Final draft ETS' ES 202 915-4-3 V1.3.1 (2005-01)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 4: Call Control;

Sub-part 3: Multi-Party Call Control SCF
(Parlay 4)

D

2 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Reference
RES/TISPAN-01009-04-03-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
© The Parlay Group 2005.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Contents

Intellectual Property RIGNES.........oo et 7
0 Yo (o SRS 7
1 o010 SRS 9
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 9
3 Definitions and aDbreVIBLIONS...........eceere ettt e sre e be s e e tesneeneeseeeneeneenreas 10
31 DT 1oL TSP 10
3.2 ADBDIEVIBLIONS ...t ettt r e R R e R R e Rt r et r e r e e n e reneene s 10
4 MultiParty Call Control Service SeqUENCE DIiagramsS........cceiieeeiieiie s see e seeste ettt sne s 10
4.1 Application INITTAEEA Call SEIUPcoviieeiieieert ettt 10
4.2 CAll BAITING 2.ttt ettt b et h e b e bt bt b e b e bt s h et e bt e R et e bt e E e Rt e he e b e e e ne b e e e et b et et eb e r e 12
4.3 Call fTorwarding 0N BUSY SEIVICEceiuiiieiiieriet ettt sttt sttt b et et b e bbbt b e et b et sb e e 13
44 Call INfOrmation COlTECE SEIVICE.eeeiie ettt ettt ettt e st et eseesbesaeeseese e s eseesaeseesneeneeeaneas 15
4.5 COMPIEX CAT SEIVICE. ...ttt ittt sttt b et b e et b e b e b e bt e b e st e bt e b et e bt e b e e e st ebese et ebe s b et ebennenees 18
4.6 HOUINE SEIVICE. ... ettt et ettt e s et et e e st e ne et e e e teseeebesaeeneeneenseseeseesaeeneeneeneeneeses 21
4.7 Network Controlled NOEIICELIONSc.vreeirieeereeee e e 24
4.8 Use Of the REAITECIE BVENT........c.ieceeiieerie e et 25
5 (O g B =" = 10 1 RSP RPRPN 25
6 MultiParty Call Control Service INterface ClaSses........coviiieeii it 27
6.1 Interface Class [pMultiPartyCall CONtrolMaNaQEScoireiririeeriieeeere et 27
6.1.1 MELNOA CrEAIECAII() ...eveeeeertereeie ettt et b e et b et b et b e bt b e s et b e b et nb e s 28
6.1.2 Method CreateNOLIfiCaIION().. .. .cevereeeetereeeete ettt bt b e et b 28
6.1.3 (VK= 1gleTo Ro o= o) Y7\ o 1) o1 o] o () PP 29
6.1.4 (VK= 1glelo Relat= gl e N Lol) T or= 1] o () 30
6.1.5 Method <<deprecated>> getNOtTICALION()ccierierieresie et se e 30
6.1.6 YTz 1g oo S = (@=L o= o [@Xe] o)1 o] () P 30
6.1.7 Method <<new>> enablENOLIfICALIONS()........ccverririiriiesiesiese ettt eree e teeeesneeenes 31
6.1.8 Method <<new>> diSalbl ENOLIfiCAIONS()ccverririiiie et see s 32
6.1.9 Method <<new>> getNeXtNOLIfiCATON()erreririeiri e e 32
6.2 Interface Class |pAppM ultiPartyCall CONtroIMaNagESccoieeirieeriireeisieeie et 33
6.2.1 Method rePOrtNOLITI CAITON() ... everveueererteeeie ettt bbb e se et b e bt sb e 33
6.2.2 L= (o To = N oo g (= o [SO P TSP UT SR P TR 34
6.2.3 Method Manager NEEITUPLEO()eververeeeerieieie ettt bbbttt n et sb e 35
6.2.4 Method ManagerRESUME()eceeieeieeee ettt e s e s ste et e e e e e e e e seesse e te e te e teenseeneeeneennes 35
6.2.5 Method call Overl0a0ENCOUNTENEU()civereeeeeei e stee s ee e e e s sttt e s et e s te e e e eesnnesneeenes 35
6.2.6 YTz 1 g loTo o= | L@ Y=g FaT=To (@ S o [35
6.3 Interface Class IPMUIIPArtYCallooo oottt et te e teeeesneennes 35
6.3.1 MELNOO GELCAITLEGS) ..v-vvvevrenereeteieriereire ettt bbbt b et ne et b et ne b 36
6.3.2 YTz g oo e 1 O | =) P 36
6.3.3 Method createANdROULECEIILEGREG() .-..ververerrereeirierieeeie sttt 37
6.34 MELNOO FEIEBSE() ... eeve ettt b et b e et b et b e bt b e se et b et et b b et b b 38
6.3.5 MEthOd dEASSIGNCEAII() ...eovereeeeete ettt b ettt b e et bbb s 38
6.3.6 MELhOd GELINFOREG() +--vveveeeteete ettt ettt et b e et b e et b e bbb 38
6.3.7 MEthOd SEECEIGEPIBN() -..veveuereeieeieete ettt sttt b et b et b e s b et b b et eb e bt 39
6.3.8 Method SEAAVICEOFCNAITGE()eueevereeeeteriee ettt ettt b e et b e et b et nb e b 39
6.3.9 MEthOd SUPEIVISEREM() - +r-vveerrerrerrreerreesieesieesteeteeeesseesseesseeteessesssessessseesseesseesseanseasseasesssenssesssenssenssesnsssnessnes 39
6.4 Interface Class IPAPPMUILIPAITYCallooeiiiiiieeeiesee ettt et e teeeennaesnes 40
6.4.1 Tz g oo e {0 = 40
6.4.2 VK= 1o To o T o] =t 41
6.4.3 MEthOO SUPEIVISERES()veeurerueeiiieiieeiee st et ete et e st e st et e e e teestesseesseesaeesaeeseenseesseeseessaesteesseensennsesneesneesnes 41
6.4.4 MELNOO SUPEIVISEEIT() -..vveueetereeeete sttt bbbt bbb bbb et e b e e et b e e et et n et 41
6.4.5 Y dpTeTo o= g [LTRSS 41
6.4.6 Method createANdROULECEIILEGEIT().....ccueiveeeiirieieie ettt 42
6.5 INEEITACE ClaSS IPCAIILEG ... cvieetirtieeiert et b bbb bbbt b et b et e eb e e ens 42

ETSI

4 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

6.5.1 V= g 0o B0 TU (o) R 43
6.5.2 Method eVENTREPOIREG() +..vveeveerreereereerieeieste st e steeste e e e te et esree s e e st e e teestesseesseesreesseenseenseeseeseenseensesneesnes 44
6.5.3 MELNOO FEIEASE()veveetee ettt ettt e et e e e et e saee s aeesaeesae e seeneeeneeeseeaseesteesseeseenseeneenneennes 44
6.5.4 Tz g oo e {0 o) 45
6.5.5 MELNOT GEECEIT() .. vvenererees ettt b et b e e bt ne bbbt n e 45
6.5.6 Method attaChM EAIAREG()vv.vverererrereririeeresie ettt er e 45
6.5.7 Method detaChMEIBREG() -.-.e-vveveuereeeerereeieresiete sttt ee st ee et e st e e se e bebese e ese e ebenesesbeneseebeneana 46
6.5.8 Method getCurrentDestinati ONAGAIESS()couereerirririeiiere et st 46
6.5.9 Method CONtINUEPTOCESSING() -+ veverrereeuertereeierte sttt sttt sttt be s e bt s bese b b e bt b e bt b et be et ebe s 46
6.5.10 MEthOd SEECEIGEPIBN() -..veeeueree ittt ettt sttt b et b e bt b e s b e et b bbb 47
6.5.11 Method SEAAVICEOFCNAITGE()eueererteeeteriee ettt ettt sttt b e et b e et b et eb e s 47
6.5.12 MEthOd SUPEIVISEREM() - +rvveerreererrreerieesiierieesieeteeeesseesseeseeteestesssessessseesseesseesseanseassessesssenssesssenssesnsesnsssnsesses 47
6.5.13 V= g oTo o o= T S 48
6.6 Interface ClassS IPAPPCAILEGottt et sre e beeateestesseesseesseesteeseeneenneennes 48
6.6.1 Method eVENTREPOIRES()veieeeieeieeieese ettt et te e s e s e e s e e steeeeeseesseesse e seente e seenseenseeneenneennns 49
6.6.2 [V T= g oo Rz Y= g = oo =l) T 49
6.6.3 Method attaChM EAIARES()c.vveueerreieerreereste ettt ettt 50
6.6.4 Method attaCNMETIAETT()veveverteeeieiteiete ettt b et b e bbbt b et bbb n e 50
6.6.5 Method dEtaChIMEIBRES() ... cveueerteiererieiereriet ettt sttt et se st e e e e eebebese b e seseeaenesesbeneseebeneana 50
6.6.6 Method detaChMEAIAETT()cove ettt bbbt b et b e bt sb e 50
6.6.7 MELNOA GELINFORES()cveeeeete et et b e et b et bbb et 50
6.6.8 MELNOA GELINFOEIT().....e ettt bbb et b et bbb e 51
6.6.9 L= (o To W o TH 1= = g) USRS PSPPSR PSR 51
6.6.10 MEthOO SUPEIVISERES()veeuveiuieriieiieeiee st et ete et e st e st et e e e e estesaeesaeesaeesaeesseenseesseeseessansteeseensenntesneesneesnes 51
6.6.11 V= 1 oo ST o= V7R) R 51
6.6.12 YTz gl Te o I o | =T (= [P 52
7 MultiParty Call Control Service State Transition Diagrams.........cccceeeeieeieieeieese e eee e sre e 52
7.1 State Transition Diagrams for |pMulti PartyCall ControlManagerccooereeereenienieienenesese e 52
711 AACTIVE SEBLE. ...ttt et sttt et e e et esee st et e see et e s st eseea e e e eaeeeeeebeeReen e et e tenEeeReeaeeneeneeeeneeee 52
712 INEEITUPLEA SEBLE. ...ttt bbbt bbb bbb et b e s e et b e s e et b e s b et et e b 53
713 Overview Of alloWEd MELNOASoiiiee ettt see b e ne e 53
7.2 State Transition Diagrams for IPMUItiPartyCallcoccoiiiiiiiiice e 53
721 IDLE SEALE ...ttt e bbb e R R R bRttt e bt 54
722 ACTIVE SEBLE. ...ttt ettt b e h bbbt Rt b ek e R b et b b e e bt n s 54
7.2.3 RELEASED SEALE.......cuterieiiistereisiet ettt sttt r et se bt b et b st a bt b et e bt e b st e b st b s e b et e nene e 54
724 Overview Of alloWed MELNOUSooiii e bbb e 55
7.3 State Transition Diagrams for IPCAIILEQvcvviieeeceee et a e sre e e sraesnaesnaesreas 55
731 (O 4T Ngr= 1T g0 K021 = o S SSPS 56
7311 INITTAETNG SEAEE. ...ttt et b et b e b e s bt b e b et b e s b et b e e e st ebe s b et ebe s b et eb e b 56
7312 ANBIYSING SEALE ...ttt bbb et b e e a e b et b e bt b et b e et b e n e 58
7.3.13 F o == (= RS 60
7314 REIBASING SEALE...... .ttt b bt b bt eb e et eb e s b et bt se e e ebesb e e ebesbe e ebenbenneneas 61
7315 Overview of allowed methods, Originating Call Leg STDccoociiireiriieereeeesieeseseeese s 63
7.3.2 L= 0T T o L = o S SS 64
7321 [dle (1ErMINGLING) SEALEeieeeteeieeie e eee st ee e e e s et ste et e ee e eaeeere e te e teenteesaesseesseesnnesneesseenseenseans 64
7322 ACtiVEe (1ErMINGLING) SEALE.......ceeieeieeiee et e st e e te et e et e e e e estesseesaeesanesneesneenseenseans 65
7.3.2.3 Releasing (terminating) SEALE........ccicieiiiiie et saeeteeneeenresneesnaesreesanas 68
7.3.24 Overview of allowed methods and trigger events, Terminating Call Leg STDccccevevveveecievnennen, 70
8 Multi-Party Call Control SErViCe PrOPEIMIES........cccvi ittt sttt st ere s 70
8.1 LiSt Of SEIVICE PrOPEITIESccuiieeiiit ettt bbbt b et b e bbbt b ens 70
8.2 Service Property values for the CAMEL Service ENVIFONMENL.c..ccoiireiiiineinereeseeees e 72
9 Multi-Party Call Control Data DefinitioNS..........cccovieeeeieeiese e neeas 73
9.1 Event Notification Data DeEfiNItIONS.ooiiieiieiee e e e 73
9.2 Multi-Party Call Control Data DEfINITIONScccuieiirieseee ettt e et sreesreeaesneeenes 74
9.21 FoT0r: 1= OSSOSO SO O TP PRSP PPRPURON 74
9.2.2 IPCAIILEGRES ..ottt bbbt b et E e R Rt et b et 74
9.23 (LAY o) o[0T o TSSOSO U SO P TSP UT SR PSR 74
9.24 IPAPPCEIILEGRES ...t b bbbt b bt e b e et bt b et 74
9.25 IPMUITTPAITYCEIL ...ttt ettt b et b b s e et b et bt bbb 74
9.2.6 IPMUILTPAITYCEITRES ... bbbttt b e et b e 74

