ETSIES 203 119 vi.1.1 (201409

< >

ETSI Standard_

Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Specification of the Abstract Syntax and
Associated Semantics

2 ETSI ES 203 119 V1.1.1 (2014-04)

Reference
DES/MTS-140_TDL

Keywords

language, MBT, methodology, testing, TSS&TP,
TTCN-3, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 203 119 V1.1.1 (2014-04)

Contents

Intellectual Property RIGNES.... ..ottt e b e s 6
0 L= V1V (o RS 6
1 o0 0 SR 7
2 L= = 010 SRS 7
21 NOIMBLIVE FEFEIENCES ...ttt s e ettt e et e et eebeeebe e be e besabesaeesheesaeesaeeseenteeaseensesseesteeteentens 7
22 INfOIMALIVE FEFEIEICES..... ..ottt ettt ettt et eete e st e e s be e beeabesaeesaeesaeesaeeabeenbeeaseensesseesteeteentenn 7
3 Definitions and aDbrEVIBLIONS...........oieeereeese et te e steereentesneeneeseesneeneeseeenes 8
31 D= T a1] (0] PP TP PRTUPTPPUSRSII 8
3.2 ADDIEVIBLIONS ...ttt bbbt a et e s e b e sh e e b e e R e e he e s e e ee e b e sheeb e e Rt e R e et e R e bt sheebeeneeneennen 8
4 R STl 1T g Ter o] 1= T 9
4.1 WMVNBE IS T2 ..ttt ettt ettt ettt et e et e e teesbeesbeesbeeseeasesaeeeaeeabeesbeenseeateeaeesbeenbeensesnsesaeesaeesreesaeensesnsens 9
4.2 Applicability of the Present AOCUMENT..........coi ittt 9
4.3 DESIGN CONSIAEIBLIONS.........eeveeeierterteieet sttt ettt se et rs st s s sb s es e sb e s e bt b e s e b bt e e b e eb e s ese s bt s ene e bt e e neenennennens 10
4.4 DOCUMIENT SITUCLUNE. ... teeieeeesiie et e sttt e st s e e s ee e sttt e s aee e te e e saee e teeeasee e seeeaseeesseeeseeanteeaneeenseeaaseeesseeenseeessneansenens 11
4.5 NOLALTONAl CONVEIMLIONS. ... eeiitiieetiete ettt ettt se bt b et he b e st e e e e e s s e bese e e bt s bt eheene e e e sbeshesbeeaeenee e eneenes 11
4.6 (00010100 7= 0o TR TSSO U U P USROS 11
5 (0T WT 0T =0 o TSSO 12
51 OVEBIVIBW ...ttt bbbkt b e H bt e bt eh £ e s e e st e eE e e E e bt eh e e h £ e a e e a e e eE e b e e R e eheeb e e Rt ehe e e e b e nbeeheebeeneenee e entes 12
52 ADSITBCE SYNEBX ...ttt stttk st bbbt b e e b eb e s e eb s b e e bt e b e se e bt e b e s e ekt s e et eb e s b e e eb e s b e e ebeebennene s 12
53 ClaSSH i@ DESCIIPLIONveteaeeteiteeete ettt sttt ettt b bt b e bt b e bt b bt b e s b et e bt s b et b s e e st ebese e st eb e s b et eb e e ene e 13
531 1= 01 0| TSROSO 13
532 Packageall BEIEMENT ..o bbb et 14
533 PACKBOE....c. ettt e h e et b Rt b et bt b e bt b e e 15
534 L= 0074 0] oo S 15
535 1000111111 o | TP P PRSPPI 16
536 F N 410701 (o] RSP PR UR PRSPPI 16
537 F N e = (0] I8/ o= USSR 16
538 QLIS (O o L= 1Y PSSO 17
539 T eSO ECHVEREAIZEN ...ttt sttt sttt et e nesbe st e s be st e ene 17
6 D - SR 18
6.1 OVEIVIBW ...ttt ettt et e e et e st e e s te e beeteeaeesaeesaeeabeeabeeabeesteeheesbeesbeesbeeseensesaeesaeesseenbeenteentesssesseesteessnns 18
6.2 ADSITBCE SYNEBX ...ttt stttk b e bbbt b e e bt b e s e eb e b e e bt e bt se e bt e b e ne ekt s b e e eb e nb e e eb e s b e e ebesrennene s 19
6.3 L= ST gD <o] o1 o o SRS 20
6.3.1 DELBETEIMENT ...ttt sttt ettt b bt ae e h et e e e se b e s heeb e e aeeae e e e ne e b e sbeeb e e aeeme e e e ebenbesbeebe e e ennenrea 20
6.3.2 MapPabl EDELAETEMENL........cc.ee ettt e s s esae e te e aeesteeseeeraente e te e reeteeneeeneennes 20
6.3.3 D = SO TRSPS 21
6.34 DABINSIANCE ...ttt s b s bt e sb e e e e e e e e e a e e e R e e R e e R e e R e e nR e e R e e R e e re e n e ne e s 21
6.3.5 D = 10|V SO RTS R S 22
6.3.6 DalaRESOUICEM BPIING .. vt vereeterteeete sttt sttt sttt et et e et ebese e st sbese e st s beseeaeebese e bt e bese e bt ebene et abenb et nbe s e e es 22
6.3.7 DataEl @MENIMBPIDING ...ttt ettt et b e et b e e bt b e bt b e se bt be s e e b e ne et b bt b e 22
7 BI= S A 0= od U= T 23
7.1 OVEBIVIBW ...ttt ettt bbbt b b bt e bt e b e s e e s £ e a8 £ e E e b e e b e eE £ e a e e a e e e e b e AR e eh e eb e e Rt eh e e e e b e nbesheebeeaeente e entas 23
7.2 N 01 = o Y | USSR 24
7.3 L= ST gD T=Tox] o1 o o SRS 24
731 QL= (o o110 U= 1 o o USSR 24
7.3.2 LT 1= I o= SRR PRSPPI 25
733 GALEINSLANCE ...ttt h e h e E et s a e e s b e s b e e s R e e ee e e e e e ae e eRe e e R e e e e eR e e e Re e e R e e r e e neen e e s 25
734 COMPONENMETYIE <.ttt ettt e bt e bt s e Rt b e st e s s e s e e R e neeeh e e be e e e s e e e n e s e ereenesaeeane e eres 26
7.35 ComMPONENINSEANCEROIE........ccuiiteieetereeeet ettt ettt sttt se et r et b s b et et s b e e et e sbe e ebesbeneeneas 26
7.3.6 COMPONENEINSIANCE ...t et r e e e r e e e s e s e sreeresaeeen e enes 27
7.3.7 (000101 ox o o FOR OO 27

ETSI

4 ETSI ES 203 119 V1.1.1 (2014-04)

8 LIS 00 == 0= VoL SRS 28
8.1 OVEBIVIBWW ...ttt bbbkttt b e b e bt e heeh £ e s e e s e e eE e 4 E e bt eh e e h £ e a e ea e e eE e b e R e eh e eb e e Rt e he e e e b e nbesheebeeneenne e entas 28
8.2 N 01 = o Y | SRS 28
8.3 ClaSSH i@ DESCIIPLIONveteeeteieeeete sttt sttt sttt st b bt b e bt b e s bt b e b et e bt e b e e e bt e b et e b s e et b e ne e st e b e s b et sbennene e 31
831 TESIDESCIT LI ON....cteeeeeeteeee ettt h bbbt b e h e bbbt et n b et e h b et et b bt bt b 31
8.3.2 2] oot <SPPSR 32
8.3.3 2T 0 Yo U O RRS 32
8.34 (@001 gT=s | 7= 7= Y7o PSR R 33
8.35 SiNgIECOMDINEABENAVIOU ..ottt ettt sttt b et b e e b b neene b nnenea 33
8.3.6 COMPOUNABENAVIOUeevieueieeeeeteesteesieeiestesee st e steeaeeseeeseesseesseesseestessaesaeesseesseanseaneeaseassenssenssennseensesnsesnes 33
8.3.7 OPLIONBIBENAVIOUFc.veeiieiecie et steeste e ste e st e st e s te e e e e sseesaaesseesseesseeneesseesseasseenseesseasaesseesseesseesennsennes 34
8.3.8 (2 To T g0 (So [IaTe] =T o= Y] T o U 34
8.3.9 (8]l oTol0gT0 <o [Iea o] == 0=\, Lo 11 S 35
8.3.10 MultipleCombiNEABENAVIOUNc.oieiieeieee ettt et e st e st e e e teeneeneeenes 35
8.3.11 AREINATVEBENAVIOUN ...ttt b ettt e et et b bt eb e e e e e e b e sbeebe s st ene e e enne e 35
8.3.12 (@0 o [l iTe] 7= =T= 7= Y/ o O RS 36
8.3.13 e e L] 2T 7= Yo P RSN 36
8.3.14 W (o] 4ol =T= 7= Y] o PSR 37
8.3.15 2= TSRS 37
8.3.16 RS (o] TP U PP PSR 37
8.3.17 VEIICEASS GNMENT ...ttt bbbt b bbbt b e bt b st et b e et b e bt e b e b 38
8.3.18 VA= £ [1Y/ o S U 38
8.3.19 110 =1 o o DO TSP U U PRTURURURPRITN 39
8.3.20 F o (o] [P O PSPPSR 40
8321 ACTIONREFEIEINCE ...ttt ettt e b s bt b e a ekt e e e e et e seeeb e s bt eb e e e e e e b e sb e ebesreene e e enrenes 40
8.3.22 T eStDESCIiPlONREFEIEICE.c.veceeceeeceiestee et ee et s et e et e st et e e teetesstesseesreesaeenseenseenseensessenssansrens 41
8.3.23 ATGUMENESPECHFICATON ...t bbbt bbbt b et b e 41
8324 Datal nstanceArgumentSPECI FICALIONc.oieirire i 42
8.3.25 DataProxXyArgumentSPECI FICALTIONccceuiiuirieirieiee e e 43
8.3.26 DataSet ArguMENtSPECITICALION.c.eiviieeeeti et ettt st b e 43
8.3.27 EXCEPLIONAIBENAVIOUI ..ottt ettt b bbbt b et b e bbb 43
8.3.28 DEfAUIBENAVIOUI ...ttt sttt sttt et ese e tesee e bt s et eaeen e e st eneeneeseeseesneeseeneenseseens 44
8.3.29 INEEITUPEBENAVIOUN ...ttt e e st e s te e be et e e e e sreesteesseesreenseeneennennes 45
8.3.30 PEFTOTICBENAVIOUc..eeeeieeiete sttt b bt a bt e e bt b e she bt et e se e e e sbenbesbesbe e e ennennea 45
9 ISR 45
9.1 L0 oY= P TSSRP 45
9.2 ADSITBCE SYNMEBX ...ttt ettt b bbb e bt s b e eb e b s e eb e b s e e bt e b e se e bt e b e ne ekt s e et eb e sb e e eb e s b et ebeerennene s 46
9.3 ClaSSH i@ DESCIIPLIONveteaieteiteeete ettt sttt ettt b bt b e bt b e b et bt s b et e bt e b et e bt s b et e b s e et ebenb e st eb e st et nbe e ne e 47
931 81207 47
9.3.2 IS SR 47
9.33 THMEOPEIBIION.....c.eeeeteteeetertee ettt b bt b bbb bbb £ e b e e bt b e e e bt e b e b e bt e b e b e st eb e bt e be b e 47
9.34 WVBIT ..ttt et R £ R £ e ARt R e £ Rt SR e e Rt R e R £ e Re R et e Rt Ee e e nenbe bRt e Re st e ene 48
9.35 L@ 1= o= o= TP 48
9.3.6 THMECONSIFBINL ...ttt ettt b et e e e st ke s bt eb e e it ek e e e e e e b e sheeb e e aeeh e e e e s e b e ebenbesreene e e enrenes 49
9.3.7 1127 PSP SS 49
9.3.8 I L 1= (@ 07 = 1 o o TSP 50
9.39 THMIEI SEBIT ...ttt b bt h et e et b bt eh £ e b e et e s b e eE e R e e b e eh e eh e ebeeh e e e e e e b e ebeebesaeene e e ennees 50
9.3.10 07 L USRS 50
9.3.11 LIS 25 (e o OSSOSO 51
10 PredefiNEd TYPES. ... ooiiieiteeeeee ettt sttt ettt b e bbb s e e e e e e e st e b e e b e eb e b e b e e e e e st e be e et ebenrennenennas 51
10.1 L@ N TSSO 51
10.2 Predefined Element INStances Of 'V erdiCtTYPEc.vicieeee ettt s sne e ne e ens 51
10.2.1 72O PTSPPSTN 51
10.2.2 =1 PSS 51
10.2.3 INCONCIUSIVE ...ttt ettt et b bt eh e ae e e et se e e b e e R e eh e e st e e et se e e b e e bt eb e e ne et e besbeebesaeene e e ennas 51
10.3 Predefined Element INStances of "TIMEUNIL'coiiiiieieeee st s sb e e 52
1031 11 o: G RSSO S 52
10.3.2 LTS0S oo o PR 52
10.3.3 LTt 015" oo 0o PR 52
10.34 L TH LTSt o PR 52

ETSI

5 ETSI ES 203 119 V1.1.1 (2014-04)

10.35 LS 2ol 3o [PPSO PP PTURURRRTRRTP 52
10.3.6 TTUNIUEE ..ttt ettt et a et e bt e bt b e he e st e e e b e S H e SR e e h e e aEea b e oE e R e AR SR e e R e e Reehe e e e b e bt ehenbeeneenn e e enres 52
10.3.7 POU ..ttt b bt a e e b bRt b e ae e st e eE e R e Rt R e R e Rt ke e e e b e bR e nbesneene e e enres 52
Annex A (informative): Technical Representation of the TDL Meta-Modd ..o, 53
Annex B (informative): Examplesof a TDL CONCrete SYNtaXccccoeeererenereeseenieeeesesieseesee e 54
2 0 R [g1 0o 1o o o PSSR 54
B.2 A 3GPP Conformance Example in TeXtual SYNLaXccccovieeieieceeie et s 54
B.3 AnIMSInteroperability Example in TEXtUEl SYNaX.......cccccvieeceiieeeeie et 56
B.4 An Example Demonstrating TDL Data CONCEPLS.........covruirrerierierieieeeieesiesie s sse e sse s 58
B.5 TDL Textua Syntax REFEIEINCE........cc.ciieie ettt s re et b sre e nesne s 60
B.5.1 Conventions for the TDLan Syntax DEfiNItIONccocceiieiieice e 60
B.5.2 TDL Textual Syntax EBNF ProduCtion RUIEScoiiie ittt 60
Annex C (informative): BibliOgrapiycceeceice e e e 70
11 PSP 71

ETSI

6 ETSI ES 203 119 V1.1.1 (2014-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI ES 203 119 V1.1.1 (2014-04)

1 Scope

The present document specifies the abstract syntax of the Test Description Language (TDL) in the form of a
meta-model based on the OMG Meta Object Facility (MOF) [1] and a so specifies the semantics of the individual
elements of the TDL meta-model. The intended use of the present document is to serve as the basis for the devel opment
of TDL concrete syntaxes aimed at TDL users and enable TDL tools such as documentation generators, specification
analyzers, and code generators.

The specification of concrete syntaxes for TDL is outside the scope of the present document. However, for illustrative
purposes, an example of a possible textual syntax together with its application on some existing ETSI test descriptions
are provided.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

2.1 Normative references

The following referenced documents are necessary for the application of the present document.
[1] "OMG Meta Object Facility (MOF) Core Specification V2.4.1", formal/2013-06-01.
NOTE: Available at http://www.omg.org/spec/MOF/2.4.1/.

[2] "OMG Unified Modeling Language™ (OMG UML) Superstructure, Version 2.4.1",
formal/2011-08-06.

[3] | SO/IEC 9646-1:1994: "Information technology - Open Systems | nterconnection -- Conformance
testing methodol ogy and framework -- Part 1: General concepts”.

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”.

[1.2] ETSI TS 136 523-1 (V10.2.0): "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1. Protocol
conformance specification (3GPP TS 36.523-1 version 10.2.0 Release 10)".

[i.3] ETSI TS 186 011-2: "Technical Committee for IMS Network Testing (INT); IMS NNI
Interoperability Test Specifications; Part 2: Test descriptions for IMS NNI Interoperability”.

