Final draft ETS| ES 203 119-9 V1.1.1 (2025-05)

<. —

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Part 9: Test Runtime Interfaces

2 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

Reference
DES/MTS-203119-9v1.1.1

Keywords
interface, runtime, TDL, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fithess
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fithess for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.
All rights reserved.

ETSI

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

3 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

Contents

INtellectual Property RIGNES.... ..ot b e e e en e ns 5
01 =Y o] (o IO 5
MoOdal VErDS TEMINOIOQYccteieeiicieee ettt st e e s te s ae e aesbeeaeesbesreentesaeeasessesneensesreeneensessens 5
Fg 1ol (1 (o] o RSO 5
1 o0 o< TP P URUP PRSPPSO 6
2 S = (< (/== T OO 6
2.1 N[0 007 AR = (= (= (0= OO RRO 6
2.2 INFOrMEBLIVE FEFEIEICES.eeeceie ettt et s e et e e s ae e e be e e saee e beeeebeeeebeeesabeeabeeesaeeenseeesnreennnes 6
3 Definition of terms, symbols, abbreviations and CONVENTIONS...........c.eiiererereeieeieeeesese e 6
3.1 LI 10 6
3.2 Y 1210 7
3.3 F N ool (=Y = (0] 0O 7
3.4 (0] 01V7= 1110 0O 7
4 Test EXECULTION ENVITONMIENEooctiictieciee ittt et ecteeete e et e eteeteesteesteesaeesnseebeesbeessessseesntesnbeenseenseeseesseesns 7
4.1 F N ok 11 (= (U= TSRO 7
4.2 Y720 o T o S 8
4.3 (D= = VA= 10 L= SRS RRP 8
5 TESE RUNEIME INEEITACES. ..o ettt ettt et e et e e et e e e ebe e e eateesbeeseatesebeseeseeeantessseeesnrenan 9
51 [N [ol¢= 1To] 0Tz I @(e] 01V/= a1 Lo 1TSS 9
52 BASIC PrINCIPIES ...ttt bbb bbb bbb bbb e bt b e 9
5.3 (@Y1 V1= YOO 10
54 15/ 0= 7T PO 10
541 [T, R 10
54.2 [[a0TS 017N g1 00 = 1 o] SRS 10
54.3 INE TS o [Lt o | SRR 11
5.4.4 D - TSROSO 11
54.5 F N 0 00 01 o PSPPI 11
5.4.6 L 0Te= o (01 = TSSO 12
54.7 S =1 <. SRSt 12
54.8 I8P PRI 12
5.4.9 V= 1 LR 13
5.4.10 SPECTAIVBIUB ...ttt b e h bbbt e bt b s e bt b st ekt sb et ekt s b e e ebesb e e enesbennenea 14
54.11 Y =T oI oo OSSOSO OSSPSR VPSR UTR 14
5.4.12 (T (< R (S [= (= [0 NSRRI 14
54.13 GAETYPEKING. ...ttt b bbbt b e et b e s e e st e bt se e st e bt se e st e b e sh e e ek e s b e e ebesbeneebenbennenea 15
5.4.14 ComMPONENtINSLANCEROIE.........ceceeiieeieeeee ettt e e e eese e sreesaeeseenseesaeereesseesseenseensenneennes 15
5.4.15 (o] o] 07" oi (oo F TP SURTRPROt 15
5.4.16 VA= (o [Fo: SRRSO 16
5.4.17 RS 0] 0] oo Lo o TSP 16
5.4.18 ValidatiONFal l @UEXCEPLIONoeieeeiieeieee ettt te e s esre e aeenteenaeereenteenseenaesnensnaesnees 16
55 SYSEEIM AGBILEeeeeeetetee ettt b et b bt b e b e bRt b e e b et bt e R e e e bt b et bR Re bRt b e et b n e 17
551 (@Y1 oY= AT UOTR 17
552 CONFIQUIE CONNECLIONS ...ttt ettt sttt e et s b et eb e e e bt s b e e eb e sb e e et e e b e seebeebese et e sbe e ebe st e e enenbennenen 17
553 SN0 IMESSAGE. ...ttt etttk ettt b etk s bt eb bt b e b e e e bt e b e e eb e e h e e eh e e b e e ebeeE e ne e bt e h e et eb e eb e e e bt s b e e ebeebeneenenbennenea 17
554 RECEIVE MESSAJE. ...ttt ettt ettt b et b e bt b e bt b e s b e e bt b et e bt e b e e e bt e b e e e bt s e st e b et et eb e s b et b e b e 17
555 CaAll PrOCEAUIE.......ccteeeeeete ettt b et b e ekt e et bt s b e e ekt sh et e b e se et eb e sb e e ebesb e e ebenbe e ebesbennenen 18
5.5.6 RECEIVE PrOCEAUIE CAll ... oottt et esae e teeeeene e e re e st e e te e seeteenteennenneennes 18
55.7 e o Ao T o o= L1 = or= | 18
5.6 V2= 1T = o SRRSO UTSURTRPIR: 19
5.6.1 OVEIVIBW ...ttt it ettt et eteeebeesbeebeeabesaeesaeesheesbeeaseeassebeesbe e beeabeenbesasesaeesheeaaeenseeaseeaeeebeesbeesbeebeensesnnesnns 19
5.6.2 = o2 a0 7 - OSSR 19
5.6.3 S VL= (o [t OSSP 19
5.6.4 (€T Y= (o [T R ORRR 19

