROCESS
8.1.2.4 Method getAttributes()

Get a copy of the set of attributes for the policy object. Note that modifying the returned set will not update the actual
attributes of the object. See setAttributes() for that functionality.

Returns: A copy of the attributes.

Parameters

attributeNames : in TpStringList

Thelist of names of the attributes to retrieve. In case the list of namesis null or empty, al of the attributes will be
returned.

Returns

TpAttri but eSet

Raises

TpConmmonExcepti ons

8.1.2.5 Method setAttributes()

Set one or more attributes of a policy object.

Parameters

target Attributes : in TpAttributeSet
The attributes to be set in this object.

ETSI

36 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Raises

TpConmonExcept i ons, P_ACCESS_VI OLATI ON, P_NO TRANSACTI ON_| N_PROCESS
8.1.3 Interface Class IpPolicyDomain

Inherits from: IpPolicy.

This classis a generalized aggregation container. It enables PolicyDomains, PolicyGroups, PolicyRules, or
PolicyEventDefinitions to be aggregated in a single container. Loops, including the degenerate case of a PolicyDomain
that containsitself, are not allowed when PolicyDomains contain other PolicyDomains.

PolicyDomains and their nesting capabilities are shown in the figure below. Note that a PolicyDomain can nest other
PolicyDomains, and there is no restriction on the depth of the nesting in sibling PolicyDomains.

+— +
T
e
=
<
g
el
=]

B

+— +

As asimple example, think of the highest level PolicyDomain shown in the figure above as a PolicyDomain for the
Call Control Service. This PolicyDomain may be called Call Control Policy, and may aggregate several PolicyDomains
that provide specialized rules per client application.

Hence, PolicyDomain A in the figure above may define call control rules for athird party application from company
A, while another PolicyDomain might define rules for third party application B (e.g. PolicyDomain X), and so forth.

Note also that the depth of each PolicyDomain does not need to be the same. Thus, the ApplicationAPolicyDomain
might have several additional layers of PolicyDomains defined for any of several reasons (different locales, number of
customers, etc.). The PolicyRules are therefore contained at n levels from the ApplicationAPolicyDomain. Compare
this to the Application B PolicyDomain (PolicyDomain X), which might directly contain PolicyRules.

<<Interface>>

IpPolicyDomain

getParentDomain () : IpPolicyDomainRef

createDomain (domainName : in TpString) : IpPolicyDomainRef
getDomain (domainName : in TpString) : IpPolicyDomainRef
removeDomain (domainName : in TpString) : void
getDomainCount () : TpInt32

getDomainlterator () : IpPolicylteratorRef

createGroup (groupName : in TpString) : IpPolicyGroupRef
getGroup (groupName : in TpString) : IpPolicyGroupRef
removeGroup (groupName : in TpString) : void
getGroupCount () : TpInt32

getGrouplterator () : IpPolicylteratorRef

createRule (ruleName : in TpString) : IpPolicyRuleRef
getRule (ruleName : in TpString) : IpPolicyRuleRef
removeRule (ruleName : in TpString) : void

getRuleCount () : TpInt32

ETSI

37 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

getRulelterator () : IpPolicylteratorRef

createEventDefinition (eventDefinitionName : in TpString, requiredAttributes : in TpStringSet,
optionalAttributes : in TpStringSet) : IpPolicyEventDefinitionRef

getEventDefinition (eventDefinitionName : in TpString) : IpPolicyEventDefinitionRef
removeEventDefinition (eventDefinitionName : in TpString) : void
getEventDefinitionCount () : TpInt32

getEventDefinitionlterator () : IpPolicylteratorRef

createVariableSet (variableSetName : in TpString) : void

getVariableSet (variableSetName : in TpString) : TpPolicyVarSet
removeVariableSet (variableSetName : in TpString) : void

getVariableSetCount () : TpIint32

getVariableSetlterator () : IpPolicylteratorRef

<<new>> createVariable (variableSetName : in TpString, variableName : in TpString, variableType : in
TpPolicyType) : void

<<new>> setVariableValue (variableSetName : in TpString, variableName : in TpString, variableValue : in
TpAny) : void

<<new>> getVariableType (variableSetName : in TpString, variableName : in TpString) : TpPolicyType
<<new>> getVariableValue (variableSetName : in TpString, variableName : in TpString) : TpAny
getVariable (variableSetName : in TpString, variableName : in TpString) : TpPolicyVar

<<new>> removeVariable (variablSetName : in TpString, variableName : in TpString) : void

<<new>> createSignature (signatureName : in TpString) : IpPolicySignatureRef

<<new>> getSignature (signatureName : in TpString) : IpPolicySignatureRef

<<new>> removeSignature (signatureName : in TpString) : void

<<new>> getSignatureCount () : TpInt32

<<new>> getSignaturelterator () : IpPolicylteratorRef

8.1.3.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",

ETSI

38 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

"P_PM_KEYWORD_INSTALLATION", and"P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Role : TpString

This attribute provides a way to specify higher-level context associated with atop-level domain, e.g. Role = Charging,
Role = QOS, or Role = User Interaction, etc. This attribute can be used to search for domains that specify a particular
Role by using the findMatchingDomains() method of the IpPolicyManager interface. This attribute must be explicitly
set for each instance of an IpPolicyDomain. Thereis no default and values are not copied from the parent domain (if

any).

Owner : TpString

This attribute provides a way to specify an owner of atop-level domain. This attribute can be used to search for
domains that specify a particular Owner by using the findMatchingDomains() method of the I pPolicyManager interface.
This attribute must be explicitly set for each instance of an IpPolicyDomain. Thereis no default and values are not
copied from the parent domain (if any).

8.1.3.2 Method getParentDomain()
Return areference to the domain that contains this one (if any). If thisisatop-level domain, return aNULL reference.

Returns: A reference to the parent domain.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyDomai nRef

Raises

TpComonExcept i ons

8.1.3.3 Method createDomain()

Create the specified domain and get a reference to the new instance.

Returns: A reference to the domain just created.

Parameters
domai nNane : in TpString
The name of the domain to create.

ETSI

39 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns
| pPol i cyDomai nRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.3.4 Method getDomain()

Get areference to the specified subdomain.

Returns:; A reference to the domain.

Parameters
domai nNane : in TpString
The name of the subdomain to get.

Returns
| pPol i cyDomai nRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.1.3.5 Method removeDomain()

Remove the specified subdomain.

Parameters

domai nNanme : in TpString
The name of the subdomain to delete.
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.3.6 Method getDomainCount()
Returns the number of subdomains contained by this one that the client is authorized to see.

Returns. The number of subdomains.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

40 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.3.7 Method getDomainlterator()

Obtain areference to an iterator that will return the names of each of the subdomains contained by this one that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl t erat or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

The following methods are for Rule Group Management in Domain :

8.1.3.8 Method createGroup()
Create the specified group and get a reference to the new instance.

Returns: A reference to the group just created.

Parameters
groupNanme : in TpString
The name of the group to create.

Returns
| pPol i cyG oupRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.3.9 Method getGroup()
Get areference to the specified group.

Returns: A reference to the group.

Parameters

groupName : in TpString
The name of the group to get.
Returns

| pPol i cyG oupRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

ETSI

41 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.3.10 Method removeGroup()

Remove the specified group.

Parameters

groupNanme : in TpString
The name of the group to delete.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.3.11 Method getGroupCount()
Returns the number of groups contained by this domain that the client is authorized to see.

Returns: The number of groups.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.3.12 Method getGrouplterator()

Obtain areference to an iterator that will return the names of each of the groups contained by this domain that the client
is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl terat or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

The following methods are for rule Management within a Domain:

8.1.3.13 Method createRule()
Create arule with the specified name, and get a reference to the new instance.

Returns: A reference to the just created rule.

ETSI

42 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters

ruleName : in TpString
The name of therule to create.

Returns
| pPol i cyRul eRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.3.14 Method getRule()
Get areference to the specified rule.

Returns: A reference to therule.

Parameters

ruleName : in TpString
The name of the rule to get.

Returns
| pPol i cyRul eRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

8.1.3.15 Method removeRule()

Remove the specified rule.

Parameters
ruleNanme : in TpString

The name of the rule to delete.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.3.16 Method getRuleCount()
Returns the number of rules contained by this domain that the client is authorized to see.

Returns. The number of rules.

Parameters
No Parameters were identified for this method.

ETSI

43 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.3.17 Method getRulelterator()

Obtain areference to an iterator that will return the names of each of the rules contained by this domain that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl t er at or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

The following methods are for event management within a Domain:

8.1.3.18 Method createEventDefinition()

Define anew event type, specifying the definition's name and the required and optional attributes that must/may appear
in an instance of that event.

Returns: A reference to the newly created definition.

Parameters

eventDefinitionName : in TpString
The name of the definition of the new event.

requiredAttributes : in TpStringSet
The set of attributesthat MUST be included in any event of this type.

optional Attributes : in TpStringSet
A set of attributesthat MAY be included in any event of this type.

Returns
| pPol i cyEvent Def i ni ti onRef

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.3.19 Method getEventDefinition()
Get areference to the definition of an event type.

Returns: A reference to the definition.

ETSI

44 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters

eventDefinitionName : in TpString
The name of the event definition to get.

Returns
| pPol i cyEvent Def i ni ti onRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

8.1.3.20 Method removeEventDefinition()

Remove the definition for an event from the domain.

Parameters

eventDefinitionName : in TpString
The name of the definition to remove.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.3.21 Method getEventDefinitionCount()
Returns the number of event definitions contained by this domain that the client is authorized to see.

Returns: The number of event definitions.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.3.22 Method getEventDefinitionlterator()

Obtain areference to an iterator that will return the names of each of the definitions contained by this domain that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl terator Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

45 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

The following methods are for variable management within a Domain:

8.1.3.23 Method createVariableSet()

Used by clients to define a named collection of variables. Variables are attributes that can be updated by the client to
reflect the current 'state’ of the client. Since variables can be referenced by name from expression conditions and
actions, the act of updating a variable may have a side effect of satisfying conditionsin rules that are currently active.
Variables that are defined by the network operator may be dynamically updated by the policy engine to reflect the
current 'state’ of the modelled networks and services.

Parameters

vari abl eSetNane : in TpString
The name of the new variable set.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.3.24 Method getVariableSet()
Get avariable set.

Returns: A variable set.

Parameters

vari abl eSetName : in TpString
The name of the variable set to get.

Returns
TpPol i cyVar Set
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

8.1.3.25 Method removeVariableSet()

Remove the variable set from the domain.

Parameters
vari abl eSetNane : in TpString

The name of the variable set to remove.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.3.26 Method getVariableSetCount()
Returns the number of variable sets contained by this domain that the client is authorized to see.

Returns: The number of variable sets.

ETSI

46 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.3.27 Method getVariableSetlterator()

Obtain areference to an iterator that will return the names of each of the variable sets contained by this domain that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns
| pPol i cyl t er at or Ref

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.3.28 Method <<new>> createVariable()

Create avariable within a variable set.

Parameters

vari abl eSet Name : in TpString
The name of the variable set within which to set the specified variable.

vari ableNanme : in TpString
The name of the variable to being created.

vari abl eType : in TpPolicyType
The type of the variable being created.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE ERROR, P_NO TRANSACTI ON | N PROCESS

8.1.3.29 Method <<new>> setVariableValue()

Set avariable value within a variable set.

Parameters

vari abl eSet Name : in TpString
The name of the variable set within which to set the specified variable value.

vari abl eName : in TpString
The name of the variable being set.

ETSI

a7 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

vari abl evVal ue : in TpAny
The value of the variable being created.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.3.30 Method <<new>> getVariableType()
Get a copy of the type of avariable from avariable set.

Returns: A copy of the variable type.

Parameters

vari abl eSetNane : in TpString
The name of the variable set in which to find the variable.

vari ableNanme : in TpString
The name of the variable whose type isto be retrieved.

Returns
TpPol i cyType
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.1.3.31 Method <<new>> getVariableValue()
Get a copy of avariable value from avariable set.

Returns: A copy of the variable value.

Parameters

vari abl eSetNane : in TpString
The name of the variable set to find the variable in.

vari ableNanme : in TpString
The name of the variable whose value is to be retrieved.

Returns
TpAny
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

8.1.3.32 Method getVariable()
Get a copy of avariable from avariable set.

Returns: A copy of the variable (i.e. a copy of itstype and value).

ETSI

48 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters

vari abl eSet Name : in TpString
The name of the variable set to find the variablein.

vari abl eName : in TpString
The name of the variable to get a copy of.

Returns
TpPol i cyVar
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR

8.1.3.33 Method <<new>> removeVariable()

Remove avariable from a variable set.

Parameters

vari abl SetNane : in TpString
The name of the variable set from where to remove the variable.

vari ableNanme : in TpString
The name of the variable to be removed.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

The following methods are for signature management within a Domain:

8.1.3.34 Method <<new>> createSignature()
Define a new policy-evaluation method signature, specifying the signature's name.

Returns: A reference to the newly created definition.

Parameters

signatureName : in TpString
The name of the new policy-evaluation method signature.

Returns
| pPol i cySi gnat ur eRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

ETSI

49 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.3.35 Method <<new>> getSignature()
Get areference to the signature for a policy-evaluation method signature.

Returns: A reference to the definition.

Parameters

signatureName : in TpString
The name of the policy-evaluation method signature to get.

Returns
| pPol i cySi gnat ur eRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR

8.1.3.36 Method <<new>> removeSignature()

Remove the policy-eval uation method signature from the domain.

Parameters

signatureNane : in TpString
The name of the signature to remove.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.3.37 Method <<new>> getSignatureCount()
Returns the number of policy-evaluation signatures contained in this domain that the client is authorized to see.

Returns: The number of signatures.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcept i ons
8.1.3.38 Method <<new>> getSignaturelterator()

Obtain areference to an iterator that will return the names of each of the policy-eval uation signatures contained in this
domain that the client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

ETSI

50 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns

| pPol i cyl terator Ref

Raises

TpConmmonExcepti ons, P_ACCESS VI OLATI ON
8.1.4 Interface Class IpPolicyGroup
Inherits from: IpPolicy.

This classis a generalized aggregation container. It enables either PolicyRules or PolicyGroups to be aggregated in a
single container. Loops, including the degenerate case of a PolicyGroup that contains itself, are not allowed when
PolicyGroups contain other PolicyGroups.

PolicyGroups and their nesting capabilities are shown in the figure below. Note that a PolicyGroup can nest other
PolicyGroups, and thereis no restriction on the depth of the nesting in sibling PolicyGroups.

Asasimple example, think of the highest level PolicyGroup shown in the figure above as alogon policy or US
employees of acompany. This PolicyGroup may be called USEmployeel ogonPolicy, and may aggregate several
PolicyGroups that provide specialized rules per location.

