

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10)

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);

Part 1: Overview
(Parlay 5)

�

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 2

Reference
RES/TISPAN-01029-01-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.

© The Parlay Group 2006.
All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 3

Contents

Intellectual Property Rights ..6

Foreword...6

1 Scope ..7

2 References ..7

3 Definitions and abbreviations...10
3.1 Definitions..10
3.2 Abbreviations ...11

4 Open Service Access APIs ...12

5 Document structure ..13

6 Methodology ..15
6.1 Tools and Languages..15
6.2 Packaging Structure..15
6.3 Colours ...17
6.4 Naming scheme ..17
6.5 State Transition Diagram text and text symbols...18
6.6 Exception handling and passing results..18
6.7 References ..18
6.8 Strings and Collections...18
6.9 Prefixes...18

7 Introduction to Parlay/OSA APIs...19
7.1 Interface Types ...19
7.2 Service Factory...19
7.3 Use of Sessions...19
7.4 Interfaces and Sessions...19
7.5 Callback Interfaces ...19
7.6 Setting Callbacks..20
7.7 Synchronous versus Asynchronous Methods ...20
7.8 Out Parameters ...20
7.9 Exception Hierarchy...20
7.10 Common Exceptions ..21
7.11 Use of NULL..21
7.12 Notification Handling...21

8 Relationship between ETSI, Parlay and 3GPP OSA releases ..22

9 Backwards Compatibility Considerations ..23
9.1 Guidelines to enable backwards compatibility in implementations ...23
9.2 Rule summary ..23
9.2.1 Server side permitted changes ..23
9.2.2 Client side permitted changes ...24
9.2.3 Data type permitted changes...24
9.3 Implementation Guidelines for Server Programmers ...24
9.4 Implementation Guidelines for Client Programmers..24
9.5 Tracking the changes in the specifications ...24
9.5.1 New Tag ...24
9.5.2 Deprecated Tag...25
9.6 Technology realization rules ..25
9.6.1 Corba IDL Rules...25
9.6.2 Java rules ..25
9.7 Rules for removal of deprecated items from the specifications..25

Annex A (normative): OMG IDL ...26

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 4

A.1 Tools and languages ...26

A.2 Namespace ...26

A.3 Object References...26

A.4 Mapping of Datatypes ..26
A.4.1 Basic Datatypes ..26
A.4.2 Constants ..26
A.4.3 Collections..27
A.4.4 Sequences ...27
A.4.5 Enumerations..27
A.4.6 Choices ...27

A.5 Use of NULL..28

A.6 Exceptions ..28

A.7 Naming space across CORBA modules ...28

Annex B (informative): W3C WSDL..29

B.1 Tools and Languages..29

B.2 Proposed Namespaces for the OSA WSDL ...29

B.3 Object References...30

B.4 Mapping UML Data Types to XML Schema...30
B.4.1 Data Types..30
B.4.1.1 <<Constant>> ...31
B.4.1.2 <<NameValuePair>>..31
B.4.1.3 <<SequenceOfDataElements>>..31
B.4.1.4 <<TypeDef>> ...32
B.4.1.5 <<NumberedSetOfDataElements>> ...32
B.4.1.6 <<TaggedChoiceOfDataElements>>..32

B.5 Mapping of UML Interfaces to WSDL ..33
B.5.1 Mapping of UML Operations to WSDL message element...33
B.5.2 Mapping of Exception to WSDL message element..33
B.5.3 Mapping of Interface Class to WSDL portType and binding elements..33
B.5.4 Mapping of UML Interfaces to WSDL service element...34

Annex C (informative): Java™ Realisation API ...35

C.1 Java™ Realisation Overview ...35
C.1.1 J2SE™ API ..35
C.1.2 J2EE™ API ..35
C 1.3 Javadoc™ ...35

C.2 Tools and languages ...36

C.3 Generic Mappings (Elements common to J2SE™ and J2EE™)..36
C.3.1 Namespace ...36
C.3.2 Package Naming Conventions..36
C.3.3 Object References...36
C.3.4 Element Naming...37
C.3.5 Element Naming Collisions..37
C.3.6 Data Type Definitions ..37
C.3.6.1 Basic Data Types ..37
C.3.6.2 Constants ..37
C.3.6.3 NumberedSetsOfDataElements (Collections)...38
C.3.6.4 SequenceOfDataElements (Structures)...38
C.3.6.5 NameValuePair (Enumerations) ...39
C.3.6.6 TaggedChoiceOfDataElements (Unions) ...40
C.3.6.7 Exceptions...42
C.3.6.7.1 PlatformException ..42

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 5

C.3.6.7.2 P_XXX_XXX Exceptions ..43
C.3.6.7.3 TpCommonExceptions..43
C.3.6.7.4 TpCommonException's associated exceptions..44
C.3.6.7.5 Additional abstract exceptions ..44
C.3.6.7.6 InvalidUnionAccessorException...45
C.3.6.7.7 InvalidEnumValueException ..45
C.3.6.8 Deprecation...45

C.4 J2SE™ Specific Conventions...46
C.4.1 Removal of "Tp" Prefix..46
C.4.2 Constants ..46
C.4.3 Removal of "Ip" prefix ...46
C.4.4 Mapping of IpInterface...47
C.4.5 Mapping of IpService ...47
C.4.6 Mapping of UML Operations...47
C.4.7 Mapping of TpSessionID ...48
C.4.8 Mapping of TpAssignmentID to the creation of an Activity object ...48
C.4.9 Callback Rule ...51
C.4.10 Factory Rule ...52
C.4.11 J2SE™ Specific Exceptions ...54
C.4.11.1 PeerUnavailableException..54
C.4.11.2 IllegalStateException ..54
C.4.12 User Interaction Specific Rules ..55
C.4.12.1 Interfaces representing UML IpUI and IpUICall Rule ...55
C.4.12.2 Naming Collisions of IpUI and IpUICall Rule ...55
C.4.12.3 Naming Collisions of IpUICall and IpUIAdminManager Rule ..55

C.5 J2EE™ Specific Conventions ..55
C.5.1 Void..55
C.5.2 Remote Interface Definitions ...55
C.5.2.1 IpInterface...55
C.5.2.2 Methods for Remote Interfaces...55
C.5.3 Local Interface Definitions...56
C.5.3.1 Methods for Local Interfaces ..56
C.5.4 Multi Party Call Control Specific Rules...56
C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts ..56

Annex D (informative): Description of Overview for 3GPP2 cdma2000 networks..........................57

D.1 General Exceptions...57

D.2 Specific Exceptions ..57
D.2.1 Clause 1: Scope ..57
D.2.2 Clause 2: References ..57
D.2.3 Clause 3: Definitions and abbreviations ...57
D.2.4 Clause 4: Open Service Access APIs ...57
D.2.5 Clause 5: Structure of the OSA API (29.198) and Mapping (29.998) documents ...57
D.2.6 Clause 6: Methodology ..57
D.2.7 Clause 7: Introduction to OSA APIs ..57
D.2.8 Annex A (normative): OMG IDL...58
D.2.9 Annex B (informative): W3C WSDL...58
D.2.10 Annex C (informative): Java™ API...58

Annex E (informative): Bibliography...59

History ..60

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and Internet
converged Services and Protocols for Advanced Networking (TISPAN), and is now submitted for the ETSI standards
Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), as identified below. The API specification (ES 203 915) is structured in the following
parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15: "Multi-Media Messaging SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 5.1 set of specifications.

The present document is equivalent to 3GPP TS 29.198-1 V6.4.0 (Release 6).

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 7

1 Scope
The present document is part 1 of the Stage 3 specification for an Application Programming Interface for Open Service
Access (OSA), and provides an overview of the content and structure of the various parts of the present document, and
of the relation to other standards documents.

The OSA specifications define an architecture that enables service application developers to make use of network
functionality through an open standardized interface, i.e. the OSA APIs.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

[1] ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for
3GPP Specifications (3GPP TR 21.905)".

[2] ETSI TS 122 024: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Description of Charge Advice Information (CAI)
(3GPP TS 22.024)".

[3] ITU-T Recommendation Q.850: "Usage of cause and location in the Digital Subscriber Signalling
System No. 1 and the Signalling System No. 7 ISDN User Part".

[4] ITU-T Recommendation Q.2931: "Digital Subscriber Signalling System No. 2 - User-Network
Interface (UNI) layer 3 specification for basic call/connection control".

[5] ETSI TS 122 101: "Universal Mobile Telecommunications System (UMTS); Service aspects;
Service principles (3GPP TS 22.101)".

[6] World Wide Web Consortium: "Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation". (http://www.w3.org/TR/NOTE-CCPP/).

[7] ETSI TS 129 002: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Mobile Application Part (MAP) specification
(3GPP TS 29.002)".

[8] ETSI TS 129 078: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); customized Applications for Mobile network Enhanced
Logic (CAMEL); CAMEL Application Part (CAP) specification (3GPP TS 29.078)".

[9] Wireless Application Protocol (WAP), Version 2.0: "User Agent Profiling Specification"
(WAP-248). (http://www.wapforum.org/what/technical.htm).

[10] ETSI TS 122 002: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Circuit Bearer Services (BS) supported by a Public Land
Mobile Network (PLMN) (3GPP TS 22.002)".

http://docbox.etsi.org/Reference
http://www.w3.org/TR/NOTE-CCPP/
http://www.wapforum.org/what/technical.htm

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 8

[11] ETSI TS 122 003: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Circuit Teleservices supported by a Public Land Mobile
Network (PLMN) (3GPP TS 22.003)".

[12] ETSI TS 124 002: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); GSM-UMTS Public Land Mobile Network (PLMN)
Access Reference Configuration (3GPP TS 24.002)".

[13] ITU-T Recommendation Q.763: "Signalling System No. 7 - ISDN User Part formats and codes".

[14] ITU-T Recommendation Q.931: "ISDN user-network interface layer 3 specification for basic call
control".

[15] ISO 8601: "Data elements and interchange formats - Information interchange - Representation of
dates and times".

[16] ISO 4217: "Codes for the representation of currencies and funds".

[17] ISO 639: "Code for the representation of names of languages".

[18] IETF RFC 822: "Standard for the format of ARPA Internet text messages".

[19] IETF RFC 1738: "Uniform Resource Locators (URL)".

[20] ETSI TS 129 198 (V3.4.0): "Universal Mobile Telecommunications System (UMTS); Open
Service Architecture (OSA) Application Programming Interface (API) - Part 1 (3GPP TS 29.198
version 3.4.0 Release 1999)".

[21] ETSI TS 129 198 (all parts): "Universal Mobile Telecommunications System (UMTS); Open
Service Access (OSA) Application Programming Interface (API); (3GPP TS 29.198 Release 6)".

[22] ETSI TS 123 107: "Universal Mobile Telecommunications System (UMTS); Quality of Service
(QoS) concept and architecture" (3GPP TS 23.107)".

[23] ETSI TS 123 271: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Location Services (LCS); Functional description; Stage 2
(3GPP TS 23.271)".

[24] ANSI T1.113: "Signalling System No. 7 (SS7) - Integrated Services Digital Network (ISDN) User
Part".

[25] IETF RFC 3261: "SIP: Session Initiation Protocol".

[26] ITU-T Recommendation Q.932: "Digital subscriber signalling system No. 1 - Generic procedures
for the control of ISDN supplementary services".

[27] ITU-T Recommendation H.221: "Frame structure for a 64 to 1920 kbit/s channel in audiovisual
teleservices".

[28] ITU-T Recommendation H.323: "Packet-based multimedia communications systems".

[29] IETF RFC 1994: "PPP Challenge Handshake Authentication Protocol (CHAP)".

[30] IETF RFC 2630: "Cryptographic Message Syntax".

[31] IETF RFC 2313: "PKCS #1: RSA Encryption Version 1.5".

[32] IETF RFC 2459: "Internet X.509 Public Key Infrastructure Certificate and CRL Profile".

[33] IETF RFC 2437: "PKCS #1: RSA Cryptography Specifications Version 2.0".

[34] IETF RFC 1321: "The MD5 Message-Digest Algorithm".

[35] IETF RFC 2404: "The Use of HMAC-SHA-1-96 within ESP and AH".

[36] IETF RFC 2403: "The Use of HMAC-MD5-96 within ESP and AH".

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 9

[37] ITU-T Recommendation G.722: "7 kHz audio-coding within 64 kbit/s".

[38] ITU-T Recommendation G.711: "Pulse code modulation (PCM) of voice frequencies".

[39] ITU-T Recommendation G.723.1: "Speech coders: Dual rate speech coder for multimedia
communications transmitting at 5.3 and 6.3 kbit/s".

[40] ITU-T Recommendation G.728: "Coding of speech at 16 kbit/s using low-delay code excited
linear prediction".

[41] ITU-T Recommendation G.729: "Coding of speech at 8 kbit/s using
conjugate-structure algebraic-code-excited linear-prediction (CS-ACELP)".

[42] ITU-T Recommendation H.261: "Video codec for audiovisual services at p x 64 kbit/s".

[43] ITU-T Recommendation H.263: "Video coding for low bit rate communication".

[44] ITU-T Recommendation H.262: "Information technology - Generic coding of moving pictures and
associated audio information: Video".

[45] World Geodetic System 1984 (WGS 84). (http://www.wgs84.com/files/wgsman24.pdf).

NOTE: The above link is temporarily not accessible. The following mirror site may contain the same
information, but has not been verified by ETSI.
http://octopus.hit.bme.hu/tkatona/mirrors/WGS84/www.wgs84.com/files/wgsman24.pdf

[46] ITU-T Recommendation X.400: "Message handling services: Message handling system and
service overview".

[47] ITU-T Recommendation E.164: "The international public telecommunication numbering plan".

[48] IETF RFC 2445: "Internet Calendaring and Scheduling Core Object Specification (iCalendar)".

[49] IETF RFC 2778: "A Model for Presence and Instant Messaging".

[50] ITU-T Recommendation Q.1238-2: "Interface Recommendation for Intelligent Network
Capability Set 3: SCF - SSF interface".