ETSI

http://docbox.etsi.org/Reference
http://www.omg.org/spec/MOF/2.4.1/

8 ETSI ES 203 119 V1.1.1 (2014-04)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
abstract syntax: graph structure representing a TDL specification in an independent form of any particular encoding
NOTE: TheTDL abstract syntax isdefined in terms of the TDL meta-model.

action: any procedure carried out by a component of atest configuration or an actor during test execution that could
result in changes to the test verdict

actor: abstraction of entities outside atest configuration that interact directly with the components of that test
configuration

component: active element of atest configuration that is either in the role tester or system under test

concr ete syntax: particular representation of a TDL specification, encoded in a textual, graphical, tabular or any other
format suitable for the users of this language

interaction: any form of communication between components that is accompanied with an exchange of data
NOTE: Aninteraction can be a point-to-point or a point-to multipoint communication.
meta-model: modelling elements representing the abstract syntax of alanguage

System Under Test (SUT): role of acomponent within atest configuration whose behaviour is validated when
executing atest description

TDL model: instance of the TDL meta-model
TDL specification: representation of a TDL model given in a concrete syntax

test configuration: specification of a set of components that contains at least one tester component and one system
under test component plus their interconnections via gates and connections

test description: specification of test behaviour that runs on a given test configuration
test verdict: Result from executing atest description [3].

tester: role of acomponent within atest configuration that controls the execution of atest description against the
components in the role system under test

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

EBNF Extended Backus-Naur Form
IMS IP Multimedia Subsystem
MBT Model-Based Testing

MOF Meta-Object Facility

SUT System Under Test

TDD Test Driven Development
TDL Test Description Language
TTCN-3 Testing and Test Control Notation version 3
UML Unified Modelling Language
URI Unified Resource Identifier
UTP UML Testing Profile

ETSI

9 ETSI ES 203 119 V1.1.1 (2014-04)

4 Basic Principles

4.1 What is TDL?

TDL isalanguage that supports the design and documentation of formal test descriptions that can be the basis for the
implementation of executable tests in a given test framework, such as TTCN-3[i.1]. Application areas of TDL that will
benefit from this homogeneous approach to the test design phase include:

. Manual design of test descriptions from atest purpose specification, user storiesin test driven devel opment
(TDD) or other sources.

. Representation of test descriptions derived from other sources such as MBT test generation tools, system
simulators, or test execution traces from test runs.

TDL supports the design of black-box tests for distributed, concurrent real-time systems. It is applicable to awide range
of testsincluding conformance tests, interoperability tests, tests of real-time properties and security tests based on attack
traces.

Being aformal notation, TDL clearly separates the specification of tests from their implementation by providing an
abstraction level that lets users of TDL focus on the task of describing tests that cover the given test objectives rather
than getting involved in implementing these tests to ensure their fault detection capabilities onto an execution
framework.

TDL isdesigned to support different abstraction levels of test specifications. On one hand, the concrete syntax of the
TDL meta-model can hide meta-model elements that are not needed for a declarative (more abstract) style of specifying
test descriptions. For example, a declarative test description could work with the time operations wait and quiescence
instead of explicit timers and operations on timers (see clause 9).

On the other hand, an imperative (less abstract or refined) style of atest description supported by a dedicated concrete
syntax could provide additional means necessary to derive executable test descriptions from declarative test
descriptions. For example, an imperative test description could include timers and timer operations necessary to
implement the reception of SUT output at atester component and further details. It is expected that most details of a
refined, imperative test description can be generated automatically from a declarative test description. Supporting
different shades of abstraction by asingle TDL meta-model offers the possibility of working within a single language
and using the same tools, simplifying the test development process that way.

4.2 Applicability of the present document

The TDL language design is centered around the three separate concepts of abstract syntax, concrete syntax, and
semantics (see figure 4.1). The present document coversthe TDL abstract syntax given as the TDL meta-model and its
associated semantics.

The TDL concrete syntax is application or domain specific and is not specified in the present document. However, for
information, see annex B for an example of a concrete textual syntax.

The semantics of the meta-model elements are captured in the individual clauses describing the meta-model elements
defined in the present document.

ETSI

10 ETSI ES 203 119 V1.1.1 (2014-04)

Abstract Syntax
7| MOF based

Concrete Syntax
user-defined &
standardizedin

future

™S Semantics

ETSIES 203 119

Figure 4.1: TDL language concepts

The abstract syntax (TDL meta-model) and semantics defined in the present document serve as the basis for the
development of TDL tools such as editors for TDL specificationsin graphical, textual or other forms of concrete
syntaxes, analyzers of TDL specifications that check the consistency of TDL specifications, test documentation
generators that retransform a TDL specification into another concrete syntax that is more appealing to some
stakeholders, and (test) code generators to derive executable tests.

4.3 Design Considerations

TDL makes aclear distinction between concrete syntax that is adjustable to different application domains and a
common abstract syntax, which a concrete syntax is mapped to (an example concrete syntax can be found in annex B).
The definition of the abstract syntax for a TDL specification plays the key role in offering interchangeability and
unambiguous semantics of test descriptions. It is defined in this TDL standard in terms of a MOF meta-model.

A TDL specification consists of the following magjor parts that are also reflected in the meta-model:

e Atest configuration consisting of at least one tester and at least one SUT component and connections among
them reflecting the test environment.

. A set of test descriptions, each of them describing one test scenario based on interactions between the
components of a given test configuration and actions of components or actors. The control flow of atest
description is expressed in terms of sequential, alternative, paralel, iterative, etc. behaviour.

. A set of datainstances grouped into data sets that are used in interactions and as parameters of test description
invocations.

o Behavioural elements used in test descriptions that operate on time.
Using these major ingredients, a TDL specification is abstract in the following sense:

. I nteractions between tester and SUT components of atest configuration are considered to be atomic and not
detailed further. For example, an interaction can represent a message exchange, a remote function/procedure
call, or a shared variable access.

e All behavioural elements within atest description are totally ordered, unlessit is specified otherwise. That is,
thereis an implicit synchronization mechanism assumed to exist between the components of a test
configuration.

e Thebehaviour of atest description represents the expected, foreseen behaviour of atest scenario assuming an
implicit test verdict mechanism, if it is not specified otherwise. If the specified behaviour of atest description
is executed, the 'pass' test verdict is assumed. Any deviation from this expected behaviour is considered to be a
failure of the SUT, therefore the 'fail' verdict is assumed. Thereis a possibility for explicit verdict assignment
if in a certain case there is aneed to override thisimplicit verdict setting mechanism (e.g. to assign
'inconclusive' or any user-defined verdict values). However, there is no assumption about verdict arbitration,
which isimplementation-specific.

e Thedataexchanged viainteractions and used in parameters of test descriptions are represented as name tuples
without further details of their underlying semantics, which is implementation-specific.

ETSI

11 ETSI ES 203 119 V1.1.1 (2014-04)

A TDL specification represents a closed system of tester and SUT components. That is, each interaction of atest
description refers to one source component and at least one target component that are part of the underlying test
configuration atest description runs on. The actions of the actors (entities of the environment of the given test
configuration) can beindicated in an informal way.

Timein TDL is considered to be global and progresses in discrete quantities of arbitrary granularity. Progressintimeis
expressed as a monotonically increasing function. Time starts with the execution of an unreferenced (‘base’) test
description.

TDL can be extended with tool, application, or framework specific information by use of annotations.

4.4 Document Structure

The present document defines the TDL abstract syntax expressed as a MOF meta-model. The TDL meta-model offers
language features to express.

. Fundamental concepts such as structuring of TDL specifications and tracing of test objectives to test
descriptions (clause 5).

e Abstract representations of data used in test descriptions (clause 6).
e Test configurations, on which test descriptions are executed (clause 7).
. A number of behavioural operations to specify the control flow of test descriptions (clause 8).

. Concepts of time, time constraints over behavioural elements of atest description, and timers; as well astheir
related operations (clause 9).

. Predefined values for verdicts and time units that can be extended by a user (clause 10).

4.5 Notational Conventions

In the present document, the following notational conventions are applied:

‘element’ The name of an element or of the property of an element from the meta-model, e.g. the name of a
meta-class.
«metaclass» Indicates an element of the meta-model, which corresponds to a node of the abstract syntax, i.e. an

intermediate node if the element nameis put initalic or aterminal nodeif givenin plain text.
«Enumeration» Denotes an enumeration type.

/name The value with this name of a property or relation is derived from other sources within the meta-
model.

[1] Multiplicity of 1, i.e. there exists exactly one element of the property or relation.

[0..1] Multiplicity of 0 or 1, i.e. there exists an optional element of the property or relation.

[*] or [0..*] Multiplicity of 0 to many, i.e. there exists a possibly empty set of elements of the property or
relation.

[1.%] Multiplicity of oneto many, i.e. there exists a non-empty set of elements of the property or
relation.

{unique} All elements contained in a set of elements shall be unique.

{ ordered} All elements contained in a set of elements shall be ordered, i.e. the elements form alist.

Furthermore, the definitions and notations from the MOF 2 core framework [1] and the UML class diagram
definition [2] apply.

4.6 Conformance

For an implementation claiming to conform to this version of the TDL meta-model, all features specified in the present
document shall be implemented consistently with the requirements given in the present document. The electronic
attachement in annex A can serve as a starting point for a TDL meta-model implementation conforming to the present
document.

ETSI

12 ETSI ES 203 119 V1.1.1 (2014-04)

5 Foundation

5.1 Overview

The 'Foundation' package specifies the fundamental concepts of the TDL meta-model. All other features of the TDL
meta-model rely on the concepts defined in this 'Foundation' package.

5.2 Abstract Syntax

emetaclasss

Element

name: String [0..1]

emetaclosss
Packageableflement importedElement [1."] {unigque}
fqualifiedMarme: String [1] {readQnly}

N

packagedElements [*] {unique}

elementImport [1]

«rmetaclasss
Elermentimport

owningPackage [0..1]

«rnetaclasss import []{umque}ﬁ
Package -

package [1]

Figure 5.1: Foundational Language Concepts

ETSI

13 ETSI ES 203 119 V1.1.1 (2014-04)

=metaclasss)
commentedElement [1] (Foundation) anngtatedElement [1] {unigue}
Elerment
comment [*] {unique
"] tunique} annotation [*] {unigue}
«metaclasse ametaclasss
Cnnjl'nent Annotation
body: String [1] walue: String [0..1]
. annotation [L.*] {unique}
ametaoclasss
(Foundation)
Packageableflement
Y key [1]

smetaclasss
AnnotationType

Figure 5.2: Comments and Annotations

emetoclgsss smetaclgsse
(Foundation) (Foundation)
Packageabletlement Element
N
.) wmetaclasss
smetaclass» : realizedBy [*] {unique} TES‘DtI_,fEI;‘['UEEED'iZEJ’
L L L

TestObjective
description: String [0..1]
abjectivelRL String [*]

testObjective [*] {unique}

. 7T

ametaclasss wmetaclosss
(Test Behaviour:Test Description) | | {Test Behaviour: Test Description)
TestDescription Eehaviour

Figure 5.3: Test Objective Concepts

5.3 Classifier Description

53.1 Element

Semantics

An 'Element’ is a constituent of a TDL Specification. It isthe super-class of all other classesin the meta-model. It
provides the ahility to add comments and annotation to each 'Element'.

ETSI

14 ETSI ES 203 119 V1.1.1 (2014-04)

Generalizations

There are no generalizations specified.

Properties

. name: String [0..1]
The optional name of the 'Element’. The 'name' can contain any character, including white-spaces. Having no
name specified is different from the empty name (which is represented by an empty string).

e comment : Comment [0..*] { unique}
A possibly empty set of 'Comment's attached to the 'Element'.

. annotation : AnnotationType [0..*] {unique}
A possibly empty set of 'Annotation’s attached to the 'Element'.

Constraints

There are no constraints specified.

5.3.2 PackageableElement

Semantics

A 'PackageableElement’ is contained in a'Package’. It has a mandatory ‘qualifiedName' that shall be unique throughout
the owning and any imported 'Package’. The 'qualifiedName' distinguishes equally named 'Packageabl eElement's of
different 'Package's from each other. This makesit possible that a ‘PackageableElement’ with the same name can be
imported into a 'Package’ without causing a name clash.

The 'qualifiedName' is a compound name derived from the directly and all indirectly enclosing parent 'Package's by
concatenating the names of each 'Package’. As a separator between the segments of a 'qualifiedName' the string ;" shall
be used. The name of the root 'Package’ that (transitively) owns the 'PackageableElement’ shall always constitute the
first segment of the ‘qualifiedName'.

The visibility of a'PackageableElement’ is restricted to the 'Package’ in which it is directly contained. A
'Packageabl eElement' may be imported into other 'Package's by using 'Elementimport’. A 'PackageableElement' has no
means to actively increase its visibility.

Generalizations

° Element

Properties

. /qualifiedName : String [1] { read-only}
A derived property that represents the unique name of a package within a TDL model.

. owningPackage : Package [0..1]
The 'Package’ that owns the 'PackageableElement'.

Constraints

Distinguishable qualified names
All qualified names shall be distinguishable within a TDL model.

ETSI

15 ETSI ES 203 119 V1.1.1 (2014-04)

5.3.3 Package

Semantics

A 'Package’ represents a container for 'PackageableElement’'s. A TDL model may contain any number of 'Package's,
which may have any arbitrary substructure. A 'Package’ may contain any number of 'PackageableElement's.

A 'Package’ builds a scope of visibility for its contained 'PackageableElement’s. A 'PackageableElement’ is only
accessible within its owning 'Package’ and within any 'Package’ that directly import it.

A 'Package’ may import any 'PackageableElement’ from any other ‘Package’ with the means of 'Elementlmport’. By
importing a 'PackageableElement’, the imported ‘Packageabl eElement’ becomes visible and accessible within the
importing 'Package’. Cyclic imports of packages are not permitted.

Generalizations

o Packageabl eElement

Properties

. packagedElements : PackageableElements[0..*] { unique}
The 'Packageabl eElement's that are directly contained in the 'Package'.

. import : Elementimport [0..*] { unique}
The list of import declarations.

Constraints
No cyclicimports
Cyclic imports are not allowed. That is, a package shall not import itself directly or indirectly via other packages.

5.34 Elementimport

Semantics

An 'Elementlmport’ allows importing 'Packageabl eElement’s from other 'Package’s into the scope of an importing
'Package’. By establishing an import, the imported 'PackageableElement's become accessible within the importing
'Package’.

Only those 'Packageabl eElement's can be imported via 'ElementImport’ that are directly contained in the exporting
'Package, that is, the import is not transitive. If an 'Elementimport’ declares the import of a'Package’, all the directly
contained 'PackageableElement's in that imported 'Package’ become accessible within the importing 'Package’.

Generalizations

. Element

Properties

. importedElement : PackageableElement [1..*] { unique}
The 'PackageableElement's that are imported into the context package viathis 'Elementlmport'.

Constraints

Consistency of imported elements
The imported 'PackageableElement’ shall be directly owned by the exporting 'Package’.

ETSI

16 ETSI ES 203 119 V1.1.1 (2014-04)

535 Comment

Semantics

‘Comment's may be attached to elements for documentation or for other informative purposes. Any 'Element’ except for
a'Comment’ may contain any humber of '‘Comment's. The contents of comments shall not be used for adding semantics
to elements.

Generalizations

. Element

Properties

e commentedElement : Element [1]
The 'Element’ to which the 'Comment' is attached.

. body : String [1]
The content of the 'Comment'.

Constraints

There are no constraints specified.

5.3.6 Annotation

Semantics

An'Annotation’ is a means to attach user- or tool-defined semantics to any 'Element’ of a TDL model, except ‘Comment’
and 'Annotation’ itself. An'Annotation’ provides a pair of a'key'/'value' attributes, whereas the 'value’ might be empty.

Generalizations

. Element

Properties

e annotatedElement : Element [1]
The 'Element' to which the 'Annotation' is attached.

. key : AnnotationType [1]
Reference to a user-defined 'AnnotationType'.

e vaue: String[0..1]
The 'value' mapped to the 'key'.

Constraints

There are no constraints specified.

5.3.7 AnnotationType

Semantics

An'AnnotationType' is a 'Packageabl eElement’ used to define the 'key' attributes of an 'Annotation'.

Generalizations

. Packageabl eElement

ETSI

17 ETSI ES 203 119 V1.1.1 (2014-04)

Properties

There are no properties specified.

Constraints

There are no constraints specified.

5.3.8 TestObjective

Semantics

A TestObjective specifies the reason for designing either a'TestDescription' or a particular ‘Behaviour' of a
TestDescription'. A 'TestObjective' may either contain a 'description’ of the objective directly or refer to an externa
resource for further information about the objective.

