

ETSI ES 203 915-4-2 V1.1.1 (2005-04)

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);

Part 4: Call Control;
Sub-part 2: Generic Call Control SCF

(Parlay 5)

�

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 2

Reference
DES/TISPAN-01005-04-02-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

© The Parlay Group 2005.
All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 3

Contents

Intellectual Property Rights ..6

Foreword...6

1 Scope ..8

2 References ..8

3 Definitions and abbreviations...8
3.1 Definitions..8
3.2 Abbreviations ...8

4 Generic Call Control Service Sequence Diagrams...9
4.1 Additional Callbacks ..9
4.2 Alarm Call ..10
4.3 Application Initiated Call ...11
4.4 Call Barring 1 ...13
4.5 Number Translation 1...15
4.6 Number Translation 1 (with callbacks) ..16
4.7 Number Translation 2...18
4.8 Number Translation 3...19
4.9 Number Translation 4...21
4.10 Number Translation 5...23
4.11 Prepaid..24
4.12 Pre-Paid with Advice of Charge (AoC)..26

5 Class Diagrams...29

6 Generic Call Control Service Interface Classes ...30
6.1 Interface Class IpCallControlManager ...31
6.1.1 Method createCall() ..31
6.1.2 Method enableCallNotification() ..32
6.1.3 Method disableCallNotification() ...33
6.1.4 Method setCallLoadControl() ...33
6.1.5 Method changeCallNotification() ...34
6.1.6 Method getCriteria() ...34
6.2 Interface Class IpAppCallControlManager ..34
6.2.1 Method callAborted() ...35
6.2.2 Method callEventNotify()...35
6.2.3 Method callNotificationInterrupted()..36
6.2.4 Method callNotificationContinued()...36
6.2.5 Method callOverloadEncountered()..36
6.2.6 Method callOverloadCeased() ..37
6.2.7 Method <<new>> abortMultipleCalls()..37
6.3 Interface Class IpCall ...37
6.3.1 Method routeReq()..38
6.3.2 Method release() ...39
6.3.3 Method deassignCall() ..40
6.3.4 Method getCallInfoReq()..40
6.3.5 Method setCallChargePlan()...40
6.3.6 Method setAdviceOfCharge()...41
6.3.7 Method getMoreDialledDigitsReq() ...41
6.3.8 Method superviseCallReq() ..41
6.3.9 Method <<new>> continueProcessing()...42
6.4 Interface Class IpAppCall ..42
6.4.1 Method routeRes() ..43
6.4.2 Method routeErr() ...43
6.4.3 Method getCallInfoRes() ..43
6.4.4 Method getCallInfoErr() ...44
6.4.5 Method superviseCallRes()...44

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 4

6.4.6 Method superviseCallErr() ...44
6.4.7 Method callFaultDetected() ..44
6.4.8 Method getMoreDialledDigitsRes() ...45
6.4.9 Method getMoreDialledDigitsErr() ..45
6.4.10 Method callEnded() ..45

7 Generic Call Control Service State Transition Diagrams...46
7.1 State Transition Diagrams for IpCallControlManager ...46
7.1.1 Active State...46
7.1.2 Notification terminated State ..46
7.2 State Transition Diagrams for IpCall..47
7.2.1 Network Released State ..47
7.2.2 Finished State..47
7.2.3 Application Released State ...47
7.2.4 No Parties State...48
7.2.5 Active State...48
7.2.6 1 Party in Call State ..48
7.2.7 2 Parties in Call State..48
7.2.8 Routing to Destination(s) State...49

8 Generic Call Control Service Properties ..49
8.1 List of Service Properties ...49
8.2 Service Property values for the CAMEL Service Environment ...50

9 Generic Call Control Data Definitions...51
9.1 Generic Call Control Event Notification Data Definitions...52
9.1.1 TpCallEventName ..52
9.1.2 TpCallNotificationType..52
9.1.3 TpCallEventCriteria..53
9.1.4 TpCallEventInfo ...53
9.2 Generic Call Control Data Definitions ...53
9.2.1 IpCall ..53
9.2.2 IpCallRef ..53
9.2.3 IpAppCall ...53
9.2.4 IpAppCallRef..53
9.2.5 TpCallIdentifier ..54
9.2.6 IpAppCallControlManager ...54
9.2.7 IpAppCallControlManagerRef ...54
9.2.8 IpCallControlManager ..54
9.2.9 IpCallControlManagerRef ..54
9.2.10 TpCallAppInfo..54
9.2.11 TpCallAppInfoType..55
9.2.12 TpCallAppInfoSet...55
9.2.13 TpCallEndedReport ..55
9.2.14 TpCallFault ...55
9.2.15 TpCallInfoReport..56
9.2.16 TpCallReleaseCause ...56
9.2.17 TpCallReport ..56
9.2.18 TpCallAdditionalReportInfo...57
9.2.19 TpCallReportRequest..57
9.2.20 TpCallAdditionalReportCriteria ...57
9.2.21 TpCallReportRequestSet ..57
9.2.22 TpCallReportType ..58
9.2.23 TpCallTreatment...58
9.2.24 TpCallEventCriteriaResultSet...58
9.2.25 TpCallEventCriteriaResult..58

Annex A (normative): OMG IDL Description of Generic Call Control SCF.................................59

Annex B (informative): W3C WSDL Description of Generic Call Control SCF60

Annex C (informative): Java™ API Description of the Call Control SCFs......................................61

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 5

Annex D (informative): Contents of 3GPP OSA Rel-6 Call Control ...62

Annex E (informative): Description of Call Control Sub-part 2: Generic call control SCF for
3GPP2 cdma2000 networks ..63