[51] IETF RFC 3460: "Policy Core Information Model (PCIM) Extensions".

[52] 3GPP2 P.S0001-B: "Wireless IP Network Standard", Version 1.0, October 2002.

[53] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems",
Version 2.0, May 2002.

[54] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain", December 2003.

[55] ETSI ES 201 915: "Open Service Access (OSA); Application Programming Interface (API)
(Parlay 3)".

[56] ETSI ES 202 915: "Open Service Access (OSA); Application Programming Interface (API)
(Parlay 4)".

[57] ETSI ES 203 915-2: "Open Service Access (OSA); Application Programming Interface (API);
Part 2: Common Data Definitions (Parlay 5)".

[58] IETF RFC 1737: "Functional Requirements for Uniform Resource Names".

[59] ITU-T Recommendation T.120: "Data protocols for multimedia conferencing".

[60] ISO/IEC 11172-2: "Information technology - Coding of moving pictures and associated audio for
digital storage media at up to about 1,5 Mbit/s - Part 2: Video".

[61] ISO/IEC 11172-3: "Information technology - Coding of moving pictures and associated audio for
digital storage media at up to about 1,5 Mbit/s - Part 3: Audio".

http://www.wgs84.com/files/wgsman24.pdf
http://octopus.hit.bme.hu/tkatona/mirrors/WGS84/www.wgs84.com/files/wgsman24.pdf

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 10

[62] ISO/IEC 13818-3: "Information technology - Generic coding of moving pictures and associated
audio information - Part 3: Audio".

[63] ISO/IEC 14496-2: "Information technology - Coding of audio-visual objects - Part 2: Visual".

[64] draft-ietf-simple-message-sessions-15.txt: "The Message Session Relay Protocol".

[65] IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies".

[66] IETF RFC 2183: "Communicating Presentation Information in Internet Messages:
The Content-Disposition Header Field".

[67] CORBA 2.4.2: "The Common Object Request Broker: Architecture and Specification",
February 2001. http://www.omg.org/cgi-bin/doc?formal/01-02-33.

[68] IETF RFC 2822: "Internet Message Format".

[69] IETF RFC 3060: "Policy Core Information Model - Version 1 Specification".

[70] IETF RFC 2591: "Definitions of Managed Objects for Scheduling Management Operations".

[71] DMTF CIM: "Common Information Model" http://www.dmtf.org/spec/cims.html.

[72] IEEE 754: "IEEE Standard for Binary Floating-Point Arithmetic".

[73] ETSI ES 203 915-4-5: "Open Service Access (OSA); Application Programming Interface (API);
Part 4: Call Control; Sub-part 5: Conference Call Control SCF (Parlay 5)".

[74] ETSI ES 203 915-4-1: "Open Service Access (OSA); Application Programming Interface (API);
Part 4: Call Control; Sub-part 1: Call Control Common Definitions (Parlay 5)".

[75] ETSI ES 203 915-4-2: "Open Service Access (OSA); Application Programming Interface (API);
Part 4: Call Control; Sub-part 2: Generic Call Control SCF (Parlay 5)".

[76] ETSI ES 203 915-4-3: "Open Service Access (OSA); Application Programming Interface (API);
Part 4: Call Control; Sub-part 3: Multi-Party Call Control SCF (Parlay 5)".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 122 101 [5] and the following apply:

applications: services, which are designed using service capability features

gateway: synonym for Service Capability Server

NOTE: From the viewpoint of applications, a Service Capability Server can be seen as a gateway to the core
network.

HE-VASP: Home Environment Value Added Service Provider

NOTE: This is a VASP that has an agreement with the Home Environment to provide services.

Home Environment (HE): responsible for overall provision of services to users

local service: service which can be exclusively provided in the current serving network by a Value Added Service
Provider

OSA Interface: standardized Interface used by application to access service capability features

http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://www.dmtf.org/spec/cims.html

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 11

Personal Service Environment (PSE): contains personalized information defining how subscribed services are
provided and presented towards the user

NOTE: The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities (SC): bearers defined by parameters, and/or mechanisms needed to realize services

NOTE: These are within networks and under network control.

Service Capability Feature (SCF): functionality offered by service capabilities that are accessible via the standardized
OSA interface

Service Capability Server (SCS): Functional Entity providing OSA interfaces towards an application

service: alternative for Service Capability Feature (in ES 203 915-1)

user interface profile: contains information to present the personalized user interface within the capabilities of the
terminal and serving network

user profile: label identifying a combination of one user interface profile, and one user services profile

user services profile: contains identification of subscriber services, their status and reference to service preferences

Value Added Service Provider (VASP): provides services other than basic telecommunications service for which
additional charges may be incurred

Virtual Home Environment (VHE): concept for personal service environment portability across network boundaries
and between terminals

3.2 Abbreviations
For the purposes of the present document, the abbreviations defined in TR 121 905 [1] and the following apply:

AoC Advice of Charge
API Application Programming Interface
ASP Application Service Provider
CAMEL Customized Application for Mobile network Enhanced Logic
CGI Cell Global Identification
CI Cell Identification
CIC Carrier Identification Code
CIM DMTF Common Information Model
CMS Cryptographic Message Syntax
CNF Conjunctive Normal Form
CSE Camel Service Environment
DMTF Distributed Management Task Force
DNF Disjunctive Normal Form
FSM Finite State Model
GCC Generic Call Control
GCCS Generic Call Control Service
GMS Generic Messaging Service
GPS Global Positioning System
GUIS Generic User Interaction Service
HE Home Environment
HE-VASP Home Environment Value Added Service Provider
HPLMN Home Public Land Mobile Network
IDL Interface Description Language
IMEI International Mobile station Equipment Identity
JSR Java™ Specification Request
LAC Location Area Code
LAI Location Area Identification
LCS LoCation Services
MAP Mobile Application Part
MCC Mobile Country Code

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 12

MExE Mobile station (application) Execution Environment
MMCC Multi-Media Call Control
MNC Mobile Network Code
MPCC Multi-Party Call Control
MS Mobile Station
MSC Mobile Switching Centre
NA-ESRD North American Emergency Services Routing Digits
NA-ESRK North American Emergency Services Routing Key
OSA Open Service Access
PAM Presence and Availability Management
PCIM Policy Core Information Model, as defined in RFCs 3060 and 3460
PLMN Public Land Mobile Network
PM Policy Management
PPA Pre-Paid Application
PSE Personal Service Environment
QoS Quality of Service
RMI Java™ Remote Method Invocation
SAG Subscription Assignment Group
SAP Service Access Point
SC Service Capabilities
SCF Service Capability Feature
SCS Service Capability Server
SIM Subscriber Identity Module
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SPA Service Provider API
STD State Transition Diagrams
UI User Interaction
ULE User Location Emergency
UML Unified Modelling Language
USSD Unstructured Supplementary Service Data
VASP Value Added Service Provider
VHE Virtual Home Environment
VLR Visited Location Register
VPLMN Visited Public Land Mobile Network
WAP Wireless Application Protocol
WSDL Web Services Definition Language
XML eXtensible Markup Language

4 Open Service Access APIs
The OSA specifications define an architecture that enables service application developers to make use of network
functionality through an open standardized interface, i.e. the OSA APIs. The network functionality is describes as
Service Capability Features or Services (see note). The OSA Framework is a general component in support of Services
(Service Capabilities) and Applications.

The OSA API is split into four types of interface classes, Service and Framework:

• Interface classes between the Applications and the Framework, that provide applications with basic
mechanisms (e.g. Authentication) that enable them to make use of the service capabilities in the network.

• Interface classes between Applications and Service Capability Features (SCF), which are individual services
that may be required by the client to enable the running of third party applications over the interface
e.g. Messaging type service.

• Interface classes between the Framework and the Service Capability Features, that provide the mechanisms
necessary for multi-vendorship.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 13

• Interface classes between the Enterprise Operator and the Framework that provides the Enterprise Operator
with basic mechanisms to allow them to administer client application accounts and to manage their service
contracts and profiles.

These interfaces represent interfaces 1, 2, 3 and 4 of the figure 1. The other interfaces are not yet part of the scope of the
work.

Framework
operator

admin

Enterprise
operator

admin tool

Service
supplier

admin tool

1144

33

55

Not in scope of
this version of

the API

Not in scope of
this version of

the API

Telecom Network

Not in scope of
this version of

the API

Not in scope of
this version of

the API22 66

Client
Application

Not in
scope
of this API
version

Figure 1

Within the OSA concept a set of Service Capability Features has been specified. The OSA documentation is structured
in parts. The first part (the present document) contains an overview, the second part contains common Data Definitions,
the third part the Framework interfaces. The rest of the parts contain the description of the SCFs.

NOTE: The terms "Service" and "Service Capability Feature" are used as alternatives for the same concept in the
present document. In the OSA API itself the Service Capability Features as identified in the 3GPP
requirements and architecture are reflected as 'service', in terms like service instance lifecycle manager,
serviceDiscovery.

5 Document structure
The parts of the present document ES 203 915 (apart from 1 (the present document) and 2) define the interfaces,
parameters and state models that form part of the API specification. UML is used to specify the interface classes. As
such it provides a UML interface class description of the methods (API calls) supported by that interface and the
relevant parameters and types. The interfaces are specified in IDL, WSDL (Web Services Definition Lanaguage) and in
Java™.

The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from
the applications. This means that applications do not have to be aware of the network nodes a Service Capability Server
interacts with in order to provide the Service Capability Features to the application. The specific underlying network
and its protocols are transparent to the application.

The API specification ES 203 915 is structured in the following parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 14

Part 3: "Framework";

Part 4: "Call Control";

Sub-part 1: "Call Control Common Definitions";

Sub-part 2: "Generic Call Control SCF";

Sub-part 3: "Multi-Party Call Control SCF";

Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF".

Part 15: "Multi-Media Messaging SCF"

A 3GPP mapping document, TR 129 998, is also structured according to the same parts. It contains a possible mapping
from some of the APIs defined in ES 203 915 to various network protocols (i.e. MAP [7], CAP [8], etc.). It is an
informative document, since this mapping is considered as implementation/vendor dependent. On the other hand this
mapping will provide potential service designers with a better understanding of the relationship of the OSA API
interface classes and the behaviour of the network associated to these interface classes.. A mapping to network
protocols is not applicable for all parts, but the numbering of parts is kept. Also in case a part is not supported in a
Release, the numbering of the parts is maintained.

Structure of the parts of ES 203 915:

The parts with API specification themselves are structured as follows:

• The Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented.

• The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram
part.

• The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

• The Data Definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of the present document.

The OSA API is defined using UML and as such is technology independent. OSA can be realised in a number of ways
and in addition to the UML defined OSA API, the OSA specification includes:

• A normative annex with the OSA API in IDL that specifies the CORBA distribution technology realisation.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 15

• An informative annex with the OSA API in WSDL that specifies the SOAP/HTTP distribution technology
realisation.

• An informative annex that references the OSA API in Java™ (known as JAIN™ Service Provider API) that
specifies the Java™ local API technology realisation.

6 Methodology
Following is a description of the methodology used for the establishment of API specification for OSA.

6.1 Tools and Languages
The Unified Modelling Language (UML) (http://www.omg.org/uml/) is used as the means to specify class and state
transition diagrams.

6.2 Packaging Structure
A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

 org.csapi

The following diagram shows the packaging hierarchy. The root package is shown on the left most side of the figure.
Extending from the root package are the framework and services branch packages, then the associated leaf packages.
Listed against each package are the interfaces, data types, exceptions and service properties it contains.

Packaging Hierarchy Contains
org.csapi IpInterface

IpService
All common data types
All common exceptions
All common service properties

 .fw Common Framework data types
Common Framework exceptions
Common Framework service
properties

 .access
 .trust_and_security Package interfaces

Package data types
Package exceptions
Package service properties

 .application
 .notification Package interfaces

Package data types
Package exceptions
Package service properties

 .integrity Package interfaces
Package data types
Package exceptions
Package service properties

 .service_agreement Package interfaces
Package data types
Package exceptions
Package service properties

 .discovery Package interfaces
Package data types
Package exceptions
Package service properties

 .enterprise_operator
 .service_subscription Package interfaces

Package data types
Package exceptions
Package service properties

http://www.omg.org/uml/

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 16

Packaging Hierarchy Contains
 service
 .notification Package interfaces

Package data types
Package exceptions
Package service properties

 .integrity Package interfaces
Package data types
Package exceptions
Package service properties

 .discovery Package interfaces
Package data types
Package exceptions
Package service properties

 .service_lifecycle Package interfaces
Package data types
Package exceptions
Package service properties

 .service_registration Package interfaces
Package data types
Package exceptions
Package service properties

 .services Common Service data types
Common Service exceptions
Common Service service
properties

 .cc Common Call Control data types
Common Call Control exceptions
Common Call Control service
properties

 .gccs Package interfaces
Package data types
Package exceptions
Package service properties

 .mpccs Package interfaces
Package data types
Package exceptions
Package service properties

 .mmccs Package interfaces
Package data types
Package exceptions
Package service properties

 .cccs Package interfaces
Package data types
Package exceptions
Package service properties

 .ui Package interfaces
Package data types
Package exceptions
Package service properties

 .mm Common Mobility management
data types
Common Mobility management
exceptions
Common Mobility management
service properties

 .ul Package interfaces
Package data types
Package exceptions
Package service properties

 .ulc Package interfaces
Package data types
Package exceptions
Package service properties

 .ule Package interfaces
Package data types
Package exceptions

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 17

Packaging Hierarchy Contains
Package service properties

 .us Package interfaces
Package data types
Package exceptions
Package service properties

 .termcap Package interfaces
Package data types
Package exceptions
Package service properties

 .dsc Package interfaces
Package data types
Package exceptions
Package service properties

 .gms Package interfaces
Package data types
Package exceptions
Package service properties

 .cm Package interfaces
Package data types
Package exceptions
Package service properties

 .am Package interfaces
Package data types
Package exceptions
Package service properties

 .cs Package interfaces
Package data types
Package exceptions
Package service properties

NOTE 1: Not all the packages given above may be found in the 3GPP OSA specifications.
NOTE 2: Where data types, exceptions and service properties are indicated in the figure above their presence, or

otherwise, is dependent upon the package in question. For example, if there are no common Framework
exceptions then none will be present in the org.csapi.fw package.