ETSI

4 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

5.7 QL= S oo T U PO 19
57.1 OVEBIVIBW ..ttt ettt e et te e et e e et e e see et e s Rt eaeeae e e e eeseeeEeeReeeeemeemseeeseeebeeaeeseeneenseneeseeseesneeneeneensas 19
5.7.2 L0001 11]011< | SO PTRRRR 20
573 TSt ODJECHIVE TEACNEM ...ttt bbbt bbb b 20
574 TS 0 Yo TN g = = P RRSRRN 20
575 Behaviour COMPIELEAooeeeee et e s s e te e te e teeteeeeeneeenes 20
5.7.6 RUNLIMIE B TON ...ttt bbb bt b e h e eh e et et e e e e eR e e bt eheeh e e heem e e e e neenbesbesbeeneennennen 20
5.8 PredefiNed FUNCLIONS.c..oiiieie ettt bbbt s et et bt bt e h et e b e b shenbesneene e e e e e 21
Annex A (informative): Technical Representation of the Runtime Interfaces.........ccocovveeeeveenene 22
L 11 (TSP OP PR PRORPRTRORN 23

ETSI

5 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-member s, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM 2M ™ |ogo is atrademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

Thisfinal draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI Membership Approva Procedure (MAP).

The present document is part 9 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction

The TDL language has been designed from the start with executability in mind. However, some of the constructs of
TDL are abstract and adaptation to concrete implementation is required.

The present document provides a specification for an architecture of atest execution environment for TDL test
descriptions and interfaces between the components. It provides a mapping of abstract TDL constructsto concrete
implementation artifacts that are a prerequisite to produce executable TDL test descriptions. The described approach
follows the commonly used 'separation of concerns' principle.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

1 Scope

The present document specifies the architecture for the execution environment of TDL test descriptions and functional
requirements for the components in the form of function declarations that will be provided by an implementation of the
components and data types used as input and output parameters of the functions. The test executor component will
interpret the elements of test descriptions according to operational semantics specified in [1].

The present document will be used for devel oping a code generator or interpreter for mapping abstract TDL constructs
to code and the required test environment components that are specific to a chosen test execution platform.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found in the
ETSI docbox.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 203 119-1: "Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 1: Abstract Syntax and Associated Semantics'.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents may be useful in implementing an ETSI deliverable or add to the reader's
understanding, but are not required for conformance to the present document.