Hence, PolicyGroup A in the figure above may define logon rules for employees on the West Coast, while another
PolicyGroup might define logon rules for the Midwest (e.g. PolicyGroup X), and so forth.

Note also that the depth of each PolicyGroup does not need to be the same. Thus, the WestCoast PolicyGroup might
have several additional layers of PolicyGroups defined for any of severa reasons (different locales, number of subnets,
etc.). The PolicyRules are therefore contained at n levels from the USEmployeel ogonPolicyGroup. Compare this to the
Midwest PolicyGroup (PolicyGroup X), which might directly contain PolicyRules.

No attributes are defined for this class since it inherits all its attributes from I pPolicy. The class exists to aggregate
PolicyRules or other PolicyGroups.

ETSI

51 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

<<Interface>>

IpPolicyGroup

getParentDomain () : IpPolicyDomainRef
getParentGroup () : IpPolicyGroupRef

createGroup (groupName : in TpString) : IpPolicyGroupRef
getGroup (groupName : in TpString) : IpPolicyGroupRef
removeGroup (groupName : in TpString) : void
getGroupCount () : TpInt32

getGrouplterator () : IpPolicylteratorRef

createRule (ruleName : in TpString) : IpPolicyRuleRef
getRule (ruleName : in TpString) : IpPolicyRuleRef
removeRule (ruleName : in TpString) : void
getRuleCount () : TpInt32

getRulelterator () : IpPolicylteratorRef

8141 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

ETSI

52 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.
8.1.4.2 Method getParentDomain()

Get areference to the domain that directly contains this group (if any). If thisis a subgroup (whose immediate container
is another group instead of adomain), return aNULL reference.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyDomai nRef

Raises

TpComonExcept i ons

8.1.4.3 Method getParentGroup()

Return areference to the group that contains this one (if any). If thisis atop-level group, return aNULL reference.

Returns: A reference to the containing group.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyG oupRef

Raises

TpComonExcept i ons

8.1.4.4 Method createGroup()

Create the specified group and get a reference to the new instance.

Returns: A reference to the group just created.

Parameters
groupNanme : in TpString
The name of the group to create.

Returns
| pPol i cyG oupRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

ETSI

53 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.4.5 Method getGroup()
Get areference to the specified group.

Returns: A reference to the group.

Parameters

groupName : in TpString
The name of the group to get.
Returns

| pPol i cyG oupRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR

8.1.4.6 Method removeGroup()

Remove the specified group.

Parameters

groupNanme : in TpString
The name of the group to delete.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.4.7 Method getGroupCount()

Returns the number of groups contained by this group that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.4.8 Method getGrouplterator()

Obtain areference to an iterator that will return the names of each of the groups contained by this group that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

ETSI

54 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns

| pPol i cyl terator Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.4.9 Method createRule()

Create arule with the specified name, and get a reference to the new instance.

Returns: A reference to the just created rule.

Parameters

ruleName : in TpString
The name of therule to create.

Returns
| pPol i cyRul eRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.4.10 Method getRule()
Get areference to the specified rule.

Returns: A reference to therule.

Parameters

ruleName : in TpString
The name of the rule to get.

Returns
| pPol i cyRul eRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.1.4.11 Method removeRule()

Remove the specified rule.

Parameters

ruleName : in TpString
The name of therule to delete.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

ETSI

55 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.4.12 Method getRuleCount()

Returns the number of rules contained by this group that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.4.13 Method getRulelterator()

Obtain areference to an iterator that will return the names of each of the rules contained by this group that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl terator Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.5 Interface Class IpPolicyRepository
Inherits from: IpPolicy.

A class representing a container for reusable policy-related information. Instances of PolicyConditions and
PolicyActions can be defined here and then referenced from one or more PolicyRules. Note that some instantiations of
the Policy Management service will have Repositories that have been pre-defined by the Service Provider, with
pre-defined PolicyConditions and PolicyActions. It may a so be possible that clients with the appropriate authorizations
will be able to define new Repositories and/or add new PolicyConditions and PolicyActions to existing Repositories.

ETSI

56 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

<<Interface>>

IpPolicyRepository

getParentRepository () : IpPolicyRepositoryRef

createRepository (repositoryName : in TpString) : IpPolicyRepositoryRef
getRepository (repositoryName : in TpString) : IpPolicyRepositoryRef
removeRepository (repositoryName : in TpString) : void
getRepositoryCount () : TpInt32

getRepositorylterator () : IpPolicylteratorRef

createCondition (conditionName : in TpString, conditionType : in TpPolicyConditionType, conditionAttributes
: in TpAttributeSet) : IpPolicyConditionRef

getCondition (conditionName : in TpString) : IpPolicyConditionRef
removeCondition (conditionName : in TpString) : void
getConditionCount () : TpInt32

getConditionlterator () : IpPolicylteratorRef

createAction (actionName : in TpString, actionType : in TpPolicyActionType, actionAttributes : in
TpAttributeSet) : IpPolicyActionRef

getAction (actionName : in TpString) : IpPolicyActionRef
removeAction (actionName : in TpString) : void
getActionCount () : TpInt32

getActionlterator () : IpPolicylteratorRef

8.15.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

ETSI

57 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.
8.1.5.2 Method getParentRepository()

Return areference to the repository that contains this one (if any). If thisis atop-level repository, return aNULL
reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyReposi t or yRef

Raises

TpComonExcept i ons

8.1.5.3 Method createRepository()

Create the specified repository and get a reference to the new instance.

Returns: A reference to the repository just created.

Parameters
repositoryNanme : in TpString
The name of the repository to create.

Returns
| pPol i cyReposi t or yRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

ETSI

58 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.5.4 Method getRepository()
Get areference to the specified subrepository.

Returns: A reference to the repository.

Parameters
repositoryName : in TpString
The name of the subrepository to get.

Returns
| pPol i cyReposi t or yRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR

8.1.5.5 Method removeRepository()

Remove the specified subrepository.

Parameters

repositoryNanme : in TpString
The name of the subrepository to delete.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.5.6 Method getRepositoryCount()

Returns the number of subrepositories contained by this repository that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.5.7 Method getRepositorylterator()

Obtain areference to an iterator that will return the names of each of the subrepositories contained by this one that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

ETSI

59 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns

| pPol i cyl terator Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.5.8 Method createCondition()

Create a reusable condition. References to the newly created condition can be used in one or more PolicyRules.

Returns: The reference to the newly created condition.

Parameters

conditionNane : in TpString
The name uniquely identifying this condition within this repository.

condi ti onType : in TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management AP,
it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or
P_PM_EXPRESSION_CONDITION.

conditionAttributes : in TpAttributeSet
The attributes specifying the condition.

Returns
| pPol i cyCondi ti onRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.5.9 Method getCondition()
Get areference to the specified condition.

Returns: A reference to the specified condition.

Parameters

conditionNane : in TpString
The name of the condition to get.

Returns
| pPol i cyCondi ti onRef

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

ETSI

60 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.5.10 Method removeCondition()

Remove the specified condition.

Parameters
conditionNanme : in TpString

The name of the condition to delete.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.5.11 Method getConditionCount()
Returns the number of conditions contained by this repository that the client is authorized to see.

Returns; The number of conditions.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.5.12 Method getConditionlterator()

Obtain areference to an iterator that will return the names of each of the conditions contained by this repository that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl terat or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.5.13 Method createAction()

Create a reusable action. References to the newly created action can be used in one or more PolicyRules.

Returns: The reference to the newly created action.

Parameters

actionNanme : in TpString
The name uniquely identifying this action within this repository.

ETSI

61 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

actionType : in TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it
must be oneof P PM_EVENT_ACTION, or P PM_EXPRESSION_ACTION.

actionAttributes : in TpAttributeSet
The attributes specifying the action.

Returns
| pPol i cyAct i onRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.5.14 Method getAction()

Get areference to the specified action.

Returns: A reference to the specified action.

Parameters

actionNanme : in TpString
The name of the action to get.

Returns
| pPol i cyAct i onRef
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERRCR

8.1.5.15 Method removeAction()

Remove the specified action.

Parameters

actionNane : in TpString
The name of the action to delete.

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.5.16 Method getActionCount()

Returns the number of actions contained by this repository that the client is authorized to see.

Parameters
No Parameters were identified for this method.

ETSI

62 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.5.17 Method getActionlterator()

Obtain areference to an iterator that will return the names of each of the actions contained by this repository that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns
| pPol i cyl t er at or Ref

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.6 Interface Class IpPolicyRule
Inherits from: IpPolicy.

This class represents the "If Condition then Action" semantics associated with a policy. A PolicyRule condition, in the
most general sense, is represented as either an ORed set of ANDed conditions (Disjunctive Normal Form, or DNF) or
an ANDed set of ORed conditions (Conjunctive Normal Form, or CNF). Individual conditions may either be negated
(NOT C) or unnegated (C). The actions specified by a PolicyRule are to be performed if and only if the PolicyRule
condition (whether it is represented in DNF or CNF) evaluatesto TRUE.

The conditions and actions associated with a policy rule are modelled, respectively, with subclasses of the classes
PolicyCondition and PolicyAction. These condition and action objects are tied to instances of PolicyRule by the
setConditionList() and setActionList() methods.

A policy rule may also be associated with one or more policy time periods, indicating the schedule according to
which the policy rule is active and inactive. In this case it is the setValidityPeriodCondition() method that provides the
linkage.

A policy ruleisillustrated conceptualy in the figure below.

oo o e o e a oo - +
Pol i cyRul e
oo - + R +
| PolicyCondition(s) | | PolicyAction(s) |
- + e +
oo e e e e e o o +
| PolicyTi nePeriodCondition(s) |
oo e e e e e oo oo +
oo o oo e oo - - +

The PolicyRule class uses the structure TpConditionList to specify the list of conditions for the rule and uses the
attribute ConditionListType, to indicate whether the conditions for the rule arein DNF or CNF. The TpConditionList is
alist of structures, each element of which contains a reference to a condition and two additional attributes to complete
the representation of the rule's conditional expression. Thefirst of these attributes is an integer to partition the
referenced conditions into one or more groups, and the second is a Boolean to indicate whether the referenced condition
is negated. An example shows how TpConditionList and these two additional attributes provide a unique representation
of aset of conditionsin either DNF or CNF.

ETSI

63 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Suppose we have a TpConditionList that aggregates five PolicyConditions C1 through C5, with the following values
in the attributes of the five elements of the list:

C1: GroupNumber = 1, ConditionNegated = FALSE
C2: GroupNumber = 1, ConditionNegated = TRUE
C3: GroupNumber = 1, ConditionNegated = FALSE
C4: GroupNumber = 2, ConditionNegated = FALSE
C5: GroupNumber = 2, ConditionNegated = FALSE

If ConditionListType = P_PM_DNF, then the overall condition for the PolicyRuleis:
(C1 AND (NOT C2) AND C3) OR (C4 AND C5)

On the other hand, if ConditionListType=P_PM_CNF, then the overall condition for the PolicyRuleiis:
(C1 OR (NOT C2) OR C3) AND (C4 OR C5)

In both cases, there is an unambiguous specification of the overall condition that is tested to determine whether to
perform the actions associated with the PolicyRule.

Similarly, The PolicyRule class uses the structure TpPolicyActionList to specify thelist of actions for the rule and
uses the attribute SequencedActions to indicate whether the actions for the rule MUST be executed in the order
specified in the TpActionList, SHOULD be executed in the order specified, or it does not matter. The TpActionListisa
list of structures, each element of which contains a reference to an action and an attribute sequenceNumber. This
attribute provides an unsigned integer 'n' that indicates the relative position of an action in the sequence of actions
associated with apolicy rule. When 'n' is a positive integer, it indicates a place in the sequence of actionsto be
performed, with smaller integersindicating earlier positions in the sequence. The special value '0' indicates "do not
care". If two or more actions have the same non-zero sequence number, they may be performed in any order, but they
must all be performed at the appropriate place in the overall action sequence.

A series of examples will make ordering of actions clearer:
- If al actions have the same sequence number, regardless of whether it is'0" or non-zero, any order is acceptable.
- The values
1: ACTION A
2: ACTION B
1: ACTION C
3: ACTION D
indicate two acceptable orders: A, C, B, D or C, A, B, D, since A and C can be performed in either order, but
only at the '1' position.
- The values
0: ACTION A
2: ACTION B
3: ACTION C
3: ACTION D
require that B, C, and D occur either asB, C, D or asB, D, C. Action A may appear at any point relativeto B, C,
and D. Thus the complete set of acceptable ordersis: A,B,C,D; B,A,C,D;B,C,AD;B,C,D,A; A B,D,C;B,A,
D,C;B,D,A,C;B,D,C,A.
Note that the non-zero sequence numbers need not start with '1', and they need not be consecutive. All that mattersis
their relative magnitude.

<<Interface>>

IpPolicyRule

getParentGroup () : IpPolicyGroupRef
getParentDomain () : IpPolicyDomainRef

createCondition (conditionName : in TpString, conditionType : in TpPolicyConditionType, conditionAttributes
: in TpAttributeSet) : IpPolicyConditionRef

getCondition (conditionName : in TpString) : IpPolicyConditionRef
removeCondition (conditionName : in TpString) : void
getConditionCount () : TpInt32

getConditionlterator () : IpPolicylteratorRef

ETSI

64 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

createAction (actionName : in TpString, actionType : in TpPolicyActionType, actionAttributes : in
TpAttributeSet) : IpPolicyActionRef

getAction (actionName : in TpString) : IpPolicyActionRef

removeAction (actionName : in TpString) : void

getActionCount () : TpInt32

getActionlterator () : IpPolicylteratorRef
setValidityPeriodConditionByName (conditionName : in TpString) : void
setValidityPeriodCondition (conditionReference : in IpPolicyTimePeriodConditionRef) : void
getValidityPeriodCondition () : IpPolicyTimePeriodConditionRef
unsetValidityPeriodCondition () : void

setConditionList (conditionList : in TpPolicyConditionList) : void
getConditionList () : TpPolicyConditionList

setActionList (actionList : in TpPolicyActionList) : void

getActionList () : TpPolicyActionList

8.16.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

ETSI

65 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Enabl ed : TpBool ean

This attribute indicates whether apolicy rule is currently enabled, from an administrative point of view. Its purposeisto
allow a policy administrator to enable or disable a policy rule without having to add it to, or remove it from, the policy
repository.

Note that unlike RFC 3460, this attribute does not support the value 'enabledForDebug'. It was considered confusing
that Enabled was not a boolean attribute. Support for debugging, including the ability to specify that the entity
evaluating the policy condition(s) is being told to evaluate the conditions for the policy rule, but not to perform the
actionsif the conditions evaluate to TRUE, will be considered for alater release.