6.3 Colours
For clarity, class diagrams follow a certain colour scheme. Blue for application interface packages and yellow for all the
others.

6.4 Naming scheme
The following naming scheme is used for documentation.

 packages:

 lowercase

 Using the domain-based naming (For example, org.csapi)

 classes, structures and types. Start with T:

 TpCapitalizedWithInternalWordsAlsoCapitalized

 Exception class:

 TpClassNameEndsWithException and
P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

 Interface. Start with Ip:

 IpThisIsAnInterface

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 18

 constants:

 P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

 firstWordLowerCaseButInternalWordsCapitalized()

 method's parameters:

 firstWordLowerCaseButInternalWordsCapitalized

 collections (set, array or list types):

 TpCollectionEndsWithSet

 class/structure members:

 FirstWordAndInternalWordsCapitalized

Spaces in between words are not allowed.

6.5 State Transition Diagram text and text symbols
The descriptions of the State Transitions in the State Transition Diagrams follow the convention:

 when_this_event_is_received [guard condition is true] /do_this_action ^send_this_message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified
which one).

6.6 Exception handling and passing results
OSA methods communicate errors in the form of exceptions. OSA methods themselves always use the return parameter
to pass results. If no results are to be returned a void is used instead of the return parameter. In order to support mapping
to as many languages as possible, no method out parameters are allowed.

6.7 References
In the interface specification whenever Interface parameters are to be passed as an in parameter, they are done so by
reference, and the 'Ref' suffix is appended to their corresponding type (e.g. IpAnInterfaceRef anInterface), a reference
can also be viewed as a logical indirection.

Original type IN parameter declaration
IpInterface parm : IN IpInterfaceRef

6.8 Strings and Collections
For character strings, the String data type is used without regard to the maximum length of the string. For homogeneous
collections of instances of a particular data type the following naming scheme is used: <datatype>Set.

6.9 Prefixes
OSA constants and data types are defined in the global name space: org.csapi module.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 19

7 Introduction to Parlay/OSA APIs
This clause contains the general rules that were followed by the design of the Parlay/OSA APIs and advice for how to
use them. Note however that exceptions to these "rules" may exist and that examples are not exhaustive.

7.1 Interface Types
In the Parlay/OSA specifications different types of interfaces are distinguished:

• Application side (callback) interfaces. This type of interface needs to be implemented by an application
(client) and the name of such an interface is prefixed with "IpApp".

• Interfaces of an SCF that are used by the Framework. The name of this type of server interface is prefixed with
"IpSvc".

• Application side interfaces and SCF interfaces that are shared. The name of this type of interface is prefixed
with "IpClient".

• Interfaces of the Framework that are used by an SCF. The name of this type of server interface is prefixed with
"IpFw".

The name of all other interfaces of the Framework and SCFs that are used by an application, is prefixed with "Ip".

7.2 Service Factory
For each application that uses an SCF, a separate object is created to handle all communication to the application. This
object is referred to as the Service Manager. The pattern used is often referred to as the Factory Pattern. The Service
Manager creates any new objects in the SCF. The Service Manager and all the objects created by it are referred to as
"service instance".

Once an application is granted access to an SCF, the Framework requests the SCF to create a new Service Manager.
The reference to this Service Manager is provided to the application. From this moment onwards the application can
start using the SCF.

7.3 Use of Sessions
A session is a series of interactions between two communication end points that occur during the span of a single
connection. An example is all operations to set-up, control, and tear down a (multi-party) call. A session is identified by
a Session ID. This ID is unique within the scope of a service instance and can be related to session numbers used in the
network.

7.4 Interfaces and Sessions
Some interfaces have a one-to-one relation with a session. For every session there is a separate interface instance. In this
case, this instance of an interface represents the session. All methods invoked on such an interface operate on the same
session. These interfaces make no use of Session IDs.

Other interfaces can represent multiple sessions. The underlying implementation can then either create an instance per
session or it can handle multiple sessions per instance (e.g. to combat extensive resource usage). When a method on
such an interface is invoked it requires a Session ID to uniquely identify the session to which it applies.

7.5 Callback Interfaces
Some Parlay/OSA interfaces require an application to register a callback interface. This interface resides on the client
(application) side and is used by the server (service) to report events, results, and errors. An application shall register its
callback interface as soon as the corresponding server side interface is created.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 20

7.6 Setting Callbacks
Two methods are available in every service interface that can be used for setting the callback interface: setCallback()
and setCallbackWithSessionID(). Interfaces that do not use sessions shall (obviously) only implement setCallback(). An
invocation of setCallbackWithSessionID() on such interfaces shall result in an exception (P_TASK_REFUSED).

Interfaces that use sessions shall only implement setCallbackWithSessionID(). An invocation of setCallback() on such
interfaces shall result in an exception (P_TASK_REFUSED). This regardless of whether an interface instance actually
implements multiple sessions or not.

7.7 Synchronous versus Asynchronous Methods
Two types of methods exist in Parlay/OSA interfaces. When a method does not require the SCS to contact other nodes
in the network it is implemented as a synchronous method. When the method returns, the result (if applicable) of the
operation is provided to the application. When an error occurs, an exception is thrown. Examples of synchronous
methods are methods to retrieve data that is available in the SCS and methods that create an object.

In other cases, a method requires the SCS to contact other nodes in the network. There can be a delay between the
moment a message is sent into the network and the moment that the result is received or an error is detected. To prevent
that the application is blocked or that an application has to "guess" whether there is a problem in the SCS, these types of
methods are made asynchronous.

An asynchronous method of an interface can be recognized by the fact that its name ends with "Req" (from request) and
that in the corresponding callback interface two methods are included with the same name but ending with "Res" (from
result) and "Err" (from error) instead. When no error has occurred, the "Res" method will be invoked when the result is
available. In case an error has been detected, the "Err" method is invoked. Problems that can be detected by the SCS
itself (for instance illegal parameter values) will result in exceptions being thrown when the "Req" method is called.
After a "Req" method has returned, only errors shall be reported.

Because it is possible that multiple requests can be done in parallel (invoking multiple times a "Req" method without
having received a result or error) a mechanism is needed to link requests with responses. Therefore, the "Req" method
returns an Assignment ID and the "Res" and "Err" methods have this Assignment ID as input parameter. For session
based interfaces the Session ID can be used also.

Some "Req" methods can result in multiple "Res" methods being invoked. However, the corresponding "Err" method
will never be invoked more than once.

Note that methods on client side interfaces shall never raise an exception unless this is explicitly described in the
specification.

Some methods switch on/off reports (for instance triggered location reports). These methods are of a different kind and
do not follow the pattern that is described in this clause.

A deadlock is a potential danger when using asynchronous methods, especially in single threaded systems. It can occur
that client and server are waiting for each other for a task to be completed. It is considered good practice to build in
mechanisms to prevent deadlock from occurring, for instance by using multiple threads or using time-outs on remote
method calls.

7.8 Out Parameters
Methods used in Parlay/OSA interfaces only have input parameters. Any result can only be reported by a return value.
If multiple values need to be returned, a datatype is required that consists of a sequence of values. A value of this
datatype is then returned by a method. This approach has been chosen because not all middleware solutions are (or may
be) capable of dealing with (multiple) output parameters.

7.9 Exception Hierarchy
Exceptions are organized in an exception hierarchy. For the general exceptions and for each service type an abstract
exception class is defined. Advantage for an application programmer is that (s)he does not need to catch all the specific
exceptions, but may catch only the abstract exceptions.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 21

Note however that the exception hierarchy is only available when the applicable Parlay/OSA realisation supports this.
Java™ does, but CORBA and SOAP does not.

7.10 Common Exceptions
Exception TpCommonExceptions can be thrown by any method. It is an aggregate of a number of general problems. To
prevent that each method's signature requires all these exceptions they are all included in a single exception class.

The following rules apply on when what type of general exception shall be thrown:

• P_RESOURCES_UNAVAILABLE is thrown when a physical resource in the network is not available.

• P_INVALID_STATE is thrown when a method is called that is not allowed in the state that the Parlay/OSA
state machines are in.

• P_TASK_CANCELLED is thrown in case of a temporary problem.

• P_TASK_NO_CALLBACK_ADDRESS_SET is thrown when no callback address has been set.

• P_METHOD_NOT_SUPPORTED is thrown when the application initiates methods that are either not
according to the Service Level Agreement or not supported in the SCS.

• P_TASK_REFUSED is thrown in case of a problem that is not temporary and when none of the other common
or dedicated exceptions apply.

Note that methods on application side callback interfaces shall never raise an exception unless explicitly stated in the
specification.

7.11 Use of NULL
The Parlay/OSA specifications contain references to the NULL value to indicate the absence of a certain parameter. An
example where this is used is for specifying NULL as a callback reference.

A parameter description for parameters of any datatype can indicate that NULL is a possible value. The realisation of
NULL can differ per technology. A NULL value for a sequence in CORBA means that all its members shall be NULL
while in Java™ the whole structure could be NULL.

Note that it always shall be stated in the specification when a NULL value can be expected.

7.12 Notification Handling
Several Parlay/OSA SCFs provide a mechanism for creating and receiving notifications. A notification is the reporting
of an event occurring in the network or SCS. Examples of notifications are answer, busy, and on hook events.

This clause describes the general mechanism of notification handling. Note that it might not apply (exactly) to every
API.

There are two types of notifications. One that is created by an application and one that is controlled by the network. The
first type normally is used when an ASP is responsible for service provisioning and has to create its own notifications in
order to be able to serve subscribers. The second type is used when the network operator does service provisioning. The
network operator creates the notifications and an application only needs to handle them.

Note that normally both mechanisms will not be used by one application. However, the Parlay/OSA interfaces do not
prohibit this.

Another way to distinguish notifications is by monitor mode. Notifications can be requested in either NOTIFY or
INTERRUPT mode. When requested in NOTIFY mode, the notifications is reported to the application but the SCS
continues processing. For notifications requested in INTERRUPT mode, processing in the SCS is suspended when the
notification is reported to the application. The application has to instruct the SCS explicitly (within a certain maximum
time) how to proceed the processing. Note that not all SCFs support notifications in INTERRUPT mode.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 22

When a notification is created and when an application registers for network controlled notifications a callback interface
needs to be provided. This callback interface is used for reporting the notifications. There are however a few things that
are worth mentioning here:

• Each time a (set of) notifications(s) is created, a callback is specified that is used for reporting the requested
notifications. This callback interface may be the same, but may also differ. The assignment ID can be used to
link a notification report to the creation of registration.

• Registering a callback for network controlled notifications needs to be done only once. The callback interface
that is provided may be the same as the one used for creating a notification (note again that it is however not
recommended to use both mechanisms in the same application).

• The callback specified when creating or registering for events overrules the callback set with setCallback() or
setCallbackWithSessionID(). This means that this one will NOT be used for reporting notifications. It will
however be used for all other methods that require the callback interface.

• Only if NULL is provided as callback interface reference, the callback interface that was set using
setCallback() or setCallbackWithSessionID() is used for reporting notifications.

• It is possible to recreate a (set of) notification(s) or re-register for notifications. This is only useful when
providing a different callback interface reference. In this case, the last provided interface is used for reporting
notifications. The earlier provided callback interface is used as "backup" interface (this can be the one
provided with setCallback() or setCallbackWithSessionID() if NULL was provided initially). Notifications are
reported on this interface when calls to the most recent provided callback interface fail (object providing the
interface is crashed or overloaded). When re-creating or re-registering, the same assignment ID is returned.

8 Relationship between ETSI, Parlay and 3GPP OSA
releases

The following table explains how the various releases of ETSI, Parlay and 3GPP OSA specifications correspond. Each
ETSI and 3GPP specification carries a version number and is updated independently. The frequency of 3GPP updates
may be up to every 3 months, which is greater than that of ETSI or Parlay, therefore, while there is a corresponding
version of 3GPP TS 29.198 for every version of ETSI ES 201 915 or ES 202 915, there is not necessarily a
corresponding version of the ETSI specification for each version of the 3GPP specification. For example, there is no
ETSI or Parlay specification version which corresponds exactly to the 3GPP issue of TS 29.198 Release 4 from
December 2001.

ETSI ES 201 915 / Parlay 3 / 3GPP TS 29.198 Release 4 (version 4.x.x)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version
- - Release 4, March 2001 Plenary
- - Release 4, June 2001 Plenary

ES 201 915 V1.1.1 (complete release) Parlay 3.0 Release 4, September 2001 Plenary
- - Release 4, December 2001 Plenary

ES 201 915 V1.2.1 (complete release) Parlay 3.1 Release 4, March 2002 Plenary
ES 201 915 V1.3.1 (complete release) Parlay 3.2 Release 4, June 2002 Plenary

- - Release 4, September 2002 Plenary
ES 201 915 V1.4.1 (complete release) Parlay 3.3 Release 4, March 2003 Plenary

- - Release 4, June 2003 Plenary
- - Release 4, December 2003 Plenary
- - Release 4, June 2004 Plenary

ES 201 915 V1.5.1 (Partial Release) Parlay 3.4 Release 4, September 2004 Plenary
- - Release 4, December 2004 Plenary
- - Release 4, December 2005 Plenary

ES 201 915 v1.6.1 (Partial Release) Parlay 3.5 Release 4, June 2006 Plenary

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 23

ETSI ES 202 915 / Parlay 4 / 3GPP TS 29.198 Release 5 (version 5.x.x)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version
- - Release 5, March 2002 Plenary

ES 202 915 V1.1.1 (complete release) Parlay 4.0 Release 5, September 2002 Plenary
ES 202 915 V1.2.1 (not parts 9, 13, 14) Parlay 4.1 Release 5, March 2003 Plenary

- - Release 5, June 2003 Plenary
- - Release 5, September 2003 Plenary
- - Release 5, December 2003 Plenary
- - Release 5, March 2004 Plenary
- - Release 5, June 2004 Plenary

ES 202 915 V1.3.1, (V1.2.1 for parts 9, 13, 14) Parlay 4.2 Release 5, September 2004 Plenary
- - Release 5, December 2004 Plenary
- - Release 5, June 2005 Plenary
- - Release 5, December 2005 Plenary

ES 202 915 v1.4.1, (v1.3.1 for parts 9, 13) Parlay 4.3 Release 5, June 2006 Plenary

ETSI ES 203 915 / Parlay 5 / 3GPP TS 29.198 Release 6 (version 6.x.x)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version
- - Release 6, June 2003 Plenary
- - Release 6, December 2003 Plenary
- - Release 6, June 2004 Plenary

ES 203 915 V1.1.1 Parlay 5.0 Release 6, September 2004 Plenary
- - Release 6, December 2004 Plenary
- - Release 6, March 2005 Plenary
- - Release 6, June 2005 Plenary
- - Release 6, December 2005 Plenary

ES 203 915 v1.2.1 Parlay 5.1 Release 6, June 2006 Plenary

9 Backwards Compatibility Considerations
The backwards compatibility rules described below are intended to enable an older client to continue to interwork with
a newer server or gateway.

