Final draft ETS| ES 202 915-3 V1.1.1 (2002-11)

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);
Part 3: Framework

D

2 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Reference
DES/SPAN-120091-3

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:

editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.
© The Parlay Group 2002.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

mailto:editor@etsi.org
http://portal.etsi.org/tb/status/status.asp
http://www.etsi.org/

3 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Contents

Intellectual Property RIGNES.........oo bbb r e 12
0] Yo (o SRS 12
1 o010 RSP 13
2 S L= (= 000 P 13
3 Definitions and aDbreVIBLIONS...........eceere ettt e sre e be s e e tesneeneeseeeneeneenreas 13
31 (D= T o T] (0] PP P PP USTORPP 13
3.2 ADDIEVIBLIONS ...ttt bbbt bt ae st e e eeE e e bt e bt e he e b e e e et e Rt eh e e Re e b e R e bt bt eneene e e re e 13
4 OVENVIEW OF the FramEWOTK.........c.coiiiiiiirieee ettt sb e e e e 14
5 The Base INterface SPECITICALION.c..coiieieeeere e 15
51 Interface SPECITiCaLiON FOIMELcc.ciiie ettt bt s bbbt 15
511 E 1S = To Y O =SSP 15
512 MELNOO AESCITLIONS. ...ttt bbbt bt bt b bt et b e st et b e bbb 16
5.1.3 L = 1= (= 0 L= o 1 0] 0] 16
514 Sz (= 1Y T L= SO PSPS 16
52 BaSE INEEITACE.ot bttt b bbbt a et E e Rt R e Rt h e e R bbbt ne e re e 16
521 1S g o O F= S T o] 11 o = o= P 16
53 SEIVICE INEEITACES ...ttt b b bkt e e e e e e b e bt ea e eb e s he e b e e e e b e b e sb e e b e e neenee e ennes 16
531 OVEIVIBW ..ottt sttt sttt sttt st s e st e be s e e st e ke s e e st e b e s e e st ebeseese e b e sees e eEeneeseebeseene e b e sbeneebenbe e ebenbeneesenbenennens 16
54 GENENIC SEIVICE INEEITACE ...ttt ettt et et e e et e b e seesbe s et ese e e e seseeseeseeeneeneeneeneas 17
54.1 INEEITACE ClASS IPSEIVICE ...ttt bbb et b e bbbt b et b e bbb 17
54.1.1 MELDOO SEECAIIDACK() ...vevveveieeeeteiieiete ettt st sa et e e e e besaeseetesae e esesaeneesesseneesens 17
5412 Method setCallbackWithSESSIONID () .. .cveviiverieriiieieresieeeiesiee e steee et e e s sesbesaesesbesaesaesesseseesens 17
6 Framework ACCESS SESSION APo ettt s e e re e e steeneenrenneas 18
6.1 S 010 c T D TT=o =0 1 SRS 18
6.1.1 Trust and Security Management SeqUENCE DIAQIaMSccverieerierieiiesee e ste e seeseesseeseesessaesseenseesses 18
6.1.1.1 INTEBI ALCCESS. ...ttt b et bttt e b h e bt bt eh e e s e e e e b e se e ke s Rt eb e e aeen e et e neeebeeneebe e e ennees 18
6.1.1.2 Framework TEIMINGEES ACCESScoueeieriertirte st etest et see st sttt sbe st et e e e s s e besaeebesseeseenee st e besreebesaeenneneens 19
6.1.1.3 APPHICALTON TEMINGLES ACCESS......eeeeuerteeetesteeete sttt st ettt et st s e e st sbese e st b e st esesbese e bt ebeseenesbennenees 20
6.1.14 NON-API [evel AUNENLICALION.coiiiieieeeeee ettt s see e eneeneen 21
6.1.1.5 Y o Y= BN 11 1= (o o] o R 22
6.2 ClaSS DIAOIAMS. ...ttt ettt ettt eb ettt b et bt e et bt b et bt s e e e eh e s Eeseeb e e E e st e bt e e e e eb e b e neeb e e e eneebese et eb e s b et ebenre e 24
6.3 INEEITACE ClBSSES. ... vttt ettt ettt s et e e s ee e beeteeaeeseeneenseseesseebeeaeebeeaeeneeneeeeseeseesseeneeneeneaneeses 24
6.3.1 Trust and Security Management INterface ClasSeS........c.vuvieerieeie et 24
6.3.1.1 Interface Class IpClientAPILevel AUtENLICALION..........ccveiv i 25
6.3.1.1.1 Method <<deprecated>> authentiCate()..........ccrverrererierieeseere e 25
6.3.1.1.2 Method abortAUNENEICALTION()eoveeee ettt et ae e e 25
6.3.1.1.3 Method authentiCatiONSUCCEEAEU()veveerereeeeiieiese et e et re e eaesneesnes 26
6.3.1.1.4 Method <<NEW>> ChallENGE() ...veiveiee ettt enaeeaesneeenes 26
6.3.1.2 INterface Class IPCIIENTACCESS........couciiieee ettt sttt b e bbb bbb et sb e n e 27
6.3.1.2.1 MELhOd LEFMINBLEACCESS() .. eueevertereeeertereetertert ettt sttt sb e st b e bt bbbt b e s s b s bbb ese b e nn e e enis 27
6.3.1.3 INterface ClasS IPINITTALcooiieee bbb et b e 28
6.3.1.3.1 Method <<deprecated>> initiateAUthentiCatioN()coereeeriirirircrerere s 28
6.3.1.3.2 Method <<new>> initiateAuthenticationWithVersion()coeererenineininsneeeseseseeeees 29
6.3.14 Interface Class IPAUNENTTICAIION...........coi it 30
6.3.14.1 MEthOO FEQUESIACCESS()veeuvereierteesieesieesteeiteeeeseesteeste e e e tesstesseesseesaeesseenseesseeseassaeseensennseensesneesans 30
6.3.1.5 Interface Class IPAPILeVEl AUtNENEICALIONccciveiieee e 31
6.3.15.1 Method <<deprecated>> selectEncryptionMethod()cccvereerieriniece e 31
6.3.1.5.2 Method <<deprecated>> authentiCate()..........ccvvereererierieseere e 32
6.3.1.5.3 Method abortAUNENEICALION()eoveiee ettt e re e e enes 33
6.3.1.54 Method authentiCatioNSUCCEEAEH()vevererrieeririei ettt 33
6.3.1.5.5 Method <<new>> selectAuthenticationMechani SM()cccvereeeririririrne s 33
6.3.1.5.6 Method <<NEW>> ChallENGE()eoveeriereiere e 34
6.3.1.6 INEEITACE ClASS IPACCESSveeeueete ittt sttt b et b et b e et b e seeae b s e ae b e e ae b e sb et ebe b et sbenn e ees 35

ETSI

4 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.3.1.6.1 Method OBtai NENEEMTACE() ..o vee et e et e e teeaeeneeenes 35
6.3.1.6.2 Method obtaininterfaceWithCallDack()cevvveeiieieriesie e 35
6.3.1.6.3 Method <<deprecatet™>> ENUACCESS() .. .ccverrrerrrerririesreereeseestesee s e seesreesteeteeseessaesreesreesseenaesneesnes 36
6.3.1.6.4 [T= a0 To RS g == 36
6.3.1.6.5 Method <<deprecated>> releasel MErfaCe().........ccvvierieriieiie e 37
6.3.1.6.6 Method <<new>> selectSigningAIGOrithm()cc.oeeee i 37
6.3.1.6.7 Method <<NEW>> tErMINGLEA CCESI()eveuerrereerertirieierteree sttt sb st sb e bbb e e enes 37
6.3.1.6.8 Method <<new>> relinquishiNterface()ooevireii s 38
6.4 State TranSItioN DIGOIAMS.coiieieeieie ettt sttt sttt b e bt b e b et b e s b st b e ne e st et e se et et e st et ebenreneeee 38
6.4.1 Trust and Security Management State Transition Diagramscocoeeireerenieenenieesesese e 39
6.4.1.1 State Transition Diagrams fOr IPINItIalcoooeiiiine s 39
6.4.1.2 State Transition Diagrams for IpAPILevel AUthentiCation...........ccicvevveceeeeseese e 39
6.4.1.2.1 [AIE SEBEE.....ue ettt ettt sttt st e et s b et e s b et et e b e et e R et be s ee e benee e ebenaeneenens 42
6.4.1.2.2 Authenticating FrameWOrK SEALE..........cvecuieiiiesiesies et ae e 42
6.4.1.2.3 Framework AUtNENTICAIEA SEALEc..eeeeieie e e 43
6.4.1.2.4 AuthentiCating CHENt SEALE..........ccuveieeiecee ettt e e e e e e reeaesneeenes 43
6.4.1.2.5 Client AUTENTICAEEA SEALE........c..cieeeeeeieiertes ettt e sb bbb sbe s e e e nnen 43
6.4.1.3 State Transition Diagrams fOr IPACCESS.......c.uiirieiriii ettt b e ens 44
6.4.1.3.1 ot L= (= R 44
7 Framework-to-ApPliCaLION AP ... 45
7.1 SEOUENCE DIBOIAITIS ...ttt sttt sttt sttt bt ebe et ebese et b e s e e st b e s e e bt eb e s e e bt e be s e e Rt e b e e ebe e b e neeneebese e st eb e st et ebenreneees 45
711 Event Notification SeqUuENCE DIagramMS.........ccveiiieiieieeie e et s e see e seesre e eae e e e e teesaeeteeeesneesnes 45
7111 Enable EVENt NOLTICATON ..ottt et s sb e e 45
7.1.2 Integrity Management SeqUENCE DIagramS.........cuccueeierieriieieeseeseeseeeeeseesseesseeteesessaessassseesseensesnsssnsesens 46
7121 Load Management: Suspend/resume notification from application...........ccecvecvveenienieecesce e 46
7.1.2.2 Load Management: Framework queries |0ad StatiStiCS........uucvvieieeieeseerr e 47
7123 Load Management: Application reports current 10ad CONAition...........ccoevrerereneienenece e 47
7124 Load Management: Application queries 10ad StatiStCS.coerereenerese e 48
7125 Load Management: Application callback registration and [oad control.............ccccoeevireinieneiencnenens 49
7126 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationc.cccceeeveneee 50
7127 Fault Management: Framework detects a Service fallure ..o 51
7128 Fault Management: Application requests a Framework activity testcccoeveeveini e 52
7.1.3 Service Agreement Management SeqUENCE DIagraMS.........cccevieieieereeseereeseeseeseeesae e see e eneesseesnes 53
7131 SEIVICE SEIBCTION. ...ttt bbbt h et e e e e b s b s bt s b e e aeehe et e e e beseenbesaeebe e e enneneen 53
714 Service Discovery SEqQUENCE DIBOIAIMSccecieiieiieieseeseeesaeseeseesteseeseesneesseesessaesseesseeseensessesnsesnes 54
7141 SEIVICE DISCOVEIY ..ueeieiiieeiteeete ettt et e e ettt e st e st esae e aeeteesteeatesseesseenteensesneesneesneesseenseansennsenneessenssens 54
7.2 L= S D= =0 1SS 57
7.3 INEEITACE CIBSSES. ... ettt bt a ettt et b bbbt et e b e e e e b e e ke eh e e b e e Rt eh e e e e e e besbeebeeaeene e e enrenes 59
731 Event Notification INterface ClasseS.......ooviiiiiereeeee ettt st e e neea 59
7311 Interface Class |PAPPEVENINOLIFICATONoiveiiereiieeeeee e 59
73111 Method repOrtNOLIfi CaEION()everveeeeerrire ettt 60
73112 Method notificationTerMINAIEA()c.ereerireere e 60
7312 Interface Class IPEVENINOLIFICATON ..ot 60
73121 (VK= 1glele Rerg== it o 0] o= i1o] o) I 60
7.3.1.2.2 VY= 1gTeTe o e i a)Y\ o 1N o= i o] ol 61
7.3.2 Integrity Management INtErfaCe ClaSSES.........cuuiiiriiiie ettt e st e st eteeeesnee e 61
7321 Interface Class IPAPPFAUITIMBNAGESccveiieiieie e see st s et eete et e ee e sreesreesseeaeenesseesseenseensenns 61
73211 MELhOO ACHIVITY TESERES() ...eveuvererieeeieriireetirteeet sttt ettt ebe st e b b e ebesae e sesbestenensesseneenas 62
73212 Method aPPACEIVILY TESIREG() ...veeveerreerieeriieiie et et e st e e e e e e see e s esreesre e e e ereesra e te e teeneeenneeneeenes 62
73213 Method FWFAUITREPOITINA() -...eveeeeiriie ettt 62
73214 Method fWFAUITRECOVENYINGA()ecveiveeeiiitieeestere e 62
73215 Method sveUnavailahl €INA()coveeeeeriieeiireetere e 62
73216 Method genFaultStatSRECOTARES()veveuerriieiiriei ettt 63
73217 Method fwUNavai labl €INA()eoveeeeeriieeeriee e 63
73218 MELNOA ACHVITYTESEEIT() ...veveueetereeeetesiee ettt ettt eb bbbt e bbbt enis 63
7.3.2.1.9 Method genFaultStatSRECONAENT()veieeieesecie ettt et e erae st esaeeaesneeenes 63
7.3.2.1.10 Method appUnavailablelNA()cceiieieeiiece et 64
732111 Method genFaultStatSRECOTAREN() ...vecvverveereerie i eie e e ee et ae e sreeaesneeenes 64
7322 Interface Class IPFaUIIMANAQETccviieiiereeieere e st s ste e ste e e et e e e tesseesseesreesreesreesseenseensenns 64
73221 MELhOd @CHIVITY TESEREG() .. vvereerereererreriireeterieietestee et sttt see sttt sbe s sesbe e ssesae e sesbesbenesbessenennes 65
73222 Method QPPACHVITY TESIRES() ...veverereeriieeiiriiietesieeste sttt sae s b s sesbestenessesteneenes 65

ETSI

5 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.3.2.2.3 Method svcUnavai labDl€INa()ecvereeieeieeii et eete e snee s 65
7.3.22.4 Method genFaultStatSRECOTAREN() . .eovveveerreerieieiesee et e e e sreeaesneeenes 66
7.3.2.25 Y T= oo Ir=To o TAN W A 7L YA =S o =l) 66
7.3.2.2.6 Method <<deprecated>> appUnavailablelNd()..........ccoueiiriiiiieiere e s 66
7.3.2.2.7 Method genFaultStatSRECOTARES()ccuveieeiieii et ae e e 67
7.3.2.2.8 Method genFaultStatSRECONAENT()veieeieeseeie e eie sttt e e e e saeeaesneeenes 67
7323 Interface Class IPAPPHEAMBEAMOML.......coiuiiiirieiee et 67
73231 Method enabl @APPHEBIMBEAL()........covereeertireeiieteree ettt 68
7.3.23.2 Method diSablEAPPHEBITBEAL()ceverveueeririeieteriee ettt 68
7.3.2.3.3 Method ChanGEINEEIVEI()e.veueerereeerieieeiet ettt bbb 68
7324 Interface Class IPAPPHEBIMBEAL...........cc.ciiiieeee ettt 68
7.3.24.1 = (T To I a0 TSR 69
7.3.25 Interface Class IPHEArtBEAMOMIL.........ccuiiieiee e ae e s esreesneesreeseenneens 69
7.3.25.1 Method enablEHEAMBEEL()eeveevereeiieseeseeste et ettt s sae et ere e s b e e e reenteenaeennesnes 69
7.3.25.2 Method diSablEHEAMBEBE().. ... cerveerrerieieierieete ettt enas 70
7.3.25.3 VT= ag oo otz 1= Fa U= AV 70
7.3.2.6 Interface ClassS IPHEAMBEALccveiieiece ettt s e e e sreesreenseenneens 70
7.3.26.1 IMEENOO PUISE() .veneeeeteeeieetese ettt b bbb bt bbb st b et s bt nnas 70
7327 Interface Class IPAPPLOBAMENEGEccieriririerieiiriere ettt ettt be et b et se et b e sb e e 71
73271 Method qUErYAPPLOATREG() +e.veverrereeierierieietest ettt 71
73272 Method QUENYLOBARES()c.eeveiiietiiieeeiestere ettt ettt ens 71
73273 MEthOd QUEIYLOBAEIT() ... ecueevereeiietereeeetest ettt bbbt e bbb 72
73274 Method [0adL eVelNOLifiCaLTON()veverreeerereeeetert et 72
73275 Method reSUMENOLITICALTON()vevveieeiee et ae e eneeenes 72
7.3.2.7.6 \V/T= 1gleTe RSUES o1 aTe |\ Lo] o= o] o 72
7.3.2.8 Interface Class IPLOAOME@NAQEYcceiieiieieeieeie e seeseesteesteete e sreesseesteesseesseesseensesnnesseesseenseensenns 72
7.3.28.1 VK= a oo = oo {0 7= [73
7.3.28.2 VK= 1o o o 0S| = o () 73
7.3.2.8.3 Method QUErYAPPLOAARES()ecveeiieieeesee e st ettt stee e sae e e sae e te et e et e sraesraesreesaeeneesneennes 74
73284 Method qQUErYAPPLOATEIT()c.eeueieiieeiiereeeet ettt 74
7.3.2.85 Method createl 0adL eVelNOLIfiCaION()covvrreerririeiirieeerere e 74
7.3.2.8.6 Method destroyL 0adL eVelNOtifiCaiON()eveverrereererieieerieeei e 75
7.3.2.8.7 Method reSUMENOLIFiCALION()eoveeererriietire ettt 75
7.3.2.8.8 Method SUSPENANOLIfICATON() -...eveueeeerreeeeirtieet st 75
7.3.29 INLErfaCE ClASS IPOAM ..ottt s e e te et e et e e saess e e sbeesteeseenseeneesanesneenseenseenseans 76
7.3.29.1 Method systemDateTimEQUEIY() .vevveiueereeieeieeieeeesteesteeseesteseeseesreesseesse e teessessaessaesseesseenessneesnes 76
7.3.2.10 Interface ClassS IPAPPOAM ...ttt st e e s e e te e teeteeatesseessaesaeesseesseenseeneesseesseenseenseans 76
7.3.2.10.1 Method systemDateTimMEQUENY() ..eveeiveereeeieeeieieeieiesteesteeseseeseeseesseesseesseesseessessaesseesseesseessssnessnns 77
733 Service Agreement Management INterface ClassesS.......oiueiieieiee it 77
7331 Interface Class IpAppServiceAgreementManagemMentccecverueeieeieseesee e e e seesee e e sreeneeeeeens 77
73311 Method SIgNSErVICEAGIEEMENT()veverveeerertireetert ettt ettt b et sb e bt e b e enas 77
73312 Method terminateServiCEAGrEEMENT() ... cvier ittt b e 78
7332 Interface Class |pServiceAgreementManagemENtccoereererereeererese et 79
73321 Method SIgNSErVICEAGIEEMENT() everreeerertireetert ettt sb e bbb e enas 79
73322 Method terminateServiCEAGrEEMENT()cvrireerireeierieri ettt b e enes 80
7.3.323 MELhOO SEIECESEIVICE() .. .vevertereeiertereeie ettt bbb bt et b et bt ens 81
73324 Method initiateSigNServiCEAGrEBMENT()evvereeiereseeseeseerte e e se e teete e e sre e re e e esaessaesneesnes 81
734 Service DiSCOVErY INEIfate ClaSSES.uuiiiiieii e e et e s be et e aesraesre e beeteeneeneeenes 82
7.34.1 Interface Class |PSErVICEDISCOVETYocuiiieiieiieieeeseeseesteestesteeaesseesteeste e teetesseesseesseesseesseensensenns 82
73411 MethOd [HSESEIVICETYPES() «veveereeriereeiiesieseeste et eeeste e te e testesaeesseesreesaeaseeseesseasseenseenseenseensesneesans 82
7.34.1.2 Method desCriDESENVICETYPE) .. ccveieeiee ettt ettt ettt et e st saeesra e te e e e nteenaeennennes 83
7.34.1.3 MethOd diSCOVErSEIVICE()...eeuveerierieieeiee st este et et e ee st e st e s e e teseeseesaeesse e te e teensessaessaenteenseensesneennns 83
73414 Method [iStSUDSCIIDEASENVICES() ... ecvervieeeiieieet et 84
74 State TranSItioN DIGOIAMS.ooiiteieeeeieriet ettt ettt st b et b e bbb et b e s b e st e b e se e st b e se e st ebe st et ebe b e e 84
741 Event Notification State Transition DiagraimS........coeererieirieienereee st 85
7411 State Transition Diagrams for IPEVENtNOLIfiCatIONccccviiiiiriercee s 85
742 Integrity Management State TranSition DIiagramsS........ccceveeeerieenienene et s 86
74.2.1 State Transition Diagrams for IPLOadManagerccuveuerierieieeie e s see e sae e eneees 86
74211 [AIE SEBEE.....ee ettt sttt sttt e bt e e bt s b e et e b e e b e b et b e st et bente e erenteneenens 86
74.2.1.2 Notification SUSPENAEA SLALE..........cccoiveiieiieieciee et e st teeaesneesnes 86
74213 ACHVE SEALE ...ttt sttt etttk e s e et et e s e et et e st et et e s te et e ae e renteneeneas 86
74.2.2 State Transition Diagrams for LoadManagerinternal.............coceoveeveice e seese e 87

ETSI

6 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

74221 NOIMEl OB SEALE.......eeeeeeeieeeee ettt b et b ettt sresb e saeene e e e e 87
74222 APPlICation OVENTOAO SLALEoceeeeeiieieee et ettt e e e e e e e eeenesnnesnes 87
74223 INtErNal OVENTOBH SEALE.........coueieeieeiie et b ettt eesn b e e be e e s 87
74224 Internal and Application OVErload SEaLEccccceieeiie e 87
74.2.3 State Transition Diagrams fOr IDOAM ..o et re e saesnaesraennees 88
74231 ACHVE SEALE ...ttt sttt sttt st et et e st et et e s e et et e st e st et e s e et et e nae e erenteneeneas 88
7424 State Transition Diagrams for |PFaUItManNagerceiireiririeireeeeeese e 88
74241 FrameWOrK ACHIVE SEBLE..........ceeereirieiieeteee ettt ettt be et se st e e et e stesnesbesneeneeneeneenes 88
74242 Framework FAUITY SEBEE.........cc.ciiieierteiet ettt 89
74243 Framework ACHVILY TESE SELE........ccervieeueriiiet ettt 89
74244 SENVICE ACHIVITY TESE SEALEe.ecuiieieeeirtee ettt bbbt b e e e 89
74.3 Service Agreement Management State Transition Diagrams.........cccccveeeeereeieseeseeeee e 89
744 Service Discovery State TransSition DIagramScceecevieieeieeiesie e e este e e s eae et e e eseseesneesnes 89
7441 State Transition Diagrams for IpServiCEDISCOVENYuuiiiiiirieie et see e sree e 89
74411 ACHVE SEALE ...ttt ettt ettt et e st et et e s e et et e st e e ke s ee e ebenae e erenreneeneas 89
8 Framework-to-Enterprise OPErator APl ...ttt st ere s 90
8.1 SEOUENCE DIBGIAITIS ...ttt st reete sttt sttt st ettt s e et et ese et b e s e e st e b e s e e bt eb e s e e bt e Ee s e e bt e b e e ebe e be s e e neebesee st et e s b et nbenneneees 94
811 Service SUDSCription SEQUENCE DIBGIaIMS.........cviuiiriirieieierieeete ettt ettt b e e be e e b sreneenen 94
8111 Service Discovery and SUDSCIPLiON SCENAITO........oovciiiiiirieeeree s 94
8112 Enterprise Operator and Client Application Subscription Management Sequence Diagram................ 96
8.2 ClaSS DIAOIAMS. ...ttt ettt ettt ettt b e bt bt s e et bt b et bt s b e e eh e s Eeseeb e s R e st e bt e e e e eb e b e ne e b e s e e st ebese et eb e s b et ebenbe e 98
8.3 INEEITACE CIBSSES. ... ettt ettt et e e bbbt b st e s e ee e R e e b eh e e b e e aeeh e e e e e e besheebeeneene e e enrees 99
831 Service SUDSCription INErfaCE ClasSESccov e aeeee e 99
8311 Interface Class |pClientAPPM @NAJEMENLcccueeieiee e seeseeste e ete e sreesee e e steeseeseessnesseesseenseeseans 99
83111 Method Create@ClIENEAPD() -+veveereererierieiee st e st este et e e este e te e e e e esaesaaesreesreesseeseeneesneesseessaesseessens 100
8.3.112 Method MOdifYCIIENEADP() ...veereerreerreerieeieeseresieesee st e steeste e e e eessaessaesreesreesseesseeseesseeseessaesseesses 100
83113 Method del teClIENEADPP() .+ v eueerereeieereree ettt ettt b e ettt eb e e e b sneneeneas 101
83114 MELNOO CrEAIESAG() ..e.veueeverreeetertere ettt ettt sttt bbb bbbt eb e sb e et sb et e bt s b e e ebese e e ebesbeneeneas 101
83115 MELOA MOGITYSAG() ..eveveeerertereete sttt sttt sttt et b e et b e et b e et eb e e e e b b e eneas 101
8.3.1.1.6 MELNOO AEIEEESAG()vverereeieetere ettt ettt et b e et b e et b e e st eb e e e e e b e sbeneeneas 102
83117 Method a0dSAGMEMDEIS()eoveeeririeietiiereee ettt b et et b e et eb e e be e neene s 102
83118 Method remoVESA GMEMDEIS()c.eivirieeiriirieerie ettt ettt b e e sre e ene s 102
8.3.1.1.9 Method <<new>> requestCoNnfliCtINfO()ceoveie i 103
8.3.12 Interface Class |pClientAPPINFOQUETYveieie ettt sneas 103
83121 Method desCriDECIIENLAPD() -vvevvrerreeereerieereesteseeseeseesteeste e e e e stessaesreesreesseesseensesnsesseesseessensses 104
8.3.1.2.2 VT a0 To RS (@ T o] o) SR 104
8.3.1.2.3 MELNOO AESCIIDESAG()eveeetertereeierie ettt ettt sttt sttt sttt e besbe e ebesbesbe e ebesbeneenens 105
83.1.24 MELNOO [ISESAGS() .. vveveneetereeneete sttt sttt sttt ettt st b s be e be st e seebesbeseebesbe e ebeebesaeneesesbeneenens 105
83125 MEthOd [ISESAGMEIMDEIS()eeveieeeeterieeet sttt st b et se et b e e ebe e se b e b neeneas 105
8.3.1.26 Method listClientAPPMEMBErSNIP() ...vevervireeeirieieterieet e eeie s 106
8313 Interface Class |pServiceProfileManagemMentc.uoeirieirieese e 106
83131 Method createServiCePrOfiIE() ... oo e 106
8.3.13.2 Method ModifyServiCePrOfilE()couieirireieere e 107
8.3.1.33 Method del eteServiCEPIOfIHIE()cieeieere et e eeraesraenneas 107
8.3.1.34 IMEENOO @SSIGN() 1+ vveeeneeterieseetesie sttt sttt sttt se sttt e st s beseese et e seeseebeseeseebeseeneebeseeneesenbeneenens 107
8.3.1.35 V= 10 o o (=T o USSR 108
8.3.1.36 Method <<new>> requestCoNnfliCtINFO()cceoveeieeeiceeer e 108
8.3.14 Interface Class |pServiceProfil el NfOQUETYoovveeiiiecee et 109
8.3.14.1 Method [IStSErVICEPIOfIIES()eueeeerieieie ettt sttt st seeneas 109
8.3.14.2 Method describeServiCeProfile()oi i 109
8.3.14.3 Method [iStASSIGNEAMEMDEIS()c.eiviieiiriereeieeie ettt st s b e e b e sne e b 110
8.3.15 Interface Class |pServiceContraCtManagemENtc..eererieerierieereeee et 110
83151 Method CreateServiCECONIIACE()e.errereereriereeterte ettt sttt sb e et eb b besrenneneas 110
8.3.15.2 Method ModifyServiCECONMIIACT()civereererieeereriereetesi et r bbb e b e ene s 111
8.3.1.53 Method del eteServiCERCONIACE()veuerrereeeeriereeerie sttt sttt st b e e neene s 111
8.3.1.6 Interface Class |pServiceContraCtiNfOQUENYocviiiiiierieece e 112
8.3.16.1 Method describDESErVICERCONIACI() ...vvervrereieesiesteese e e ee s e e steeste et e e e re e te et e eneesraesreenneas 112
8.3.1.6.2 Method [1SESErViCECONIACIS() ...uveiveeireeieeiteeee st e st e te e te st e te e e e sreesreenseeneesaeessaeesaesraenneas 112
8.3.1.6.3 Method [IStSErVICEPIOfIES()eueeveieeeirie ettt st seeneas 113
8.3.1.7 Interface Class |pENtOPACCOUNTM ANAJEMENLcciiveieereereeeeseeseesteeseesaeseeseesseesseeseessesseessaenses 113
83171 Method MOdifYENTOPACCOUNT().....eeveerreerieeieesieeieeeeeseesteeste e e e e etesaeseesreesreesseenseenseensessaesseessens 114