ETSI

5 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

9.2.7 L0 AN o] AV T LT = Y P 74
9.2.8 IPAPPMUILIPAIYCAIIRES ..ottt 74
9.2.9 IPMUIti PartyCall CONtrOIMBNAGESceieeieesie et eteeteesee e e e e e see e e e saeesteseesseesseesseenteenseenseeseensesneesnns 74
9.2.10 IpMulti PartyCall ControlManagerREScooi i ettt e e e 74
9.2.11 IPAPPM Ulti PartyCal lCONrOIM@aNEAOETc.eecvieeeeieeeteee e etesee s eeste e e s reeteeneesaesreeenteeneesneesnes 74
9.2.12 IpAppMultiPartyCall ControlManagerRESoceiiieecece e 74
9.2.13 TPAPPCAILEGREFSEL ...ttt bbb et b bbbt b et b e e 74
9214 TPMUITPArtyCal lIABNETIEN ..ottt bbb ettt 75
9.2.15 TPAPPMUILIPArYCallBACK ..ot 75
9.2.16 TPAPPMUItiPartyCal | BaCKREF TYPEc.eieeeetireeeert bbb e 75
9.2.17 TPAPPCAILEGCAIBACKcvieeeiiieeiiriiet e bbbt b et b e e 75
9.2.18 TPMUItiPartyCalllentifIErSELc.cv i 75
9.2.19 LN 0 1A oo I o USSR 76
9.2.20 LI L0 1A o7 o g o I8/ =SS 76
9.2.21 LI L 1A o7 o] g0 = SRS 76
9.2.22 TPCAIEVENTREGUESEcveieieteerieiee ettt bbbt bbbttt b b et 76
9.2.23 TPCAIEVENTREQUESISELc.cveveeieiiesiet ettt bbb e 77
9224 TP A EVENETYP. ..ttt ettt b bbbt bbb bbbt bt e bt b et b e bt nb e e 77
9.2.25 TPAAItiONAI Call EVENTCIITEITAL ...ttt bbbt bbb 79
9.2.26 TPCAITEVENTINTO ...ttt bbbt bt b et b bbb 79
9.2.27 TPCallAdditiONA EVENEINTO ...ttt bbbt 80
9.2.28 TPCalINOLIfiCAlIONREGUESE ...ttt bbbttt b et b 80
9.2.29 TPCAlINOLTICALIONSCOPE ...ttt ettt b et b et b b s b b e st e e e st b e et nb e et e 80
9.2.30 TPCAINOLTICATONINTOeeceieeeeceec e et e saeesreesreesseenteeneeenaeenensnneseens 80
9.2.31 TPCallINOtifiCati ONREPOITSCOPEveeuvereeiieeiie st esieerte et e st e st e e e e sseesseesreesseesseeeesseesseesseeseenseassessanssenssees 8l
9.2.32 TPNOLIfiCAlIONREQUESLEM ...ttt ee st ste e ste et es e sre e te e beetesstessaesreesseeseenseenseensenseesseessens 8l
9.2.33 TPNOLIfi Catl ONREQUESIEUSELc.veeeieeeiece e see sttt e st e e e st e e tesraesaeesneenseenseenseensessensseesnens 8l
9.2.34 TPREIEASECAUSE. ... ettt ettt e s e st e s te e te e ee e st e sbe e beenteenteaseesseesseesteesaeeseenteenteentenneenreenren 8l
9.2.35 TPREIEASECAUSESEL.cceeeceeetiete et ee sttt te st e st e s e e s te e te e ateeseesse e te e teentesseesaaesseesseenseanseenseensensenssansrens 8l
9.2.36 TP A LEGIAENTITIEN ...t bbbt b bbbt b e e 81
9.2.37 TPCALEGIANTITIErSEL ...ttt bbbt b e b e 82
9.2.38 TPCallLEgALtAChIM ECIENISIM ...ttt bttt et b et b e 82
9.2.39 TPCallLegCONNECH ONPIOPEITIES........cuiitieeiirtirt ettt bbbt bt b e 82
9.2.40 TPC A LEGINFOREDON. ...ttt bbbt b et b et b et be e 82
9.241 QLI 0O L I=o g ol Y/ o= USSR 83
9.2.42 TPCallL egSUPErVISETFEAIMENLc.vieeiesteesieesteesieeiteseeseesteesteeteeseessaesteesteesseesesneesseesseesseenseenseensessenssenssees 83
9.2.43 TpCallHighProbahilityComPIELION.........c.cieeiieceece ettt e et e e e e enaesnaesnees 83
9.2.44 TPNOLifiCati ONREQUESLEASELENTIY ..ot esae et e e e et e enaeenaesneesneas 83
9.2.45 LI =S USSR 83
9.2.46 LI = USSR 83
9.2.47 TPCAITIENID ..ttt b bbbt b h b a b b h b e e s bt b et a e b e b e st bbb n e 84
9.2.48 TPCATierSAlECHONFIEIM. ...ttt 84
Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF...........cccvneee. 85
Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF 86
Annex C (informative): Java™ API Description of the Call Control SCFS.........ccccoovvevenencnenienns 87
Annex D (informative): Contents of 3GPP OSA Rel-5Call Controlccoceeeieireninenenceeeen 88
Annex E (informative): ReCOrd of ChaNQES.........coiiiee et 89
R O [1 =g o= SRS 89
El1l N L TR PP P UPRPTOPPPUTRTN 89
E.1.2 DIEDIECELEM. ... vtttk et b bt e bR b e R bR R R R AR R AR R R e Rt e R e Rt e r e 89
E.1.3 [10101 o TSSO 89
I V= 0o PSP 90
E2.1 NN L= TSRS)
E.2.2 DL o < orz = o IO TSSOSO 90
E.23 1Yo 1= o TSRS Q0
E24 S 1110 1V7="o R 90

ETSI

6 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

IR B T = W = 11 0l (0] < RO 91
E.3.1 N L RSO P TR OPPTRN 91
E.3.2 LY7o 1 1= S 91
E.3.3 REMOVE. ...ttt s e st e s te e beebeeabeeteesbeesbe e beesbeeaseeaeesaeesaeabeenteeaseeseeebeesbeesbeensesnsesneesans 91
B4 SEIVICE PrOPEITIES.ceeeeeeeee ettt ettt h bbb b b e e e e st bt nb b e nn e r e 92
EA41 N1 SRR 92
E4.2 DL o < orz = o IO TSSOSO RPURRRR 92
E.4.3 LY7o 1 1= S 92
E4.4 REMOVEX. ... b bbb h bbb e ae e s b e e e R e e bt sh e e bt e Rt eh e e e e e e beeeeebesaeene e e enrees 92
R (e = o o SRS 93
E5.1 N1 SRR 93
E.5.2 1Yo o 1 =" PSS 93
E.5.3 REMIOVE. ...ttt ettt e st e s te e beeateeabeeteesbeesbe e beesbeeasesaseeaeesaeaabeenteeaseeseesaeesbeesbeensesnsesneesans 93
G 1 1 SRS 93
[TS 0] YOS 94

ETSI

7 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN), and is now submitted for the ETSI standards
Membership Approval Procedure.

The present document is part 4, sub-part 3 of a multi-part deliverable covering Open Service Access (OSA);
Application Programming Interface (API), asidentified below. The APl specification (ES 202 915) is structured in the
following parts:

Part1: "Overview";

Part 2. "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control";
Sub-part 1: "Call Control Common Definitions";
Sub-part 2: "Generic Call Control SCF";
Sub-part 3: " Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";
Sub-part 5: "Conference Call Control SCF";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF",

Part 12: "Charging SCF";

Part 13: "Policy management SCF";

Part 14: "Presence and Availability Management SCF".

ETSI

http://webapp.etsi.org/IPR/home.asp

8 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 4.2 set of specifications.

The present document is equivalent to 3GPP TS 29.198-4-3 V5.8.0 (Release 5).

ETSI

http://www.parlay.org/
http://www.java.sun.com/products/jain

9 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

1 Scope

The present document is part 4, sub-part 3 of the Stage 3 specification for an Application Programming Interface (API)
for Open Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Multi-Party Call Control Service Capability Feature (SCF) aspects of the interface.
All aspects of the Multi-Party Call Control SCF are defined here, these being:

. Sequence Diagrams.

. Class Diagrams.

. Interface specification plus detailed method descriptions.
. State Transition diagrams.

. Data Definitions.

. IDL Description of the interfaces.

. WSDL Description of the interfaces.

. Reference to the Java™ API description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 202 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 202 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview
(Parlay 4)".

ETSI ES 202 915-2: "Open Service Access (OSA); Application Programming Interface (API); Part 2: Common Data
Definitions (Parlay 4)".

ETSI ES 202 915-4-1: "Open Service Access (OSA); Application Programming Interface (API); Part 4: Call Control;
Sub-part 1: Call Control Common Definitions (Parlay 4)".

ETSI

10 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 202 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 202 915-1 apply.

4 MultiParty Call Control Service Sequence Diagrams

4.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, acall is
created first. Then party A'scall leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call legis created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as avariation be extended to include 3 parties (or more). After the two party cal is established, the
application can create a new leg and request to route it to a new destination addressin order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

ETSI

11 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

: (Logical ; AppPartyA : AppPartyB : - - - PartyA : PartyB : - :IpUiCall
View::IpAppLogic] IpAppMultiPartyCall| | (IpAppMultiPartyCallLeqg) | | (IpAppMultiPartyCallLeq) | |IpAppUICall | [IpMultiPartyCallControlManager| | IpMultiPartyCall || IpCallLeg || IpCallLeg ||lpUIManager
I 1 new) | I I I I I

|

2: createCall()

g

19: deassigpCall()

t t t t						
			3: new)			
			ﬁ			
			i			
T		4 setCallppck()				
H					gl	
		5 createCajled)		L ey !		
				0 m		
N ! ! 7 nLveanepunReq(! ! ! ! ! ! !						
L Il Il Il Il Il Il L						
U						U
	b oueRea()					
L Il Il Il Il Il Il L						
U						1]
			9 eventReporiRes (
	0 T T T T H					
	i					
			10: createpicall()		i	
H						
			11: sendinfoReq(
T T T T T T T T T i						
H ! ! ! ! ! 12: sndinfores()	! ! I					
i			t t t t			
} } } 13 createCdiLeq() L:J\ } ! : : : u						
				;WH		
		15: Eventﬂepﬂrlﬂeq[‘)				
					ﬁ	
I L L 16:routeRea() I I						
					ﬁ	
: : ! ! 17 dvenreporives 0] ! :						
	t]\					
		l@’ abortActionReq()				
T T T						

|
|
L
|
|
|
|
|
|
|
l
i
|
|
|
|

/
[|
U | |
1: This message is used to create an object implementing the I pAppMultiPartyCall interface.

2: This message requests the object implementing the IpMulti PartyCall ControlManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteriafor creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interfaceis created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteriafor creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answersthe call.
8: Thecall isthen routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.
11: This message is used to inform party A that the call isbeing routed to party B.

12: Anindication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

ETSI

12 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

14: Assuming that the criteriafor creating a second object implementing the IpCallLeg interface is met, it is created.
15: This message requests the call leg for customer B to inform the application when the call leg answers the call.
16: The call isthen routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to
party A.

19: The application deassigns the call. Thiswill also deassign the associated user interaction.

4.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code is regjected and the call is cleared.

(5: release()

_ (Logical = = = : IpMultiPartyCallControlManager o = : IpUiCall
View:IpApplL... IpAppMultiPartyCallControlManager IpAppMultiPartyCall IpAppUICall IpMultiP artyCall IpUIManager
T T T T T T T T
| 1: new() | | | | | | |
| | | | | |
U | | | | | |
| | | | | | |
! ! 2: createNotification() ! ! ! ! !
I I | I | | |
| | | /D | | |
| L . | | | | |
7 3: ‘reponNomcauon() | | | | |
4: ‘forward event'				
5 new)				
D				
T				
	6 getCallLegs()			
t t t t				
H				/I-J
	.			
		7 createulc?ll()		
				/Q
! : : 8: sendlnf‘EAndCoHectReq() : : : !				
! ! ! ! ! 9: sendlnfoAndCD\lectRes*) ! !				
! : 10: 'forward event' : ! :	: !			
U<				
		11: sendinfoReq()		
			12: sendinfoRes()	
: : 13: 'forward event' : : :				
]				
: : : 1]‘4: release() : :				
F				
T T T				

?

Y o

(
|
|
|
|

1. This messageis used by the application to create an object implementing the |pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, it islikely that al new call events destined for a particular address or address range prompted for
apassword before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the IpMultiPartyCall ControlManager. Assuming that the criteriafor
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

ETSI

13 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)
3: Thismessage is used to pass the new call event to the object implementing the
I pAppMultiPartyCall ControlManager interface.
4: Thismessageis used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the | pMulti PartyCall ControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of al the legs currently in the call.

7: Thismessage is used to create a UICall object that is associated with the incoming leg of the call.
8: Thecall barring service dialogue isinvoked.

9: Theresult of the dialogue, which in this caseisthe PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: Assuming an incorrect PIN is entered, the calling party isinformed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.
13: This message is used to forward the previous message to the IpAppLogic.
14: No more Ul is required, so the UICall object is released.

15: This message is used by the application to clear the call.

4.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding on busy.

When acall is made from A to B but the B-party is detected to be busy, then the application isinformed of this and sets
up aconnection towards a C party. The C party can for instance be a voicemail system.

ETSI

14 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

ApplLajic Appleg C: Appleg A: App Call : App CCM : CCM: Call: LegA: legB: LegC:
IpAppCaliLeg I Call IpAppMultiPartyCall IpAppMultiPartyCallControlManager IpMultiPartyCallContrc pMuliPartyCd | IpCallLeg IpCallLeg bCdlLeg
T T T T T T T T T T
| 1: 'new | | | | | | |
T | | | |
2: createNotification() /u | | 3) wigger |
T] | - prminog |
| | |
J | | |
T | 4:"trigher event: Busy' |
h
5 checkl‘lﬁj icati on interested | |
6: "new" : :

7 'new’ !

|

|

! |

! I

! I

! I

| \ ;

| | |

| | |

| | |

| | |

! 8: "state-transition to Active" |

! o ! [
! u 10-"statStrhnsition to Releasiné]"

! H [%I !

! I

! I

! I

‘ |

|

|

|

|

|

|

|

|

11: reportNotification()

I

14: "hew"

|
t
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
h
|
|

e I

15: "new"

] T ‘ﬁ

g

16: createCallLeg()

17: "new" |

|
18: "state transition to Idle}

I

19: eventReportReq()

| |
2T St Iransition to Active”

<—1

20: routeReq()

|
|
|
|
|
|
|
|
|
|
|
|
|
t
|
|
|
T
|
|
|
i

22; "inform Call objegt”

23: coniinuePr ocessing()

|

25: "continue call processing”
f

!

|
|
|
|
|
|
|
|
T
|
J6: “C-party answel

D

27: eventReportRes()

28: "forwrd event"

|
|
|
|
|
|
|
|
|
|
T
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R
T
+ |
| |
|
|
|
|

[
T |
| |
| |
| |
| 24: “inform Gall object”
| |
| |
| |
| |
| |
| t
| |
| |
| |
| |
| |
T T
| |
| |
| |
| |
| |
| |
. !

|
:

]

1. This messageis used by the application to create an object implementing the |pAppM ulti PartyCall Control M anager
interface.
2: This messageis sent by the application to enable notifications on new call events.

4: When anew call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing
the IpMultiPartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: The new Call Leg instance transits to state Active.

11: This message is used to pass the new call event to the object implementing the
I pAppMultiPartyCall Control Manager interface. Applied monitor modeis "interrupt”.

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

15: A new AppCallLeg Cis created to receive callbacks for another leg.

ETSI

15 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)
16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.
19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.
20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCalApplInfo in the request to route the call leg to the
remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for exampleif it is not interested in possible
requested call leg information (getlnfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLeg B is notified (callLegEnded) and the event is forwarded to the
application logic (not shown).

25: Asaresult call processing is resumed in the network that will try to reach the associated party C.
26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

4.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and aparty B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number tranglation of the dialled number and
specia charging (e.g. a premium rate service).

Additional call leg related information is requested with the getlnfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and additional
call leg related information is requested with the getinfoReq and superviseReq methods in order to illustrate the
information that can be collected and sent to the application at the end of the call.

Furthermore the diagram shows the order in which information is sent to the application: network release event
followed by possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally
the destroy of the call object (callEnded).