The 'description’ of a TestObjective' should bein natural language, however, it may be provided as structured (i.e.
machine-readable) text.

Generalizations

. Packageabl eElement

Properties

e description: String [0..1]
A textual description of the "TestObjective'.

. objectiveURI : String [0..*]

A set of URIslocating resources that provide further information about the 'TestObjective'. These resources
are usually external to a TDL model such as requirements specifications or TPLan artefacts.

Constraints

There are no constraints specified.

5.3.9 TestObjectiveRealizer

Semantics

A 'TestObjectiveRealizer' establishes traces to "TestObjectives. The semantics of such atrace are that a
"TestObjectiveRealizer' realizes the objective stated or referred to by the "TestObjective'.

Generalizations

. Element

Properties

e testObjective: TestObjective [0..*] {unique}
The set of 'TestObjective'sthat is realized by the 'TestObjectiveRealizer'.

Constraints

There are no constraints specified.

ETSI

18 ETSI ES 203 119 V1.1.1 (2014-04)

6 Data

6.1 Overview

The 'Data package defines the various meta-model elements to represent data within a TDL specification. TDL does not
feature a complete data type system. Instead, it relies on parameterizable data instances that are grouped into data sets.
Data sets, data proxies, and data instances, denoted data elementsin TDL, are abstract representations of corresponding
data-related concepts in a concrete type system. Data elementsin TDL can be mapped to the corresponding elementsin
a concrete type system by means of data element mappings, which represent the location of the concrete data definition
within aresource, e.g. the concrete element name. The resource in which the mapped concrete type system element is
located is represented by a data resource mapping which defines a resource where the concrete data definitionis
located, e.g. afile name. In addition to static data defined in files or other resources, data el ements can a so be mapped
to dynamic data which is only available at runtime, e.g. a datainstance can represent a session ID. The execution
environment shall provide an interface to such dynamic data by means of a runtime element URI. There are no specific
restrictions on the mapping imposed by TDL. In particular, a TDL data set could also map to several concrete data
types.

Since data sets are packageable elements, they can be reused in other TDL specifications. Data element specifications
shall be complete up to the level that al data sets and data instances used in atest description, as well asin datainstance
definitions are defined and accessible.

EXAMPLE 1. Consider the data set STATUS of datainstances 200, 4xx, 5xx, and RetVal. A realization of these
data definitionsin a concrete data type system could be defined such that STATUS maps to the
Javatype int, while data instance 200 maps to the Javaint value 200 and 4xx and 5xx map to a
range of int values 400..404 and 500..502, respectively. The data instance RetVal could be mapped
to aJavaint variable of the same name.

Data instances may be related to other datainstances by means of parameters. Data instance parameters can be either
other datainstances or data sets. In the latter case, a data set parameter serves as a wildcard referring to any of the data
instances that are grouped into that data set.

EXAMPLE 2: Consider the following data set STATUS of data instances 200, 4xx, 5xx and data set HTTP-MSG
of datainstances HttpRequest and HttpResponse(STATUS). The latter is a shorthand notation for
the data instances HttpResponse(200), HttpResponse(4xx), and HttpResponse(5xx).

TDL does not support variables. Data instances that are mapped to a runtime URI cover the basic scenarios where a
concrete data instance that is only available at runtime needs to be shared among severa interactions. In order to
express formal parameters of atest description, TDL provides the data proxy construct. A data proxy, whichis
associated to a data set to determine the set of allowed data elements that it can be bound to, acts as a placeholder in the
test description and can be used as the argument of interactions, as a parameter for the arguments of interactions, or as
an actual parameter in atest description reference. In the operational semantics, this data proxy is bound to the data
element (data instance, data set, or a data proxy) specified as the actual parameter of areference to thistest description.

ETSI

6.2

19

Abstract Syntax

zmetaclosss
(Foundation)
Packogeableflement

N

ametaclosss
(Foundation)
Element

1

ametaclosse
DataElement

wmetaclasse
DataProxy

il

smetaclosss
MoppableDataLlement

ETSI ES 203 119 V1.1.1 (2014-04)

parameter [*] {ordered}

dataProxy [1]

dataSet [1] datalnstance [1]
smetaclasse ametaclasse
DataSet Datalnstance
- >—'|
dataSet[1] datalnstance [*] {unigque}

Figure 6.1: Basic Data Concepts

ETSI

20 ETSI ES 203 119 V1.1.1 (2014-04)

emetaclasss
(Foundation)
Packageabletlernent

smetaclasss dataElementMapping [*] {unique}

DataElementMapping
elermentURL: String [0..1]

dataElementMapping [1.*] {unigque}

dataResourceMapping [1] \" mappableDataElernent [1] {unique}
armetaclasss
DataResourceMapping smetaclosss
resourcelURL String [0..1) MappableDatatlement

Figure 6.2: Data Mapping Concepts

6.3 Classifier Description

6.3.1 DataElement

Semantics

A 'DataElement’ is an abstraction of 'MappableDataElement' and 'DataProxy' used to express datain TDL
specifications.

Generalizations

° Element

Properties

There are no properties specified.

Constraints

There are no constraints specified.

6.3.2 MappableDataElement

Semantics

A 'MappableDataElement’ is an abstraction of 'DataSet’ and 'Datal nstance' used to express data elements that can be
referenced as parameters of data instance definitionsin TDL specifications.

Generalizations

° DataElement

ETSI

21 ETSI ES 203 119 V1.1.1 (2014-04)

Properties

There are no properties specified.

Constraints

There are no constraints specified.

6.3.3 DataSet

Semantics

A 'DataSet' is a 'MappableDataElement’ and by extension a 'DataElement, and a 'PackageableElement’, that contains a
set of 'Datal nstance' elements. It may correspond to and be mapped to a concrete data type specification outside of
TDL. Mapping is done by means of a'DataM appingElement'.

Generalizations
o Packageabl eElement
. M appabl eDataEl ement

Properties

. datalnstance : Datal nstance [0..*] { unique}
The set of contained data instances.

Constraints

There are no constraints specified.

6.3.4 Datalnstance

Semantics

A 'Datalnstance’ is a'MappableDataElement’ contained in a'DataSet’ element. It islinked to a data set and may
reference other data elements as parameters. This provides basic data composition and structuring facilitiesin TDL. The
exact data composition mechanism isimplementation specific. A TDL data instance with parameters only implies that
the provided parameters are related in some way or are a part of the concrete type system data el ement. Data instances
defined with parameters shall always be referenced with the same number of parameters when used as the arguments of
interactions and as actual parametersin test description references.

A datainstance may be mapped to a concrete data value by means of a 'DataElementMapping'.

Generalizations

o MappableDataElement

Properties

. parameter : MappableDataElement [0..*] { ordered}
References to further mappable data elements which are attached to the given data instance.

Constraints

No self-reference
The same 'Datal nstance' element shall not occur as areference in its data instance parameter set, i.e. no recursive
structure shall be defined.

ETSI

22 ETSI ES 203 119 V1.1.1 (2014-04)

6.3.5 DataProxy

Semantics

A 'DataProxy' is a 'DataElement’ that serves as a placeholder for instances of 'Datal nstance', 'DataSet’, or 'DataProxy" in
the definition of formal parameters of TestDescription' elements (see clause 8.2.1). 'DataProxy’ elements defined as
formal parameters of a TestDescription' element are bound to the 'Datal nstance', 'DataSet’, or ‘DataProxy’ elements
specified as actual parameters of a TestDescriptionReference’ element referencing the 'TestDescription’ element.

Generalizations

° DataElement

Properties
. dataset : DataSet [1]
References the data set of acceptable datainstances, to which the 'DataProxy' element can be bound in actual

test description parameters. The data set itself as well as 'DataProxy' elements having the same data set can
also be bound to the 'DataProxy' element in actual test description parameters.

Constraint

There are no constraints specified.

6.3.6 DataResourceMapping

Semantics

A 'DataResourceMapping' is a 'PackageableElement'. It defines the resource where the concrete data definitions from an
underlying concrete data type system are located asidentified by the 'resourceURI" property.

Generalizations

o Packageabl eElement

Properties

. resourceURI : String [0..1]
Location of the resource that contains concrete data definitions. The location shall resolve to an unambiguous
name.

Constraints

There are no constraints specified.

6.3.7 DataElementMapping

Semantics

A 'DataElementMapping' is a 'PackageableElement'. It represents the location of a single concrete data definition within
the resource referred to in the referenced 'DataResourceM apping’ element. The location within the resource is described
by means of the ‘elementURI" property.

ETSI

23 ETSI ES 203 119 V1.1.1 (2014-04)

Generalizations

. Packageabl eElement

Properties

. mappableDataElement : MappableDataElement [1] { unique}
Refers to the mappabl e data element (data set or data instance) to be mapped to a concrete data definition.

. elementURI : String [0..1]
Location of a concrete data element within the resource it refersto in the 'DataResourceM apping' element. The
location shall resolve to an unambiguous name within the resource.

. dataResourceMapping : DataResourceMapping [1]
References the data resource that contains the actual data definition of the referred mappable data element.

Constraints

There are no constraints specified.

7 Test Architecture

7.1 Overview

The 'Test Architecture' package describes the elements needed to define a 'TestConfiguration' consisting of tester and
SUT components, gates, and their interconnections represented as 'Connection's. A TestConfiguration' specifies the
structural foundations on which test descriptions can be built upon. The fundamental units of a ' TestConfiguration' are
the ‘Componentl nstance's. Each '‘Componentinstance' specifies afunctional entity of the test system. A
‘Componentlnstance’ may either be a (part of a) tester or a (part of an) SUT. That is, both the tester and the SUT can be
decomposed, if required. The communication exchange between ‘Componentlnstance's is established through
interconnected 'Gatel nstance's. To offer reusability, TDL introduces ‘ComponentType's and gate types.

ETSI

24 ETSI ES 203 119 V1.1.1 (2014-04)

7.2 Abstract Syntax

emetacioss»
(Foundation)
PackageableElement

T

«Enumerations ametaclass» «metaclass»

CompenentInstanceRole TestConfiguration connection [1."]{unique} Connection
suT -
Tester testConfiguration [1]

testConfiguration [1] 0 connection [*] {unique}

emetacloss»
(Foundation)
Element

componentInstance [2,.*] {unique} endPoint [2] {unique}

gatelnstance [1.*] {ordered, unigue}

componentInstance [1] smetaclasss
CompaonentInstance - gmeltada“”
atelnstance
role: ComponentInstanceRole [1] componentinstance [1] *

/timer [*] {readOnly, unique}

componentInstance [*] {unique} gatelnstance [*]

ametaclasss

(;rilul-::u? type [1] type [1]

timer [*] {unique wmetaclasss gateType [1."] {ordered] wmetaclasss

componentType [1] {unique} ComponentType componentType [*] {unique} GateType
gateType [*]
ametaclasss
(Data)
DataSet dataSet [1.*] {unique}

Figure 7.1: Test Architecture Concepts

7.3 Classifier Description

7.3.1 TestConfiguration

Semantics

A TestConfiguration' specifies the communication infrastructure necessary to build "TestDescription's upon. As such, it
contains all the elements required for information exchange, such as 'Componentinstance's and 'Connection's.

It is not necessary that all 'Componentlnstance's contained in a 'TestConfiguration' are actually connected via
‘Connection's but for any 'TestConfiguartion' at least the semantics of a minimal "TestConfiguration' shall apply.

Generalizations

o Packageabl eElement

Properties

e componentl nstance : Componentlnstance [2..*] {unique}
The 'Componentlnstance's of the 'TestConfiguration'.

. connection ; Connection [1.*] {unique}
The 'Connection's of the 'TestConfiguration' over which 'Interaction’s are sent and received.

ETSI

25 ETSI ES 203 119 V1.1.1 (2014-04)

Constraints

'TestConfiguration' and componentsroles
A 'TestConfiguration' shall contain at least one 'Tester' and one 'SUT' 'Component| nstance'.

Minimal 'TestConfiguration’
Each TestConfiguration' shall specify at least one ‘Connection’ that connects a ‘Gatel nstance' of a ‘Tester'
‘Componentlnstance’ with a'Gatel nstance’ of an 'SUT' ‘Componentl nstance'.

7.3.2 GateType

Semantics

A 'GateType' represents a point of communication for exchanging information between '‘Componentinstance's. A
'‘GateType' specifies the 'DataSets (and, thus, the DataProxies and Datal nstances that belong to that 'DataSet’) that can
be exchanged viathat ‘GateType'.

The same 'GateType' can be shared among multiple '‘ComponentType's, thus, allowing for reuse.

Generalizations

. Packageabl eElement

Properties
. dataset : DataSet [1..*] {unique}

The 'DataSet's that can be exchanged viathat 'GateType'’. The arguments of ‘I nteractions shall adhere to the
'DataSet’ that are allowed to be exchanged via the 'GateType'.

Constraints

There are no constraints specified.

7.3.3 Gatelnstance

Semantics

A 'Gatel nstance’ represents an instance of a'GateType'. 'Gatel nstance's are the means to exchange information by
specifying an 'Interaction’ and to execute 'TimeOperation's.

A 'Gatel nstance' may, but need not, be connected by 'Connection’. Additionally, a 'Gatel nstance' may be the endpoint of
more than one 'Connection'.

Generalizations

° Element

Properties

. type : GateType [1]
The'GateType' of the 'Gatel nstance'.

e componentl nstance : Componentl nstance [1]
The 'Componentl nstance’ that owns this ‘Gatel nstance'.

Constraints

No additional constraints specified.

ETSI

26 ETSI ES 203 119 V1.1.1 (2014-04)

7.3.4 ComponentType

Semantics

A 'ComponentType' specifies the type of one or multiple ‘Componentlnstance's that participate in a TestConfiguration'.
A 'ComponentType' refersto at least one 'GateType and may contain any number of ‘Timer's. Instances of
‘ComponentType's represent the functional entities of atest system.

An instance of a'ComponentType' has local copies of the Timer's that are listed in the 'ComponentType' definition.

I nstances of 'ComponentType's may either act asa 'Tester' or asan 'SUT" within a 'TestConfiguration'. It is possible that
the very same '‘ComponentType' participates in one 'TestConfiguration' as a 'Tester' and in another 'TestConfiguration'
asan 'SUT".

Generalizations

o Packageabl eElement

Properties

. gateType : GateType [1..*] { ordered}
The'GateType's used for the purpose of attaching 'Gatel nstance's to a ‘Componentl nstance' of that
'ComponentType'.

e timer: Timer [0..*] {unique}
The 'Timer's owned by a'ComponentType'.

Constraints

There are no constraints specified.

7.3.5 ComponentinstanceRole

Semantics

'‘ComponentInstanceRol €' specifies the role of a'Componentlnstance', whether it actsasa 'Tester' or asan 'SUT'
component.

Generalizations

There are no generalizations specified.

Literals

o SUT
The 'Componentl nstance’ assumes the role 'SUT" in the enclosing 'TestConfiguration'.

. Tester
The 'Componentlnstance' assumes the role Tester' in the enclosing 'TestConfiguration'.

Constraints

There are no constraints specified.

ETSI

27 ETSI ES 203 119 V1.1.1 (2014-04)

7.3.6 Componentinstance

Semantics

A 'Componentlnstance’ represents a communication entity of the test system. It acts either asa 'Tester' or asan 'SUT"
‘Componentlnstance’. A ‘Componentlnstance’ contains one or more ‘Gatel nstance's that are the endpoints of
‘Connection's. The number and the types of ‘Gatel nstance's contained in a'Componentinstance' shall be the same asthe
number and the types of 'GateType's referred to by the '‘ComponentType' this 'Componentinstance' is an instance of.

The 'Timer'sthat can be utilized by timer-related '‘Behaviour's of a TestDescription' are derived from the 'Timer's that
the corresponding ‘ComponentType's possesses. Thus, only 'Timer's that are known by the 'Componentinstance's can be
used within a 'TestDescription'.

Generalizations

. Element

Properties

. type : ComponentType [1]
The 'ComponentType' of this 'Componentl nstance'.

. role : ComponentlnstanceRole [1]
The role of the 'Componentinstance' plays within the given 'TestConfiguration'. It can be either 'Tester' or
'SUT".

. gatelnstance : Gatel nstance [1..*] { unique, ordered}
The 'Gatel nstance's this 'Componentl nstance' contains.

e /timer: Timer [0..*] {unique, read-only}
The set of timersis derived from the set of timers contained in the '‘ComponentType' of the
'‘Componentlnstance’. That is, a'Componentlnstance' shall have the same set of timers as specified in the
'‘ComponentType', which the 'Component| nstance' belongs to.