ETSI

7 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.3.1.7.2 Method del eteENTOPACCOUNT()....c.veeieiie e see st ese et ee s e se e s sreesreesreeeeeneeenaenraesreenneas 114
8.3.1.8 Interface Class |pENtOPACCOUNtINFOQUENYc.veeiiieiieie ettt 114
8.3.18.1 Method descriDEENTOPACCOUNT() .. ecvveieeereeieesieeste et e see st sreesre et e e snaesreenneas 115
84 State TranSitioN DIBOIAIMS.cccuiiieieere e eee e et se e s e e e e e eesseesaeesseeeesseesseesseenseasseaseenseesseessensseesesneennes 115
84.1 Service Subscription State Transition DiagramiS.........ccveueieereerieesieesesieesee e e sreeste e sreesreesre e e sraesreesses 115
9 FramewOorK-10-SEIVICE AP ..ottt sttt ettt na e nes 115
9.1 SEOUENCE DIBGIAITIS ...ttt ettt sttt et b et b et s b e s e st e b e £ b £ R e ae e bt b e e b e b et e bt e b e b e st e b et et e be b 115
911 Event Notification SeqUENCE DIagramsS.eoeeruirieirieieesieee sttt sbe e 115
912 Integrity Management SeqQUENCE DIagraIMS........c.ciuerueiririeeriiieesieie ettt 115
9121 Load Management: Service callback registration and load control..............ccoeveeievcnicn e 115
9.1.2.2 Load Management: Client and Service Load BalanCing.........cccccvevveieeeeneeniese e seese e e 117
9.1.2.3 Heartbeat Management: Start/perform/end heartbeat supervision of the service.......ccccceecvvcvveenne 118
9.1.24 Fault Management: Service requests Framework activity teSt.........cccovevvveerieeie s, 118
9.1.25 Fault Management: Service requests Application activity teStcccoveeevceviese s, 119
9.1.2.6 Fault Management: Application requests Service aCtiVity teSccevveevveviere e 120
9.1.2.7 Fault Management: Application detects serviceis unavailable.............cccoereinennneinincceeee 121
9.13 Service DiSCOVErY SEQUENCE DIBGIAIMScc.eiiirieerie ettt sttt sttt st sb et b e 121
9.14 Service Instance Lifecycle Manager Sequence DiagramsSc.cooeeeereenereeesienesie s e 121
9141 SigN SEIVICE AQIEEITIENT ... ettt ettt ettt et e et b e et eb b et et e sb et eb e sb e e ebesb e e ebesbe e ebeabenneneas 121
9.15 Service Registration SeqUENCE DIBOIaAIMSccuiieeirieieerie ettt be e b e sbe e 123
9151 NEW SCF REJISITALION. ...ccveveaeeteieeeete ettt sttt bbb et b e et b e e b st eb et et b b 123
9.2 (O =SS D= =0 1 124
9.3 INEEITACE ClBSSES.e.eeveireeetierese ettt r e et r e R e e bt e R e e bt e rene e bt se e e e r e s re e erenreneenennennenean 126
931 Event Notification INtErface ClaSSES.........coiiieiirierirener e 126
9311 Interface Class |PFWEVENINOLIfICALION...........ceii e 126
93111 VK= 1glele Mot it N\ Lo (] o= i o] o) ISR 127
93112 Method destroyNOLIfiCaLTON() ... veeerereeiererieieter ettt b e seene s 127
9312 Interface Class |PSVCEVENNOLIfICALIONccoiiiiieee e 127
93121 Method repOrtNOLIfi CaEION() ...veverreeeeereeiet sttt b e bbb e 128
93122 Method notificatioNTerMINAIEA()coereerererieireeet et ene s 128
932 Integrity Management INEErfate CIASSES..........uiriiiieirieiee e 128
9321 Interface Class |PFWFELITMBNAGEScoeiiiieiiieree bbb b 128
93211 Method BCHVITY TESIREG() ... veveuerrerererrereereeiee ettt 129
93212 Method SVCACHVITYTESIRES() ...c.vveuieireireeiiisie e 129
9.3.2.1.3 Method appUnavailabl€lNd()........ceeeiieiee et 130
93214 Method genFaultStatSRECOIAREN() . vviveieereerierieeie et see st rte e e et enaesreenneas 130
9.3.215 Method svcUnavai labDl€INa()ooveeieiie e e e e nneas 130
9.3.2.1.6 Method SVCACHVITY TESIEIT()..ecuveeevereiesieesiesie et esee et et e st e e e e te e e e sreesreenseeneeensesnaenraesseenneas 131
93217 Method <<deprecated>> genFaultStatSRECOIARES()covvrieeririeirie et 131
93218 Method <<deprecated>> genFaultStAtSRECOIAEIT()......c.coereeererirerereee et 131
93219 Method <<new>> generateFaultStatSRECOTARES()........erveeriereririeiere et 132
9.3.2.1.10 Method <<new>> generateFaultStatSRECOIAENT()oovevririeireriee et 132
9322 Interface Class |PSVCFAUIMBNAGEYcoririieirieeere bbb 132
93221 MethOd BCHVITY TESIRES()vcveuereeiiiriereereeiee ettt r et 133
9.3.22.2 Method SVCACHIVITYTESIREI() ...vvevverreerreerieesieeiieesieete et este e s e e e e e stessaeseesreesseesseensesnseeseansaesseessens 133
9.3.2.2.3 Method FWFaUItREPOITINA() ...eoveeeeeeiesiec ettt esraesraenneas 134
9.3.2.24 Method FWFaUItRECOVEIYINA()vveereeieeseesie ettt et e sne e s e nreenneas 134
9.3.2.25 Method fwlUnavai labl€INa()eeveeeie et enneas 134
9.3.2.2.6 Method svcUnavai labDl€INa()ooveeieiieiie e nneas 134
9.3.22.7 Method appUnavai labl €INA().........eeeerieieiieeereet et 135
9.3.2.2.8 Method genFaultStatSRECOTARES()c.veueeverieieterieeet ettt 135
9.3.2.29 MELNOO CHIVITYTESEEIT() ...veiveueetereeeete ettt ettt sttt b et b bbb e e b srenneneas 135
9.3.2.2.10 Method genFaultStaSRECOTAEIT()eveeererieieierieiet ettt 136
932211 Method <<deprecated>> genFaultStatSRECOIAREG() «...e.veververeereriereererieniee et 136
932212 Method <<new>> generateFaultStatSRECOTAREG() -...eveuerrereeerrerieereriee et 136
9.3.2.3 Interface Class IPFWHEArBEAIMOIML..........c.ooiiie ettt et esnaesraennees 137
93231 Method enableHEABEAL()coveveireereirieees e e 137
9.323.2 Method diSablEHEABEEL().......coveveeereereireetees e 137
9.3.2.3.3 Method ChanQEINLEIVEI()ccveeieeiere ettt sre e sreesaeetesneeeneesraesraesneas 137
9.3.24 Interface Class IPFWHEAIBERLccoieeiieie ettt ae e st e e e e snaesnaesneas 138
93241 MELNOO PUISE() ..vneeeiiertet ettt et b et n b e 138

ETSI

8 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.3.25 Interface Class IpSVCHEABEAIM QMLcoii ittt sneas 138
9.3.25.1 Method enabl€SVCHEABEAL()eecveveeiie et ese et sr e et naeeraesreenneas 139
9.3.25.2 Method diSablESVCHEAMBEAL()......ccveververeeririeieeierie ettt sttt sttt b et b e seeneas 139
9.3.25.3 Method ChanQEINLEIVEI()ccveeieeie e e e sreesteeteenseenaesnaesreesneas 139
9.3.2.6 Interface Class IPSVCHEAMBEALccceeiiece ettt snaesneas 139
9.3.26.1 = (Tl I a0 TSRS 140
9327 Interface Class |PFWL OAOMBNAGEScouiirieiririeieeseee et bbb b e b e 140
93271 L= (aleTo = oo {0 ="o [TSR U TP PTPRTPUSURPRRN 141
93272 Method QUEINYLOBAREG() «..vveevereeuerterieieete sttt sttt sttt b et se et b e s eb e e ebesnenneneas 141
9.3.2.7.3 Method QUErYSVCLOAORES()c.veueeveiiietirieseeieste ettt sttt sttt et b e bbb e b sneneeneas 142
93274 Method QUENYSVCL OAOETT().....eveueeeereeeeterieieetestee ettt sttt b st b e e bbb snennenens 142
9.3.275 Method createl 0adL eVelNOtIfiCaION()veivereereeie et 142
9.3.2.7.6 Method destroyL oadL evelNOtifiCatiON()vereereeieeeceesee et neeas 142
9.3.2.7.7 Method SUSPENANOLIFICALTON() ...vveveeeereeiee et ere et sre e sa e et e e eneesraesreenneas 143
9.3.2.7.8 Method reSUMENOLITICALTON()vveveeieiee et esre e sraesreenneas 143
9.3.2.8 Interface Class IPSVCLOAOM@NAGETcccveiieiie et ee e e e et e e ae e e e sreesbe e e enaesneessaesneas 143
9.3.28.1 Method QUErYSVCLOAOREG() «.v.vveeveeieeiieieeiesie st ettt e e e ae s s sre e e e saeeae e e enaesnaesreenneas 144
9.3.28.2 Method QUENYLOBARES()eeveieeieierieeete sttt ettt s b et eb e bbb neene s 144
9.3.2.8.3 MEthOd QUEIYLOBAETIT().....ecueetereeieete sttt sttt sttt st b e st eb e e e b sneneeneas 144
93284 Method [0adL eVElNOLIfiCATON()vevereererrerieeete ettt e 145
9.3.285 Method SuSPENANOLIFICATON()e.veueerereeieterieet ettt eb e eie s 145
9.3.2.8.6 Method resumMENOLIFiCELION()veoveeerereeieti ettt eb e e b e seene s 145
9.3.29 INtErface Class IPFWOAMooiiiiree ettt et b et b bt b et be b 145
9.3.29.1 Method systemMDateTimEQUENY() ..eeuveieeieeieereerieeteeteseeseeseeseesteeseesaesreesseesseesseenseessesssessessses 146
9.3.2.10 INterface ClasS IPSVCOAM ...ttt e st et e b e e e e ste s e e saeesaeeseenseenaesnensnaesneas 146
9.3.2.10.1 Method systemMDateTimMEQUENY() ..eevverreereeiieeriertieteeeeseeseesee e estesaesaesseesseesseensessseessessaesseesses 146
9.3.3 Service DiSCOVErY INEIfate ClaSSES......uuiuiiieiieii ettt see sttt sttt s e et e e be e e eneeenaesraesneas 147
9331 Interface Class |PFWSENVICEDISCOVENYcuviiiiiiiiieieeste et eee s ste e te s ae e saeesaeenteeneeenaesneessaesnees 147
93311 MELNO [ISESENVICETYPES() «evereevertereeterienietesieseetesteseeteseeeeteseesesbeseeseebeseesesbeseesesseseesesbeseeneesesseseesens 147
93312 Method desCriDESEIVICETYPE()...eveerrereeirterieiete ettt b e et eb e e besreneeneas 148
9.3.3.13 MELhOO di SCOVEISEIVICE() ... veueeterteeete sttt ettt bbbt b b bese e b b nneneas 148
93314 Method i StREQI SLEr@ASEIVICES(). .. c.veverveeererieiete ettt st besneseene s 149
9.34 Service Instance Lifecycle Manager INterface ClasseS.........oouiireiniree e 149
9341 Interface Class |pServicel nstanceLifecyCleManagercocreeirenieeree e 149
93411 Method Create€ServiCEMANAOEN()coeerueiieeieeieereerte et et e s e e e e steeae e e sreesreesseeseeneeeneesraesreennens 150
9.34.1.2 Method destroyServiCEMaNAgEr()ccveereeieereeieseeeeeseese e e e e e te e seesreesreesseeteenseeneesnaesseennens 150
9.35 Service Registration INtErface ClaSSES........ciiiiieii ettt e e e s raesraesneas 150
9.35.1 Interface Class |pFWSErVICEREZISIIaLi ONcccvieiiceeceere e ae e e e s e e esraesnees 151
9.35.1.1 MethOd rEQISEEFSEIVICE() ...vveeveereeieriesiesee st e st e rte ettt e st e te e e e e e tesaeesreesreesseenseenseenseeneessaesseennens 151
9.35.1.2 Method announceServiCeAVa lability()oveeereere e 152
9.35.13 Method UNFegiStErSEIVICE()eeverreeerereeiete sttt ettt se e b et b e e eb e e e b b neeneas 152
93514 MethOd dESCrIDESEIVICE() ... v eueevereeeeterieiet sttt ettt b e et b e sneneas 153
9.35.15 Method UNBNNOUNCESENVICE()eveuertereeiirte etttk ettt sttt sttt st sb e et b e et se b sneneeneas 153
9.4 State TranSItioN DIGOIAMS.c.eoveuertiietirieiet sttt ettt s e b s b e s bt b e e e bt b e e e bt e b e s e st b e b e st e be b 154
94.1 Event Notification State Transition DiagramS.........c..eoueiiiiererieininieesieie e 154
94.2 Integrity Management State Transition DiagramsS.........cccciieeririeirienesesie s 154
94.21 State Transition Diagrams for IpFWLOaOdMaNagerccveuirieeienecieee e s ene e 154
9.4.21.1 [AIE SEBEE......eeee ettt ettt sttt sttt sttt st et et e e ket ne et et be st e ne e 154
94.21.2 Notification SUSPENAEA SLALE...........ccceeieeri et sa e ere e s e sraesreesneas 154
9.4.21.3 ACHVE SEAEE ...ttt sttt st sttt st e ettt ne b e Rt e be ettt a et et 155
94.3 Service Discovery State Transition DIiagramScc.ccveieeerieiee s esesieesee s sae e esreeseeeee e raesseesnees 155
944 Service Instance Lifecycle Manager State Transition DiagramsS.........coceeveeeeeeeeseeseeieseeseesesee e seeas 155
945 Service Registration State Transition DiagramsS........coeeeereirereee sttt 155
9451 State Transition Diagrams for |pFwWServiCeREgI StTatioN.coeereieerieerereeerie e 155
94511 SCF REGISIENEA SEALE.......c.eotiieeiiitiieeeete ettt bbb b s bbb e nb e e e s 156
94512 SCF ANNOUNCEM SEBEE........eeueeeeieiesieete sttt e e st te et se s e e e e eeeseesbessesaesseeneeneeneansesaeeneeneenseses 156
O TS Yo o o 071 =SS 156
10.1 SEIVICE PIOPEITY TYPES .. cuvieuieetiesteesteese et stesee st e steesteasteeseessaesteeseenteassesseesseesseeseenseanseaneensaesseesseesseenseanseanes 156
10.2 GENEral SEIVICE PrOPEITIES ... e iieeie ettt ettt e st e e e s e ree s reesteeatesaeesseesseesseessaesseenseenseeneeanes 157
10.21 SEIVICE NBITIE. ...ttt a et e e bbbt e b £ e ae e s e e s e b e besh e eb e eaeeh e et ens e e e sbesbesneebe e e enbennen 157
10.2.2 = VLo A< £ o] o TP O U PRPRURORPRN 157

ETSI

9 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

10.2.3 SEIVICE ID et bttt e b ek Rt h e e e R e R Rt b e Rt R e e e e e e R e bt eReeheene e e enrennen 157
10.2.4 TS VLo 1= o] o1 o 158
10.25 PIOGUCE INBITIE ...ttt e bbbt b e h e e bt h et e e e ne e bt se e e bt e aeemeeneesbeebesaeene e e et nes 158
10.2.6 [0 To (B0 Y= = Yo o TSP P TR SRPP 158
10.2.7 <<deprecated>> SUPPOrted INLEITACES.........ccivece et ne e e 158
10.2.8 (01 10 1S 158
R B = = = 1 o S 158
111 Common Framework Data DEfiNitiONScccoiiiiiiieceee et see e e 159
1111 LI LGS 1= 0172 o] o] 5 OSSPSR 159
11.1.2 LI O 1= 017N o] o115] = OO PU U P USSP 159
1113 TPDOMAINID ...ttt h bt e bbb e e aeehe e e e e e b e sR e eb e e bt eh e e e e e e nbeseesbeene e st e nnenres 159
11.1.4 BN o1 To 0= | 1Y/ oS 159
1115 TPENLEOPID ...ttt bttt e bbb e st e e e e e R b e Rt b e et R e e e e b e Rt ehenae e e nrenneras 159
11.16 QLI o 0] 0= Y]\ V=T 1T PSPPSR 159
11.1.7 QI oL 0o T= 1 YA = = S 160
11.1.8 TPPTOPEITY ... e e s e e 160
11.1.9 TOPTOPEITYLISE ...ttt ettt h bbbt h b e bbbk bt e h bt e bbb et b e n e enn 160
11.1.10 QLI =01 o1 5 = OSSP 160
11111 LI o USSR 160
11.1.12 QLI €S = LYot OSSR OTRP PP 160
11.1.13 TPSEIVICELISE .ttt b bbbt h bt bk bt e h Rt h bt beae bbbt e ens 160
11.1.14 TPSEIVICEDESCIIPLIONc.eeceeeeteeetee et e et e st e e e e e e e e e e s te et e e s e esteesaesseesseesaeensesneesnnesseanseansennsenns 160
11.1.15 TPSEIVICEID ...ttt ettt b e bbbt bt e a e e e e e ee e e b e s bt e heeae et e s e et e b e besReebeeaeene e e ennan 160
11.1.16 TPSEIVICEIDLISE ...ttt ettt e bbbt e e e e b bt Rt e b e et e e e e et e besheeb e et enneneenres 161
11.1.17 TPSEIVICEINSIANCEID ...ttt e st e e te et e et eesaessaeste e seeseeneesneesneesneenseanseensenns 161
11.1.18 T PSEIViCETYPEPIOPEITY ..o iteeie ettt e e s e s e e st e e te et e es e estessaesseesseesseesesneesneesneanseanseensenns 161
11.1.19 TPSENVICETYPEPTOPEITYLISE ...ttt bbbt b et 161
11.1.20 TPSErVIiCETYPEPIOPEITYIMOUE. ... ettt b bbb 161
11121 TPSErVICEPTOPEItY TYPENGBIME.cviiciiteeeiiet ettt bbb bbbt b et b b ne b e e ens 161
11.1.22 TPSENVICEPTOPEITYINGITIE. ...ttt b et b et b e bt bbb e e b e s e st bt e e b b neens 161
11.1.23 TPSErVICEPTOPEIYNGIMELISE.ceevieeeeiiteet ettt bbb e 161
11.1.24 TPSENVICEPTOPEIYV AIUE. ...ttt bbbt bbbt b e e st bt ne b e ens 161
11.1.25 TPSErViCEPrOPErtYV AlUELISL......cveeieceece ettt e s e st e e reente e e e sreesneenneeseensenns 162
11.1.26 RIS V0= (0] 0T S 162
11.1.27 I 0SS Yol 0] 0= Y I S 162
11.1.28 TPSEIVICESUPPIIENTD ...ttt e st e st e te et e s e eseessaesse e seeseeneesneesneesneenneansennsenns 162
11.1.29 TPSErViCETYPED ESCIIPLIONovieveeieeete e et e sttt et e et e e e s e e st e esteetees e ssaesta e se e teessesneesneesreesneenseanseensenns 162
11.1.30 T PSEIVICETYPENGIME ... ceeeteete et e e ste st e st e s e e steeeeaeeaseeeseesseenseesseesseessesseesseesaeessesneesneesneanseanseensenns 163
11131 TPSEVICETYPENBMELISE ...ttt bbbt b b ens 163
11.1.32 I IS L= o I o= STV PERPTTPTRSRURRR 163
11.2 Event Notification Data DefiNitiONS..........cccoiiriiiiieieee ettt e e e 163
1121 TPFWEVENINGIME......coe e e e e e s sn e ne e 163
11.2.2 TPFWEVENTCTITETA ...ttt b bbbt bbbt b e bbb e bt b et e s e bt e e bt nr e e enis 164
11.2.3 TPRWEVENTINTO. .t e e b bbbt et e e b et bt bt et nne e e ras 164
11.3 Trust and Security Management Data DEfiNItIONScviveiierieecie e neens 164
11.31 QLI 0T e el =S S] Y/ oL TP 164
11.32 T DA UL T Y. ettt e b e bt h et s e bt s bt e b e e ae e s e e e e e e bt e Rt eb e e aeeh e e e et e nbeebeebe et ennennentas 164
11.3.3 BN oi Y o 0] g @ o =1 o 1 1 2SS 165
11.34 IS oi Y o 0 g @r" o= o1 11§ N S 165
11.35 TPENCGA CCESSPIOPEITIES ...t etttk sttt sttt sttt sb e eb b e bbb bt s b e s st e bt s e e s e e bt eeeseeb e s ene bt st e neebesrennens 165
11.36 TPAUINDOMAIN ...ttt bt et b et b et b et b e s e bt b e e e b b e e eb e b e b e s e b e et e e ebenn e s ens 165
11.3.7 TPINEEITACENGITIE ... ettt bbbt bbbt b e e st bbbt nn e ens 166
11.38 TPINEETACENGIMELISE ...ttt bbbt b et b et b e b ens 166
11.39 TPSEIVICET OKEN. ...ttt bbb et b bt b e e bt e s e bt b eh bt b et bt e e e bt nr e s enn 166
11.3.10 TPSIGNALUrEANASENVICEMQE ...ttt ettt b et b et b et b et b e e e eb e e ese b et e e ebenb e ens 166
11.3.11 QI 05 T T 0T 72N Ko o] 11 oo S 167
11.3.12 TpSigningAlgorithmCapahi lityLiStceeceieeiee e ne e e ae e e neeaeenreens 167
11.3.13 TPAULNIMECNANISIT ...ttt e bbbt h e st s e e e e b e se e e b e s bt e heese e e e besbeebeeneenne e enras 167
11.3.14 TPAULNMECNANISIMILISE ...ttt b ettt e e e se bbb e e s et sbesbeeneeneeneenras 167
114 Integrity Management Data DefiNitiONS...........cocveiieiieiicesiesee ettt e e sraesnees 168
1141 TPACHVITY TESIRES. ...t bbb e bbbt et et et s bt e bt et nne e enras 168