ETSI

16 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

AmLlogic ApplegB: Appleg A: App Call : AppCCM - CCM: Call - Leg A : LegB: scs
IpAppCalileq mggcalngg %ggManarmall Mpamraur gMuInParM‘alIr‘ IpMultiPartyCall IpCallLeq IpCallLeg
T T T T T T
| | \ \ \ | | | |
L + + + L | | | | |
| | 2: createNotification() U | | | | |
T T T T | 3:"arm trlgger” | |
| | | | [[[/ITI
| | | | | | |
: : : : | 4" ‘&ngger ewent: Analys‘ed Information” : :
| | | | | 5:"checkif §pplication interested | | | H
| | | | | = | | |
| | | | | 6: "new" | | |]
				8: "stateytransition to Active”		
				e——		
9: reportN dific aion()						
	(.					
	‘10 forward event					
N ! 11 new ! ! I						
1 L L 1						
12 ‘ew’	1					
T u		T				
o						
e I I I I I \ I I						
U ! ! 14 createCalleg() ! ! ! ! !						
Il Il Il Il Il Il 15: \HE\I\/ I I						
					1	
				[16: "slliLlalransmon toldle”		
: : : 17 é‘veaneporlReq() : . : F :						
		18: puperviseReq()			!	
T T T T T T						
1§ getnfcR						
I I ! “j =) ! ! ! u						
		20: setChargePlan(")			u	
! ! ! 2t raereq() ! ! !] !						
! ! ! ! I I I ! I						
! ! ! ! ! ! ! ! 22: slaJeJu'ansmon to Active'!						
						23 "inlurm‘Call object” Q
					[
			24: eventReporfReq()	L‘[\		
		25: getinoReq ()		T		
I I I T I I /U						
		26: continueProgessing()		/u		
I I I I I I ;lail						
				27: "inform Call obj		
e						
					28: %umlnuecallprmessfng	
) I /ITI	
				30ewentReportRes()		
‘31: “forward event', 7 7 7 7 7 7						
					[32:"D! om A-party"	
						1
! ! ! ! ! ! ! 33: "state Arsition to Releasing”						
						L [
				34 ewntReportRes()		<—
35: "forwgrd event" T T T T						
u\ T		36: getinfoRes()				
t t t t						
37 Vorv@rd ewent						
=			38: callLegEnded()		L	
	t t t t					
d]			I			
L 3% vav?rd event R | | | AP "inform Call objegt] | |
- | H | | | N | |
| | | | | [l | |
| | | | | | | T | |
| | | | | | | | 41:"Disconnect from B-garty"
! ! ! ! ! ! ! ! a2 "state li..mn © Re‘ml -
| | | | | 43: eventReportRes() | | | <—
144: forwad event'* + + + + + + |
| | | | | | |
! ! | 45; getinfoRes() | | | |
| } } } } } } |
146: forward event'l | ! ! ! ! ! ! !
L L | | | | | | |
= | | I 47 speniseRes() | | | T |
} } } } } } .
:48: “forward event'| | | | | | | H :
N | | | 49 @llLegEnded) | | | |
150: "forward event’| f f f f f f H !
L | | | | | | |
U\ | | | | | 51: "informiCall object” |
| L | | | | t | | |
| | | | | 52: callEnded() | u\ | |
| | 53 "forward event" T T | |
Lrl\ [l [l | | | | |
| | | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
I I I I I I I I I

1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
interface.

2: This message is sent by the application to enable notifications on new call events.

4. When anew call, that matches the event criteria, arrives a message ("anaysed information") is directed to the object
implementing the IpMulti PartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object.

6: A new MultiPartyCall object is created to handle this particular call.

ETSI

17 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

7: A new CallLeg object corresponding to Party A is created.
8: Thenew Call Leg instance transits to state Active.

9: This message is used to pass the new call event to the object implementing the
I pAppMultiPartyCall Control Manager interface. Applied monitor modeis "interrupt”.

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state |dle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY™) when party B answers the call and when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party b for example to calculate charging.
20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22:The Call Leg instance transits to state Active.

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.

26: The application requests to resume call processing for the originating call leg. Asaresult call processing is resumed
in the network that will try to reach the associated party B.

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's |pCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY™").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state".

34: The application IpAppLeg A is notified, as the rel ease event has been requested to be reported in Notify mode.
35: The event is forwarded to the application logic.

36: The call leg information is reported.

37: The event is forwarded to the application logic.

38: The origination call leg is destroyed, the AppLeg A is notified.

39: The event is forwarded to the application logic.

41: When the B-party releases the call or the call isreleased as aresult of the rel ease request from party A, i.e. a
"originating release” indication, the terminating call leg is notified and makes a transition to "releasing state".

ETSI

18 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)
43: If anetwork release event is received being a "terminating release” indication from called party B, the application
IpAppLeg B isnotified, as the release event from party B has been requested to be reported in NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being a " originating rel ease”
indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The cdll leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg information is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLeg B is notified.
50: The event is forwarded to the application logic.

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call isended .

53: The event is forwarded to the application logic.

4.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as aresult of a prearranged event being
received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID
and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5'is
then set on the controlling leg (the calling party's leg) such that if the calling party enters a'#5' an event will be sent to
the application. The cal is then routed to the destination party. Sometime during the call the calling party enters '#5'
which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination
party, to which it is then routed.

ETSI

Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

19

ontrolManager

fiaReq()

IIC:
T
|
|
|
I
|
t
|
|
|
|
Il
|
|
|
|
1
|
|
|
1
|
|
|
|
T
|
|
|
|
I
|
|
I
T
|
(
1
|
|
|
1
|
|
|

IpMultiPartyCal

(
CollectReq()

UlCal

(
|
A
|
|
|
U
|
|
|
|
|
|
|
|
|
|
|
L
|
|
|
|
[
|
|
|
|
|
|
|
24 sendinforna
|
|
]
|
|
|
|
|
|
|
|
|
|
L
|
|
[
I
|
|
|
|
U
|
|
|
|
|

AppPartyB':
eq || lpApoCalleg
()

e)
ol)
()

|
|
1
|
|
|

{RemriReq()

AppParA
CallL
()

|
|
|
|
|
|
|
|
|
g
T
|
i
|
al)
t
|
I
|
|
I
|
|
i
|
|
i
|
T
|
|
|
|
|
|
!
i
|
|
|
|
|
|
L
I
|
T
|
|
|
|
|
t
|

ETSI

I pMulti PartyCall ControlManager. Assuming that the criteria for creating an object implementing the | pMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
IpAppMuultiPartyCall Control Manager interface.

interface.
2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts

acall barring service, it islikely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event

criteria set in message 2, arrives a message (not shown) is directed to the object implementing the

3: This messageis used to pass the new call event to the object implementing the

4. Thismessage is used to forward message 3 to the IpAppLogic.

20 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the | pMulti PartyCall ControlManager using the return
parameter of message 3.

6: This message returnsthe call legs currently in the call. In principle areference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7. Thismessage is used to associate a user interaction object with the calling party.
8: Theinitial card service dialogue isinvoked using this message.

9: Theresult of the dialogue, which in this caseisthe ID and PIN code, isreturned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue isinvoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.
13: Thetrigger for follow-on callsis set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application hasto use the sessionl Ds of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create anew call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. Asaresult the network will try to reach the associated party.
18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the mediais not
connected to the other partiesin the call. In order to alow inband communication between the new party and the other
partiesin the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.
23: This message releases the called party.
24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination addressis returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.
27: The call is then forward routed to the new destination party.
28: Asaresult anew Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

31: The event is forwarded to the application logic.

ETSI

21 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)
32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.
33: Theevent is forwarded to the application logic.

34. Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the Ul resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

4.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to congtitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In thiscase a
pre-defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined
destination party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
purposes.

Note that this service could be extended as follows:

Sometime during the call the calling party enters ‘#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

ETSI

22 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

g

Applogic AppLeg B AppLeg A AppCall: AOPCCM com: call: LegA: LegB: c
IpAppCallLe IpAppCallL iPartCall iPartyCallC o allC 4l IpCallLeg ipCallLeg
T T T T T T T T T T
I I I 1mew | | I I I I I
| | | ' I I I I I
| | 2: createNotification() /U | | | | |
T T T T | 3:"armtrigger | |
I I I I [[[
I I I I I I I T
I I I I 5 - vriggel event: I i I
| | | | ! 4 "rigae] evnt: Originating Call Atempt Authorised| |
| | | | | 5: "checkff hpplication interested" | | |
I I I I I > I I I
I I I I I 6 "new’ | I I T
| | | | | 7 "new | | |
F—
I I I I I | I
| | | | | 8: "state'transition to Initi ating‘i |
: : : : : 9: reportNofification() ‘ : :
‘ ‘ 10 forverdevent | Nl ‘ ‘ ‘
= | e | | | | | |
. | ! ! I I I I
12:"new gl | | | |
T I I I I I
ey ! I I I I I
' I I I I I I
g 14 createCalileg() ! ! ! ! !
- “ 15:"nbw’ ! !
I | I I
I U I 16:"slale transition o die" |
17: ‘La/emﬂepoﬂReq() : 1 :
I I I I
1B: routeReq() I I I I
T T T I
| | | 19: "stag transition to Active” |
L I I I Z I
! ! ! 20: inform Call object” !
I I | i I
! 21: eventRepottReq() U\ ! !
L L | 1 |
| | U 0 |
22: continueProgessing() | | | |
W T | |
23 vinform Cal umemu i i
2 'H;mmue call pmcessw‘hg” :
¥ |
I I
I
I

|
| |
| 25: event "address_analysed"

T
26: ”anaA transition to Active”| U
p—| I
| |
27: {Disconnect from B-pgrty”

28: "stateltransition to Releasin|

p—

29 eventReportR es()
30: "forward event"

31: callLegEnced()

32 “forward event"
.|

I

I

I

|

T

I

|

T
33:"inform d‘all object”

I

I

I I

|
|
|
|
|
|
|
|
| |
| |
| | 34:"DisconnettfromA-party’ |
| t
| 35 "state uans‘ﬂnn to Releasing" U
|
| |
I |
f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
| |
|

|

36: callLeg Ended()

37: "forwgr d event” 138: “inform Call object]

"
]

39: callEnded()

)

|
|
|
b
1 1
|
|
|
|
|
|

r
r

T
I
I
I
I
I
: 40: "forward event
|
I
I
I
I
I

—— - - - —

1. This messageis used by the application to create an object implementing the |pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events.

4: When anew call, that matches the event criteria, arrives a message ("originating call attempt authorised") is directed
to the object implementing the | pMultiPartyCall ControlManager. Assuming that the criteria for creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg
object.

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.

8: Thenew Call Leg instance transits to state Initiating.

ETSI

23 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)
9: Thismessage is used to pass the new call event to the object implementing the
I pAppMultiPartyCall ControlManager interface. Applied monitor modeis "interrupt”.
10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the | pMulti PartyCall ControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state |dle is made after the Call leg has been created.
17: The application requests to be notified (monitor mode "NOTIFY ") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.
21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

22: The application requests to resume call processing for the originating call leg. Asaresult call processing is resumed
in the network that will try to reach the associated party as specified by the application (E.164 number provided by
application).

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes atransition to "active" state. The application is not notified asit has not requested
this event to be reported.

27:When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY™) and makes a
transition to "Releasing state”.

29: The application is notified, as the release event has been requested to be reported in Notify mode.
30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLeg B is notified.

32: This answer message is then forwarded.

34: When the call release ("terminating release” indication) is propagated in the network toward the party A, the
originating call leg is notified and makes atransition to "releasing state”. This release event (being propagated from
party B) is not reported to the application.

36: When the originating call leg is destroyed, the AppLeg A is notified.
37: The event is forwarded to the application logic.
39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

ETSI

24 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

4.7 Network Controlled Notifications

The following sequence diagram shows how an application can receive notifications that have not been created by the
application, but are provisioned from within the network.

AppLogic o -
IpAppMultiParty CallControlManager IpMultiParty CallControlManager
! 1: new()

| |
| |
|
J :
| |
2: enableNotifications() |
| T

-

|
3: reportNotification(B) |
|

4: ‘forward ewent'

-

5: reportNotification(B)

6: ‘forward event'

7: disdbleNotifications()

!
!
| g

1. Theapplication is started. The application creates a new |pAppM ultiPartyCall ControlManager to handle callbacks.

2: The enableNotifications method is invoked on the |pMultiPartyCall ControlManager interface to indicate that the
application is ready to receive notifications that are created in the network. For illustrative purposes we assume
notifications of type "B" are created in the network.

3: When anetwork created trigger occurs the application is notified on the callback interface.
4. The event isforwarded to the application.
5: When a network created trigger occurs the application is notified on the callback interface.
6: Theevent isforwarded to the application.

7: When the application does not want to receive notifications created in the network anymore, it invokes
disableNotifications on the IpMulti PartyCall ConrolManager interface. From now on the gateway will not send any
notifications to the application that are created in the network.

ETSI

25 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

4.8 Use of the Redirected event

AppLogic . IpAppCallLeg . IpCallLeg

, 1: .eventReportReq()

2: routeReq()

T
|
|
|
|
T
|
|
|
|
|
/ |
|
|
|
|
|
|
|
|
|
|
|
.

; 3: eventReportRes()
The Call and the Leg

haw already been U\ U

created.

4: eventReportRes()

1. The application has already created the call and acall leg. It places an event report request for the ANSWER and
REDIRECTED eventsin NOTIFY mode.

2: The application routes the call leg.

3: Thecall isredirected within the network and the application isinformed. The new destination address is passed
within the event. The event is not disarmed, so subsequent redirections will aso be reported. Also, the same call legis
used so the application does not have to create a new one.

4. Thecal isanswered at its new destination.

5 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

ETSI

26

<<Interface>>
Ipinterface
(fr am c sapi)

7

Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

<<Interface>>
IpAppCallLeg
(from mpccs)
<<Interface>> <<Interface>>
IpAppMultiPartyCallControlManager IpAppMultiPartyCall .eventReportRes()
(from mpccs) (frommpccs) .eventReportE ()
[®attachMediaRes()
[#reportNotification() 1 70;>'-getlnfoRes() B 0.1 [®attachMediaErr()
["callAborted() [®getinfoEm() [®detachMediaRes()
[®managerinterrupted() [®superviseRes() [®detachMediaEr()
[®managerResumed() [®superviseErr() [®getinfoRes()
[®calloverloadEncountered() [®callEnded() [®getinfoEm()
[®callOverloadCeased() [®createAndRouteCallLegErm() [®routeErm()
N A [®superviseRes()
[| [superviseEm()
l<<uses>> l<<uss>> [®callLegEnded()
| | Nk
| | !
| | !
1 l 1
: : <<Interface>>
| | IpCallLeg
<<Interface>> <<Interface>> (from mpccs)
IpMultiPartyCallControlManager IpMultiPartyCall
(from mpccs) (frommpccs) .route Req()
[®eventReportReq()
[Hcreatecall() [®getCallLegs) [®release()
[createNotification() 1 0..1¥createCallLeg() 1 0..n®getinfoReq()
[®destroyNotification) -2 [®createAndRouteCallLegReq() [~~~ ~ - = [#getCall()
[MchangeNotification() [®release() [®attachMediaReq()

[®<<deprecated>> getNotification()
[#setCallLoadControl ()
[®<<new>> enableNotifications()
[®<<new>> disableNotifications()
[®<<new>> getNextNotification()

[®deassigncall()
[®getinfoReq()
[®setChargePlan()
[®setAdviceOfCharge()
[MsuperviseReq()

[®detachMediaReq()
[®getCurrentDestinationAddress()
[McontinueProcessing()
[®setChargePlan()
[®setAdviceOfCharge()

[BsuperviseReq()
[®deassign()

Figure 1: Application Interfaces

ETSI

This class diagram shows the interfaces of the multi-party call control service package.