[i.1] ETSI: "TDL Open Source Project”.
3 Definition of terms, symbols, abbreviations and
conventions
3.1 Terms

For the purposes of the present document, the terms given in [1] and the following apply:
system adapter: entity that adapts the test executor communication operations with the SUT

test executor: application that carries out test behaviour

ETSI

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_es/203100_203199/20311901/
https://top.etsi.org/

7 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in [1] and the following apply:

SUT System Under Test
TRI Test Runtime Interfaces

3.4 Conventions

For the purposes of the present document, the following conventions apply:

Meta-classes and predefined instances from the TDL meta-model [1] are typed initalic, e.g. DataType.

4 Test Execution Environment

4.1 Architecture

The execution environment for TDL test descriptions shall have modular architecture as shown on Figure 4.1.

System adapter Test executor Test reporter
v v
Validator Predefined
functions

Figure 4.1: Architecture

The central component of the environment shall be the test executor. The test executor shall execute the behaviour of
the elementsin atest description according to the operational semantics specified in [1].

The test executor shall only execute the behaviours that occur on component instances of type ‘Tester'. The execution of
the behaviour of each component shall be independent of other components. Thisimplies that the implementations of
the runtime components shall be thread-safe in case the execution language supports multi-threading.

Additional requirements for the test executor are defined in clauses 4.2 and 4.3.

The specifics of the realization of the test executor and the mechanism for resolving the implementations of runtime
interface components are outside the scope of the present document.

NOTE: Itisagood practice to use a dependency injection mechanism for providing specific implementation for
required interfaces.

The interfaces that should be realized and made available to the test executor are collectively called Test Runtime
Interfaces (TRI). The following interfaces shall be implemented:

. 'System adapter’ manages interactions between the test executor and the SUT;

. ‘Validator' provides data matching functionality;

ETSI

8 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

e 'Test reporter' implementstest logging; and
. 'Predefined functions' provides implementation of TDL predefined functions.

Interface function declarations and i mplementation requirements are specified in clause 5.

4.2 Mappings

TDL model elements of the meta-classes DataType and Datal nstance (and their sub-classes) may be mapped to specific
objects or type definitionsin the execution platform via DataElementMapping elements. The realization of the TDL test
executor shall support two mechanisms for resolving the mappings.

In the first instance, the mappings shall refer to specific objects or type definitions in the execution platform
programming language. The test executor shall resolve those mappings using language specific means and pass
references to those objects to the runtime interface components.

In the second case, the mapping information shall be encapsulated in instances of ‘Mapping' and the associated
DataType or Datalnstance shall be encapsulated in instances of Type' or 'Value' respectively.

<<Interface>>
Data
getValue()
getType()
<<Interface>> <<Interface>>
Value Type
getMapping() getMapping()

<<Interface>>

Mapping

Figure 4.2: Encapsulated Data and Type

The choice of the mechanism shall be made by the concrete realization of the test executor based on the MappingName
annotation applied to the mappings.

TDL model elements of the meta-classes Action, Function and PredefinedFunction shall be mapped to functions

implemented in the execution language. The MappingName annotation shall be used to identify the appropriate
mapping for the language.

4.3 Data Values

The test executor shall perform all data modifications (as specified by Member Assignment and Parameter Binding
elements) before passing the values to other components. Before parameter bindings are applied, the value instances
shall be copied using language-specific means to adhere to the immutability principle of TDL data.

ETSI

9 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

5 Test Runtime Interfaces

5.1 Notational Conventions

References to types and interfaces defined in the present document are typed in quotation marks, e.g. 'System adapter'.
Signatures of interface functions are defined using the following syntax:
. <function-name> (<parameters>): <return-type-declaration> <throws-declaration>

The <function-name> defines the name of the function. The <parameters> is a potentially empty set of
comma-separated (,) parameter declarationsin the following format:

e <parameter-name>: <type-declaration>

The <return-type-declaration> defines the type of object that the function shall return. The special keyword 'void' is
used to indicate that the function does not return avalue.

The <type-declaration> and <return-type-declaration> are specified in the following format:
e <type-name> [<multiplicity>] { <type-qualifiers>}

The <multiplicity> is specified using asingle value that is either an integer or a special symbol * indicating unlimited
multiplicity, or arange of alower and an upper limit, e.g. 0..1. If omitted, then the multiplicity shall be 1.