ETSI

10 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.4.2 QI L =5 (= oo o S 168
1143 TPRAUIESEBES. ...ttt e b e bbbt b bR bt et bR n e 168
11.4.4 QI = S o=t o S 168
1145 TPRAUIESIBESSELcvcueeeteeeeeteese sttt b et b e bt e bt se bbb e b bt b bt e n e e 168
11.4.6 TPACHVITYTESLID ...ttt et e bbbt b e e 168
11.4.7 QI 10 = o = = T S 169
1148 TPSVCUNGVAITREBSON......c.euiitiiiiitieei ettt b e bt b bt b s et b et b e e ens 169
1149 TPPWUNGVAITREBSONoueiviiiietiitiietes ettt b ekt b e bbbt b bt a e b b e bt b e s e st bt st e e bt sr e e ens 169
11.4.10 TPLOAOLEVEL........oeeceeeeeee ettt bbbt bt b et b et h et b bt e e bt b e e bt e e 169
11411 TPLOAATRIESNON ...ttt bbb bbbt b bbb et bt ne b nn e ens 169
11.4.12 LI o1 o [T A TSRS 170
11.4.13 TPLOBAPOIICY ...ttt b e b et e bRt n et 170
11.4.14 TPLOBASIBLISHIC ...ttt se bbbt b bt bbbt r e e 170
11.4.15 TPLOBASEALISHCLISE. .. c.veveeeeieesr ettt b et 170
11.4.16 TPLOBASIBLISHCDELAvcveeeveeeesret ettt b et r e b et n e 170
11.4.17 TPLOBASIALISHCENTITYIDevceieeeesees ettt 170
11.4.18 QI o I0r= 0 S s o =1 Y/ L= S 171
11.4.19 TPLOAOSEALISHCINTO ...ttt b bbb bt s bt eeb et b e ne e ens 171
11.4.20 TPL OA0SEAL St CINTOT YO ...ttt ettt bbbt et b et b et nn e ens 171
11421 Bl o1 Moz o S e (o = o PSRRI 171
115 Service SUbSCription Data DEfINITIONScciiriiiriiee bbb 171
1151 TPPIOPEITYNGIME. ... e s s e s e 171
1152 TPPTOPEITYV BIUB.......cvieiiitireeieet ettt b et b et b e bt b bt b bt e e bt bt e e bt e bt nn s ens 171
11.53 I 0] (0] 0= 4 Y TSP 172
11.54 QI o 0 0 T= 1 Y = S 172
11.55 BN]1(o) 0] 7 1= S 172
1156 LI 0101 TSSO PSR P PRSPPI 172
11.5.7 QI 0SS V0= 11 o I S 172
11.5.8 TPSErVICECONIIACIIDLISE ... eeceeectiestieeee et se et e st e st e e e e tessaesaaesreesreesseeseesneesnnanseanseansenns 172
1159 TPPEISONNGITIE ... b e e e sae e e e aeesn e ne 172
11.5.10 TPPOSEBIAGUIESS ...ttt ettt bbbt h bt h bt s h e bt s b e e e s e bt b e bt bt e e st bt st e ea e e e e ens 172
11511 TPTEEPNONENUMDE ..ot bbbt b et b b b e nn e ens 172
11.5.12 LI o142 1 SO RTST 172
11.5.13 TPHOMEPEAGE ... e e e s e s e s 173
11.5.14 QI ESTo 0] T =SS 173
11.5.15 I 0 = £ o o PP 173
11.5.16 TPSEIVICESIAIDEALE. ... e eteeieee ettt st e e e s e e et et e eae e e teesbe e tees e estessaesseesseeseeantesneesseesneenseansennsenns 173
11.5.17 TPSEIVICEENUDALE. ... i ceeceeeeeeste ettt e et e e e s e s e e s te e teesteesteestessaesseesseesseeneesneesneesneanseansennsenns 173
11.5.18 T PSEIViCEREQUESLOL ... eeveeiteeteeieeteettestee st eeste e e e e seesseesaeesaeesseenseenseessesseessaesseesseesseensesneesneesnnenseansennsenns 173
11.5.19 QI 12 T 1gTe 0] | o S 173
11.5.20 TPSErViCESUDSCIi Pt ONPIOPEITIES.ttt b et b et b e s bbb e ens 173
11521 TPSEIVICECONIIBEL ...ttt ettt bbbt h et b e bt b e e bt bt s e bt b es bbb e st bt e e eb e e e s ens 173
11.5.22 TPSErViCECONIIACIDESCITPIION. ...ttt ettt b bbb e bbb b b sn e enis 174
11.5.23 TPCHENTAPPPIOPEITIES.cvieeeeetereeeet ettt bbbttt b s be bt bbbt b e s e b e s e st bt e e b b e e ens 174
11.5.24 TPClHENTAPPDESCITPIION. ...ttt b b a b e st b s s bbb s b b e e e b b e ens 174
11.5.25 LI 05= o | 1 SRS 174
11.5.26 TPSAGIDLISE ottt R e Rt Rt b R n et 174
11.5.27 QI 05 0 | L=< ot] (o] o S 174
11.5.28 LI 05 o OSSPSR P PPPTSPPRO 174
11.5.29 TPSEIVICEPIOTIEID ...ttt et eestessaesaeesreesteeneesnnessnesneanneanseensenns 175
11.5.30 I 0SS Vo= (o) = = S 175
11.5.31 QI 0SS V0= (o = S 175
11.5.32 TPSErVICEPTOfIIEDESCIIPLION. ...ttt b e b et b b nn e ens 175
11.5.33 TPSAGPIOTTTEPAIT.........ceeeteeeiete ettt b bbbt b e bbb e e bbb e ens 175
11.5.34 TPAAASAGM EMDEISCONTIICE......cviitieetirtee bbb 175
11.5.35 TPAAASagM EMBDErSCONTIICILISE ... c.eeeitiectert et 176
11.5.36 TPASSIgNSAgT 0SerViCEPTOfi lECONTIICE.c.eivieeeiieeee s 176
11.5.37 TpAssignSagT 0ServiceProfil @CONTIICILISEvveieeece e 176
12 EXCEPLION ClIBSSES......cviuiiiiiitiiitet ettt ettt b bbb et e bbb bt e b e bt e bt e b e bt nn s e 176
Annex A (nor mative): OMG IDL Description of Frameworkccoeverereieinenineseseseeeenes 178

ETSI

11 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Annex B (informative): W3C WSDL Description of Framework..........ccccecvveeeeveieeseseese e 179
Annex C (informative): Java API Description of the Framework ... 180
Annex D (informative): Contents of 3GPP OSA R5 FrameworK..........ccoceoevereieeienenineneseseeeenes 181
Annex E (informative): ReCOrd of ChanQES........ccceiiiiei et 182
T O [1 =g o= S 182
E.l1.1 N L TP P PP 182
E.1.2 == o =0 S 182
E.1.3 REMOVEX. ...ttt bbbt b et e b e e e e R e e bt e bt eb e e et eae e e e ne et e sheebeeneene e e ennas 182
N V= 0o 183
E2.1 N B ettt et e e et e e e b e e e e ate e e e naee e e R eee e e R Eeeeeanee e e e heeeeeanEeeeeanteeeeaaneeeeanteeeeateeeeeanreeeeareeeean 183
E.2.2 (DL o < or = o IO TSP PSP UPSTPRPRSURPRRN 183
E.2.3 1700 1= P STRS 183
E24 1110)Y7="o SRS 183
IR T I T = W D= 1 010 P 184
E.3.1 N L TP P PP 184
E.3.2 177 oo [1= S 184
E.3.3 REMOVEX. ...t bttt b bbbt bt et e b e e e e e R e e b e e bt e b e e st eae e e e e et e seeebeeneene e e ennas 184
S VLo oy . o o= (=TS 184
EA41 N B ettt r e et e e s b e e e e aa bt e e e —ee e e b eee e e R Eeeeeanee e e aheeeeeanEeeeeanteeeeanneeeeanaeeeeaneeeeeanneeeeareeeaan 184
E4.2 (DL o = or = o IO OSSP PSP PP STURPRSRURPRRN 184
E4.3 17700 1= TR 185
E4.4 REMOVEX. ...ttt b e bbbt b et e e e e e e R e e b e eh e eb e e et eae e e e e et e seeebeeneene e e ennas 185
T (o= o o] = TR 185
ES.1 N L TP P PP 185
E.5.2 1700 1= P STRS 185
E5.3 1110)Y7="o SRS 185
BT 1 1 £ 185
L TES 0] TSSOSO 186

ETSI

12 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN), and is now submitted for the ETSI standards Membership Approva Procedure.

The present document is part 3 of amulti-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 202 915) is structured in the following
parts:

Part1: "Overview";

Part 2. "Common Data Definitions";
Part3: " Framework";

Part4: "Cdl Control";

Part5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF";

Part 13: "Policy Management SCF";
Part 14: "Presence and Availability Management SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 4 set of specifications.

A subset of the present document isin 3GPP TS 29.198-3 V5.1.0 (Release 5).

ETSI

http://www.java.sun.com/products/jain
http://www.parlay.org/
http://webapp.etsi.org/IPR/home.asp

13 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

1 Scope

The present document is part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

. Sequence Diagrams

. Class Diagrams

. Interface specification plus detailed method descriptions
. State Transition diagrams

. Data Definitions

. IDL Description of the interfaces

. WSDL Description of the interfaces

. Reference to the Java API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

Thereferenceslisted in clause 2 of ES 202 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 202 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1. Overview".

ETSI ES 202 915-2: "Open Service Access (OSA); Application Programming Interface (API); Part 2: Common Data
Definitions’.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 202 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in ES 202 915-1 apply.

ETSI

14 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

4

Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, between the Network
Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these
interfaces are represented by the yellow circles in the diagram below). The description of the Framework in the present
document separates the interfaces into these three distinct sets: Framework to Application interfaces, Framework to
Enterprise Operator interfaces and Framework to Service interfaces.

Enterprise Operator

[

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. Itisa
policy decision for the application whether it must authenticate the framework or not. It is a policy decision for
the framework whether it allows an application to authenticate it before it has completed its authentication of
the application.

Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previoudly authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

Discovery of framework and network service capability features: After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after

successful authentication.

Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the
service agreement beforeit is allowed to access any network service capability feature.

ETSI

15 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

- Accessto network service capability features: The framework must provide access control functions to
authorise the access to service capability features or service data for any APl method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

- Registering of network service capability features. SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon request about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server.

Basic mechanism between Framework and Enterprise Operator:

- Service Subscription function. This function represents a contractual agreement between the Enterprise
Operator and the Framework. In this subscription business model, the enterprise operators act in the role of
subscriber/customer of services and the client applications act in the role of users or consumers of services.
The framework itself actsin the role of retailer of services.

The following clauses describe each aspect of the Framework in the following order:
. The sequence diagrams give the reader a practical idea of how the Framework isimplemented.
. The class diagrams clause show how each of the interfaces applicable to the Framework relate to one another.

. The interface specification clause describesin detail each of the interfaces shown within the class diagram
part.

. The Sate Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

. The data definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the common data types part ES 202 915-2.

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Framework or Service interface, the
exception P METHOD_NOT_SUPPORTED shall be returned to any call of that method.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name | p<name>.
The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name | pSvc<name>,
while the Framework interfaces are denoted by classes with name |pFw<name>.

ETSI

16 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

5.1.2 Method descriptions

Each method (APl method "call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Er r ' suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant | pApp<name> or

| pSvc<nane> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

53.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface’. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

ETSI

17 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

5.4 Generic Service Interface

54.1 Interface Class IpService
Inherits from: Iplnterface

All service interfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applnterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

54.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs.

Parameters
applnterface: in IplnterfaceRef

Specifies areference to the application interface, which is used for callbacks
Raises
TpCommonExceptions, P_INVALID_INTERFACE_TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or cal leg. It is not allowed to invoke this method on an
interface that does not use SessionlDs.

Parameters

applnterface: in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

sessionID : in TpSessionID
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

ETSI

18 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, aNaming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that thisis a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface supports only the initiateA uthenticationWithVersion method to allow the
authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs.
Thisis done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces
provided by the Framework.

Client . Iplnitial : IpAPILevelAuthentication : IpAccess Framework

IgCIiemAPILe\EAuthemication

T T
| |
T‘L: initiateAuthenticationWithVersion(1

v

|
2: selectAuthenticationMechanism()
1

|
3: challenge())

b
—
.

| 4: authenlicalionSuc‘@eeded()

T
|
|

5: ‘phallenge()
T
|
|

6: authenticationSucceeded()

7: requestAccess()

g

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
I
|
|
|
|
|
|
|
- | |
|
|

8 Sel(%clSigningAIgorilhm()

T 9:!obtaininterface()
I

:
u

G
K

1: Initiate Authentication.

The client invokes initiateA uthenticationWithVersion on the Framework's "public” (initial contact) interface to initiate
the authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

ETSI

19 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

2. Select Authentication Mechanism.

The client invokes sel ectA uthenti cationM echanism on the Framework's APl Level Authentication interface, identifying
the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be
used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be
supported. Note however that the framework need not accept this algorithm.

3: The client authenticates the Framework, issuing a challenge in the challenge() method.
4. Theclient provides an indication if authentication succeeded.

5: The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations
of the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies
a challenge and the client returns the correct response. The Framework could authenticate the client before the client
authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the
client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any
challenge issued by the client until the Framework has successfully authenticated the client.

6: The Framework provides an indication if authentication succeeded.
7. Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the
Framework's APl Level Authentication interface, providing in turn areference to its own access interface. The
Framework returns areference to its access interface. The success or failure of the client's authentication of the
Framework does not affect the client's right to invoke requestAccess.

8: The client and framework negotiate the signing algorithm to be used for any signed exchanges.

9: The client invokes obtainlnterface on the framework's Access interface to obtain areference to its service discovery
interface.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of all service
instances. This type of termination is unusual, but possible with the terminateA ccess method. Note that if at any point
the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication
failing, the framework should terminate al outstanding service agreements for that client, and should take steps to
terminate the client's access session WITHOUT invoking terminateAccess() on the client. Thisfollows a generally
accepted security model where the framework has decided that it can no longer trust the client and will therefore sever
ALL contact withit.

ETSI

20 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

‘ Applogic H

‘ - IpAccess

‘ IpAppSenviceAgreementManagement ‘ IpSeniceAgreementManagement ‘ IpUserLocationCamel ‘
T T T

IpClientAccess IpMultiPartyCallControlManager
T T T T
| | | | | | |
! ! IL: signServiceAgreement() | | | |
} } } . | |
		/U			
	2: signSenviceAgreement()				
t t t					
		/U			
		3: createNotification()			
t + + + + t					
			/U		
[l					
: : : 4:mggeredLocallur?ReportlrngtanReq() : : :					
				u	
	5: terminateAccess()				
I					
u\	H				

1: Following successful authentication and service discovery, the client initiates the service agreement signing process
(not shown). Thisis completed when the client invokes signServiceAgreement on the Framework's
I pServiceAgreementM anagement interface, and a reference to an instance of a service manager interface is returned.

2: Theclient (application) had initiated service agreement signing process for a second service agreement (not shown),
and when the client signs this second service agreement, a reference to an instance of another service manager, for
another service type, isreturned.

3: The application starts to use the new service manager interface.
4. The application starts to use the other new service manager interface.

5: The framework decides to terminate the application's access session, and to terminate all its service agreements. This
isan unusual and drastic step, but could be e.g. due to violation or expiry of the application's service agreements, or
some problem within the framework itself. The framework will also destroy each of the service managers the
application was using (not shown). The application is now no longer authenticated with the framework, and all
Framework and service interfaces it was using are destroyed.

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of al serviceinstances. This
type of termination is unusual, but possible with the terminateAccess method.

App Logic o : IpAccess
IpClientAccess

IpMulti PartyCanntrolManaggr IQUserLocgtionCamel

1: destroyNotification()

2: triggeredLoo‘ationReportingStop()
1

3: terminateAccess()

—

i J

ETSI

21 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

1. The application terminates its use of the service manager instances in a controlled manner.

3: The application decides to terminate its access session and all its service agreementsin one go. The framework will
also destroy each of the service managers the application was using (not shown). The application is now no longer
authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The application
could have terminated its service agreements one by one, by invoking terminateServiceAgreement on the Framework's
IpServiceAgreementManager interface, and then invoked terminateAccess on the Framework's |pAccess interface,
which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have
mutually authenticated one another using an underlying distribution technology mechanism, or the client and the
framework recognise each other as atrusted party, not requiring authentication.

Client . Ipinitial Framework . IpAuthentication . IpAccess

T
11 initiateAuthenticationWithVersion() | |
| | |
|

i |
U Underlying Distribution Technology Mechanism is used for application AN
identification and authentication, or both the client and the Framework
recognise each other as trusted parties not requiring AP| level
authentication. There is no requirement as to when authentication should
take place using the Underlying Distribution Technology Mechanism:
before initiateAuthenticationWithVersion is invoked, after requestAccess is
invoked, or between the two.

2: requesltAccess()
|

]
|
|
|
|
|
l
| |
3, selectSigningAlgorithm()

u
!
u

|
|
4: obtaininterface()
|
|
|
|
|
|
|
|
|
|

1: Theclient callsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication. What that mechanismis, if it even exists, is outside the scope of the
API.

2: The client invokes the requestAccess method on the Framework's Authentication interface.

3: If the authentication was successful, the client and the framework can negotiate, on the framework's Access
interface, the signing algorithm to be used for any signed exchanges.

4. The client can now invoke obtainlnterface on the framework's Access interface to obtain areference to its service
discovery interface.

ETSI

22 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signaturesto ensure integrity. The inclusion of cryptographic processes and
digital signaturesin the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully compl eted.

1) Theclient callsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateA uthenticationWithVersion method can be used to specify the specific
process, (e.g. CORBA security). OSA defines a generic authentication interface (APl Level Authentication), which can
be used to perform the authentication process. The initiateA uthenticationWithV ersion method allows the client to pass a
reference to its own authentication interface to the Framework, and receive a reference to the authentication interface
preferred by the client, in return. In this case the API Level Authentication interface.

2) Theclient invokes the selectAuthenticationM echanism on the Framework's API Level Authentication interface. This
includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the
capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the
Framework chooses one option, defined in the prescribedM ethod parameter. In some instances, the authentication
mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for
example CHAP prescribes the MD5 hashing agorithm as the minimum to be supported, however the framework need
not accept this agorithm.

3) The application and Framework interact to authenticate each other by using the challenge method. For an
authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response
exchanges. This authentication protocol is performed using the authenticate method on the API Level Authentication
interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There arein fact
two authentication processes. authentication of the client performed by the Framework , and authentication of the
Framework performed by the client. Mutual authentication is achieved by both these processes terminating successfully.
Mutual authentication may not necessarily be required, i.e. it could be that a client may not need to authenticate the
Framework. There is aso no required order for the execution of these two authentication processes, however, the client
shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any
challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

ETSI

23 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

: IpClientAPILevelAuthentication Client . IpInitial Framework : IpAPILevelAuthentication

T T [
| | |

| | |
1: initiateAuthenticationWithVersion() |
1 1 |

|

|

IpClientAPlLevel Authentication
reference is pased to framework
and IpAP IL evel Authentication
reference isreturned.

| |
2: selectAuthenticationMechanism()
| |

| i

Thisisan example of the AN
sequence of

authentication

| operations. Different

| authentication protocols

! may have different
requirements on the

order of operations.

3: challenge()

|
|
l
4: {:hallenge()

5: challenge()

6: authenticationSucceeded()

8: authenti:cationSucceeded():

]
: : u
]

|
|
|
|
|
|
|
Il
|
|
7: é‘:hallenge()
]
|

| |

9: requestAccess() :
|

[

IpClientAccess reference is
passd to Framework, and

: IpAccess reference is
| returned.
|
|
|

u
:
!

ETSI

6.2

Class Diagrams

<<Interface>>
IpInitial

(from Framework interfaces)

®<<deprecated>> initiateAuthentication()
®<<new>> initiateAuthenticationWithVersion()

24 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<lInterface>>
IpClientAccess
from Clientinterfaces)

®terminateAccess()
N

|
|
|
<<uses>> |
|
|
|

<<Interface>>
IpClientAPILevelAuthentication
(from Client interfaces)

®<<deprecated>> authenticate()
®abort Authentication()
®WauthenticationSucceeded()
®<<new>> challenge()
//‘h\
<<uses>> |
I

<<lInterface>>
IpAccess
(from Framework interfaces)

<<Interface>>
IpAPILevelAuthentication
(from Framework interfaces)

6.3

6.3.1

®obtaininterface()
®obtaininterfaceWithCallback()
®<<deprecated>> endAccess()
Histinterfaces()

®<<deprecated>> releaselnterface()
®<<new>> selectSigningAlgorithm()
W< <new>> terminateAccess()

< <new>> relinquishinterface()

®<<deprecated>> selectEncryptionMethod()
®<<deprecated>> authenticate()
FabortAuthentication()
FauthenticationSucceeded()

®<<new>> selectAuthenticationMechanism()
®<<new>> challenge()

<<Interface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 1: Trust and Security Management Package Overview

Interface Classes

Trust and Security Management Interface Classes

The Trust and Security Management Interfaces provide:

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a

different Framework interface:

1)
2)
3)

Authentication;

the first point of contact for a client to access a Framework provider;

the client with a portal to access other Framework interfaces.

Initial Contact with the Framework;

Access to Framework and Service Capability Features.

ETSI

the authentication methods for the client and Framework provider to perform an authentication protocol;

the client with the ability to select a service capability feature to make use of;

25 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: Iplnterface

<<Interface>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void
authenticationSucceeded () : void

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the deprecated method
initiateAuthentication() is used on the Iplnitial interface instead of initiateAuthenticationWithVersion(). This method
will be removed in alater release of the specification.

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client
is deemed successful when the authenticationSucceeded method is invoked by the Framework.

Theinvocation of this method may be interleaved with authenticate() calls by the client on the
IpAPILevel Authentication interface. The client shall respond immediately to authentication challenges from the
Framework, and not wait until the Framework has responded to any challenge the client may issue.

Returns <response> : Thisis the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionM ethod().

Parameters

challenge: in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns
TpOctetSet

6.3.1.1.2 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework.
This method isinvoked if the framework wishes to abort the authentication process before it has been authenticated by
the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client
should occur.) Callsto this method after the Framework has been authenticated by the client shall not result in an
immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again,
however).

ETSI

26 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Parameters
No Parameters were identified for this method

6.3.1.1.3 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may
invoke requestAccess on the Framework's APILevel Authentication interface following invocation of this method.

Parameters
No Parameters were identified for this method

6.3.1.1.4 Method <<new>> challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responsesto
the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The
authentication of the client is deemed successful when the authenti cationSucceeded method is invoked by the
Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevel Authentication
interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the
Framework has responded to any challenge the client may issue.

This method shall only be used when the method initiateAuthenticationWithVersion() is used on the Iplnitia interface.

Returns <response> : Thisis the response of the client application to the challenge of the framework in the current
sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response
packet shall be used to carry the response string. The Response packet shall make the contents of this returned
parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value.

Parameters

challenge: in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet
shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain
any useful value.

Returns
TpOctetSet

ETSI

27 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.3.1.2 Interface Class IpClientAccess
Inherits from: Iplnterface

IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access
session.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : void

6.3.1.2.1 Method terminateAccess()
The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any callsto these
interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session
or on behalf of the client during this access session shall be terminated. If at any point the framework's level of
confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should
terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session
WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the
framework has decided that it can no longer trust the client and will therefore sever ALL contact withiit.

Parameters

terminationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

Thisisthe agorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to I pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The framework uses thisto confirm itsidentity to the client. The client
can check that the terminationText has been signed by the framework. If a match is made, the access session is
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE

ETSI

28 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.3.1.3 Interface Class Iplinitial
Inherits from: Iplnterface

The Initial Framework interface is used by the client to initiate the authentication with the Framework.

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication (clientDbomain : in TpAuthDomain, authType : in TpAuthType) :
TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,
frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present
document.

This method isinvoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method.

Returns <fwDomain> : This provides the client with aframework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IpInterfaceRef;
b

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authlnterface parameter is a reference to the authentication interface of the framework. The type of thisinterfaceis
defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain
Thisidentifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IplnterfaceRef;
¥

The domainlD parameter is an identifier either for a client application (i.e. TpClientApplD) or for an enterprise operator
(i.e. TpENtOpID), or for an instance of aregistered service (i.e. TpServicel nstancel D) or for a service supplier (i.e.
TpServiceSupplierl D). It is used to identify the client domain to the framework, (see authenticate() on

IpAPILevel Authentication). If the framework does not recognise the domaini D, the framework returns an error code
(P_INVALID_DOMAIN_ID).