Rul eUsage : TpString
This attribute is a free-form string that recommends how this policy should be used.

Priority : Tplnt32

This attribute provides a non-negative integer for prioritising policy rules relative to each other. Larger integer values
indicate higher priority. Since one purpose of this attribute is to allow specific, ad hoc policy rules to temporarily
override established policy rules, an instance that has this attribute set has a higher priority than all instances that use or
set the default value of zero.

Prioritisation among policy rules provides a basic mechanism for resolving policy conflicts.

Mandat ory : TpBool ean

This attribute indicates whether evaluation (and possibly action execution) of a PolicyRule is mandatory or not. Its
concept is similar to the ability to mark packets for delivery or possible discard, based on network traffic and device
load.

The evaluation of a PolicyRule MUST be attempted if the Mandatory attribute value is TRUE. If the Mandatory
attribute value of a PolicyRule is FALSE, then the evaluation of theruleis "best effort” and MAY beignored.

Pol i cyRol es : TpStringSet

This attribute represents the roles and role combinations associated with a policy rule. Each value represents one role
combination. Since thisis a multi-valued attribute, more than one role combination can be associated with asingle
policy rule. Each valueis astring of the form:

<RoleName>[& & <RoleName>]*
where the individual role names appear in aphabetical order.

Condi ti onLi st Type : TpPol i cyConditionLi st Type

This attribute is used to specify whether the list of policy conditions associated with this policy ruleisin Digunctive
Normal Form (DNF) or Conjunctive Norma Form (CNF). If this attribute is not present, the list type defaultsto DNF.

SequencedActions : Tplnt32

This attribute gives a policy administrator a way of specifying how the ordering of the policy actions associated with
this PolicyRule isto be interpreted. Three values are supported:

- mandatory(1): Do the actions in the indicated order, or do not do them at al.

- recommended(2): Do the actions in the indicated order if you can, but if you cannot do them in this order, do themin
another order if you can.

- dontCare(3): Do them -- | do not care about the order.

ETSI

66 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

When error / event reporting is addressed for the Policy Framework, suitable codes will be defined for reporting that a

set of actions could not be performed in an order specified as mandatory (and thus were not performed at al), that a set
of actions could not be performed in arecommended order (and moreover could not be performed in any order), or that
a set of actions could not be performed in a recommended order (but were performed in a different order).

8.1.6.2 Method getParentGroup()

Return areference to the PolicyGroup that directly containsthis Rule (if any). If this Ruleis contained by a
PolicyDomain, return aNULL reference.

Returns. The reference to the PolicyGroup.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyG oupRef

Raises

TpComonExcept i ons

8.1.6.3 Method getParentDomain()

Return areference to the PolicyDomain that directly containsthis Rule (if any). If this Ruleis contained by a
PolicyGroup, return aNULL reference.

Returns: The reference to the PolicyDomain to get.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyDomai nRef

Raises

TpComonExcept i ons

8.1.6.4 Method createCondition()

Create anew condition local to this Rule. Conditions created local to a Rule can only be referenced from that Rule. For
reusable conditions, see IpPolicyRepository.

Returns: The reference to the newly created condition.

Parameters

conditionNane : in TpString
The name uniquely identifying this condition within thisrule.

condi ti onType : in TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management AP,
it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or
P_PM_EXPRESSION_CONDITION.

conditionAttributes : in TpAttributeSet
Theinitial attributes for this condition.

ETSI

67 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns
| pPol i cyCondi ti onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.6.5 Method getCondition()
Get areference to the specified condition.

Returns: A reference to the specified condition.

Parameters

conditionNane : in TpString
The name of the condition to get.

Returns
| pPol i cyCondi ti onRef

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.1.6.6 Method removeCondition()

Remove the specified condition.

Parameters

conditionNanme : in TpString
The name of the condition to delete.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.6.7 Method getConditionCount()

Returns the number of conditions contained by this rule that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns
Tpl nt 32

Raises
TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

68 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.6.8 Method getConditionlterator()

Obtain areference to an iterator that will return the names of each of the conditions contained by this rule that the client
is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl t erat or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.6.9 Method createAction()

Create anew action local to this Rule. Actions created local to a Rule can only be referenced from that Rule. For
reusable actions, see | pPolicyRepository.

Returns: The reference to the newly created action.

Parameters

actionNanme : in TpString
The name uniquely identifying this action within this rule.

actionType : in TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it
must be one of P_PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionAttributes : in TpAttributeSet
The attributes specifying the action.

Returns
| pPol i cyAct i onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.6.10 Method getAction()
Get areference to the specified action.

Returns: A reference to the specified action.

Parameters

actionNanme : in TpString
The name of the action to get.

ETSI

69 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns
| pPol i cyAct i onRef
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.1.6.11 Method removeAction()

Remove the specified action.

Parameters
actionNanme : in TpString

The name of the action to delete.
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.6.12 Method getActionCount()

Returns the number of actions contained by this rule that the client is authorized to see.

Parameters
No Parameters were identified for this method.

Returns

Tpl nt 32

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.6.13 Method getActionliterator()

Obtain areference to an iterator that will return the names of each of the actions contained by thisrule that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyl t er at or Ref

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

8.1.6.14 Method setValidityPeriodConditionByName()

Set the validity period for the rule, specifying the name of a condition of type IpVaidityPeriodCondition. Since the
condition is specified by name, the condition must be defined local to thisrule.

ETSI

70 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters
conditionNane : in TpString

Name identifying a condition local to thisrule.
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.6.15 Method setValidityPeriodCondition()

Set the validity period for the rule, providing areference to a condition of type I pVaidityPeriodCondition. Since the
condition is specified by reference, the condition may be defined local to rule or may be a condition defined in a
PolicyRepository.

Parameters

condi ti onReference : in |pPolicyTinePeri odConditi onRef
Reference to the condition to be used to set the validity period condition.

Raises
TpCommonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON_| N_PROCESS
8.1.6.16 Method getValidityPeriodCondition()

Get areference to the condition used to set the validity period condition for thisrule.

Returns: The reference to the condition. Thiswill beaNULL reference if the validity period condition is not set.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyTi mePeri odCondi ti onRef

Raises

TpComonExcept i ons

8.1.6.17 Method unsetValidityPeriodCondition()

Unset the validity period condition for this rule. When the validity period condition is not set, the rule is always active.

Parameters

No Parameters were identified for this method.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON | N _PROCESS
8.1.6.18 Method setConditionList()

Set the condition list of thisrule, specifying each triple of condition, Group Number and Negated attributes. See the text
under IpPolicyRule above for a description of the use of these two attributes. Note that although a condition may be

contained by arule (by creating the condition within the rule using createCondition(), it is not evaluated as part of the
rule's condition list until it isincluded in the list specified by this method.

ETSI

71 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters

conditionList : in TpPolicyConditionLi st

List of (Condition reference, Group Number, Negated) triples and the value ConditionListType indicating whether the
conditions arein DNF or CNF.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NO_TRANSACTI ON_I N_PROCESS

8.1.6.19 Method getConditionList()
Get the condition list set for therule.
Returns: The condition list currently set for thisrule.

Parameters
No Parameters were identified for this method.

Returns

TpPol i cyCondi ti onLi st

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON
8.1.6.20 Method setActionList()

Set the list of actions for this rule, specifying each pair of Action and SequenceNumber. See the text under IpPolicyRule
above for a description of the use of this attribute. Note that although an action may be contained by arule (by creating
the action within the rule using createAction()), it is not evaluated as part of the rule's actions until it isincluded in the
list specified by this method.

Parameters
actionList : in TpPolicyActionLi st

List of (Action Reference, Sequence Number) pairs.
Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NO_TRANSACTI ON_I N_PROCESS

8.1.6.21 Method getActionList()
Get the action list set for therule.

Returns: The action list currently set for thisrule.

Parameters
No Parameters were identified for this method.

Returns

TpPol i cyActi onLi st

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON

ETSI

72 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.7 Interface Class IpPolicyCondition
Inherits from: IpPolicy.

The purpose of a policy condition is to determine whether or not the set of actions (aggregated in the PolicyRule that the
condition applies to) should be executed or not. For the purposes of the Policy Core Information Model, all that matters
about an individual PolicyConditionisthat it evaluatesto TRUE or FALSE. (Theindividua PolicyConditions
associated with a PolicyRule are combined to form a compound expression in either DNF or CNF, but thisis
accomplished viathe ConditionList, discussed above. A logica structure within an individual PolicyCondition may also
be introduced, but this would have to be done in a subclass of PolicyCondition.

Becauseit is general, the PolicyCondition class does not itself contain any "real" conditions. These will be

... +
Policy Conditions in DNF
oo e e e e e oo oo + oo e e e e oo oo +
AND | i st AND | i st
T + S +
| PolicyCondition | | PolicyCondition |
e + . +
T + S +
| PolicyCondition | - | PolicyCondition |
. + ORed . +
ANDed ANDed
. + Fomm e e e +
| PolicyCondition | | PolicyCondition |
T + T +
B s + T +
o o o o o o o o e o e e e o e e e e e e e e e e e e e e e e e e oo oo +

The figure above illustrates that when policy conditions arein DNF, there are one or more sets of conditions that are
ANDed together to form AND lists. An AND list evaluates to TRUE if and only if al of its constituent conditions
evaluate to TRUE. The overall condition then evaluatesto TRUE if and only if at least one of its constituent AND lists
evaluates to TRUE.

e T T +
Policy Conditions in CNF
Y + T +
OR |ist OR |ist
o e e e oo + o e e e e oo +
| PolicyCondition | | PolicyCondition |
e + . +
o e e e oo + o e e e e oo +
| PolicyCondition | - | PolicyCondition |
. + ANDed . +
ORed ORed
e + e +
| PolicyCondition | | PolicyCondition |
e + . +
T + T +
o m ot m e o e m e oo - - +

In the figure above, the policy conditions are in CNF. Consequently, there are one or more OR lists, each of which
evaluates to TRUE if and only if at least one of its constituent conditions eval uates to TRUE. The overall condition then
evaluates to TRUE if and only if ALL of its constituent OR lists evaluate to TRUE.

When identifying and using the PolicyCondition class, it is necessary to remember that a condition can be rule-
specific or reusable. Thiswas discussed above. The distinction between the two types of policy conditionsliesin the
associations in which an instance can participate, and in how the different instances are named. Conceptually, areusable
policy condition residesin a policy repository, and is named within the scope of that repository. On the other hand, a
rule-specific policy condition is, as the name suggests, named within the scope of the single policy rule to whichiitis
related.

ETSI

73 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

<<Interface>>

IpPolicyCondition

getParentRepository () : IpPolicyRepositoryRef
getParentRule () : IpPolicyRuleRef

8.1.7.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet
This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

8.1.7.2 Method getParentRepository()

Return a reference to the repository that contains this condition (if any). If this condition is contained by arule, return a
NULL reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method.

ETSI

74 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns
| pPol i cyReposi t or yRef

Raises
TpComonExcept i ons

8.1.7.3 Method getParentRule()

Return areference to the rule that contains this condition (if any). If this condition is contained by a PolicyRepository,
return aNULL reference.

Returns: A reference to the parent rule.

Parameters
No Parameters were identified for this method

Returns
| pPol i cyRul eRef

Raises
TpComonExcept i ons

8.1.8 Interface Class IpPolicyTimePeriodCondition
Inherits from: IpPolicyCondition.

This class provides a means of representing the time periods during which apolicy ruleisvalid, i.e. active. At al times
that fall outside these time periods, the policy rule has no effect. A policy ruleistreated asvalid at al timesif it does
not specify a PolicyTimePeriodCondition.

In some cases a PDP may need to perform certain setup / cleanup actions when a policy rule becomes active /
inactive. For example, sessions that were established while a policy rule was active might need to be taken down when
the rule becomes inactive. In other cases, however, such sessions might be left up: in this case, the effect of deactivating
the policy rule would just be to prevent the establishment of new sessions. Setup / cleanup behaviours on validity period
transitions are not currently addressed by the RFC 3460, and must be specified in 'guideline’ documents, or via
subclasses of PolicyRule, PolicyTimePeriodCondition or other concrete subclasses of Policy. If such behaviours need to
be under the control of the policy administrator, then a mechanism to allow this control must also be specified in the
subclass.

Policy TimePeriodCondition is defined as a subclass of PolicyCondition. Thisisto allow the inclusion of time-based
criteriain the AND/OR condition definitions for a PolicyRule.

Instances of this class may have up to five attributes identifying time periods at different levels. The values of al the
attributes present in an instance are ANDed together to determine the validity period(s) for the instance. For example,
an instance with an overal validity range of January 1, 2000 through December 31, 2000; a month mask that selects
March and April; a day-of-the-week mask that selects Fridays; and a time of day range of 0800 through 1600 would
represent the following time periods:

Friday, March 5, 2000, from 0800 through 1600;
Friday, March 12, 2000, from 0800 through 1600;
Friday, March 19, 2000, from 0800 through 1600;
Friday, March 26, 2000, from 0800 through 1600;
Friday, April 2, 2000, from 0800 through 1600;
Friday, April 9, 2000, from 0800 through 1600;
Friday, April 16, 2000, from 0800 through 1600;
Friday, April 23, 2000, from 0800 through 1600;
Friday, April 30, 2000, from 0800 through 1600.

Attributes not present in an instance of PolicyTimePeriodCondition are implicitly treated as having their value
"aways enabled". Thus, in the example above, the day-of-the-month mask is not present, and so the validity period for
the instance implicitly includes a day-of-the-month mask that selects al days of the month. If we apply this "missing
atribute” rule to its fullest, we see that there is a second way to indicate that a policy rule is always enabled: have it
point to an instance of PolicyTimePeriodCondition whose only attributes are its naming attributes.

ETSI

75 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

The attribute Local OrUtcTime indicates whether the times represented in the other five time-related attributes of an
instance of PolicyTimePeriodCondition are to be interpreted aslocal times for the location where apolicy ruleis being
applied, or as UTC times.

<<Interface>>

IpPolicyTimePeriodCondition

8.1.8.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

TimePeriod : TpString

This attribute identifies an overall range of calendar dates and times over which a policy ruleisvalid. It reuses the
format for an explicit time period defined in RFC 2445: a string representing a starting date and time, in which the
character 'T" indicates the beginning of the time portion, followed by the solidus character '/*, followed by a similar
string representing an end date and time. The first date indicates the beginning of the range, while the second date
indicates the end. Thus, the second date and time must be later than the first. Date/times are expressed as substrings of
the form "yyyymmddThhmmss'. For example:

20000101T080000/20000131T 120000

ETSI

76 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

January 1, 2000, 0800 through January 31, 2000, noon

There are also two specia cases in which one of the date/time stringsis replaced with a special string defined in
RFC 2445.