9.1 Guidelines to enable backwards compatibility in
implementations

1) The Gateway should require the usage of Framework versions and service versions. All Applications should
use these parameters.

2) The IDL version parameter should not be used when generating the IDL.

3) If there are multiple versions of an SCF they should be all registered with the Framework, and the SCF should
create an instance of the version requested by the application when a new service manager is created.

9.2 Rule summary
The following types of changes can be made to these specifications while preserving backwards compatibility,
everything beyond these changes is not allowed.

9.2.1 Server side permitted changes

• Addition of a new interface.

• Addition of a new method to an existing or new interface.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 24

• Addition and removal of exceptions if the implementation uses the Application version as described above.

9.2.2 Client side permitted changes

• Addition of a new interface.

• Addition of a new method.

NOTE: The version the client requests should be used to indicate which interfaces and methods are supported on
the client side.

• Addition and removal of exceptions if the implementation uses the Application version as described above.

9.2.3 Data type permitted changes

• Elements can be added to 'sequence' data types. Care should be taken when adding elements to data types that
are sent back to the client: The client may be outdated and thus not be able to interpret the new element. Only
information that has not been available before (and therefore is not expected by the client) may be transferred
in added elements. Information that has been available before (and therefore possibly expected by the client)
may not be modified in any way.

• Elements can be added to 'tagged choice of data elements' data types, if they are always sent from client to
server (either within a parameter of a server side method, or within the result of a client side method.

Every change beyond the rules listed above is forbidden. In particular, changes like the following should not be done:

• Changing the order of enumerated types.

• Changing method signatures.

• Removing or renaming methods.

9.3 Implementation Guidelines for Server Programmers
• If methods are added at the client side, the server should call them only if it can be sure that the client has

implemented them. Basically, this means the server needs to make sure that the client supports the release,
where the new methods have been introduced, or a later one.

• Servers could ensure that references to dynamically created objects (service managers or calls) remain valid
even after a server upgrade. An alternative method is to be able to make so called graceful close of old
versions and running the new version in parallel. The old version will not allow any new requests but will
allow existing ones to execute until they are finished.

9.4 Implementation Guidelines for Client Programmers
• The backwards compatibility rules allow for 'smooth' upgrades to new Parlay/OSA releases in the Gateway.

All existing functionality should still work without any changes in the client. Client programmers need to
change code only to enhance it; they should never need to change code just to adopt it to the new release.
Care should be taken when supporting features of a new release. The moment a client application use newer
release features, it should then support all of the client side features for that newer release, otherwise the sever
may invoke newer release methods on the client and the client will not respond.

9.5 Tracking the changes in the specifications

9.5.1 New Tag

If a client side interface is added, or methods are added to an existing interface, the new methods are marked with a
UML stereotype 'New'.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 25

This tag is merely a hint for the programmer.

9.5.2 Deprecated Tag

If interfaces, methods or service properties are deemed outdated or broken, the items are marked with a UML stereotype
'Deprecated'. The tag indicates that they are supported by this Framework or SCF release, but that they will not
necessarily be supported in subsequent releases. The respective items may be removed in the specification release.

The tag is a hint for the client programmer that an update to their client applications may be necessary.

9.6 Technology realization rules

9.6.1 Corba IDL Rules

In addition to the rules identified above, in order to ensure backwards compatibility of the IDL code, the following rules
shall be followed in updating this specification:

• IDL version numbering should not be used when generating the IDL.

9.6.2 Java rules

In addition to the rules identified above, in order to ensure backwards compatibility of the J2EE and J2SE code, the
following rules shall be followed in updating this specification:

• When elements are added to 'sequence' data types, the Java constructor for these data types are updated with
the new elements when the Java code is re-generated. The old constructor, without the new elements, shall be
manually included in the generated Java code and marked as deprecated.

9.7 Rules for removal of deprecated items from the
specifications

• At each major Parlay release n.0 (in ETSI terms, V1.1.1 of each ES 20x 915 specification), we delete, using
change requests, all deprecated methods and other deprecated items, which are identified as deprecated in the
most recent version of the Parlay n-2 edition of specifications.

I.e. for Parlay 5.0, we delete all deprecated items which are deprecated in the Parlay 3.4 specifications.

• When deleting deprecated methods, any unused data types can be deleted using the CR process.

• At each major release, the <<new>> stereotypes that were present in the specifications prior to this release are
deleted. CRs are not required for this.

• Methods or stereotypes are never deleted at a minor release.

• Names of deleted methods are never re-used.

• Exceptionally, we may choose not to delete certain deprecated methods, in the interest of preserving
backwards compatibility.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 26

Annex A (normative):
OMG IDL

A.1 Tools and languages
The Object Management Group's (OMG) (http://www.omg.org/) Interface Definition Language (IDL) is used as a
means to programmatically define the interfaces. IDL files are either generated manually from class diagrams or by
using a UML tool. In the case IDLs are manually written and/or being corrected manually, correctness has been
verified using a CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. SUN IDL Compiler
(http://java.sun.com/products/jdk/idl/index.html).

A.2 Namespace
The used namespace in CORBA IDL is org.csapi.

A.3 Object References
In CORBA IDL it is not needed to explicitly indicate a reference to an object. Where the specifications explicitly
indicate a reference to an object by adding "Ref" to the object type, this addition is removed when mapped to the IDL.

EXAMPLE 1:

struct TpMultiPartyCallIdentifier {
 IpMultiPartyCall CallReference;
 TpSessionID CallSessionID;
};

A.4 Mapping of Datatypes

A.4.1 Basic Datatypes
In IDL, the data type String is typedefed (see note below) from the CORBA primitive string. This CORBA primitive is
made up of a length and a variable array of byte.

NOTE: A typedef is a type definition declaration in IDL.

TpBoolean maps to a CORBA boolean, TpInt32 to a CORBA long, TpFloat to a CORBA float, and TpOctet to a
CORBA octet.

A.4.2 Constants
All constants are mapped to a CORBA const of type TpInt32.

EXAMPLE 2:

const TpInt32 P_TASK_REFUSED = 14;

http://www.omg.org/
http://java.sun.com/products/jdk/idl/index.html

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 27

A.4.3 Collections
In OMG IDL, collections (Numbered Set and Numbered List) map to a sequence of the data type. A CORBA sequence
is implicitly made of a length and a variable array of elements of the same type.

EXAMPLE 3:

typedef sequence<TpSessionID> TpSessionIDSet;

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part, and
an array for the data part.

EXAMPLE 4: The TpAddressSet data type may be defined in C++ as:

typedef struct {
 short number;
 TpAddress address [];
} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on
"number".

A.4.4 Sequences
In OMG IDL sequences map to a CORBA Struct.

EXAMPLE 5:

struct TpAddress {
 TpAddressPlan Plan;
 TpString AddrString;
 TpString Name;
 TpAddressPresentation Presentation;
 TpAddressScreening Screening;
 TpString SubAddressString;
};

A.4.5 Enumerations
In OMG IDL enumerations map to a CORBA enum.

EXAMPLE 6:

enum TpAddressScreening {
 P_ADDRESS_SCREENING_UNDEFINED ,
 P_ADDRESS_SCREENING_USER_VERIFIED_PASSED,
 P_ADDRESS_SCREENING_USER_NOT_VERIFIED,
 P_ADDRESS_SCREENING_USER_VERIFIED_FAILED ,
 P_ADDRESS_SCREENING_NETWORK
};

A.4.6 Choices
A choice maps to a CORBA union. For entries that do not have a corresponding type (defined as NULL in the
specification) no union entry is generated. These entries are grouped in the default clause where NULL is replaced by
short and the entry name (Undefined) by the name Dummy. When there are no NULL entries, the default clause is not
generated.

EXAMPLE 7:

union TpCallAdditionalErrorInfo switch (TpCallErrorType) {
 case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;
 default: short Dummy;
};

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 28

EXAMPLE 8:

union TpCallChargeOrder switch(TpCallChargeOrderCategory) {
 case P_CALL_CHARGE_TRANSPARENT: TpOctetSet TransparentCharge;
 case P_CALL_CHARGE_PREDEFINED_SET: TpInt32 ChargePlan;
};

A.5 Use of NULL
CORBA allows the value NULL to be used for object references only. When the specification mentions NULL as
possible value of a struct, it means that each object reference in the struct shall be set to NULL. NULL does not apply to
other datatypes then object references.

A.6 Exceptions
The TpCommonExceptions is mapped to a CORBA exception containing a data item of type TpInt32 to indicate the
type of general exception and extra information of type TpString.

EXAMPLE 9:

exception TpCommonExceptions {
 TpInt32 ExceptionType;
 TpString ExtraInformation;
};

All other exceptions are also mapped to CORBA exceptions but containing a data item of type TpString to indicate
additional information.

EXAMPLE 10:

exception P_INVALID_ASSIGNMENT_ID {
 TpString ExtraInformation;
};

A.7 Naming space across CORBA modules
The following shows the naming space used in the present document.

module org {
module csapi {
/* The fully qualified name of the following constant is
org::csapi::P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;
// Add other OSA global constants and types here
module fw {
/* no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_FW_CONST= P_THIS_IS_AN_OSA_GLOBAL_CONST;

};
module mm {
// scoping required to access P_FW_CONST
const long P_M_CONST= fw::P_FW_CONST;

};
};

};

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 29

Annex B (informative):
W3C WSDL

B.1 Tools and Languages
The W3C (http://www.w3c.org) WSDL (Web Services Definition Language) is an XML format for describing network
services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented
information. WSDL files are generated from the UML. The generated WSDL files are verified using WSDL compilers.
The WSDL is based on W3C WSDL 1.1. The approach to generating the WSDL is documented separately. This
document covers the type mappings, and should be viewed as reference only as the tools will generate all these
mappings automatically.

B.2 Proposed Namespaces for the OSA WSDL
Namespaces are an important part of an XML Schema. They are used to qualify the source of a particular XML
element.

There are several XML/SOAP/WSDL related Namespaces which are used within each of the WSDL documents. The
Namespace Prefix and the associated Namespace are noted below.

xmlns:wsdl = "http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3c.org/2001/XMLSchema"

xmlns:addressing="http://www.w3.org/2005/08/addressing"

There are also OSA specific namespaces that are used within the OSA WSDL documents. The OSA related namespaces
present within each WSDL document depends on the WSDL document and which WSDL documents it imports. The
guidelines used to derive these namespaces are:

• The root namespace for the OSA WSDL and XML schemas is http://www.csapi.org.

• There is one WSDL document generated for each interface. The WSDL document will have the name of the
UML component with the extension ".wsdl" For each WSDL document generated the following additional
namespaces will be included:

xmlns:<component name>="http://www.csapi.org/<component name>/wsdl"

xmlns:<component name>xsd="http://www.csapi.org/<component name>/schema"

 For each OSA WSDL document which is referenced by an import statement within the current WSDL
 document then the following additional namespaces will be included.

xmlns:<imported component name>="http://www.csapi.org/<imported component name>/wsdl"

xmlns:<imported component name>xsd="http://www.csapi.org/<imported component name>/schema"

• Attributes that require a QName value shall use the appropriate Namespace Prefix (as defined in the
definitions element of the wsdl file) to qualify the element being referenced.

http://www.w3c.org/

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 30

The namespaces are defined within the "definitions" element of a wsdl document. For example, the definitions element
of the am_logical.wsdl document would look like:

<definitions
 name='am_logical'
 targetNamespace='http://www.csapi.org/am/wsdl'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:addressing="http://www.w3.org/2005/08/addressing"
 xmlns:am='http://www.csapi.org/am/wsdl'
 xmlns:amxsd='http://www.csapi.org/am/schema'
 xmlns:osa='http://www.csapi.org/osa/wsdl'
 xmlns:osaxsd='http://www.csapi.org/osa/schema'>

<import namespace='http://www.csapi.org/osa/wsdl'
 location='osa_logical.wsdl' />

B.3 Object References
Object references are used to identify particular remote object instances. Object references are used in two ways:

1) Passed as a parameter within a method to a remote object or passed as an attribute of a structured type
parameter within a method to the remote object.

2) Included within a message to identify the object for which the message is intended.

Within the context of Web Services, an object reference can be represented as by an Endpoint Reference as documented
in WS-Addressing. This is the standard approach for passing references in Web Services.

When an object reference is passed as a parameter, the parameter type is defined as a reference to an interface. When an
object reference is an attribute of a structured type, that attribute is defined as a reference to an interface. Each interface
will have a corresponding reference element associated with it. The interface reference will be defined as:

<element name="nameInterface" type="addressing:EndpointReferenceType"/>

where name is the name of the particular interface as defined in the UML.

When an object reference is used to identify the intended recipient of a message, then the To and Action elements from
the WS-Addressing schema should be used as outlined in this standard.