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TY PE).

ETSI

29 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

authType: in TpAuthType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the | pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication isthe default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authlnterface parameters are references to interfaces of type Ip(Client) APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication which is used when an underlying distribution technology authentication mechanism is used.

Returns
TpAuthDomain
Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE

6.3.1.3.2 Method <<new>> initiateAuthenticationWithVersion()

This method isinvoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method using the new method with support for backward compatibility in the framework. The
returned fwDomain authl nterface will be selected to match the proposed version from the Client in the Framework
response. |f the Framework cannot work with the proposed framework version the framework returns an error code
(P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with aframework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IpInterfaceRef;
b

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authlnterface parameter is a reference to the authentication interface of the framework. The type of thisinterfaceis
defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain
Thisidentifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IplnterfaceRef;
¥

The domainlD parameter is an identifier either for a client application (i.e. TpClientApplD) or for an enterprise operator
(i.e. TpENtOpID), or for an instance of aregistered service (i.e. TpServicel nstancel D) or for a service supplier (i.e.
TpServiceSupplierID). It isused to identify the client domain to the framework, (see challenge() on

IpAPILevel Authentication). If the framework does not recognise the domaini D, the framework returns an error code
(P_INVALID_DOMAIN_ID).

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

ETSI

30 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

authType: in TpAuthType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the | pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication isthe default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authlnterface parameters are references to interfaces of type Ip(Client) APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion : in TpVersion

Thisidentifies the version of the Framework implemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns
TpAuthDomain
Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE, P_INVALID_VERSION

6.3.1.4 Interface Class IpAuthentication
Inherits from: Iplnterface

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The authentication process should in this case be done with some underlying distribution technology
authentication mechanism, e.g. CORBA Security.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessinterface : in IpinterfaceRef) : IpinterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the
IpAuthentication or IpAPILevel Authentication interface. This allows the client to request the type of access they
require. If they request P_OSA_ACCESS, then areference to the IpAccessinterface is returned. (Operators can define
their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code
(P_ACCESS_DENIED) isreturned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not
being used, since there is no indication to the client at API level that it is authenticated with the Framework.

Returns <fwA ccessinterface> : This provides the reference for the client to call the access interface of the framework.

ETSI

31 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Parameters

accessType: in TpAccessType

Thisidentifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) isreturned.

clientAccessinterface: in IplnterfaceRef

This provides the reference for the framework to call the accessinterface of the client. If the interface reference is not of
the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns
I plnterfaceRef
Raises

TpCommonExceptions, P_ ACCESS DENIED, P_INVALID_ACCESS TYPE,
P_INVALID_INTERFACE_TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: | pAuthentication.

The API Level Authentication Framework interface is used by the client to authenticate the Framework. It isaso used
to initiate the authentication process.

<<Interface>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) :
TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void
authenticationSucceeded () : void

<<new>> selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) :
TpAuthMechanism

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the
IpAPILevel Authentication interface is obtained by using the deprecated method initiateA uthentication() instead of
initiateA uthenticationWithVersion() on the Iplnitial interface. This method will be removed in alater release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throwsthe P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the
client's authenticate() method (the wait isto ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

ETSI

32 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns <prescribedMethod> : Thisis returned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedM ethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps: in TpEncryptionCapabilityList
Thisis the means by which the encryption mechanisms supported by the client are conveyed to the framework.

Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P ACCESS DENIED, P NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

6.3.1.5.2 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevel Authentication
interface is obtained by using the deprecated method initiateAuthentication() instead of
initiateA uthenticationWithVersion() on the Iplnitial interface. This method will be removed in alater release.

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainlD received in the initiateA uthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is
deemed successful when the authenti cationSucceeded method isinvoked by the client.

The invocation of this method may be interleaved with authenticate() calls by the framework on the client's
APILevel Authentication interface.

Returns <response> : Thisisthe response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

Parameters

challenge: in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge will be encrypted with the mechanism prescribed by sel ectEncryptionMethod().

Returns
TpOctetSet

Raises
TpCommonExceptions, P_ ACCESS DENIED

ETSI

33 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.3.1.5.3 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This
method is invoked if the client no longer wishes to continue the authentication process, (unless the framework
responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this
method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess
operation on I pAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been
properly authenticated. If this method isinvoked after the client has been authenticated by the Framework, it shall not
result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client
again, however).

Parameters
No Parameters were identified for this method

Raises
TpCommonExceptions,P_ ACCESS DENIED

6.3.1.5.4 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method
have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework'’s successful
authentication of the client.

Parameters
No Parameters were identified for this method

Raises
TpCommonExceptions, P_ ACCESS DENIED

6.3.1.5.5 Method <<new>> selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of
API level Authentication. The Framework will select one of the suggested authentication mechanisms and that
mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a
result of the response to this method remains valid for an instance of IpAPILevel Authentication and until this method is
re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be
found, the framework throwsthe P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

This method shall only be used when the IpAPILevel Authentication interface is obtained by using
initiateAuthenticationwWithVersion() on the Iplnitial interface.

Returns: selectedMechanism. Thisis the authentication mechanism chosen by the Framework. The chosen mechanism
shall be taken from the list of mechanisms proposed by the Client.

Parameters

authM echanismList : in TpAuthM echanismList
The list of authentication mechanisms supported by the client.

ETSI

34 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns

TpAuthM echanism

Raises

TpCommonExceptions, P_ ACCESS DENIED, P NO_ACCEPTABLE_AUTHENTICATION_MECHANISM

6.3.1.5.6 Method <<new>> challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct
responses to the challenges presented by the client. The number of exchanges is dependent on the policies of each side.
The authentication of the framework is deemed successful when the authenticationSucceeded method isinvoked by the
client.

The invocation of this method may be interleaved with challenge() calls by the framework on the client's
APILevel Authentication interface.

This method shall only be used when the IpAPILevel Authentication interface is obtained by using
initiateA uthenticationWithVersion() on the Iplnitial interface.

Returns <response> : Thisis the response of the framework to the challenge of the client in the current sequence. The
formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be
used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name
field of the CHAP Response packet shall be present but not contain any useful value.

Parameters

challenge: in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet
shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain
any useful value.

Returns
TpOctetSet

Raises
TpCommonExceptions, P_ ACCESS DENIED

ETSI

35 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.3.1.6 Interface Class IpAccess

Inherits from: Iplnterface

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName) : IpinterfaceRef

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, clientinterface : in IpinterfaceRef) :
IpinterfaceRef

<<deprecated>> endAccess (endAccessProperties : in TpEndAccessProperties) : void
listinterfaces () : TpinterfaceNameList
<<deprecated>> releaselnterface (interfaceName : in TpinterfaceName) : void

<<new>> selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) :
TpSigningAlgorithm

<<new>> terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

<<new>> relinquishinterface (interfaceName : in TpinterfaceName, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

6.3.1.6.1 Method obtaininterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainlnterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwlinterface> : Thisisthe reference to the interface requested.

Parameters

interfaceName: in TplnterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns

I plnterfaceRef

Raises

TpCommonExceptions,P_ ACCESS DENIED,P_INVALID_INTERFACE_NAME

6.3.1.6.2 Method obtaininterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtaininterface
method should be used when no callback interface needs to be supplied.)

Returns <fwlnterface> : Thisis the reference to the interface requested.

ETSI

36 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Parameters

interfaceName: in TplnterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientinterface: in I pl nterfaceRef

Thisisthe reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainl nterface method should be used when no callback interface needs to be
supplied.) If the interface referenceis not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns
I plnterfaceRef
Raises

TpCommonExceptions, P ACCESS DENIED, P_INVALID_ INTERFACE_NAME,
P_INVALID_INTERFACE_TYPE

6.3.1.6.3 Method <<deprecated>> endAccess()

This method is deprecated and will be removed in alater release. It is replaced with terminateAccess. The endAccess
operation is used by the client to request that its access session with the framework is ended. After it isinvoked, the
client will no longer be authenticated with the framework. The client will not be able to use the references to any of the
framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties: in TpEndAccessProperties

Thisisalist of propertiesthat can be used to tell the framework the actions to perform when ending the access session
(e.0. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

Raises
TpCommonExceptions,P_ ACCESS DENIED, P_INVALID_PROPERTY

6.3.1.6.4 Method listinterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainl nterface() or obtainl nterfaceWithCallback().

Returns <frameworklnterfaces> : The frameworklnterfaces parameter contains a list of interfaces that the framework
makes available.

Parameters
No Parameters were identified for this method

ETSI

37 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns

TplnterfaceNameL ist

Raises

TpCommonExceptions, P_ ACCESS DENIED

6.3.1.6.5 Method <<deprecated>> releaselnterface()

This method is deprecated and will be removed in alater release. It is replaced with relinquishlnterface. The client uses
this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName: in TplnterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises
TpCommonExceptions, P_ ACCESS DENIED, P_INVALID_INTERFACE_NAME

6.3.1.6.6 Method <<new>> selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for usein all cases
where digital signatures are required. The Framework will select one of the suggested a gorithms. This method shall be
the first method invoked by the client on IpAccess. The algorithm chosen as aresult of the response to this method
remains valid for an instance of IpAccess and until this method is re-invoked by the client. If an algorithm that is
acceptable to the framework within the capability of the client cannot be found, the framework throws the
P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. Thisisthe signing algorithm chosen by the Framework. The chosen algorithm shall be
taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps: in TpSigningAlgorithmCapabilityList
The list of signing algorithms supported by the client.

Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P ACCESS DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM

6.3.1.6.7 Method <<new>> terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it
isinvoked, the client will no longer be authenticated with the framework. The client will not be able to use the
references to any of the framework interfaces gained during the access session. Any callsto these interfaces will fail.
Also, all remaining service instances created by the framework either directly in this access session or on behalf of the
client during this access session shall be terminated.

ETSI

38 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Parameters

terminationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature” construct shall not be used (i.e. the eContent field in the EncapsulatedContentinfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The
framework can check that the terminationText has been signed by the client. If a match is made, the access session is
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID_SIGNATURE

6.3.1.6.8 Method <<new>> relinquishinterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName: in TplnterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

terminationText : in TpString

Thisisthe termination text describes the reason for the release of the interface. Thistext is required simply because the
digital Signature parameter requires aterminationText to sign.

digitalSignature: in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature” construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The
framework can check that the terminationText has been signed by the client. If a match is made, the interfaceis
released, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

ETSI

6.4.1

6.4.1.1

6.4.1.2

authenticate / Client
re-authenticates FW

39 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Trust and Security Management State Transition Diagrams

State Transition Diagrams for IplInitial

initiateAuthentication / return new IpAuthentication
initiat eAuthentic ationWithVersion / return new

IpAuthentication
Active

Figure 2: State Transition Diagram for IpInitial

State Transition Diagrams for IpAPILevelAuthentication

IpInitial. initiateAuthe ntication

selectEncryptionMethod

authenticate / Client -
selectEncryptionMethod
challenges FW \/ yp

Authenticating
‘ Fram ework ‘

FW Aborts
NpClientAP ILewel Authentication.abort Authentication

authenticationSucceeded / Client satisfied
with FW response

[selectEncryptionMethod

‘ Framework
‘ Authenticated

Figure 3. STD for IpAPILevelAuthentication: Client authenticates Framework using deprecated

initiateAuthentication() and authenticate() method combination

ETSI

40 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Ipinitial.initiateAuthenticationWithVersion

o

selectAuthenticationMechanism

selectAuthenticationMechanism challenge / Client
challenges FW

Authenticating
‘ Framework

authenticationSucceeded / Client
satisfied with FW| response FW Aborts
ApclientAPILevel Authentication. abortAuthentication

challenge|/ Client
re-challenges Framework

selectAuthenticationMechanism

‘ Framework
‘ Authenticated

Figure 4: STD for IpAPILevelAuthentication: Client authenticates Framework using
initiateAuthenticationWithVersion() and challenge() method combination

ETSI

41 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

IpInitial.initig

selectEncry;

requestAccess
"P_ACCESS_DENIED

selectEncryptionMethod

FW satisfied with
NpClientAPILewlAuthenticatif

FW re-authenticates Client
ANpClientAPILewvelAuthentication.authenticate

Figure 5. STD for IpAPILevelAu
deprecated initiateAuthenti

D

ptionM ethod

Authenticating

Client

f
ment

Authenticated

teAuthentication

requestAccess
P_ACCESS_DENIED

®

Invalid Client Response

FW challenges Client
NpClientAPILevelAuthentication.authenticate

abortAuthentication /
Client Aborts

Client response
pn.authenticationSucceeded

N

requestAccess / new IpAccess
selectEncryptionMethod

thentication: Framework authenticates Client using
cation() and authenticate() method combination

ETSI

42 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

IpInitial.initiateA uthenticationWith Version

requestAccess
"P_ACCESS_DENIED,

| \‘\
Idle _

7\

@

Invalid Client Response

selectAuthenticationMechanism

requestAccess
"P_ACCESS_DENIED

selectAuthenticationMechanism

FW challenges Client
ApClientAPILevelAuthentication.challenge

Authenticating

ﬂ Client

abort Authentication
FW satisfied with Client response / Client Aborts

ANpClientAPILevelAuthentication.authenticationSucceede!

requestAccess / new IpAccess
selectAuthenticationMechanism

FW rerchallenges Client
ANpClientAPILe\elAuthentication.challenge

Client
Authenticated

Figure 6: STD for IpAPILevelAuthentication: Framework authenticates Client using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.1 Idle State

When the client has invoked the Iplnitial initiateAuthentication or the initiateAuthenticationWithV ersion method, an
object implementing the IpAPILevel Authentication interface is created. If the client used initiateAuthentication, the
client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used
initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using

sel ectAuthenti cationM echanism.

6.4.1.2.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate
method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated
mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationM echanism followed
by selectAuthenticationM echanism. The Framework may either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
isnot yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then a transition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to
choose another hash algorithm.

ETSI

43 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.4.1.2.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework, by calling the authenticate method if it had previously used the

initiateA uthentication method on Iplnitial, or by calling the challenge method if it had previously used the

initiateA uthenticationWithVersion method on Iplnitial, resulting in atransition back to Authenticating Framework state.
The client may also call selectEncryptionM ethod to choose other encryption capabilities, or call

sel ectA uthenti cationM echanism to choose another hash al gorithm.

6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the
authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionM ethod
(deprecated mechanism). The Framework invokes the challenge on the client if the client has used

sel ectAuthenti cationM echanism followed by sel ectAuthenticationM echanism. When the Framework has processed the
response from the A uthenticate request on the client, the response is analysed. If the responseis valid but the
authentication processis not yet complete, then another Authenticate request or challenge is sent to the client. If the
responseis valid and the authentication process has been completed, then atransition to the state Client Authenticated is
made, the client isinformed of its success by invoking authenticationSucceeded. In case the response is not valid, the
Authentication object is destroyed. Thisimplies that the client has to re-initiate the authentication by calling once more
the initiateAuthentication or the initiateAuthenticationWithV ersion method on the Iplnitial interface. At any time the
client may abort the authentication process by calling abortAuthentication on the Framework's

IpAPILevel Authentication interface. The client may also call selectEncryptionMethod to choose other encryption
capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the
framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether
initiateAuthentication or initiateA uthenticationWithV ersion was previously used, is sent to the client and a transition
back to the AuthenticatingClient state occurs. The client may aso call selectEncryptionMethod to choose other
encryption capabilities, or call selectAuthenticationM echanism to choose another hash algorithm.

ETSI

44 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

6.4.1.3 State Transition Diagrams for IpAccess

Ipinitial.requestAccess

obtaininterface / return requested FW interface
obtaininterfaceW ithCallback / return requested FW interface

network operator initiated endAccess / destroy all interface objects used by the client

endAccess / destroy all interface objects used by the client

Figure 7. State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the Iplnitial interface, an object implementing the IpAccess
interface is created. The client can now request other Framework interfaces, including Service Discovery. When the
client is no longer interested in using the interfacesiit calls the endAccess method. This results in the destruction of all
interface objects used by the client. In case the network operator decides that the client has no longer accessto the
interfaces the same will happen.

ETSI

45 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7111 Enable Event Notification

Applogic . IpAppEventNotification : IpAccess . IpEventNotification

g | |

1: new()

L 2: obtaininterfaceWithCallback()
|

3: new()

|
|
|
:
|
4: createNotification() |
|
|
|
|
|
|

5:rep 0r1Néti fication()
|

[

1: Thismessage is used to create an object implementing the | pAppEventNotification interface.

2: Thismessage is used to receive areference to the object implementing the |pEventNotification interface and set the
callback interface for the framework.

3: If thereis currently no object implementing the |pEventNotification interface, then oneis created using this
message.

4: createNotification(eventCriteria : in TpFwEventCriteria) : TpAssignment| D

This message is used to enable the notification mechanism so that subsequent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteriato specify the SCFs of whose availability it wantsto
be notified: those specified in ServiceTypeNameList.

The result of thisinvocation has many similarities with the result of invoking listServiceTypes: in both cases the
application isinformed of the availability of alist of SCFs. The differences are:

in the case of invoking listServiceTypes, the application has to take the initiative, but it isinformed of ALL SCFs
available

ETSI

46 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

in the case of using the event notification mechanism, the application needs not take the initiative to ask about the
availability of SCFs, but it isonly informed of the ones that are newly available.
Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5: The application is notified of the availability of new SCFs of the requested type(s).

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evauation of the load balancing policy as aresult of the detection of achangein load level of the framework.

. IpAppLoadManager . IpLoadManager

1: load change deﬁection and policy evaluation

; <

| 0 This is

' 2: suspendNotification() ijflﬁmentatlon
u e | etai

! -

-
-
s

Load balancing senice
makes a decision based
on pre-defined policy

3: load change deLection/aﬁd policy evaluation

—

4: res ufneNot'rfication() an

:

ETSI

a7 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

: IpLoadManager . IpAppLoadManager

1: queryAppLoadReq()

U D

i 2: get.load information

3: queryAppLoadRes() o N

This is the
implementation
detail

7.1.2.3 Load Management: Application reports current load condition

This sequence diagram shows how an application reportsits load condition to the framework load manager.

. IpAppLoadManager

. IpLoadM anager

1: reportLoad()

I

2: evaluate policy

detail

This is the implementationﬁ

ETSI

48

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.1.2.4 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

. IpAppLoadManager

. IpLoadManager

1: queryLoadReq()

: queryLoadRes()

]
2: get

<
~
~

~

ETSI

oad information

This is the
implementation
detail

49 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.1.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registersitself and the framework invokes load management function

based on policy.

: IpAppLoadManager

: IpLoadManager

1: createLoadLevelNotification()

Framework detects its
load condition change
and initiates load control
action

N

2:load change/mtection & policy evaluation

R

\
\

-~ - - -3:loadLevelNotification()

1
This is the
implementation detail

T
|
|
. 4:load change detection & policy evaluation

N

N
N 2 \
N N
\ N
\ N
\ — \
\ N

. This is the
N implementation detail

ETSI

50

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.1.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of the

application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

Framework

: IpHeartBeat

. IpAppHeartBeatMgmt

1: enableAppHeartBeat()

2: pulse()

3: pulse()

U
U

4: disableAppHeartBeat()

T | At a certain point of
. |time the framework
. |decides to stop

i heartbeat supenision
|

|

|

|

ETSI

51 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.1.2.7 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework informs the client application.

Client Application : IpAppFaultManager Framework : IpFault Manager

| The framework should detect if ™
i asenice instance fails, for

; example via an unretumed

! heartbeat. The framework

l should inform the application

| that is using that senice

; instance.

1: sxcUnavailablelnd() i

1. The framework informs the client application that is using the service instance that the service is unavailable.

ETSI

52 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.1.2.8 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to i
carry out an activity test. The !
framework is denoted as the target by |
an empty string value for swvcld |
parameter value. i

i 1: activityTestReq() i

U]

Framework carries out test and
returns result to client application.

2: activityTestRes()

| |

1: The client application asks the framework to do an activity test. The client identifies that it would like the activity
test done for the framework, rather then a service, by supplying an empty string value for the svcld parameter.

2: The framework does the requested activity test and sends the result to the client application.

ETSI

53 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.1.3 Service Agreement Management Sequence Diagrams

7.1.3.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets alist of one or more SCF versions that match its required description. It now needs
to decide which serviceit is going to use; it also needsto actually get away to useit.

Thisis achieved by the following two steps:

Application o Framework
IpSeniceAgreementManagement

IpAppServiceAqregmentManaqement

1: selectService()

U U

1
|
2: initiateSignSeniceAg reement(b
|

| !

3: signSeniceAgreement(|)

u

4: signSeniceAgreement()

!

1. Service Selection: first step - selectService

In thisfirst step the Application identifies the SCF version it has finally decided to use. This is done by means of the
servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application anew identifier for the service chosen: a service token, that is a private identifier for this service
between this Application and this network, and is used for the process of signing the service agreement.

Input is:

in servicelD
This identifies the SCF required.
And output:

out serviceToken

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement.

ETSI

54 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once these
contractual details have been agreed, then the Application can be given the meansto actually useit. The meansare a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceM anager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (viathe lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling
initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's

| pAppServiceAgreementM anagement interface before the application calls signServiceAgreement on the frameworks's
| pServiceAgreementManagement, is the only sequence permitted.

Input:
in serviceT oken
Thisisthe identifier that the network and Application have agreed to privately use for a certain version of SCF.
in agreementText
Thisisthe agreement text that is to be signed by the Framework using the private key of the Framework.
in signingAlgorithm
Thisisthe algorithm used to compute the digital signature.
Output:
out signatureAndServiceMgr
Thisis areference to a structure containing the digital signature of the Framework for the service agreement, and a

reference to the manager interface of the SCF.

7.1.4 Service Discovery Sequence Diagrams

7.1.4.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
thisis why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; thisis done via an invocation the method obtaininterface on the Framework's Access interface.

ETSI

55 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Discovery can be athree-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceT ype methods):

Application : IpAccess . IpSeniceDiscovery

! 1: obtaininterface() |

L

! 2: listSenviceTypes()

R

3: describeSeniceType()

|
: 4: discowerSenice()

e
|
|
|
|
|
|
|

2: Discovery: first step - list service types

In thisfirst step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:
out listTypes

Thisisalist of service type names, i.e., alist of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type

In this second step the application requests what are the properties that describe a certain service type that it isinterested
in, among those listed in the first step.

The following input is necessary:
in name

Thisisaservice type name: a string that contains the name of the SCF whose description the Application isinterested in
(eg."P_MPCC").

And the output is:
out serviceTypeDescription

The description of the specified SCF type. The description provides information about:
the property names associated with the SCF,
the corresponding property value types,

the corresponding property mode (mandatory or read only) associated with each SCF property,

ETSI

56 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

the names of the super types of thistype, and
whether the typeis currently enabled or disabled.
4. Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i.e.,
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the servicel D that isthe
identifier this network operator has assigned to the SCF version described in terms of those service properties. Thisis
the moment where the servicel D identifier is shared with the application that isinterested on the corresponding service.

Thisis done for either one service or more (the application specifies the maximum number of responses it wishesto
accept).

Input parameters are:
in serviceTypeName

Thisisastring that contains the name of the SCF whose description the Application isinterested in (e.g. "P_MPCC").
in desiredPropertyList

Thisisagain alist like the one used for service registration, but where the value of the service properties have been fine

tuned by the Application to (they will be logically interpreted as " minimum’, "maximum”, etc. by the Framework).
The following parameter is necessary as input:
in max
This parameter states the maximum number of SCFs that are to be returned in the " ServiceList" result.
And the output is:
out serviceList

Thisisalist of duplets: (servicel D, servicePropertyList). It provides alist of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (servicel D), and once again the
service property list.