- If thefirst date/time is replaced with the string "THISANDPRIOR", then the attribute indicates that a policy ruleis
valid [from now] until the date/time that appears after the '/'.

- If the second date/time is replaced with the string "THISANDFUTURE", then the attribute indicates that a policy rule
becomes valid on the date/time that appears before the /', and remains valid from that point on.

Note that RFC 2445 does not use these two strings in connection with explicit time periods. Thusthe RFC 3460 is
combining two elements from RFC 2445 that are hot combined in the RFC itself.

Mont hOf Year Mask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute, by explicitly specifying the months when the policy is valid. These attributes work together, with the
TimePeriod used to specify the overall time period during which the policy might be valid, and the MonthOfY earM ask
used to pick out the specific months within that time period when the policy isvalid.

This attribute is formatted as an octet string of size 2, consisting of 12 bits identifying the 12 months of the year,
beginning with January and ending with December, followed by 4 bits that are always set to '0'. For each month, the
value '1' indicates that the policy is valid for that month, and the value '0' indicates that it is not valid. The value X'08
30, for example, indicates that apolicy ruleisvalid only in the months May, November, and December.

See clause 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basicaly, CIM
prepends a 4-octet length to the octet string.)

If this attribute is omitted, then the policy ruleistreated as valid for al twelve months.

DayOf Mont hMask @ TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute, by explicitly specifying the days of the month when the policy isvalid. These attributes work together, with
the TimePeriod used to specify the overall time period during which the policy might be valid, and the
DayOfMonthMask used to pick out the specific days of the month within that time period when the policy isvalid.

This attribute is formatted as an octet string of size 8, consisting of 31 bits identifying the days of the month counting
from the beginning, followed by 31 more bits identifying the days of the month counting from the end, followed by

2 bitsthat are aways set to '0'. For each day, the value '1' indicates that the policy isvalid for that day, and the value '0'
indicates that it is not valid.

The value X'80 00 00 01 00 00 00 00, for example, indicates that a policy ruleisvalid on the first and last days of the
month.

For months with fewer than 31 days, the digits corresponding to days that the months do not have (counting in both
directions) are ignored.

The encoding of the 62 significant bitsin the octet string matches that used for the schedDay object in the
DISMAN-SCHEDULE-MIB. See RFC 2445 for more details on this object.

See clause 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basically, CIM
prepends a 4-octet length to the octet string.)

DayOf WeekMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute by explicitly specifying the days of the week when the policy is valid. These attributes work together, with the
TimePeriod used to specify the overall time period when the policy might be valid, and the DayOfWeekMask used to
pick out the specific days of the week in that time period when the policy isvalid.

This attribute is formatted as an octet string of size 1, consisting of 7 bitsidentifying the 7 days of the week, beginning
with Sunday and ending with Saturday, followed by 1 bit that is always set to '0". For each day of the week, the value '1'
indicates that the policy isvalid for that day, and the value '0" indicates that it is not valid.

ETSI

77 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Thevalue X'7C', for example, indicates that a policy ruleisvalid Monday through Friday.

See clause 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basicaly, CIM
prepends a 4-octet length to the octet string.)

Ti mef DayMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute by explicitly specifying arange of timesin a day the policy isvalid for. These attributes work together, with
the TimePeriod used to specify the overall time period that the policy is valid for, and the TimeOfDayMask used to pick
out which range of time periods in a given day of that time period the policy isvalid for.

This attribute is formatted in the style of RFC 2445: atime string beginning with the character 'T', followed by the
solidus character /', followed by a second time string. The first time indicates the beginning of the range, while the
second time indicates the end. Times are expressed as substrings of the form "Thhmmss'.

The second substring always identifies alater time than the first substring. To alow for ranges that span midnight,
however, the value of the second string may be smaller than the value of the first substring. Thus, "T080000/T210000"
identifies the range from 0800 until 2100, while "T210000/T080000" identifies the range from 2100 until 0800 of the
following day.

When a range spans midnight, it by definition includes parts of two successive days. When one of these daysis aso
selected by either the MonthOfY earMask, DayOfMonthMask, and/or DayOfWeekMask, but the other day is not, then
the policy is active only during the portion of the range that falls on the selected day. For example, if the range extends
from 2100 until 0800, and the day of week mask selects Monday and Tuesday, then the policy is active during the
following three intervals:

From midnight Sunday until 0800 Monday;
From 2100 Monday until 0800 Tuesday;
From 2100 Tuesday until 23:59:59 Tuesday.

Local O U cTinme : Tplnt32

This attribute indicates whether the times represented in the TimePeriod attribute and in the various Mask attributes
represent local times or UTC times. There is no provision for mixing of local times and UTC times: the value of this
attribute applies to all of the other time-related attributes. Note that Local Time is designated by the integer 1 and
UtcTime by the integer 2. If no value is specified the default valueis 2, i.e. UtcTimeis used.

8.1.9 Interface Class IpPolicyAction
Inherits from: IpPolicy.

The purpose of a policy action is to execute one or more operations that will affect network traffic and/or systems,
devices, etc., in order to achieve adesired state. This (new) state provides one or more (new) behaviours. A policy
action ordinarily changes the configuration of one or more elements.

A PoalicyRule contains one or more policy actions. A policy administrator can assign an order to the actions
associated with a PolicyRule, complete with an indication of whether the indicated order is mandatory, recommended,
or of no significance. Ordering of the actions associated with a PolicyRule is accomplished via the setActionList()
method.

The actions associated with a PolicyRule are executed if and only if the overall condition(s) of the PolicyRule
evaluates to TRUE.

When identifying and using the PolicyAction class, it is necessary to remember that an action can be rule-specific or
reusable. This was discussed above. The distinction between the two types of policy actions liesin the associationsin
which an instance can participate, and in how the different instances are named. Conceptually, areusable policy action
residesin a policy repository, and is named within the scope of that repository. On the other hand, a rule-specific policy
action is named within the scope of the single policy rule to which it is related.

ETSI

78 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

<<Interface>>

IpPolicyAction

getParentRepository () : IpPolicyRepositoryRef
getParentRule () : IpPolicyRuleRef

8.19.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet
This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

8.1.9.2 Method getParentRepository()

Return a reference to the repository that contains this action (if any). If this action is contained by arule, returnaNULL
reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method.

ETSI

79 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns

| pPol i cyReposi t or yRef

Raises

TpComonExcept i ons

8.1.9.3 Method getParentRule()

Return areference to the rule that contains this action (if any). If this action is contained by a PolicyRepository, return a
NULL reference.

Returns: A reference to the parent rule.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyRul eRef

Raises

TpComonExcept i ons

8.1.10 Interface Class IpPolicyEventDefinition
Inherits from: IpPolicy.

Instances of |pPolicyEventDefinition specify the required and optional attributes of events that can be subscribed to,
specified as conditions, and generated by clients or actions.

<<Interface>>

IpPolicyEventDefinition

setRequiredAttributes (requiredAttributes : in TpAttributeSet) : void
setOptionalAttributes (optionalAttributes : in TpAttributeSet) : void
getRequiredAttributes () : TpAttributeSet

getOptionalAttributes () : TpAttributeSet

getParentDomain () : IpPolicyDomainRef

8.1.10.1 Attributes
CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

ETSI

80 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Requi redAttri butes : TpAttri buteSet
The names and types of the attributes that generated events must include.

Optional Attributes : TpAttri buteSet
The names and types of the attributes that generated events may include.

8.1.10.2 Method setRequiredAttributes()

Specify the names and types of the attributes that generated events must include.

Parameters

requi redAttributes : in TpAttributeSet
The names and types of the attributes.

Raises
TpCommonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON_| N_PROCESS
8.1.10.3 Method setOptionalAttributes()

Specify the names and types of the attributes that may be included in a generated event.

Parameters

optional Attributes : in TpAttributeSet
The names and types of the attributes.

ETSI

81 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)
Raises

TpCommonExcepti ons, P_ACCESS VI OLATI ON, P_NO TRANSACTI ON_| N_PROCESS
8.1.10.4 Method getRequiredAttributes()

Get the names and types of the attributes that a generated event is required to include.

Returns: A copy of the set of names and types.

Parameters
No Parameters were identified for this method.

Returns
TpAttri but eSet

Raises

TpComonExcept i ons

8.1.10.5 Method getOptionalAttributes()

Get the names and types of the attributes that a generated event may optionally include.

Returns: A copy of the set of names and types.

Parameters
No Parameters were identified for this method.

Returns

TpAttri but eSet

Raises

TpComonExcept i ons

8.1.10.6 Method getParentDomain()

Return areference to the domain that contains this event definition.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method.

Returns

| pPol i cyDomai nRef
Raises
TpComonExcept i ons

ETSI

82 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.11 Interface Class IpPolicyEventCondition
Inherits from: IpPolicyCondition.

A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.

<<Interface>>

IpPolicyEventCondition

8.1.11.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet
This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Event Defi ni tonName : TpString
The EventDefinition that defines the event this condition is waiting on.

ETSI

83 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Mat chi ngAttri butes : TpAttri buteSet

The set of attributes that must match (name and value) for the condition to be satisfied. If this set is empty, then the
generation of the event is enough to satisfy the condition.

8.1.12 Interface Class IpPolicyExpressionCondition
Inherits from: | pPolicyCondition.

A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.

<<Interface>>

IpPolicyExpressionCondition

8.1.12.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

84 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Expression : TpString

The expression to be evaluated as the condition. In case this SCF supports both eBNF and XML, then the
TpAttributeTaglnfo of the TpAttribute that populated this expression is used to distinguish between XML and eBNF
string contents. A TpAttributeTaglnfo value of P_XML_TY PE indicates XML as contents of the Expression attribute
and a TpAttributeTaglnfo value of P_SIMPLE_TY PE indicates eBNF as contents of Expression attribute. The eBNF
definition can be found in clause 11.3.

8.1.13 Interface Class IpPolicyEventAction
Inherits from: I pPolicyAction.

Generate an instance of a specified event.

<<Interface>>

IpPolicyEventAction

8.1.13.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

ETSI

85 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Event DefinitionNane : TpString
The name of the EventDefinition that should be used to define the desired event.

Attributes : TpAttributeSet
The set of attributes that should be included with the generated event. Note that this set must contain all of the attributes

in the RequiredAttributes attribute of the specified EventDefinition and any remaining attributes must be included in the
Optional Attributes attribute.

8.1.14 Interface Class IpPolicyExpressionAction

Inherits from: I pPolicyAction.

Evaluate an expression.

<<Interface>>

IpPolicyExpressionAction

8.1.14.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most APl methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword isdefined: "P_PM_KEYWORD_POLICY". Therole of this keyword isto identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

ETSI

86 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

Expression : TpString

The expression that should evaluated. In case this SCF supports both eBNF and XML, then the TpAttributeTaglnfo of
the TpAttribute that populated this expression is used to distinguish between XML and eBNF string contents. A
TpAttributeTaglnfo value of P_XML_TYPE indicates XML as contents of the Expression attribute and a
TpAttributeTaglnfo value of P_SIMPLE_TY PE indicates eBNF as contents of Expression attribute. The eBNF
definition can be found in clause 11.3.

8.1.15 Interface Class IpPolicylterator
Inherits from: IpPolicy.

This interface supports paging through the names of the appropriate objects within a container. Rather than retrieving
one name at atime, thisinterface specifically allows the caller to specify how many names to retrieve on each call.

<<Interface>>

IpPolicylterator

getList (startindex : in TpInt32, numberRequested : in Tpint32) : TpStringSet

8.1.15.1 Attributes

CommonNane : TpString

The identifier used to distinguish instances of a give class of objects within acontainer. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE","P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE","P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originaly defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

ETSI

87 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides alonger description than that provided by the caption attribute.
8.1.15.2 Method getList()

Return at most numberRequested names starting at location startL ocation.

Returns: Thelist of names returned. The list can be examined to determine how many entries were actually returned.

Parameters

startlindex : in Tplnt32
The index (starting at 0) of the first name to be returned.

nunber Requested : in Tplnt32
The maximum number of names expected to be returned by this call.

Returns

TpSt ri ngSet

Raises
TpComonExcept i ons

8.1.16 Interface Class IpPolicySignature

Inherits from: IpPolicy.

I pPolicySignature specifies the attributes needed to completely specify the ‘context' of an evaluation request - also see
definitions of createSignature(), evalPolicy(). The input and output variable names referenced below must correspond to
variables whose names, types and initial values have been set via the setVariable() method which have been created via
the createV ariable() method.

<<Interface>>

IpPolicySignature

<<new>> setlnputVariables (inputVariables : in TpStringSet) : void
<<new>> setOutputVariables (outputVariables : in TpStringSet) : void
<<new>> getlnputVariables () : TpStringSet

<<new>> getOutputVariables () : TpStringSet

<<new>> setGroupNames (groupNames : in TpStringSet) : void
<<new>> setPolicyRoles (roleNames : in TpStringSet) : void
<<new>> getGroupNames () : TpStringSet

<<new>> getPolicyRoles () : TpStringSet

<<new>> getParentDomain () : IpPolicyDomainRef

ETSI

88 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.16.1 Attributes

CommonNane : TpString

Theidentifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name’ parameter used in most API methods.

Pol i cyKeywords : TpStri ngSet
This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering”, "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION","P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in RFC 3460.

One additional keyword is defined: "P_PM_KEYWORD_POLICY". Therole of this keyword is to identify
policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some
repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString
This attribute provides a one-line description of a policy-related object.

Description : TpString
This attribute provides alonger description than that provided by the caption attribute.

i nputVariables : in TpStringSet

The names of input variables whose values are required to be available for decision request. This must not be an empty
Set.

outputVariables : in TpStringSet

The names of output variables whose values are to be sent back to a client after a decision has been rendered. This must
not be an empty set.

groupNames : in TpStringSet

The set of names of the rule groups that must be included for policy evaluation. A group nameisidentical to the value
of the CommonName attribute of arule group (see clause 8.1.4.1). The set groupNames may be empty or may contain
one or more group names. If the set is empty then all groups under the relevant policy domain (see clause 8.1.3) are to
be considered in the evaluation. Also see roleNames below.

In general, arule belongs to agroup (of rules) with which it shares common characteristics. See clauses 8.1.4 and 8.1.6
for detailed definitions of arule group and rule respectively.