E.1 General Exceptions...63

E.2 Specific Exceptions ..63
E.2.1 Clause 1: Scope ..63
E.2.2 Clause 2: References ..63
E.2.3 Clause 3: Definitions and abbreviations ...63
E.2.4 Clause 4: Generic Call Control Service Sequence Diagrams ...63
E.2.5 Clause 5: Class Diagrams...63
E.2.6 Clause 6: Generic Call Control Service Interface Classes..63
E.2.7 Clause 7: Generic Call Control Service State Transition Diagrams ...64
E.2.8 Clause 8: Generic Call Control Service Properties...64
E.2.9 Clause 9: Generic Call Control Data Definitions ...64
E.2.10 Annex A (normative): OMG IDL Description of Generic Call Control SCF ..64
E.2.11 Annex B (informative): W3C WSDL Description of Generic Call Control SCF...64
E.2.12 Annex C (informative): Java™ API Description of the Call Control SCFs ...64

Annex F (informative): Record of changes ..65

F.1 Interfaces ..65
F.1.1 New ..65
F.1.2 Deprecated..65
F.1.3 Removed...65

F.2 Methods..65
F.2.1 New ..65
F.2.2 Deprecated..65
F.2.3 Modified ...66
F.2.4 Removed...66

F.3 Data Definitions ...66
F.3.1 New ..66
F.3.2 Modified ...66
F.3.3 Removed...66

F.4 Service Properties...66
F.4.1 New ..66
F.4.2 Deprecated..67
F.4.3 Modified ...67
F.4.4 Removed...67

F.5 Exceptions ..67
F.5.1 New ..67
F.5.2 Modified ...67
F.5.3 Removed...67

F.6 Others ...67

History ..68

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and Internet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 4, sub-part 2 of a multi-part deliverable covering Open Service Access (OSA);
Application Programming Interface (API), as identified below. The API specification (ES 203 915) is structured in the
following parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control";

Sub-part 1: "Call Control Common Definitions";

Sub-part 2: "Generic Call Control SCF";

Sub-part 3: "Multi-Party Call Control SCF";

Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15: "Multi-media Messaging SCF".

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 7

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 5.0 set of specifications.

The present document is equivalent to 3GPP TS 29.198-4-2 V6.2.0 (Release 6).

http://www.parlay.org/
http://www.java.sun.com/products/jain

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 8

1 Scope
The present document is part 4, sub-part 2 of the Stage 3 specification for an Application Programming Interface (API)
for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Generic Call Control Service Capability Feature (SCF) aspects of the interface. All
aspects of the Generic Call Control SCF are defined here, these being:

• Sequence Diagrams.

• Class Diagrams.

• Interface specification plus detailed method descriptions.

• State Transition diagrams.

• Data Definitions.

• IDL Description of the interfaces.

• WSDL Description of the interfaces.

• Reference to the Java™ API description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References
The references listed in clause 2 of ES 203 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 203 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1: Overview
(Parlay 5)".

ETSI ES 203 915-2: "Open Service Access (OSA); Application Programming Interface (API); Part 2: Common Data
Definitions (Parlay 5)".

ETSI ES 203 915-4-1: "Open Service Access (OSA); Application Programming Interface (API); Part 4: Call Control;
Sub-part 1: Call Control Common Definitions (Parlay 5)".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ES 203 915-1 apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations defined in ES 203 915-1 apply.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 9

4 Generic Call Control Service Sequence Diagrams

4.1 Additional Callbacks
The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g. because the application crashed, the other call back interface is used
instead.

first instance : (Logical
View::IpAppLogic)

second instance :
(Logic...

 : IpAppCallControlManager : IpAppCal lCont rolManager : IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotification is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotification request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g. always first try the first registered or use some kind of round robin
scheme.

6: The event is forwarded to the first instance of the logic.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 10

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

4.2 Alarm Call
The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as
a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

 :
IpCallControlManager

 : IpAppCall : IpCall : IpUICall :
IpAppUIManager

 :
IpAppUICall

 : (Logical
View::IpAppLogic)

1: new()

2: createCall()

3: new()

4: routeReq()

5: routeRes()

9: sendInf oReq()

6: 'f orward ev ent'

7: createUICall ()

8: new()

10: sendInf oRes()

11: 'f orward ev ent'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 11

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

4.3 Application Initiated Call
The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 12

 :
IpCallControlManager

 : IpAppCall : IpCall : (Logical
View::IpAppLo...

5: routeRes()

1: new()

2: createCall()
3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or
failure.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 13

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

4.4 Call Barring 1
The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code is accepted and the call is routed to the original called party.

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :
IpUIManager

 :
IpCal lContro lManager

 :
IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall ()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a message
(not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are
used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 14

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic.

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 15

4.5 Number Translation 1
The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLo...

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 16

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of
message 3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

4.6 Number Translation 1 (with callbacks)
The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

For illustration, in this sequence the callback references are set explicitly. This is optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 17

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'translate number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7: setCallbackWithSessionID()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have
an explicit IpAppCallControlManager reference specified in the enableCallNotification.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 18

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object.

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

4.7 Number Translation 2
The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. If the translated number being routed to does not answer or is busy then the call is
automatically released.