The <type-qualifiers> may be used to indicate further specialization, e.g. that a multivalued return value is ordered.

The <throws-declaration> is a potentially empty set of comma-separated (,) exception types prefixed with the keyword
‘throws'.

5.2 Basic Principles

The runtime interfaces are defined as sets of functions called by the test executor.

All the parameters to the functions are positional and the test executor shall pass the arguments to the functionsin the
order that they are defined in the function declarations. The order of itemsin multivalued arguments and return values
shall bethe same asitisinthe TDL model. All objects passed as arguments or return values shall be immutable.

The test executor shall not pass undefined (or equivalent) values as arguments unless explicitly specified in the present
document. Similarly, TRI components shall not return undefined values as function results. The components shall not
rai se exceptions other than specified in the present document or exceptions that are considered fatal in the programming
language (runtime exceptions).

The programming language in which the components are implemented shall support the following:
. objects,
e instance functions;
e values of type text, number, Boolean, and enumerated types,
0 collections,
e typeinheritance; and
. enumerated types.

If the programming language does not support throwing (or raising) exceptions, then the exception object shall be
returned as function result instead.

ETSI

10 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

5.3 Overview

Clause 5.4 specifies the types for the objects that are used to pass information between the test executor and the TRI
components. In addition to the types specified in the present document, the following basic types are used:

. '‘Boolean’ type indicates atruth value, that istrue or false;
e 'Integer' type indicates a whole number;
. 'String' type indicates a textual value; and

. 'Object' type indicates a structured value (that may have a more specific type assighed depending on the
implementation language).

The implementation language types used for the '‘Boolean’, 'Integer' and 'String' types shall correspond to the types
mapped to the predefined TDL types Boolean, Integer, and Sring.

NOTE: For programming languages that may be used without explicit type definitions but that have typing
support available, the implementation of the TRI should prefer including type definitions for interface
types and functions.

The generalization declaration in the following clauses implies that the generalizing type shall transitively inherit all
functions declared for the general type.

5.4 Types

54.1 Element

Description

The 'Element’ type serves as super-type for other types. It corresponds to the Element meta-class.

Generalization

Thereis no generalization specified.

Functions

. getName(): String [0..1]
Vaue of the 'name' property of the Element element.

. getAnnotations(): ElementAnnotation [0..*] { ordered}
Objects corresponding to the "annotation’ property of the Element element.

542 ElementAnnotation

Description

The 'ElementAnnotation’ type corresponds to the Annotation meta-class. The AnnotationType element shall be
represented using its qualified name.

Generalization

There is no generalization specified.

Functions

. getKey(): String [1]
Vaue of the 'qualifiedName' property of the AnnotationType element.

ETSI

11 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

e getVaue(): String [0..1]
Value of the 'value' property of the Annotation element.

543 NamedElement

Description

The 'NamedElement' type serves as super-type for other types. It corresponds to NamedElement meta-class.

Generalization

. Element

Functions
e getQualifiedName(): String [1]
Value of the 'qualifiedName’ property of the NamedElement element.

54.4 Data

Description
The 'Data type shall provide a data value and a data type for runtime interface functions where data is used.

The data value shall not be encoded. The value representation isimplementation-specific, but it shall either be resolved
by the runtime using the data mapping mechanism or it shall be an instance of the 'Value' type (see clause 5.4.9).

The data type shall describe the structure of the value. It shall either be resolved by the runtime using the data mapping
mechanism or it shall be an instance of the 'Type' type (see clause 5.4.8).

NOTE: Both the value and the type may be represented by the same mechanism in order to simplify the
implementation of the test executor.

The mapping mechanisms are specified in clause 4.2.

Generalization

Thereis no generalization specified.

Functions

o getVaue(): Object [1]
The object representing the value of the data.

. getType(): Object [1]
The object representing the type of the data.

5.4.5 Argument

Description

The 'Argument’ type extends 'Data to provide a name of the parameter to which the data is assigned.

Generalization

[Data

ETSI

12 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

Functions
. getParameterName(): String [1]
Vaue of the 'name' property of the associated Parameter element.