ETSI

89 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

roleNanes : in TpStringSet

A roleName corresponds to a policy role (see clause 8.1.6.1 for the defining syntax for the attribute 'PolicyRoles and
the use of roleName therein). A roleName names the special role (or roles) of arule within agroup. Thus, e.g.
roleName = content_streaming_charge & & IP in arule may be used to signify a combination of 2 roles. In this example
the rule is used to compute charges for a content streaming service that is |P based . A roleName may transcend groups.
Thus, e.g. 2 distinct rulesin 2 distinct groups may have identical values for their policyRoles attribute. The set of
roleNames may be empty or may have one or more elements. Also see the following:

a. groupNames = Null & roleNames = Null. In this case al rules under the relevant policy domain must be
considered for the eval uation request.

b. groupNames !'= Null & roleNames = Null. In this case al rules within the named groups must be considered for
the evaluation request.

c. groupNames !'= Null & roleNames != Null. In this case all rules from the named groups with the designated
roleNames must be considered for the eval uation request.

d. groupNames = Null & policyRoles!= Null. In this case all rules with the designated roleNames under the relevant
policy domain must be considered.
8.1.16.2 Method <<new>> setlnputVariables()

Specify the names of the input variables that a policy-eval uation must include - also see the definition of the
inputAttributes parameter for the method evalPolicy(). The types and names and initial values of these variables must
be defined apriori via the setVariableType() and (if necessary) setVariableValue() methods.

Parameters

i nputVariables : in TpStringSet
The names of the variables. This must not be an empty set.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

8.1.16.3 Method <<new>> setOutputVariables()

Specify the names of the output variables that must be included in the output resulting from a policy-eval uation method
call. These are names of variables whose values are to be returned back to the client by the evalPolicy() method. Also
see the definition of the method eval Policy(). The types and names and initial values of these variables must be set
apriori viathe setVariableType() and (if necessary) setVariableValue() methods.

Parameters
outputVariables : in TpStringSet

The names of the variables. This must not be an empty set.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE ERROR, P_NO TRANSACTI ON | N PROCESS

8.1.16.4 Method <<new>> getinputVariables()
Get the names of the input variables associated with this signature.

Returns: A copy of the set of input variable names.

Parameters
No Parameters were identified for this method.

ETSI

90 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Returns

TpStri ngSet

Raises

TpComonExcept i ons

8.1.16.5 Method <<new>> getOutputVariables()
Get the names of the output variables associated with this signature.

Returns: A copy of the set of output variable names.

Parameters
No Parameters were identified for this method.

Returns

TpSt ri ngSet

Raises

TpComonExcept i ons

8.1.16.6 Method <<new>> setGroupNames()

Specify the names of the groups that a policy-eval uation must include. A group name coincides with the value of the

CommonName attribute of arelevant group (see clause 8.1.4.1).

Parameters
groupNanmes : in TpStringSet
The names of the groups. Elements of groupNames take values from of the CommonName attribute relevant groups.

This may be NULL.
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERROR, P_NO TRANSACTI ON | N_PROCESS

8.1.16.7 Method <<new>> setPolicyRoles()

Specify the names of the roles that a policy-evaluation must include.

Parameters

roleNanes : in TpStringSet
The names of theroles. This may be NULL.

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTI ON_I N_PROCESS

ETSI

91 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.1.16.8 Method <<new>> getGroupNames()
Get the names of the groups associated with this signature.

Returns: A copy of the set of group names (this may be NULL).

Parameters
No Parameters were identified for this method.

Returns

TpStri ngSet

Raises

TpComonExcept i ons

8.1.16.9 Method <<new>> getPolicyRoles()

Get the names of the roles associated with this signature.

Returns: A copy of the set of role names (this may be NULL).

Parameters
No Parameters were identified for this method.

Returns

TpSt ri ngSet

Raises

TpComonExcept i ons

8.1.16.10 Method <<new>> getParentDomain()

Return areference to the domain that contains this policy-evaluation signature.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method.

Returns
| pPol i cyDomai nRef
Raises

TpComonExcept i ons

8.2 PM Policy Evaluation SCF Interface Classes

The Policy Management policy evaluation APIs address the following:
- Evaluation of policy rules on request of aclient application.

- Subscription to and receiving notification of policy events.

ETSI

92 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

- Theability for authorized clients to generate events. A client using the PM policy evaluation APIs should be aware
that the underlying policy information, e.g. signatures, rules, policy events, variables, etc, is defined (and viewable)
using the PM provisioning interface. It is therefore assumed that when a client obtains access to the
IpPolicyEvalManager (for policy evaluation) it is aware of the parameters used in the methods that are supported by this
interface. Note that it is possible for a client to obtain access to both the I1pPolicyEva Manager and | pPolicyManager
interfaces through the Parlay Framework.

8.2.1 Interface Class IpPolicyEvalManager
Inherits from: IpService.

An authorized client may access this interface to request evaluation of policy rules, subscribe to and receive notification
of events and to generate policy events.

<<Interface>>

IpPolicyEvalManager

<<new>> evalPolicy (domainName : in TpString, signatureName : in TpString, inputVariables : in
TpPolicyNameValueList) : TpPolicyNameValueList

<<new>> evalPolicyReq (domainName : in TpString, signatureName : in TpString, inputVariables : in
TpPolicyNameValuelList, appPolicyDomain : in IpAppPolicyDomainRef) : TpAssignmentID

<<new>> abortEvalPolicyReq (domainName : in TpString, assignmentID : in TpAssignmentID) : void

<<new>> generateEvent (domainName : in TpString, eventDefinitionName : in TpString, attributes : in
TpAttributeSet) : void

<<new>> createNotification (domainName : in TpString, appPolicyDomain : in IpAppPolicyDomainRef,
events : in TpStringSet) : TpAssignmentID

<<new>> destroyNotification (assignmentID : in TpAssignmentID, events : in TpStringSet) : void

8.2.1.1 Method <<new>> evalPolicy()

Invoke an evaluation of policy rules. Note that an evalPolicy() request is associated with a signature name that is
specified through the attribute signatureName. Thisisto ensure that a ‘context’ is established for the eval uation request.
Thisalso alows for cross validation of the names of the input variables that are specified below via the attribute
inputAttributes.

Returns: The output values included in the associated output structure, TpNameValueL ist.

Parameters
domai nNane : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

signatureNane : in TpString

The name of the signature that is to be used for this request. Must be avalid signature name in the relevant domain, i.e.
the value of signatureName must correspond to the CommonName attribute of an |pPolicySignature created under the
relevant I pPolicyDomain.

ETSI

93 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

i nput Vari abl es : in TpPolicyNaneVal ueli st

The input variable name-value pairs that will be included in this request. Note that the collection of variable name
specified in inputV ariables must correspond to (a subset of) variables names set in the inputV ariables attribute of the
signature 'signatureName' in the policy management SCF.

Returns
TpPol i cyNameVal ueli st
Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.2.1.2 Method <<new>> evalPolicyReq()
The synchronous version of evalPolicy().
Returns: TpAssignmentlD containsthe ID that is assigned to the asynchronous request.

Note: if any exception occurs the client will be notified synchronously and no assignment 1D will be issued.

Parameters
domai nNane : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

signatureNane : in TpString

The name of the signature that is to be used for this request. Must be avalid signature name in the relevant domain, i.e.
the value of signatureName must correspond to the CommonName attribute of an |pPolicySignature created under the
relevant I pPolicyDomain.

i nput Vari abl es : in TpPolicyNaneVal ueli st

The input variable name-value pairs that will be included in this request. Note that the collection of variable name
specified in inputVariables must correspond to (a subset of) variables names set in the inputV ariables attribute of the
signature 'signatureName' in the policy management SCF.

appPol i cyDomain : in | pAppPol i cyDomai nRef
Call back reference to the client's address.

Returns
TpAssi gnnment | D

Raises

TpConmonExcept i ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR
P_NAME_SPACE_ERRCR

8.2.1.3 Method <<new>> abortEvalPolicyReq()

This method isinvoked to abort a specific asynchronous request made via an evalPolicyReq() invocation and identified
by itsassignment ID.
Parameters

domai nNanme : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

ETSI

94 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

assignnmentI D : in TpAssignnmentlD
assignmentID: in TpAssignmentlD.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

8.2.1.4 Method <<new>> generateEvent()

Generate an event using the attributes specified. Validate the attributes against the instance of | pPolicyEventDefinition
specified by the eventDefinitionName parameter. Validation includes verifying that all of the attributes specified as
required by the IpPolicyEventDefinition are included in the supplied attributes and that the supplied attributes do not
include any attributes that are not specified as either required or optional by the IpPolicyEventDefinition.

Parameters

domai nNane : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

eventDefinitionName : in TpString
The name of the definition of the event that will be used to validate attributes.

attributes : in TpAttri buteSet
The attributes that will be included in the event instance that is generated.

Raises

TpCommonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX_ERROR,
P_NAME_SPACE_ERRCR

8.2.1.5 Method <<new>> createNotification()

Allows aclient to specify a set of events that they are interested in receiving. Once successfully subscribed, the client
will receive copies of all generated events on the callback provided by the appPolicyDomain parameter.

Returns: An identifier for this subscription. When the client is no longer interested in receiving these events, it should
call destroyNotification() with thisidentifier.

Parameters
domai nNanme : in TpString

The name of relevant domain. The name of arelevant domain may also be obtained from the policy management SCF
by invoking the appropriate methods for that SCF.

appPol i cyDomain : in | pAppPol i cyDomai nRef
The callback to be used to send generated eventsto the client.

events : in TpStringSet
The set of names of event definitions specifying the events the client wishes to subscribe to.

Returns
TpAssi gnnment | D

Raises

TpComonExcepti ons, P_ACCESS VI OLATI ON, P_SYNTAX ERROR,
P_NAME_SPACE_ERROR

ETSI

95 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

8.2.1.6 Method <<new>> destroyNotification()

Allows aclient to indicate that it is no longer interested in receiving events that it previously subscribed to.

Parameters

assignnmentI D : in TpAssignnmentlD
The identifier the client received when it subscribed for the events.

events : in TpStringSet

If non-NULL and non-empty, thisindicates the particular eventsthat the client no longer wishesto receive. If NULL or
empty, then the client is unsubscribing from all events associated with the specified identifier.

Raises

TpComonExcepti ons, P_SYNTAX ERROR

8.2.2 Interface Class IpAppPolicyDomain
Inherits from: Iplnterface.

Thisinterface is supported by the client. Return values or error messages resulting from asynchronous method calls are
sent to thisinterface.

<<Interface>>

IpAppPolicyDomain

reportNotification (assignmentID : in TpAssignmentID, event : in TpPolicyEvent) : void

<<new>> evalPolicyRes (assignmentID : in TpAssignmentID, outputVariables : in TpPolicyNameValueList) :
void

<<new>> evalPolicyErr (assignmentID : in TpAssignmentID, error : in TpPolicyError) : void

8.2.2.1 Method reportNotification()

Notify the client about the specified event.

Parameters

assignnmentI D : in TpAssignnentl|D
The assignment!I D returned by the call to createNotification that enabled notification for the specified event.

event : in TpPolicyEvent
The event whose occurrence is being reported.

8.2.2.2 Method <<new>> evalPolicyRes()

This method is invoked to pass back the results of an evalPolicyReq|() invocation. The results are directed to the
assignment ID that is obtained by the client upon invoking eval PolicyReq().

ETSI

96 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Parameters

assignment|I D : in TpAssignnent| D
AssignmentlI D is the unique ID that was assigned when a client invoked eval PolicyReq().

out put Vari ables : in TpPolicyNaneVal uelLi st
TpNameVa uelist contains name-value pairs that are returned to the client.

8.2.2.3 Method <<new>> evalPolicyErr()

This method isinvoked to pass back any error resulting from the invocation of eval PolicyReq().

Parameters

assignment|I D : in TpAssignnent| D
Assignmentl D is the unique ID that was assigned when a client invoked eval PolicyReq().

error : in TpPolicyError
Specifies the error, which led to the original request to fail.

9 State Transition Diagrams

9.1 PM Provisioning SCF State Transition Diagrams

There are no State Transition Diagrams for the PM Provisioning SCF.

9.2 PM Policy Evaluation SCF State Transition Diagrams

There are no State Transition Diagrams for the PM Policy Evaluation SCF.

10 PM Service Properties

The following table lists properties relevant to all the PM SCFs.

Property Type Description
P_SUPPORTED_ATTRIBUTE_TAGS STRING_SET |[Lists the supported attribute tags defined by
TpAttributeTaginfo
P_SUPPORTED_VARIABLE_TAGS STRING_SET |Lists the supported variable tags defined by
TpPolicyTypelnfo
P_SUPPORTED_SIMPLE_ATTRIBUTE_TYPES STRING_SET |Lists the supported attribute types defined
by TpSimpleAttributeTypelnfo
P_SUPPORTED_SIMPLE_VARIABLE_TYPES STRING_SET |Lists the supported variable types defined

by TpSimpleAttributeTypelnfo
P_SUPPORTED_STRUCTURED_ATTRIBUTE_TYPES |[STRING_SET |Lists the supported attribute types defined
by TpStructuredAttributeType,

e.g. P_org/csapi/TpAddress.
P_SUPPORTED_STRUCTURED_VARIABLE_TYPES |STRING_SET |Lists the supported variable types defined
by TpStructuredAttributeType,

e.g. P_org/csapi/TpAddress.
P_SUPPORTED_XML STRING_SET |Lists the supported versions of XML
specifications such as XML schema
specifications (e.g. through URLSs), XML
versions (e.g. version 1.0) or XPath

(e.g. version 1.0)

ETSI

97 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Implementations of the PM APIs shall have the Service Properties set to the indicated values at a minimum:

P_SUPPORTED_ATTRI BUTE_TAGS = {
P_SI MPLE_TYPE

}

P_SUPPORTED_SI MPLE_ATTRI BUTE_TYPES = {
P_STRING

P_FLOAT,

P_I NT32,

UPPORTED_VARI ABLE_TAGS = {
| MPLE_TYPE

TU0nw

11 Data Definitions

All datatypes referenced in the present document but not defined in this clause are common data definitions which may
be found in ES 203 915-2.

11.1 Policy Management Data Definitions

This clause provides the Policy Management specific data definitions necessary to support the OSA interface
specification.

The general format of a data definition specification is the following:
. Datatype, that shows the name of the data type.
. Description, that describes the data type.
. Tabular specification, that specifies the data types and values of the data type.

. Example, if relevant, shown to illustrate the data type.

11.1.1 TpPolicyConditionListType

This data type defines the type condition list in apolicy rule.

Name Value Description
P_PM_DNF 0 Disjunctive normal form
P _PM CNF 1 Conjunctive normal form

11.1.2 TpPolicyConditionListElement

ThisdatatypeisaSequence of Data El enent s which describes one element of a conditionlist. Itisa
structured data type consisting of the following { condition, groupNumber, negated} tuple.