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'
8: routeRes()

7: routeReq()

10: release()

1: new()

3: callEventNot ify()

4: 'forward event'

5: new()

2: enableCallNotification()

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 19

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

4.8 Number Translation 3
The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. If the translated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 20

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

8: routeRes()

7: routeReq()

9: 'forward event'

12: routeRes()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

6: 'translate number'

10: 'translate number'

11: routeReq()

13: 'forward event'

14: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 21

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

4.9 Number Translation 4
The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. Before the call is routed to the translated number, the application requests for all
call related information to be delivered back to the application on completion of the call.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 22

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallContro lManager : (Logical
View::IpAppLogic)

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10: 'forward event'

1: new()

3: callEventNoti fy()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deas signCall()

11: callEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 23

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

4.10 Number Translation 5
The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as a result of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

 : IpAppCall : IpAppCallControlManager : IpCallIpAppLogic : IpCallControlManager

1: new()

2: enableCallNotificat ion()

3: callEventNotify()

4: 'forward event '

5: new()

6: 'check status'

7: appropriate release cause

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 24

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of
message 3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

4.11 Prepaid
This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 25

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCal lControlManager : IpCal lControlManager : IpCall : IpUICall : IpUIManager : IpAppUICal l : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

7: routeReq()

8: superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: s endInfoRes()
19: "forward event"

21: superviseCallReq()

22: superviseCallRes()
23: "forward event:

24: release()

16: createUICall ()

20: release()

5: new()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 26

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created.

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

14: When the user is almost out of credit the application is informed.

15: The message is forwarded to the application.

16: The application decides to play an announcement to the parties in this call. A new UICall object is created and
associated with the call.

17: An announcement is played informing the user about the near-expiration of his credit limit.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends.

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

4.12 Pre-Paid with Advice of Charge (AoC)
This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 27

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCall Cont ro lM an ager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCal l

1: new()

2: enableCallNotification()

3: ca llEventNotify()4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: s upervis eCallReq()

27: release()

21: sendInfoReq()

18 : new()

22: s endInfoRes ()
23: "forward event"

9: superviseCallRes()
10: "forward event"

12: superviseCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

25: superviseCallRes()
26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

5: ne w()

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 28

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created.

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g. 18:00
hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g. 19:00 hours) the application sends a new AOC with the tariff switch time. Again,
at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

16: When the user is almost out of credit the application is informed.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created.

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the parties in the call.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 29

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UICall object is terminated in the gateway and no further communication is possible between the UICall and the
application.

5 Class Diagrams
The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g. the IpCallControlManager interface uses the IpAppCallControlManager, by means of
calling callback methods.

This class diagram shows the interfaces of the generic call control service package.

IpCallControlManager

createCall()
enableCallNotification()
disableCallNotification()
setCallLoadControl()
changeCallNotification()
getCriteria()

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

<<Interface>>

IpCall

routeReq()
release()
deassignCall()
getCallInfoReq()
setCallChargePlan()
setAdviceOfCharge()
getMoreDialledDigitsReq()
superviseCallReq()
<<new>> continueProcessing()

<<Interface>>

1 0..n

Figure 1: Service Interfaces

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 30

IpAppCall

routeRes()
routeErr()
getCallInfoRes()
getCallInfoErr()
superviseCallRes()
superviseCallErr()
callFaultDetected()
getMoreDialledDigitsRes()
getMoreDialledDigitsErr()
callEnded()

(from gccs)

<<Interface>>

IpCall
(from gccs)

<<Interface>>
IpCallControlManager

(from gccs)

<<Interface>>

<<uses>>

IpInterface
<<Interface>>

1 0..n

IpAppCallControlManager

callAborted()
callEventNotify()
callNotificationInterrupted()
callNotificationContinued()
callOverloadEncountered()
callOverloadCeased()
<<new>> abortMultipleCalls()

(from gccs)

<<Interface>>

<<uses>>

1 0..n

Figure 2: Application Interfaces

6 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
Recommendations H.323, Q.763 ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the RFC 3261
Session Initiation Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call
Control Service. Furthermore, the generic call is restricted to two party calls, i.e. only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

The GCCS is represented by the IpCallControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallControlManager and IpAppCall to provide the callback
mechanism.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 31

6.1 Interface Class IpCallControlManager
Inherits from: IpService;

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.
 This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall
be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

6.1.1 Method createCall()

This method is used to create a new call object.

Callback reference:

An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control
will not be able to report a callAborted() to the application. The application should invoke setCallback() prior to
createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 32

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlap.

Setting the callback reference:

The callback reference can be registered either in a) enableCallNotification() or b) explicitly with a separate
setCallback() method depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the enableCallNotification() with explicit immediate registration (no "Null" value) of
callback reference may be the preferred method.

Case b:

The enableCallNotfication() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback reference is provided subsequently in a setCallback().

In case the enableCallNotification() contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback(). See example in clause 4.6

Set additional callback:

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The gateway shall use the most recent callback interface provided by the application using this
method. In the event that a callback reference fails or is no longer available, the next most recent callback reference
available shall be used. See example in clause 4.1.

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 33

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.3 Method disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the enableCallNotification() was
called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception
P_INVALID_ASSIGNMENT_ID will be raised.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

6.1.4 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e. until disabled by the application).

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 34

6.1.5 Method changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.1.6 Method getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method.

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.2 Interface Class IpAppCallControlManager
Inherits from: IpInterface;

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 35

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

<<new>> abortMultipleCalls (callReferenceSet : in TpSessionIDSet) : void

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Setting the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode. When the
callEventNotify() method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been
passed to the gateway, either through an explicit setCallbackWithSessionID() invocation on the supplied IpCall, or via
the return of the callEventNotify() method.

The callback reference can be registered either in a) callEventNotify() or b) explicitly with a
setCallbackWithSessionID() method e.g. depending on how the application provides its call reference.