ETSI

7.2

Class Diagrams

57

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

(from App Interfaces)

IpAppEventNotification

reportNotification ()

@notificationTerminated()

/\

<<uses>>

<<Interface>>

IpEventNotification
(from Framework Interfaces)

ScreateNotification()
SdestroyNotification()

Figure 8: Event Notification Class Diagram

<<Interface>>
IpAppHeartBeatMgmt <<Interface>>
IpAppHeartBeat
enableAppHeartBeat() 0
disableAppHeartBeat() - pulse()
changelntenval ()
|
|
<<uses>> :

<<Interface>>

|
|
|
|
<<uses>> !
|
|
|
|

changelnterval()

IpHeartBeat Mgmt <<Interface>>
IpHeartBeat
enableHeartBeat ()
disableHeartBeat() 1 0.n pulse()

<<Interface>>
IpAppLoadManager

queryAppLoadReq()
queryLoadRes()
queryLoadErr()
loadLewe|Notification()
resumeNotification()
suspendNotification()

A

I
I
I
<<uses>> |
I
I
I

<<Interface>>
IpAppFaultManager

activity TestRes()
appActivity TestReq()
fwFaultReportind()
fwFaultRecoveryInd()
svcUnavailablelnd()
genFaultStatsRecordRes()
fwUnavailablelnd()

activity TestErr()
genFaultStatsRecordErr()
appUnavailablelnd()
genFaultStatsRecordReq()

|
<<uses>>

<<Interface>>
IPAppOAM

systemDateTimeQuery()

I
I
I
<<uses>> |
I
I

<<Interface>>

<<Interface>>

<<Interface>>
IpPOAM

IpLoadManager IpFaultManager
reportLoad() activity TestReq()
queryLoadReq|() appActivity TestRes()
queryAppLoadRes() swcUnavailablelnd()
queryAppLoadErr() genFaultStatsRecordReq()

createlLoadLevelNotification()
destroyLoadLeelNotification()
resumeNotification()
suspendNotification()

appActivity TestErr()
<<deprecated>> appUnavailableind()
genFaultStatsRecordRes()
genFaultStatsRecordErr()

systemDateTimeQuery()

Figure 9: Integrity Management Package Overview

ETSI

58 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>
IpAppSeniceAgreementManagement
(from App Interfaces)

@signSeniceAgreement()
SterminateSeniceAgreement()

\
<uUses>>

<<Interface>>
IpSeniceAgreementM anagement
(from Framework Interfaces)

¥signSeniceAgreement()
FterminateSeniceAgreement()
¥selectSenice()
FinitiateSignSeniceAgreement()

Figure 10: Service Agreement Management Package Overview

<<Interface>>
IpS erviceDiscowvery
from Frameworkinterfaces)

FlistServiceTy pes()
$describeSeniceType()
LdiscoverService()
WlistSubscribedSeniices()

Figure 11: Service Discovery Package Overview

ETSI

59 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>
IpClientAccess

(from Client interfaces)

®terminateAccess ()

A\

\
|
<<uses>>
|
|

<<Interface>>
IpClientAPILevelAuthentication

(from Client nterfaces)

®<<deprecated>> authenticate()
FabortAuthentication()
FauthenticationSucceeded()
®<<new>> challenge()

N

1
<<uses>>
|

<<Interface>>
IpInitial
(from Framework interfaces)

<<Interface>>

IpAccess

(from Framework interfaces)

<<Interface>>
IpAPILevelAuthentication

(from Framework interfaces)

W<<deprecated>> initiateAuthentication()
®<<new>> initiateAu the nticationWithVersion()

®obtaininterface()
FobtaininterfaceWithCa llback()
®<<deprecated>> endAccess()
®Wistinterfaces ()

®<deprecated>> releaselnterface()
W<new>> selectSigningAlgorithm()

W<<deprecated>> selectEncryptionMethod ()
W<<deprecated>> authenticate()
WabortAuthentication()
WauthenticationSucceeded()

®<<new>> selectAuthenticationMechanism ()
#M<<new>> challenge()

W <new>> terminateAccess|()

v/
W <new>> relinquishlinterface() V

<<Interface>>
IpAuthentication

(from Framework interfaces)

®requestAccess()

Figure 12: Trust and Security Management Package Overview

7.3 Interface Classes

7.3.1 Event Notification Interface Classes

7.3.1.1 Interface Class IpAppEventNotification

Inherits from: Iplinterface

Thisinterface is used by the services to inform the application of a generic service-related event. The Event Notification
Framework will invoke methods on the Event Notification Application Interface that is specified when the Event
Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

ETSI

60 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.3.1.1.1 Method reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventinfo : in TpFwEventinfo
Specifies specific data associated with this event.

assignmentlD : in TpAssignment|D

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

7.3.1.1.2 Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters
No Parameters were identified for this method

7.3.1.2 Interface Class IpEventNotification
Inherits from: Iplnterface

The event notification mechanism is used to notify the application of generic service related events that have occurred.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

7.3.1.2.1 Method createNotification()
This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria: in TpFwEventCriteria
Specifies the event specific criteria used by the application to define the event required.

Returns

ETSI

61 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

TpAssignmentl D
Raises
TpCommonExceptions, P ACCESS DENIED, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE

7.3.1.2.2 Method destroyNoaotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID
Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the

assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P INVALID_ASSIGNMENTID.

Raises

TpCommonExceptions,P_ACCESS DENIED,P_INVALID_ASSIGNMENT_ID

7.3.2 Integrity Management Interface Classes

7.3.2.1 Interface Class IpAppFaultManager
Inherits from: Iplinterface

Thisinterface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpInterfaceFault) : void

fwFaultRecoverylnd (fault : in TpinterfaceFault) : void

svcUnavailablelnd (servicelD : in TpServicelD, reason : in TpSvcUnavailReason) : void
genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in TpServicelDList) : void
fwUnavailablelnd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in TpServicelDList) :
void

appUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void

ETSI

62 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.3.2.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

7.3.2.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out atest on itself, to check that it is operating correctly. The application reports the test result by
invoking the appActivity TestRes method on the | pFaultM anager interface.

Parameters

activityTestID : in TpActivityTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

7.3.2.1.3 Method fwFaultReportind()

The framework invokes this method to notify the client application of afailure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault : in TplnterfaceFault
Specifies the fault that has been detected by the framework.

7.3.2.1.4 Method fwFaultRecoverylnd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TplnterfaceFault
Specifies the fault from which the framework has recovered.

7.3.2.1.5 Method svcUnavailablelnd()

The framework invokes this method to inform the client application that it may experience difficulties using itsinstance
of the indicated service.

Parameters

servicelD : in TpServicel D
Identifies the affected service.

ETSI

63 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

reason : in TpSvcUnavailReason
Identifies the reason why the serviceis no longer available

7.3.2.1.6 Method genFaultStatsRecordRes()
This method is used by the framework to provide fault statistics to a client application in response to a
genFaultStatsRecordReg method invocation on the IpFaultM anager interface.

Parameters

faultStatistics: in TpFaultStatsRecord
The fault statistics record.

servicelDs: in TpServicel DList

Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

7.3.2.1.7 Method fwUnavailablelnd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason
I dentifies the reason why the framework is no longer available

7.3.2.1.8 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the application to correlate this response (when it arrives) with the original regquest.

7.3.2.1.9 Method genFaultStatsRecordErr()
This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the | pFaultM anager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

servicel Ds: in TpServicel DList

Specifies the framework or services that were included in the general fault statistics record request. If the servicel Ds
parameter isan empty list, then the fault statistics were requested for the framework.

ETSI

64 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.3.2.1.10 Method appUnavailablelnd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding.

Parameters

servicelD : in TpServicelD
Specifies the service for which the indication of unavailability was received.

7.3.2.1.11 Method genFaultStatsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the

| pFwFaultM anager interface. On receipt of this request, the client application must produce a fault statistics record, for
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes
operation on the | pFaultManager interface.

Parameters

timePeriod : in TpTimel nterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.2.2 Interface Class IpFaultManager
Inherits from: Iplnterface

Thisinterface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces asit is assumed that the client application supplies its Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainlnterfaceWithCallback
operation on the IpAccessinterface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServicelD) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) : void
appActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> appUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

ETSI

65 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.3.2.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out atest on itself or on the client'sinstance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the

I pAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,
the P_UNAUTHORISED _PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance 1D
from the service ID.

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the client application to correlate the response (when it arrives) with this request.

svclD :in TpServicel D

Identifies either the framework or a service for testing. The framework is designated by an empty string.
Raises

TpCommonExceptions,P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.2.2.2 Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

7.3.2.2.3 Method svcUnavailablelnd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to afailure in the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action.

Parameters

servicelD : in TpServicelD
Identifies the service that the application can no longer use.

ETSI

66 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises
TpCommonExceptions ,P_INVALID_SERVICE_ID, P UNAUTHORISED PARAMETER_VALUE

7.3.2.2.4 Method genFaultStatsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes
operation on the |pAppFaultManager interface. If the application does not have access to a service instance with the
specified servicel D, the P_ UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

timePeriod : in TpTimelnterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

servicelDs: in TpServicel DList
Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an

empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P UNAUTHORISED PARAMETER_VALUE

7.3.2.2.5 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

7.3.2.2.6 Method <<deprecated>> appUnavailablelnd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. Applications can indicate they no longer use a particular service instance using

| pServiceAgreementManagement.terminateServiceAgreement(). Applications can indicate a fault with a particular
service instance using | pFaultM anager.svcUnavailablel nd().

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This
may aresult of the application detecting a failure. The framework assumes that the session between this client

ETSI

67 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

application and service instance is to be closed and updates its own records appropriately as well as attempting to
inform the service instance and/or its administrator.

Parameters
servicelD : in TpServicelD

Identifies the affected application.
Raises

TpCommonExceptions

7.3.2.2.7 Method genFaultStatsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a
genFaultStatsRecordReg method invocation on the IpAppFaultM anager interface.

Parameters
faultStatistics: in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions

7.3.2.2.8 Method genFaultStatsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a genFaultStatsRecordReq method invocation on the |pAppFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

7.3.2.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Iplinterface

Thisinterface allows the initialisation of a heartbeat supervision of the client application by the framework.

ETSI

68

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwinterface : in IpHeartBeatRef) : void

disableAppHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.2.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface

at the specified interval.

Parameters

interval : in TpInt32
Thetime interval in milliseconds between the heartbeats.

fwinterface: in |pHeartBeatRef

This parameter refersto the callback interface the heartbeat is caling.

7.3.2.3.2 Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

7.3.2.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32
Thetime interval in milliseconds between the heartbeats.

7.3.2.4 Interface Class IpAppHeartBeat

Inherits from: Iplinterface

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

ETSI

69 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpAppHeartBeat

pulse () : void

7.3.2.4.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the | pHeartBeatM gmt.enableHeartbeat() method. If the pul se()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

7.3.2.5 Interface Class IpHeartBeatMgmt
Inherits from: Iplinterface

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a client application.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, applnterface : in IpAppHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.2.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

applnterface: in IpAppHeartBeatRef
This parameter refersto the callback interface the heartbeat is caling.

ETSI

70 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises

TpCommonExceptions

7.3.2.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

7.3.2.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters
interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions

7.3.2.6 Interface Class IpHeartBeat
Inherits from: Iplnterface

The Heartbeat Framework interface is used by the client application to send its heartbeat.

<<Interface>>

IpHeartBeat

pulse () : void

7.3.2.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the | pAppHeartBeatM gmt.enableAppHeartbeat() method. If the
pulse() is not received within the specified interval, then the client application can be deemed to have failed the
heartbest.

ETSI

71 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Parameters
No Parameters were identified for this method
Raises

TpCommonExceptions

7.3.2.7 Interface Class IpAppLoadManager
Inherits from: Iplinterface

The client application devel oper supplies the load manager application interface to handle requests, reports and other
responses from the framework load manager function. The application supplies the identity of this callback interface at
thetime it obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

queryAppLoadReq (timelnterval : in TpTimelnterval) : void
gueryLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
resumeNotification () : void

suspendNotification () : void

7.3.2.7.1 Method queryAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

timelnterval : in TpTimelnterval
Specifies the time interval for which load statistic records should be reported.

7.3.2.7.2 Method queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryl oadReq method on the |pLoadManager interface.

Parameters

loadStatistics: in TpLoadStatisticList
Specifies the framework-supplied load statistics

ETSI

72 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.3.2.7.3 Method queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pLoadM anager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

7.3.2.7.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application.

Parameters

loadStatistics: in TpLoadStatisticList
Specifies the framework-supplied load statistics, which include the load level change(s).

7.3.2.7.5 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled atemporary overload condition.

Parameters
No Parameters were identified for this method

7.3.2.7.6 Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications. e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method

7.3.2.8 Interface Class IpLoadManager
Inherits from: Iplnterface

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy isrelated to the QoS level to which the application is subscribed. The framework 1oad management function is
represented by the I pLoadManager interface. Most methods are asynchronous, in that they do not lock athread into
waiting whilst atransaction performs. To handle responses and reports, the client application devel oper must implement
the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this
callback interface at the time it obtains the framework's |load manager interface, by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

ETSI

73 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (servicelDs : in TpServicelDList, timelnterval : in TpTimelnterval) : void
queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
createLoadLevelNotification (servicelDs : in TpServicelDList) : void
destroyLoadLevelNotification (servicelDs : in TpServicelDList) : void
resumeNotification (servicelDs : in TpServicelDList) : void

suspendNotification (servicelDs : in TpServicelDList) : void

7.3.2.8.1 Method reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is hot congested or overloaded). At
level 1 1oad, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

loadLevel : in TpLoadL evel
Specifies the application's load level.

Raises

TpCommonExceptions

7.3.2.8.2 Method queryLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the specified
servicel D, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extralnformation field of
the exception shall contain the corresponding servicel D.

Parameters

servicelDs: in TpServicel DList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timelnterval : in TpTimelnterval
Specifies the time interval for which load statistics records should be reported.

ETSI

74 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED PARAMETER_VALUE

7.3.2.8.3 Method queryAppLoadRes()
The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadReg method on the |pA ppLoadManager interface.

Parameters

loadStatistics: in TpLoadStatisticList
Specifies the application-supplied load statistics.

Raises

TpCommonExceptions

7.3.2.8.4 Method queryAppLoadErr()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppLoadReq method on the |pAppLoadManager interface.

Parameters

loadStatisticsError : in TpL oadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises

TpCommonExceptions

7.3.2.8.5 Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicel Ds: in TpServicel DList

Specifies the framework or SCFsto be registered for load control. To register for framework load control, the
servicel Ds parameter must be an empty list.

ETSI

75 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises
TpCommonExceptions, P_INVALID_SERVICE_ID, P UNAUTHORISED PARAMETER_VALUE

7.3.2.8.6 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_ UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicel Ds: in TpServicel DList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list.

Raises
TpCommonExceptions, P_INVALID_SERVICE_ID, P UNAUTHORISED PARAMETER_VALUE

7.3.2.8.7 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P UNAUTHORISED PARAMETER_VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelDs: in TpServicel DList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

7.3.2.8.8 Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with itsinstances of the individual services used by the application; e.g. while
the application handles a temporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

ETSI

76 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Parameters

servicelDs: in TpServicel DList
Specifies the framework or the services for which the sending of notifications by the framework should be suspended.

To suspend notifications for the framework, the servicel Ds parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

7.3.2.9 Interface Class IpOAM

Inherits from: Iplinterface

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs.

<<Interface>>
IpOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.2.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDateAndTime: in TpDateAndTime

Thisisthe date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDateAndTime

Raises
TpCommonExceptions,P_INVALID_TIME_AND_DATE_FORMAT

7.3.2.10 Interface Class IpAppOAM
Inherits from: Iplnterface

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method isinvoked by the Framework to interchange the framework and client
application date and time.

ETSI

77 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>
IpPAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.2.10.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (application).

Parameters

systemDateAndTime: in TpDateAndTime
Thisisthe system date and time of the framework.

Returns
TpDateAndTime

7.3.3 Service Agreement Management Interface Classes

7.3.3.1 Interface Class IpAppServiceAgreementManagement

Inherits from: Iplinterface

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

7.3.3.1.1 Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be arestriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

ETSI

78 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns <digital Signature> : This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630)
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the
agreement text given by the framework. The "external signature” construct shall not be used (i.e. the eContent field in
the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the
serviceToken will be expired immediately.

Parameters

serviceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token). If the
serviceToken isinvalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is
thrown.

agreementText : in TpString

Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText isinvalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm : in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to | pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the client application, the P_INVALID_SIGNING_ALGORITHM exception isthrown. The list of possible algorithms
is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

Returns
TpOctetSet
Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN,
P_INVALID_SIGNING_ALGORITHM

7.3.3.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistokenis used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

terminationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

ETSI

79 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

digitalSignature: in TpOctet Set

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is the termination text. The "external
signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and
contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be
used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the
service agreement was signed using signServiceAgreement(). The framework uses this to confirm itsidentity to the
client application. The client application can check that the terminationText has been signed by the framework. If a
match is made, the service agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be
thrown.

Raises
TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE

7.3.3.2 Interface Class IpServiceAgreementManagement

Inherits from: Iplinterface

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (servicelD : in TpServicelD) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.3.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application’s | pAppServiceAgreementM anagement
interface, this method is used by the client application to request that the framework sign the service agreement, which
alows the client application to use the service. A reference to the service manager interface of the service is returned to
the client application. The service manager returned will be configured as per the service level agreement. If the
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties
contained in the contract/profile for the client application, which will be arestriction of the registered properties. If the
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS DENIED) is
returned.

ETSI

80 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
structure TpSignatureAndServiceMgr {
digitalSignature: TpOctetSet;
serviceMgrinterface: |pServiceRef;
1

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signatureis calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall aso be used to provide replay prevention.

The serviceMgrinterface is areference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. Thistoken isused to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

Thisisthe agreement text that isto be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm : in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to I pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown to
the framework, an error code (P_INVALID_SIGNING_ALGORITHM) isreturned. The list of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

Returns
TpSignatureAndServiceM gr
Raises

TpCommonExceptionsP_ ACCESS DENIED,P_INVALID_ AGREEMENT_TEXT,P_INVALID_SERVICE_TO
KEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS DENIED

7.3.3.2.2 Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistoken is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) isreturned.

terminationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

ETSI

81 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

digitalSignature: in TpOctet Set

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is the termination text. The "external
signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and
contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be
used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the
service agreement was signed using signServiceAgreement(). The framework uses this to check that the
terminationText has been signed by the client application. If a match is made, the service agreement is terminated,
otherwise an error code (P_INVALID_SIGNATURE) isreturned.

Raises
TpCommonExceptions, P_ ACCESS DENIED, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE

7.3.3.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishesto use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception isthrown. The
P_SERVICE_ACCESS DENIED exception is aso thrown if the client attempts to select a service for which it has
aready signed a service agreement for, and therefore obtained an instance of. This is because there must be only one
service instance per client application.

Returns <serviceToken> : Thisis afree format text token returned by the framework, which can be signed as part of a
service agreement. Thiswill contain operator specific information relating to the service level agreement. The
serviceToken has alimited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client
application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

servicelD : in TpServicel D

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) is returned.

Returns

TpServiceToken

Raises

TpCommonExceptions, P ACCESS DENIED, P_INVALID_SERVICE_ID, P_SERVICE_ACCESS DENIED

7.3.3.2.4 Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be
invoked following the application's call to selectService(), and before the signing of the service agreement can take
place. If the client application is not allowed to initiate the sign service agreement process, the exception
(P_SERVICE_ACCESS DENIED) isthrown.

Parameters

serviceToken : in TpServiceToken

Thisisthe token returned by the framework in a call to the selectService() method. Thistoken isused to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) is thrown.

ETSI

82 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises
TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS DENIED

7.3.4 Service Discovery Interface Classes

7.3.4.1 Interface Class IpServiceDiscovery
Inherits from: Iplnterface

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types' of services are supported by the Framework and
what service "properties’ are applicable to each service type. The listServiceType() method returns alist of all "service
types' that are currently supported by the framework and the " describeServiceType()" returns a description of each
service type. The description of service type includes the " service-specific properties” that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values’, by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribesto (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applicationsin its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

7.3.4.1.1 Method listServiceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method

Returns
TpServiceTypeNameL ist

Raises
TpCommonExceptions,P_ ACCESS DENIED

ETSI

83 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.3.4.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:
- the service properties associated with this service type: i.e. alist of service property { name, mode and type} tuples,
- the names of the super types of this service type, and
- whether the service typeis currently available or unavailable.

Parameters

name: in TpServiceTypeName
The name of the service type to be described.

- 1f the "name" is malformed, then the P_ILLEGAL_SERVICE_TY PE exception is raised.

- If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception is raised.

Returns
TpServiceTypeDescription

Raises

TpCommonExceptions,P_ACCESS DENIED,P_ILLEGAL_SERVICE_TYPE,
P_UNKNOWN_SERVICE_TYPE

7.3.4.1.3 Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passesin alist of desired service properties to describe the serviceit is
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responsesit is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicel D/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned will form a
complete view of what the client application will be able to do with the service, as per the service level agreement. If
the framework supports service subscription, the service level agreement will be encapsulated in the subscription
properties contained in the contract/profile for the client application, which will be arestriction of the registered
properties.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters

serviceTypeName: in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading". It isthe basis for type safe interactions between the service exporters (viaregisterService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

- If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception is raised.

- 1f the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TY PE exception israised.

ETSI

84 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList” parameter isalist of service property { name, mode and value list} tuplesthat the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property valuesin the desired property list must be logically interpreted as "minimum®,
"maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing” range of values to help in the
selection of desired services.

The desiredPropertyList only contains service properties that are relevant for the application. If an application is not
interested in the value of a certain service property, this service property shall not be included in the
desiredPropertyL ist.

P_INVALID_PROPERTY israised when an application includes an unknown service property name or invalid service
property value.

max : in TpInt32
The"max" parameter states the maximum number of servicesthat are to be returned in the "serviceList" result.

Returns
TpServicelist
Raises

TpCommonExceptions,P_ACCESS DENIED,P_ILLEGAL_SERVICE_TYPE,
P_UNKNOWN_SERVICE_TYPE,P_INVALID_PROPERTY

7.3.4.1.4 Method listSubscribedServices()

Returns alist of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain alist of subscribed services that they are allowed to access.

Returns <serviceList>: The "servicelList" parameter returns alist of subscribed services. Each serviceis characterised
by its service ID and alist of service properties{name and value list} associated with the service.

Parameters
No Parameters were identified for this method

Returns

TpServicelist

Raises
TpCommonExceptions,P_ ACCESS DENIED

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can

ETSI

85 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also eventsinternal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

7.4.1 Event Notification State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpEventNotification

IpAccess.obtaininterface
IpAccess.obtaiinterfaceWithCallback

createNotification

destroyNotification

*"Notfcation
T

g installed]

sS.endAccess

IpAcc

IpAccegs.endAccess

&
L)

Figure 13: State Transition Diagram for IpEventNotification

ETSI

86 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.4.2 Integrity Management State Transition Diagrams

7.4.2.1 State Transition Diagrams for IpLoadManager

reportLoad
"load change" NoadLevelNotification querySvcLoadRes[load statistics requested by LoadManager]
querySvcLoadErr| load statistics requested by LoadManager |

createLoadLevelNotification (Active } queryLoadReq

destroyLoadLewlIN otification

IpAccess\obtainl

IpAccess gbtaininterfaceWithCallback

resumeNotification

reportLoad
querySvcLoadRes[load statistics requested by LoadManager]
querySvcLoadErr| load statistcs requested by LoadManager]

Notification queryLoadReq
Suspended

destroyLoadLevelNotification

IpAccesis.endAccess

suspendNotification
[all notifications suspended]

P

A

-/

Figure 14: State Transition Diagram for IpLoadManager

7.4.2.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.2.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

7.4.2.1.3 Active State

In this state the application hasindicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadLevelNatification(), resumeNotification() or suspendNotification() on the application side of
interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportL oad().

ETSI

87 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.4.2.2 State Transition Diagrams for LoadManagerinternal

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senices.

}gmerLoadController !

1
1

reportLoad[loadlevel 1= 0] !

!

Normal load

Application Overload

reportLoad[loadlevel = 0]
"internal load change detection”

"internal load change 1 non owrloaded" interrjal load change detection”

"internal load change/to non qverload"

reportLoad[loadlevel != 0]

Internal overload
Internal and Application Overload

\\ reportLoad[loadlevel = 0]
\\

A necessary action can be AN
suspending the load
notifictions from the
application by invoking
suspendNotification or
enabling load control
mechanisms onthe
application by invoking
enableLoadControl.

Figure 15: State Transition Diagram for LoadManagerinternal

7.4.2.2.1 Normal load State

In this state the none of the entities defined in the load balancing policy between the application and the framework /
SCFsis overloaded.

7.4.2.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadM anager.

7.4.2.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.2.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

88 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)
7.4.2.3 State Transition Diagrams for IpPOAM

IpAccess.obtaininterface
IpAccess. obtaininterfaceWithCallback

\ systemDateTimeQuery

IpAccess.endAccess

Figure 16: State Transition Diagram for IpOAM

7.4.2.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

7.4.2.4 State Transition Diagrams for IpFaultManager

IpAccess.obtaininterfaceWithCallback("FaultManagement") /
add application to fault management

'service fault' *svcUnavailablelnd to all applications using the service
. srvUnavailablelnd / test the service, inform service that application isnot using it

genFaultStatsRecordReq “app.genFaultStatsRecordRes
service fault ~srvUnavailablelnd to all applicationsusing the service Framework

no fault detected

activityTestReq[
empty string]

Service Activity T e

softD N

Framework Activity Test)

IpAccess.endAccess
entry/ test activity of service

entry/ tes activity of framework
exit/ "lpAppFaultManager.activityTestRes

exit/ NlpAppFaultManager.activityT egRes
N

IpAccess.endAcgess / Abort

pending tegt request
fault detected in fw

IpAccess.endAccess/ remove
application from load management

@ fault detected in fw
Framework Faulty j

entry/ MfwFaultReportind to all applications with callback ‘

exit/ MwFaultRecoveryind to all applications with callback

Figure 17: State Transition Diagram for IpFaultManager

7.4.2.4.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

ETSI

89 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

7.4.2.4.2 Framework Faulty State
In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the

framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified via a fwFaultRecoverylnd message.

7.4.2.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problemis diagnosed, all applications with fault
management callbacks are notified through an fwFaultReportlnd message.