Sequence Element Name Sequence Element Type
Condition IpPolicyCondition
GroupNumber TpInt32
Negated TpBoolean

ETSI

98 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

11.1.3 TpPolicyConditionList

ThisdatatypeisaNunbered Set of Data El enents of type TpPolicyConditionListElement.

11.1.4 TpPolicyConditionType

This data type defines the condition type in apolicy rule.

Name Value Description
P_PM_TIME_PERIOD_CONDITION 0 IpPolicyTimePeriodCondition
P PM EVENT CONDITION 1 IpPolicyEventCondition
P _PM EXPRESSION CONDITION 2 IpPolicyExpressionCondition

11.1.5 TpPolicyActionListElement

ThisdatatypeisaSequence of Data El enent s which describes one element of aaction list. It is a structured
data type consisting of the following { action, sequenceNumber) pair.

Sequence Element Name Sequence Element Type
Action IpPolicyAction
SequenceNumber TpInt32

11.1.6 TpPolicyActionList

ThisdatatypeisaNunbered Set of Data El enents of type TpPolicyActionListElement.

11.1.7 TpPolicyActionType

This data type defines the action type in a policy rule.

Name Value Description
P_PM_EVENT_ACTION 0 IpPolicyEventAction
P PM EXPRESSION ACTION 1 IpPolicyExpressionAction

11.1.8 TpPolicyEvent

ThisdatatypeisaSequence of Data El enent s which describesageneric "event”. Events can be generated in
response to network activity, as aresult of clients calling the generateEvent() method of 1pPolicyDomain, or as aresult
of the evaluation of an IpPolicyEventAction action. Each instance of a generated event isidentified by a unique
EventID, a 32-bit integer. The time the event was generated is captured in the attribute TimeGenerated. All of the
attributes in the RequiredAttributes list of the EventDefinition associated with the given EventDefinitionName must be
present in Attributes. Any other attributes must be in the Optional Attributes list of the same EventDefinition.

It is astructured data type consisting of the following fields.

Sequence Element Name Sequence Element Type
EventID TpInt32
TimeGenerated TpDateAndTime

Attributes TpAttributeSet
EventDefinitionName TpString
EventDomainName TpString

ETSI

99 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

11.1.9 TpPolicyKeyword

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the Policy Keywords that
are to be supported by the Policy Management API. Other Network operator specific keywords may also be used, but
should be preceded by the string "SP_". The following values are defined.

Name Description
P_PM_KEYWORD_UNKNOWN To be used when none of the defined values
apply.
P_PM_KEYWORD_CONFIGURATION Configuration Policies define the default (or
generic) setup of a managed entity (for
example, a network service). Examples of
Configuration Policies are the setup of a
network forwarding service or a
network-hosted print queue.
P_PM_KEYWORD_USAGE Usage Policies control the selection and
configuration of entities based on specific
"usage" data. Configuration Policies can be
modified or simply re-applied by Usage
Policies. Examples of Usage Policies include
upgrading network forwarding services after a
user is verified to be a member of a "gold"
service group, or reconfiguring a printer to be
able to handle the next job in its queue.
P_PM_KEYWORD_SECURITY Security Policies deal with verifying that the
client is actually who the client purports to be,
permitting or denying access to resources,
selecting and applying appropriate
authentication mechanisms, and performing
accounting and auditing of resources.
P_PM_KEYWORD_SERVICE Service Policies characterize network and
other services (not use them). For example,
all wide-area backbone interfaces shall use a
specific type of queuing.

Service policies describe services available in
the network. Usage policies describe the
particular binding of a client of the network to
services available in the network.
P_PM_KEYWORD_MOTIVATIONAL Motivational Policies are solely targeted at
whether or how a policy's goal is
accomplished. Configuration and Usage
Policies are specific kinds of Motivational
Policies. Another example is the scheduling of
file backup based on disk write activity from
8am to 3pm, M-F.
P_PM_KEYWORD_INSTALLATION Installation Policies define what can and
cannot be put on a system or component, as
well as the configuration of the mechanisms
that perform the install. Installation policies
typically represent specific administrative
permissions, and can also represent
dependencies between different components
(e.g. to complete the installation of component
A, components B and C must be previously
successfully installed or uninstalled).
P_PM_KEYWORD_EVENT Error and Event Policies. For example, if a
device fails between 8am and 9pm, call the
system administrator, otherwise call the Help
Desk.

P_PM_KEYWORD_POLICY The role of this keyword is to identify
policy-related instances that would not
otherwise be identifiable as being related to
policy. It may be needed in some repository
implementations.

ETSI

11.1.10 TpPolicyKeywordSet

100 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

This datatype definesaNunber ed Set of Data El enent s of type TpPolicyKeyword.

11.1.11 TpPolicyError

Name Value Description
P _PM_ERROR_UNDEFINED 0 Undefined Error
P_PM_ERROR_INSUFFICIENT _INPUTS 1 Required input variable values not available
P_PM_ERROR_INVALID_INPUT_NAME 2 Invalid input variable name
P _PM_ERROR_INVALID INPUT VALUE 3 Invalid input variable value
P PM _ERROR DB ERROR 4 Error reading required rules from DB
P PM_ERROR _EVALUATION ERROR 5 Run-time error in evaluation of rule conditions/actions

NOTE: TpPolicyError is of type TpInt32. The table is an enumeration of all error codes.

11.1.12 IpPolicyDomain

Definesthe address of an | pPol i cyDonai n Interface.

11.1.13 IpPolicyDomainRef

DefinesaRef er ence to an | pPolicyDomain.

11.1.14 IpPolicyRepository

Definesthe address of an | pPol i cyReposi t ory Interface.

11.1.15 IpPolicyRepositoryRef

Defines aRef er ence to an | pPolicyRepository.

11.1.16 IpPolicyGroup

Definesthe address of an | pPol i cyG oup Interface.

11.1.17 IpPolicyGroupRef

Defines aRef er ence to an | pPolicyGroup.

11.1.18 IpPolicyRule

Definesthe address of an | pPol i cyRul e Interface.

11.1.19 IpPolicyRuleRef

DefinesaRef er ence to an [pPolicyRule.

11.1.20 IpPolicyEventDefinition

Definesthe address of an | pPol i cyEvent Def i ni ti on Interface.

11.1.21 IpPolicyEventDefinitionRef

Defines aRef er ence to an | pPolicyEventDefinition.

ETSI

101 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

11.1.22 IpAppPolicyDomain

Definesthe address of an | pAppPol i cyDomai n Interface.

11.1.23 IpAppPolicyDomainRef

Defines a Ref er ence to an | pAppPolicyDomain.

11.1.24 IpPolicyCondition

Definesthe address of an | pPol i cyCondi ti on Interface.

11.1.25 IpPolicyConditionRef

Defines a Ref er ence to an | pPolicyCondition.

11.1.26 IpPolicyTimePeriodCondition

Definesthe address of an | pPol i cyTi mePer i odCondi ti on Interface.

11.1.27 IpPolicyTimePeriodConditionRef

Defines aRef er ence to an | pPolicyTimePeriodCondition.

11.2 Data Types for PM Variables

11.2.1 TpPolicyVvar

This defines the TpPolicyVar type. It is analogous to the TpAttribute type.

TpPolicyVarisaSequence of Data El ement s of variable name, type and value.

Sequence Element Name

Sequence Element Type

Notes

VarName TpString Name of variable.
VarType TpPolicyType Type of variable. Could be atomic or complex type.
VarValue TpAny ValPue of variable. Note that depending on context,

the AttributeValue may be NULL.

The following types of variables are defined: Atomic types, Record types (having named fields), and List types (where
list elements could be complex types as well).

11.2.2 TpPolicyVarSet

TpPolicyVarSetisaNunber ed Set of Data El enents of type TpPolicyVar.

11.2.3 TpPolicyRecordType

Records have named fields, each field being a TpPolicyType itself. This alows nested structures to be defined. This
contains the following data members.

Sequence Element Name

Sequence Element Type

Notes

Names

Sequence of TpString

Name of record fields.

Types

Sequence of TpPolicyType

Type of record fields.

ETSI

102 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

11.2.4 TpPolicyListType

This defines a homogeneous list type. This contains the following data member.

Notes
Type of the elements of the list.

Sequence Element Name
ElementType

Sequence Element Type
TpPolicyType

11.2.5 TpPolicyTypelnfo

TpPolicyTypelnfo is an enumerated type used as a discriminator for the TpPolicyType structure, and can contain the
following values.

Name Value Description
P PM SIMPLE _TYPE 0 Simple type
P PM TYPE RECORD 1 Record type
P PM TYPE_LIST 2 List type
P PM STRUCTURED TYPE 3 Structured type
P PM XML TYPE 4 XML type

11.2.6 TpPolicyType

ThisisaTagged Choi ce of Data El enment s with a TpPolicyTypelnfo discriminator, and can be one of the
following.

Tag Element Type

TpPolicyTypelnfo

Tag Element Value Choice Element Type Choice Element Name
P_PM_SIMPLE_TYPE TpSimpleAttribute Typelnfo SimpleType
P PM _TYPE_RECORD TpPolicyRecordType RecordType
P_PM_TYPE_LIST TpPolicyListType ListType
P_PM STRUCTURED TYPE TpStructuredAttribute Type StructuredType
P PM XML TYPE TpXMLString XMLString

TpPolicyType alows us to define arbitrarily nested complex types as shown below. The level of nested data types

actually supported is implementation specific.

The choice elements represent the following:

SimpleType: Defines an atomic type.
RecordType: Defines arecord type with named fields.
ListType: Defines a homogeneous list type. Heterogeneous lists are not supported.

StructuredType Defines an object of the specified, fully qualified class.

XMLString Defines a data type that contains well-formed XML.

11.2.7 TpPolicyNameValue

This data structure is used to passin a variable name-value pair in an evalPolicy() request. ItisaSequence of
Dat a El enent s of avariable name and value.

Sequence Element Name

Sequence Element Type

Notes

Name

TpString

Name of Variable.

Value

TpAny

Value of variable.

ETSI

103 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

11.2.8 TpPolicyNameValuelList

Thistype definesaNunber ed Set of Data El enment s of type TpPolicyNameVal ue.

11.3 eBNF for Condition and Action expressions

The eBNF for the action/condition expressions follows — note that these express constrai nts on the Expression attribute
of IpPolicyCondition and IpPolicyExpression. The eBNF specifies rules for conditions/action expressions only

(i.e. condition groups, negation of conditions are assumed to be handled at a higher level). Moreover, rules are given
only for a single action expression, whereas a rule can contain multiple action expressions.

11.3.1 Basic Definition

We define some basic tokens that are used in the rest of the eBNF. The'..." used below indicate a range of
corresponding characters. For example, the'..."inl et t er correspondsto all letters between b and z, both lower and
uppercase). Similarly, the'..."in char corresponds to printable characters.

digit ="0" | "1" | ... | "9";

letter ="a" | "b" | ... | "z" | "A" | "B"| ... | "Z%
al phanuneri c =digit | letter;

char = al phanuneric | "\"" | “"\'" | "/" | "+ | L.
identifier = letter {[al phanunmeric | "_"]}*;

NOTE 1: For acomplete definition of the char type, see clauses 3.10.1.3 and 3.10.1.4 of the CORBA 2.4.2
Architecture and Specification document dated February 2001.

NOTE 2: The variable name syntax must conform to the eBNF specified by the identifier non-terminal above.

11.3.2 Definitions of Constant (Literals)

The following define the basic literals allowed. Examplesinclude boolean literals (t r ue andf al se), character
literals (e.g. "x", "a"), string literals (e.g. 'Parlay’, 'CORBA"), integer constants (e.g. -4, +23, 45, 05), float constants (e.g.
-2.3, 4.0, 5.6e-23). We dso defineanunber to be either an integer or afloat, and aconst to be any of the these
constant types.

bool _const "true" | "false";
string_const " {char}* '"";
i nt_const igit}+

fl oat _const

{d

(({digit}* "." {digit}+)

({digit}+ . {digit}*))([eE]l[-+]?{digit}+)?

NOTE: For acomplete definition of the char type, see clauses 3.10.1.3 and 3.10.1.4 of the CORBA 2.4.2
Architecture and Specification document dated February 2001.

nunber:: =
i nt_const
| float_const

const:: =
bool _const
| string_const
| nurber

11.3.3 Definition of Operators
These define the unary arithmetic operators, binary arithmetic operators, as well as the boolean operators. "%" isthe

modulo operator, "in" isalist containment operator (e.g. can be used to check if aelement iswithin alist, or if alistis
contained within another). Note that the standard operator precedence will be enforced on top of this grammar.

ETSI

104 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

unary_arith_op
bi nary_arith_op
bool ean_op

o
+
.
*
2
X

11.3.4 Allowable arithmetic expressions & predicates

These following define complex arithmetic expressions and predicates.

arith_expr::=
nunber
| unary_arith_op arith_expr
| arith_expr binary_arith_op arith_expr
| "(" arith_expr ")"
| var_access

predicate:: =
bool _const
arith_expr bool ean_op arith_expr
(arith_expr | const) ("=="] "!=") (arith_expr | const)

|
I
| "(" predicate ")"
| var_access

Examples of arithmetic expressionsinclude:

+ b+

2 +2
((4 + interval) %100 — 42)
a b.c/ d+ list[i+].f

Examples of predicates include:

true

(interval > 100)

((4 + interval) %100 — 42) > list[j].c * 2
(caller in buddy_list)

11.3.5 Accessing Variables

These following definitions specify how variables (simple or complex typed - see clause 10.1) can be accessed in rules.
List (array) elements are accessed via a standard index ('[]") operator, and record fields are accessed viathe dot ('.")
operator. Examplesincludex, rec. b, i st[42]. a, etc.

var_access: : =
identifier
| var_access "." identifier
| var_access "[" arith_expr "]"

11.3.6 Allowable Condition and Action Expressions

The following complete the definition of condition and action expressions. The condition expression corresponds
exactly tothepr edi cat e mentioned above, while an action expression can be one of a simple assignment operation
(=), or list append/delete operations (+= and - =). These specify the syntax of the Expression attribute in

I pPolicyExpressionCondition and | pPolicyExpressionAction objects. Additional methods such as setConditionList()
and setActionList() in IpPolicyRule interface need to be invoked in order to create a complete rule definition.

expr::=
const

arith_expr

predi cate

"I" predicate

predicate "&&" predicate
predicate "||" predicate"
“(" expr ")"

condition::= predicate

action::= sinple_var_access '=' expr
| identifier "+=" expr

ETSI

105 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

| identifier '-=" expr

Examples of action expressions include:

i = j+k
can_insert = (! is_enpty)

/'l the follow ng appends elenent 5 to the end of a list of integers
L1 += 5

/1 the following deletes all occurrences of elenent rec fromthe |ist
L2 -=rec

11.4 Example Scenarios

We now present a high-level scenario that illustrates how all the different extensions are tied together. The rulegroup
that we will use contains only one rule, which uses two variables x, and y, which are of the type:

x: struct {

a:. Tplnt32;
b: TpFl oat;
}
y: Tplnt32;

Moreover, let us assume that there is only one rulegroup (‘testgroup’) associated with the domain we are considering,
and the rulegroup contains only one rule of the form (it is easy to extend this scenario to the general case):

if (x.b < 3)
t hen

y = X.a;
end

Finally, assume that the value of x isto be supplied for rule evaluation, and the value of y isto be returned back to the
client. The steps that need to be performed are as follows given below (we will give pseudo-code for al the steps):).
Note that the actual implementations (e.g. CORBA, Javaetc.) corresponding to these may differ slightly from that
presented below.