Case a:

From an efficiency point of view the callEventNotify() with explicit pass of registration may be the preferred method.

Case b:

The callEventNotify() with no callback reference ("Null" value) is used where (e.g. due to distributed application logic)
the callback reference is provided subsequently in a setCallbackWithSessionID().

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 36

In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionID(). See example in 4.6

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed a reference to the IpAppCall interface using a
setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionID().

This parameter will be null if the notification is in NOTIFY mode and in case b).

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

6.2.3 Method callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method.

6.2.4 Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method.

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been encountered.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 37

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been ceased.

6.2.7 Method <<new>> abortMultipleCalls()

The service may invoke this method on the IpAppCallControlManager interface to indicate that a number of ongoing
call sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the calls. This may be used for example in the event of service failure and recovery in order to instruct
the application that a number of call sessions have failed. The service shall provide a set of call sessionIDs indicating to
the application the call sessions that have aborted. In the case that the service invokes this method and provides an
empty set of sessionIDs, this shall be used to indicate that all call sessions previously active on the
IpCallControlManager interface have been aborted.

Parameters

callReferenceSet : in TpSessionIDSet

Specifies the set of sessionIDs of calls that have aborted or terminated abnormally. The empty set shall be used to
indicate that all calls have aborted.

6.3 Interface Class IpCall
Inherits from: IpService;

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.
This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 38

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

<<new>> continueProcessing (callSessionID : in TpSessionID) : void

6.3.1 Method routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

This operation continues processing of the call implicitly.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g. in the multi-party call
control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 39

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g. when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.3.2 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 40

6.3.3 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.4 Method getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.5 Method setCallChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 41

6.3.6 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.7 Method getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.8 Method superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 42

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.9 Method <<new>> continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.4 Interface Class IpAppCall
Inherits from: IpInterface;

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in TpSessionID)
: void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 43

6.4.1 Method routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the response with the request.

6.4.2 Method routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

6.4.3 Method getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 44

6.4.4 Method getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.5 Method superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in this
kind of event.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

6.4.6 Method superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.7 Method callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 45

fault : in TpCallFault

Specifies the fault that has been detected.

6.4.8 Method getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

6.4.9 Method getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.10 Method callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g. getCallInfoRes) related to the call. The application is expected to deassign the call object after
having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 46

7 Generic Call Control Service State Transition
Diagrams

7.1 State Transition Diagrams for IpCallControlManager
The state transition diagram shows the application view on the Call Control Manager object.

Active

Creation of
IpCallControlManager
by Service Instance
Lifecycle Manager

Notifi cati on te rminate d

"new"

ena bleCallNotificati on

disableCallNotif icat ion

"a call obje ct h as terminated abnormally" ^IpAp pCa llCo ntrolMa nager.callAborte d

"arrival of call related event"[notification active for this call event] /
create a Call object Î pAppCall Control Manager.cal lEventNoti fy

disableCallNotification

"a call object has terminated abnormally"
^IpAppCallControlMana ger.callAborted

IpA ccess.te rmin ate ServiceAgre eme nt

"notifications possible again"
 ^IpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"
 IpAp pCa ll Co ntrol Ma nager.cal lNot if icat io nInterru pted

createCall / create a Call object

Figure 3: Application view on the Call Control Manager

7.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

7.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 47

7.2 State Transition Diagrams for IpCall
The state transition diagram shows the application view on the Call object.

Ne twork Rel ea sed

Finished

Application
Released

In state Finshed and No Parties, a timer
mechanism should prevent the object from
occupying resources. Upon the expiry of this timer,
callFaul tDetected() shall be invoked as this is an
abnormal termination.

No Part ies

setCallChargePlan

superviseCallReq
getCallInfoReq

setAdvi ceOf Charge

Active
Routing to

Desti na tion(s)

2 Parti es in
Call

1 Party in
Cal l

Routing to
Desti na tion(s)

2 Parti es in
Call

1 Party in
Cal l

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"disconnect from called party"[monitor
mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

routeReq[only 1 outstanding routeReq]

getMoreDialledDigitsReq[no routeReq outstanding]

"co nn ecti on to ca ll ed party unsuccessful "[
monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"answer"

"Digits collected" ^getMoreDialledDigitsRes

"Error in collecting digits" ^getMoreDialledDigi tsErr

"party released"

"party rel eased"[no m ore ou tstanding
requests]

setAdviceOfCharge

getCallInfoReq

superviseCallReq

createCal l

IpAppCallControlManager.callEventNotify

IpAppCal lControlManager.callEvent
Notify(Answer from call party)

routeReq[number of routing requests < 2]

deassignCall
relea se

timeout ^cal lFaultDetected("timeout on release")

release

"call ends: call ing party abandoned" ^callEnded

"call ends : call ing party disconnects" ^callEnded"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: call ing party disconnects"[no mon itor for this event] ^callEnded
" ca ll en ds : cal led party di sco nne cts"[mo nito r for thi s e ve nt] ^ca llEnded, ro uteRes(pa rty d isconnect)

deassignCall

"answer from called party"

"requests failed"[no more outstanding
routeReq operations] ^route Err

"connection to called party unsuccessful"[no more
ou tstanding routeReq ope rations] ^routeRes

deassignCall

release

"fault in retrieval of information"
^getCallInfoErr, superviseCallErr

[no reports requested with getCallInfoReq AND superviseCallReq]

"requested information ready"
^getCallInfoRes, superviseCallRes

"faul t i n retr ieval of in fo rmat ion" ^getCal lI nfo Err, supervi seCa llErr

"requested information ready"
^getCallInfoRes, superviseCal lRes

[no reports requested with getCallInfoReq AND superviseCallReq]

release

deassign

routeReqcontinueProcessing

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

Figure 4: Application view on the IpCall object

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately a transition is made to
state Finished.