Constraints

Named component instances
A component instance shall have a name.

Number of 'Gatel nstance'sin a'Component|nstance
A 'Componentlnstance’ shall contain as many 'Gatel nstance's of corresponding types as the number of gate types
declared in the associated 'ComponentType'.

Timers of 'Componentlnstance's
A 'Componentlnstance’ shall refer exactly to the same set of timers as contained in the associated 'ComponentType'.

7.3.7 Connection

Semantics

A 'Connection’ is a communication channel for exchanging information by specifying an 'Interaction’ between
‘Gatel nstance's and, thus, 'Componentlnstance's. ‘Connection's do not specify or restrict the nature of the
communication channel that is eventually used in an implementation.

'‘Connection's are dways binary. A 'Connection’ can be established between 'Gatel nstance's contained in any kind of
'‘Componentinstance's as long as there is at most one '‘Connection’ between any two 'Gatel nstance's. The 'Gatel nstance's
connected by a'Connection’ shall not be identical, i.e. self-looped 'Connection’s are not permitted.

Multiple 'Connection's can refer to the very same 'Gatel nstance'. This allows for specifying multicast communication
exchange capability.

ETSI

28 ETSI ES 203 119 V1.1.1 (2014-04)

Generalizations

° Element

Properties

. endPoint : Gatelnstance [2] { unique}
The two 'Gatel nstance's that are the endpoints of this '‘Connection'.

Constraints

Self-looped connections not allowed
The two 'Gatel nstance's (endpoints) of any ‘Connection’ shall be different from each other, i.e. no self-loop 'Connection’
is allowed.

Only one connection allowed
Between any two 'Gatel nstance's at most one 'Connection’ can exist.

8 Test Behaviour

8.1 Overview

The 'Test Behaviour' package defines al elements needed to describe the behaviour of atest description.

8.2 Abstract Syntax

emetaclgsss
(Foundation)
Packageableflement

1

«metaclasss _ _
TestDescription testConfiguration [1] smetaclasss

testDescription [*] {unique} (Test Architecture)
TestConfiguration

testDescription [1] testDescription [0..1]

formalParameter [*] {ordered{ unigue})
behaviour [0..1]

ametaclasss
(Data)
DataProxy

ametaclasse
(Test Behaviour:TestBehaviourElements)
CompoundBehaviour

Figure 8.1: Test Description Concepts

ETSI

29 ETSI ES 203 119 V1.1.1 (2014-04)

=metaclosss
(Foundation)

Element
smetaclasss
smetaclasss hehaviour [1.%] {ordered, unique} Block
(Test Behaviour:Test Description) - guard: String [0..1]
EBehaviour block [0..1]
block [1.*] {ordered, unique block[1]
=metaclasss =metaclosss
AtomicBehaviour CombinedBehaviour LA
|
‘ singleCombinedBehavior [0..1]
=metaclasss =metaclass»
MultipleCombinedBehaviour multipleCombinedBehaviour [0..1] SingleCombinedBehaviour
«metaclasss «metaclasss
ConditionalBehaviour AlternativeBehaviour umetaclasss) smetaclass:) wmetaclass)
CompoundBehaviour | BoundedLoopBehaviour ||| UnboundedLoopBehaviour
numlteration: Integer [1]

«metaclasss

ParallelBehaviour =metaclasss

OptionalBehaviour

Figure 8.2: Behaviour Concepts

=metaclasss
AtomicBehaviour

smetaclasss actionReference [1 zmetaclasss =metaclasss smetaclass» =metaclasss
VerdictAssignmen ActionReference Interaction Break Stop

werdictEvent [1]

action [1
[1] componentInstance [0..1]

werdictType [1]

smetaclasss .
wmetaclasss Action «I'netac.la“»
VerdictType - (Test Architecture)
body: String [1] ComponentInstance
smetaclasss
testDescriptionReference [*] {unique TestDescriptionReference
referencedTestDescription [1]
«=metaclass» testDescriptionReference [1]
(Foundation) i,
PackageableElement smetaclasss

(Test Behaviour: Test Description)
TestDescription actualParameter [*] {ordered, unique}

=metaclass=
ArgumentSpecification

Figure 8.3: Atomic Behaviour Concepts

ETSI

30 ETSI ES 203 119 V1.1.1 (2014-04)

wmetaclasss
AtomicBehaviour

source
smetaclasss [zmetaclasss
Interaction interaction [*] {unique} (Test Architecture)
Gatelnstance
target [1.*] {ordered, unigue}
interaction [*] {unique}
interaction [1] .
emetaclasss
(Foundation)
Element
argument [1
emetaclgsss
Argumentipecification
Figure 8.4: Interaction Concepts
=metaclass»
ArgumentSpecification
«metaclass» wmetaclass» ametaclasss
DatalnstancefrgumentSpecification DataPrexyfrgumentSpecification DataSetArgumentSpecification
argument [1] argument [1] argument [1] argument [1]
datalnstance [1] actualParameter [*] {ordere dataProxy [1] dataSet [1]
ametaclasss emetaclasss ametaclasss «metaclasss
(Data) (Data) (Data) (Data)
Datalnstance DataElement DataProxy DataSet

Figure 8.5: Argument Specification Concepts

ETSI

31 ETSI ES 203 119 V1.1.1 (2014-04)

D =metaclasss Q

(Test Description)

Behaviour (Test Architecture)
Componentlnstance

guardedComponent [0..1]

combinedBehaviour [] armetaclasss combinedBehaviour [1]

(Test Behaviour: TestBehaviourElements
CombinedBehaviour

periodic [*] {ordered, unique}

etaclases exceptional [*] {ordered, unique} exceptionalBehaviour [1] {unique}

L . ;
PeriodicBehaviour smetaclassz
ExceptionalBehaviour

owningPeriodic [0..1] exceptionaIBehaviow'[ﬂi

block [1 block [1]
smetaclasss

(Test Behaviour:TestBehaviourElements)
Block «metaclasss smetaclasss
DefaultBehaviour InterruptBehaviour

Figure 8.6: Exceptional Behaviour and Periodic Behaviour Concepts

8.3 Classifier Description

8.3.1 TestDescription

Semantics

The TestDescription' is a 'PackageableElement’ and a 'TestObjectiveRealizer'. A 'TestDescription’ defines the test
behaviour based eventually on ordered 'AtomicBehaviour' elements. A test description may contain a
‘CompoundBehaviour' defining the behaviour of the test description. It may also contain alist of 'DataProxy’ elements
that act as formal parameters of this test description.

A test description is associated with exactly one 'TestConfiguration' and may be associated with any number of
'‘DataProxy' elements. These 'DataProxy' elements represents the formal parameters of the 'TestDescription' used for
parameterization.

If atest description has formal parameters, it shall be invoked within another test description that is possibly parameter-
freein order to be able to provide actual parameters.

Generalizations
o Packageabl eElement

e TestObjectiveRedlizer

Properties

e testConfiguration : TestConfiguration [1]
The property ‘testConfiguration' refersto the "TestConfiguration' that is associated with the TestDescription'.

. behaviour : CompoundBehaviour [0..1]

The property ‘behaviour', if present, defines the actual behaviour of the test description in terms of a
'‘CompoundBehaviour' element.

ETSI

32 ETSI ES 203 119 V1.1.1 (2014-04)

. timeConstraint : TimeConstraint [0..*] { unique}
This property, if present, refers to the expressions that shall be evaluated to Boolean. It is used to expresstime
constraints between behavioural elements within this test description.

o formaParameter : DataProxy [0..*] { ordered}
This property refersto 'DataProxy' elements. The property, if present, defines the formal parameters that shall
be substituted by actual data elements when the 'TestDescription' is executed.

Constraints

Named test description
A test description shall have a name.

8.3.2 Block

Semantics

A 'Block' element is a container for 'Behaviour' elements that are executed in a strictly sequential way. A 'Block’
element may have a'guard' defined. If a'Block' has a'guard’, it shall only be executed if its guard condition evaluatesto
true.

Generalizations

. Element

Properties

. behaviour : Behaviour [1..*] { unique, ordered}
This property isalist of 'Behaviour' elements describing the behaviour of the 'Block’ element. The ‘Behaviour'
elements shall be executed in their definition order.

. guard : String [0..1]
The'guard' property is a String that represents a Boolean expression. The 'guard’ when present determines if

the behaviour of the 'Block' element shall be executed or not. If the 'guard’ expression evaluates to true, the
behaviour is executed, otherwise not. If a'Block’ element has no 'guard' it is unconditionally executed.

Constraints
Guard shall evaluate to Boolean

The'guard’ property is a String that shall represent a Boolean expression.

8.3.3 Behaviour

Semantics

A 'Behaviour' isageneric, abstract 'Element' that is refined into ‘AtomicBehaviour' and 'CombinedBehaviour'. Some
'‘Behaviour's operate on gate instances or component instances and some are completely independent.

Generalizations

. TestObjectiveRealizer

Properties

There are no properties specified.

Constraints

No additional constraints specified.

ETSI

33 ETSI ES 203 119 V1.1.1 (2014-04)

8.34 CombinedBehaviour

Semantics

A 'CombinedBehaviour' element is a'Behaviour' that involves all gate instances defined in the associated test
configuration. It can contain asingle '‘Block' element (in case of 'SingleCombinedBehaviour’) or alist of ordered and
potentially guarded 'Block’ elements (in case of ‘M ultipleCombinedBehaviour'). A 'CombinedBehaviour' may have any
number of ordered 'PeriodicBehaviour' and 'Exceptional Behaviour' elements. The 'PeriodicBehaviour' and the
‘ExceptionalBehaviour' elements shall be evaluated in their definition order.

Generalizations

° Behaviour

Properties
. periodic : PeriodicBehaviour [0..*] { unique, ordered}
A 'CombinedBehaviour' element can contain any number of 'PeriodicBehaviour' elements. The 'periodic'
property refersto the list of 'PeriodicBehaviour' elements.

. exceptional : ExceptionalBehaviour [0..*] { unique, ordered}
A 'CombinedBehaviour' element can contain any humber of 'Exceptional Behaviour' elements. The
‘exceptional’ property refersto the list of 'Exceptional Behaviour' elements.

Constraints

There are no constraints specified.

8.35 SingleCombinedBehaviour

Semantics

A 'SingleCombinedBehaviour' element is a‘CombinedBehaviour' that contains a single potentially guarded 'Block’
element. It can be further refined to a'CompoundBehaviour', a 'BoundedL oopBehaviour', an
‘UnboundedL oopBehaviour', or an 'Optional Behaviour'.

Generalizations

. CombinedBehaviour

Properties

. block : Block [1]
The'block’ property refersto a'Block' element that specifies the behaviour of the 'SingleCombinedBehaviour'.

Constraints

There are no constraints specified.

8.3.6 CompoundBehaviour

Semantics

A 'CompoundBehaviour' element groups any positive number of '‘Behaviour' el ements together in an ordered list of
'‘Behaviour' elements contained in asingle 'Block' element. The list defines the execution order of the '‘Behaviour'
elements of the 'CompoundBehaviour'. As a derived ‘CombinedBehaviour' element, a'CompoundBehaviour' element
can have also exceptional or periodic behaviour attached to it.

ETSI

34 ETSI ES 203 119 V1.1.1 (2014-04)

Generalizations

. SingleCombinedBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

8.3.7 OptionalBehaviour

Semantics

An 'OptionalBehaviour' element is a 'SingleCombinedBehaviour', therefore it shall contain one 'Block' element, which
may have a guard condition and shall start with one of the following 'AtomicBehaviour' elements: 'Interaction’,
TimeOut', or 'Quiescence’. For the 'Interaction’ element it is required that the target 'Gatel nstance' shall be associated to
a'Componentlnstance' with the 'role' of Tester'.

If a'Block’ has no guard condition, it is equivalent to a'Block’ with a guard condition of true. If the guard condition of
the '‘Block' element is evaluated to true and the first event of the 'Block’ occurs, the 'Optional Behaviour' will be
executed, otherwise the execution continues with the next behaviour after the 'Optional Behaviour' element.

Generalizations

. SingleCombinedBehaviour

Properties

There are no properties specified.

Constraints

First event allowed
The contained 'Block' element shall start with one of the following 'AtomicBehaviour' elements: 'Interaction’ received
by a 'Tester' component, 'TimeOut', or 'Quiescence'.

8.3.8 BoundedLoopBehaviour

Semantics

A 'BoundedL oopBehaviour' element is a'SingleCombinedBehaviour', therefore it shall contain one 'Block’ element,
which shall not have a guard condition. The 'Block’ element shall be executed as many times as is determined by the
‘numlteration’ attribute.

Generalizations

. SingleCombinedBehaviour

Properties

. numiteration : Integer [1]
This property of a'BoundedL oopBehaviour' element determines how many times the 'Block’ element of a
'‘BoundedL oopBehaviour' element shall be executed.

ETSI

35 ETSI ES 203 119 V1.1.1 (2014-04)

Constraints

No guard constraint
The 'Block’ element of a'BoundedLoopBehaviour' element shall not have a guard condition.

Iterations number shall be positive
The 'numiteration’ attribute of a'BoundedL oopBehaviour' element shall be a positive Integer value.

8.3.9 UnboundedLoopBehaviour

Semantics

An 'UnboundedL oopBehaviour' element is a 'SingleCombinedBehaviour', therefore it shall contain one 'Block’ element,
which may have a guard condition. The 'Block’ element shall be executed as long as the guard condition of the 'Block'
element evaluates to true. If the 'Block’ element has no guard condition, it shall be executed an infinite number of times.

Generalizations

. SingleCombinedBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

8.3.10 MultipleCombinedBehaviour

Semantics

A 'MultipleCombinedBehaviour' element is a'CombinedBehaviour' that contains at least one potentially guarded 'Block’
element (in case of 'ConditionalBehaviour') or at least two ordered and potentially guarded '‘Block’ elements (in case of
‘AlternativeBehaviour' or ‘ParallelBehaviour’).

Generalizations

. CombinedBehaviour

Properties

. block : Block [1..*] {unique, ordered}
The 'block’ property refersto alist of ‘Block' elements that specify the behaviour of the
‘MultipleCombinedBehaviour' element.

Constraints

There are no constraints specified.

8.3.11 AlternativeBehaviour

Semantics

An 'AlternativeBehaviour' element is a 'MultipleCombinedBehaviour' that shall contain at least two 'Block’ elements.
Each block of an 'AlternativeBehaviour' element may have a guard condition and shall start with one of the following
'‘AtomicBehaviour' elements: 'Interaction’, "'TimeOut' or 'Quiescence'. For the 'Interaction’ element it is required that the
target 'Gatel nstance’ shall be associated to a'Componentinstance’ with the 'role’ of 'Tester'.

ETSI

36 ETSI ES 203 119 V1.1.1 (2014-04)

If a'Block’ element has no guard condition, it is equivalent to a'Block’ element with aguard condition of true. The first
'‘Block’ element whose guard condition is evaluated to true and whose first event occurs, will be executed.

Generalizations

. M ulti pleCombinedBehaviour

Properties

There are no properties specified.

Constraints

Blocks

An 'AlternativeBehaviour' element shall contain at least two 'Block' elements. Each block of an 'AlternativeBehaviour'
element may have a guard condition and shall start with one of the following 'AtomicBehaviour' elements: 'Interaction'
received by a 'Tester' component, "TimeOut' or 'Quiescence'’.

8.3.12 ConditionalBehaviour

Semantics

A 'Conditional Behaviour' element is a "M ultipleCombinedBehaviour' that can contain one or more '‘Block' elements. All
the 'Block' elements shall have a guard condition except for the last ‘Block’ element, which may have no guard if the
‘Conditional Behaviour' element contains more than one 'Block’ elements. In this case, the last 'Block' element is
equivalent to a'Block' element with a guard condition of true ("else" block). The guard conditions of the 'Block'
elements are evaluated in the order of their definition. The first '‘Block' element, whose guard condition is evaluated to
true, will be executed. If none of the guard conditions are evaluated to true, the execution continues with the next
behaviour after the ‘Conditional Behaviour' element.

Generalizations

. M ulti pleCombinedBehaviour

Properties

There are no properties specified.

Constraints

Guardsrequired

All the 'Block' elements shall have a guard condition except for the last 'Block' element, which may have no guard if the
'‘Conditional Behaviour' element contains more than one '‘Block' elements. In this case, the last 'Block’ element is
equivalent to a'Block' element with a guard condition of true (el se block).