1) Provisionvariables:

/1 get the manager
| pPol i cyManager Ref nmanager = .

/] start transaction
manager . start Transacti on();

/1 get the donmain
| pPol i cyDonei nRef donmi n = nanager . get Donai n(' t est donai n');

/] create a variable set
domai n. createVari abl eSet (' vset');

/1 define the type of x

/1 note that we can use the int_type defined as part of this

/1 process, for the type of y as well

TpPol i cyType int_type = TpPolicyType(TpSi npl eAttri buteTypel nfo(P_I NT32));
TpPol i cyType fl oat_type = TpPolicyType(TpSi npl eAttri buteTypel nf o(P_FLQOAT));
Vector<TpString> field_nanes = ['a', 'b'];

Vect or <TpPol i cyType> field_types = [int_type, float_type];

TpPol i cyType x_type = TpPolicyType(TpRecordType(fi el d_names, fiel d_types));

/1 define the type of y
TpPol i cyType y_type = TpPolicyType(TpSi npl eAttri but eTypel nf o(P_I NT32));

/] create the variables in the variable set
donmi n. createVariabl e('vset', 'x', x_type);
donmi n. createVariable('vset', 'y', y_type);

/1 set the values of x and y
TpAny x_value = {1, 2.5};

ETSI

106 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

TpAny y_val ue = 3;
domai n. set Vari abl eVal ue('vset', 'x', x_value);
donmi n. set Vari abl eVal ue('vset', 'y', y_value);

2) Create signature:

I pPol i cySi gnat ureRef sig = domain.createSignature('test_sig');

/'l set input and output variables
TpStringSet input_vars =['x"];
TpStringSet output_vars =['y'];

si g. set | nput Vari abl es(i nput_vars);
si g. set Qut put Vari abl es(out put _vars);

/1 set groups and roles

TpStringSet groups = ['testgroup'];
TpStringSet roles = []; // no roles specified
si g. set G oupNanes(gr oups) ;

si g. set Rol eNanes(rol es);

3) Provisontherules:

The given ruleis provisioned with the rulegroup. The variable declarations provisioned in (1) of the parent domain of
the rulegroup need to be utilized to verify that the rule being provisioned is valid. For example, the condition (x.b < 3)
can be verified as being valid, since 'x' has arecord type, and has'b' asafield, and 'x.b' isa TpFloat. As an example, if
the type of 'x.b" had been TpString, then during provisioning, the rule condition would have been determined to be as
invalid, and an exception thrown. The steps for creating the group are not shown in this example.

/1 commit transaction
manager . conmi t Transacti on();

4) Sending adecision request:

The first three steps happen during provisioning time. In this step, we describe how the client may use the
I pPolicyDomain.eval Policy() method, as well as the notion of signatures, to request a decision to be rendered. We
consider two scenarios. 1) where the value of x is explicitly specified by the client, and 2) whereit is not.

o Case 1:

TpAny x_value = {4, 2.7};
TpPol i cyNanmeVal ue x_nane_val
TpPol i cyNaneVal uelLi st inputs

{'x", x_val ue};
[x_nane_val ue]; // input val ues

TpPol i cyNaneVal ueli st out puts = donmi n. eval Policy('test_sig', inputs);

Here, the explicit value of x overrides the value of x set via setVariableValue(). Hence, before rules are eval uated for
this decision, the value of x is set to {4, 2.7}. The rule condition will then be true, and the value of z will be set to 4.
Hence the outputs list will contain the value of y as being 4.

Note that if the value of x was specified as:
TpAny x_value = {4, 9.0};

The rule condition would not be true, which implies that the rule action would not be executed. However, the signature
'sig_test' specified that y was an output variable and hence its value was to be sent back to the client. However (as
mentioned earlier in our assumptions about variable semantics), y started out as being uninitialized, and hence an
exception would be returned back to the client.

. Case 2:
TpPol i cyNanmeVal ueLi st inputs = []; // input val ues
TpPol i cyNaneVal ue out puts = domain. eval Policy('test_sig', inputs);

Here, the explicit value of x is not set. Hence the value of x set via setVariableValue() is used during rule evaluation,
which impliesthat y will be set to the value 1. Asin thefirst case, the outputs list will contain one element, which
would be the value of variabley.

ETSI

107 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

11.5 Example XML Scenarios

We now present a high-level scenario that illustrates how the XML extensions are tied together. The rulegroup that we
will use contains only one rule and is part of a domain named "testdomain”. Theruleisgiven below ina
pseudo-language:

if (SIPAddress inDomain "parlay.org")
t hen

set Cal | LegProperty(P_CALL_LEG PROPERTY_I NFQ, "htt p: // www. par | ay. org")
end

The example rule above invokes the operator "inDomain". We assume that this operation compares the domain part of
an URI. It evaluatesto "true" if the URI operand is part of a given domain. If the condition holds, the call leg property
named P_CALL_LEG PROPERTY _INFO will be set to "http://www.parlay.org ".

The action and condition part of thisrule are expressed in pseudo XML below (i.e. namespaces are omitted, etc.). XML
schema reference is not shown which would define XML structure, types and operations.

Action (to be passed in a ConditionAttribute. AttributeVal ue)

<condi ti on operator="i nDomai n">
<oper and>
<vari abl e name="S| PAddress" type="anyURl"/>
</ oper and>
<oper and>
<constant val ue="wwm. parl ay.org" type="string"/>
</ oper and>
</ condi ti on>

Condition (to be passed in an ActionAttribute. AttributeVal ue)

<action>
<set Cal | LegProperty>
<cal | LegProperty val ue="P_CALL_LEG PROPERTY_I NFO' type="Cal | LegProperties"/>
<constant value="http://ww. parlay.org" type=""string"/>
</ set Cal | LegProperty>
</ action>

Now, assume that the value of the variable with the name " SIPAddress” isto be supplied for rule evaluation, and the
value of XML element isto be returned back to the client. The steps that need to be performed are as follows given
below (we will give pseudo-code for al the steps):).

5) Provision variables:

/1 get the manager
| pPol i cyManager Ref nmanager = .

/] start transaction
manager . start Transacti on();

/1 get the donain
| pPol i cyDonei nRef donmi n = nanager . get Donai n(' t est donai n');

/] create a variable set
domai n. creat eVari abl eSet (' vset');

/1 define the type of the variable named "SI PAddress"
TpPol i cyType URI _type = TpPolicyType(TpStructuredAttributeTypel nfo("P_com vendor/ TpURI"));

/1 define the type of the action
TpPol i cyType action_type = TpPolicyType(TpXM.String);

/Il create the variables in the variable set
donmi n. createVariabl e(' vset', 'Sl PAddress', URl _type);
domai n. createVari abl e(' vset', 'setCallLegProperty', action_type);

/1 set the values of x and y

TpAny URI _val ue = "sip:jdoe@arlay.org";

TpAny action_val ue = "<setCal | LegProperty/>";

domai n. set Vari abl eVal ue(' vset', 'SlIPAddress', URI_val ue);

donmi n. set Vari abl eVal ue(' vset', 'setCall LegProperty', action_value);

ETSI

108 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

6) Create signature:
| pPol i cySi gnat ureRef sig = donmin.createSignature('test_sig');

/'l set input and output variables

TpStringSet input_vars = ['SIPAddress'];
TpStringSet output_vars = ['setCallLegProperty'];
si g. set | nput Vari abl es(i nput_vars);

si g. set Qut put Vari abl es(out put _vars);

/1 set groups and roles

TpStringSet groups = ['testgroup'];
TpStringSet roles = []; // no roles specified
si g. set G oupNanes(gr oups) ;

si g. set Rol eNanmes(rol es);

Provisioning and decision requests go much the same way as in steps 7 and further in clause 11.4.

12 Policy Management Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name Description

P_ACCESS_VIOLATION Thrown if the client does not have authorization to invoke this
method on this object with these parameters.

P_SYNTAX ERROR Thrown if the specified name is formatted improperly.

P_NAME_SPACE_ERROR Thrown if the specified name matches or does not match the
name of an existing object of the appropriate type within this
container.

P_NO_TRANSACTION_IN_PROCESS Thrown if there is currently no transaction in process.

P_TRANSACTION_IN_PROCESS Thrown if there is currently a transaction in process. Note that
transactions can not be nested, that is, a second call to
startTransaction() without calling commitTransaction() or
abortTransaction() in between will result in this exception being
thrown during the second call.

Each exception class contains the following structure.

Structure Element Name Structure Element Type Structure Element Description

Extralnformation TpString Carries extra information to help identify the source of
the exception, e.g. a parameter name.

ETSI

109 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Annex A (normative):
OMG IDL Description of Policy Management SCF

The OMG IDL representation of this interface specification is contained in text files (policy_data.idl,
policy_interfaces.idl contained in archive es_20391513v010101m0.zip) which accompany the present document.

ETSI

110 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Annex B (informative):
Java API Description of the Policy Management SCF

The Java API redlisation of thisinterface specification is produced in accordance with the Java Readlisation rules defined
in ES 203 915-1. These rules aim to deliver for Java, a developer API, provided as arealisation, supporting a Java API
that represents the UML specifications. The rules support the production of both J2SE and J2EE versions of the API
from the common UML specifications.

The J2SE representation of thisinterface specification is provided as Java Code, contained in archive
20391513J2SE.zip.

The J2EE representation of this interface specification is provided as Java Code, contained in archive
20391513J2EE.zip.

Both these archives can be found in es 20391513v010101m0.zip which accompanies the present document.

ETSI

111 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Annex C (informative):
Contents of 3GPP OSA R6 Policy Management

All of the present document is relevant for 3GPP TS 29 198-13 V6 (Release 6).

ETSI

112 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Annex D (informative):
Description of Policy Management for 3GPP2 cdma2000
networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in [52], [53] and
[54] of ES 203 915-1, clause 2. These requirements are expressed as additions to and/or exclusions from the 3GPP
Release 6 specification. The information given hereisto be used by developersin 3GPP2 cdma2000 network
architecture to interpret the 3GPP OSA specifications.

D.1 General Exceptions

Theterm UMTS s not applicable for the cdma2000 family of standards. Neverthel ess these terms are used
(TR 121 905) mostly in the broader sense of "3G Wireless System”. If not stated otherwise there are no additions or
exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D.2.2 Clause 2: References

Normative references on TS 123 078 and on TS 129 078 are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D.2.4 Clause 4: Policy Management SCF

There are no additions or exclusions.

D.2.5 Clause 5: Sequence Diagrams

There are no additions or exclusions.

D.2.6 Clause 6 Class Diagrams

There are no additions or exclusions.

D.2.7 Clause 7: The Service Interface Specifications

There are no additions or exclusions.

ETSI

113 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

D.2.8 Clause 8: Policy Management Interface Classes

There are no additions or exclusions.

D.2.9 Clause 9: State Transition Diagrams

There are no additions or exclusions.

D.2.10 Clause 10: Data Definitions

There are no additions or exclusions.

D.2.11 Clause 11: Policy Management Exception Classes

There are no additions or exclusions.

D.2.12 Annex A (normative): OMG IDL Description of Policy
Management SCF

There are no additions or exclusions.

ETSI

114 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

Annex E (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

E.1 Interfaces

E.1.1 New
Identifier | Comments
Interfaces added in ES 203 915-13 version 1.1.1 (Parlay 5.0)
IpPolicyEvalManager Introduced to allow clients to request policy rule evaluations
IpPolicySignature Introduced to enable context driven policy evaluation

E.1.2 Deprecated

Identifier | Comments
Interfaces deprecated in ES 203 915-13 version 1.1.1 (Parlay 5.0)

E.1.3 Removed

Identifier \ Comments
Interfaces removed in ES 203 915-13 version 1.1.1 (Parlay 5.0)
IpAppPolicyDomain 'Moved to Policy Evaluation SCF

E.2 Methods

E.2.1 New
Identifier | Comments
Methods added in ES 203 915-13 version 1.1.1 (Parlay 5.0)
Variable Management Methods - see clauses For variable Management
8.1.3.28 through 8.1.3.38
Signature Management Methods - clauses For Signature Management

8.1.16.1 through 8.1.16.10

Policy Evaluation and Event Related Methods - |For policy evaluation and event interaction
clauses 8.2.1.1 through clauses 8.2.1.6

Call Back Methods - clauses 8.2.2.1 - 8.2.2.3 Call back methods

ETSI

115 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

E.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 203 915-13 version 1.1.1 (Parlay 5.0)
|

E.2.3 Modified

Identifier | Comments

Methods modified in ES 203 915-13 version 1.1.1 (Parlay 5.0)

getVariable() [Modified to reflect appropriate return value (TpPolicyVar)

E.2.4 Removed

Identifier

| Comments

Methods removed in ES 203 915-13 version 1.1.1 (Parlay 5.0)

setVariable()

Obsolete

generateEvent();createNotification();destroyNotification()

Moved to Policy Evaluation SCF

Policy Evaluation and Event Related Methods

Moved to Policy Evaluation SCF

Call Back Methods

Moved to Policy Evaluation SCF

E.3 Data Definitions

E.3.1 New

Identifier

Comments

Data Definitions added in ES 203 915-13 version 1.1.1 (Parlay 5.0)

Policy Evaluation related data structures in
clause 10.2

Support for policy evaluation SCF

eBNF see clause 10.1.3

Enhanced grammar for condition and action expressions

TpPolicyError

E.3.2 Modified

Identifier

Comments

Data Definitions modified in ES 203 915-13 version 1.1.1 (Parlay 5.0)

TpPolicyTypelnfo

P_PM_TYPE_ATOMIC replaced with P_PM_SIMPLE_TYPE. Fields
P PM STRUCTURED TYPE and P PM XML TYPE added

TpPolicyType

AtomicType field replaced with SimpleType field. Fields
StructuredType and XMLString added

E.3.3 Removed

Identifier

Comments

Data Definitions removed in ES 203 915-13 version 1.1.1 (Parlay 5.0)

Original BNF

Obsolete and superseded by eBNF

TpPolicyAtomicType

TpSimpleAttribute TypeList now used instead

ETSI

116 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

E.4 Service Properties

E.4.1 New

Identifier | Comments

Service Properties added in ES 203 915-13 version 1.1.1 (Parlay 5.0)

P _SUPPORTED VARIABLE TAGS

P _SUPPORTED SIMPLE VARIABLE TYPES

P SUPPORTED STRUCTURED VARIABLE TYPES

E.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 203 915-13 version 1.1.1 (Parlay 5.0)

E.4.3 Modified

Identifier | Comments

Service Properties modified in ES 203 915-13 version 1.1.1 (Parlay 5.0)

E.4.4 Removed

Identifier | Comments

Service Properties removed in ES 203 915-13 version 1.1.1 (Parlay 5.0)

E.5 Exceptions

E.5.1 New

Identifier | Comments

Exceptions added in ES 203 915-13 version 1.1.1 (Parlay 5.0)

E.5.2 Modified

Identifier | Comments

Exceptions modified in ES 203 915-13 version 1.1.1 (Parlay 5.0)

ETSI

117 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

E.5.3 Removed

Identifier | Comments

Exceptions removed in ES 203 915-13 version 1.1.1 (Parlay 5.0)

E.6 Others

New Annex B added with Java code.