7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 48

7.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCallChargePlan(). The application can request for charging related information by calling
getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is
also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

7.2.5 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), routeReq(), release() or deassignCall() method.

7.2.6 1 Party in Call State

In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application is informed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issuing a routeReq() the application
can request a connection to a second call party by calling the operation routeReq() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
is ended or a transition is made back to the Routing to Destinations substate. When the second party answers the call, a
transition will be made to the 2 Parties in Call state.

In this state user interaction is possible.

7.2.7 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. The application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. The application is monitoring for this event but not in interrupt mode. In this case a transition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. The application is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 49

In this state user interaction is possible, depending on the underlying network.

7.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

8 Generic Call Control Service Properties

8.1 List of Service Properties
The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static

events are the events by which applications are initiated.
P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS.

Dynamic events are the events the application can request for
during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plans (defined in
TpAddressPlan.) e.g. {P_ADDRESS_PLAN_E164,
P_ADDRESS_PLAN_IP}). Note that more than one address plan
may be supported.

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level
and a reference to a Call object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage
during a call.
Value = FALSE: User Interaction can be performed in case there
is only one party in the call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined
by data-type TpMediaType : P_AUDIO, P_VIDEO, P_DATA.

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 50

Property Type Description
P_NOTIFICATION_ADDRESS_RANGES XML_ADDRESS_RANGE_SET Indicates for which numbers notifications

may be set. More than one range may be
present. For terminating notifications they
apply to the terminating number, for
originating notifications they apply only to
the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed
to set originating and/or terminating triggers
in the ECN. Set is:
P_ORIGINATING
P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed
to monitor in interrupt and/or notify mode.
Set is:
P_INTERRUPT
P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is
allowed to change or fill for legs in an
incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,
P_TARGET_NUMBER,
P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the
setCallChargePlan indicator. Allowed
values:
{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we
assume they can be indicated with integers)
to a logical network chargeplan indicator.
When the chargeplan supports indicates
P_CHARGE_PLAN then only chargeplans in
this mapping are allowed.

8.2 Service Property values for the CAMEL Service
Environment

Implementations of the Generic Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values :

P_OPERATION_SET = {
"IpCallControlManager.createCall",
"IpCallControlManager.enableCallNotification",
"IpCallControlManager.disableCallNotification",
"IpCallControlManager.changeCallNotification",
"IpCallControlManager.getCriteria",
"IpCallControlManager.setCallLoadControl",
"IpCall.routeReq",
"IpCall.release",
"IpCall.deassignCall",
"IpCall.getCallInfoReq",
"IpCall.setCallChargePlan",
"IpCall.setAdviceOfCharge",
"IpCall.superviseCallReq"
}

P_TRIGGERING_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,
P_EVENT_GCCS_CALLED_PARTY_BUSY,
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY,
P_EVENT_GCCS_ROUTE_SELECT_FAILURE
}

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 51

P_DYNAMIC_EVENT_TYPES = {
P_CALL_REPORT_ALERTING,
P_CALL_REPORT_ANSWER,
P_CALL_REPORT_BUSY,
P_CALL_REPORT_NO_ANSWER,
P_CALL_REPORT_DISCONNECT,
P_CALL_REPORT_SERVICE_CODE,
P_CALL_REPORT_ROUTING_FAILURE,
P_CALL_REPORT_NOT_REACHABLE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

9 Generic Call Control Data Definitions
This clause provides the GCC data definitions necessary to support the API specification.

The general format of a Data Definition specification is described below:

• Data Type.

This shows the name of the data type:

• Description.

This describes the data type:

• Tabular Specification.

This specifies the data types and values of the data type:

• Example.

If relevant, an example is shown to illustrate the data type.

All data types referenced in the present document but not defined in this clause are defined either in the common call
control data definitions in ES 203 915-4-1 or in the common data definitions which may be found in ES 203 915-2.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 52

9.1 Generic Call Control Event Notification Data Definitions

9.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAME_UNDEFINED 0 Undefined.
P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS - Offhook event

This can be used for hot-line features. In
case this event is set in the
TpCallEventCriteria, only the originating
address(es) may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS - Address information collected
The network has collected the information
from the A-party, but not yet analysed the
information. The number can still be
incomplete. Applications might set
notifications for this event when part of the
number analysis needs to be done in the
application (see also the
getMoreDialledDigitsReq method on the call
class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS - Address information is analysed
The dialled number is a valid and complete
number in the network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS - Called party is busy.
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS - Called party is unreachable (e.g. the

called party has a mobile telephone that is
currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS - No answer from called party.
P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS - Failure in routing the call.
P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS - Party answered call.

9.1.2 TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 0 Indicates that the notification is related to the originating user in the call.
P_TERMINATING 1 Indicates that the notification is related to the terminating user in the

call.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 53

9.1.3 TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for an event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element Name Sequence Element Type Description
DestinationAddress TpAddressRange Defines the destination address or address range for which

the notification is requested.
OriginatingAddress TpAddressRange Defines the origination address or an address range for

which the notification is requested.
CallEventName TpCallEventName Name of the event(s).

CallNotificationType TpCallNotificationType Indicates whether it is related to the originating or the
terminating user in the call.