54.6 Procedure

Description

The 'Procedure’ type corresponds to the ProcedureSgnature meta-class. The parameter objects shall be grouped by
kind.

Generalization

° NamedElement

Functions

. getin(): Parameter [0..*] { ordered}
The parameter objects that correspond to ProcedureParameter elements whose kind is ParameterKind In.

. getOut(): Parameter [0..*] { ordered}
The parameter objects that correspond to ProcedureParameter elements whose kind is ParameterKind Out.

. getException(): Parameter [0..*] { ordered}

The parameter objects that correspond to ProcedureParameter elements whose kind is ParameterKind
Exception.

54.7 Parameter

Description

The 'Parameter' type corresponds to the Parameter meta-class and its sub-classes. The type object is specified in
clause 5.4.8.

Generalization

. Element

Functions
. getType(): Object [1]
The object representing the type of the parameter.

5.4.8 Type

Description

The Type' type corresponds to the DataType meta-class and its sub-classes. Objects of this type shall be created when
the DataType element does not have a suitable mapping specified.

Generalization

. NamedElement

Functions

. isStructure(): Boolean [1]
Whether this type corresponds to a StructuredDataType element.

ETSI

13 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)
. isCollection(): Boolean [1]
Whether this type corresponds to a CollectionDataType element.

. isEnum(): Boolean [1]
Whether this type corresponds to an EnumDataType element.

e getMapping(): Mapping [1]
The'Mapping' object for this type chosen for the runtime.

e getParameters(): String [0..*]
The names of Member elementsif thistype is a structure, undefined otherwise.

. getParameter Type(parameterName: String): Type [1]
The Type' of the parameter whose name equals '‘parameterName’, undefined if thistype is not a structure.

. getitemType(): Type[1]
The 'Type' of itemsin the collection if thistype is a collection, undefined otherwise.

. getEnumLiterals(): Data[0..*]
The 'Data’ objects that correspond to SmpleDatal nstance elements that are contained in this type, if thistype
corresponds to EnumDataType, undefined otherwise.

549 Value

Description

The 'Value' type corresponds to the Datal nstance or the DataUse meta-class and their sub-classes. Objects of thistype
shall be created when the corresponding element does not have a suitable mapping specified.

For primitive 'Value' objects (that is, values that are not a structure nor a collection), the 'getValue' function shall return
either a primitive value in aformat specific to the implementation language or an instance of SpecialValue.

Generalization

. Element

Functions

e isStructure(): Boolean [1]
Whether this value corresponds to a StructuredDatal nstance el ement.

. isCollection(): Boolean [1]
Whether this value corresponds to a CollectionDatal nstance element.

e getMapping(): Mapping [1]
The'Mapping' abject for this value chosen for runtime.

e getVaue(): Object [1]
The actual value of this'Value' object if this object represents primitive data, undefined otherwise.

. getParameters(): String [0..*]
The names of 'Member' elements of the 'Type' of this 'Value' if thisvalue is a structure, undefined otherwise.

. getParameter(parameterName: String): Data[1]
The'Data containing the type and value of the parameter whose name equal s ‘parameterName’, undefined if
thistypeis not a structure.

. getitems(): Data[0..*]
The 'Data objects contained in this 'Value' if the value is a collection, undefined otherwise.

ETSI

14 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

5.4.10 Specialvalue

Description

The 'SpecialValue' typeis an enumerated type and corresponds to sub-classes of the Special ValueUse meta-class. The
'SpecialValue' object shall be used as avalue for a'Value' object.

Generalization

There is no generalization specified.

Functions

There are no functions specified.

5.4.11 Mapping

Description

The 'Mapping' type corresponds to the DataResourceMapping, DataElementMapping or Parameter Mapping meta-
classes. The value of the predefined MappingName annotation (when applied to a resource mapping) shall be used to
identify if the 'Mapping' is applicable in a given context.

In case the mapping represents a data el ement mapping, the names of the contained parameter mappings shall match the
ones returned by 'getParameters' function of the 'Value' or 'Type' object that contains this mapping.