B.4 Mapping UML Data Types to XML Schema

B.4.1 Data Types
The following mappings apply to the basic data types:

UML Schema Realisation
TpBoolean xsd:boolean
TpInt32 xsd:int
TpInt64 xsd:ong
TpFloat xsd:float
TpOctet xsd:unsignedByte
TpString xsd:string
TpLongString xsd:string
TpAny xsd:anyType

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 31

B.4.1.1 <<Constant>>

The UML Constant data type contains the following attributes:

• Name

• Constant Value

These types are not mapped to WSDL, as there is no concept of a constant value in schema. It may be possible in the
future to add a constant value using a restriction on a base type. The lack of this mapping does not limit the ability to
send constant values in messages.

B.4.1.2 <<NameValuePair>>

The UML NameValuePair data type contains the following attributes:

• Name

• Attributes

- Name

This type would then map to the following XML Schema construct:

<xsd:simpleType name='Name'>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='Attribute-Name' />
 <xsd:enumeration value='Attribute-Name' />
 …
 <xsd:enumeration value='Attribute-Name' />
 </xsd:restriction>
</xsd:simpleType>

B.4.1.3 <<SequenceOfDataElements>>

The UML SequenceOfDataElements data type contains the following attributes:

• Name

• Roles

- Name

- Type

This type would then map to the following XML Schema construct:

<xsd:complexType name='Name'
 <xsd:sequence>
 <xsd:element
 Name='Role-Name'
 type='Role–Type' />
 <xsd:element
 Name='Role-Name'
 type='Role–Type' />
 …
 <xsd:element
 Name='Role-Name'
 type='Role–Type' />
 </xsd:sequence>
</xsd:complexType>

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 32

B.4.1.4 <<TypeDef>>

The UML TypeDef data type contains the following attributes:

• Name

• ImplementationType

Type definitions (typedefs) do not exist directly in schema so these types are unwound to their base data types. E.g:

UML Schema Realisation
TpCallAlertingMechanism xsd:int
TpAccessType xsd:string

This support could be added in the future using restriction on a base type.

B.4.1.5 <<NumberedSetOfDataElements>>

The UML NumberedSetOfDataElements data type for sequences types contains the following attributes:

• Name

• ImplementationType

This type would then map to the following XML Schema construct:

<xsd:complexType name='Name'>
 <xsd:sequence>
 <xsd:element
 name='item'
 type='ImplementationType'
 minOccurs='0'
 maxOccurs='unbounded' />
 </xsd:sequence>
</xsd:complexType>

B.4.1.6 <<TaggedChoiceOfDataElements>>

The UML TaggedChoiceOfDataElements data type contains the following attributes:

• Name

• SwitchType

• Roles

- Name

- Type

This type would then map to the following XML Schema construct:

<xsd:complexType name='Name'>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name='Role-Name' type='Role-Type' />
 <xsd:element name='Role-Name' type='Role-Type' />
 …
 <xsd:element name='Role-Name' type='Role-Type' />
 </xsd:choice>
 </xsd:sequence>
</complexType>

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 33

B.5 Mapping of UML Interfaces to WSDL

B.5.1 Mapping of UML Operations to WSDL message element
An UML Operation contains the following attributes:

• Interface

• Operation Name

• Module Name

• Return Type

• Parameter

- Name

- Type

This type would then map to the following WSDL message construct:

<message name="Module_Name.Interface_Name.OperationName">
 <part name="parameters"
 element="xsd1:Module_Name.Interface_Name.OperationName"/>
</message>
<message name="Module_Name.Interface_Name.OperationNameResponse">
 <part name="parameters"
 element="xsd1:Module_Name.Interface_Name.OperationNameResult"/>
</message>

This approach is conformant with the wrapped document literal style recommended by the WS-I
(http://www.ws-i.org/).

B.5.2 Mapping of Exception to WSDL message element
An UML Exception has the following attributes:

• Module

• Name

This type would then map to the following XML Schema Construct:

<message name='Module_Name.Exception_Name'>
 <part name='exception'
 element='xsd1: Module_Name.Exception_Name'/>
</message>

B.5.3 Mapping of Interface Class to WSDL portType and binding
elements

A UML Interface contains the following attributes:

• Interface Name

• Module (i.e. component)

• Operations

- Name

http://www.ws-i.org/

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 34

� Parameters

� Name

� Exceptions

� Name

This type would then map to the following WSDL portType element:

<portType name="ModuleName.InterfaceName">
 <operation
 name="Operation-Name"
 <input message="Operation-Name"/>
 <output message="Operation-NameResponse"/>
 <fault name=' Module.Operation-Exception-Name'
 message=' Module.Operation–Exception–Name' />
 </operation>
</portType>

This type would also then map into the following WSDL binding element:

<binding
 name="Module.Interface-NameSOAPBinding"
 type="Module.Interface-Name">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Operation-Name">
 <soap:operation style='document'"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <fault name='Module.Exception-Name>
 <soap:fault name='Module.Operation-Exception-Name' use="literal"/>
 </fault>
 … additional fault elements
 </operation>
 … additional operation elements
</binding>

B.5.4 Mapping of UML Interfaces to WSDL service element
A UML Interface contains the following attributes:

• Interface Name

• Module

This type would then map to the following WSDL service element:

<service name="InterfaceName">
 <port binding="Module.InterfaceNameSOAPBinding" name="InterfaceName">
 <soap:address location="http://{Service Address}"/>
 </port>
 … additional port elements
</service>
</definitions>

http://schemas.xmlsoap.org/soap/http/

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 35

Annex C (informative):
Java™ Realisation API

C.1 Java™ Realisation Overview
The Parlay/OSA UML specifications are defined in a technology neutral manner. This annex aims to deliver for Java™,
a developer API, provided as a realisation, supporting a Java™ API that represents the UML specifications.

C.1.1 J2SE™ API
The J2SE™ API supports a J2SE™ development environment that:

• provides an abstraction of the Parlay/OSA APIs that provides a local API for J2SE™ developers;

• supports a listener based API for SCFs and a callback API for the Framework;

• uses local object references as correlation mechanisms as Java™ developers are familiar with object
correlation;

• is a local API without visibility to the underlying transport.

C.1.2 J2EE™ API
The J2EE™ API supports a development environment which allows the creation of J2EE™ and Java™ RMI interfaces
for both the server and client, ensuring consistent interfaces for interoperability. These interfaces may be used for
Java™ RMI on either JRMP or IIOP (RMI/IIOP), allowing use in J2EE™ environments. The interfaces may also be
used as a thin layer on other transports, similar to other Java™ technologies that provide a RMI programming interface.

The J2EE™ API is a suitable base for Java™ across Java™ platforms, allowing creation of implementations that:

• may be a thin layer on transport protocols;

• may support J2EE™ remote interfaces;

• may support J2EE™ local interfaces.

The Java™ files created with the realisation will be made available with the Parlay/OSA specifications.

The remaining clauses of this annex deal with the following areas:

• clause C.2 covers the tools and languages used to produce and define the Java™ Realisation;

• clause C.3 covers the mappings that are common across both Java™ Realisation APIs;

• clause C.4 covers the mappings specific to the J2SE™ API;

• clause C.5 covers the mappings specific to the J2EE™ API.

C 1.3 Javadoc™
The Javadoc™ that accompanies the J2SE realisation of the Parlay/OSA API specification is provided as archive
20391501J2SE.ZIP.

The Javadoc™ that accompanies the J2EE™ realisation of the Parlay/OSA API specification is provided as archive
20391501J2EE.ZIP.

Both these archives can be found in es_20391501v010201m0.zip which accompanies the present document.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 36

C.2 Tools and languages
The Java™ language is used as a means to programmatically define the interfaces. Java™ source files are generated
automatically from UML. The Java™ source files are created in accordance with the mappings defined within this
annex.

The generated Java™ source files are verified syntactically using Java™ compilers such as javac. The Java™ API
comprises:

• J2SE™ API designed to be compatible with the Java™ 2 SDK, Standard Edition, version 1.3
(http://java.sun.com/j2se/1.3/) or later; and a

• J2EE™ API compatible with the Java™ 2 Enterprise Edition (http://java.sun.com/j2ee/).

The J2SE™ API, developed in accordance to the conventions defined in clause C.3 and C.4 will enable:

• portable Java™ applications, as far as the Java™ API is concerned;

• independence of distribution mechanism technology (e.g. CORBA, SOAP, RMI).

C.3 Generic Mappings (Elements common to J2SE™
and J2EE™)

NOTE: All Java™ code examples given in this clause are taken from the J2SE™ Java™ Realisation API. See the
appropriate Java™ files for examples for J2EE™ classes.

C.3.1 Namespace
The UML namespace org.csapi is represented by the Java™ package org.csapi.jr.

Packages under the org.csapi.jr package will contain "se" packages for J2SE™ specific Java™ artefacts and "ee" and
'eelocal' packages for J2EE™ specific Java™ artefacts.

For example, the User Location Camel Service package structure would appear as follows:

org.csapi.jr.se.mm.ulc containing J2SE™ API Java™ artefacts

org.csapi.jr.eelocal.mm.ulc containing J2EE™ local API Java™ artefacts

org.csapi.jr.ee.mm.ulc containing the J2EE™ remote/RMI API Java™ artefacts

C.3.2 Package Naming Conventions
UML packages will be represented by Java™ packages. The sub-namespaces below the root namespaces described
above will follow the naming used for the UML namespaces.

C.3.3 Object References
In Java™ there is no need to explicitly indicate a reference to an object as in Java™ objects are passed by value and not
by reference. Where the specifications explicitly indicate a reference to an object by adding 'Ref' to the object type, this
addition is removed in the Java™ realisation.

EXAMPLE 1:

UML Java™ Realisation
IpUserLocationCamelRef UserLocationCamel
IpCallRef Call

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2ee/

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 37

C.3.4 Element Naming
The UML element names that begin with an uppercase will follow the Java™ naming conventions of with a leading
lower case letter and mixed case names. The UML elements are equivalent to Java™ field names.

EXAMPLE 2:

UML Java™ Realisation
AddressPlan addressPlan

C.3.5 Element Naming Collisions
If an element name collides with a Java™ keyword, the element name will be prefixed with an underscore.

EXAMPLE 3:

UML Java™ Realisation
Final _final

C.3.6 Data Type Definitions

C.3.6.1 Basic Data Types

Java™ does not support type definitions (typedefs); therefore types are unwound to their basic data types e.g.:

EXAMPLE 4:

UML Java™ Realisation
TpCallAlertingMechanism int
TpAccessType java.lang.String

The following mappings apply to the basic data types:

UML Java™ Realisation
TpBoolean boolean
TpInt32 int
TpInt64 long
TpFloat float
TpOctet byte
TpString java.lang.String
TpLongString java.lang.String
TpAny java.lang.Object

C.3.6.2 Constants

Constants are associated with a type definition or as a standalone entity. In both cases, the constant itself will be defined
as a "public final static" field using its name and value.

When defined associated with a type definition, an interface using the name of the type definition will be defined
enclosing all constants associated with the type definition.

Standalone constants within a package are defined within a Java™ interface with the name "Constants" within that
package.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 38

EXAMPLE 5:

package org.csapi.jr.se;
public interface Constants {
 public static final int METHOD_NOT_SUPPORTED = 22;
 public static final int NO_CALLBACK_ADDRESS_SET = 17;
 public static final int RESOURCES_UNAVAILABLE = 13;
 public static final int TASK_CANCELLED = 15;
 public static final int TASK_REFUSED = 14;
 public static final int INVALID_STATE = 744;
}

EXAMPLE 6:

package org.csapi.jr.se.cc;
public interface CallSuperviseReport {
 public static final int CALL_SUPERVISE_TIMEOUT = 1;
 public static final int CALL_SUPERVISE_CALL_ENDED = 2;
 public static final int CALL_SUPERVISE_TONE_APPLIED = 4;
}

C.3.6.3 NumberedSetsOfDataElements (Collections)

In Java, Numbered Set and Numbered List are realised as an array of the data type.

EXAMPLE 7:

UML Java™ Realisation
TpAddressSet Address[]

C.3.6.4 SequenceOfDataElements (Structures)

Struct data types are represented in Java™ as public final classes that implement java.io.Serializable, and have:

• each data element made available as a private variable in the class;

• a default constructor and a constructor for all values are provided;

• accessor and mutator methods are given for each variable;

• the first letter of each sequence element name is changed to lower case;

• an equals method is provided determining the equality of objects by their content;

• a hashCode method is provided supporting the rules for hashCode relative to equals.

EXAMPLE 8:

package org.csapi.jr.se;
public final class Address implements java.io.Serializable {
 private AddressPlan plan;
 private String addrString = '';
 private String name = '';
 private AddressPresentation presentation;
 private AddressScreening screening;
 private String subAddressString = '';

 public Address () {
 }

 public Address (AddressPlan plan, String addrString,
 String name, AddressPresentation presentation,
 AddressScreening screening, String subAddressString) {
 this.plan = plan;
 this.addrString = addrString;
 this.name = name;
 this.presentation = presentation;
 this.screening = screening;

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 39

 this.subAddressString = subAddressString;
 }

 public TpAddressPlan getPlan () {
 return (plan);
 }

 public void setPlan (TpAddressPlan plan) {
 this.plan = plan;
 }

 public String getAddrString () {
 return (addrString);
 }

 public void setAddrString (String addrString) {
 this.addrString = addrString;
 }

 … other get and set methods …

 public boolean equals (Object object) {
 // equality logic
 }

 public int hashcode () {
 // hash code calculation
 }
}

C.3.6.5 NameValuePair (Enumerations)

NameValuePair data types are represented in Java™ as public final classes that implement java.io.Serializable, and
have:

• two static final data members per name-value pair;

• a value returning method, named getValue();

• a name returning method, named getValueText();

• an integer conversion method, named getObject();

• a private constructor;

• readResolve(), hashCode and equals implementations.

No default constructor is provided. One of the data members per name-value pair has the same name as the name-value
pair name. The other has an underscore '_' prepended and is intended for use in switch statements. Values are assigned
sequentially, starting with 0.