27 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

<<Interface>>
IpSenice
(from csapi)

WsetCallback()
WsetCallbackWith SessionID()

<<Interface>>
IpCallLeg
<<Interface>> <<Interface>> (fom mpccs
IpMultiParty CallControlManager IpMultiPartyCall
(from mpccs) (from mpccs) ‘routeReq()
WeventReportReq()
FcreateCall() WgetCallLegs() Wrelease()
®createNotification() 1 0..n®createCallLeg() 1 0..n®getinfoReq()
®destroyNotification) [- - - - -~ >\ [McreateAndRouteCallLegReq()- ——~~ — — ~ = [Mgetcall()
®changeNotification() Frelease() ®attachMediaReq()
%< <deprecated>> getNotification() FdeassignCall() WdetachMediaReq()
WsetCallLoadControl() ®getinforeq() ®getCurrentDestinationAddress ()
®<<new>> enableNotifications() WsetChargePlan() FcontinueProcessing()
#<<new>> disableNotifications() WsetAdviceOfCharge() ®setChargePlan()
W<<new>> getNextNotification() WsupeniseReq() WsetAdviceOfCharge()
WsupeniseReq()
Wdeassign()
Figure 2: Service Interfaces
6 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party callsto be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the | pMultiPartyCall ControlManager, |pMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do
not lock athread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls,
than one that uses synchronous message calls. To handle responses and reports, the developer must implement

I pAppMultiPartyCall Control Manager, | pAppM ultiPartyCall and |pAppCallLeg to provide the callback mechanism.

6.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService;

Thisinterface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCall ControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCall ControlManager isin another state the method will throw an exception immediately.

Thisinterface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented, or the enableNotifications() and disableNatifications() methods shall be implemented.

ETSI

28 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
. in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

<<deprecated>> getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentlD

<<new>> enableNoaotifications (appCallControlManager : in IpAppMultiPartyCallControlIManagerRef) :
TpAssignmentID

<<new>> disableNotifications () : void

<<new>> getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppM ultiPartyCall ControlManager should already have been
passed to the IpMultiPartyCall ControlManager, otherwise the call control will not be able to report a call Aborted() to
the application. The application should invoke setCallback() prior to createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionl D of the call created.

Parameters

appCall :in | pAppMilti PartyCal |l Ref
Specifies the application interface for callbacks from the call created.

Returns
TpMul ti PartyCallldentifier

Raises
TpComonExcepti ons, P_I NVALI D _| NTERFACE TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application isinterested in other events during the
context of aparticular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receivesthe
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

ETSI

29 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is
refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application
controlling the call or session at the same point in time during call or session processing.

If anotification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteriafor overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

Setting the callback reference:

The callback reference can be registered either @) in createNotication() or b) explicitly with a setCallback() method
e.g. depending on how the application providesits callback reference.

Casea
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:

The createNotification() with no callback reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback reference is provided subsequently in a setcallback().

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional callback:

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignmentI D: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCal | Cont r ol Manager :in | pAppMil ti PartyCal | Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificati onRequest :in TpCall Notificati onRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network”, "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D_CRI TERI A, P_I NVALI D_| NTERFACE_TYPE,
P_I NVALI D_EVENT_TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created
with createNotification().

ETSI

30 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Parameters

assignment I D:in TpAssignment| D

Specifies the assignment ID given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

6.1.4 Method changeNotification()

This method is used by the application to change the event criteriaintroduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria

Parameters

assignment I D:in TpAssignment| D

Specifiesthe ID assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment 1D both of them will be changed.

notificati onRequest :in TpCall Notificati onRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P_I NVALI D_EVENT_TYPE

6.1.5 Method <<deprecated>> getNotification()
This method is deprecated and replaced by getNextNotification(). It will be removed in alater release.
This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application. An empty set is
returned when no notifications exist.

Parameters
No Parameters were identified for this method.

Returns

TpNoti fi cati onRequest edSet
Raises

TpComonExcept i ons

6.1.6 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanismis similar as defined for TpCallEventCriteria.

Returns assignmentI D: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the call Overl oadEncountered and call OverloadCeased methods with the request.

ETSI

31 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Parameters

duration:in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application).

A duration of -2 indicates the network default duration.

mechani sm:in TpCal | LoadCont r ol Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment :in TpCall Tr eat nent

Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addr essRange :i n TpAddr essRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssi gnnment | D

Raises

TpComonExcepti ons, P_|I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

6.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

Setting the callback reference:

The callback reference can be registered either a) in enableNotications() or b) explicitly with a setCallback() method
e.g. depending on how the application providesits callback reference.

Casea
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Caseb:

The enableNotifications() with no callback reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback reference is provided subsequently in a setCallback().

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional Call back:

If the same application requests to enable notifications for a second time with a different

IpAppMultiPartyCall Control Manager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. The gateway will always use the most recent callback. In case this most recent callback fails the
second most recent is used.

ETSI

32 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteriain the network and provided by createNotification() do not overlap. However, it
isNOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. ThisID is contained in
any reportNotification() that relates to notifications provisioned from within the network. Repeated callsto
enableNotifications() return the same assignment 1D.

Parameters

appCal | Cont r ol Manager :in | pAppMil ti PartyCal | Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

Returns

TpAssi gnnment | D
Raises
TpComonExcept i ons

6.1.8 Method <<new>> disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNatification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method.

Raises
TpComonExcept i ons

6.1.9 Method <<new>> getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since alot of data can potentially be returned (which might cause problem in the middleware), this method must be
used in an iterative way. Each method invocation may return part of the total set of notifications if the set istoo large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be
returned from the beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether al off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.

Parameters

reset :in TpBool ean
TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.

FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.

ETSI

33 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

The first time this method is invoked, reset shall be set to TRUE. Following the receipt of afinal indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may
be thrown if these conditions are not met.

Returns

TpNoti fi cati onRequest edSet Entry
Raises

TpComonExcept i ons

6.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: Iplnterface;

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, notificationinfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentiD) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of acall-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of P_TIMER_EXPIRY.

Setting the callback reference:
A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back referenceis only applicableif the notification isin INTERRUPT mode.

The call back reference can be registered either a) in reportNotification() or b) explicitly with a
setCallbackWithSessionl D() method depending on how the application provides its callback reference.

ETSI

34 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Casea
From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method,
Caseb:

The reportNotification() with no callback reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallbackWithSessionl D().

In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionl D().

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previoudy explicitly passed a reference to the callback interface
using a setCallbackWithSessionl D() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or
if supplied must be the same as that provided during the setCallbackWithSessionI D().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification isin NOTIFY modeand in
case b).

Parameters

cal |l Reference:in TpMulti PartyCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being givenin
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter asit chooses.

cal |l LegRef erenceSet :in TpCall Legldentifier Set

Specifiesthe set of al call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationl nfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationlnfo:in TpCallNotificationlnfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignment I D:in TpAssignment| D

Specifies the assignment id which was returned by the createNatification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns
TpAppMul ti PartyCal | Back
6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

cal | Reference:in TpSessionlD
Specifies the sessionl D of call that has aborted or terminated abnormally.

ETSI

35 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

6.2.3 Method managerinterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method.

6.2.4 Method managerResumed()
This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method.

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignment I D:in TpAssignment| D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignment I D:in TpAssignment| D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased.

6.3 Interface Class IpMultiPartyCall

Inherits from: IpService;

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It aso gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods,
and either the createCallLeg() or the createAndRouteCall L egReq|(), shall be implemented as a minimum requirement.

ETSI

36 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, applinfo : in
TpCallAppinfoSet, appLeglnterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClinfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

6.3.1 Method getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returnsthe legsin the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionl Ds and the
interface references.

Parameters

cal |l SessionlD:in TpSessionl D
Specifiesthe call session ID of the call.

Returns

TpCal | Legl denti fi er Set

Raises

TpComonExceptions, P_I NVALI D SESSION | D
6.3.2 Method createCallLeg()

This method requests the creation of anew call leg object.

Returns callLeg: Specifies the interface and sessionlD of the call leg created.

Parameters

cal |l Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

ETSI

37 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

appCal | Leg:in | pAppCal | LegRef
Specifies the application interface for callbacks from the call leg created.

Returns
TpCal | Legl dentifi er

Raises
TpConmmonExceptions, P_INVALI D SESSION I D, P_I NVALI D | NTERFACE TYPE

6.3.3 Method createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachM ediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. Thisinterface the application must provide
through the appL egl nterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being aredirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

If this method isinvoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Note that for application initiated calls in some networks the result of the first createAndRouteCallLegReq() hasto be
received before the next createAndRouteCallLegReq() can be invoked. The Service Property
P_PARALLEL_INITIAL_ROUTING_REQUESTS (see clause 8.1) indicates how a specific implementation handles
theinitial createAndRouteCallLegReq(). This method shall throw P_TASK _REFUSED if an application is not allowed
to use parallel routing requests.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

cal |l SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

event sRequested:in TpCal | Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release’”.

target Address :in TpAddress
Specifies the destination party to which the call should be routed.

ori gi nati ngAddress :in TpAddress
Specifies the address of the originating (calling) party.

appl nfo:in TpCal | Appl nf 0Set

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLeglnterface:in | pAppCal | LegRef

Specifies areference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

ETSI

38 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Returns
TpCal | Legl dentifi er
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_| NTERFACE_TYPE,
P | NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_EVENT_TYPE, P_INVALI D CRI TER A

6.3.4 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reportsto be sent at the end of the call (e.g. by means of getinfoReq) these reports
will still be sent to the application.

Parameters

cal |l SessionlD:in TpSessionlD
Specifiesthe call session ID of the call.

cause:in TpRel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALI D SESSION I D, P_I NVALI D NETWORK_ STATE

6.3.5 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

When this method isinvoked, all outstanding supervision requests will be cancelled.

Parameters

cal |l SessionlD:in TpSessionl D
Specifies the call session ID of the call.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

6.3.6 Method getinfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

cal |l SessionlD:in TpSessionlD
Specifies the call session ID of the call.

ETSI

39 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

cal |l I nfoRequested:in TpCallInfoType
Specifies the call information that is requested.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

6.3.7 Method setChargePlan()

Set an operator specific charge plan for the call.

Parameters

cal |l SessionlD:in TpSessionl D
Specifiesthe call session ID of the call.

cal | ChargePl an:in TpCal | Char gePl an
Specifies the charge plan to use.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

6.3.8 Method setAdviceOfCharge()

This method alows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

aCClnfo:in TpAoCl nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch:in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpComonExceptions, P_INVALID SESSION | D, P_I NVALI D_CURRENCY,
P_1 NVALI D_AMOUNT

6.3.9 Method superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon asthe call is answered by the B-party or the user interaction system.

Parameters

cal | Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

ETSI

40 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

time:in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the call is connected in
the network, e.g. answered by the B-party or the user-interaction system.

treatnment :in TpCal | Supervi seTr eat nent

Specifies how the network should react after the granted connection time expired.
Raises

TpComonExceptions, P_I NVALI D SESSION | D

6.4 Interface Class IpAppMultiPartyCall

Inherits from: Iplnterface;

The Multi-Party call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void
getinfoErr (callSessionID : in TpSessionlD, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,
errorindication : in TpCallError) : void

6.4.1 Method getinfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getlnfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of al cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

cal |l Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

cal l I nfoReport :in TpCalll nfoReport
Specifies the call information requested.

ETSI

41 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

6.4.2 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

errorindication:in TpCallError
Specifies the error which led to the original request failing.

6.4.3 Method superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in this
kind of event.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

call Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

report :in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTine:in TpDuration
Specifies the used time for the call supervision (in milliseconds).

6.4.4 Method superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

cal |l SessionlD:in TpSessionlD
Specifies the call session ID of the call.

errorindication:in TpCallError
Specifies the error which led to the original request failing.

6.4.5 Method callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

cal |l SessionlD:in TpSessionlD
Specifiesthe call sessioniID.

report :in TpCal | EndedReport
Specifies the reason the call is terminated.

ETSI

42 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

6.4.6 Method createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

cal | Sessionl D:in TpSessionlD
Specifies the call session ID of the call.

cal | LegReference:in TpCall Legldentifier
Specifies the reference to the CallLeg interface that was created.

errorindication:in TpCallError
Specifies the error which led to the original request failing.

6.5 Interface Class IpCallLeg

Inherits from: IpService;

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(),
release(), continueProcessing() and deassign() methods shall be implemented as a minimum reguirement.

ETSI

43 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, applnfo : in TpCallApplnfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLeginfoType) : void
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOClInfo : in TpAoClnfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

6.5.1 Method routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach M echanism val ues specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

This operation continues processing of the call leg.

Note that for application initiated callsin some networks the result of the first routeReq() has to be received before the
next routeReq() can be invoked. The Service Property P_PARALLEL_INITIAL_ROUTING_REQUESTS (see
clause 8.1) indicates how a specific implementation handles the initial routeReq().This method shall throw
P_TASK_REFUSED if an application is not allowed to use parallel routing requests.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call leg.

ETSI

44 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

target Address :i n TpAddress
Specifies the destination party to which the call leg should be routed.

ori gi nati ngAddress :in TpAddress
Specifies the address of the originating (calling) party.

appl nfo:in TpCal | Appl nf 0Set

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties:in TpCall LegConnecti onProperties
Specifies the properties of the connection.

Raises
TpConmmonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_ STATE,
P | NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

6.5.2 Method eventReportReq()

This asynchronous method sets, clears or changes the criteriafor the events that the call leg object will be set to
observe.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

event sRequested:in TpCal | Event Request Set
Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed"”, "answer" and "release’.
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_EVENT_TYPE,
P_I NVALI D_CRI TERI A

6.5.3 Method release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause:in TpRel easeCause
Specifies the cause of the release.

ETSI

45 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

6.5.4 Method getinfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cal | Legl nf oRequested:in TpCall Legl nfoType
Specifiesthe call leg information that is requested.

Raises

TpComonExcepti ons, P_I NVALI D SESSION | D
6.5.5 Method getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionl D of the call associated with this call leg.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Returns

TpMul ti PartyCallldentifier

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

6.5.6 Method attachMediaReq()

This method requests that the call leg be attached to its call object. Thiswill allow transmission on all associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

In case this method is invoked while there is still arequest to detach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifies the sessionl D of the call leg to attach to the call.

ETSI

46 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

6.5.7 Method detachMediaReq()

This method will detach the call leg from its call, i.e. thiswill prevent transmission on any associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method isinvoked while thereis still arequest to attach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifies the sessionl D of the call leg to detach from the call.

Raises
TpConmmonExceptions, P_INVALI D SESSI ON I D, P_I NVALI D NETWORK_ STATE

6.5.8 Method getCurrentDestinationAddress()
Queries the current address of the destination the leg has been directed to.
Returns the address of the destination point towards which the call leg has been routed.

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call session ID of the call leg.

Returns

TpAddr ess

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D
6.5.9 Method continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation isinvoked and call leg processing is not interrupted the exception
P_INVALID_NETWORK_STATE will be raised.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

ETSI

a7 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

6.5.10 Method setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call party.

cal | ChargePl an:in TpCal | Char gePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

6.5.11 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call party.

aCClnfo:in TpAoCl nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch:in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpCommonExceptions, P_I NVALI D SESSI ON I D, P_I NVALI D_CURRENCY,
P_I NVALI D_AMOUNT

6.5.12 Method superviseReq()

The application calls this method to supervise acall leg. The application can set a granted connection time for this call.
If an application calls this function before it calls arouteReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call party.

time:in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon asthe callLegis
connected in the network.