7.4.2.4.4 Service Activity Test State

In this state, the framework is performing atest on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcUnavailablelnd message.

7.4.3 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management

7.4.4 Service Discovery State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpServiceDiscovery

obtainFrameworkInterfac e(disc overyService)
obtaininterface WithCallback(dis coverySenice)

listSeniceTypes
describeSeniceType

listSubscribedServices
discoverSenice

{ Active

IpAccess.endAccess

L

Figure 18: State Transition Diagram for IpServiceDiscovery

7.4.4.1.1 Active State

When the application requests Service Discovery by invoking the obtainl nterface or the obtainl nterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
allowed to request alist of the provided SCFs and to obtain a reference to interfaces of SCFs.

ETSI

90 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8 Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly
subscribe to the services before the client applications can access those services. To accomplish this, they use the
service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a
contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the
role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of
the service.

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in
therole of users or consumers of services. The framework itself actsin the role of retailer of services. The following
examplesillustrate these roles:

e Service (to be subscribed): Call Centre Service, Mobility Service, etc.
e Framework Operator: AT&T, BT, etc.

e Enterprise Operator: A Financia institution such as a Bank or Insurance Company, or possibly an Application
Service Provider (Such an enterprise has a conformant Subscription Application in its domain which "talks' to its
peer in the Framework).

e User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call Centre
Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before
aclient application of the enterprise can use the new service. In general, the service subscription is performed after an
off-line negotiation of a set of services and the associated price between the framework operator and the enterprise
operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line
negotiated contract between the framework operator and the enterprise. The on-line service subscription function is
used for subscriber, client application, and service contract management. The following clause describes a service
subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service
subscription process. The subscription process involves the enterprise operator (which acts in the role of service
subscriber) and the Framework (which acts in the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through aretailer, such
as the Framework. An enterprise operator represents an organisation or a company which will be hosting client
applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to
the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about
the service usage with the Framework, using an on-line subscription interface provided by the Framework. The
Framework provides the service according to the service contract. The Enterprise Operator authorises the client
application in his’/her domain for the service usage. Finally a subscribed service can be used by a particular client
application.

ETSI

91 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Enterprise Operator (In the role
of Service Subscriber)

Signs contract about service usage
Framework (In the role
of Service Retailer)
Authorises

Client Application (In the role of
User or Consumer of Services)

Figure 19: Subscription Business Model

The interfaces between an enterprise operator and the client applicationsin its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of
services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The
Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service
contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the
framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object isidentified by a
unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator
in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of
services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and
address of the enterprise operator (individua or organisation), service charge payment information, etc. The enterprise
operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of
client applicationsin its domain in order to assign the same set of service features to the group. Such agroup iscalled a
Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGsinitsdomain. A SAG relatesa
client application to the features of a service. A client application may be a member of multiple SAGs, one for each
service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each
service. Each service subscription is described by a service contract which defines the conditions for the service
provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service
parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the
SAG's needs. A service profile istherefore arestriction of the service contract in order to provide restricted service
featuresto a SAG. It isidentified by a unique ID (within the framework domain) and contains a set of service
properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

ETSI

92 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Client Applicationsand SAGsin the Enterprise Domain

Service Contractsfor Individual Services
ibed Dy Enterprise Operato

Service Profilesin a Service Contract

Figure 20: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client applicationis
represented in the Framework domain as a clientApp object. The clientApp object isidentified by a unique ID and
contains a set of client application properties describing the client application relevant information for subscription.
Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has
one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG
can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on
behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service
contracts and service profiles.

An enterprise operator may not want to grant all client applicationsin its domain the same service characteristics and
usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service
Profile to each group. A client application can be assigned to more than one service profile for agiven service, aslong
as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to
two SAGs. One of these SAGs uses ServiceProfilel to control accessto service 1. The other uses ServiceProfile3 to
control accessto service 1. If the dates in the two service profiles overlap, asis the case here, then it cannot be
determined when the client signs the service agreement which service profile should be used. For example, if the client
application signed the service agreement on February the 8", then it could not be determined which of service profile 1
or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of
the service profilesto use. A SAG may have multiple service profiles, one for each subscribed service, associated with
it.

ETSI

93 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

SAG

Client Client
App.1 App.3

SAG

Client Client
App.1 App.2

viceProfil
Start: 08, Feb
End: 30, Feb
ServicelD: 1

erviceProfile
Start; 02, Feb
End: 10, Feb
ServicelD: 2

Start: 02, Feb
End: 10, Feb
ServicelD: 1

Figure 21: Overlapping date fields in service profiles

Enterprise Enterprise

Operator 1 / Operator 2

Enterprise
Operator 3

Ce

Figure 22: Multiple Enterprise Operators

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise
operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator
(if the services offered through the framework belong to a single network — it is even possible that the network operator
will be the only enterprise operator). It is possible, however, that each service registered with the framework could
actually be in adifferent network. The client application I Ds have to be unique within the framework. The framework
operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the
enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription-related functions. The
service subscription interfaces are classified in the following categories:

. Enterprise Operator Account Management
. Enterprise Operator Account Query

. Service Contract Management

ETSI

94 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

. Service Contract Query

. Service Profile Management

. Service Profile Query

. Client Application Management
. Client Application Query

Only the enterprise operator, which is registered and later on authenticated, is allowed to use these interfaces.

8.1 Sequence Diagrams

8.1.1 Service Subscription Sequence Diagrams

8.1.1.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behalf
of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must
have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services
provided by the framework using the IpServiceDiscovery interface. Initialy, the enterprise operator obtains alist of
service types supported by the framework by invoking listServiceTypes() on I pServiceDiscovery interface. Then it
obtains the description of a service type using describeServiceType() to find out the set of properties applicableto a
particular service type. Subsequently it invokes discoverService() to discover the services of agiven type which
supports the desired set of property values. The discoverService() method returnsalist of "servicelDs' and their
associated property values. The service discovery phaseis followed by the service subscription phase. The enterprise
operator uses the | pServiceContractM anagement and | pServiceProfileM anagement interfaces to perform service
subscription.

The enterprise operator invokes the createServiceContract() on | pServiceContractM anagement interface to subscribe to
a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by
their "servicel D" or by their service type. In the former case only the specific service can be used by the enterprise
operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise
operator may create multiple service profiles (each of which are arestriction of the service contract) by invoking
createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a different
Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different
service privileges to different client application groups. During the life time of a service contract, the enterprise operator
may perform service contract and service profile management functions, such as modifying the service profiles
(modifyServiceProfile()) and service contract (modifyServiceContract()), re-assigning the service profilesto a SAG
(assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles
(deleteServiceProfile()), etc. These methods may be interleaved in any logical order. The enterprise operator or the
client applications, can at any time obtain alist of currently subscribed services by invoking listSubscribedServices()
method on the IpServiceDiscovery interface. This method returns alist of servicelDs of the set of subscribed services.
The service contract ceases to exist after the specified end date. The deleteServiceContract del etes the service contract
object held in the framework. It is up to the discretion of the Framework operator to alow the enterprise operator to
delete a service contract before its specified end date.

ETSI

95 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

After the service subscription is performed the client applications can access and use the set of subscribed servicesin
addition to the set of freely available services. In order to start a service, the interface reference of the serviceis
required. The discoverService() method or the listSubscribedServices() method, described above, return the

"servicel D". The interface reference of the service is obtained in the service access phase. The service access phase
begins with the client applications selecting the service, via the selectService() method, and signing a service
agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to
identify the service that it wantsto initiate. The input to the selectService() isthe "servicel D" returned by the
discoverService() or the listSubscribedServices() and the output is a"serviceToken". The serviceToken is free format
text token returned by the framework, which can be used as part of a service agreement. If the service is not subscribed
by the enterprise operator, then a " service not subscribed" exception is raised. The signServiceAgreement() isinvoked
by the client application on the framework to sign an agreement on the service. The input to this method is the service
token returned by the selectService() method. The sign service agreement is used as away of non-repudiation of the
intention to use the service by the client application. The successful completion of the signServiceAgreement() returns
the interface reference to the service (or to its service manager). The client application can then use this interface
reference to start the service.

f
|
|

5.0 hainlr\‘lsface()

UI

B e S

Subscribe 1N
the Services
6: createSenviceContract()

L L : IpAccess : IpServiceDiscovery : IpServiceContractManagement : | pSer vic eContr acthfaQ Ler : IpServiceProfileManagement : |pServic eProfi é nb Query
EnterpriseOperator | | ClientApplication

T T T T
Auth. phase [\			
followed by			
1 ottaininterface()			
1 I I			
[
2: listSenviceTypes()			
t t			
U		/U	
3: describeServiceTypé()			
t t			
U		/U	
	Find desired [\		
		Senvices [
	4: discoer Sevice(1)		

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
/|_\‘
|
|
|

|
|
|
| |
| |
| |
| |
f f f
U ! ! ! createmore 1
! ! ! ! SPs in SC
: : : : : crealeSemceroﬁleq
H | | | |
| | | |
I | | | |
| | | | 8: assign() I
H f f f f
| | | |
| | | |
: : : : 9: modlfySer\AceProﬁle(j‘
H | | | |
| | | |
[| | | |
| | | | 10: assigr() |
| |
| |
| !
| 11: describeServiceProfile()
| |
| |
| |
| |
| 12: celeteServicePrdie()
| |
|
|
!

13: mfx:jifySem ceContract()

|
14: listSubscribedServices()

U :)
: ‘ |
| 1

15: listSubs cribedSer \nd‘es()

|

|

|

! 16: describeServiceContract()
I |

|

|

17: crehteSenviceContract() !
| \

S s S s S e S s [s S

¢

s s

I

b
g

-———-—

ETSI

96 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence
Diagram

Thefirst step in the service subscription process is the creation of an account for the enterprise operator. The creation of
enterprise operator accounts is performed by the Framework Operator via interfaces outside of the present document.
When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator
(acting in the role of service subscriber) can then create accounts within the framework for all of the client applications
inits domain. The enterprise operator obtains the reference to the | pEntOpManagement interface by invoking
obtainlnterface() on the IpAccessinterface. The enterprise operator at any time may inspect its subscription account by
invoking describeEntOpAccount on the | pEntOpA ccountlnfoQuery interface and modify the subscriber-related
information contained in its subscription account by invoking modifyEntOpAccount() on | pEntOpA ccountM anagement
interface.

An enterprise operator usually has many client applicationsin its enterprise domain. These client applications must be
registered within the framework so that the set of services subscribed to by the enterprise operator (through
createServiceContract()) can be assigned to these client applications by associating a service profile (arestriction of
service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create
an account for individual client applications, the enterprise operator invokes createClientApp() on
IpClientAppManagement interface. The enterprise operator groups arelated set of client applicationsin a SAG so that
the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking
createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly
created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also
performs other client application / SAG management functions such as modifyClientApp(), deleteClientApp(),
modifySAG(), listSAGS(), lissSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be
interleaved in any logical order. Finally, the enterprise operator (or the framework operator) can delete its subscription
account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.

ETSI

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

97

InfoQue

IpClientA|

IpClientAppManagem ent

IgEntODAchmtlnchUﬂ

IpEntOpAccountManagement

: IpAccess

2: describeEntOpAccount()

Framework

Operator

account has already been created.

The Enterprise Operator
Auth. Phase followed by:

1: obtainlhterface()

Enterprise

Operator

i o ~ ~ ~ w
~ c ~ Im [—
g2 |= 5 g ¢ g £ 3
23 5 a < o < 5 Q
€ le 4 £ < < < s %
I RS L. 9o o oo 2 Fl1_ _ 2]
w_ 5 |E @ = 3] =] <]
2 | @ © Q > 5 2 %) 3
8 |sg |8 & 5 g ° g £
o |28 |° k=4 o € 7] o =
S |Oc | ° £ & ° £ N
. < = S o =
I} <) = =
-
-
€
=]
(=}
el JE A A JE 4]
o
& w
<
w
2 Z
3 Q
3 3
£ £
y I
RN N =SS [U A A JE 4]
=
8
e
o
b
) —— B e b F - b - .

14: listSAGs()

13: obtain

[A

ETSI

98 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.2 Class Diagrams
<<Interface>>
IpClientAppManagement
(from App interfaces)
<<Interface>>
IpClientAppinfoQuery WcreateClientApp()
(from App interfaces) ““‘modifyCIientApp()
FdeleteClientApp()
WdescribeClientApp() WcreateSAG()
WlistClientApps() ¥modifySAG()
BdescribeSAG() TdeleteSAG()
BlistSAGs() WaddSAGMembers()
WlistSAGMembers() %removeSA GMem bers ()
WlistClientAppMembership() Si<<new>> requestConflictinfo()

<<lInterface>> <<Interface>>

IpPEntOpAccountManagement IpSeniceContractInfoQuery
(from Framework interfaces)

<<Interface>>
IPEntOpAccountinfoQuery

(from Framework interfaces)

(from Framework interfaces)

Smodify EntOpAccount () WdescribeSeniceContract ()
FdeleteE ntOpAccount() i stSeniceContracts()
FlistSeniceProfiles()

SdescribeEntOpAccount()

<<Interface>>
IpSeniceProfileManagement
(from Framework interfaces)

<<Interface>>
IpSeniceContractManagement
(from Framework interfaces)

<<Interface>>
IpSenviceProfileinfoQuery

(fom Fram ework i nterfaces)

createSeniceProfile()

SlistSenviceProfiles() ¥modify SeniceProfile() ‘cregFeSSem_c e(ci:onttractt()

“"o_lescnb_eSer\/lceProflle() WdeleteSeniceProfile() ‘mo ifySeniceContract()

FlistAssignedMembers () Vassign() deleteServiceContract()
Wdeassign()

F<<new>> requestConflictinfo()

Figure 23: Service Subscription Package Overview

ETSI

99 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>
IpClientAccess
(from Client interfaces)

®terminateAccess()

|
|
|
<<uses>> !
|
|
|

<<Interface>>
IpInitial
(from Framework interfaces)

<<Interface>>
IpAccess
(from Framework interfaces)

<<Interface>>
IpClientAPILevelAuthentication
(from Client interfaces)

®<<deprecated>> authenticate()
WabortAuthentication()
WauthenticationSucceeded()
#W<<new>> challenge()

|
<<uses>> |
|
|
I

W< <deprecated>> initiateAuthentication()
®<<new>> initiateAuthenticationwithVersion()

®obtaininterface()
®obtaininterfaceWithCallback ()
W<<deprecated>> endAccess()
Hiistinterfaces()

W< <deprecated>> releaselnterface()
#<<new>> selectSigningAlgorithm()
®<<new>> terminateAccess()

<<Interface>>
IpAPILevelAuthentication

(from Framework interfaces)

W< <deprecated>> selectEncryptionMethod()
W<<deprecated>> authenticate()

®abort Authentication()
®authenticationSucce eded()

W<<new>> select AuthenticationMechanism ()
®<<new>> challenge()

W<<new>> relinquishinterface() %

<<Interface>>
IpAuthentication
(from Framework interfaces)

FrequestAccess()

Figure 24: Trust and Security Management Package Overview

8.3 Interface Classes

8.3.1 Service Subscription Interface Classes

8.3.1.1 Interface Class IpClientAppManagement

Inherits from: Iplinterface

If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the
enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator
must use the client application management interface, to which (s)he can subscribe as a privileged user. The client
application management interface is intended for cases where an organisation wants to allow several client applications
to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client
applications and SAGs, delete them and to modify subscription related information concerning the client applications
and the SAGs. Client applications use the subscribed servicesin the enterprise operator's name. The main task of client
application management isto register, modify and delete client applications (Client Application Management), and
manage groups of client applications, called Subscription Assignment Groups (SAG Management).

ETSI

100 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription : in TpClientAppDescription) : void
modifyClientApp (clientAppDescription : in TpClientAppDescription) : void
deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (sagID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : void
removeSAGMembers (sagID : in TpSaglID, clientApplIDList : in TpClientAppIDList) : void
<<new>> requestConflictinfo () : TpAddSagMembersConflictList

8.3.1.1.1 Method createClientApp()

A client application is represented in the Framework domain as a " clientApp object”. This method creates a new
clientApp object associated with the enterprise operator object. Each clientApp object has aclientApp 1D and other
subscription related client application's properties stored in it.

Parameters

clientAppDescription : in TpClientAppDescription

The "clientAppDescription” parameter contains the clientApp ID that isto be associated with the newly created
clientApp object and the subscription-related "client application properties’. The clientApp ID must be aunique ID
across framework, if the ID aready exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client
application properties are alist of name/value pairs. The client application properties are an item for bi-lateral
agreement between the enterprise operator and the framework operator.

Raises
TpCommonExceptions,P_ACCESS DENIED,P_INVALID_CLIENT_APP_ID

8.3.1.1.2 Method modifyClientApp()
Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

clientAppDescription : in TpClientAppDescription
The "clientAppDescription” parameter contains the modified client application information. If the clientApp ID does
not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises
TpCommonExceptions, P ACCESS DENIED, P_INVALID_CLIENT_APP_ID

ETSI

101 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.3.1.1.3 Method deleteClientApp()

Delete the specified clientApp object associated with the enterprise operator. An exception of "P_TASK_REFUSED" is
raised if a non-associated enterprise operator invokes this method.

Parameters

clientAppID : in TpClientApplD

The"clientAppID" parameter identifies the clientApp object that isto be deleted. If the clientApp ID does not exist, an
exception "P_INVALID_APP_ID" would be raised.

Raises
TpCommonExceptions, P ACCESS DENIED, P_INVALID_CLIENT_APP_ID

8.3.1.1.4 Method createSAG()

Create a new SAG associated with the enterprise operator. The SAG object isidentified by a SAG - ID and contains
SAG - specific description.

Parameters

sag: in TpSag
The"sag" parameter contains the SAG-ID and SAG-specific description. This saglD is particular to the SAG, and must

be unique across framework. If the saglD supplied already exists, an exception of type"P_INVALID_SAG_ID" would
be raised.

clientApplIDs: in TpClientApplIDList

The "clientApplDs" parameter contains the list of client application IDsthat are to be associated with the newly created
SAG.

Raises
TpCommonExceptions,P_ ACCESS DENIED,P_INVALID _CLIENT_APP_ID,P_INVALID SAG_ID

8.3.1.1.5 Method modifySAG()
Modify the description of an existing SAG associated with the enterprise operator. An exception of
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

sag: in TpSag
The"sag" parameter contains the modified SAG-specific description. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" would be raised.

Raises
TpCommonExceptions, P_ ACCESS DENIED, P_INVALID_SAG_ID

ETSI

102 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.3.1.1.6 Method deleteSAG()

Delete an existing SAG. Only the enterprise operator associated with the SAG is alowed to delete it, an exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

saglD : in TpSaglD
The "sagID" parameter identifies the SAG that isto be deleted. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" israised.

Raises
TpCommonExceptions,P_ ACCESS DENIED,P_INVALID_SAG_ID

8.3.1.1.7 Method addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to assign membersto it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method. Each client application may be assigned to a service
only through a single service profile at a particular moment in time. If this condition is violated, a
"P_INVALID_ADDITION_TO_SAG" would be raised. In this case, no partial execution of this method is performed.
The enterprise operator can query further information about this invalid addition using the method
requestConflictinfo().

Parameters

saglD : in TpSaglD
The"saglD" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does
not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientApplIDs: in TpClientApplDList

The"clientApplDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The
clientApp objects are first created using the createClientApp() method. If one or all of the client application IDsin the
list does not exist, an exception "P_INVALID_APP_ID" would be raised.

Raises

TpCommonExceptions, P ACCESS DENIED, P_INVALID_CLIENT_APP_ID, P_INVALID_SAG_ID,
P_INVALID_ADDITION_TO_SAG

8.3.1.1.8 Method removeSAGMembers()

Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method.

Parameters

saglD : in TpSaglD
The"saglD" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not
exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDList : in TpClientApplIDList

The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG.
If one or al of the client application IDsin the list does not exist, an exception "P_INVALID_CLIENT_APP_ID"
would be raised.

ETSI

103 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises
TpCommonExceptions, P ACCESS DENIED, P_INVALID CLIENT_APP_ID, P_INVALID SAG_ID

8.3.1.1.9 Method <<new>> requestConflictinfo()

Reguests details about the latest conflict that occurred during performing the method addSagM embers() on this
interface (i.e. Information about the invocation of addSagM embers() that raised a
P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through asingle
service profile at a particular moment in time. The enterprise operator might try to add a client application to a SAG,
where both, the client application and the SAG are aready assigned to the same service through different service
profiles. Asthis may happen in one method call for multiple client applications, a conflict list is generated.

It is only possible to retrieve information about the last conflicting addSagM embers() method call; information about
previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList> : Thelist of conflicts of the last invocation of addSagMembers() that raised
aP_INVALID_ADDITION_TO_SAG. Each conflict contains the following elements:

a. the conflict generating client application.

b. the SAG and the service profile through which the conflict generating client application is aready assigned to the
conflict generating service. It includes the current service profile.

c. the SAG, to which the conflict generating client application should be added. However, this SAG is aready
assigned to a concurrent service profile concerning the conflict generating service. This creates a conflict, as each client
application may be assigned to a service only through a single service profile at a particular moment in time.

d. the conflict generating service.

Parameters
No Parameters were identified for this method

Returns
TpAddSagM ember sConflictList

Raises
TpCommonExceptions, P_ ACCESS DENIED

8.3.1.2 Interface Class IpClientAppinfoQuery
Inherits from: Iplnterface

Thisinterface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain
information about them.

ETSI

104 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpClientAppinfoQuery

describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription
listClientApps () : TpClientAppIDList

describeSAG (sagID : in TpSagID) : TpSagDescription

listSAGs () : TpSagIDList

listSAGMembers (sagID : in TpSagID) : TpClientApplIDList
listClientAppMembership (clientAppID : in TpClientAppID) : TpSagIDList

8.3.1.2.1 Method describeClientApp()
Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription> : The "clientAppDescription” parameter contains the clientApp description.

Parameters

clientApplID : in TpClientAppl D
The"clientApplD" parameter identifies the clientApp object whose description is requested.

Returns

TpClientAppDescription

Raises

TpCommonExceptions,P_ACCESS DENIED,P_INVALID_CLIENT_APP_ID

8.3.1.2.2 Method listClientApps()
Get alist of al client applications belonging to an enterprise operator.

Returns <clientApplDs> : The "clientApplDs" parameter identifies the list of client applicationsin the enterprise
operator domain.

Parameters
No Parameters were identified for this method

Returns
TpClientApplDList

Raises
TpCommonExceptions, P_ ACCESS DENIED

ETSI

105 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.3.1.2.3 Method describeSAG()
Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription> : The "sagDescription” parameter returns the SAG-specific description.

Parameters

saglD : in TpSaglD
The"saglD" parameter identifies the SAG whose description is required.

Returns

TpSagDescription

Raises

TpCommonExceptions, P_ ACCESS DENIED, P_INVALID_SAG_ID

8.3.1.2.4 Method listSAGs()
Get alist of al SAGs associated with an enterprise operator.

Returns <SagIDList>: The "sagIDList" parameter returnsthelist of the identifiers of the SAGs associated with the
enterprise operator.

Parameters
No Parameters were identified for this method

Returns

TpSaglDList

Raises

TpCommonExceptions, P_ ACCESS DENIED

8.3.1.2.5 Method listSAGMembers()
Get alist of al client applications associated with the specified SAG.

Returns <clientApplDList> : The"clientAppIDList" parameter returns the list of the client applications associated with
the SAG.

Parameters

saglD : in TpSaglD
The "sagID" parameter identifies the SAG whose clientApplD list is required.

Returns

TpClientApplIDList

Raises

TpCommonExceptions, P_ ACCESS DENIED, P_INVALID_SAG_ID

ETSI

106 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.3.1.2.6 Method listClientAppMembership()
Obtain alist of the SAGs of which the specified client application is a member.

Returns <sags> : The SAGs of which the client application is a member.

Parameters

clientApplID : in TpClientAppl D
The"clientAppl D" parameter identifies the clientApp object whose membership details are requested.

Returns

TpSaglDList

Raises

TpCommonExceptions, P ACCESS DENIED, P_INVALID _CLIENT_APP_ID

8.3.1.3 Interface Class IpServiceProfileManagement
Inherits from: Iplnterface

Thisinterface is used by the enterprise operator for the management of Service Profiles, which are defined for every
subscribed service, and to assign/de - assign the Service Profilesto SAGs.

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfilelD
modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfilelD : in TpServiceProfilelD) : void

assign (saglID : in TpSaglID, serviceProfilelD : in TpServiceProfileID) : void

deassign (saglD : in TpSagID, serviceProfilelD : in TpServiceProfilelD) : void

<<new>> requestConflictinfo () : TpAssignSagToServiceProfileConflictList

8.3.1.3.1 Method createServiceProfile()

Creates anew Service Profile for the specified service contract. The service properties within the service profile restrict
the service to meet the client application requirements. A Service Profile isarestriction of the corresponding service
contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfilelD> : The service profile ID, generated by the framework, will be used to uniquely identify the
service profile within the framework.

Parameters

serviceProfileDescription : in TpServicePr ofileDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract
information and which may further restrict the value ranges of the service subscription properties.