The getObject() method returns the name-value pair class with the specified value if the specified value corresponds to
an element of the name-value pair data type. If the specified value is out of range, an InvalidEnumValueException
exception is raised.

EXAMPLE 9:

package org.csapi.jr.se;
public final class AddressScreening implements java.io.Serializable {
 private int _value;
 private static int _size = 5;
 private static AddressScreening[] _array = new AddressScreening[_size];

 public static final int _ADDRESS_SCREENING_UNDEFINED = 0;
 public static final AddressScreening ADDRESS_SCREENING_UNDEFINED = new
AddressScreening(_ADDRESS_SCREENING_UNDEFINED);

 public static final int _ADDRESS_SCREENING_USER_VERIFIED_PASSED = 1;
 public static final AddressScreening ADDRESS_SCREENING_USER_VERIFIED_PASSED = new
AddressScreening(_ADDRESS_SCREENING_USER_VERIFIED_PASSED);

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 40

 public static final int _ADDRESS_SCREENING_USER_NOT_VERIFIED = 2;
 public static final AddressScreening ADDRESS_SCREENING_USER_NOT_VERIFIED = new
AddressScreening(_ADDRESS_SCREENING_USER_NOT_VERIFIED);

 public static final int _ADDRESS_SCREENING_USER_VERIFIED_FAILED = 3;
 public static final AddressScreening ADDRESS_SCREENING_USER_VERIFIED_FAILED = new
AddressScreening(_ADDRESS_SCREENING_USER_VERIFIED_FAILED);

 public static final int _ADDRESS_SCREENING_NETWORK = 4;
 public static final AddressScreening ADDRESS_SCREENING_NETWORK = new
AddressScreening(_ADDRESS_SCREENING_NETWORK);

 private AddressScreening(int value) {
 this._value = value;
 this._array[this._value] = this;
 }

 private Object readResolve() throws java.io.ObjectStreamException {
 return _array[_value];
 }
 public int getValue() {
 return _value;
 }

 public String getValueText() {
 switch (_value) {
 case _ADDRESS_SCREENING_UNDEFINED:
 return "ADDRESS_SCREENING_UNDEFINED";
 case _ADDRESS_SCREENING_USER_VERIFIED_PASSED:
 return "ADDRESS_SCREENING_USER_VERIFIED_PASSED";
 case _ADDRESS_SCREENING_USER_NOT_VERIFIED:
 return "ADDRESS_SCREENING_USER_NOT_VERIFIED";
 case _ADDRESS_SCREENING_USER_VERIFIED_FAILED:
 return "ADDRESS_SCREENING_USER_VERIFIED_FAILED";
 case _ADDRESS_SCREENING_NETWORK:
 return "ADDRESS_SCREENING_NETWORK";
 default:
 return "ERROR";
 }
 }

 public static AddressScreening getObject(int value) throws
org.csapi.jr.se.InvalidEnumValueException {
 if(value >= 0 && value < _size) {
 return _array[value];
 } else {
 throw new org.csapi.jr.se.InvalidEnumValueException();
 }
 }

 public boolean equals(Object o) {
 //equality logic
 }

 public int hashCode() {
 //hash code calculation
 }

}

C.3.6.6 TaggedChoiceOfDataElements (Unions)

Union data types are represented in Java™ as public final classes that implement java.io.Serializable, and have:

• a default constructor;

• a discriminator field;

• a discriminator accessor method, named getDiscriminator();

• an accessor and modifier method for each data element, the names of which are derived from choice element
name;

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 41

• hashCode and equals implementations.

Conflicting names should be resolved by prefixing the field name with an underscore for getDiscriminator if there is a
name clash with the mapped data type name or any of the data element names.

Where choice element type and choice element name are 'NULL' and 'Undefined', respectively, a Java™ Object set as
null replaces the NULL. If multiple NULL/Undefined combinations occur in the tagged choice of data elements, the
method, setUndefined, will receive the discriminator as a parameter and set _object to null.

Accessor methods shall raise an InvalidUnionAccessorException exception if the expected data element has not been
set.

EXAMPLE 10:

package org.csapi.jr.se;
public final class AoCOrder implements java.io.Serializable {
 private CallAoCOrderCategory _discriminator = null;
 private java.lang.Object _object;

 public AoCOrder() {
 }

 public CallAoCOrderCategory getDiscriminator() throws
org.csapi.jr.se.InvalidUnionAccessorException {
 if(_discriminator == null) {
 throw new org.csapi.jr.se.InvalidUnionAccessorException();
 }
 return _discriminator;
 }

 public org.csapi.jr.se.ChargeAdviceInfo getChargeAdviceInfo() throws
org.csapi.jr.se.InvalidUnionAccessorException {
 if (_discriminator != CallAoCOrderCategory.CHARGE_ADVICE_INFO) {
 throw new org.csapi.jr.se.InvalidUnionAccessorException();
 }
 return ((org.csapi.jr.se.ChargeAdviceInfo) _object);
 }

 public void setChargeAdviceInfo(org.csapi.jr.se.ChargeAdviceInfo value) {
 _discriminator = CallAoCOrderCategory.CHARGE_ADVICE_INFO;
 _object = value;
 }

 public org.csapi.jr.se.ChargePerTime getChargePerTime() throws
org.csapi.jr.se.InvalidUnionAccessorException {
 if (_discriminator != CallAoCOrderCategory.CHARGE_PER_TIME) {
 throw new org.csapi.jr.se.InvalidUnionAccessorException();
 }
 return ((org.csapi.jr.se.ChargePerTime) _object);
 }

 public void setChargePerTime(org.csapi.jr.se.ChargePerTime value) {
 _discriminator = CallAoCOrderCategory.CHARGE_PER_TIME;
 _object = value;
 }

 public java.lang.String getNetworkCharge() throws
org.csapi.jr.se.InvalidUnionAccessorException {
 if (_discriminator != CallAoCOrderCategory.CHARGE_NETWORK) {
 throw new org.csapi.jr.se.InvalidUnionAccessorException();
 }
 return ((java.lang.String) _object);
 }

 public void setNetworkCharge(java.lang.String value) {
 _discriminator = CallAoCOrderCategory.CHARGE_NETWORK;
 _object = value;
 }

 public void setUndefined(CallAocOrderCategory discriminator) {
 __discriminator = discriminator;
 __object = null;
 }

 public boolean equals(Object o) {
 //equality logic

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 42

 }

 public int hashCode() {
 //hash code calculation
 }

}

C.3.6.7 Exceptions

An exception maps to a constructed exception, providing appropriate constructors and accessor methods for the data
contained within the exception. Each exception is defined as a public class extending java.lang.Exception, and
containing a private field for each information element contained within the exception.

A default constructor is provided, along with a constructor containing only an embedded exception, a constructor
containing a list of the fields in the exception and a constructor that contains the fields plus an embedded exception.

An accessor method is provided for each field, and for the embedded exception.

The following Java™ Realisations apply to mapping of exceptions:

• PlatformException;

• P_XXX_XXX Exceptions;

• TpCommonExceptions;

• TpCommonExceptions' associated exceptions;

• Additional abstract exceptions;

• InvalidUnionAccessorException;

• InvalidEnumValueException.

C.3.6.7.1 PlatformException

PlatformException exception handles local platform and communication problem exceptions.

EXAMPLE 11:

package org.csapi.jr.se;
public class PlatformException extends java.lang.RuntimeException {
 private Throwable _cause = null;

 public PlatformException () {
 super();
 }

 public PlatformException (String message) {
 super(message);
 }

 public PlatformException (String message, Throwable cause) {
 super(message);
 _cause = cause;
 }

 public PlatformException (Throwable cause) {
 _cause = cause;
 }

 public Throwable getCause() {
 return _cause;
 }
}

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 43

C.3.6.7.2 P_XXX_XXX Exceptions

P_XXX_XXX exceptions follow the XxxXxxException naming pattern, and inherit from java.lang.Exception.

EXAMPLE 12:

package org.csapi.jr.se;
public class InvalidInterfaceTypeException extends java.lang.Exception {
 private Throwable _cause = null;

 public InvalidInterfaceTypeException() {
 super();
 }

 public InvalidInterfaceTypeException(String message) {
 super(message);
 }

 public InvalidInterfaceTypeException(String message,Throwable cause) {
 super(message);
 _cause = cause;
 }

 public InvalidInterfaceTypeException(Throwable cause) {
 _cause = cause;
 }

 public Throwable getCause() {
 return _cause;
 }
}

C.3.6.7.3 TpCommonExceptions

The name for TpCommonExceptions exception is made singular, i.e. CommonException, and inherits from
java.lang.Exception.

EXAMPLE 13:

package org.csapi.jr.se;
public class CommonException extends java.lang.Exception {
 private Throwable _cause = null;
 private int _exceptionType;
 private String _extraInformation;

 public CommonException () {
 super();
 }

 public CommonException (String message) {
 super(message);
 }
 public CommonException (String message, Throwable cause) {
 super(message);
 _cause = cause;
 }

 public CommonException (Throwable cause) {
 _cause = cause;
 }

 public Throwable getCause() {
 return _cause;
 }

 public int getExceptionType() {
 return _exceptionType;
 }

 public void setExceptionType(int exceptionType) {
 _exceptionType = exceptionType;
 }

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 44

 public String getExtraInformation() {
 return _extraInformation;
 }

 public void setExtraInformation(String extraInformation) {
 _extraInformation = extraInformation;
 }

}

C.3.6.7.4 TpCommonException's associated exceptions

P_XXX_XXX exception types (constants) associated with TpCommonExceptions follow the XxxXxxException
naming pattern and inherit from CommonException.

EXAMPLE 14:

package org.csapi.jr.se;
public class ResourcesUnavailableException extends org.csapi.jr.se.CommonException {
 private Throwable _cause = null;

 public ResourcesUnavailableException () {
 super();
 }

 public ResourcesUnavailableException (String message) {
 super(message);
 }

 public ResourcesUnavailableException (String message, Throwable cause) {
 super(message, cause);
 }

 public ResourcesUnavailableException (Throwable cause) {
 _cause = cause;
 }

}

C.3.6.7.5 Additional abstract exceptions

Additional abstract exceptions (See ES 203 915-2 [57], Annex D) have been defined which are
TpInvalidArgumentException, TpFrameworkException, TpMobilityException, TpDataSessionException,
TpMessagingException, TpConnectivityException, TpAccountException, TpPAMException and TpPolicyException
and are mapped as follows:

EXAMPLE 15:

package org.csapi.jr.se;
public class InvalidArgumentException extends java.lang.Exception {
 private Throwable _cause = null;

 public InvalidArgumentException () {
 super();
 }

 public InvalidArgumentException (String message) {
 super(message);
 }

 public InvalidArgumentException (String message, Throwable cause) {
 super(message);
 _cause = cause;
 }

 public InvalidArgumentException (Throwable cause) {
 _cause = cause;
 }

 public Throwable getCause() {
 return _cause;
 }

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 45

}

C.3.6.7.6 InvalidUnionAccessorException

An additional exception, InvalidUnionAccessorException, is defined which indicates that the expected data element has
not been set.

EXAMPLE 16:

package org.csapi.jr.se;
public class InvalidUnionAccessorException extends org.csapi.jr.se.InvalidArgumentException {
 private Throwable _cause = null;

 public InvalidUnionAccessorException (){
 super ();
 }

 public InvalidUnionAccessorException (String message){
 super (message);
 }

 public InvalidUnionAccessorException (String message, Throwable cause){
 super (message,cause);
 }

 public InvalidUnionAccessorException (Throwable cause) {
 _cause = cause;
 }

}

C.3.6.7.7 InvalidEnumValueException

An additional exception, InvalidEnumValueException, is defined which indicates that an enum data type was accessed
with an invalid request value.

EXAMPLE 17:

package org.csapi.jr.se;
public class InvalidEnumValueException extends org.csapi.jr.se.InvalidArgumentException {
 private Throwable _cause = null;

 public InvalidEnumValueException () {
 super ();
 }

 public InvalidEnumValueExceptions (String message) {
 super (message);
 }

 public InvalidEnumValueException (String message, Throwable cause) {
 super (message,cause);
 }

 public InvalidEnumValueException (Throwable cause) {
 _cause = cause;
 }

}

C.3.6.8 Deprecation

Java source can evolve between one version and the next. Three causes of evolution are identified:

• Through applying changes to the UML.

• Through applying changes to the rulebook.

• Through improving the Java production process.

In order to maintain backward compatibility, the Java community applies the /** @deprecated */ tag. Java source shall
maintain backward compatibility. Changes between subsequent versions shall be indicated through applying the
deprecated tag.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 46

Deprecated Java source remains deprecated for as long as UML deprecation history is remained.

C.4 J2SE™ Specific Conventions
The UML interfaces are represented by Java™ public interfaces; those interfaces that inherit from other interfaces are
represented in Java™ as extending that interface. The Java™ realisations of OSA/Parlay SCFs use an Event Listener
design pattern while the Framework uses the Callback pattern.

This annex provides the information on realisation of the Java™ developer API including:

• How Java™ APIs are realised from Parlay UML.

• Where the listener pattern is used, new classes to be generated from the UML.

• Changes required to data types and methods to support correlation using object references.

• Use of hierarchical exceptions.

C.4.1 Removal of "Tp" Prefix
The UML data types labelled with the prefix 'Tp' are represented in Java™ without this prefix.

EXAMPLE 18:

UML Java™ Realisation
TpCallAppInfo CallAppInfo

In the case of name collisions between data types and interfaces as with IpTerminalCapabilities and IpService the UML
data types labelled with the prefix 'Tp' are represented in Java™ with an alternative prefix 'Type'.

EXAMPLE 19:

UML Java™ Realisation
IpTerminalCapabilities TerminalCapabilities
TpTerminalCapabilities TypeTerminalCapabilities

The above example is based in conjunction with C.4.3 Removal of "Ip" Prefix.

C.4.2 Constants
The UML constants labelled with the prefix 'P_' are represented in Java™ without this prefix.

EXAMPLE 20:

UML Constant Java™ Constant
P_NO_CALLBACK_ADDRESS_SET NO_CALLBACK_ADDRESS_SET

C.4.3 Removal of "Ip" prefix
The "Ip" prefix is removed in the Java™ realisation of UML interfaces.