8.3.13 ParallelBehaviour

Semantics

A 'ParallelBehaviour' element is a'MultipleCombinedBehaviour' that shall contain at least two 'Block’ elements. None
of the '‘Block' elements of a 'Parallel Behaviour' element shall have a guard condition. The 'Block' elements are executed
in paralel (i.e. the relative execution order of the behaviours of the different 'Block’ elements of a'ParallelBehaviour'
element is not specified). The execution of a 'ParallelBehaviour' element shall terminate when all its 'Block’ elements
are terminated.

Generalizations

o MultipleCombinedBehaviour

ETSI

37 ETSI ES 203 119 V1.1.1 (2014-04)

Properties

There are no properties specified.

Constraints

Blocks
A 'ParallelBehaviour' element shall contain at least two '‘Block' elements. None of the 'Block’ elements of a
'ParallelBehaviour' element shall have a guard condition.

8.3.14 AtomicBehaviour

Semantics

'‘AtomicBehaviour' is a'Behaviour'. An 'AtomicBehaviour' element defines the simplest form of behaviour that cannot
be decomposed further. An 'AtomicBehaviour' can be: 'TimerOperation', 'TimeOperation', 'V erdictAssignment', 'Break’,
'Stop', 'ActionReference’, ' Interaction’, or 'TestDescriptionReference'.

Generalizations

. Behaviour

Properties

. timeConstraint : TimeConstraint [0..*] { unique}
This property specifies aset of 'TimeConstraint' elements that determines the execution of the given
'‘AtomicBehaviour' element with respect to the passed time.

Constraints

There are no constraints specified.

8.3.15 Break

Semantics

'‘Break’ terminates the execution of the enclosing ‘CombinedBehaviour' element. Execution continues with the
‘Behaviour' element that follows the enclosing '‘CombinedBehaviour' element.

Generalizations

° AtomicBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

8.3.16 Stop

Semantics

'Stop' is used to describe an explicit stop of the execution of atest description. No further behaviour shall be executed
beyond a'Stop'. In particular, a'Stop' element in a referenced (called) test description shall also stop the behaviour of
the referencing (calling) test description(s) recursively.

ETSI

38 ETSI ES 203 119 V1.1.1 (2014-04)

Generalizations

° AtomicBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

8.3.17 VerdictAssignment

Semantics

The 'VerdictAssignment' is used to set the verdict of the test run explicitly. This might be necessary if the implicit
verdict mechanism described below is not sufficient.

By default, the test description specifies the expected behaviour of the system. If an execution of atest description
performs the expected behaviour, the verdict is set to ‘pass implicitly. If atest run deviates from the expected
behaviour, the verdict 'fail’ will be assigned to the test run implicitly. Other verdicts, including 'inconclusive' and user-
definable verdicts, need to be set explicitly within atest description.

Generalizations

° AtomicBehaviour

Properties

e verdictType: VerdictType[1]
Stores the value of the verdict to be set.

Constraints

There are no constraints specified.

8.3.18 VerdictType

Semantics

VerdictType' is a'PackageableElement' that specifies the possible verdicts of atest description. At minimum, the
‘VerdictType' shall define the following instances: 'pass, ‘inconclusive', 'fail'. (See Clause 10.1) Thislist can be
extended by the user according to the needs of concrete implementations.

Generalizations

. Packageabl eElement

Properties

There are no properties specified.

Constraints

Minimum set of values of the VerdictType
The'VerdictType' shall contain at least the following three instances: 'pass, 'inconclusive), 'fail'.

ETSI

39 ETSI ES 203 119 V1.1.1 (2014-04)

8.3.19 Interaction

Semantics

An'Interaction’ element is an abstract representation of any information exchanged between gate instances assuming
that they are connected via a connection. The 'ArgumentSpecification’ of an ‘Interaction’ element contained within refers
to the data being exchanged between the components participating in the interaction viatheir connected gates. It can
also carry parameters for this data.

In a concrete realization, an interaction can represent, among others, one of the following options:

. M essage-based communication: The data of an interaction argument represents a message being sent (from
source) and received (from target).

. Procedure-based communication: The data of an interaction argument represents a remote function call being
initiated (from source) and invoked (at target) or its return values being transmitted back.

e Shared variable access. The data of an interaction argument represents a shared variable being read (sourceis
the gate of the component that owns this variable, target is the gate of the reading component) or updated
(sourceis the gate of the component that wants to change the value of avariable, target is the gate of the
component that owns this variable).

The data description provided as an 'ArgumentSpecification' can be a (possibly parameterized) data instance, a data set,
or adata proxy that is bound to either a datainstance or a data set at runtime. Using a data set as part of the argument
specification in an interaction enables the specification of a set of data instances that are all acceptable within this
interaction.

EXAMPLE: Consider the data set STATUS of data instances 200, 4xx, 5xx and the data instance
HttpResponse(STATUS) of another data set. An interaction that refersto the latter datainstancein
its argument specification provides a shorthand notation for the data instances HttpResponse(200),
HttpResponse(4xx), and HttpResponse(5xx) that are all accepted and valid within the given
interaction. This notation comesin handy for specifying SUT output (source of an interaction is
the gate of a SUT component) by a tester component gate (target) when the exact output is not
known or irrelevant.

Generalizations

° AtomicBehaviour

Properties

. argument : ArgumentSpecification [1]
This property refersto an 'ArgumentSpecification' element that is taken as the argument (data) of this
interaction.

. source : Gatel nstance [1]
This property refersto a'Gatel nstance' element that acts as the source of thisinteraction. That is, the
associated component instance outputs the data of thisinteraction viaits gate instance.

e target: Gatelnstance[1..*] {unique, ordered}
This property refersto alist of 'Gatel nstance' elements that act as the target(s) of thisinteraction. That is, the
associated component instance(s) input the data of this interaction viatheir gate instance(s). In case of point-
to-point communication there is exactly one target. In case of point-to-multipoint communication there are
multiple target gate instances.

Constraints

Gateinstances of an interaction shall be different
All gate instances that act as source or target(s) of an interaction shall be different from each other.

Gateinstances of an interaction shall be connected
The gate instances that act as source or atarget(s) of an interaction shall be interconnected by a connection.

ETSI

40 ETSI ES 203 119 V1.1.1 (2014-04)

Typing of interaction arguments
The 'DataElement’ referred to in the ‘argument’ shall match the 'DataSet’ referenced in the ‘GateType' definition of the
source and target gate instances of an interaction. Matching is defined in the following manner:

. If the 'argument’ refersto a (possibly parameterized) 'Datal nstance', then the 'GateType' definition shall
reference a 'DateSet' that contains this 'Datal nstance'.

. If the ‘argument’ refersto a'DataProxy’, then this 'DataProxy’ shall refer to the same 'DataSet’ asreferenced in
the 'GateType' definition. If the ‘argument’ refers to a'DataSet’, then this 'DataSet' shall be referenced in the
'‘GateType' definition.

8.3.20 Action

Semantics

An'Action’ element is a 'PackageableElement’ that can be used to specify any procedure (e.g. local computation,
function call, physical setup, etc.) in an informal way. The interpretation of the action is outside the scope of TDL.

Generalizations

) Packageabl eElement

Properties

e body: String [1]
This property describes the action as an informal String.

Constraints

Named action
An action shall have a name.

8.3.21 ActionReference

Semantics

An'ActionReference’ element can be used to refer to an 'Action’ element to be executed. It may have a
‘component! nstance' attribute that specifies the component instance on which the action is to be performed.

Generalizations

° AtomicBehaviour

Properties

. componentl nstance : Componentinstance [0..1]
This property refers to a'Componentl nstance’ element on which the action is to be performed.

e action: Action [1]
This property is refersto the 'Action’ element to be executed.

Constraints

There are no constraints specified.

ETSI

41 ETSI ES 203 119 V1.1.1 (2014-04)

8.3.22 TestDescriptionReference

Semantics

A TestDescriptionReference' is used to describe the invocation of the behaviour of atest description within another test
description. The invoked behaviour is executed in its entirety before the behaviour of the invoking test descriptionis
executed further. A "TestDescriptionReference’ also has a possibly empty list of actual parameters which are passed to
the referenced "TestDescription'.

Generalizations

° AtomicBehaviour

Properties

o referencedTestDescription : TestDescription [1]
Refers the test description whose behaviour is invoked.

. actual Parameter : ArgumentSpecification [0..*] { ordered}
Refersto alist of actual parameters passed to the referenced test description.

Constraints

Test configuration of referenced test description
The referenced test description shall use the same test configuration as the referencing test description.

Number of actual parameters
The number of actual parametersin the 'TestDescriptionReference’ shall be equal with the number of formal parameters
of the referenced TestDescription'.

M atching parameters

The actual parameter APJi] of index i in the ordered list of 'actual Parameter's of the 'datal nstance' shall match the formal
parameter FP[i] of index i in the ordered list of formal parameters of the referenced TestDescription’. Matching is
defined in the following terms:;

. If AP[i] isa'Datal nstance' then the 'DataSet' to which AP[i] refers to shall be the same the 'DataProxy' FPJi]
refersto.

. If AP[i] isa'DataSet' then it shall refer to the same 'DataSet' the 'DataProxy’ FPJi] refersto.
. If AP[i] isa'DataProxy' then the 'DataSet’ to which AP[i] refers to shall be the same the 'DataProxy' FPJi]

refersto.

8.3.23 ArgumentSpecification

Semantics

The abstract 'ArgumentSpecification’ element specifies the 'DataElement’ and its parameters (if any) used in interactions
or test description references, i.e. the datathat is exchanged in an 'Interaction' or passed to a 'TestDescription' viaa
TestDescriptionReference’. The ‘ArgumentSpecification’ element shall relate to '‘DataElement's that are already defined
elsewhere.

The effect of an argument specification is that it enables data sets and data instances being passed to interactions and
between test descriptions. In this process, a data set defined in the invoked instance of an interaction or test description
can also be refined to a specific data instance by means of a 'Datal nstanceArgumentSpecification'.

Generalizations

° Element

ETSI

42 ETSI ES 203 119 V1.1.1 (2014-04)

Properties

There are no properties specified.

Constraints

There are no constraints specified.

8.3.24 DatalnstanceArgumentSpecification

Semantics

The 'Datal nstanceArgumentSpecification' element is a refinement of the 'ArgumentSpecification’ element that deals
with an argument provided as a (possibly parameterized) 'Datal nstance'. A valid datainstance argument specification
shall match the data instance definition it refersto. The matching conditions are stated as constraints below.

Generalizations

e ArgumentSpecification

Properties

e datalnstance: Datalnstance [1]
The 'Datal nstance' that is referenced as argument by the 'Datal nstanceArgumentSpecification'.

. actual Parameter : DataElement [0..*] { ordered}
The set of 'DataElement's that are used as actual parameters to the referenced 'Datal nstance' according to the
parameter matching conditions stated as constraints below.

Constraints

M atching argument
The 'datal nstance' in the 'Datal nstanceArgumentSpecification' shall refer to a'Datal nstance' that is a contained element
of the 'DataSet’ referenced in the related 'Interaction’ or "TestDescription'.

Equal number of parameters
The number of the 'actual Parameter's attached to the 'Datal nstance' in the 'Datal nstanceArgumentSpecification' shall be
equal to the number of 'parameter's used in the definition of this 'Datal nstance'.

Matching parameters

The actual parameter AP[i] of index i in the ordered list of 'actual Parameter's of the 'datal nstance' shall match the
parameter P[i] of index i in the ordered list of the definition of this 'Datal nstance'. Matching is defined in the following
terms:

. If P[i] refersto a'Datal nstance' then AP[i] shall refer to the very same 'Datal nstance'.

o If P[i] refersto a'DataSet' then (i) AP[i] shall refer to the very same 'DataSet’ or (ii) AP[i] shall refer to a
'‘DataProxy' that refers, in turn, to the same 'DataSet’ or (iii) AP[i] shall refer to a'Datal nstance' that is
contained within the definition of the 'DataSet’. In the |atter case the data set isrefined to this data instance.

Data proxies as parameters
If actual parameter AP[i] of index i refersto a'DataProxy' then the same 'DataProxy' shall be referenced as
'formal Parameter' of the containing ‘TestDescription'.

ETSI

43 ETSI ES 203 119 V1.1.1 (2014-04)

8.3.25 DataProxyArgumentSpecification

Semantics

The 'DataProxyArgumentSpecification' element is a refinement of the '‘ArgumentSpecification’ element that deals with
an argument provided as a'DataProxy’. A valid data proxy argument specification shall match the data proxy definition
(formal parameter) of the test description that contains this data proxy argument specification. The matching condition
is stated as constraint below.

Generalizations

. ArgumentSpecification

Properties

e dataProxy: DataProxy [1]
The 'DataProxy' that is used as argument in the 'DataProxyArgumentSpecification'.

Constraints

M atching argument
The 'dataProxy’ in the 'DataProxyArgumentSpecification’ shall be referenced as 'formal Parameter' of the containing
TestDescription'.

8.3.26 DataSetArgumentSpecification

Semantics

The 'DataSetArgumentSpecification' element is a refinement of the 'ArgumentSpecification’ element that deals with an
argument provided as a'DataSet'. A valid data set argument specification shall match the data element definition of the
invoked interaction or test description.

Generalizations

. ArgumentSpecification

Properties

o dataSet: DataSet [1]
The'DataSet’ that is used as argument in the 'DataSetArgumentSpecification'.

Constraints

There are no constraints specified.

8.3.27 ExceptionalBehaviour

Semantics

‘ExceptionalBehaviour' is optionally contained within a‘CombinedBehaviour' element. It is a'Behaviour' that consists
of one'Block’ element that shall have no guard and shall start with one of the following 'AtomicBehaviour' elements:
‘Interaction’, 'TimeOut', or '‘Quiescence’. For the 'Interaction’ element the target 'Gatel nstance' shall be associated to a
‘Componentlnstance’ with the 'role’ of Tester'.

An 'Exceptional Behaviour' element may have a 'guardedComponent’' attribute.

ETSI

44 ETSI ES 203 119 V1.1.1 (2014-04)
An 'ExceptionalBehaviour' element defines a behaviour that is an aternative to any ‘Interaction’ element in the
enclosing 'CombinedBehaviour' element:

e whosetarget 'Gatelnstance' is associated to a '‘Componentl nstance' with the role of 'Tester' (provided the
‘guardedComponent’ attribute is not present);

. whose target ‘Gatel nstance' is associated to that ‘Componentl nstance’ with the role of 'Tester', whichis
referenced by the ‘guardedComponent’ attribute (provided the ‘guardedComponent’ attribute is present).

A 'CombinedBehaviour' can have several 'Exceptional Behaviour' elements. It can be interpreted as a shorthand of
replacing every ‘Interaction’ targeted to the 'Tester'(or if the 'guardedComponent’ is present, then every ‘Interaction’
targeted to that ‘Tester' component) of the containing 'CombinedBehaviour' element by an 'AlternativeBehaviour' that
contains the given 'Interaction’ targeted to the 'Tester'(or if the 'guardedComponent’ is present, then to the referenced
"Tester' component) asitsfirst aternative and the block(s) of the 'Exceptional Behaviour' element(s) as the following
alternative(s), in the order of which the 'ExceptionalBehaviour' elements are specified in the containing
'‘CombinedBehaviour' element.

An 'Exceptional Behaviour' can be either a'DefaultBehaviour' or an 'InterruptBehaviour'.

Generalizations

° Behaviour

Properties

e block: Block [1]
This property refersto a'Block' element that specifies the behaviour of the 'ExceptionalBehaviour'.

. guardedComponent : Componentinstance [0..1]
This optional property refersto a 'Tester' component instance for which the behaviour specified by the
'Exceptional Behaviour' element is to be applied.

Constraints

First element in block allowed

The 'Block' element referred to by the 'block’ property shall have no guard and shall start with one of the following
'‘AtomicBehaviour' elements: 'Interaction’, ‘TimeOut', or ‘Quiescence'. For the 'Interaction’ element it is required that the
target9 'Gatel nstance' shall be associated to a'Componentinstance' with the 'role' of ‘Tester'.

Guarded component role
The 'guardedComponent’ can refer only to a 'Tester' component.

8.3.28 DefaultBehaviour

Semantics

A 'DefaultBehaviour' is an 'ExceptionalBehaviour'. If it is executed, the execution continues with the next ‘Behaviour'
element of the enclosing 'CombinedBehaviour' element following the one that caused the execution of the
'‘DefaultBehaviour' element.

Generalizations

. Exceptiona Behaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

ETSI

45 ETSI ES 203 119 V1.1.1 (2014-04)

8.3.29 InterruptBehaviour

Semantics

An'InterruptBehaviour' is an 'Exceptional Behaviour'. If it is executed, the execution continues with the same
‘Behaviour' element of the enclosing ‘CombinedBehaviour' element, at which the execution of the 'InterruptBehaviour'
started.