ETSI

107 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns

TpServiceProfilel D

Raises

TpCommonExceptions, P_ ACCESS DENIED,P_INVALID_SERVICE_PROFILE_ID

8.3.1.3.2 Method modifyServiceProfile()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated
with the particular service profileis allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a
non-associated enterprise operator invokes this method.

Parameters

serviceProfile: in TpServiceProfile

The modified Service Profile. If the serviceProfilel D specified in the serviceProfile parameter does not exist, an
exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExceptions, P ACCESS DENIED,P_INVALID_SERVICE_PROFILE_ID

8.3.1.3.3 Method deleteServiceProfile()

Deletes the specified Service Profile. Only the enterprise operator associated with the particular service profileis
allowed to delete it, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise operator
invokes this method.

Parameters

serviceProfilel D : in TpServiceProfilel D

The "serviceProfilelD" parameter identifies the Service Profile that is to be deleted. If the serviceProfilel D does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExceptions, P ACCESS DENIED,P_INVALID_SERVICE_PROFILE_ID

8.3.1.3.4 Method assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfilelD is
allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise
operator invokes this method. Each client application may be assigned to a service only through a single service profile
at aparticular moment in time. If this condition is violated, a

"P_INVALID_SAG TO_SERVICE PROFILE_ASSIGNMENT" would be raised. In this case, no partial execution of
this method is performed. The enterprise operator can query further information about this invalid assignment using the
method requestConflictinfo().

Parameters

saglD : in TpSaglD
The "sagID" parameter identifies the SAG to which Service Profile isto be assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

ETSI

108 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

serviceProfilelD : in TpServiceProfilel D

The "serviceProfilel D" parameter identifies the Service Profile that isto be assigned to the SAG. If the serviceProfilelD
does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P ACCESS DENIED, P_INVALID_SAG_ID, P_INVALID_SERVICE_PROFILE_ID,
P INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT

8.3.1.3.5 Method deassign()

De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the
serviceProfilel D is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if a non-
associated enterprise operator invokes this method.

Parameters

saglD : in TpSaglD

The "sagID" parameter identifies the SAG whose Service Profileisto be de-assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfilel D : in TpServiceProfilel D

The "serviceProfilel D" parameter identifies the Service Profile that isto be de-assigned. If the serviceProfilelD does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExceptions,P_ ACCESS DENIED,P_INVALID_SAG_ID, P_INVALID_SERVICE_PROFILE_ID

8.3.1.3.6 Method <<new>> requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method assign() on this interface (i.e.
Information about the invocation of assign () that threw a
P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to a service
only through a single service profile at a particular moment in time. The enterprise operator could try to assign a SAG
to aservice profile of agiven service. If one or more client applicationsin this SAG are aready assigned to service
profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular
moment in time. Asthisis prohibited, a conflict list is generated.

It isonly possible to retrieve information about the last conflicting assign() method call; information about previous
conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagToServiceProfileConflictList> : The description of the conflicts occurring at the latest invocation
of assign() that raised aP_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT. Each conflict contains the
following elements:

a. the conflict generating client application.

b. the SAG and the service profile through which the conflict generating client application is aready assigned to the
conflict generating service. It includes the current service profile.

c. the conflict generating service.

The conflict generating SAG and service profile are supposed to be well known, because they are input parameters of
the assign() method. Therefore, they do not appear in the returned conflict list.

Parameters
No Parameters were identified for this method

ETSI

109 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns

TpAssignSagT oServiceProfileConflictList
Raises

TpCommonExceptions, P_ ACCESS DENIED

8.3.1.4 Interface Class IpServiceProfileInfoQuery
Inherits from: Iplinterface

Thisinterface is used by the enterprise operator to obtain information about individual Service Profiles, to find out
which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given
client application or SAG.

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles () : TpServiceProfileIDList
describeServiceProfile (serviceProfileID : in TpServiceProfilelD) : TpServiceProfileDescription

listAssignedMembers (serviceProfilelD : in TpServiceProfilelD) : TpSagIDList

8.3.1.4.1 Method listServiceProfiles()
Get alist of al service profiles created by the enterprise operator.

Returns <serviceProfilelDList> : The "serviceProfilelDList" isalist of the service profiles associated with the
enterprise operator.

Parameters
No Parameters were identified for this method

Returns

TpServiceProfilel DList

Raises

TpCommonExceptions, P_ ACCESS DENIED

8.3.1.4.2 Method describeServiceProfile()
Query information about a single service profile.

Returns <serviceProfileDescription> : The "serviceProfileDescription” parameter is a structured data type which
contains a description for the specified service profile.

Parameters

serviceProfilel D : in TpServiceProfilel D
The "serviceProfilelD" parameter identifies the Service Profile whose description is being requested.

ETSI

110 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns

TpServiceProfileDescription

Raises

TpCommonExceptions, P_ ACCESS DENIED,P_INVALID_SERVICE_PROFILE_ID

8.3.1.4.3 Method listAssignedMembers()
Get alist of SAGs assigned to the specified service profile.
Returns <sagIDList>: The "saglDs" parameter isthe list of the SAG IDs that are assigned to the specified service

profile.

Parameters

serviceProfilel D : in TpServiceProfilel D

The "serviceProfilelD" parameter identifies the Service Profile. If the serviceProfilel D is not recognised by the
framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSaglDList

Raises

TpCommonExceptions,P ACCESS DENIED,P_INVALID_SERVICE_PROFILE_ID

8.3.1.5 Interface Class IpServiceContractManagement
Inherits from: Iplnterface

The enterprise operator uses this interface for service contract management, such as create, modify, and delete service
contracts.

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription : in TpServiceContractDescription) :
TpServiceContractID

modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

8.3.1.5.1 Method createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract
description. This contract should conform to the previously negotiated high - level agreement (regarding the services,
their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the
appropriate exception is raised by the framework. When the description has been validated, a service contract 1D will be
generated.

ETSI

111 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns <serviceContractl D> : The service contract ID will be used to uniquely identify the service contract within the
framework.

Parameters

serviceContractDescription : in TpServiceContractDescription

The "serviceContractDescription” parameter provides the information contained in the service contract. The service
contract is a structured data type, which contains the following information:

a. information about the service requestor, i.e., the enterprise operator,

b. information about the billing contact (person),

C. service start date,

d. service end date,

e. servicetype (e.g. obtained from listServiceType() method),

f. service ID (e.g. obtained from discoverService() method). For certain services, service type
information is sufficient and service ID may not be required. Thisimplies that any service of the type specified above is
subscribed and hence accessible to the enterprise operator or to its client applications.

0. list of service subscription properties and their value ranges (service profiles further restrict these
value ranges)

Returns
TpServiceContract! D
Raises

TpCommonExceptions,
P_ACCESS DENIED,P_INVALID_SERVICE_ID,P_INVALID_SERVICE_CONTRACT_ID

8.3.1.5.2 Method modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre-existing off-
line negotiated high-level agreement between the enterprise operator and the framework operator. Only the enterprise
operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

Parameters

serviceContract : in TpServiceContract

The "serviceContract” parameter provides the modified service contract. If the serviceContract!D does not exists, an
exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Raises

TpCommonExceptions,
P_ACCESS DENIED,P_INVALID_SERVICE_ID,P_INVALID_SERVICE_CONTRACT_ID

8.3.1.5.3 Method deleteServiceContract()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. Only
the enterprise operator associated with the serviceContract is allowed to delete it, an exception "P_TASK_REFUSED"
would be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceContractlD : in TpServiceContractl D

The "serviceContractID" parameter identifies the service contract that the enterprise operator wishes to delete. If the
serviceContractI D does not exists, an exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

ETSI

112 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises
TpCommonExceptions, P ACCESS DENIED,P_INVALID_SERVICE_CONTRACT_ID

8.3.1.6 Interface Class IpServiceContractinfoQuery
Inherits from: Iplinterface

The enterprise operator uses this interface to query information about a given service contract.

<<Interface>>

IpServiceContractinfoQuery

describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription
listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfileIDList

8.3.1.6.1 Method describeServiceContract()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain
information that is stored in the specified service contract. The enterprise operator can only obtain information about the
service contracts that it has created.

Returns <serviceContractDescription> : The "serviceContract” parameter contains the description for the specified
service contract.

Parameters

serviceContractlD : in TpServiceContractl D
The "serviceContractID" parameter identifies the service whose description is being requested.

Returns
TpServiceContractDescription

Raises
TpCommonExceptions,P_ ACCESS DENIED,P_INVALID_SERVICE_CONTRACT_ID

8.3.1.6.2 Method listServiceContracts()
Returns alist of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractlDs> : The "serviceContractlDs" parameter will contain alist of IDs for service contracts that
the enterprise operator has created.

Parameters
No Parameters were identified for this method

ETSI

113 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns

TpServiceContractI DList

Raises

TpCommonExceptions, P_ ACCESS DENIED

8.3.1.6.3 Method listServiceProfiles()

The enterprise operator invokes this operation to obtain alist of service profiles that are associated with a particular
service contract.

Returns <serviceProfilelDs> : This contains the service profiles associated with a particular service contract.

Parameters

serviceContractlD : in TpServiceContractl D

The "serviceContractI D" parameter identifies the service contract. If the serviceContractI D is not recognised by the
framework, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Returns

TpServiceProfilel DList

Raises

TpCommonExceptions, P ACCESS DENIED, P_INVALID_SERVICE_CONTRACT_ID

8.3.1.7 Interface Class IpEntOpAccountManagement
Inherits from: Iplnterface

The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise
operator subscription accounts, such as modify and del ete enterprise operator accounts. The EntOplD will be decided in
an off-line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more
meaningful than a random number. The EntOp account, consisting of the EntOpl D, along with the list of valid
properties and their modes and prescribed ranges, will be entered via a FW operator interface that is currently outside
the scope of the API.

<<Interface>>

IpPEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void
deleteEntOpAccount () : void

ETSI

114 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.3.1.7.1 Method modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseOperator Properties: in TpEntOpProperties

The "enterprise operator properties' parameter conveys the modified/popul ated information about the enterprise
operator. The values of the "enterprise operator properties’ can only be modified within the prescribed range, as
negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a
P_INVALID_PROPERTY exception israised.

Raises
TpCommonExceptions, P_ ACCESS DENIED, P_INVALID_PROPERTY

8.3.1.7.2 Method deleteEntOpAccount()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the
enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete
the enterprise operator account will result inaP_TASK_REFUSED exception if there are outstanding service contracts
(and service profiles).

Parameters

No Parameters were identified for this method
Raises

TpCommonExceptions, P_ ACCESS DENIED

8.3.1.8 Interface Class IpEntOpAccountinfoQuery
Inherits from: Iplnterface

Thisinterface is used by the enterprise operator to query information related to its own subscription account as held
within the framework.

<<Interface>>

IPEntOpAccountinfoQuery

describeEntOpAccount () : TpEntOp

ETSI

115 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

8.3.1.8.1 Method describeEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what
information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator> : The "enterpriseOperator" parameter conveys the information stored in the EntOp object
about the enterprise operator. It contains the unique "enterprise operator ID" followed by alist of "enterprise operator
properties'. The enterprise operator propertiesis alist of name/value pairs which provide enterprise operator related
information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),
etc. to the framework.

Parameters
No Parameters were identified for this method

Returns

TpENtOp

Raises

TpCommonExceptions, P_ ACCESS DENIED

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

8.4.1 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription

9 Framework-to-Service API

9.1 Sequence Diagrams

9.1.1 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification
9.1.2 Integrity Management Sequence Diagrams

9.1.2.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registersitself and the framework invokes load management function
based on policy

ETSI

116 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

: IpSvclLoadManager

: IpFwioadM anager

T
|
! 1: createLoadLewelNotification()

U gl

2: load change deteétion & policy evaluation

3: loadLewelNotification()

|

|

|

|

|

|

: t
Framework detects its -7
load condition change
and initiates load control
action

<

N
N

This is the
implementation detail

4: load change detection & policy evaluation

‘ 5 loadLewelNotification()

6: destroy LoadLevelNatification() |

ETSI

N
N
N

This is the
implementation detail

117 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.1.2.2 Load Management: Client and Service Load Balancing

Application : Framework : - Service :
IpAppl.oadManager IpLoadManager IpFwLoadManager IpSvcLoadManager

Framework checks
application load.

| 1: queryAppLoadReq()

—

| 2: queryAppLoadRes()
|

|
Depending onthe load, the
framework may choose to stop
sending notifications to the
application, to allow its load to
reduce.

3: suspendNatification()

L_F U i 4: querySvcLoadReq()

S na

The framework may then check
the load on the service, and take
action if (according to the load
balancing policy) if required.

! 5: querySvcLoadRes()

ETSI

118 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.1.2.3 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

Framework

IQFWHgs\rtBeat IpSvcHeaHBeatM amt

T

| |

| 1: enablgSvcHeartBeat()
| |

|

i

u

2: pulse()

3: pulse() At a certain point of

U\ 7 |time the framework
decides to stop

heartbeat supenision

—_—

|
|
1
|
4: disableSvcHeartBeat()

o

9.1.2.4 Fault Management: Service requests Framework activity test

Framework : Senice :
IpFwFaultManager IpSwvcFault Manager

1: activityTestReq() The Senice requests that the
D< U Framework does an activity test.

2: activityTestRes()

1. The service asksthe framework to carry out its activity test. The service denotes that it requires the activity test done
for the framework, rather than an application, by supplying an appropriate parameter.

2: The framework carries out the test and returns the result to the service.

ETSI

119 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.1.2.5 Fault Management: Service requests Application activity test

Senice : Framework : o Application :
IpSvc Fault Manager IpFaultManager IpFaultManager IpAppFaultManager

The Framework identifies the senice
instance to conclude which
U /u Application the test is directed at, and

1: activityTestReq()

comunicates internally to Framework
interface to the Application.

2: appActivity TestReq()

U /U The application

carries out the

|

|

|

|

|

|

|

|

|

|

|

: |

| [| activity test and
: | | returns the result to
: | 3: appActivityTestRes() | the Framework.
| L

|

|

|

|

|

|

|

|

|

|

|

|

4 U

Communications.

Internal Fram ework ﬁ

4: activityTestRes()

=

1. The service instance asks the framework to invoke an activity test on the client application.

2. Theframework asks the application to do the activity test. It is assumed that there isinternal communication
between the service facing part of the framework (i.e. |pFwFaultManager interface) and the part that faces the client
application.

3: The application does the activity test and returns the result to the framework.

4. The framework internally passes the result from its application facing interface (IpFaultManager) to its service
facing side, and sends the result to the service.

ETSI

120 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.1.2.6 Fault Management: Application requests Service activity test

Client Application : Framework : o Senice :
IpAppFault Manager IpFaultManager IpFwFaultManager IpSvcFaultManager

:
| |
The client application asks the !
framework to carry out the [
activity test on a senvice. |
|
|
|
|
|
|

|

|

| 1: activity TestReq()

| \
|

|
The Framework identifies which
senice the test is directed at by the
svclD parameter, and
communicates internally with the
appropriate framework interface.
W hich inwokes the call on the
senice.

| 2: sveActivity TestReq()

| u

returns the result.

Senice does test and ﬁ

Framework passes result .

internally from senice facing 3 sweActivity TestRes()
part to application facing part, U\ U
and sends the result to the

application.

|
4: activityTestRes() |
|

e

1. Theclient application asks the framework to invoke an activity test on a service, the service isidentified by the
svcld parameter.

2: The framework asksthe service to do the activity test. It is assumed that there isinternal communication between
the application facing part of the framework (i.e. |pFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4: The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application
facing side, and sends the result to the client application.

ETSI

121 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.1.2.7 Fault Management: Application detects service is unavailable

Client Application : Framework : o Senice :
IpAppFaultManager IpFaultManager | | IpFwFaultManager IpSwvcFaultManager

|
|
1
|
The application detects that
the senice is not responding,
soit informs the framework via
the swcUnavailablelnd method.

1: swcUnavailablelnd()

the senice.

2: appUnavailablelnd()

U U

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i ‘
! The framework informs ﬁ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1. The client application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework.

2: The framework informs the service instance that the client application was unable to get a response fromit. The
service or framework may then decide to carry out an activity test to see whether there is a general problem with the
service instance that requires further action.

9.1.3 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery
9.1.4 Service Instance Lifecycle Manager Sequence Diagrams

9.1.4.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

ETSI

122 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

AppLogic o : IpAppCallCont mIManager : Iplnitial o GenericCallControlService : : IpCallControlManager
IpAppServiceAareemert it IpServiceAgreementManagement IpServicelnstanceLif ecy cleManager
T T T T T T
Il Il Il Il Il Il
We assume that the application is already authenticated and discoveredthe service it wants touse ﬁ

1 se\eclService:()
|
2: sighServiceAgreement()
;

T
|
|
|
|
|
|
i ‘
|
3: signServiceAgreenhent()
|

4: createServiceManager() 5: new()

7: setCallback()

Y Y]

NN

)

1. The application selects the service, using a servicel D for the generic call control service. The servicel D could have
been obtained via the discovery interface. A ServiceToken is returned to the application.
2: Theframework signs the service agreement.

3: Theclient application signs the service agreement. As aresult a service manager interface reference (in this case of
type IpCallControlManager) is returned to the application.

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the servicel D to return a service manager interface reference. The service manager istheinitial
point of contact to the service.

5: Thelifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that thisis an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

6: The application creates a new |pAppCall ControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

ETSI

123 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.1.5 Service Registration Sequence Diagrams

9.1.5.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

IpFWServica?eqistration

1: registerSenvice()

2: announceSeniceAvailability()

1. Registration: first step - register service

The purpose of thisfirst step in the process of registration is to agree, within the network, on anameto call, internaly, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal isto make an association between the new SCF version, as characterized by alist of
properties, and an identifier called servicel D.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCSto the Framework in thisfirst registration step:
in serviceTypeName

Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").
in servicePropertyList

Thisisalist of types TpServiceProperty; each TpServiceProperty isapair of (ServicePropertyName,
ServicePropertyValuelList).

ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are listed in the
SCF data definition).

ServicePropertyValuelList is a numbered set of types TpServicePropertyVaue; TpServicePropertyVaueisastring
that describes avalid value of a SCF property (valid SCF property values are listed in the SCF data definition).

The following output parameter results from service registration:
out servicelD

Thisisastring, automatically generated by the Framework and unique within the Framework.

ETSI

124 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Thisisthe name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2: Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to useit. Installing the SCSlogic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point”, called lifecycle manager, is used. The role of the lifecycle manager
isto control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary
to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface
reference to alifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle manager for it that will allow client to useit. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of thisinformation, the Framework makes the
new SCF (identified by the pair [servicel D, servicel nstancel ifecycleManagerRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:
in servicelD

Thisisthe identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needsto
include the servicel D, to know which SCF it is.

in servicel nstancelL.ifecycleM anager Ref

Thisisthe interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in this interface when a client application signs an agreement to use
the SCF so that it can get the service manager interface necessary for applications as an entry point to any SCF.

9.2 Class Diagrams

<<Interface>>
IpSvc EventNotification
(from Service Interfaces)

@reportNotification()
@notificationTerminated()

N
<<uses>> |
<<Interface>>
IpFWE \vent Notification
(from Framework Interfaces)

SicreateNotification()
@destroyNotification()

Figure 25: Event Notification Package Overview

ETSI

<<Interface>>

IpSwcHeartBeatMgmt <<Interface>>
IpSvcHeartBeat
enableSvwcHeartBeat() | q 0.n
disableSwvcHeartBeat() pulse()
changelnterval()

|
|
|
<<uses>> !
|
|
|

<<Interface>>
IpFwHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changelnterval()

I
|
|
|
|

<<uses>> |
|
|
|
|

125

<<Interface>>
IpSvcLoadManager

querySwvcLoadReq()
queryLoadRes()
queryLoadErr()
loadLewelNotification()
suspendNotification()
resumeNotification()

A

|
<<uses>> |
|

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>
IpSwve Fault Manager

activity TestRes()

swActivity TestReq()

fwFaultReport Ind()

fwFaultRecoveryind ()

fwUnavailableind()

sweUnavail ablelnd()

appUnauailablelnd ()
genFaultStatsRecordRes()

activity TestErr()

genFaultStatsRecordErn()
<<deprecated>> genFaultStatsRecordReq|()
<<new>> generateFaultStatsRecordReq()

<<Interface>>
IpS\eOAM

systemDateTimeQuery()

A

|
|
<<uses>> |
|

I
I
I
I
I
<<uses>> :
I
I
I
I

<<Interface>>
IpFwHeartBeat

<<Interface>>

<<Interface>>

<<Interface>>

pulse()

Figure 26:

IpFwLoadManager IpFwFaultManager IpFWOAM
reportLoad() activity TestReq() systemDateTimeQuery()
queryLoadReq() swcActivity TestRes()
querySwvcLoadRes() appUnauailableind ()
querySwvcLoadErr() genFaultStatsRecordReq()

createLoadLewelNotification()
destroyLoadLevelNotification()
suspendNotification()
resumeNotification()

swcUnavail ablelnd()

swActivity TestEnm()

<<deprecated>> genFaultStatsRecordRes()
<<deprecated>> genFaultStatsRecordEm()
<<new>> generateFaultStatsRecordRes()
<<new>> generateFaultStatsRecordErr()

Integrity Management Package Overview

<<Interface>>
IpFwSeniceDiscovery
(from Framework interfaces)

WlistSeniceTypes()
®describeServiceType()

®discoverSenice()

®listRegisteredServices()

Figure 27: Service Discovery Package Overview

<<Interface>>

IpSenvicelnstancelLifecycleManager

(from Service Interfaces)

ScreateSeniceManager()
SdestroySeniceManager()

Figure 28: Service Instance Lifecycle Manager Package Overview

ETSI

126 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<lInterface>>
IpFwSeniceRegistration
(from Framework interfaces)

WregisterSenice()
®announceS eniceAvail ability()
®unregisterSenvice()
®describeSenice()
®unannounceService()

Figure 29: Service Registration Package Overview

<<Interface>>
IpClientAPILevelAuthentication
(fom Clientinterfaces)

<<Interface>>
IpClientAccess
(from Client interfaces)

®<<deprecated>> authenticate()
FabortAuthentication()
®authenticationSucceeded()
®<<new>> challenge()

%t erminateAcc ess()
N

|
|
|

<<uses>> | <<uses>> |
| |
|

|
| |
<<Interface>> <<Interface>>
IpAccess IpAP ILevelAuthentication
(from Framework interfaces) (from Framework interfaces)

<<Interface>>
Ipinitial
(from Framework interfaces)

®<<deprecated>> initiateAuthentication()
W <new>> initiateAuthenticationWithVersion ()

obtaininterface()

Wobtaininterfac eWithCallback()

| <deprecated>> endAccess()
Wi stinterfaces()

W< <deprecated>> releaselnterface()
W <new>> selectSigningAlgorithm()
W <new>> terminateAccess()

W< <new>> relinquishinterface()

®<<deprecated>> selectEncryptionMethod()
®<<deprecated>> authenticate()
®abortAuthentication()
FauthenticationSucceeded()

®<<new>> selectAuthenticationMechanism()
< <new>> challenge()

!

<<Interface>>
IpAuthentication
(from Framework interfaces)

FrequestAccess()

Figure 30: Trust and Security Management Package Overview

9.3 Interface Classes

9.3.1 Event Notification Interface Classes

9.3.1.1 Interface Class IpFwEventNotification

Inherits from: Iplnterface

The event notification mechanism is used to notify the service of generic events that have occurred.

ETSI

127 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

9.3.1.1.1 Method createNotification()
This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria: in TpFwEventCriteria
Specifies the event specific criteria used by the service to define the event required.

Returns

TpAssignment| D

Raises
TpCommonExceptions,P_INVALID_EVENT_TYPE,P_INVALID_CRITERIA

9.3.1.1.2 Method destroyNoaotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentI D
Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the

assignment ID does not correspond to one of the valid assignment I Ds, the framework will return the error code
P_INVALID_ASSIGNMENT _ID.

Raises

TpCommonExceptions,P_INVALID_ASSIGNMENT_ID

9.3.1.2 Interface Class IpSvcEventNotification
Inherits from: Iplnterface

Thisinterface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained.

ETSI

128 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpSvcEventNoatification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

9.3.1.2.1 Method reportNatification()

This method notifies the service of the arrival of a generic event.

Parameters

eventinfo: in TpFwEventinfo
Specifies specific data associated with this event.

assignmentID : in TpAssignment| D
Specifies the assignment id which was returned by the framework during the createNotification() method. The service

can use the assignment id to associate events with event specific criteriaand to act accordingly.
Raises
TpCommonExceptions,P_INVALID_ASSIGNMENT_ID

9.3.1.2.2 Method notificationTerminated()
This method indicates to the service that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method
Raises

TpCommonExceptions

9.3.2 Integrity Management Interface Classes

9.3.2.1 Interface Class IpFwFaultManager
Inherits from: Iplnterface

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the AP,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the IpAccess interface.

ETSI

129 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void
svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appUnavailablelnd () : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, recordSubject : in TpSubjectType) : void
svcUnavailablelnd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in
TpServicelDList) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in
TpServicelDList) : void

<<new>> generateFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

9.3.2.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the | pSvcFaultM anager interface.

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject : in TpSubjectType
Identifies the subject for testing (framework or client application).