ETSI

48 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

treatnment :in TpCal |l LegSupervi seTr eat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

6.5.13 Method deassign()

This method requests that the relationship between the application and the call leg and associated objects be
de-assigned. It leavesthe call leg in progress, however, it purges the specified call leg object so that the application has
no further control of call leg processing. If acall leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

When this method is invoked, all outstanding supervision requests will be cancelled.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

6.6 Interface Class IpAppCallLeg

Inherits from: Iplnterface;

The application call leg interface isimplemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

ETSI

49 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : void
eventReportErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLeginfoReport : in TpCallLeglnfoReport) : void
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

6.6.1 Method eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these
so-called disarming rules are captured in the data definition of the event type.

If this method isinvoked for a report with a monitor mode of P CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving arelease cause of P TIMER_EXPIRY.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg on which the event was detected.

eventInfo:in TpCall Eventlnfo
Specifies data associated with this event.

6.6.2 Method eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call leg.

ETSI

50 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

errorindication:in TpCall Error
Specifies the error which led to the original request failing.

6.6.3 Method attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connectionsto thisleg is now available.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call leg to which the information relates.

6.6.4 Method attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call leg.

errorindication:in TpCall Error
Specifies the error which led to the original request failing.

6.6.5 Method detachMediaRes()

This asynchronous method reports the detachment of acall leg from a call has succeeded. The media channels or bearer
connectionsto thisleg is no longer available.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call leg to which the information relates.

6.6.6 Method detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call leg.

errorindication:in TpCallError
Specifies the error which led to the original request failing.

6.6.7 Method getinfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifies the call leg session ID of the call leg to which the information relates.

ETSI

51 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

cal | Legl nfoReport :in TpCal |l Legl nf oReport
Specifiesthe call leg information requested.

6.6.8 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication:in TpCall Error
Specifies the error which led to the original request failing.

6.6.9 Method routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication:in TpCallError
Specifies the error which led to the original request failing.

6.6.10 Method superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in this
kind of event.

It is also called when the connection to a party is terminated before the supervision event occurs.

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

report :in TpCal | Supervi seReport
Specifies the situation which triggered the sending of the call leg supervision response.

usedTine:in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

6.6.11 Method superviseErr()

Parameters

cal | LegSessionl D:in TpSessionlD
Specifiesthe call leg session ID of the call leg.

ETSI

52 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

errorindication:in TpCall Error
Specifies the error which led to the original request failing.

6.6.12 Method callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received al
requested results (e.g. getinfoRes) related to the call leg. The call leg will be destroyed after returning from this method.

Parameters

cal | LegSessionl D:in TpSessionl D
Specifiesthe call leg session ID of the call leg.

cause:in TpRel easeCause
Specifies the reason the connection is terminated.

7 MultiParty Call Control Service State Transition
Diagrams

7.1 State Transition Diagrams for
IpMultiPartyCallControlManager

“managerinterrupted

Interrupted
W

IpAccess.terminateSeniceAgreement
‘new'

IpAccess.terminateSeniceAgreement

7y
() ®
Figure 3: Application view and the Multi-Party Call Control Manager

7.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it isinterested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it isno
longer interested in certain call related events by calling destroyNotification().

ETSI

53 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

7.1.2 Interrupted State

When the Manager isin the Interrupted state it is temporarily unavailable for use. Events requested cannot be forwarded
to the application and methods in the API cannot successfully be executed. A number of reasons can cause this: for
instance the application receives more notifications from the network than defined in the Service Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network dueto e.g. alink failure.

7.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

createCall,
createNotification,
destroyNotification,
changeNotification,
getNotification,
getNextNotification,
setCallLoadControl,
enableNotifications,
disableNotifications
getNotification,
getNextNotification,
enableNotifications,
disableNotifications

Active

Interrupted

7.2 State Transition Diagrams for [pMultiPartyCall
The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer isto invoke callEnded() on the IpAppMultiPartyCall with arelease cause of P_TIMER_EXPIRY . In the
case when no IpAppMultiPartyCall is available on which to invoke call Ended(), callAborted() shall be invoked on the

I pAppMultiPartyCall ControlManager asthisis an abnormal termination.

ETSI

54 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

. IpMultiPartyCallManager.createCall (IDLE }

trcoming call]
ApAppMultiPartyCallControlManager.reportNotification

creatéCallLeg

ACTIVE

deassign
'last leg released'
deassignCall
A /
RELEASED callEnded \@
&
A timer mechanisem preventsthatthe object AN

keepsoccupying resources. In case the timer
expires, callEnded()isinwlkedon the

IpAppM ultiPartyCal | with a release cause of
P_TIMER_EXPIRY. Inthe case when no

IpAppM ultiPartyCal l isavailable on which to invoke
callEnded(), callAborted() shall be invoked on the
IpAppM ultiPartyCalIControIManagerasthisisan
abnormal termination.

Figure 4: Application view on the MultiParty Call object

7.2.1 IDLE State
In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
State.

7.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is alowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicatorsin this state prior to call establishment.

7.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call isin this state, the
requested call information will be collected and returned through getinfoRes() and / or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
State.

ETSI

71.2.4

55 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Overview of allowed methods

7.3

Methods applicable Call Control Call Call Control Manager
State State

getCallLegs Idle, Active, Released |-
createCallLeg, Idle, Active Active
createAndRouteCallLe
gReq,
setAdviceOfCharge,
superviseReq,
release Active Active
deassignCall Idle, Active -
setChargePlan, Idle, Active Active
getinfoReq

State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:

1)

2)

3)

4)

5)

Events in backwards direction (upstream), coming from terminating leg, are not directly visible in originating
leg model. See note 1.

Eventsin forwards direction (downstream), coming from originating leg, are not directly visible in terminating
leg model. See note 1.

States are as seen from the application: if thereis no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or aerting eventson
terminating leg do not change state. See note 2.

Call processing is suspended if for aleg a network event is met, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. The application shall send a request to continue processing
(using an appropriate method like continueProcessing, deassign, release or routeReq)) for each leg and event
reported in monitor mode "interrupt”.

If the event leads to a state transition, the call processing is suspended when entering the state.

In case on aleg more than one network event (for example a mid-call event "service_code" and a
disconnection event) is to be reported to the application at quasi the same time, then the events are to be
reported one by one to the application in the order received from the network. When for aleg an event is
reported in interrupt mode, a next pending event is not to be reported to the application until a request to
resume call processing for the current reported event has been received on the leg.

NOTE 1: Although events coming from a specific party will always be tied to the callLeg related to that party, these

NOTE 2:

events might lead to state transitions of other callLegs. Examples of such events are terminating release,
where also the originating leg might transit to the releasing state and originating_release where the
terminating leg might transit to the releasing state.

Even though in the Originating Call Leg STD there is ho change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore, from an application viewpoint, appear as just one state that may
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore is described here as
being a state on its own.

ETSI

56 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

7.3.1 Originating Call Leg

Originating Call Leg. ﬁ
‘originating call attempt authorizeﬂ
IpAppMultiPartyCallControlManager.
Initiatin reportN otification(originating CallAttem
attachM eda g ‘ P (orig 9)
detachMedia
‘ IpAppMultiPartyCallControlManager
reportNotification(originating Call AttemptAuthiorized)
'Address Collected'
‘networkRelease’

'Address_Collected'

attachMedia
detachMeda

| MultiPartyCallControlManager.
reportNotification(address_collected)

‘networkreleas €

'Address Analysed'

‘originating service_code'

X Active IpAppMultiPartyCallControlManager.
attachMedia ‘ reportNotification(address_analysed)
detachMedia
IpAppMultiPartyCallControlManager.

reportNotification(originating service code)

‘network release’

\

‘ Releasing

All States release do/ send reports if requested, or error reports if required ‘ IpAppMultiPartyCallControlManager.
"timer expiry ‘ ‘ reportNotification(originating

release)

deasign

NpAppCallLeg.callLegEnded

Transtions/ewents na shown:

All states:

contirueProcessing , g etlastRedirectedAddress , getC all: no state change
All states except Releasing :

ewentR epatReq, setAdiceOfChar ge, getlnfoReq , superviseReq,
setChar gePlan

Figure 5: Originating Leg

7.3.1.1 Initiating State
Entry events:

- Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an
'Originating_Call_Attempt' initial notification criterion.

- Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an
'‘Originating_Call_Attempt_Authorised' initial notification criterion.

ETSI

57 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party's identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

Initiating See .| oREL
State Note 2 -
See Note 1

NOTE 1: Event oCA only applicable as an initial notification.
NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

oCA: originating Call Attempt;
0CAA: originating Call Attempt Authorized;
AC: Address Collected,

OREL: originating RELease.

Figure 6: Application view on event reporting order in Initiating State

In this state the following functions are applicable;
- Thedetection of an 'Originating_Call_Attempt' initial notification criterion.

- Thedetection of an 'Originating_Call_Attempt_Authorised' initial notification criterion as aresult that the call
attempt authorisation is successful.

- The report of the 'Originating_Call_Attempt_Authorised' event indication whereby the following functions are
performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg
processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- The receipt of destination address information, i.e. initial information package/dialling string as received from
caling party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

ETSI

58 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Exit events:

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

- Receipt of adeassign() method.
- Receipt of arelease() method.

- Detection of a'originating release’ indication as aresult of a premature disconnect from the calling party.

7.3.1.2 Analysing State
Entry events:

- Availability of an 'Address_Collected' event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Availability of an'Address_Collected' event indication as a result of additional digits received from the calling
party as requested by the application (with eventReportReq).

- Sending of areportNotification() method by the I pMultiPartyCall ControlManager for an 'Address_Collected'
initial notification criterion.
Functions:

In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialing plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The reguest (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteriais met) is done in this state. This action
can be repeated, e.g. the application may request first for 3 digits to be collected and when reported request further
digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

ETSI

59 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

OoREL

Analysing Note 1 >
State

0CAA J AC) AA

NOTE 1: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:
0CAA: originating Call Attempt Authorized;

AC:
AA:

Address Collected;
Address Analysed;

OREL: originating RELease.

Figure 7: Application view on event reporting order in Analysing State

In this state the following functions are applicable:

The detection of an 'Address_Collected' initial notification criterion.
On receipt of the'Address_Collected' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event isreported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then no monitoring is performed.

Receipt of an eventReportReq() method defining the criteria for the events the call leg object isto observe.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

Detection of an 'Address_Analysed' indication as aresult of the availability of the routing address and nature
of address.

Receipt of adeassign() method.
Receipt of arelease() method.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

Detection of a'originating release’ indication as aresult of a premature disconnect from the calling party.

ETSI

60 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

7.3.1.3 Active State
Entry events:

- Receipt of an 'Address_Analysed' indication as aresult of the availability of the routing address and nature of
address.

- Sending of areportNotification() method by the I|pMultiPartyCall ControlManager for an ‘Address Analysed
initial indication criterion.

Functions:
In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

See Note 1 See
ﬂ Note 2
oSC AN
?
AC
> AA OoREL
Active
State

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.
NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

AC: Address Collected;
AA: Address Analysed;
0SC: originating Service Code;

OREL: originating RELease.

Figure 8: Application view on event reporting order Active State

In this state the following functions are applicable:
- The detection of an Address Analysed initia indication criterion.
- On receipt of the'Address_Analysed' indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event isreported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

ETSI

61 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

When entering this state the routing information is interpreted, the authority of the calling party to establish
this connection is verified. Note that no call leg connection is set up to the remote party at this point when the
application is till in control. The application explicitly has to create and route the terminating leg, optionally
using the address information from the Address_Analysed event. Only in case the call is deassigned (the
application relinguishes control) in this state, the network will setup the connection to terminating leg
automatically based on the received information.

In this state a connection to the calling party is established.
On receipt of the 'originating_service code' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing
is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg
processing continues.

iii) WhentheP_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

7.3.1.4

Detection of an "originating release" indication as a result of a disconnect from the calling.

Detection of a propagated disconnect from the called party.

Receipt of adeassign() method.

Receipt of arelease() method from the application.

Application activity timer expiry indicating that no requests from the application have been received during a

certain period while call processing is suspended.

Releasing State

Entry events:

Detection of an "Originating_Release" indication as a result of the network release initiated by calling party.
Propagated release from called party.

Release of the entire call (e.g. after invoking IpCall.release()).

Reception of the release() method from the application.

A transition due to fault detection to this state is made when the Call leg object isin a state and no requests
from the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actionsto be performed is as follows:

i) thenetwork release event handling is performed,;

ii) thepossible call leg information requested with getlnfoReq() and/ or superviseReq() is collected and
send to the application;

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

ETSI

62 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

In this state the following functions are applicable;

The detection of an "originating_release" initial indication criterion.
On receipt of the "originating_release" indication the following functions are performed:
- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

ii) Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) WhentheP_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated releases from the called party.
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call 1eg information requested with the getinfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will aso be informed that the connection has ended.

In case of abnormal termination due to afault and the application requested for call leg related information
previoudly, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded) and the leg isreleased in the
network.

NOTE: Thecall in the network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg isignored in this case because release of the leg is aready ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call eg connection has ended, by sending the call LegEnded()
method.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg (re-enter releasing state).

Receipt of a deassign() method. The leg will be released and call leg object destroyed, but no reports will be
sent to the application anymore. Also no CallLegEnded will be invoked.

ETSI

7.3.1.5

63

Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Overview of allowed methods, Originating Call Leg STD

State

Methods allowed

Initiating

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall,
continueProcessing,
release

deassign

ETSI

64 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

7.3.2 Terminating Call Leg

Terminating Call Leg. ﬁ

Idle

terminatin
(o) IpMultiPartyCall.createCallLeg .

routeReq

IpAppMultiPartyCallControl Manager.r
‘terminating call attempt authorized' eportNotification(“terminating call
‘alerting’, 'answer’, 'terminating seryice attempt", "terminating call attempt
code', 'redirected’, ‘queued' authorised", "alerting”, "answer",
“terminating senice code",

attachMedia

detachMedia

IpMultiPartyCall.createAndR

Active "redirected", "queued")
(terminating)

‘network|release’

uteCallLegReq

All States release ‘ Releasing (terminating) .
(terminating) timer expiry’ ‘ do/ send reports if requested, or error reports if require. IpAppMultiParty CallControlManager.

release)

NpAppCallLeg.callLegEnded

deasign ./

Transitions/events not shown: N
All states:

continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,
supeniseRes: no state change,

All states except Releasing:

ewventReportReq, setAdviceOfCharge, getinfoReq, supeniseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

Figure 9: Terminating Leg

7.3.2.1 Idle (terminating) State
Entry events:
- Receipt of acreateCallLeg() method to start an application initiated call leg connection.
Functions:
In this state the call leg object is created and the interface connection isidled.
The application activity timer is being provided.

In this state the following functions are applicable;

reportNotification(terminating

- Invoking routeReq will result in arequest to actually route the call leg object and resumption of call

processing.

ETSI

65 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Exit events:

7.3.2.2

Receipt of arouteReq() method from the application.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

Receipt of adeassign() method.

Receipt of arelease() method.

Propagation of network release event as aresult of a disconnect from the calling party.

Application activity timer expiry indicating that no requests from the application have been received during a

certain period while processing is suspended for the leg.

Active (terminating) State

Entry events:

Receipt of arouteReq will result in actually routing the call leg object.
Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection.