EXAMPLE 21:

UML Java
IpCallControlManager CallControlManager

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 47

C.4.4 Mapping of IpInterface
IpInterface interface is represented by the CsapiInterface interface. This is a "marker" interface, in that it contains no
methods, but provides a common interface for related interfaces to inherit from. All interfaces to be serializable; this
can be done by CsapiInterface extending Serializable.

EXAMPLE 22:

package org.csapi.jr.se;
 public interface CsapiInterface extends Serializable{
 }

C.4.5 Mapping of IpService
IpService interface is represented by the Java™ Service interface. This provides a common interface for related
interfaces to inherit from.

EXAMPLE 23:

Service Interface:

package org.csapi.jr.se;
public interface Service extends CsapiInterface {
 public final static int IN_SERVICE_STATE=0 ;
 public final static int OUT_OF_SERVICE_STATE=1;

 void addServiceStateChangeListener(ServiceStateChangeListener listener)
 int getServiceState();
 void removeServiceStateChangeListener(ServiceStateChangeListener listener) ;
}

Listener interface:

package org.csapi.jr.se;
public interface ServiceStateChangeListener extends java.util.EventListener {
 void onOutOfService(OutOfServiceEvent event);
}

Event class:

package org.csapi.jr.se;
public class OutOfServiceEvent extends jav.util.EventObject {
 public OutOfServiceEvent(java.lang.Object source){
 super(source)
 }
}

C.4.6 Mapping of UML Operations
The UML operations are represented in Java™ as methods.

Exceptions that can be raised by UML operations are represented in Java™ with the throws clause and the Java™
Realisation of the UML Exceptions.

UML 'in' parameters, represented by 'in ' preceding the parameter type are represented in Java™ without this clause.

EXAMPLE 24:

public void managerResumed ();

public CsapiInterface obtainInterface (InterfaceName interfaceName) throws
InvalidInterfaceNameException;

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 48

public Service createServiceManager (ClientAppID application, ServicePropertyList serviceProperties,
ServiceInstanceID serviceInstanceID);

The above example method signatures are based on generic mapping of interfaces, exceptions and data types.

C.4.7 Mapping of TpSessionID
The UML TpSessionID data types will be hidden in the J2SE™ APIs (and optionally supported by the underlying
Java™ implementation). Consequently, the TpSessionIDSet data type and IpService.setCallbackWithSessionID()
method are superfluous. Also, structures with only TpSessionID and interface references (e.g. TpCallIdentifier) are no
longer necessary and references to these structures should be replaced by just the reference to the interface. For data
types that contain TpSessionID the Java™ API Realisation object replaces theTpSessionID.

The following figure shows how Java™ API Realisation objects relate to Parlay UML objects and sessions. How this is
realised in the adaptors is implementation dependent.

Parlay UML Object

Parlay UML Sessions

Java API Realisation Objects

Relationships

Figure C.1

C.4.8 Mapping of TpAssignmentID to the creation of an Activity
object

The UML TpAssignmentID data types, which differentiate between multiple parallel asynchronous method invocations
(activities) on the same ('parent') interface, are deleted and replaced with createXxx methods (one for each parallel
asynchronous activity) that create ('child') activity interfaces. Where this would result in method names of the pattern
createCreateXxx, this should be changed to method names with the pattern createXxx. Associated listeners would then
remove the Create prefix from their name. These activity interfaces, in addition to possibly supporting other methods,
will support one of the previously mentioned multiple parallel asynchronous method invocations. Hence, the Java™
API realisation creates multiple (activity) objects and invokes a single request per object rather than creating a single
object and invoking multiple requests on that object, each request being differentiated using the TpAssignmentID value.
The results of the asynchronous method invocation will be handled by the activity interface"s listener interface. To
create the activity interface, the original IpXxx interface (to be named Xxx) will replace its parallel supporting
asynchronous method invocations, yyyYyyReq, with createYyyYyy methods that take no parameters but returns the
activity interface, YyyYyy. Where this would result in method names of the pattern createCreateXxx, this should be
changed to method names with the pattern createXxx. Associated listeners would then remove the Create prefix from
their name. The activity interface will extend Activity interface (see next rule), have a simple FSM, the
addYyyYyyListener, removeYyyYyyListener and the asynchronous method that previously supported a parallel
capability (typically named yyyYyyReq, but also yyyYyyStop).

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 49

An Activity interface, packaged in org.csapi.jr.se, is added as a parent to all activity interfaces. An application may add
listeners of type ActivityStateChangeListener to an Activity if it wishes be explicitly informed when the activity
becomes invalid.

The YyyYyyListener activity listener interfaces will extend java.util.EventListener. The asynchronous methods of
previously named IpAppXxx, typically labelled yyyYyyRes and yyyYyyErr but also yyyYyy, will be renamed
onYyyYyyRes and onYyyYyyErr but also onYyyYyy. Each method will have an event parameter, typically labelled
YyyYyyResEvent and YyyYyyErrEvent, but also YyyYyyEvent. Events will be classes that extend
java.util.EventObject and contain a public constructor (with multiple parameters – one per class carried by the event)
and a number of public getter methods (one per 'gettable' class carried by the event). As a result of adding activity
listener interfaces, this may cause the requirement for the original IpAppXxx to disappear, since the yyyYyyRes and
yyyYyyErr methods will effectively be ported to the activity listener interfaces.

For data types that contain TpAssignmentID the activity object replaces the TpAssignmentID.

EXAMPLE 25:

Activity Interface:

package org.csapi.jr.se;
public interface Activity extends CsapiInterface {
 public final static int IDLE_STATE = 0;
 public final static int ACTIVE_STATE = 1;
 public final static int INVALID_STATE = 2;
 public int getState();
 public void addActivityStateChangeListener(ActivityStateChangeListener listener);
 public void removeActivityStateChageListener(ActivityStateChangeListener listener);
}

Activity Listener Interface and Event class:

package org.csapi.jr.se;
public interface ActivityStateChangeListener {
 onInvalidStateEvent (InvalidActivityEvent event)
}

public class InvalidActivityEvent extends java.util.EventObject {
 public InvalidActivityEvent(java.lang.Object source){
 super(source)
 }

}

Parent interface:

package org.csapi.jr.se.mmm.ul;
public interface UserLocation extends org.csapi.jr.se.Service {
 public LocationReport createLocationReport();
 public ExtendedLocationReport createExtendedLocationReport();
 public PeriodicLocationReporting createPeriodicLocationReporting();
}

Child Interface:

package org.csapi.jr.se.mm.ul;
public interface LocationReport extends org.csapi.jr.se.Activity {
 public void addLocationReportListener(LocationReportListener listener)
 public void removeLocationReportListener(LocationReportListener listener)
 public void locationReportReq(Address[] users) throws …
}

Listener Interface:

package org.csapi.jr.se.mm.ul;
public interface LocationReportListener extends java.util.EventListener {

 public void onLocationReportResEvent(LocationReportResEvent event);
 public void onLocationReportErrEvent(LocationReportErrEvent event);
}

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 50

Event classes:

package org.csapi.jr.se.mmm.ul;
public class LocationReportResEvent extends java.util.EventObject{
 // with a public UserLocation[] constructor and a public getter
 // method for the parameter of the event
}

public classLocationReportErrEvent extends java.util.EventObject {
 // with a public MobilityError and MobilityDiagnostic constructor
 // and two public getter methods, one for each of the parameters
 // of the event
}

The Finite State Model for the Activity interface is given below:

Idle

Active

Invalid

Figure C.2

This interface specifies an activity, which might be provided by a service. An activity has three states: "idle", "active"
and "invalid". The initial state is "idle" and here the listeners should be registered. It performs in the "active" state. It
enters the "invalid" state when it has fulfilled its task or a fatal error occurred. In special cases state transition from
"idle" to "invalid" is possible.

An example activity interface FSM is given below for a single activity request with a single response:

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 51

Idle

Active

Invalid

^LocationReportResEvent
^LocationReportErrEvent

locationReportReq()

removeLocationReportListener()

locationReportReq() exception

addLocationReportListener()
removeLocationReportListener()

Figure C.3

An example activity interface FSM is given below for a single activity request with repeating responses:

Idle

Active

Invalid

periodicLocationReportingStop(“all users”)
^PeriodicLocationReportErrEvent

periodocLocationReportingStartReq()

removePeriodicLocationReportingListener()
^PeriodicLocationReportEvent
periodicLocationReportingStop(“selected users”)

periodicLocationReportingStartReq() exception

addPeriodicLocationReportingListener()
removePeriodicLocationReportingListener()

Figure C.4

C.4.9 Callback Rule
The UML callback design pattern for all callbacks that return a type is represented in Java™ with the callback design
pattern. The UML callback design pattern for all callbacks that return void is represented in Java™ with the event
listener design pattern.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 52

The UML client-to-service interfaces with the IpAppXxxx naming convention are represented in Java™ with the
XxxxListener naming convention.

The IpService.setCallback method can be deleted; the interfaces that inherited the setCallback method now have
associated addXxxxListener and removeXxxxListener methods. According to the TpSessionID mapping,
IpService.setCallbackWithSessionID() method is deleted.

The XxxxListener listener interfaces will extend java.util.EventListener. The asynchronous methods of previously
named IpAppXxxx, typically labelled yyyyYyyyRes and yyyyYyyyyErr but also yyyyYyyy, will be renamed
onYyyyYyyyRes and onYyyyYyyyErr but also onYyyyYyyy. Each method will have an event parameter, typically
labelled YyyyYyyyResEvent and YyyyYyyyErrEvent, but also YyyyYyyyEvent. Events will be classes that extend
java.util.EventObject and contain a private constructor (with multiple parameters – one per class carried by the event)
and a number of public getter methods (one per 'gettable' class carried by the event). Events are read-only and
serializable.

EXAMPLE 26:

Listener Interface:

package org.csapi.jr.se.cc.mpccs;

MultiPartyCallListener extends java.util.EventListener{

public void onGetInfoResEvent(GetInfoResEvent event)
public void onGetInfoErrEvent(GetInfoErrEvent event)
public void onSuperviseResEvent(SuperviseResEvent event)
public void onSuperviseErrEvent(SuperviseErrEvent event)
public void onCallEndedEvent(CallEndedEvent event)
public void onCreateAndRouteCallLegErrEvent(CreateAndRouteCallLegErrEvent event)
}

MultiPartyCall Interface additional methods:

public void addMultiPartyCallListener(MultiPartyCallListener multiPartyCallListener);
public void removeMultiPartyCallListener(MultiPartyCallListener multiPartyCallListener);

C.4.10 Factory Rule
The following Factory class allows applications to obtain proprietary peer API objects. The term "peer" is Java™
nomenclature for a particular platform-specific implementation of a Java™ interface.

EXAMPLE 27:

package org.csapi.jr.se.fw;
import org.csapi.jr.se.PeerUnavailableException;
import org.csapi.jr.se.InvalidArgumentException;
import org.csapi.jr.se.ResourcesUnavailableException;
import org.csapi.jr.se.fw.access.tsm.Initial;
import java.util.*;

public class InitialFactory {
 private static InitialFactory myFactory;
 private static String className = null;
 private static String lang = "en";
 private static String cntry = "US";

 private InitialFactory() {
 }

 public synchronized Initial createInitial(String initialPeerReference) throws
PeerUnavailableException, ResourcesUnavailableException, InvalidArgumentException {
 Locale currentLocale;
 ResourceBundle messages;
 String tryMessage;

 try {
 currentLocale = new Locale(lang, cntry);
 messages = ResourceBundle.getBundle("InitialFactoryBundle", currentLocale);

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 53

 // Validate all used values before using them later
 // avoiding error text exception to hide the real exception

 tryMessage = messages.getString("InitialPeerReferenceNull");
 tryMessage = messages.getString("InitialInstFailure");
 tryMessage = message.getString("DestroyInitialFailure");
 }
 catch (Exception e) {
 throw new ResourcesUnavailableException ("Localisation failed to be initialized");
 }

 if (initialPeerReference == null) {
 String errmsg = messages.getString("InitialPeerReferenceNull");
 throw new InvalidArgumentException (errmsg);
 }

 try {
 Class c = Class.forName (getImplementationClassName ());
 if(initialPeerReference.equals('')){
 // Creates a new instance of the Object class
 // using default constructor
 return (Initial)c.newInstance ();
 }

 Class[] paramTypes = {initialPeerReference.getClass()};
 java.lang.reflect.Constructor ctor =
 c.getConstructor(paramTypes);
 Object[] params = {initialPeerReference};
 return (Initial) ctor.newInstance(params);
 } catch (Exception e) {
 String errmsg = messages.getString("InitialInstFailure");
 throw new PeerUnavailableException (errmsg);
 }
 }

 public synchronized static InitialFactory getInstance() {
 if (myFactory == null) {
 myFactory = new InitialFactory ();
 }
 return myFactory;
 }

 public String getImplementationClassName () {
 return className;
 }

 public static void setImplementationClassName (String className) {
 this.className = className;
 }

 public synchronized static void setLocale(String language, String country) {
 if (language == null) {
 lang = "en";
 }
 else {
 lang = language;
 }

 if (country == null) {
 cntry = "US";
 }
 else {
 cntry = country;
 }
 }

 public void destroyInitial(Initial initialInstance) {
 if (initialInstance == null) {
 return;
 }

 try {
 delete initialInstance;
 } catch (Exception e) {
 String errmsg = messages.getString("DestroyInitialFailure");
 throw new RuntimeException(errmsg);
 }
 }

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 54

}

C.4.11 J2SE™ Specific Exceptions
Exceptions in this clause are only applicable within a J2SE™ environment.

C.4.11.1 PeerUnavailableException

PeerUnavailableException indicates failure to access an implementation of the Initial interface.