Generalizations

. Exceptiona Behaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

8.3.30 PeriodicBehaviour

Semantics

A 'PeriodicBehaviour' element is optionally contained within a'CombinedBehaviour' element. It is a'Behaviour' that
consists of one '‘Block' element that shall not start with one of the following 'AtomicBehaviour' elements:. ‘I nteraction’,
TimeOut', 'Quiescence’ or 'Interaction' whose target 'Gatel nstance' is associated to a '‘Componentl nstance' with the 'role'
of Tester'.

A 'PeriodicBehaviour' element defines a behaviour that is executed periodically in parallel with the enclosing
‘CombinedBehaviour' element. The frequency of the execution is specified by its 'period’ attribute.

Generalizations

° Behaviour

Properties

e block: Block [1]
This property refersto a'Block' element, whose behaviour will be executed periodically in parallel with the
behaviour of the enclosing '‘CombinedBehaviour' element.

. period : Time[1]

This property defines the frequency of the execution of the behaviour of the 'Block' element specified by the
'block’ attribute. The 'period' isa'Time' value.

Constraints

First event allowed
The 'Block' element referred by the 'block’ attribute shall start with an 'Interaction’ initiated by a 'Tester' component.

9 Time

9.1 Overview

The 'Time' package defines the elements to express time, time requirements, and timer operationsin TDL.

ETSI

46 ETSI ES 203 119 V1.1.1 (2014-04)

9.2 Abstract Syntax

. smetoclosss
emetaclasss ametaclass»

(Foundation) FF?_l,Tﬂf:lfm} Timerstart
PackageableElement crement

N

timerStart [1]

) period [1]
ftime [1] smetaclasss
Time _
value: Real [1] period [1]
imeDperation [0..1]

period [1]
emetaclosss
TimeOperation

smetaclass»

. . unit [1
Timellnit (1
periodicBehaviour [0..1]
smetaclasss
(Test Behaviour:TestBehaviourElements)
PeriadicBehaviour
Figure 9.1: Time Concept
(_F:’TSZSI?I:);:O“) testDescription [1]
) . [-——
TestDescription
timeConstraint [*] {unique}
zmetaclass=»
Element p .«metaclass?o
name: String (0. 1] o T|_meCor7.-t|a|nt
expression: String [1]
timeConstraint [*] {unigue}
ametaclasss smetaciosss atomicBehaviour [L.*] {unique}
Timer {Test Behaviour:TestBehaviourElements) smetaclasss
AtomicBehaviour) (Test Architecture)
tirner [1] /7 gatelnstance [0..1] Gatelnstance

=metaclass=

) - - TimerOperation timeCperation [*]
timerOperation [*] {unigue} P ametaclosss

TimeOperation

timeQperation [*]

componentInstance [0..1]
ametaclasss

Componentnstance
ametaclasss ametaclasss wmetaclasse wmetaclasss ametaclasss role: ComponentlnstanceRole [1]
TimerStart TimerStop TimeOut Wait Quiescence

Figure 9.2: Timer and Time Operations

ETSI

a7 ETSI ES 203 119 V1.1.1 (2014-04)

9.3 Classifier Description
9.3.1 Time
Semantics

‘Time' represents the concept of time. Timein TDL is considered to be global and progresses in discrete quantities of
arbitrary granularity. Progressin timeis expressed as a monotonically increasing function. A time instance or atime
duration are expressed by a positive 'value' of type 'Real’. The measurement unit is set by the property 'unit' which
defines a predefined and user-extensible set of measurement units.

Time starts with the execution of an unreferenced 'TestDescription' (with time value 0.0).

Generalizations

. Element

Properties

. value: Real [1]
Represents a'value' of atime instance or atime duration.

. unit : TimeUnit [1]
Defines the measurement unit of atime value or atime duration value.

Constraints

Time value shall be non-negative
The attribute 'value' shall be non-negative.

9.3.2 TimeUnit

Semantics

‘TimeUnit' describes the unit of a'Time' value. There exists alist of predefined instances for the time unit (see
clause 10.2), which can be extended by the user.

Generalizations

. Packageabl eElement

Properties

There are no properties specified.

Constraints

There are no constraints specified.

9.3.3 TimeOperation

Semantics

A 'TimeOperation' summarizes the two possible time operations that can occur at a 'Gatel nstance' of a 'Tester'
‘Componentlnstance’: 'Wait' and ‘Quiescence’. A 'TimeOperation’ references either a'Gatel nstance’ or a
‘Componentlnstance’. In the former case it means that the TimeOperation' applies only on the referenced 'Gatel nstance’,
whilein the latter case it applies on all the 'Gatel nstance's of the referenced 'Tester' 'Componentl nstance'.

ETSI

48 ETSI ES 203 119 V1.1.1 (2014-04)

Generalizations

° AtomicBehaviour

Properties

e period: Time[1]
The 'period’ defines the time duration of the TimeOperation'.

. gatelnstance : Gatelnstance [0..1]
The 'Gatel nstance' element, to which the 'TimeOperation' is associated.

. componentl nstance : Componentinstance [0..1]
The 'Componentl nstance’ element, to which the 'TimeOperation' is associated.

Constraints

Time operations on tester components only
A 'TimeOperation' shall be performed only on a 'Tester' ‘Componentinstance’ or on a'Gatel nstance' that is associated
with a'Componentinstance' in the role 'Tester'.

Association to gate or component instance is mutually exclusive
It is mandatory to set an association of a TimeOperation' to a 'Gatel nstance' or a'‘Componentlnstance’. However the
association shall be mutually exclusive, i.e. both associations shall not be given at the same time.

9.3.4 Wait

Semantics

'‘Wait' defines the time duration that a ‘Tester' ‘Componentl nstance' instance waits at a given 'Gatel nstance' (if 'Wait' is
associated to agate instance) or waits at al the 'Gatel nstance's the Tester' ‘Componentl nstance’ contains (if 'Wait' is
associated to a component instance) before performing the next behaviour.

Generalizations

. TimeOperation

Properties

There are no properties specified.

Constraints

There are no constraints specified.

9.3.5 Quiescence

Semantics

'Quiescence’ defines the time duration during which a 'Tester' component instance shall expect no input from a'SUT'
component instance at a given gate instance (if 'Quiescence’ is associated to a gate instance) or at al the gate instances
the tester component instance contains of (if ‘Quiescence’ is associated to a component instance).

Generalizations

e TimeOperation

Properties

There are no properties specified.

ETSI

49 ETSI ES 203 119 V1.1.1 (2014-04)

Constraints

There are no constraints specified.

9.3.6 TimeConstraint

Semantics

A 'TimeConstraint' is used to express a timing requirement over ‘AtomicBehaviour' elements. The time constraint shall
be formulated over two or more 'AtomicBehaviour' elements. A 'TimeConstraint' el ement limits the execution time of
the 'AtomicBehaviour' element that isto be executed at |atest, relative to other 'AtomicBehaviour' elementsin that time
constraint. Time constraints reside within atest description.

Currently, thereis no formal notation to express time constraints. However it is understood that the names of affected
‘AtomicBehaviour' elements, i.e. their labels, are used in a Boolean expression together with one or more 'Time'
elements expressing time values.

EXAMPLE: In the expression "|L2 —L1| < 5,0 sec" the names L2 and L1 shall be the labels of two atomic
behaviour elements. Then the expression states that atomic behaviour element L2 shall occur in
lessthan 5,0 sec after L1.

Generalizations

° Element

Properties

. expression : String [1]
Defines the time constraint as an informal string.

. atomicBehaviour : AtomicBehaviour [1..*] { ordered}
The'AtomicBehaviour' elements that are affected by this time constraint.

Constraints

There are no constraints specified.

9.3.7 Timer

Semantics

A 'Timer' element defines atimer that is used by different timer operations. A 'Timer' is contained within a
‘ComponentType' element assuming that each 'Componentl nstance' of the given 'ComponentType' hasitslocal copy of
that timer in the operational mode.

Generalizations

. Element

Properties

. componentType : ComponentType [1]
The 'ComponentType' element, in which the 'Timer' is defined.

Constraints

Named timer
A timer shall have a name.

ETSI

50 ETSI ES 203 119 V1.1.1 (2014-04)

Initial state of atimer
When atimer is defined, it is operationally in the stateidle.

9.3.8 TimerOperation

Semantics

A 'TimerOperation' operates on an associated Timer'. 'TimerOperation' is an abstract element that summarizes the
operations on timers: timer start, timeout and timer stop.

Generalizations

° AtomicBehaviour

Properties

. timer : Timer [1]
This property refersto the 'Timer' element on which the 'TimerOperation' operates.

Constraints

There are no constraints specified.

9.3.9 TimerStart

Semantics

A 'TimerStart' operation starts a specific timer. The state of that timer becomes then running. If a running timer is
started, the timer is stopped first implicitly and then (re-)started.

Generalizations

. TimerOperation

Properties

. period : Time[1]
Defines the duration of the timer from start to timeout.

Constraints

There are no constraints specified.

9.3.10 TimeOut

Semantics

A 'TimeOut' element is used to specify the occurrence of atimeout event when the period set by the TimerStart’
operation of that timer has elapsed. In operational mode, the timer changes then from running state to the idle state.

Generalizations

e TimerOperation

Properties

There are no properties specified.

ETSI

51 ETSI ES 203 119 V1.1.1 (2014-04)

Constraints

Running timer
The state of the timer shall be in state running in order to allow the 'TimeOut' to occur in the operational mode.

9.3.11 TimerStop

Semantics

A 'TimerStop' operation stops arunning timer. If an idle timer is stopped, then no action shall be taken. After
performing a TimerStop' operation, the state of that timer becomesidle.

Generalizations

e TimerOperation

Properties

There are no properties specified.

Constraints

There are no constraints specified.

10 Predefined Types

10.1 Overview

This clause lists the predefined element instances for the meta-model elements 'VerdictType' and 'TimeUnit' that shall
be a part of a standard-compliant TDL implementation. It is not specified how these predefined instances are made
available to the user.

Clause 10.2 lists the basic predefined instances of 'VerdictType' elements that shall be used either in explicit
‘VerdictAssignment' elements or in the implicit verdict setting mechanism of TDL. Clause 10.3 afterwards lists the
basic predefined instances of "TimeUnit' elements that shall be used in any instances of 'Time' elements of TDL.

10.2 Predefined Element Instances of 'VerdictType'

10.2.1 pass

The predefined instance 'pass' of the element 'VerdictType' indicates the valid behaviour of the SUT as observed by the
tester. See definition in 1SO 9646-1 [3].

10.2.2 fall

The predefined instance 'fail' of the element 'VerdictType' indicates the invalid behaviour of the SUT as observed by the
tester. See definition in 1SO 9646-1[3].

10.2.3 inconclusive

The predefined instance 'inconclusive' of the element 'VerdictType' can be used if neither 'pass’ nor 'fail' verdict can be
given. See definition in 1SO 9646-1 [3].

ETSI

52 ETSI ES 203 119 V1.1.1 (2014-04)

10.3 Predefined Element Instances of 'TimeUnit'

10.3.1 tick

The time unit instance 'tick’ represents an arbitrary, but fixed duration of time.

10.3.2 nanosecond

The time unit instance 'nanosecond' represents the duration of a nanosecond (i.e. 10 seconds).

10.3.3 microsecond

The time unit instance 'microsecond' represents the duration of a microsecond (i.e. 10°® seconds).

10.3.4 millisecond

The time unit instance 'millisecond' represents the duration of a millisecond (i.e. 10 seconds).

10.3.5 second

The time unit instance 'second’ represents the duration of a seconds.

10.3.6 minute

The time unit instance 'minute’ represents the duration of a minute (i.e. 60 seconds).

10.3.7 hour

The time unit instance 'hour' represents the duration of an hour (i.e. 3 600 seconds).

ETSI

53 ETSI ES 203 119 V1.1.1 (2014-04)

Annex A (informative):
Technical Representation of the TDL Meta-Model

The technical representation of the TDL meta-model isincluded as an electronic attachment es_203119v010101p0.zip
which accompanies the present document. The purpose of this annex isto serve as a possible starting point for
implementing the TDL meta-model conforming to the present document. See the readme contained in the zip file for
details.

ETSI

54 ETSI ES 203 119 V1.1.1 (2014-04)

Annex B (informative):
Examples of a TDL Concrete Syntax

B.1 Introduction

The applicability of the TDL meta-model that is described in the main part of the present document depends on the
availability of TDL concrete syntaxes that implement the meta-model (abstract syntax). Such a TDL concrete syntax
can then be used by end users to write TDL specifications. Though a concrete syntax will be based on the TDL meta-
model, it can implement only parts of the meta-model if certain TDL features are not necessary to handle a user's needs.

This annex illustrates an example of apossible TDL concrete syntax in atextual format that supports all features of the
TDL meta-model, called "TDLan". Three examples are outlined below - two examples trandated from existing test
descriptions taken from [i.2] and [i.3], as well as an example illustrating some of the TDL data parameterization and
mapping concepts. The examples are accompanied by a compl ete reference description of the textual syntax of TDLan
givenin EBNF.

B.2 A 3GPP Conformance Example in Textual Syntax

This example describes one possible way to trandate clause 7.1.3.1 from TS 136 523-1 [i.2] into the proposed TDL
textual syntax, by mapping the concepts from the representation in the source document to the corresponding concepts
in the TDL meta-model by means of the proposed textual syntax. The example has been enriched with additional
information, such as explicit data definitions and test configuration details for completeness where applicable.

/Il Translated from[i.2], Section 7.1.3.1
TDLan Specification Layer_2_DL_SCH Data_Transfer {
/'l Procedures carried out by a conponent of a test configuration
/lor an actor during test execution
Action preCondition : "Pre-test Conditions:
RRC Connecti on Reconfiguration" ;
Action preanble : "Preanble:
The generic procedure to get UE in test state Loopback
Activated (State 4) according to TS 36.508 cl ause 4.5
is executed, with all the paraneters as specified in the
procedure except that the RLC SDU size is set to return no

data in uplink.
(reference correspondi ng behavi our once inplenmented" ;

/'l User-defined verdicts

/I'Al'ternatively the predefined verdicts may be used as wel |
Verdict PASS ;

Verdict FAIL ;

/'l User-defined annotation types

Annot ati on TITLE ; // Test description title

Annot ati on STEP ; //Step identifiers in source docunents

Annot at i on PROCEDURE ; //1nfornmal textual description of a test step
Annot ation PRECONDI TION ; //ldentify pre-condition behaviour

Annot at i on PREAMBLE ; //1dentify preanbl e behaviour.