Generalization

. Element

Functions
. getMappingName(): String [1]
The name applied to the associated DataResourceMapping element via the predefined MappingName
annotation.

. isResource(): Boolean [1]
Whether this mapping corresponds to a DataResourceMapping element.

. isParameter(): Boolean [1]
Whether this value corresponds to a Parameter Mapping element.

. getUri(): String [1]
The value of element specific property defining the URI of the mapping.

. getResource(): Mapping [1]
The 'Mapping' corresponding to DataResourceMapping for this data element mapping, undefined if thisisa
parameter or resource mapping.

. getParameterM apping(parameterName: String): Mapping [1]

The 'Mapping' of the parameter whose name equal s ‘parameterName’, undefined if thisis a parameter or
resource mapping.

5.4.12 GateReference

Description

The 'GateReference' type corresponds to the GateReference meta-class.

ETSI

15

Generalization

Thereis no generalization specified.

Functions

getGate(): Element [1]
The object representing the gate instance.

getGateType(): NamedElement [1]
The object representing the gate type.

getGateTypeKind(): GateTypeKind [1]
The object representing the gate type kind.

getComponent(): Element [1]
The object representing the component instance.

getComponentType(): NamedElement [1]
The object representing the component type.

getComponentRole(): Componentl nstanceRole [1]
The object representing the component role.

5.4.13 GateTypeKind

Description

Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

The 'GateTypeKind' typeis an enumerated type and corresponds to the GateTypeKind meta-class.

Generalization

There is no generalization specified.

Functions

There are no functions specified.

5.4.14 ComponentinstanceRole

Description

The 'Componentl nstanceRol €' type is an enumerated type and corresponds to the Componentl nstanceRole meta-class.

Generalization

There is no generalization specified.

Functions

There are no functions specified.

5.4.15 Connection

Description

The 'Connection’ type corresponds to the Connection meta-class.

ETSI

16 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

Generalization

° Element

Functions

. getEndPoints(): GateReference [2]
'‘GateReference’ objects that correspond to GateReference elements contained in the corresponding Connection
element.

5.4.16 Verdict

Description

The 'Verdict' type corresponds to the SmpleDatal nstance meta-class whose type is the predefined type Verdict.

Generalization

. NamedElement

Functions

There are no functions specified.

5.4.17 StopException

Description

Objects of the 'StopException' type shall be returned (or thrown) by an implementation to indicate that the test
execution should be stopped.

Generalization

Thereis no generalization specified.

Functions

. getMessage(): String [0..1]
The informal reason for stopping.

. getVerdict(): Verdict [0..1]
Thefinal verdict of the test execution.

5.4.18 ValidationFailedException

Description

Objects of the 'V alidationFailedException' type shall be returned (or thrown) by an implementation of the 'Validator'
interface to indicate that the match operation has failed.

Generalization

Thereis no generalization specified.

Functions

. getMessage(): String [0..1]
The informal reason for the validation failure.

ETSI

17 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

5.5 System Adapter

551 Overview

The system adapter component provides the mechanism for communicating with the System Under Test (SUT). Thisis
usually a protocol stack implementation or an adapter for a user interface. An implementation may support either single
or multiple concurrent connections and either message- or procedure-based communication (or both), depending on the
testing needs.

Functions specific to message-based communication are specified in clauses 5.5.3 and 5.5.4. Functions specific to
procedure-based communication are specified in clauses 5.5.5, 5.5.6 and 5.5.7. Clause 5.5.5 specifies the handling of a
procedure call when the test executor isthe caller. Clauses 5.5.6 and 5.5.7 specify the handling of a procedure call when
the test executor is the callee (the server).

An implementation shall be able to handle receiving multiple calls (by the test executor) for the same incoming data
(see clause 5.5.5). Thisimplies that incoming data chunks shall be stored in a message queue in an encoded form to
facilitate repeated decoding attempts.

NOTE: A message queue could be implemented as a first-in-first-out stack.

5.5.2 Configure connections

Signature

e configure(connections: Connection [1..*]): void

Description

Prepare the adapter for all ‘connections' configured for an upcoming test description execution. This function shall be
called before any test behaviour is executed.