EXAMPLE 28:

public class PeerUnavailableException extends java.lang.Exception {
 private Throwable _cause = null;
 public PeerUnavailableException () {
 super();
 }

 public PeerUnavailableException (String message) {
 super(message);
 }

 public PeerUnavailableException (String message, Throwable cause) {
 super(message);
 _cause = cause;
 }

 public PeerUnavailableException (Throwable cause) {
 _cause = cause;
 }

 public Throwable getCause() {
 return _cause;
 }
}

C.4.11.2 IllegalStateException

IllegalStateException exception signals that a method has been invoked at an illegal or inappropriate time.

EXAMPLE 29:

package org.csapi.jr.se;
public class IllegalStateException extends java.lang.Exception {

 private int _state;
 private java.lang.Object _object;

 public IllegalStateException(Object object, int state) {
 super();
 _object = object;
 _state = state;
 }

 public Illegal StateException(Object object, int state, String s) {
 super(s);
 _object = object;
 _state = state;
 }

 public Object getObject() {
 return _object;
 }

 public int getState() {
 return _state;
 }
}

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 55

C.4.12 User Interaction Specific Rules

C.4.12.1 Interfaces representing UML IpUI and IpUICall Rule

The following mappings take account of the fact that when the TpAssignmentID rule is applied the Java™ interfaces
representing UML IpUICall does not extend the Java™ interfaces representing UML IpUI.

Java™ UIGeneric replaces the UML IpUI. Methods common to both the Java™ UIGeneric and Java™ UICall are
pulled up into a super-interface called UI. UML IpAppUI and IpAppUiCall interfaces are replaced by a UIListener
interface.

C.4.12.2 Naming Collisions of IpUI and IpUICall Rule

Naming collisions that arise through IpUI and IpUICall methods e.g. XXX, having the same name will be dealt with by
prefixing the Call Related UI activities by 'CallRelated'. Methods to create the activity will become
createCallRelatedXXX() and events will become CallRelatedXXXEvent.

C.4.12.3 Naming Collisions of IpUICall and IpUIAdminManager Rule

Naming collisions that arise through IpUICall and IpUIAdminManager methods,e.g. XXX, having the same name will
be dealt with by prefixing the UI Admin activities by 'AdminRelated'. Methods to create the activity will become
createAdminRelatedXXX() and events will become AdminRelatedXXXEvent.

C.5 J2EE™ Specific Conventions
J2EE™ supports both remote and local interfaces.

C.5.1 Void

C.5.2 Remote Interface Definitions

C.5.2.1 IpInterface

This interface implements java.io.Serializable. Since it is the root interface for all other interfaces, this makes all
defined interfaces serializable.

EXAMPLE 30:

public interface IpInterface extends java.io.Serializable

C.5.2.2 Methods for Remote Interfaces

A public method is defined within a remote interface for each method defined in the specification, with zero or one
output specified as the return value, and all other parameters listed without any input marker. Each method will return
java.rmi.RemoteException in addition to other exceptions, if any.

EXAMPLE 31:

public void deassignCall (int callSessionID) throws java.rmi.RemoteException,
org.csapi.jr.ee.TpCommonException, org.csapi.jr.ee.InvalidSessionIdException;

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 56

C.5.3 Local Interface Definitions

C.5.3.1 Methods for Local Interfaces

A public method is defined within a local interface for each method defined in the specification, with zero or one output
specified as the return value, and all other parameters listed without any input marker.

EXAMPLE 32:

public void deassignCall (int callSessionID) throws org.csapi.jr.ee.TpCommonExceptions,
org.csapi.jr.ee.InvalidSessionIdException;

C.5.4 Multi Party Call Control Specific Rules
The Multi Party Call Control Manager interface has specific Java™ Realisation considerations.

C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts

Some method names within the IpAppCallLeg interface have the same names as methods in the IpAppMultiPartyCall
interface. These method names conflict when both interfaces are implemented on the same object within an RMI/IIOP
or CORBA environment.

For the method names that are the same in both IpMultiPartyCall and IpCallLeg interfaces or IpAppMultiPartyCall and
IpAppCallLeg, the call leg related method names are modified to include 'CallLeg' as part of the method name to avoid
name conflicts. The following method names result:

Table C.1: IpCallLeg method name modifications

IpCallLeg Method Name Realisation Method Name
getInfoReq getCallLegInfoReq
superviseReq superviseCallLegReq

Table C.2: IpAppCallLeg method name modifications

IpAppCallLeg Method Name Realisation Method Name
getInfoRes getCallLegInfoRes
getInfoErr getCallLegInfoErr
superviseRes superviseCallLegRes
superviseErr superviseCallLegErr

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 57

Annex D (informative):
Description of Overview for 3GPP2 cdma2000 networks
This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in [52], [53] and
[54]. These requirements are expressed as additions to and/or exclusions from the 3GPP Release 6 specification. The
information given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP
OSA specifications.

D.1 General Exceptions
The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used
(TR 121 905 [1]) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions or
exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope
There are no additions or exclusions.

D.2.2 Clause 2: References
Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 [8] are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations
There are no additions or exclusions.

D.2.4 Clause 4: Open Service Access APIs
There are no additions or exclusions.

D.2.5 Clause 5: Structure of the OSA API (29.198) and Mapping
(29.998) documents

There are no additions or exclusions.

D.2.6 Clause 6: Methodology
There are no additions or exclusions.

D.2.7 Clause 7: Introduction to OSA APIs
There are no additions or exclusions.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 58

D.2.8 Annex A (normative): OMG IDL
There are no additions or exclusions.

D.2.9 Annex B (informative): W3C WSDL
There are no additions or exclusions.

D.2.10 Annex C (informative): Java™ API
There are no additions or exclusions.

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 59

Annex E (informative):
Bibliography

• ETSI TR 129 998: "Universal Mobile Telecommunications System (UMTS); Open Service Access (OSA)
Application Programming Interface (API) Mapping for Open Service Access (3GPP TR 29.998 Release 5)".

• ETSI TS 123 127: "Universal Mobile Telecommunications System (UMTS); Virtual Home Environment/Open
Service Architecture (3GPP TS 23.127)".

• ETSI TS 122 127: "Universal Mobile Telecommunications System (UMTS); Service Requirement for the
Open Services Access (OSA); Stage 1 (3GPP TS 22.127)".

• ETSI TS 123 057: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Mobile Execution Environment (MExE); Functional description;
Stage 2 (3GPP TS 23.057)".

• ETSI TS 123 078: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Customised Applications for Mobile network Enhanced Logic
(CAMEL) Phase 3 - Stage 2 (3GPP TS 23.078)".

• "IDL to Java™ Compiler". (http://java.sun.com/products/jdk/idl/index.html).

• "UML Unified Modelling Language". (http://www.omg.org/uml/).

• "Object Management Group". (http://www.omg.org/).

• "The Parlay Group homepage". (http://www.parlay.org).

• "JAIN Community homepage". (http://www.java.sun.com/products/jain).

• "JSR Overview". (http://jcp.org/jsr/overview/index.en.jsp).

• "Java™ 2 SDK, Standard Edition (http://java.sun.com/j2se/1.4.2/download.html).

• "Java™ Community Process". (http://jcp.org/).

• "World Wide Web Consortium homepage". (http://www.w3c.org).

• Wireless Application Protocol (WAP), Version 2.0: "WAP Service Indication Specification"
(WAP-167). (http://www.wapforum.org/what/technical.htm).

• Wireless Application Protocol (WAP), Version 2.0: "Push Architectural Overview" (WAP-250).
(http://www.wapforum.org/what/technical.htm).

• Wireless Application Protocol (WAP), Version 2.0: "Wireless Application Protocol Architecture
Specification" (WAP-210). (http://www.wapforum.org/what/technical.htm).

http://java.sun.com/products/jdk/idl/index.html
http://www.omg.org/uml/
http://www.omg.org/
http://www.parlay.org/
http://www.java.sun.com/products/jain
http://jcp.org/jsr/overview/index.en.jsp
http://java.sun.com/j2se/1.4.2/download.html
http://jcp.org/
http://www.w3c.org/
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm

ETSI

Final draft ETSI ES 203 915-1 V1.2.1 (2006-10) 60

History

Document history

V1.1.1 April 2005 Publication

V1.2.1 October 2006 Membership Approval Procedure MV 20061222: 2006-10-24 to 2006-12-22

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Open Service Access APIs
	5 Document structure
	6 Methodology
	6.1 Tools and Languages
	6.2 Packaging Structure
	6.3 Colours
	6.4 Naming scheme
	6.5 State Transition Diagram text and text symbols
	6.6 Exception handling and passing results
	6.7 References
	6.8 Strings and Collections
	6.9 Prefixes

	7 Introduction to Parlay/OSA APIs
	7.1 Interface Types
	7.2 Service Factory
	7.3 Use of Sessions
	7.4 Interfaces and Sessions
	7.5 Callback Interfaces
	7.6 Setting Callbacks
	7.7 Synchronous versus Asynchronous Methods
	7.8 Out Parameters
	7.9 Exception Hierarchy
	7.10 Common Exceptions
	7.11 Use of NULL
	7.12 Notification Handling

	8 Relationship between ETSI, Parlay and 3GPP OSA releases
	9 Backwards Compatibility Considerations
	9.1 Guidelines to enable backwards compatibility in implementations
	9.2 Rule summary
	9.2.1 Server side permitted changes
	9.2.2 Client side permitted changes
	9.2.3 Data type permitted changes

	9.3 Implementation Guidelines for Server Programmers
	9.4 Implementation Guidelines for Client Programmers
	9.5 Tracking the changes in the specifications
	9.5.1 New Tag
	9.5.2 Deprecated Tag

	9.6 Technology realization rules
	9.6.1 Corba IDL Rules
	9.6.2 Java rules

	9.7 Rules for removal of deprecated items from the specifications

	Annex A (normative): OMG IDL
	A.1 Tools and languages
	A.2 Namespace
	A.3 Object References
	A.4 Mapping of Datatypes
	A.4.1 Basic Datatypes
	A.4.2 Constants
	A.4.3 Collections
	A.4.4 Sequences
	A.4.5 Enumerations
	A.4.6 Choices

	A.5 Use of NULL
	A.6 Exceptions
	A.7 Naming space across CORBA modules

	Annex B (informative): W3C WSDL
	B.1 Tools and Languages
	B.2 Proposed Namespaces for the OSA WSDL
	B.3 Object References
	B.4 Mapping UML Data Types to XML Schema
	B.4.1 Data Types
	B.4.1.1 <<Constant>>
	B.4.1.2 <<NameValuePair>>
	B.4.1.3 <<SequenceOfDataElements>>
	B.4.1.4 <<TypeDef>>
	B.4.1.5 <<NumberedSetOfDataElements>>
	B.4.1.6 <<TaggedChoiceOfDataElements>>

	B.5 Mapping of UML Interfaces to WSDL
	B.5.1 Mapping of UML Operations to WSDL message element
	B.5.2 Mapping of Exception to WSDL message element
	B.5.3 Mapping of Interface Class to WSDL portType and binding elements
	B.5.4 Mapping of UML Interfaces to WSDL service element

	Annex C (informative): JavaŽ Realisation API
	C.1 JavaŽ Realisation Overview
	C.1.1 J2SEŽ API
	C.1.2 J2EEŽ API
	C 1.3 JavadocŽ

	C.2 Tools and languages
	C.3 Generic Mappings (Elements common to J2SEŽ and J2EEŽ)
	C.3.1 Namespace
	C.3.2 Package Naming Conventions
	C.3.3 Object References
	C.3.4 Element Naming
	C.3.5 Element Naming Collisions
	C.3.6 Data Type Definitions
	C.3.6.1 Basic Data Types
	C.3.6.2 Constants
	C.3.6.3 NumberedSetsOfDataElements (Collections)
	C.3.6.4 SequenceOfDataElements (Structures)
	C.3.6.5 NameValuePair (Enumerations)
	C.3.6.6 TaggedChoiceOfDataElements (Unions)
	C.3.6.7 Exceptions
	C.3.6.7.1 PlatformException
	C.3.6.7.2 P_XXX_XXX Exceptions
	C.3.6.7.3 TpCommonExceptions
	C.3.6.7.4 TpCommonException's associated exceptions
	C.3.6.7.5 Additional abstract exceptions
	C.3.6.7.6 InvalidUnionAccessorException
	C.3.6.7.7 InvalidEnumValueException

	C.3.6.8 Deprecation

	C.4 J2SEŽ Specific Conventions
	C.4.1 Removal of "Tp" Prefix
	C.4.2 Constants
	C.4.3 Removal of "Ip" prefix
	C.4.4 Mapping of IpInterface
	C.4.5 Mapping of IpService
	C.4.6 Mapping of UML Operations
	C.4.7 Mapping of TpSessionID
	C.4.8 Mapping of TpAssignmentID to the creation of an Activity object
	C.4.9 Callback Rule
	C.4.10 Factory Rule
	C.4.11 J2SEŽ Specific Exceptions
	C.4.11.1 PeerUnavailableException
	C.4.11.2 IllegalStateException

	C.4.12 User Interaction Specific Rules
	C.4.12.1 Interfaces representing UML IpUI and IpUICall Rule
	C.4.12.2 Naming Collisions of IpUI and IpUICall Rule
	C.4.12.3 Naming Collisions of IpUICall and IpUIAdminManager Rule

	C.5 J2EEŽ Specific Conventions
	C.5.1 Void
	C.5.2 Remote Interface Definitions
	C.5.2.1 IpInterface
	C.5.2.2 Methods for Remote Interfaces

	C.5.3 Local Interface Definitions
	C.5.3.1 Methods for Local Interfaces

	C.5.4 Multi Party Call Control Specific Rules
	C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts

	Annex D (informative): Description of Overview for 3GPP2 cdma2000 networks
	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: Open Service Access APIs
	D.2.5 Clause 5: Structure of the OSA API (29.198) and Mapping (29.998) documents
	D.2.6 Clause 6: Methodology
	D.2.7 Clause 7: Introduction to OSA APIs
	D.2.8 Annex A (normative): OMG IDL
	D.2.9 Annex B (informative): W3C WSDL
	D.2.10 Annex C (informative): JavaŽ API

	Annex E (informative): Bibliography
	History