/1 User-defined tinme units
Tinme Unit seconds;

/| Test objectives (copied verbatimfrom source docunent)
Test Objective TPL {
from: "36523-1-a20_s07_01.doc::7.1.3.1.1 (1)" ;
description : "with { UE in E-UTRA RRC_CONNECTED state }
ensure that {
when { UE receives downlink assignnent on the PDCCH
for the UE's C-RNTI and receives data in the
associ ated subfrane and UE perfornms HARQ
operation }
then { UE sends a HARQ feedback on the HARQ
process }
3

ETSI

55 ETSI ES 203 119 V1.1.1 (2014-04)

Test Objective TP2 {
from: "36523-1-a20_s07_01.doc::7.1.3.1.1 (2)" ;
description : "with { UE in E- UTRA RRC_CONNECTED state }
ensure that {
when { UE receives downlink assignnent on the PDCCH
with a G RNTI unknown by the UE and data is
avai l able in the associated subfrane }
then { UE does not send any HARQ feedback on the
HARQ process }

}

/'l Rel evant data set and data instance definitions
Data Set PDU {
i nstance MAC _PDU ;

}
Data Set ACK {
i nstance HARQ ACK ;

}
Data Set C RNTI {
i nstance UE_C _RNTI
i nstance unknown_C RNTI ;

}
Data Set OTHER {
instance PDCCH (C_RNTI)
i nst ance RRCConnecti onReconfiguration ;

}

/] Gate type definitions
CGate Type defaul t GT accepts ACK, PDU, OTHER, C_RNTI

/| Conponent type definitions
Conponent Type defaul tCT {
gate types : defaul tGrT ;

/| Test configuration definition
Test Configuration default TC {
instantiate SS as Tester of type defaultCT having {
gate SSgate of type defaul tGrT ;
}

instantiate UE as SUT of type defaul tCT having {
gate UEgate of type defaul tGT ;
}

connect UEgate to SSgate ;
}

/] Test description definition
Test Description TD 7_1_3_ 1 {
use configuration : defaultTC ;
{
/I Pre-conditions and preanble fromthe source docunent
performaction preCondition with { PRECONDITION ; } ;
performaction preanble with { PREAMBLE ; }

/| Test sequence
SSgat e sends instance PDCCH (UE_C RNTI) to UEgate with {
STEP "1" ;
PROCEDURE "SS transnits a downlink assignment
including the C-RNTlI assigned to
the UE" ;

P
SSgat e sends i nstance MAC PDU to UEgate with {
STEP "2"
PROCEDURE "SS transnmits in the indicated
downl i nk assignment a RLC PDU in
a MAC PDU" ;
P
UEgat e sends instance HARQ ACK to SSgate with {
STEP "3" ;
PROCEDURE " Check: Does the UE transmit an
HARQ ACK on PUCCH?" ;
test objectives : TPL ;

P

set verdict to PASS ;

SSgat e sends instance PDCCH (unknown_C RNTI) to UEgate with {
STEP "4"
PROCEDURE "SS transnits a downlink assignnment

ETSI

56

to including a GRNTI different from
the assigned to the UE" ;

P
SSgat e sends instance MAC PDU to UEgate with {
STEP "5"
PROCEDURE "SS transnits in the indicated
downl i nk assignment a RLC PDU in
a MAC PDU'

}

/'l'lnterpolated original step 6 into an alternative behaviour,

ETSI ES 203 119 V1.1.1 (2014-04)

/'l covering both the incorrect and the correct behaviours of the UE

alternatively {
UEgat e sends instance HARQ ACK to SSgate ;
set verdict to FAIL ;

}oor {
gate SSgate is quiet for (5.0 seconds);
set verdict to PASS ;

} with {
STEP "6" ;
PROCEDURE " Check: Does the UE send any HARQ ACK

on PUCCH?" ;

test objectives : TP2 ;

}

}
} with {

Note : "Note 1. For TDD, the tim ng of ACK/ NACK i s not

constant as FDD, see Table 10.1-1 of TS 36.213."

}

} with {
Note : "Taken from 3GPP TS 36.523-1 V10.2.0 (2012-09)" ;
TITLE "Correct handling of DL assignnment / Dynanic case"

B.3 An IMS Interoperability Example in Textual Syntax

This example describes one possible way to trandate clause 4.5.1 from TS 186 011-2 [i.3] into the proposed TDL
textual syntax, by mapping the concepts from the representation in the source document to the corresponding concepts
in the TDL meta-model by means of the proposed textual syntax. The example has been enriched with additional
information, such as explicit data definitions and test configuration details for completeness where applicable.

//Translated from[i.3], Cdause 4.5.1.
TDLan Specification | MS_NNI _General _Capabilities {

/'l Procedures carried out by a conponent of a test configuration

/lor an actor during test execution
Action preConditions : "Pre-test conditions:

- HSS of IMS_A and of IMS B is configured according to table 1

- UE_A and UE B have | P bearers established to their respective

| M5 networks as per clause 4.2.1

- UE_A and I MS_A configured to use TCP for transport
- UEAis registered in IMS_A using any user identity
- UEBis registered user of |M5S_B using any user identity

- MESSAGE request and response has to be supported at

see tables 6.1 and 6.3)"

// User-defined verdicts

/I Alternatively the predefined verdicts nay be used as well

Verdi ct PASS ;
Verdict FAIL ;

/I User-defined annotation types

Annot ation TITLE ; // Test description title

Annot ati on STEP ; //Step identifiers in source docunents

Annot at i on PROCEDURE ; //1nformal textual description of a test step
Annot ati on PRECONDI TION ; //ldentify pre-condition behaviour

Annot ati on PREAMBLE ; //l1dentify preanbl e behaviour.

Annot ati on SUMVARY ; /11 nformal textual description of test sequence

/| Test objectives (copied verbatimfrom source docunent)
Test Objective TP_I M5_4002_1 {

//Location in source docunent

from: "ts_18601102v030101p. pdf::4.5.1.1 (CC 1)"

/'l Further reference to another docunent

from: "ts_124229v081000p. pdf, clause 4.2A, paragraph 1"

ETSI

description : "ensure that {

57

when { UE_A sends a MESSACE to UE B

contai ning a Message_Body greater than 1 300
bytes }
then { I M5_B receives the MESSAGE containi ng the
Message_Body greater than 1 300 bytes }

P

}

Test Obj ective UC 05_I
/1Only a reference to corresponding clause in the source docunent
from: "ts_18601102v030101p. pdf::4.4.4.2" ;

}

// Rel evant data set and data instance definitions

Data Set MSG {
i nstance MESSACGE ;

nstance TCP ;
nstance DI NG ;

nstance MESSAGE TCP (TCP)

nst ance DELI VERY_REPORT ;

}

nstance M 200_CX ;

/] Gate type definitions.

Gate Type defaul t GT accepts MSG ;

/| Conponent type definitions

/1ln this case they nay al so be reduced to a single conponent

Conponent

Type USER {

gate types : defaul tGT ;

Conponent

Type UE {

gate types : defaul tGT ;

}
Conponent

Type | M5 {

gate types : defaul tGrT ;

Conponent

Type | BCF {

gate types : defaul tGrT ;

/] Test configuration definition
Test Configuration CF_I NT_CALL {
instantiate USER A as Tester of type USER having {
gate gUSER A of type defaul tGT ;

}

instantiate UE_A as Tester of type UE having {

gate gUE_A of type defaultGT ;

instantiate | M5_A as Tester of type | M having {

gate gl M5S_A of type defaul tGrT ;

instantiate | BCF_A as Tester of type |BCF having {
gate gl BCF_A of type defaul tGT ;

}
instantiate | BCF_B as Tester of type |BCF having {
gate gl BCF_B of type defaul tGT ;

}

instantiate | M5_B as SUT of type | M having {

gate gl M5_B of type defaul tGrT ;

}

instantiate UE_ B as Tester of type UE having {

gate gUE B of type defaul tGT ;

}
instantiate USER B as Tester of type USER having {
gate gUSER B of type defaul tGT ;

connect
connect
connect
connect
connect
connect
connect

}

gUSER A to gUE_A ;
gUE B to gUSER B ;
gUE_A to gl M5 A ;
gl M5_A to gl BCF_A ;
gl BCF_A to gl BCF_B ;
gl BCF_B to gl M5_B ;
glM5_ B to gUE B ;

/] Test description definition

Test Description TD_| M5S_MESS 0001 {

ETSI

ETSI ES 203 119 V1.1.1 (2014-04)

58 ETSI ES 203 119 V1.1.1 (2014-04)

use configuration : CF_INT_CALL ;

{
/I Pre-conditions fromthe source docunent
performaction preConditions with { PRECONDI TION ; };

/| Test sequence

gUSER_A sends instance MESSAGE to gUE A with { STEP "1" ; } ;
gUE_A sends instance MESSAGE to glMS_A with { STEP "2" ; } ;

gl M5_A sends instance MESSACGE to glBCF_A with { STEP "3" ; } ;

gl BCF_A sends instance MESSAGE to gl BCF_ B with { STEP "4" ; } ;

gl BCF_B sends instance MESSAGE TCP to glMs B with { STEP "5" ; } ;
gl M5_B sends instance MESSAGE to gUE B with { STEP "6" ; } ;
gUE B sends instance DINGto gUSER B with { STEP "7" ; } ;

gUE B sends instance M 200 OK to glM5 B wit ;

gl M5_B sends instance M 200 _OK to glBCF_B with { STEP "9" ; } ;
gl BCF_B sends instance M 200_OK to glBCF_Awith { STEP "10" ; } ;
gl BCF_A sends instance M 200_OK to gIMs_ Awith { STEP "11" ; } ;
gl M5_A sends instance M 200 _ OK to gUE Awith { STEP "12" ; } ;

=

optionally {
gUE_A sends instance DELI VERY_REPORT to gUSER A with { STEP "13" ; }
I

13
} with {
SUMMARY "I M5 network shall support SIP nessages greater than
1 500 bytes" ;

3

} with {
Note : "Taken from ETSI TS 186 011-2 V3.1.1 (2011-06)"
TITLE "SI P messages |onger than 1 500 bytes"

}

B.4 An Example Demonstrating TDL Data Concepts

This example describes some of the concepts related to data and data mapping in TDL by means of the proposed TDL
textual syntax. It illustrates how data instances can be parameterized, mapped to concrete data entities specified in an
external resource, e.g. a TTCN-3 file, or to aruntime URI where dynamic concrete data values might be stored by the
execution environment during runtime in order to facilitate some basic data flow of dynamic values between different
interactions. The example considers a scenario where the SUT is required to generate and maintain a session ID
between subsequent interactions using a similar test configuration as defined for the first example in clause B.2.

/1A manual Iy constructed exanple illustrating the data mappi ng concepts
TDLan Specification DataExanple {

/' User-defined verdicts (the predefined verdicts may be used as well)
Verdi ct PASS ;
Verdict FAIL ;

/| Test objectives
Test Obj ective CHECK_SESSI ON_| D | S_MAI NTAI NED {
//Only a description
description : "Check whether the session id is maintained
after the first response." ;

}

/| Data definitions

Data Set SESSION_ID
i nstance SESSI ON_
i nstance SESSI ON_

{
ID 1 ;
ID 2

}

Data Set MsSG {
i nstance REQUEST_SESSI ON_I D ;
instance RESPONSE (SESSION_ID) ;

i nstance MESSAGE (SESSION_ID) ;
}

/| Dat a mappi ngs
//Load resource.ttcn3 containing the concrete data representations
Use "resource.ttcn3"

as TTCN_RESOURCE;

/1 Map sets and instances to TTCN-3 records and tenpl ates, respectively

ETSI

59 ETSI ES 203 119 V1.1.1 (2014-04)

/1 (located in the | oaded TTCN-3 file)
Map MSG

to "record_nessage"

in TTCN_ RESOURCE

as MsG_mapping ;

Map REQUEST_SESSI ON_I D
to "tenpl ate_request”
in TTCN_ RESOURCE
as REQUEST mapping ;

Map RESPONSE
to "tenpl ate_response”
in TTCN_ RESOURCE
as RESPONSE nmappi ng ;

Map MESSAGE
to "tenpl ate_nessage"
in TTCN_MAPPI NG
as MESSACE_mapping ;

//Use a runtine URI for dynanmic data available at runtinme, such as
|/ session | Ds
Use "runtine://sessions/"

as RUNTI ME_RESOURCE ;

/1 Map session ID data instances to locations within the runtine UR
Map SESSION 1D 1

to "id_1"

i n RUNTI ME_RESOURCE

as SESSION | D 1_mapping ;

Map SESSION_| D 2
to "id_2"
i N RUNTI ME_RESOURCE
as SESSION_ | D 2_mapping ;

/Il Gate type definitions
Gate Type defaul t GT accepts MG ;

/| Conponent type definitions
Component Type defaul t CT {

gate types : defaul tGrT ;
}

/| Test configuration definition
Test Configuration defaultTC {
instantiate UE as SUT of type defaul tCT having {
gate UEgate of type defaul tGT ;
}

instantiate SS as Tester of type defaul tCT having {
gate SSgate of type defaul tGT ;
}

connect SSgate to UEgate ;
}

/] Test description definition
Test Description exanpl eTD {
use configuration : defaultTC ;
{
/| Tester requests a session id
SSgat e sends instance REQUEST_SESSION ID to UEgate ;

/1 SUT responds with a session id that is assigned to the
//runtine URl provided by the execution environnent
UEgat e sends instance RESPONSE (SESSION ID 1) to SSgate ;

/| Tester sends a nmessage with the session id
//fromthe runtime UR
SSgat e sends instance MESSAGE (SESSION ID 1) to UEgate ;
alternatively {
/1 SUT responds with the same session id

UEgat e sends instance RESPONSE (SESSION ID 1) to SSgate ;
set verdict to PASS;

ETSI

60 ETSI ES 203 119 V1.1.1 (2014-04)

}oor {

/1 SUT responds with a different session id
UEgat e sends instance RESPONSE (SESSION ID 2) to SSgate ;
set verdict to FAIL;

} with {
test objectives : CHECK SESSION | D_I'S_MAI NTAI NED ;
}

}
}
}

B.5 TDL Textual Syntax Reference

B.5.1 Conventions for the TDLan Syntax Definition

This annex describes the grammar of the used concrete textual syntax in the Extended Backus-Naur Form (EBNF)
notation. The EBNF representation is generated from a reference implementation of the TDL meta-model. The EBNF
representation can be used either as a concrete syntax reference for TDL end users or as input to a parser generator tool.
Table B.1 defines the syntactic conventions that are to be applied when reading the EBNF rules. To distinguish this
concrete textual syntax from other possible concrete textual syntax representations, it isreferred to as"TDLan". This
proposed syntax is complete in the sense that it covers the whole TDL meta-model.

Table B.1: Syntax definition conventions used

i= is defined to be

abc the non-terminal symbol abc
abc xyz abc followed by xyz

abc | xyz alternative (abc or xyz)
[abc] 0 or 1 instance of abc
{abc}+ 1 or more instances of abc
{abc} 0 or more instances of abc
'a-'z' all characters fromato z
(-.) denotes a textual grouping
‘abc’ the terminal symbol abc

; production terminator

\ the escape character

B.5.2 TDL Textual Syntax EBNF Production Rules

TDLSpec = (' TDLan Specification' ldentifier '
[Elenentlnport { Elenentlnport }]
[Packageabl eEl ement { Packageabl eEl enent
}l
Y
["with '{'
[Comment { Comment }]
[Annotation { Annotation }]
1)
Package = (' Package' ldentifier '{'

[Elenentlnport { Elenentlnport }]

[Packageabl eEl enent { Packageabl eEl enent

}l

'y

["with *{'

[Comment { Comment }]

[Annotation { Annotation }]

ETSI

61 ETSI ES 203 119 V1.1.1 (2014-04)

1)
D;
Annot at i onType
Package

I dentifier
Packageabl eEl enent

Test oj ecti ve

Dat aSet

Dat aResour ceMappi ng
Dat aEl enent Mappi ng
Conponent Type

Gat eType

Ti meUni t

Test Confi guration
Test Descri ption
Ver di ct Type

Action) ;

TinerStart
Ti mer St op

Ti meQut
Wi t

Test Obj ecti veReal i zer c=

Qui escence

Test Descri ption
ConpoundBehavi our

Peri odi cBehavi our

Al t ernati veBehavi our
Par al | el Behavi our
BoundedLoopBehavi our
UnboundedLoopBehavi our
Condi ti onal Behavi our
St op

Ver di ct Assi gnnent
Act i onRef erence

I nteraction

Opt i onal Behavi our
Def aul t Behavi our

I nt er r upt Behavi our
Break) ;

Dat al nstance | DataSet) ;
Def aul t Behavi our | |nterruptBehaviour)

Dat aEl enent
Except i onal Behavi our

Ti mer St art
Ti mer St op

At omi cBehavi our

Ti meCut

Vi t

Qui escence

St op

Test Descri pti onRef erence
Ver di ct Assi gnnent

Act i onRef erence
Interaction

Break) ;

Tinmer Start
Ti mer St op

Behavi our ci=

|
I
I
I
I
I
I
I
I
I
I
I
I
|(
I
I
I
I
I
I
I
I
I
I
I
I
| TestDescriptionReference
I
I
I
I
I
I
I
(
(
I
I
I
I
I
I
I
I
I
I
(
I
| Ti meQut

ETSI

62 ETSI ES 203 119 V1.1.1 (2014-04)

Vi t

Qui escence
ConpoundBehavi our

Peri odi cBehavi our

Al ter nati veBehavi our
Par al | el Behavi our
BoundedLoopBehavi our
UnboundedLoopBehavi our
Condi ti onal Behavi our
St op

Test Descri pti onRef erence
Ver di ct Assi gnnent

Act i onRef erence
Interaction

Opt i onal Behavi our

Def aul t Behavi our

| nt er r upt Behavi our

—_e——m—N\ — — —_— —_—- —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— — =

Break) ;
Conment = "Note' ldentifier ':' String
"with' " {'
Commrent { Comment }]
Annotation { Annotation }]
Pl
Annot ati on = (ldentifier String
["with '{'
[Comment { Comment }]
[Annotation { Annotation }] ldentifier
T)
String = STRI NG ;
El ement | nport = ("Inport' ldentifier { ',' Identifier }
[with ' {