Sending of areportNotification() method by the I|pMultiPartyCall ControlManager for the following trigger
criteriac 'Terminating_Call_Attempt’, Terminating_Call_Attempt_Authorised', 'Alerting’, ‘Answer’,
Terminating service code, 'Redirected’ and 'Queued'.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is aerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

NOTE 1:
NOTE 2:

NOTE 3:

66 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

I

Active ' > $
State] Q »| RD

P .

4 {(Note 3
tCA » tCAA » AL » ANS »| tREL
Note 1
A 4
Note 2 P> tSC

Event tCA applicable as initial notification.

Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA:

tCAA:

AL:
ANS:
tREL:
Q:
RD:
tSC:

terminating Call Attempt;
terminating Call Attempt Authorized;
Alerting;

Answer;

terminating RELease;

Queued;

ReDirected;

terminating Service Code.

Figure 10: Application view on event reporting order in Active State

In this state the following functions are applicable:

The detection and report of the 'Terminating_Call_Attempt_Authorised' event indication whereby the
following functions are performed:

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and
call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and
call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_TERMINATING ATTEMPT_AUTHORISED then no monitoring is
performed.

Detection of a'Queued' indication as aresult of the terminating call being queued.

On receipt of the 'Queued’ indication the following functions are performed:

i)

i)

i)

When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event

ETSI

67 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

On receipt of the 'Alerting' indication P_CALL_EVENT_QUEUED then no monitoring is performed the
following functions are performed:

i)

i)

i)

WhentheP_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

Detection of an 'Answer' indication as a result of the remote party being connected (answered).

On receipt of the 'Answer' indication the following functions are performed:

i)

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

When the P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

The detection of a'service_code' trigger criterion suspends call leg processing.

On receipt of the 'service code' indication the following functions are performed:

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg
processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE thenthisis not avalid event (that event is not
notified) and call leg processing continues.

Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

On receipt of the 'redirected’ indication the following functions are performed:

i)

i)

i)

Whenthe P_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

Whenthe P_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

Whenthe P CALL_MONITOR_MODE_DO NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Detection of a network release event being a ‘terminating release’ indication as aresult of the following events:

i)

i)

i)

Unable to select aroute or indication from the remote party of the call leg connection cannot be
presented (thisis the network determined busy condition).

Occurrence of an authorisation failure when the authority to place the call leg connection was denied
(e.g. business group restriction mismatch).

Detection of aroute busy condition received from the remote call leg connection portion.

Detection of a no-answer condition received from the remote call leg connection portion.

ETSI

7.3.2.3

68 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

v) Detection that the remote party was not reachable.

Propagation of network release event as aresult of the following events:

- Detection of a premature disconnect from the calling party.

Receipt of adeassign() method.

Receipt of arelease() method from the application.

Propagation of network release event as aresult of a disconnect from the calling party .

Detection of a network release event being a ‘terminating rel ease’ indication as aresult of a disconnect from
the called party.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

Releasing (terminating) State

Entry events:

Propagation of network rel ease disconnect from the calling party.

Detection of a network release event being a 'terminating release’ indication as a result of the network release
initiated by called party.

Release of the entire call (e.g. after invoking IpCall.release()).
Sending of the release() method by the application.

A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and thisis not received within a certain time period.

Detection of a network event being a 'terminating release’ indication as a result of the following events:

i) Unableto select aroute or indication from the remote party of the call leg connection cannot be
presented (this is the network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied
(e.0. business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.

Propagation of network release event as aresult of the following events:

- Detection of a premature disconnect from the calling party.

Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:

i)
i)

i)

the release event handling is performed;

the possible call leg information requested with getlnfoReq() and/ or superviseReq|() is collected and send to
the application;

the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

ETSI

69 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or afault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action i) error report methods are sent to the application for any possible requested

reports.

In this state the following functions are applicable:

The detection of a'Terminating Release' trigger criterion.

On receipt of the network release event being a 'Terminating Release' indication the following functions are
performed:

- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is reported and call leg processing
is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) WhentheP_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated releases from the calling party.
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent
to the application with respectively the getinfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after al information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed
immediately and additionally the application will also be informed that the connection has ended

In case of abnormal termination due to afault and the application requested for call leg related information
previoudly, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded) and the leg isreleased in the
network.

NOTE: Thecall in the network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg isignored in this case because release of the leg is already ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call eg connection has ended, by sending the call LegEnded()
method.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg (re-enter releasing state).

Receipt of adeassign() method. The leg will be released and call leg object destroyed, but no reports will be
sent to the application anymore. Also no CallLegEnded will be invoked.

ETSI

7.3.2.4

70

Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Overview of allowed methods and trigger events, Terminating Call Leg STD

State

Methods allowed

Idle

routeReq,

getCall ,
getCurrentDestinationAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

attachMediaReq
detachMediaReq
getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall ,
getCurrentDestinationAddress,
continueProcessing,

release,

deassign

8 Multi-Party Call Control Service Properties

8.1 List of Service Properties

The following table lists properties relevant for the MPCC API.

Property Type Description / Interpretation

P_TRIGGERING_EVENT_TYPES INTEGER_SET |Indicates the static event types supported by the
SCS. Static events are the events by which
applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET |Indicates the dynamic event types supported by
the SCS. Dynamic events are the events the
application can request for during the context of a
call.

P_ADDRESSPLAN INTEGER_SET |Indicates the supported address plans (defined in

TpAddressPlan.) e.g. {P_ADDRESS_PLAN_E164,
P_ADDRESS_PLAN_IP}). Note that more than
one address plan may be supported.

P_UI_CALL_BASED

BOOLEAN_SET

Value = TRUE : User interaction can be performed
on call level and a reference to a Call object can be
used in the IpUIManager.createUICall() operation.
Value = FALSE: No User interaction on call level is
supported.

P_UIl_AT_ALL_STAGES

BOOLEAN_SET

Value = TRUE: User Interaction can be performed
at any stage during a call.

Value = FALSE: User Interaction can be performed
in case there is only one party in the call.

P_MEDIA_TYPE

INTEGER_SET

Specifies the media type used by the Service.
Values are defined by data-type TpMediaType :
P_AUDIO, P_VIDEO, P DATA

ETSI

71 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)
Property Type Description / Interpretation

P_MAX CALLLEGS PER_CALL INTEGER_SET |Indicates the maximum number of legs in a call for
which a connection to a call party exists in the
network. The enforcement of this property is done
only when a leg is created or routed by the
application.

P_UI_CALLLEG_BASED BOOLEAN_SET |Value = TRUE : User interaction can be performed

on leg level and a reference to a CallLeg object
can be used in the IpUIManager.createUICall()
operation.

Value = FALSE : No user interaction on leg level is
supported.

P_PARALLEL_INITIAL_ROUTING_REQUESTS |BOOLEAN_SET

Indicates whether for application initiated calls it is
possible to issue multiple routing request methods
in parallel or that the application has to wait for the
result of the first request before another one can
be invoked.

Value = TRUE: Multiple routing requests can be
invoked in parallel.

Value = FALSE: Result of first request has to be
received before another request can be issued.

The previoustable lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the

SCS.
Property Type Description
P_TRIGGERING_ADDRESSES ADDRESSRANGE_SET Indicates for which numbers the notification
(Deprecated) may be set. For terminating notifications it

applies to the terminating number, for
originating notifications it applies only to the
originating number. See further explanation
on which events are originating and which are
terminating, below.

P_NOTIFICATION_ADDRESS_RANGES |XML_ADDRESS_RANGE_SET |Indicates for which numbers notifications may

be set. More than one range may be present.
For terminating notifications they apply to the
terminating number, for originating
notifications they apply only to the originating
number.

P_MONITOR_MODE INTEGER_SET

Indicates whether the application is allowed to
monitor in interrupt and/or notify mode. Set is:
P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET

Indicates which numbers the application is
allowed to change or fill for legs in an
incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,
P_TARGET_NUMBER,

P_CALLING PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET

Indicates which charging is allowed in the
setCallChargePlan indicator. Allowed values:
{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we
assume they can be indicated with integers)
to a logical network chargeplan indicator.
When the chargeplan supports indicates
P_CHARGE_PLAN then only chargeplans in
this mapping are allowed.

P_HIGH_PROBABILITY_OF_COMPLETI |BOOLEAN_SET
ON

Value = TRUE : high probability of call
completion field can be set.

Value = FALSE : high probability of call
completion field can not be set. FALSE is the
default value.

ETSI

72 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

The following table explains how the P_TRIGGERING_ADDRESSES property that is inherited via the Generic Call
Control properties should be interpreted with respect to which of the notifications apply to originating numbers and
which of the notifications apply to terminating numbers.

P_CALL EVENT ORIGINATING CALL ATTEMPT Originating
P_CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED |Originating
P CALL EVENT ADDRESS COLLECTED Originating
P_CALL EVENT ADDRESS_ANALYSED Originating
P _CALL EVENT ORIGINATING SERVICE CODE Originating
P_CALL EVENT ORIGINATING RELEASE Originating
P _CALL EVENT TERMINATING CALL ATTEMPT Terminating
P_CALL_EVENT_TERMINATING CALL _ATTEMPT AUTHORISED |Terminating
P_CALL_EVENT ALERTING Terminating
P _CALL EVENT ANSWER Terminating
P _CALL_EVENT TERMINATING RELEASE Terminating
P_CALL EVENT REDIRECTED Terminating
P CALL EVENT TERMINATING SERVICE CODE Terminating
P_CALL EVENT QUEUED N/A

8.2 Service Property values for the CAMEL Service
Environment.

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values:

P_OPERATI ON_SET = {

"I pMul ti PartyCall Control Manager.createCall",
"I pMul ti PartyCall Control Manager.createNotification",
"I pMul tiPartyCall Control Manager. destroyNotification",
"I pMul tiPartyCall Control Manager. changeNotification",
"I pMul tiPartyCall Control Manager. get Notification",
"I pMul ti PartyCall Control Manager. get Next Notificati on" ,
"I pMul ti PartyCal | Control Manager. enabl eNoti ficati ons"
"I pMul tiPartyCall Control Manager. di sabl eNotificati ons
"I pMul tiPartyCall Control Manager. set Cal | LoadControl "
"I pMul ti PartyCall.getCall Legs",
"I pMul tiPartyCall.createCall Leg"
"I pMul tiPartyCall.creat eAndRout eCal | LegReq",
"I pMul tiPartyCall.rel ease"
"l pMul ti PartyCall . deassi gnCaI I,
"I pMul ti PartyCall.getlnfoReq",
"I pMul tiPartyCall.set ChargePl an",
"I pMul tiPartyCall.set Advi ceOf Charge",
"I pMul ti PartyCall.supervi seReq",
"l pCal | Leg. rout eReq",
"I pCal | Leg. event Report Req",

| pCal | Leg. rel ease",
"l pCal | Leg. get | nf oReq",
"l pCall Leg. getCal | ",

| pCal | Leg. cont i nueProcessi ng"

}

P_TRI GGERI NG_EVENT_TYPES = {
P_CALL_EVENT_ADDRESS_COLLECTED,

P_CALL_EVENT ADDRESS_ANALYSED,

P_CALL_EVENT ORI G NATI NG RELEASE,
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT_AUTHORI SED,
P_CALL_EVENT_TERM NATI NG_RELEASE

}

NOTE: P _CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case, TpReleaseCause =
P_ROUTING_FAILURE.

P_DYNAM C_EVENT_TYPES = {
P_CALL_EVENT_ALERTI NG,
P_CALL_EVENT_ANSVER,

P_CALL_EVENT ORI Gl NATI NG RELEASE,
P_CALL_EVENT_ORI G NATI NG_SERVI CE_CODE,

ETSI

73

P_CALL_EVENT_TERM NATI NG _RELEASE,
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P U _CALL_BASED = {
TRUE
}

P U AT ALL_STAGES = {

FALSE
}

P_MEDI A TYPE = {
P_AUDI O

}
P_MAX_CALLLEGS PER CALL = {
1,

2,

3,

4,

5,

6

}

P_U _CALLLEG BASED = {
TRUE

}

P_MEDI A ATTACH EXPLICI T = {
FALSE

}

Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

9 Multi-Party Call Control Data Definitions

This clause provides the MPCC data definitions necessary to support the API specification.

The general format of a data definition specification is described below.

. Data Type
This shows the name of the data type.
. Description
This describes the data type.
. Tabular Specification
This specifies the data types and values of the data type.
. Example

If relevant, an example is shown to illustrate the data type.

All datatypes referenced in the present document but not defined in this clause are defined either in the common call
control data definitionsin ES 202 915-4-1 or in the common data definitions which may be found in ES 202 915-2.

9.1 Event Notification Data Definitions

No specific event notification data defined.

ETSI

74 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

9.2 Multi-Party Call Control Data Definitions

9.2.1 IpCallLeg

Definesthe address of an | pCal | Leg Interface.

9.2.2 IpCallLegRef

DefinesaRef er ence to type IpCallLeg.

9.2.3 IpAppCallLeg

Definesthe address of an | pAppCal | Leg Interface.

9.24 IpAppCallLegRef

DefinesaRef er ence to type IpAppCallLeg.

9.25 IpMultiPartyCall

Definesthe addressof an| pMul ti PartyCal | Interface.

9.2.6 IpMultiPartyCallRef

Defines aRef er ence to type IpMultiPartyCall.

9.2.7 IpAppMultiPartyCall

Definesthe address of an | pAppMul ti PartyCal | Interface.

9.2.8 IpAppMultiPartyCallRef

Defines aRef er ence to type IpAppMultiPartyCall.

9.2.9 IpMultiPartyCallControlManager

Definesthe addressof an| pMul ti Part yCal | Cont r ol Manager Interface.

9.2.10 IpMultiPartyCallControlIManagerRef

Defines aRef er ence to type IpMultiPartyCall ControlManager.

9.2.11 IpAppMultiPartyCallControlManager

Definesthe address of an| pAppMul ti Part yCal | Cont r ol Manager Interface.

9.2.12 IpAppMultiPartyCallControlManagerRef

Defines aRef er ence to type |pAppMultiPartyCall Control Manager.

9.2.13 TpAppCallLegRefSet

Definesa Nunbered Set of Data El ements of IpAppCallLegRef.

ETSI

9.2.14 TpMultiPartyCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object.

75

Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Sequence Element Name

Sequence Element Type

Sequence Element Description

CallReference

IpMultiPartyCallRef

This element specifies the interface reference for the Multi-
party call object.

CallSessionID

TpSessionlD

This element specifies the call session ID.

9.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces.

Tag Element Type

TpAppMultiPartyCallBackRefType

Tag Element Value

Choice Element Type

Choice Element Name

P_APP_CALLBACK_UNDEFINED NULL Undefined
P_APP_MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef AppMultiPartyCall
P_APP_CALL_LEG_CALLBACK IpAppCallLegRef AppCallLeg

P _APP CALL AND CALL LEG CALLBACK

TpAppCallLegCallBack

AppMultiPartyCallAndCallLeg

9.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description
P APP CALLBACK UNDEFINED 0 Application Call back interface undefined
P_APP_MULTIPARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced
P_APP_CALL_LEG_CALLBACK 2 Application CallLeg interface referenced
P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

9.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and acall leg application interface.