ETSI

118 Final draft ETSI ES 203 915-13 V1.1.1 (2005-02)

History

Document history

V111 February 2005 Membership Approval Procedure MV 20050408: 2005-02-08 to 2005-04-08

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Policy Management SCF
	5 Sequence Diagrams
	5.1 Use of Policy Repository
	5.2 Introduce condition and action into rule
	5.3 Create event
	5.4 Create and modify domain
	5.5 ASP offering services to prepaid subscribers
	5.6 Create Signature for an evaluation context
	5.7 Request Evaluation of Policies
	5.8 Register for and Receive Notification of a Policy Event

	6 Class Diagrams
	6.1 PM Provisioning SCF Class Diagrams
	6.2 PM Policy Evaluation SCF Class Diagrams

	7 The Service Interface Specifications
	7.1 Interface Specification Format
	7.1.1 Interface Class
	7.1.2 Method descriptions
	7.1.3 Parameter descriptions
	7.1.4 State Model

	7.2 Base Interface
	7.2.1 Interface Class IpInterface

	7.3 Service Interfaces
	7.3.1 Overview

	7.4 Generic Service Interface
	7.4.1 Interface Class IpService
	7.4.1.1 Method setCallback()
	7.4.1.2 Method setCallbackWithSessionID()

	8 Policy Management (PM) Interface Classes
	8.1 PM Provisioning SCF Interface Classes
	8.1.1 Interface Class IpPolicyManager
	8.1.1.1 Method createDomain()
	8.1.1.2 Method getDomain()
	8.1.1.3 Method removeDomain()
	8.1.1.4 Method getDomainCount()
	8.1.1.5 Method getDomainIterator()
	8.1.1.6 Method findMatchingDomains()
	8.1.1.7 Method createRepository()
	8.1.1.8 Method getRepository()
	8.1.1.9 Method removeRepository()
	8.1.1.10 Method getRepositoryCount()
	8.1.1.11 Method getRepositoryIterator()
	8.1.1.12 Method startTransaction()
	8.1.1.13 Method commitTransaction()
	8.1.1.14 Method abortTransaction()

	8.1.2 Interface Class IpPolicy
	8.1.2.1 Attributes
	8.1.2.2 Method getAttribute()
	8.1.2.3 Method setAttribute()
	8.1.2.4 Method getAttributes()
	8.1.2.5 Method setAttributes()

	8.1.3 Interface Class IpPolicyDomain
	8.1.3.1 Attributes
	8.1.3.2 Method getParentDomain()
	8.1.3.3 Method createDomain()
	8.1.3.4 Method getDomain()
	8.1.3.5 Method removeDomain()
	8.1.3.6 Method getDomainCount()
	8.1.3.7 Method getDomainIterator()
	8.1.3.8 Method createGroup()
	8.1.3.9 Method getGroup()
	8.1.3.10 Method removeGroup()
	8.1.3.11 Method getGroupCount()
	8.1.3.12 Method getGroupIterator()
	8.1.3.13 Method createRule()
	8.1.3.14 Method getRule()
	8.1.3.15 Method removeRule()
	8.1.3.16 Method getRuleCount()
	8.1.3.17 Method getRuleIterator()
	8.1.3.18 Method createEventDefinition()
	8.1.3.19 Method getEventDefinition()
	8.1.3.20 Method removeEventDefinition()
	8.1.3.21 Method getEventDefinitionCount()
	8.1.3.22 Method getEventDefinitionIterator()
	8.1.3.23 Method createVariableSet()
	8.1.3.24 Method getVariableSet()
	8.1.3.25 Method removeVariableSet()
	8.1.3.26 Method getVariableSetCount()
	8.1.3.27 Method getVariableSetIterator()
	8.1.3.28 Method <<new>> createVariable()
	8.1.3.29 Method <<new>> setVariableValue()
	8.1.3.30 Method <<new>> getVariableType()
	8.1.3.31 Method <<new>> getVariableValue()
	8.1.3.32 Method getVariable()
	8.1.3.33 Method <<new>> removeVariable()
	8.1.3.34 Method <<new>> createSignature()
	8.1.3.35 Method <<new>> getSignature()
	8.1.3.36 Method <<new>> removeSignature()
	8.1.3.37 Method <<new>> getSignatureCount()
	8.1.3.38 Method <<new>> getSignatureIterator()

	8.1.4 Interface Class IpPolicyGroup
	8.1.4.1 Attributes
	8.1.4.2 Method getParentDomain()
	8.1.4.3 Method getParentGroup()
	8.1.4.4 Method createGroup()
	8.1.4.5 Method getGroup()
	8.1.4.6 Method removeGroup()
	8.1.4.7 Method getGroupCount()
	8.1.4.8 Method getGroupIterator()
	8.1.4.9 Method createRule()
	8.1.4.10 Method getRule()
	8.1.4.11 Method removeRule()
	8.1.4.12 Method getRuleCount()
	8.1.4.13 Method getRuleIterator()

	8.1.5 Interface Class IpPolicyRepository
	8.1.5.1 Attributes
	8.1.5.2 Method getParentRepository()
	8.1.5.3 Method createRepository()
	8.1.5.4 Method getRepository()
	8.1.5.5 Method removeRepository()
	8.1.5.6 Method getRepositoryCount()
	8.1.5.7 Method getRepositoryIterator()
	8.1.5.8 Method createCondition()
	8.1.5.9 Method getCondition()
	8.1.5.10 Method removeCondition()
	8.1.5.11 Method getConditionCount()
	8.1.5.12 Method getConditionIterator()
	8.1.5.13 Method createAction()
	8.1.5.14 Method getAction()
	8.1.5.15 Method removeAction()
	8.1.5.16 Method getActionCount()
	8.1.5.17 Method getActionIterator()

	8.1.6 Interface Class IpPolicyRule
	8.1.6.1 Attributes
	8.1.6.2 Method getParentGroup()
	8.1.6.3 Method getParentDomain()
	8.1.6.4 Method createCondition()
	8.1.6.5 Method getCondition()
	8.1.6.6 Method removeCondition()
	8.1.6.7 Method getConditionCount()
	8.1.6.8 Method getConditionIterator()
	8.1.6.9 Method createAction()
	8.1.6.10 Method getAction()
	8.1.6.11 Method removeAction()
	8.1.6.12 Method getActionCount()
	8.1.6.13 Method getActionIterator()
	8.1.6.14 Method setValidityPeriodConditionByName()
	8.1.6.15 Method setValidityPeriodCondition()
	8.1.6.16 Method getValidityPeriodCondition()
	8.1.6.17 Method unsetValidityPeriodCondition()
	8.1.6.18 Method setConditionList()
	8.1.6.19 Method getConditionList()
	8.1.6.20 Method setActionList()
	8.1.6.21 Method getActionList()

	8.1.7 Interface Class IpPolicyCondition
	8.1.7.1 Attributes
	8.1.7.2 Method getParentRepository()
	8.1.7.3 Method getParentRule()

	8.1.8 Interface Class IpPolicyTimePeriodCondition
	8.1.8.1 Attributes

	8.1.9 Interface Class IpPolicyAction
	8.1.9.1 Attributes
	8.1.9.2 Method getParentRepository()
	8.1.9.3 Method getParentRule()

	8.1.10 Interface Class IpPolicyEventDefinition
	8.1.10.1 Attributes
	8.1.10.2 Method setRequiredAttributes()
	8.1.10.3 Method setOptionalAttributes()
	8.1.10.4 Method getRequiredAttributes()
	8.1.10.5 Method getOptionalAttributes()
	8.1.10.6 Method getParentDomain()

	8.1.11 Interface Class IpPolicyEventCondition
	8.1.11.1 Attributes

	8.1.12 Interface Class IpPolicyExpressionCondition
	8.1.12.1 Attributes

	8.1.13 Interface Class IpPolicyEventAction
	8.1.13.1 Attributes

	8.1.14 Interface Class IpPolicyExpressionAction
	8.1.14.1 Attributes

	8.1.15 Interface Class IpPolicyIterator
	8.1.15.1 Attributes
	8.1.15.2 Method getList()

	8.1.16 Interface Class IpPolicySignature
	8.1.16.1 Attributes
	8.1.16.2 Method <<new>> setInputVariables()
	8.1.16.3 Method <<new>> setOutputVariables()
	8.1.16.4 Method <<new>> getInputVariables()
	8.1.16.5 Method <<new>> getOutputVariables()
	8.1.16.6 Method <<new>> setGroupNames()
	8.1.16.7 Method <<new>> setPolicyRoles()
	8.1.16.8 Method <<new>> getGroupNames()
	8.1.16.9 Method <<new>> getPolicyRoles()
	8.1.16.10 Method <<new>> getParentDomain()

	8.2 PM Policy Evaluation SCF Interface Classes
	8.2.1 Interface Class IpPolicyEvalManager
	8.2.1.1 Method <<new>> evalPolicy()
	8.2.1.2 Method <<new>> evalPolicyReq()
	8.2.1.3 Method <<new>> abortEvalPolicyReq()
	8.2.1.4 Method <<new>> generateEvent()
	8.2.1.5 Method <<new>> createNotification()
	8.2.1.6 Method <<new>> destroyNotification()

	8.2.2 Interface Class IpAppPolicyDomain
	8.2.2.1 Method reportNotification()
	8.2.2.2 Method <<new>> evalPolicyRes()
	8.2.2.3 Method <<new>> evalPolicyErr()

	9 State Transition Diagrams
	9.1 PM Provisioning SCF State Transition Diagrams
	9.2 PM Policy Evaluation SCF State Transition Diagrams

	10 PM Service Properties
	11 Data Definitions
	11.1 Policy Management Data Definitions
	11.1.1 TpPolicyConditionListType
	11.1.2 TpPolicyConditionListElement
	11.1.3 TpPolicyConditionList
	11.1.4 TpPolicyConditionType
	11.1.5 TpPolicyActionListElement
	11.1.6 TpPolicyActionList
	11.1.7 TpPolicyActionType
	11.1.8 TpPolicyEvent
	11.1.9 TpPolicyKeyword
	11.1.10 TpPolicyKeywordSet
	11.1.11 TpPolicyError
	11.1.12 IpPolicyDomain
	11.1.13 IpPolicyDomainRef
	11.1.14 IpPolicyRepository
	11.1.15 IpPolicyRepositoryRef
	11.1.16 IpPolicyGroup
	11.1.17 IpPolicyGroupRef
	11.1.18 IpPolicyRule
	11.1.19 IpPolicyRuleRef
	11.1.20 IpPolicyEventDefinition
	11.1.21 IpPolicyEventDefinitionRef
	11.1.22 IpAppPolicyDomain
	11.1.23 IpAppPolicyDomainRef
	11.1.24 IpPolicyCondition
	11.1.25 IpPolicyConditionRef
	11.1.26 IpPolicyTimePeriodCondition
	11.1.27 IpPolicyTimePeriodConditionRef

	11.2 Data Types for PM Variables
	11.2.1 TpPolicyVar
	11.2.2 TpPolicyVarSet
	11.2.3 TpPolicyRecordType
	11.2.4 TpPolicyListType
	11.2.5 TpPolicyTypeInfo
	11.2.6 TpPolicyType
	11.2.7 TpPolicyNameValue
	11.2.8 TpPolicyNameValueList

	11.3 eBNF for Condition and Action expressions
	11.3.1 Basic Definition
	11.3.2 Definitions of Constant (Literals)
	11.3.3 Definition of Operators
	11.3.4 Allowable arithmetic expressions & predicates
	11.3.5 Accessing Variables
	11.3.6 Allowable Condition and Action Expressions

	11.4 Example Scenarios
	11.5 Example XML Scenarios

	12 Policy Management Exception Classes
	Annex A (normative): OMG IDL Description of Policy Management SCF
	Annex B (informative): Java API Description of the Policy Management SCF
	Annex C (informative): Contents of 3GPP OSA R6 Policy Management
	Annex D (informative): Description of Policy Management for 3GPP2 cdma2000 networks
	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: Policy Management SCF
	D.2.5 Clause 5: Sequence Diagrams
	D.2.6 Clause 6 Class Diagrams
	D.2.7 Clause 7: The Service Interface Specifications
	D.2.8 Clause 8: Policy Management Interface Classes
	D.2.9 Clause 9: State Transition Diagrams
	D.2.10 Clause 10: Data Definitions
	D.2.11 Clause 11: Policy Management Exception Classes
	D.2.12 Annex A (normative): OMG IDL Description of Policy Management SCF

	Annex E (informative): Record of changes
	E.1 Interfaces
	E.1.1 New
	E.1.2 Deprecated
	E.1.3 Removed

	E.2 Methods
	E.2.1 New
	E.2.2 Deprecated
	E.2.3 Modified
	E.2.4 Removed

	E.3 Data Definitions
	E.3.1 New
	E.3.2 Modified
	E.3.3 Removed

	E.4 Service Properties
	E.4.1 New
	E.4.2 Deprecated
	E.4.3 Modified
	E.4.4 Removed

	E.5 Exceptions
	E.5.1 New
	E.5.2 Modified
	E.5.3 Removed

	E.6 Others

	History