NOTE: Thisfunction should be used for performing any required initialization of the component.

5.5.3 Send message

Signature

. send(message: Data, connection: Connection): void

Description
The implementation shall encode the 'message’ data and send it to the SUT over the specified 'connection’ using
protocol- or adapter-specific means.

5.5.4 Receive message

Signature

. receive(expectedMessage: Data [0..1], connection: Connection): Data thr ows ValidationFailedException

Description

The execution of the function code shall block until datais available at the top of the incoming message queue for the
specified ‘connection'.

NOTE 1. The exact mechanism of blocking islanguage- and implementation-dependent. However, the blocking
should be done in a manner that does not prevent the execution of concurrent code.

ETSI

18 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

If the 'expectedM essage’ is specified, then the implementation shall attempt to decode incoming data using the type of
the specified 'expectedM essage’ and match the data against the value of the 'expectedMessage’. An instance of
‘Validator' may be used for matching. If the data matches the provided 'expectedM essage’ then it is decoded and
returned, otherwise the function shall throw a 'V alidationFailedException' specifying the result of the validation.

The decoded 'Data object returned from the function shall use the same mapping mechanism as the 'message’ argument.
That is, if the 'expectedMessage’ is a mapped object then the returned object shall be mapped object as well (see
clause 4.2).

If the 'expectedMessage’ is not specified, then the data shall be returned without validation and the data may bein
encoded form. The returned data shall be passed on to the 'Test reporter' component by the test executor. The specific
representation format for the data is implementation-specific.

The implementation shall only consider one (the oldest) chunk of incoming data at atime. If the received data matches
the 'expectedM essage’ or the 'expectedM essage’ is undefined, then the message shall be considered handled and the data
is removed from the incoming message queue.

NOTE 2: The implementation of the test executor should include a mechanism for interrupting the code that is
blocked in waiting for input. The interruption mechanism isimplementation-dependent.

5.5.5 Call procedure

Signature

. call(operation: Procedure, arguments: Argument [0..*], expectedReturn: Data[0..1], expectedException: Data
[0..1], connection: Connection): Data thr ows ValidationFail edException

Description

The implementation shall encode the specified 'arguments' and call a remote procedure specified by the ‘operation’ over
the specified 'connection’ and block until a matching reply (either exception or response) is received.

Either 'expectedReturn’ or ‘expectedException’ shall be provided, but not both (see clause 9.4.8in[1]). The
implementation shall use either of the provided data for decoding and matching and shall return a corresponding 'Data
object upon success.

Rules for processing and decoding incoming data and for function execution and return values described in clause 5.5.4
shall apply.
5.5.6 Receive procedure call

Signature

e receiveCall(operation: Procedure, expectedArguments: Argument [0..*], connection: Connection): Data [0..*]
throws ValidationFailedException

Description

The execution of the function code shall block until the call to ‘operation’ is received with matching
‘expectedArguments’ from the specified ‘connection’. The implementation shall use ‘expectedArguments for decoding
and matching and shall return corresponding ‘Data’ objects upon success.

Rules for processing and decoding incoming data and for function execution and return value described in clause 5.5.4
shall apply.

5.5.7 Reply to procedure call

Signature

. replyCall(operation: Procedure, reply: Data[0..1], exception: Data[0..1], connection: Connection): void

ETSI

19 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

Description

The implementation shall encode the 'reply’ or 'exception’ data and send it to the SUT as response to the 'operation’ over
the specified ‘connection’ using protocol- or adapter-specific means. Either 'reply’ or ‘exception’ shall be provided, but
not both (see clause 9.4.8 in [1]).

5.6 Validator

56.1 Overview

Component for providing data validation and verdict management.

56.2 Match data

Signature

. matches(expected: Data, actual: Data): void throws ValidationFailedException

Description

The implementation shall perform implementation-specific comparison of the 'actual’ data received from the SUT and

the 'expected’ data specified in the test description. The function implementation shall return normally when the match
succeeds. The failure to match shall be indicated by throwing a 'V alidationFailedException’ specifying the result of the
validation.