MonitorMode TpCallMonitorMode Defines the mode that the call is in following the
notification.
Monitor mode
P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a
legal value here.

9.1.4 TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress
OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress
RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet
CallEventName TpCallEventName

CallNotificationType TpCallNotificationType
MonitorMode TpCallMonitorMode

9.2 Generic Call Control Data Definitions

9.2.1 IpCall

Defines the address of an IpCall Interface.

9.2.2 IpCallRef

Defines a Reference to type IpCall.

9.2.3 IpAppCall

Defines the address of an IpAppCall Interface.

9.2.4 IpAppCallRef

Defines a Reference to type IpAppCall.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 54

9.2.5 TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object.

Sequence Element Name Sequence Element Type Sequence Element Description
CallReference IpCallRef This element specifies the interface reference for

the call object.
CallSessionID TpSessionID This element specifies the call session ID of the call.

9.2.6 IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

9.2.7 IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

9.2.8 IpCallControlManager

Defines the address of an IpCallControlManager Interface.

9.2.9 IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

9.2.10 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

 Tag Element Type
 TpCallAppInfoType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism
P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType
P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService
P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService
P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory
P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress
P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo
P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 55

9.2.11 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined
P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)
P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)
P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s

unrestricted data)
P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party
P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties
P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information
P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

9.2.12 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

9.2.13 TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element Name Sequence Element Type Description
CallLegSessionID TpSessionID The leg that initiated the release of the call.

If the call release was not initiated by the leg, then
this value is set to -1.

Cause TpCallReleaseCause The cause of the call ending.

9.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P_CALL_FAULT_UNDEFINED 0 Undefined
P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has

been sent to the application, but the
application did not explicitly release or
deassign the call object, within a specified
time.
The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway
reported an event that was requested by the
application in interrupt mode.
The timer value is operator specific.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 56

9.2.15 TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element Name Sequence Element Type Description
CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-on
call, was started as a result of a routeReq.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was
connected to the resource.
This data element is only valid when
information on user interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was
connected to the destination (i.e. when the
destination answered the call).
If the destination did not answer, the time is
set to an empty string.
This data element is invalid when information
on user interaction is reported.

CallEndTime TpDateAndTime The date and time when the call or follow-on
call or user interaction was terminated.

Cause TpCallReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

9.2.16 TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element Name Sequence Element Type
Value TpInt32

Location TpInt32
NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from ITU-T Recommendation Q.850 to aid understanding.

Equivalent Call Report Cause Value Set by
Application

Cause Value from
Network

P_CALL_REPORT_BUSY 17 17
P_CALL_REPORT_NO_ANSWER 19 18, 19, 21
P_CALL_REPORT_DISCONNECT 16 16
P_CALL_REPORT_REDIRECTED 23 23
P_CALL_REPORT_SERVICE_CODE 31 NA
P_CALL_REPORT_NOT_REACHABLE 20 20
P_CALL_REPORT_ROUTING_FAILURE 3 Any other value

9.2.17 TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallEventTime TpDateAndTime
CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 57

9.2.18 TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types
of reports.

 Tag Element Type
 TpCallReportType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_REPORT_UNDEFINED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTING NULL Undefined
P_CALL_REPORT_ANSWER NULL Undefined
P_CALL_REPORT_BUSY TpCallReleaseCause Busy
P_CALL_REPORT_NO_ANSWER NULL Undefined
P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect
P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress
P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure
P_CALL_REPORT_QUEUED TpString QueueStatus
P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReachable

9.2.19 TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallReportType TpCallReportType
AdditionalReportCriteria TpCallAdditionalReportCriteria

9.2.20 TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

 Tag Element Type
 TpCallReportType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_REPORT_UNDEFINED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTING NULL Undefined
P_CALL_REPORT_ANSWER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration
P_CALL_REPORT_DISCONNECT NULL Undefined
P_CALL_REPORT_REDIRECTED NULL Undefined
P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTING_FAILURE NULL Undefined
P_CALL_REPORT_QUEUED NULL Undefined
P_CALL_REPORT_NOT_REACHABLE NULL Undefined

9.2.21 TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 58

9.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFINED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that

progress has been made in routing the call to the requested
call party. This message may be sent more than once, or may
not be sent at all by the gateway with respect to routing a given
call leg to a given address.

P_CALL_REPORT_ALERTING 2 Call is alerting at the call party.
P_CALL_REPORT_ANSWER 3 Call answered at address.
P_CALL_REPORT_BUSY 4 Called address refused call due to busy.
P_CALL_REPORT_NO_ANSWER 5 No answer at called address.
P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This

does not imply that the call has ended. When the call is ended,
the callEnded method is called. This event can occur both
when the called party hangs up, or when the application
explicitly releases the leg using IpCallLeg.release() This cannot
occur when the app explicitly releases the call leg and the call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network
that the call has been redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received.
P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-routing is possible.
P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more

than once during the routing of a call.
P_CALL_REPORT_NOT_REACHABLE 11 The called address is not reachable; e.g. the phone has been

switched off or the phone is outside the coverage area of the
network.