Sequence Element Name

Sequence Element Type

Description

AppMultiPartyCall

IpAppMultiPartyCallRef

AppCallLegSet

TpAppCallLegRefSet

Specifies the set of all call leg call
back references. First in the set is
the reference to the call back of the
originating callLeg. In case there is
a call back to a destination call leg
this will be second in the set.

9.2.18 TpMultiPartyCallldentifierSet

DefinesaNunber ed Set of Data El enent s of TpMultiPartyCallldentifier.

ETSI

9.2.19 TpCallApplinfo

76

Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Definesthe Tagged Choi ce of Data El enent s that specify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element Value

Choice Element Type

Choice Element Name

P CALL APP_ALERTING MECHANISM

TpCallAlertingMechanism

CallAppAlertingMechanism

P CALL APP NETWORK ACCESS TYPE

TpCallNetworkAccessType

CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE

TpCallTeleService

CallAppTeleService

P_CALL_APP_BEARER_SERVICE

TpCallBearerService

CallAppBearerService

P _CALL APP_PARTY CATEGORY

TpCallPartyCategory

CallAppPartyCategory

P CALL APP PRESENTATION ADDRESS TpAddress CallAppPresentationAddress
P_CALL_APP_GENERIC_INFO TpString CallAppGenericinfo

P _CALL APP_ADDITIONAL ADDRESS TpAddress CallAppAdditionalAddress

P CALL APP ORIGINAL DESTINATION ADDRESS TpAddress CallAppOriginalDestinationAddress
P CALL APP REDIRECTING ADDRESS TpAddress CallAppRedirectingAddress

P_CALL_APP_HIGH_PROBABILITY_COMPLETION

TpCallHighProbabilityCompletion

CallHighProbabilityCompletion

P_CALL APP_CARRIER

TpCarrierSet

CallAppCarrier

9.2.20 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description

P_CALL_APP_UNDEFINED 0 Undefined

P CALL APP ALERTING MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s
unrestricted data).

P CALL APP PARTY CATEGORY 5 The category of the calling party

P _CALL APP_PRESENTATION ADDRESS 6 The address to be presented to other call parties

P _CALL APP_GENERIC INFO 7 Carries unspecified service-service information

P CALL APP_ ADDITIONAL ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the
originating user when launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is
diverting.

P_CALL_APP HIGH PROBABILITY COMPLETION 11 Indicates high probability of completion and its priority

P_CALL_APP_CARRIER 12 Indicates the set of Carrier identifications to be used

to route the call.

9.2.21 TpCallAppInfoSet

DefinesaNunber ed Set of Data El ement s of TpCallApplnfo.

9.2.22 TpCallEventRequest

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

CallEventType

TpCallEventType

AdditionalCallEventCriteria

TpAdditionalCallEventCriteria

CallMonitorMode

TpCallMonitorMode

ETSI

77

9.2.23 TpCallEventRequestSet

DefinesaNunbered Set of Data El ement s of TpCallEventRequest.

9.2.24 TpCallEventType

Defines a specific call event report type.

Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Name Value Description

P _CALL_EVENT UNDEFINED 0 Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place
(e.g. Off-hook event).

P CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED 2 An originating call attempt is authorised

P_CALL_EVENT_ADDRESS_ COLLECTED 3 The destination address has been
collected.

P_CALL_EVENT_ADDRESS_ ANALYSED 4 The destination address has been
analysed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code
received.

P_CALL_EVENT ORIGINATING RELEASE 6 |A originating call/call leg is released

P CALL EVENT TERMINATING CALL ATTEMPT 7 A terminating call attempt takes place

P _CALL EVENT TERMINATING CALL ATTEMPT AUTHORISED 8 |A terminating call is authorized

P_CALL_EVENT_ALERTING 9 Call is alerting at the call party.

P_CALL EVENT ANSWER 10 Call answered at address.

P_CALL_EVENT_TERMINATING_RELEASE 11 |Aterminating call leg has been
released or the call could not be routed.

P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an
indication from the network that the call
has been redirected to a new address
(no events disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 [Mid call terminating service code
received.

P_CALL_EVENT_QUEUED 14 |The Call Event has been queued. (no

events are disarmed as a result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg:

. When the monitor modeissetto P_ CALL_MONITOR_MODE_DO_NOT_MONITOR al events armed for
that event type are disarmed. The additional EventCriteria are not taken into account.

. When requesting two events for the same event type with different criteria and/or different monitor mode the

last used criteria and monitor mode apply.

. Events that are not applicable to aleg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
E.g. requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with

exception P_INVALID_CRITERIA.

When P_CALL_EVENT_ORIGINATING_RELEASE isrequested with P_BUSY in the criteriathe request is

refused with the same exception.

When receiving events:

. If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

. If an event is met that causes the release of the related leg, then all eventsrelated to that leg are disarmed.

. When an event is met on acall leg irrespective of the event monitor mode, then only events belonging to that

call leg may become disarmed (see table below).

ETSI

78 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

. If acall isreleased, then all eventsrelated to that call are disarmed.

NOTE 1. Event disarmed means monitor modeissetto DO_NOT_MONITOR. and
event armed means monitor modeis set to INTERRUPT or NOTIFY.

The table below defines the disarming rules for dynamic events. In case such an event occurs on acall leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

Event Occurred Events Disarmed
P CALL EVENT UNDEFINED Not Applicable
P CALL EVENT ORIGINATING CALL ATTEMPT Not applicable, can only be armed as trigger
P_CALL_EVENT_ORIGINATING_CALL _ATTEMPT_ P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_
AUTHORISED AUTHORISED
P CALL EVENT ADDRESS COLLECTED P CALL EVENT ADDRESS COLLECTED
P_CALL_EVENT _ADDRESS_ANALYSED P_CALL EVENT ADDRESS_COLLECTED
P CALL EVENT ADDRESS ANALYSED
P_CALL_EVENT_ALERTING P_CALL_EVENT_ALERTING
P_CALL_EVENT__TERMINATING_RELEASE with
criteria:
P_USER_NOT_AVAILABLE
P_BUSY

P_NOT_REACHABLE
P_ROUTING_FAILURE
P_CALL_RESTRICTED
P_UNAVAILABLE RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ALERTING
P_CALL_EVENT_ANSWER
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED
P_UNAVAILABLE_RESOURCES

P _NO ANSWER

P CALL EVENT ORIGINATING RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_TERMINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_ORIGINATING_SERVICE_CODE P_CALL_EVENT_ORIGINATING_SERVICE_CODE *)
see note

P_CALL_EVENT_TERMINATING_SERVICE_CODE P_CALL_EVENT_TERMINATING_SERVICE_CODE *)
see note

NOTE: _ Only the detected service code or the range to which the service code belongs is disarmed.

NOTE 2: ON MAPPING EVENTYPESTO IN TRIGGER DETECTION POINTS (TDPs):

When the event types as defined above are used for requesting theinitial notification (with
createNotification), not all events have a one to one correspondence with a Trigger Detection Point
(TDP). For instance, when the underlying network is I TU-T CS2 based, one cannot distinguishin
createNotification whether the P_CALL_EVENT_ORIGINATING_RELEASE isintended to be on the
Originating side (O_BCSM) or the Terminating side (T_BCSM) of the call. Likewise, the
P_CALL_EVENT_ANSWER, P_CALL_EVENT_ALERTING and the
P_CALL_EVENT_TERMINATING_RELEASE.

The basic assumption isthat the operator is responsible for provisioning of triggersin the network asin
this domain full awareness exists of all other services and applications. Therefore, createNotification does
not automatically lead to immediate provisioning of these triggers. And thus in createNotification it is not
necessary to indicate whether theinitial notification should be on the originating or terminating side of
the call.

ETSI

79 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

9.2.25 TpAdditionalCallEventCriteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria.

Tag Element Type

TpCallEventType

Tag Element Value

Choice Element Type

Choice Element Name

P_CALL EVENT UNDEFINED NULL Undefined

P _CALL EVENT ORIGINATING CALL ATTEMPT NULL Undefined
P_CALL_EVENT ORIGINATING_CALL_ATTEMPT_ NULL Undefined
AUTHORISED

P CALL EVENT ADDRESS COLLECTED Tpint32 MinAddressLength
P _CALL EVENT ADDRESS ANALYSED NULL Undefined

P _CALL EVENT ORIGINATING SERVICE CODE

TpCallServiceCodeSet

OriginatingServiceCode

P_CALL_EVENT_ORIGINATING_RELEASE

TpReleaseCauseSet

OriginatingReleaseCauseSet

P CALL_EVENT TERMINATING CALL ATTEMPT NULL Undefined
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT _ NULL Undefined
AUTHORISED

P _CALL_EVENT_ALERTING NULL Undefined

P CALL_EVENT_ANSWER NULL Undefined

P CALL EVENT TERMINATING RELEASE TpReleaseCauseSet TerminatingReleaseCauseSet
P_CALL_EVENT_REDIRECTED NULL Undefined
P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCodeSet TerminatingServiceCode
P CALL EVENT QUEUED NULL Undefined

9.2.26 TpCallEventinfo

Definesthe Sequence of Data El enment s that specify the event report specific information.

Sequence Element Name

Sequence Element Type

CallEventType

TpCallEventType

AdditionalCallEventInfo

TpCallAdditionalEventinfo

CallMonitorMode

TpCallMonitorMode

CallEventTime

TpDateAndTime

ETSI

80 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

9.2.27 TpCallAdditionalEventinfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call event information for certain types
of events.

Tag Element Type
TpCallEventType
Tag Element Value Choice Element Type Choice Element Name

P_CALL_EVENT_UNDEFINED NULL Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_ NULL Undefined
AUTHORISED
P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress
P CALL EVENT ADDRESS ANALYSED TpAddress CalledAddress
P CALL EVENT ORIGINATING SERVICE CODE TpCallServiceCode OriginatingServiceCode
P_CALL_EVENT ORIGINATING RELEASE TpReleaseCause OriginatingReleaseCause
P _CALL_EVENT TERMINATING CALL ATTEMPT NULL Undefined
P_CALL EVENT_TERMINATING_CALL_ATTEMPT_ NULL Undefined
AUTHORISED
P_CALL_EVENT_ALERTING NULL Undefined
P _CALL_EVENT ANSWER NULL Undefined
P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCause TerminatingReleaseCause
P CALL EVENT REDIRECTED TpAddress ForwardAddress
P CALL EVENT TERMINATING SERVICE CODE TpCallServiceCode TerminatingServiceCode
P CALL EVENT QUEUED NULL Undefined

9.2.28 TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification.

Sequence Element Name

Sequence Element Type

Description

CallNotificationScope

TpCallNotificationScope

Defines the scope of the notification
request.

CallEventsRequested

TpCallEventRequestSet

Defines the events which are requested.

9.2.29 TpCallNotificationScope

Defines the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.

Sequence Element Name

Sequence Element Type

Description

DestinationAddress TpAddressRange Defines the destination address or address
range for which the notification is requested.
OriginatingAddress TpAddressRange Defines the origination address or address range

for which the notification is requested.

9.2.30 TpCallNatificationinfo

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Call

notification report.

Sequence Element Name

Sequence Element Type

Description

CallNotificationReportScope

TpCallNotificationReportScope

Defines the scope of the notification report.

CallApplInfo

TpCallAppInfoSet

Contains additional call info.

CallEventinfo

TpCallEventinfo

Contains the event which is reported.

ETSI

9.2.31 TpCallNaotifi

81 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

cationReportScope

Definesthe Sequence of Data El enent s that specify the scope for which a notification report was sent.

Sequence Element Name Sequence Element Type Description
DestinationAddress TpAddress Contains the destination address of the call.
OriginatingAddress TpAddress Contains the origination address of the call.

9.2.32 TpNotificationRequested

Defines the Sequence of Data El

ements that specify the criteriarelating to event requests.

Sequence Element Name Sequence Element Type
AppCallNotificationRequest TpCallNotificationRequest
AssignmentID Tpint32

9.2.33 TpNotificationRequestedSet

Defines a numbered Set of Data

Elements of TpNotificationRequested.

9.2.34 TpReleaseCause

Defines the reason for a release.

Name Value Description

P_UNDEFINED 0 The reason of release is not known, because no info was received
from the network.

P_USER_NOT_AVAILABLE 1 The user is not available in the network. This means that the
number is not allocated or that the user is not registered.

P_BUSY 2 The user is busy.

P NO ANSWER 3 No answer was received.

P NOT REACHABLE 4 The user terminal is not reachable.

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was
received.

P _PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P DISCONNECTED 7 A disconnect was received.

P CALL RESTRICTED 8 The call was subject of restrictions.

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were
available.

P _GENERAL FAILURE 10 A general network failure occurred.

P TIMER EXPIRY 11 The call / call leg was released because an activity timer expired.

P_UNSUPPORTED_MEDIA 12 The call / call leg was released either because the message body
of the request is in a format not supported or because the media is
not supported.

9.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpReleaseCause.

9.2.36 TpCallLegldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Name Sequence Element Type Sequence Element Description
CallLegReference IpCallLegRef This element specifies the interface reference for the
callLeg object.
CallLegSessionID TpSessionID This element specifies the callLeg session ID.

ETSI

82 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

9.2.37 TpCallLegldentifierSet

DefinesaNunbered Set of Data El enents of TpCallLegldentifier.

9.2.38 TpCallLegAttachMechanism
Defines how a CallLeg should be attached to the call.

Name Value Description
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call.
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the

attachMediaReq() operation. This allows e.g. the application to do first
user interaction to the party before he/she is placed in the call.

9.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object.

Sequence Element Name Sequence Element Type Sequence Element Description

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call.

9.2.40 TpCallLegIinfoReport

Definesthe Sequence of Data El enent s that specify the call leg information requested.

Sequence Element Name Sequence Element Type Description
CallLegInfoType TpCallLeglnfoType The type of call leg information.
CallLegStartTime TpDateAndTime The time and date when the call leg was started
(i.e. the leg was routed).
CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to

the resource. If no resource was connected the time is
set to an empty string.

Either this element is valid or the
CallLegConnectedToAddressTime is valid, depending
on whether the report is sent as a result of user
interaction.

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to
the destination (i.e. when the destination answered
the call). If the destination did not answer, the time is
set to an empty string.

Either this element is valid or the
CallConnectedToResourceTime is valid, depending
on whether the report is sent as a result of user

interaction.
CallLegEndTime TpDateAndTime The date and time when the call leg was released.
ConnectedAddress TpAddress The address of the party associated with the leg. If

during the call the connected address was received
from the party then this is returned, otherwise the
destination address (for legs connected to a
destination) or the originating address (for legs
connected to the origination) is returned.

CallLegReleaseCause TpReleaseCause The cause of the termination. May be present with
P_CALL_LEG_INFO_RELEASE_CAUSE was
specified.

CallApplInfo TpCallAppInfoSet Additional information for the leg. May be present with

P CALL LEG _INFO APPINFO was specified.

ETSI

83 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

9.2.41 TpCallLegIinfoType

Defines the type of call leg information requested and reported. The values may be combined by alogica 'OR' function.

Name Value Description
P CALL LEG INFO UNDEFINED 00h Undefined
P _CALL_LEG_INFO TIMES 01h Relevant call times
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause
P CALL LEG INFO ADDRESS 04h Call leg connected address
P CALL LEG INFO APPINFO 08h Call leg application related information

9.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by alogical 'OR' function.