[Coment { Comment }]
[Annotation { Annotation }] ldentifier

T)
Annot at i onType = ("Annotation' ldentifier
["with '{

[Comment { Comment }]
[Annotation { Annotation }]

T)

Test oj ective = ('Test Objective' ldentifier '{'
["from ":" String ';" { 'from
String ';' }]
["description' ':"' String ';"']
'}
["with "{'

[Coment { Comment }]
[Annotation { Annotation }]

1)
Dat aSet = ('Data Set' ldentifier '{'
[Datalnstance { Datalnstance }]
'y
["with '{

[Comment { Comment }]
[Annotation { Annotation }]

ETSI

63 ETSI ES 203 119 V1.1.1 (2014-04)

1)

Dat aResour ceMappi ng = ("Use' String
["as' ldentifier]
["with *{'

[Coment { Comment }]
[Annotation { Annotation }]
)

'Map' ldentifier

"to' String] 'in' ldentifier

Dat aEl enent Mappi ng =

"with' " {'
Comment { Comment }]
Annotation { Annotation }]
T)
Conponent Type = (' Conmponent Type' ldentifier '{'
[Timer { Timer }] 'gate' 'types'
Identifier { '," ldentifier } ';'
'}
["with '{'
[Comment { Comment }]
[Annotation { Annotation }]

(
[
["as' ldentifier]
[
[
[

1)

Cat eType S ('Gate Type' ldentifier 'accepts'
ldentifier { '," ldentifier }
["with" "{'

[Coment { Comment }]
[Annotation { Annotation }]
)
Ti meUni t = ("Time Unit' ldentifier
["with '{'
[Comment { Comment }]
[Annotation { Annotation }]
T)
Test Confi guration = ('Test Configuration' ldentifier '{'

Conponent I nstance { Conponentl nstance }
Connection { Connection }

"}
["with *{'

[Comment { Comment }]

[Annotation { Annotation }]

1)
Test Descri ption = (' Test Description' ldentifier
["(" DataProxy { '," DataProxy } ')']
e
use' 'configuration' ':' ldentifier ';'
ConpoundBehavi our
'}
["with "{'

[Comment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
ldentifier } ;']
["tine constraints' ':' TineConstraint {
",'" TimeConstraint } ';']
1)

Ver di ct Type = ("Verdict' ldentifier
["with '{'

[Comment { Comment }]

ETSI

64 ETSI ES 203 119 V1.1.1 (2014-04)

[Annotation { Annotation }]

)
Action = ("Action' ldentifier ':' String
["with " {

[Coment { Comment }]
[Annotation { Annotation }]

)
TimerStart = ('start' ldentifier "for' '(' Time ')’
["with '{

[Comment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
Identifier } ';'
‘name' ldentifier]

[
["tine constraints' '(' ldentifier { ','
|

dentifier } '")']
)

Ti mer St op = ('"stop' ldentifier
['with '{

[Coment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' Identifier { ','
ldentifier } ';'
‘name' ldentifier]

[
["tine constraints' '(' ldentifier { ','
|

entifier } '")']
UL R

Ti meQut = (ldentifier "times' 'out’
["with '{

[Comment { Comment }]

[Annotation { Annotation }]

["test objectives' ':' Identifier { ','
ldentifier } ';"'

["nane’ ldentifier]

["tine constraints' '(' ldentifier { ','
ldentifier } ")"']

I A D I

(
[("gate' | ldentifier) | ('conponent’
| ldentifier)] "waits for" "(' Tine ")’
["with *{'
[Coment { Comment }]
[Annotation { Annotation }]
["test objectives' ':' Identifier { ','
ldentifier } ';"'
["nane’ ldentifier]
["tine constraints' '(' ldentifier { ','
Identifier } ")"]
T)
Qui escence =
[("gate' | ldentifier) | ('conponent’
| ldentifier)] "is quiet for' '(' Tine

)
["with '{'
[Comment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
ldentifier } ';'

["nane’ ldentifier]

["tine constraints' '(' ldentifier { ','
ldentifier } ")]

)

ETSI

65 ETSI ES 203 119 V1.1.1 (2014-04)

ConpoundBehavi our = (Bl ock
["with "{'
[Coment { Comment }]
[Annotation { Annotation }]
["test objectives' ':' Identifier { ','
ldentifier } ';'
["nane’ ldentifier]
[Periodi cBehavi our { Periodi cBehavi our }
]
[Exceptional Behavi our {
Except i onal Behavi our }]
1)
Per i odi cBehavi our = ("every' '(' Time ')' Block
["with *{'

[Coment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' Identifier { ','
ldentifier } ';'
["nane’ ldentifier]
1)

Al t er nati veBehavi our = ("alternatively' Block { 'or' Block }
["with '{

[Comment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
Identifier } ';'
["nane’ ldentifier]

[Periodi cBehavi our { Periodi cBehaviour }

]

[Exceptional Behavi our {
Except i onal Behavi our }]

11

Par al | el Behavi our = "run' Block { 'in' 'parallel' '"to Block

(

}

["with " {

[Coment { Comment }]
[Annotation { Annotation }]
[

|

[

[

]

[

'"test objectives' ':' Identifier { ','
dentifier } ';'
‘name' ldentifier]

Peri odi cBehavi our { Peri odi cBehavi our }

Except i onal Behavi our {
e

Except i onal Behavi our }]
1)
BoundedLoopBehavi our = ('repeat' Integer 'times' Block
["with " {

[Coment { Comment }]

[Annotation { Annotation }]

["test objectives' ':' Identifier { ','
ldentifier } ';'

["nane’ ldentifier]

[Periodi cBehavi our { Periodi cBehavi our }
]

[Exceptional Behavi our {

Excepti onal Behavi our }]

1)
UnboundedLoopBehavi our = ('repeat' Bl ock
["with '{

[Comment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
ldentifier } ;']

ETSI

Condi ti onal Behavi our

St op

Test Descri pti onRef erence

Ver di ct Assi gnment

Acti onRef erence

Interaction

66 ETSI ES 203 119 V1.1.1 (2014-04)

["nane’ ldentifier]

[Periodi cBehavi our { Periodi cBehavi our }
]

[Exceptional Behavi our {
Except i onal Behavi our }]
1)

('"if'" Block

[(("else" Block)) | ({ "else" "if'
Block } | ("else'" Block))]

["with '{'

[Comment { Comment }]

[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
ldentifier } ';'
["nane’ ldentifier]

[Periodi cBehaviour { Periodi cBehaviour }

]

[Exceptional Behavi our {
Except i onal Behavi our }]

1)
('"termnate’
["with '{'

[Comment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
Identifier } *;'
‘name' ldentifier]

[
["tine constraints' '(' ldentifier { ','
ldentifier } ")"']

)
('"execute' ldentifier

["(" Argunent Specification { ',"'
Argument Speci fication } ')']

["with "{'

[Coment { Comment }]

[Annotation { Annotation }]

["test objectives' ':' Identifier { ','
ldentifier } ';"']

["tine constraints' '(' ldentifier { ','
Identifier } ")’

["nane’ ldentifier]

1)
('set verdict to' ldentifier
["with '{'

[Comment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
Identifier } *;'

["nane’ ldentifier]

["tine constraints' '(' ldentifier { ','
ldentifier } ")"']

Pl)
('"performaction' ldentifier
["on component' Identifier]
["with "{'

[Coment { Comment }]

[Annotation { Annotation }]
["test objectives' ':' Identifier { ','
ldentifier } ';'

["nane’ ldentifier]

["tine constraints' '(' ldentifier { ','
ldentifier } ")"]

1)

(ldentifier 'sends' ArgumentSpecification

ETSI

Opt i onal Behavi our

Def aul t Behavi our

| nt er r upt Behavi our

Br eak

Ti meConstrai nt

Ti mer

67 ETSI ES 203 119 V1.1.1 (2014-04)

"to' ldentifier { ',' ldentifier }
["with "{

[Coment { Comment }]

[Annotation { Annotation }]

["test objectives' ':' Identifier { ','
ldentifier } ';'
‘name' ldentifier]

[
["tine constraints' '(' ldentifier { ','
|

dentifier } ")"']
Y1)

('optionally' Block
['with '{

[Coment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' Identifier { ','
ldentifier } ';"'

["nane’ ldentifier]

1

[Exceptional Behavi our {

Except i onal Behavi our }]
Per i odi cBehavi our { Peri odi cBehavi our }

[

1 ;
("default’

["on'" ldentifier] Block

["with '{'

[Comment { Comment }]

[Annotation { Annotation }]
[
|
[

"test objectives' ':' ldentifier { ','
dentifier } ';'
‘name' ldentifier]
1)
("interrupt’
["on'" ldentifier] Block
["with *{'
[Coment { Comment }]
[Annotation { Annotation }]
[
|
[

'"test objectives' ':' Identifier { ','
dentifier } ';'
‘name' ldentifier]

1)
(' break’
["with '{

[Comment { Comment }]
[Annotation { Annotation }]

["test objectives' ':' ldentifier { ','
ldentifier } ;']

["tine constraints' '(' ldentifier { ','
Identifier } ")’

["nane’ ldentifier]

)
(ldentifier String
["with "{

[Coment { Comment }]
[Annotation { Annotation }]

A

)

("timer' ldentifier
["with '{’

[Coment { Comment }]
[Annotation { Annotation }]

ETSI

68 ETSI ES 203 119 V1.1.1 (2014-04)

T)
Ti me = (Real ldentifier
["with *{'

[Comment { Comment }]
[Annotation { Annotation }]

["nane’ ldentifier]

1)
Real = (
["-"1 {INT}+ " {INT}+) ;
Gat el nst ance = ('gate' ldentifier 'of type' ldentifier
["with *{'
[Coment { Comment }]
[Annotation { Annotation }]
)
Bl ock = (
[
[* String "]"] "{’
[Coment { Comment }]
[Annotation { Annotation }]
["nane’ ldentifier] Behaviour {
Behavi our }
1)
Conponent | nst ance = ('"instantiate' ldentifier 'as'
Conmponent | nstanceRol e ' of type' ldentifier
"having' '{'
Gat el nstance { Gatel nstance }
'}
["with *{'
[Coment { Comment }]
[Annotation { Annotation }]
1)
| nt eger = (
["-"1 {INT}+) ;
Dat al nst ance = ('"instance' ldentifier
["(" ldentifier { '," ldentifier } ")"']
["with '{'
[Comment { Comment }]
[Annotation { Annotation }]
T)
Connecti on = ‘connect' ldentifier

f "to' ldentifier] { "and' ldentifier }
["with '{
[Comment { Comment }]
[Annotation { Annotation }] ldentifier
T)

Dat al nst anceAr gunent Speci fi cati on

Dat aSet Ar gunent Speci fi cation

Ar gunent Speci fication ce=
Dat aPr oxyAr gunent Speci fication) ;

‘with' ' {
Comrent { Comment }]
Annotation { Annotation }]
1)
Dat al nst anceAr gunent Speci fi cati on = ('"instance' ldentifier
["(" ldentifier { '," ldentifier } ")"']
["with '{

(
I
I
Dat aPr oxy = f Ildentifier 'from Identifier
[
[

ETSI

Dat aPr oxyAr gunent Speci fi cation

Dat aSet Ar gunent Speci fi cation

Conponent | nst anceRol e
1D

I NT
STRI NG

M._ COMVENT
SL_COWMVENT

69

["nane’ ldentifier]
[Comment { Comment }]
[Annotation { Annotation }]

1)

('data bound to' ldentifier
["with " {

["nane’ ldentifier]

[Comment { Comment }]
[Annotation { Annotation }]

11

"any instance fromdata set'

(

["with " {

["nane’ ldentifier]
[Comment { Comment }]

[Annotation { Annotation }]
1)

("sur | ' Tester') ;

(

[~ (a2 | tA-Z |
2] Az |

T))
)
()

(/10 "\t]\t)
[["\\r"] "\An"])
(o
!
|
!

ETSI

ETSI ES 203 119 V1.1.1 (2014-04)

ldentifier

70 ETSI ES 203 119 V1.1.1 (2014-04)

Annex C (informative):
Bibliography

ETSI ES202 553 (V1.2.1): "Methods for Testing and Specification (MTS); TPLan: A notation for expressing Test
Purposes’.

| SO/IEC/IEEE 29119-3:2013: " Software and Systems Engineering - Software Testing; Part 3: Test Documentation”.
OMG: "UML Testing Profile (UTP) V1.2", formal/2013-04-03.

ETSI

71

ETSI ES 203 119 V1.1.1 (2014-04)

History

Document history
V111 February 2014 Membership Approval Procedure MV 20140418: 2014-02-17 to 2014-04-18
V111 April 2014 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Basic Principles
	4.1 What is TDL?
	4.2 Applicability of the present document
	4.3 Design Considerations
	4.4 Document Structure
	4.5 Notational Conventions
	4.6 Conformance

	5 Foundation
	5.1 Overview
	5.2 Abstract Syntax
	5.3 Classifier Description
	5.3.1 Element
	5.3.2 PackageableElement
	5.3.3 Package
	5.3.4 ElementImport
	5.3.5 Comment
	5.3.6 Annotation
	5.3.7 AnnotationType
	5.3.8 TestObjective
	5.3.9 TestObjectiveRealizer

	6 Data
	6.1 Overview
	6.2 Abstract Syntax
	6.3 Classifier Description
	6.3.1 DataElement
	6.3.2 MappableDataElement
	6.3.3 DataSet
	6.3.4 DataInstance
	6.3.5 DataProxy
	6.3.6 DataResourceMapping
	6.3.7 DataElementMapping

	7 Test Architecture
	7.1 Overview
	7.2 Abstract Syntax
	7.3 Classifier Description
	7.3.1 TestConfiguration
	7.3.2 GateType
	7.3.3 GateInstance
	7.3.4 ComponentType
	7.3.5 ComponentInstanceRole
	7.3.6 ComponentInstance
	7.3.7 Connection

	8 Test Behaviour
	8.1 Overview
	8.2 Abstract Syntax
	8.3 Classifier Description
	8.3.1 TestDescription
	8.3.2 Block
	8.3.3 Behaviour
	8.3.4 CombinedBehaviour
	8.3.5 SingleCombinedBehaviour
	8.3.6 CompoundBehaviour
	8.3.7 OptionalBehaviour
	8.3.8 BoundedLoopBehaviour
	8.3.9 UnboundedLoopBehaviour
	8.3.10 MultipleCombinedBehaviour
	8.3.11 AlternativeBehaviour
	8.3.12 ConditionalBehaviour
	8.3.13 ParallelBehaviour
	8.3.14 AtomicBehaviour
	8.3.15 Break
	8.3.16 Stop
	8.3.17 VerdictAssignment
	8.3.18 VerdictType
	8.3.19 Interaction
	8.3.20 Action
	8.3.21 ActionReference
	8.3.22 TestDescriptionReference
	8.3.23 ArgumentSpecification
	8.3.24 DataInstanceArgumentSpecification
	8.3.25 DataProxyArgumentSpecification
	8.3.26 DataSetArgumentSpecification
	8.3.27 ExceptionalBehaviour
	8.3.28 DefaultBehaviour
	8.3.29 InterruptBehaviour
	8.3.30 PeriodicBehaviour

	9 Time
	9.1 Overview
	9.2 Abstract Syntax
	9.3 Classifier Description
	9.3.1 Time
	9.3.2 TimeUnit
	9.3.3 TimeOperation
	9.3.4 Wait
	9.3.5 Quiescence
	9.3.6 TimeConstraint
	9.3.7 Timer
	9.3.8 TimerOperation
	9.3.9 TimerStart
	9.3.10 TimeOut
	9.3.11 TimerStop

	10 Predefined Types
	10.1 Overview
	10.2 Predefined Element Instances of 'VerdictType'
	10.2.1 pass
	10.2.2 fail
	10.2.3 inconclusive

	10.3 Predefined Element Instances of 'TimeUnit'
	10.3.1 tick
	10.3.2 nanosecond
	10.3.3 microsecond
	10.3.4 millisecond
	10.3.5 second
	10.3.6 minute
	10.3.7 hour

	Annex A (informative): Technical Representation of the TDL Meta-Model
	Annex B (informative): Examples of a TDL Concrete Syntax
	B.1 Introduction
	B.2 A 3GPP Conformance Example in Textual Syntax
	B.3 An IMS Interoperability Example in Textual Syntax
	B.4 An Example Demonstrating TDL Data Concepts
	B.5 TDL Textual Syntax Reference
	B.5.1 Conventions for the TDLan Syntax Definition
	B.5.2 TDL Textual Syntax EBNF Production Rules

	Annex C (informative): Bibliography
	History