9.2.23 TpCallTreatment

Defines the Sequence of Data Elements that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name Sequence Element Type
CallTreatmentType TpCallTreatmentType

ReleaseCause TpCallReleaseCause
AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

9.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

9.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element Name Sequence Element Type Sequence Element Description
CallEventCriteria TpCallEventCriteria The event criteria that were specified by the

application.
AssignmentID TpInt32 The associated assignmentID. This can be used to

disable the notification.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 59

Annex A (normative):
OMG IDL Description of Generic Call Control SCF
The OMG IDL representation of this interface specification is contained in text files (gcc_data.idl and gcc_interfaces.idl
contained in archive es_2039150402v010101p0.zip) which accompany the present document.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 60

Annex B (informative):
W3C WSDL Description of Generic Call Control SCF
The W3C WSDL representation of this interface specification is contained in text files (gcc_data.wsdl and
gcc_interfaces.wsdl contained in archive es_2039150402v010101p0.zip) which accompany the present document.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 61

Annex C (informative):
Java™ API Description of the Call Control SCFs
The Java™ API realisation of this interface specification is produced in accordance with the Java™ Realisation rules
defined in ES 203 915-1. These rules aim to deliver for Java™, a developer API, provided as a realisation, supporting a
Java™ API that represents the UML specifications. The rules support the production of both J2SE™ and J2EE™
versions of the API from the common UML specifications.

The J2SE™ representation of this interface specification is provided as Java™ Code, contained in archive
20391504-2J2SE.zip.

The J2EE™ representation of this interface specification is provided as Java™ Code, contained in archive
20391504-2J2EE.zip.

Both these archives can be found in es_2039150402v010101p0.zip which accompanies the present document.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 62

Annex D (informative):
Contents of 3GPP OSA Rel-6 Call Control
All items in Generic Call Control are relevant for TS 129 198-4-2 V6 (Release 6).

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 63

Annex E (informative):
Description of Call Control Sub-part 2: Generic call control
SCF for 3GPP2 cdma2000 networks
This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in [52], [53] and
[54] of ES 203 915-1, clause 2. These requirements are expressed as additions to and/or exclusions from the 3GPP
Release 6 specification. The information given here is to be used by developers in 3GPP2 cdma2000 network
architecture to interpret the 3GPP OSA specifications.

E.1 General Exceptions
The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used
(TR 121 905) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions or
exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

E.2 Specific Exceptions

E.2.1 Clause 1: Scope
There are no additions or exclusions.

E.2.2 Clause 2: References
Normative references on TS 123 078 and on TS 129 078 are not applicable for cdma2000 systems.

E.2.3 Clause 3: Definitions and abbreviations
There are no additions or exclusions.

E.2.4 Clause 4: Generic Call Control Service Sequence Diagrams
There are no additions or exclusions. Nevertheless, CAMEL and CAP mappings are not applicable for cdma2000
systems.

E.2.5 Clause 5: Class Diagrams
There are no additions or exclusions.

E.2.6 Clause 6: Generic Call Control Service Interface Classes
There are no additions or exclusions.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 64

E.2.7 Clause 7: Generic Call Control Service State Transition
Diagrams

There are no additions or exclusions.

E.2.8 Clause 8: Generic Call Control Service Properties
There are no additions or exclusions. Nevertheless, for cdma2000 systems the CAMEL data types and service
properties are not applicable.

E.2.9 Clause 9: Generic Call Control Data Definitions
There are no additions or exclusions.

E.2.10 Annex A (normative): OMG IDL Description of Generic Call
Control SCF

There are no additions or exclusions.

E.2.11 Annex B (informative): W3C WSDL Description of Generic
Call Control SCF

There are no additions or exclusions.

E.2.12 Annex C (informative): Java™ API Description of the Call
Control SCFs

There are no additions or exclusions.

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 65

Annex F (informative):
Record of changes
The following is a list of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that is important to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
allowing the reader to know when the actual change was made.

F.1 Interfaces

F.1.1 New
Identifier Comments

Interfaces added in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.1.2 Deprecated
Identifier Comments

Interfaces deprecated in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.1.3 Removed
Identifier Comments

Interfaces removed in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.2 Methods

F.2.1 New
Identifier Comments

Methods added in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)
IpCall.continueProcessing()
IpAppCallControlManager.abortMultipleCalls()

F.2.2 Deprecated
Identifier Comments

Methods deprecated in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 66

F.2.3 Modified
Identifier Comments

Methods modified in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.2.4 Removed
Identifier Comments

Methods removed in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.3 Data Definitions

F.3.1 New
Identifier Comments

Data Definitions added in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.3.2 Modified
Identifier Comments

Data Definitions modified in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.3.3 Removed
Identifier Comments

Data Definitions removed in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.4 Service Properties

F.4.1 New
Identifier Comments

Service Properties added in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)
P_NOTIFICATION_ADDRESS_RANGES Replaces P_TRIGGERING_ADDRESSES

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 67

F.4.2 Deprecated
Identifier Comments

Service Properties deprecated in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.4.3 Modified
Identifier Comments

Service Properties modified in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.4.4 Removed
Identifier Comments

Service Properties removed in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)
P_TRIGGERING_ADDRESSES Replaced with P_NOTIFICATION_ADDRESS_RANGES

F.5 Exceptions

F.5.1 New
Identifier Comments

Exceptions added in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.5.2 Modified
Identifier Comments

Exceptions modified in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.5.3 Removed
Identifier Comments

Exceptions removed in ES 203 915-4-2 version 1.1.1 (Parlay 5.0)

F.6 Others
None

ETSI

ETSI ES 203 915-4-2 V1.1.1 (2005-04) 68

History

Document history

V1.1.1 February 2005 Membership Approval Procedure MV 20050408: 2005-02-08 to 2005-04-08