Name Value Description
P_CALL_LEG_SUPERVISE_RELEASE 01lh Release the call leg when the call leg supervision
timer expires
P_CALL_LEG_SUPERVISE_RESPOND 02h Notify the application when the call leg supervision

timer expires
P_CALL_LEG_SUPERVISE_APPLY_TONE 04h Send a warning tone on the call leg when the call
leg supervision timer expires. If call leg release is
requested, then the call leg will be released
following the tone after an administered time period

9.2.43 TpCallHighProbabilityCompletion

This datatypeisidentical to a TpInt32, and defines the probability of completion under network congestion. The values
of this data type are region specific. In general, avalue of 0 indicates no special treatment (default), a priority value
between 1, 2, 3, ..., nindicates specia treatment, where 1 is the highest priority and n the lowest priority other than no
specia treatment.

9.2.44 TpNotificationRequestedSetEntry

Defines the Sequence of Data Elements that specify a set of requested notifications and an indication whether more
notifications can be requested.

Sequence Element Name Sequence Element Type Description
NotificationRequestSet TpNotificationRequestedSet Numbered set of requested notifications.
Final TpBoolean Indication whether the set of notifications is the

final set (TRUE) or if there are more
notifications available (FALSE).

9.2.45 TpCarrierSet

DefinesaNunber ed Set of Data El ement s of TpCarrier. In case the set is empty, the SCF will assume
default processing.

9.2.46 TpCarrier

Definesthe Sequence of Data El enent s that indicates carrier information. It consists of the carrier selection
field followed by the Carrier ID information to be used for routing a call to acarrier.

Sequence Element Name Sequence Element Type
CarrierlD TpCarrierlD
CarrierSelectionField TpCarrierSelectionField

ETSI

84 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

9.2.47 TpCarrierlD

This datatypeisidentical to a TpOctetSet. For encoding of the field, depending on the network, either ITU-T
Recommendation Q.763 or ANS| ISUP T1.113 applies.

9.2.48 TpCarrierSelectionField

Defines the type of Carrier Selection Field-related specific information. This parameter indicates how the selected
carrier is provided (e.g. pre-subscribed).

Name Value Description

P _CIC_UNDEFINED 0 No indication

P_CIC_NO_INPUT 1 The carrier identification code (CIC) is pre subscribed (not
provided by the calling party).

P_CIC_INPUT 2 The carrier identification code (CIC) is pre subscribed and
provided by the calling party.

P_CIC_UNDETERMINED 3 The selected carrier identification code (CIC) is pre
subscribed, but no indication is present of whether it is
provided by the calling party (undetermined).

P_CIC_NOT_PRESCRIBED 4 The selected carrier identification code (CIC) is provided by
calling party (not pre subscribed).

ETSI

85 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Annex A (normative):
OMG IDL Description of Multi-Party Call Control SCF

The OMG IDL representation of this interface specification is contained in the text files (mpcc_data.idl and
mpcc_interfaces.idl contained in archive es 2029150403v010301m0.zip) which accompanies the present document.

ETSI

86 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Annex B (informative):
W3C WSDL Description of Multi-Party Call Control SCF

The W3C WSDL representation of thisinterface specification is contained in text files (mpcc_datawsdl and
mpcc_interfaces.wsdl contained in archive es 2029150403v010301m0.zip) which accompanies the present document.

ETSI

87 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Annex C (informative):
Java™ API Description of the Call Control SCFs

The Java™ API realisation of thisinterface specification is produced in accordance with the Java™ Realisation rules
defined in ES 202 915-1. These rules aim to deliver for Java™, a developer API, provided as a realisation, supporting a
Java™ API that represents the UML specifications. The rules support the production of both J2SE™ and J2EE™
versions of the API from the common UML specifications.

The J2SE™ representation of this interface specification is provided as Java™ Code, contained in archive
20291504-3J2SE.zip.

The J2EE™ representation of thisinterface specification is provided as Java™ Code, contained in archive
20291504-3J2EE.zip.

Both these archives can be found in es_2029150403v010301m0.zip which accompanies the present document.

ETSI

88 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Annex D (informative):
Contents of 3GPP OSA Rel-5 Call Control

All itemsin Multi-Party Call Control arerelevant for TS 129 198-4-3 V5 (Release 5).

ETSI

89 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

Annex E (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

E.1 Interfaces

E.1.1 New

Identifier | Comments
Interfaces added in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Interfaces added in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Interfaces added in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.1.2 Deprecated

Identifier | Comments
Interfaces deprecated in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Interfaces deprecated in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Interfaces deprecated in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.1.3 Removed

Identifier \ Comments

Interfaces removed in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Interfaces removed in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Interfaces removed in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

ETSI

90 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

E.2 Methods

E.2.1 New

Identifier | Comments

Methods added in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

[pMultiPartyCallControlManager.enableNotifications

IpMultiPartyCallControlManager.disableNotifications

I[pMultiPartyCallControlManager.getNextNotification

Methods added in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Methods added in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.2.2 Deprecated

Identifier | Comments

Methods deprecated in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

[pMultiPartyCallControlManager.getNotification |

Methods deprecated in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Methods deprecated in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.2.3 Modified

Identifier | Comments

Methods modified in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Methods modified in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Methods modified in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.2.4 Removed

Identifier | Comments

Methods removed in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Methods removed in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Methods removed in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

ETSI

91 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

E.3 Data Definitions

E.3.1 New

Identifier | Comments

Data Definitions added in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

TpCallHighProbabilityCompletion

TpNotificationRequestedSetEntry

TpCarrier

TpCarrierSet

TpCarrierlD

TpCarrierSelectionField

Data Definitions added in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Data Definitions added in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.3.2 Modified

Identifier | Comments
Data Definitions modified in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)
TpCallAppinfo CallHighProbabilityCompletion added
CallAppCarrier added
TpCallApplInfoType P_CALL_APP_HIGH_PROBABILITY_COMPLETION added
P CALL APP CARRIER added
TpReleaseCause P UNSUPPORTED MEDIA added
Data Definitions modified in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)
TpReleaseCauseSet |Corrected description to align with IDL. Is set of TpReleaseCause.
Data Definitions modified in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)
TpNotificationRequestedSetEntry Type of NotificationRequestSet corrected to

TpNotificationRequestedSet in documentation (IDL etc. unchanged)

E.3.3 Removed

Identifier | Comments

Data Definitions removed in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Data Definitions removed in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Data Definitions removed in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

ETSI

92 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

E.4 Service Properties

E. 41 New

Identifier | Comments

Service Properties added in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

P HIGH PROBABILITY OF COMPLETION

P PARALLEL INITIAL ROUTING REQUESTS

Service Properties added in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Service Properties added in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

P _NOTIFICATION ADDRESS RANGES |Replaces P TRIGGERING ADDRESSES

E.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Service Properties deprecated in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Service Properties deprecated in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

P TRIGGERING ADDRESSES |Replaced by P NOTIFICATION ADDRESS RANGES

E.4.3 Modified

Identifier | Comments

Service Properties modified in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Service Properties modified in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

P MAX CALLLEGS PER CALL | Definition modified

Service Properties modified in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.4.4 Removed

Identifier | Comments
Service Properties removed in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)
P NOTIFICATION TYPE Not applicable to Multi Party Call Control
P MEDIA ATTACH EXPLICIT Redundant

P _ROUTING WITH CALLLEG OPERATIONS |Redundant

Service Properties removed in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Service Properties removed in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

ETSI

93 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

E.5 Exceptions

E.5.1 New

Identifier | Comments

Exceptions added in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Exceptions added in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Exceptions added in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.5.2 Maodified

Identifier | Comments

Exceptions modified in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Exceptions modified in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Exceptions modified in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.5.3 Removed

Identifier | Comments

Exceptions removed in ES 202 915-4-3 version 1.1.1 (Parlay 4.0)

Exceptions removed in ES 202 915-4-3 version 1.2.1 (Parlay 4.1)

Exceptions removed in ES 202 915-4-3 version 1.3.1 (Parlay 4.2)

E.6 Others

New annex C added, together with 2EE™ and J2SE™ Java™ code, replacing existing annex C.

ETSI

94 Final draft ETSI ES 202 915-4-3 V1.3.1 (2005-01)

History
Document history
V111 January 2003 Publication
V121 August 2003 Publication (withdrawn)
V122 August 2003 Publication
V131 January 2005 Membership Approval Procedure MV 20050304: 2005-01-04 to 2005-03-04

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 MultiParty Call Control Service Sequence Diagrams
	4.1 Application initiated call setup
	4.2 Call Barring 2
	4.3 Call forwarding on Busy Service
	4.4 Call Information Collect Service
	4.5 Complex Card Service
	4.6 Hotline Service
	4.7 Network Controlled Notifications
	4.8 Use of the Redirected event

	5 Class Diagrams
	6 MultiParty Call Control Service Interface Classes
	6.1 Interface Class IpMultiPartyCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method createNotification()
	6.1.3 Method destroyNotification()
	6.1.4 Method changeNotification()
	6.1.5 Method <<deprecated>> getNotification()
	6.1.6 Method setCallLoadControl()
	6.1.7 Method <<new>> enableNotifications()
	6.1.8 Method <<new>> disableNotifications()
	6.1.9 Method <<new>> getNextNotification()

	6.2 Interface Class IpAppMultiPartyCallControlManager
	6.2.1 Method reportNotification()
	6.2.2 Method callAborted()
	6.2.3 Method managerInterrupted()
	6.2.4 Method managerResumed()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()

	6.3 Interface Class IpMultiPartyCall
	6.3.1 Method getCallLegs()
	6.3.2 Method createCallLeg()
	6.3.3 Method createAndRouteCallLegReq()
	6.3.4 Method release()
	6.3.5 Method deassignCall()
	6.3.6 Method getInfoReq()
	6.3.7 Method setChargePlan()
	6.3.8 Method setAdviceOfCharge()
	6.3.9 Method superviseReq()

	6.4 Interface Class IpAppMultiPartyCall
	6.4.1 Method getInfoRes()
	6.4.2 Method getInfoErr()
	6.4.3 Method superviseRes()
	6.4.4 Method superviseErr()
	6.4.5 Method callEnded()
	6.4.6 Method createAndRouteCallLegErr()

	6.5 Interface Class IpCallLeg
	6.5.1 Method routeReq()
	6.5.2 Method eventReportReq()
	6.5.3 Method release()
	6.5.4 Method getInfoReq()
	6.5.5 Method getCall()
	6.5.6 Method attachMediaReq()
	6.5.7 Method detachMediaReq()
	6.5.8 Method getCurrentDestinationAddress()
	6.5.9 Method continueProcessing()
	6.5.10 Method setChargePlan()
	6.5.11 Method setAdviceOfCharge()
	6.5.12 Method superviseReq()
	6.5.13 Method deassign()

	6.6 Interface Class IpAppCallLeg
	6.6.1 Method eventReportRes()
	6.6.2 Method eventReportErr()
	6.6.3 Method attachMediaRes()
	6.6.4 Method attachMediaErr()
	6.6.5 Method detachMediaRes()
	6.6.6 Method detachMediaErr()
	6.6.7 Method getInfoRes()
	6.6.8 Method getInfoErr()
	6.6.9 Method routeErr()
	6.6.10 Method superviseRes()
	6.6.11 Method superviseErr()
	6.6.12 Method callLegEnded()

	7 MultiParty Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.1.1 Active State
	7.1.2 Interrupted State
	7.1.3 Overview of allowed methods

	7.2 State Transition Diagrams for IpMultiPartyCall
	7.2.1 IDLE State
	7.2.2 ACTIVE State
	7.2.3 RELEASED State
	7.2.4 Overview of allowed methods

	7.3 State Transition Diagrams for IpCallLeg
	7.3.1 Originating Call Leg
	7.3.1.1 Initiating State
	7.3.1.2 Analysing State
	7.3.1.3 Active State
	7.3.1.4 Releasing State
	7.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.3.2 Terminating Call Leg
	7.3.2.1 Idle (terminating) State
	7.3.2.2 Active (terminating) State
	7.3.2.3 Releasing (terminating) State
	7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	8 Multi-Party Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment.

	9 Multi-Party Call Control Data Definitions
	9.1 Event Notification Data Definitions
	9.2 Multi-Party Call Control Data Definitions
	9.2.1 IpCallLeg
	9.2.2 IpCallLegRef
	9.2.3 IpAppCallLeg
	9.2.4 IpAppCallLegRef
	9.2.5 IpMultiPartyCall
	9.2.6 IpMultiPartyCallRef
	9.2.7 IpAppMultiPartyCall
	9.2.8 IpAppMultiPartyCallRef
	9.2.9 IpMultiPartyCallControlManager
	9.2.10 IpMultiPartyCallControlManagerRef
	9.2.11 IpAppMultiPartyCallControlManager
	9.2.12 IpAppMultiPartyCallControlManagerRef
	9.2.13 TpAppCallLegRefSet
	9.2.14 TpMultiPartyCallIdentifier
	9.2.15 TpAppMultiPartyCallBack
	9.2.16 TpAppMultiPartyCallBackRefType
	9.2.17 TpAppCallLegCallBack
	9.2.18 TpMultiPartyCallIdentifierSet
	9.2.19 TpCallAppInfo
	9.2.20 TpCallAppInfoType
	9.2.21 TpCallAppInfoSet
	9.2.22 TpCallEventRequest
	9.2.23 TpCallEventRequestSet
	9.2.24 TpCallEventType
	9.2.25 TpAdditionalCallEventCriteria
	9.2.26 TpCallEventInfo
	9.2.27 TpCallAdditionalEventInfo
	9.2.28 TpCallNotificationRequest
	9.2.29 TpCallNotificationScope
	9.2.30 TpCallNotificationInfo
	9.2.31 TpCallNotificationReportScope
	9.2.32 TpNotificationRequested
	9.2.33 TpNotificationRequestedSet
	9.2.34 TpReleaseCause
	9.2.35 TpReleaseCauseSet
	9.2.36 TpCallLegIdentifier
	9.2.37 TpCallLegIdentifierSet
	9.2.38 TpCallLegAttachMechanism
	9.2.39 TpCallLegConnectionProperties
	9.2.40 TpCallLegInfoReport
	9.2.41 TpCallLegInfoType
	9.2.42 TpCallLegSuperviseTreatment
	9.2.43 TpCallHighProbabilityCompletion
	9.2.44 TpNotificationRequestedSetEntry
	9.2.45 TpCarrierSet
	9.2.46 TpCarrier
	9.2.47 TpCarrierID
	9.2.48 TpCarrierSelectionField

	Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	Annex C (informative): Java™ API Description of the Call Control SCFs
	Annex D (informative): Contents of 3GPP OSA Rel-5 Call Control
	Annex E (informative): Record of changes
	E.1 Interfaces
	E.1.1 New
	E.1.2 Deprecated
	E.1.3 Removed

	E.2 Methods
	E.2.1 New
	E.2.2 Deprecated
	E.2.3 Modified
	E.2.4 Removed

	E.3 Data Definitions
	E.3.1 New
	E.3.2 Modified
	E.3.3 Removed

	E.4 Service Properties
	E.4.1 New
	E.4.2 Deprecated
	E.4.3 Modified
	E.4.4 Removed

	E.5 Exceptions
	E.5.1 New
	E.5.2 Modified
	E.5.3 Removed

	E.6 Others

	History