5.6.3 Set verdict

Signature

. setVerdict(verdict: Verdict): void

Description

The implementation shall update the current verdict of the test description execution according to provided 'verdict' and
the rules described in clause 9.4.4 in [1].

5.6.4 Get verdict

Signature

. getVerdict(): Verdict

Description

The implementation shall return the current verdict of the test description execution.

5.7 Test Reporter

57.1 Overview

Component for providing environment-specific test logging functionality.

ETSI

20 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

57.2 Comment

Signature

. comment(body: String): void

Description
The implementation shall log the comment associated with a model element. This function shall be called before the
execution of the associated element.

5.7.3 Test objective reached

Signature

. testObjectiveReached(uri: String, description: String): void

Description
The implementation shall log the test objective associated with a behaviour element. This function shall be called after
the execution of the associated behaviour.

5.7.4 Behaviour started

Signature

. behaviourStarted(id: String, kind: String, properties: Object [0..*]): void

Description

The implementation shall log the start of a behaviour execution. The 'kind' parameter shall hold the name of the
behaviour element meta-class. The 'id' shall be alocally unique identifier of the behaviour. The 'properties shall be
specific to the behaviour and are implementation-specific.

5.7.5 Behaviour completed
Signature
. behaviourCompleted(id: String): void

Description
The implementation shall log the completion of a behaviour execution. The 'id' shall be alocally unique identifier of the
behaviour and it shall match an 'id' from an earlier call to 'behaviourStarted'.

5.7.6 Runtime error

Signature

. runtimeError(error: Object): void

Description

The implementation shall 1og a runtime error. Runtime errors shall result in the termination of the test execution. The
type of the ‘error' object isimplementation-specific and may include an operation stack trace or other information that
facilitates locating the source of the error.

ETSI

21 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)
NOTE: Itisnot the responsibility of the logger to handle the errorsin any way except logging them.
5.8 Predefined Functions

The predefined functions component provides implementations for al functions specified in clause 10.5 in [1]. The test
executor shall resolve the implementation functions using mappings as explained in clause 4.2.

ETSI

22 Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

Annex A (informative):
Technical Representation of the Runtime Interfaces

A technical representation of the TDL runtime interfacesis available in the TOP repository [i.1].

ETSI

23

Final draft ETSI ES 203 119-9 V1.1.1 (2025-05)

History

Document history

V111

May 2025

MAP process

MV 20250707: 2025-05-08 to 2025-07-07

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols, abbreviations and conventions
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations
	3.4 Conventions

	4 Test Execution Environment
	4.1 Architecture
	4.2 Mappings
	4.3 Data Values

	5 Test Runtime Interfaces
	5.1 Notational Conventions
	5.2 Basic Principles
	5.3 Overview
	5.4 Types
	5.4.1 Element
	5.4.2 ElementAnnotation
	5.4.3 NamedElement
	5.4.4 Data
	5.4.5 Argument
	5.4.6 Procedure
	5.4.7 Parameter
	5.4.8 Type
	5.4.9 Value
	5.4.10 SpecialValue
	5.4.11 Mapping
	5.4.12 GateReference
	5.4.13 GateTypeKind
	5.4.14 ComponentInstanceRole
	5.4.15 Connection
	5.4.16 Verdict
	5.4.17 StopException
	5.4.18 ValidationFailedException

	5.5 System Adapter
	5.5.1 Overview
	5.5.2 Configure connections
	5.5.3 Send message
	5.5.4 Receive message
	5.5.5 Call procedure
	5.5.6 Receive procedure call
	5.5.7 Reply to procedure call

	5.6 Validator
	5.6.1 Overview
	5.6.2 Match data
	5.6.3 Set verdict
	5.6.4 Get verdict

	5.7 Test Reporter
	5.7.1 Overview
	5.7.2 Comment
	5.7.3 Test objective reached
	5.7.4 Behaviour started
	5.7.5 Behaviour completed
	5.7.6 Runtime error

	5.8 Predefined Functions

	Annex A (informative): Technical Representation of the Runtime Interfaces
	History