V1.1.1 April 2005 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Generic Call Control Service Sequence Diagrams
	4.1 Additional Callbacks
	4.2 Alarm Call
	4.3 Application Initiated Call
	4.4 Call Barring 1
	4.5 Number Translation 1
	4.6 Number Translation 1 (with callbacks)
	4.7 Number Translation 2
	4.8 Number Translation 3
	4.9 Number Translation 4
	4.10 Number Translation 5
	4.11 Prepaid
	4.12 Pre-Paid with Advice of Charge (AoC)

	5 Class Diagrams
	6 Generic Call Control Service Interface Classes
	6.1 Interface Class IpCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method enableCallNotification()
	6.1.3 Method disableCallNotification()
	6.1.4 Method setCallLoadControl()
	6.1.5 Method changeCallNotification()
	6.1.6 Method getCriteria()

	6.2 Interface Class IpAppCallControlManager
	6.2.1 Method callAborted()
	6.2.2 Method callEventNotify()
	6.2.3 Method callNotificationInterrupted()
	6.2.4 Method callNotificationContinued()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()
	6.2.7 Method <<new>> abortMultipleCalls()

	6.3 Interface Class IpCall
	6.3.1 Method routeReq()
	6.3.2 Method release()
	6.3.3 Method deassignCall()
	6.3.4 Method getCallInfoReq()
	6.3.5 Method setCallChargePlan()
	6.3.6 Method setAdviceOfCharge()
	6.3.7 Method getMoreDialledDigitsReq()
	6.3.8 Method superviseCallReq()
	6.3.9 Method <<new>> continueProcessing()

	6.4 Interface Class IpAppCall
	6.4.1 Method routeRes()
	6.4.2 Method routeErr()
	6.4.3 Method getCallInfoRes()
	6.4.4 Method getCallInfoErr()
	6.4.5 Method superviseCallRes()
	6.4.6 Method superviseCallErr()
	6.4.7 Method callFaultDetected()
	6.4.8 Method getMoreDialledDigitsRes()
	6.4.9 Method getMoreDialledDigitsErr()
	6.4.10 Method callEnded()

	7 Generic Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpCallControlManager
	7.1.1 Active State
	7.1.2 Notification terminated State

	7.2 State Transition Diagrams for IpCall
	7.2.1 Network Released State
	7.2.2 Finished State
	7.2.3 Application Released State
	7.2.4 No Parties State
	7.2.5 Active State
	7.2.6 1 Party in Call State
	7.2.7 2 Parties in Call State
	7.2.8 Routing to Destination(s) State

	8 Generic Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment

	9 Generic Call Control Data Definitions
	9.1 Generic Call Control Event Notification Data Definitions
	9.1.1 TpCallEventName
	9.1.2 TpCallNotificationType
	9.1.3 TpCallEventCriteria
	9.1.4 TpCallEventInfo

	9.2 Generic Call Control Data Definitions
	9.2.1 IpCall
	9.2.2 IpCallRef
	9.2.3 IpAppCall
	9.2.4 IpAppCallRef
	9.2.5 TpCallIdentifier
	9.2.6 IpAppCallControlManager
	9.2.7 IpAppCallControlManagerRef
	9.2.8 IpCallControlManager
	9.2.9 IpCallControlManagerRef
	9.2.10 TpCallAppInfo
	9.2.11 TpCallAppInfoType
	9.2.12 TpCallAppInfoSet
	9.2.13 TpCallEndedReport
	9.2.14 TpCallFault
	9.2.15 TpCallInfoReport
	9.2.16 TpCallReleaseCause
	9.2.17 TpCallReport
	9.2.18 TpCallAdditionalReportInfo
	9.2.19 TpCallReportRequest
	9.2.20 TpCallAdditionalReportCriteria
	9.2.21 TpCallReportRequestSet
	9.2.22 TpCallReportType
	9.2.23 TpCallTreatment
	9.2.24 TpCallEventCriteriaResultSet
	9.2.25 TpCallEventCriteriaResult

	Annex A (normative): OMG IDL Description of Generic Call Control SCF
	Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	Annex C (informative): JavaŽ API Description of the Call Control SCFs
	Annex D (informative): Contents of 3GPP OSA Rel-6 Call Control
	Annex E (informative): Description of Call Control Sub-part 2: Generic call control SCF for 3GPP2 cdma2000 networks
	E.1 General Exceptions
	E.2 Specific Exceptions
	E.2.1 Clause 1: Scope
	E.2.2 Clause 2: References
	E.2.3 Clause 3: Definitions and abbreviations
	E.2.4 Clause 4: Generic Call Control Service Sequence Diagrams
	E.2.5 Clause 5: Class Diagrams
	E.2.6 Clause 6: Generic Call Control Service Interface Classes
	E.2.7 Clause 7: Generic Call Control Service State Transition Diagrams
	E.2.8 Clause 8: Generic Call Control Service Properties
	E.2.9 Clause 9: Generic Call Control Data Definitions
	E.2.10 Annex A (normative): OMG IDL Description of Generic Call Control SCF
	E.2.11 Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	E.2.12 Annex C (informative): JavaŽ API Description of the Call Control SCFs

	Annex F (informative): Record of changes
	F.1 Interfaces
	F.1.1 New
	F.1.2 Deprecated
	F.1.3 Removed

	F.2 Methods
	F.2.1 New
	F.2.2 Deprecated
	F.2.3 Modified
	F.2.4 Removed

	F.3 Data Definitions
	F.3.1 New
	F.3.2 Modified
	F.3.3 Removed

	F.4 Service Properties
	F.4.1 New
	F.4.2 Deprecated
	F.4.3 Modified
	F.4.4 Removed

	F.5 Exceptions
	F.5.1 New
	F.5.2 Modified
	F.5.3 Removed

	F.6 Others

	History