Raises

TpCommonExceptions

9.3.2.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

ETSI

130 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises
TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID

9.3.2.1.3 Method appUnavailablelnd()
This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of thisindication, the framework must act to inform the client application.

Parameters
No Parameters were identified for this method
Raises

TpCommonExceptions

9.3.2.1.4 Method genFaultStatsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the

I pSvcFaultManager interface.

Parameters

timePeriod : in TpTimel nterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject : in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions

9.3.2.1.5 Method svcUnavailablelnd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The
framework should inform the client application that is currently using this service instance that it is unavailable for use
(viathe svcUnavailablelnd method on the IpAppFaultM anager interface).

Parameters

reason : in TpSvcUnavailReason
Identifies the reason for the service instance's unavailability.

Raises

TpCommonExceptions

ETSI

131 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.3.2.1.6 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

9.3.2.1.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicel Ds
parameter has no meaning. It is replaced with generateFaultStatsRecordRes().

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the |pSvcFaultManager interface.

Parameters

faultStatistics: in TpFaultStatsRecord
The fault statistics record.

servicelDs: in TpServicel DList
Specifies the services that are included in the general fault statistics record. The servicel Ds parameter is not allowed to

be an empty list.
Raises

TpCommonExceptions

9.3.2.1.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicelDs
parameter has no meaning. It is replaced with generateFaultStatsRecordErr().

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in responseto a
genFaultStatsRecordReq method invocation on the |pSvcFaultM anager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

servicel Ds: in TpServicel DList
Specifies the services that were included in the general fault statistics record request. The servicel Ds parameter is not

alowed to be an empty list.

Raises

TpCommonExceptions

ETSI

132 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.3.2.1.9 Method <<new>> generateFaultStatsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the I pSvcFaultManager interface.

Parameters
faultStatistics: in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions

9.3.2.1.10 Method <<new>> generateFaultStatsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
genFaultStatsRecordReg method invocation on the IpSvcFaultManager interface.

Parameters
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions

9.3.2.2 Interface Class IpSvcFaultManager
Inherits from: Iplinterface

Thisinterface is used to inform the service instance of events that affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

ETSI

133 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpInterfaceFault) : void

fwFaultRecoverylnd (fault : in TpinterfaceFault) : void

fwUnavailablelnd (reason : in TpFwUnavailReason) : void

svcUnavailablelnd () : void

appUnavailablelnd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void
activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) :
void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList)
: void

<<new>> generateFaultStatsRecordReq (timePeriod : in TpTimelnterval) : void

9.3.2.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters
activityTestID : in TpActivityTestID
Used by the service to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID

9.3.2.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out atest onitself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivityTestRes method on the |pFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

ETSI

134 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises

TpCommonExceptions

9.3.2.2.3 Method fwFaultReportind()

The framework invokes this method to notify the service instance of afailure within the framework. The service
instance must not continue to use the framework until it has recovered (asindicated by a fwFaultRecoverylnd).

Parameters

fault : in TplnterfaceFault
Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

9.3.2.2.4 Method fwFaultRecoverylnd()

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The
service instance may then resume using the framework.

Parameters

fault : in TplnterfaceFault
Specifies the fault from which the framework has recovered.

Raises

TpCommonExceptions

9.3.2.2.5 Method fwUnavailablelnd()

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason
Identifies the reason why the framework is no longer available

Raises

TpCommonExceptions

9.3.2.2.6 Method svcUnavailablelnd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance.

Parameters
No Parameters were identified for this method

ETSI

135 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises

TpCommonExceptions

9.3.2.2.7 Method appUnavailablelnd()

The framework invokes this method to inform the service instance that the framework may have detected that the
application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

9.3.2.2.8 Method genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a
genFaultStatsRecordReg method invocation on the I pFwFaultM anager interface.

Parameters

faultStatistics: in TpFaultStatsRecord
The fault statistics record.

recordSubject : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises

TpCommonExceptions

9.3.2.2.9 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

ETSI

136 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.3.2.2.10 Method genFaultStatsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the | pFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

recordSubject : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

Raises

TpCommonExceptions

9.3.2.2.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in alater release. It cannot be used as described, since the servicel Ds
parameter has no meaning. It is replaced with generateFaultStatsRecordReq().

This method is used by the framework to solicit fault statistics from the service, for example when the framework was
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the | pFaultManager
interface. On receipt of this request the service must produce afault statistics record, for either the framework or for the
client'sinstances of the specified services during the specified time interval, which is returned to the framework using
the genFaultStatsRecordRes operation on the | pFwFaultManager interface. If the framework does not have accessto a
service instance with the specified servicel D, the P UNAUTHORISED _PARAMETER_VALUE exception shall be
thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

timePeriod : in TpTimel nterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

servicelDs: in TpServicel DList
Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty

list.
Raises
TpCommonExceptions, P_INVALID_SERVICE_ID, P UNAUTHORISED PARAMETER_VALUE

9.3.2.2.12 Method <<new>> generateFaultStatsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the

I pFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the
specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the

I pFwFaultManager interface.

Parameters

timePeriod : in TpTimelnterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

ETSI

137 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises

TpCommonExceptions

9.3.2.3 Interface Class IpFwHeartBeatMgmt
Inherits from: Iplinterface

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a service instance.

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcinterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

9.3.2.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in TpInt32
Thetime interval in milliseconds between the heartbeats.

svclnterface: in IpSvcHeartBeatRef
This parameter refersto the callback interface the heartbeat is calling.

Raises

TpCommonExceptions,P_INVALID_INTERFACE_TYPE

9.3.2.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

9.3.2.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

ETSI

138 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Parameters
interval : in TpInt32

Thetime interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions

9.3.2.4 Interface Class IpFwHeartBeat
Inherits from: Iplnterface

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat.

<<Interface>>

IpFwHeartBeat

pulse () : void

9.3.2.4.1 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pSvcHeartBeatM gmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

9.3.2.5 Interface Class IpSvcHeartBeatMgmt
Inherits from: Iplnterface

Thisinterface allows the initialisation of a heartbeat supervision of the service instance by the framework.

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in TpInt32, fwinterface : in IpFwHeartBeatRef) : void
disableSvcHeartBeat () : void

changelnterval (interval : in TpInt32) : void

ETSI

139 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.3.2.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

fwinterface: in | pFwHear tBeatRef
This parameter refersto the callback interface the heartbeat is caling.

Raises
TpCommonExceptions,P_INVALID_INTERFACE_TYPE

9.3.2.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

9.3.2.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

9.3.2.6 Interface Class IpSvcHeartBeat
Inherits from: Iplinterface

The service heartbeat interface is used by the framework to send the service instance its heartbeat.

ETSI

140 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpSvcHeartBeat

pulse () : void

9.3.2.6.1 Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the |pFwHeartBeatM gmt.enableHeartbeat() method. If the puls&()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

9.3.2.7 Interface Class IpFwLoadManager
Inherits from: Iplnterface

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintai ned, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the

I pSvcL oadManager interface to provide the callback mechanism.

ETSI

141 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timelnterval : in TpTimelnterval) : void
querySvclLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void
createLoadLevelNotification (notificationSubject : in TpSubjectType) : void
destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void
suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

9.3.2.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instanceis overloaded. At level 2 load, the service instance is severely overloaded.

Parameters
loadLevel : in TpLoadL evel

Specifies the service instance's load level.
Raises

TpCommonExceptions

9.3.2.7.2 Method queryLoadReq()
The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

querySubject : in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

timelnterval : in TpTimelnterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

ETSI

142 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.3.2.7.3 Method querySvcLoadRes()
The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadReq method on the IpSvcl oadManager interface.

Parameters

loadStatistics: in TpLoadStatisticList
Specifies the service-supplied load statistics.

Raises

TpCommonExceptions

9.3.2.7.4 Method querySvcLoadErr()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcl oadReq method on the | pSvcl oadManager interface.

Parameters
loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions

9.3.2.7.5 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.
Raises

TpCommonExceptions

9.3.2.7.6 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should no longer be reported.

ETSI

143 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises

TpCommonExceptions

9.3.2.7.7 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which the sending of notifications by the framework should be

suspended.
Raises

TpCommonExceptions

9.3.2.7.8 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled a temporary overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the
framework should be resumed.

Raises

TpCommonExceptions

9.3.2.8 Interface Class IpSvcLoadManager
Inherits from: Iplnterface

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the IpAccess
interface.

ETSI

144 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>

IpSvcLoadManager

querySvcLoadReq (timelnterval : in TpTimelnterval) : void
gueryLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
suspendNotification () : void

resumeNotification () : void

9.3.2.8.1 Method querySvcLoadReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timelnterval : in TpTimelnterval
Specifies the time interval for which load statistic records should be reported.

Raises

TpCommonExceptions

9.3.2.8.2 Method queryLoadRes()
The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadReq method on the IpFwL oadManager interface.

Parameters

loadStatistics: in TpLoadStatisticList
Specifies the framework-supplied |oad statistics

Raises

TpCommonExceptions

9.3.2.8.3 Method queryLoadErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the IpFwL oadM anager interface.

Parameters

loadStatisticsError : in TpL oadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

ETSI

145 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises

TpCommonExceptions

9.3.2.8.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the application or
framework which has been registered for load level notifications) this method is invoked on the SCF.

Parameters
loadStatistics: in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions

9.3.2.8.5 Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

9.3.2.8.6 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled atemporary overload condition.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

9.3.2.9 Interface Class IpFwOAM
Inherits from: IpInterface

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API.

ETSI

146 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

<<Interface>>
IpFWOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

9.3.2.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDateAndTime: in TpDateAndTime

Thisisthe date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT isreturned if the
format of the parameter isinvalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME_AND DATE_FORMAT

9.3.2.10 Interface Class IpSvcOAM

Inherits from: Iplnterface

<<Interface>>
IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

9.3.2.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (service).

Parameters

systemDateAndTime: in TpDateAndTime

Thisisthe system date and time of the framework. The error code P_INVALID_DATE TIME_FORMAT isreturned if
the format of the parameter isinvalid.

ETSI

147 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME_AND _DATE_FORMAT

9.3.3 Service Discovery Interface Classes
This APl complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returnsalist of all "service types' that are currently supported by the framework and the "describeServiceType()"
method returns a description of each service type. The description of service type includes the " service-specific
properties’ that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously registered.

9.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Iplnterface

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

9.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method

Returns

ETSI

148 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

TpServiceTypeNameList
Raises

TpCommonExceptions

9.3.3.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service typeis currently available or
unavailable.

Parameters

name: in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, thenthe P_ILLEGAL_SERVICE_TYPE
exception israised. If the "name" does not exist in the repository, then the P UNKNOWN_SERVICE_TY PE exception
israised.

Returns
TpServiceTypeDescription

Raises
TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P UNKNOWN_SERVICE_TYPE

9.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin a
list of desired service properties to describe the service it islooking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responsesit is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties{name and value list} associated with the service.

Parameters

serviceTypeName: in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, then the P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList” parameter isalist of service properties{ hame and value list} that the required services
should satisfy. These properties deal with the non-functional and hon-computational aspects of the desired service. The
property values in the desired property list must be logically interpreted as " minimum", "maximum", etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). Itis

ETSI

149 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max : in TpInt32
The"max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

Returns
TpServicelist
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,
P INVALID_PROPERTY

9.3.3.1.4 Method listRegisteredServices()
Returns alist of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns alist of registered services. Each service is characterised by
itsservice ID and alist of service properties { name and value list} associated with the service.

Parameters
No Parameters were identified for this method

Returns
TpServicelist
Raises

TpCommonExceptions

9.34 Service Instance Lifecycle Manager Interface Classes

The IpServicel nstanceLifecycleManager interface allows the framework to get access to a service manager interface of
aservice. It is used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that isthe initial point of contact for the service. E.g., the
generic call control service uses the IpCall ControlManager interface.

9.3.4.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Iplnterface

The I pServicel nstancel ifecycleManager interface allows the Framework to create and destroy Service Manager
Instances.

<<Interface>>

IpServicelnstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
servicelnstancelD : in TpServicelnstancelD) : IpServiceRef

destroyServiceManager (servicelnstance : in TpServicelnstancelD) : void

ETSI

150 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.3.4.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application : in TpClientApplD
Specifies the application for which the service manager interface is requested.

serviceProperties: in TpServicePropertylList
Specifies the service properties and their values that are to be used to configure the service instance. These properties

form apart of the service level agreement. An example of these propertiesisalist of methods that the client application
is allowed to invoke on the service interfaces.

servicelnstancel D : in TpServicel nstancel D
Specifies the Service Instance ID that the new Service Manager isto be identified by.

Returns

| pServiceRef

Raises

TpCommonExceptions, P_INVALID_PROPERTY

9.3.4.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. Thiswill result in the client application being
unable to use the service manager any more.

Parameters

servicelnstance: in TpServicel nstancel D
I dentifies the Service Instance to be destroyed.

Raises

TpCommonExceptions

9.3.5 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain alist of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

ETSI

151 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.3.5.1 Interface Class IpFwServiceRegistration
Inherits from: Iplnterface

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServicelD

announceServiceAvailability (servicelD : in TpServicelD, servicelnstanceLifecycleManagerRef : in
service_lifecycle::IpServicelnstanceLifecycleManagerRef) : void

unregisterService (servicelD : in TpServicelD) : void
describeService (servicelD : in TpServicelD) : TpServiceDescription

unannounceService (servicelD : in TpServicelD) : void

9.3.5.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to
the Framework (ServiceTypeis ‘available’). A service-ID isreturned to the service supplier when a serviceisregistered
in the Framework. When the service is not registered because the ServiceTypeis 'unavailable, a

P_SERVICE _TYPE_UNAVAILABLE israised. The service-ID isthe handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

Returns <servicel D> : Thisisthe unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to accessit via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of thistype.

Parameters

serviceTypeName: in TpServiceTypeName

The"serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
therulesfor identifiers, thenaP_ILLEGAL_SERVICE_TYPE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiersindicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in
the service type), then aP_PROPERTY_TYPE_MISMATCH exception israised. If the "servicePropertyList"

ETSI

152 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY _PROPERTY exception israised. If two or more properties with the same property name
areincluded in this parameter, the P_DUPLICATE_PROPERTY _NAME exception is raised.

Returns
TpServicelD

Raises

TpCommonExceptions, P PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME,
P ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,
P_MISSING_ MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE

9.3.5.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service instance lifecycle
manager isinstantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

There exists a " service manager" instance per service instance. Each service implements the

| pServicel nstanceL ifecycleManager interface. The |pServicel nstancel ifecycleManager interface supports a method
called the createServiceManager(application: in TpClientAppl D, serviceProperties : in TpServicePropertyList,
servicelnstancel D : in TpServicel nstancel D) : | pServiceRef. When the service agreement is signed for some servicel D
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, getsa
serviceManager and returns this to the client application.

Parameters

servicelD : in TpServicel D

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, thenaP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicelD" islegal but there
is no service offer within the Framework with that ID, then aP_UNKNOWN_SERVICE_ID exception israised.

servicel nstancel ifecycleM anager Ref : in service_lifecycle::I pServicel nstancel ifecycleM anager Ref
The interface reference at which the service instance lifecycle manager of the previously registered serviceis available.

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID,
P_INVALID_INTERFACE_TYPE

9.3.5.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove aregistered service from the Framework.
The serviceisidentified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

servicelD : in TpServicel D

The service to be withdrawn isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service identifiers,
thenaP_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there is no service offer within the
Framework with that ID, then aP_UNKNOWN_SERVICE_ID exceptionisraised.

ETSI

153 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Raises
TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID

9.3.5.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It
comprises, the "type" of the service, and the "properties’ that describe this service. The serviceisidentified by the
"service-1D" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different servicel D assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service, and the properties that describe this service.

Parameters

servicelD : in TpServicelD

The service to be described isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
thenaP_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there is no service offer within the
Framework with that ID, then aP_UNKNOWN_SERVICE_ID exception is raised.

Returns

TpServiceDescription

Raises

TpCommonExceptions,P_ILLEGAL _SERVICE_ID,P_UNKNOWN_SERVICE_ID

9.3.5.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. Thiswill prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

servicelD : in TpServicel D

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, then aP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpCommonExceptions,P_ILLEGAL _SERVICE_ID,P_UNKNOWN_SERVICE_ID

ETSI

154 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

9.4.1 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.
9.4.2 Integrity Management State Transition Diagrams

9.4.2.1 State Transition Diagrams for IpFwLoadManager

reportLoad

“load change” NoadLevelNotification queryAppLoadRes| load statistics requested by LoadManager]
queryAppLoadErr| load statistics requested by LoadManager]

createLoadLewelNotification \(Active } queryLoadReq

destroyLoadLevelNotification

IpAccess\obtaininterface
IpAccess)obtaininterfaceWithCallback

el

resumeNatification

reportLoad
queryAppLoadRes|[load statistics requested by LoadManager]
queryAppLoadEr load statistics requested by LoadManager]

Notification queryLoadReq
Suspended

destroyLoadLevelNotification

IpAccess.endAccess

suspendNotification
[all notifications suspended]

Figure 31: State Transition Diagram for IpFwLoadManager

9.4.2.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

9.4.2.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the service has requested the L oadM anager to suspend sending the load level
notification information.

ETSI

155 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.4.2.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the |pFwL oadManager. The load manager can now request the service to supply load statistics
information (by invoking querySvcLoadReq()). Furthermore the LoadManager can reguest the service to control its
load (by invoking loadL evelNotification(), resumeNoatification() or suspendNotification() on the service side of
interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method
reportLoad().

9.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery.

9.4.4 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager
9.4.5 Service Registration State Transition Diagrams

9.45.1 State Transition Diagrams for IpFwServiceRegistration

registerService

SCF
Registered

. Q 1 i ili
unannounceSenice announceServiceAvailability

‘J |describeService

VA
" scF |
‘ Announced
~
unregisterService
Y
o

Figure 32: State Transition Diagram for IpFwServiceRegistration

ETSI

156 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

9.45.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

9.45.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it isno
longer available for discovery.

10 Service Properties

10.1 Service Property Types

The service type defines which properties the supplier of an SCF supplier shall provide when he registers an SCF.

At Service Registration the properties of atype shall be interpreted as the set of values that can be supported by the
service. If aservice type has a certain property (e.g. "CAN_DO_SOVETHI NG'), a service registers with a property value
of {"true", "false"}.Thismeansthat the SCSisableto support Service instances where this property is used or
allowed and instances where this property is not used or alowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thuslead to a
sub-set of the service property values. When the correct SCF isinstantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE: Thisisachieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported service property
types.

Service Property type name Description Example value Interpretation of example
(array of strings) value

BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans consisting of
the Boolean "false".

INTEGER_SET set of integers {"1","2", "5", "7} The set of integers consisting of
the integers 1, 2, 5and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of
the string "Sophia" and the string
"Rijen"

ADDRESSRANGE_SET set of address ranges |{"123??*", "*.ericsson.se"} The set of address ranges

consisting of ranges 123??* and
*.ericsson.se.

INTEGER_INTERVAL interval of integers {"5", "100"} The integers that are between or
equal to 5 and 100.
STRING_INTERVAL interval of strings {"Rijen", "Sophia"} The strings that are between or

equal to the strings "Rijen" and
"Sophia", in lexicographical

order.
INTEGER_INTEGER_MAP map from integers to |{"1", "10", "2", "20", "3", "30"} [The map that maps 1 to 10, 2 to
integers 20 and 3 to 30.

ETSI

157 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the left
bound of the interval holds the value "UNBOUNDED", the lower bound of the interval isthe smallest val ue supported
by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval isthe
largest value supported by the type.

When an SCF is registered by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an

empty set. When a serviceis discovered by an application, this application shall specify either { TRUE} or { FALSE} as
value for service properties of type BOOLEAN_SET.

10.2 General Service Properties
Each service instance has the following general properties:

» Service Name

+ ServiceVersion

* Servicelnstance |ID

e Service Instance Description

e Product Name
e Product Version

e Supported Interfaces

e Operation Set

The following clauses describe these general service propertiesin more detail. The values for the mode are defined in
the type TpServiceTypePropertyMode.

10.2.1 Service Name

Property Type Mode Description
P_SERVICE_NAME STRING_SET MANDATORY_READONLY |[This property contains the name of the
service, e.g. "UserLocation",
"UserLocationCamel",
"UserLocationEmergency" or
"UserStatus".

10.2.2 Service Version

Property Type Mode Description

P_SERVICE_VERSION STRING_SET MANDATORY This property contains the version of the
APIs, to which the service is compliant. It is a
set of strings as specified in the TpVersion

type.
10.2.3 Service ID
Property Type Mode Description
P_SERVICE_ID STRING_INTERVAL |READONLY This property uniquely identifies a specific

service. Note that the Framework generates
this property value when the Service Supplier
registers the service. This property should not
be confused with the servicelnstancelD
generated by the Framework when a Client
Application signs a Service Agreement to
obtain the Service Manager

ETSI

10.2.4 Service Description

158

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Property Type

Mode

Description

P_SERVICE_DESCRIPTION |STRING_SET

MANDATORY_READONLY |This property contains a textual

description of the service. It should not
be interpreted as a description of a
Service Instance (as identified by a
servicelnstancelD generated by the
Framework when a Client Application
signs a Service Agreement to obtain
the Service Manager).

10.2.5 Product Name

Property Type Mode Description
P_PRODUCT_NAME STRING_SET READONLY This property contains the name of the
product that provides the service, e.g. "Find
It", "Locate.com"”.
10.2.6 Product Version
Property Type Mode Description
P_PRODUCT_VERSION STRING_SET READONLY This property contains the version of the

product that provides the service, e.g.
"3.1.11".

10.2.7

<<deprecated>> Supported Interfaces

This property contains alist of strings with interface names that the service supports, e.g. "IpUserLocation”,
"IpUserStatus’. This property is deprecated and will be removed in afuture version of the specification.

10.2.8 Operation Set

Property Type

Mode

Description

P_OPERATION_SET STRING_SET

MANDATORY

Specifies set of the operations the SCS
supports.

The notation to be used is :
{"Interfacel.operationl","Interfacel.operation
2", "Interface2.operation1"}, e.g.:
{"IpCall.createCall","IpCall.routeReq"}.

11 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:

- Datatype, that shows the name of the data type;

- Description, that describes the data type;

- Tabular specification, that specifies the data types and values of the data type;

- Example, if relevant, shown to illustrate the data type.

ETSI

159 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

All datatypes referenced but not defined in this clause are common data definitions which may be found in
ES 202 915-2.

11.1 Common Framework Data Definitions

11.1.1 TpClientAppID

Thisisan identifier for the client application. It is used to identify the client to the Framework. This datatypeis
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator's domain). This unique
identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

11.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientApplD.

11.1.3 TpDomainlD

Definesthe Tagged Choi ce of Data El enent s that specify either the Framework or the type of entity
attempting to access the Framework.

Tag Element Type
TpDomainIDType

Tag Element Value

Choice Element Type

Choice Element Name

P_FW TpFwID FwID
P_CLIENT_APPLICATION TpClientAppID ClientAppID
P_ENT_OP TpEntOpID EntOpID

P _SERVICE_INSTANCE

TpServicelnstancelD

ServicelD (See note)

P_SERVICE_SUPPLIER

TpServiceSupplierlD

ServiceSupplierlD

NOTE: The Choice Element Name ServicelD of TpDomainID refers to a service instance.

11.1.4 TpDomainiDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P FW 0 The Framework
P_CLIENT_APPLICATION 1 A client application
P_ENT_OP 2 An enterprise operator
P_SERVICE_INSTANCE 3 A service instance
P_SERVICE SUPPLIER 4 A service supplier

11.1.5 TpEntOpID

This datatypeisidentical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

11.1.6 TpPropertyName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "property"”.

ETSI

160 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.1.7 TpPropertyValue

Thisdatatypeisidentical to TpSt ri ng. It isthe value (or the list of values) associated with a generic "property”.

11.1.8 TpProperty

ThisdatatypeisaSequence of Data El ement s which describesageneric "property”. It is a structured data
type consisting of the following { name, value} pair:

Sequence Element Name Sequence Element Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

11.1.9 TpPropertyList

This datatype definesaNunber ed Li st of Data El enents of type TpProperty.

11.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOplD.

11.1.11 TpFwiID

Thisdatatypeisidentical to TpSt r i ng and identifies the Framework.

11.1.12 TpService

This datatypeis a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element Name Sequence Element Type Documentation
ServicelD TpServicelD
ServiceDescription TpServiceDescription This field contains the description of the
service

11.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

11.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes aregistered SCF. It is a structured data type which
consists of:

Sequence Element Name Sequence Element Type Documentation
ServiceTypeName TpServiceTypeName
ServicePropertyList TpServicePropertyList

11.1.15 TpServicelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

ETSI

161 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicelD.

11.1.17 TpServicelnstancelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework

11.1.18 TpServiceTypeProperty

ThisdatatypeisaSequence of Data El enents which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
Itissimilar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property's name and mode, but also defines the list of values assigned to it.

Sequence Element Name Sequence Element Type Documentation
ServicePropertyName TpServicePropertyName

ServiceTypePropertyMode TpServiceTypePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

11.1.19 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

11.1.20 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided
MANDATORY 1 The value of the corresponding SCF property type shall be provided at service
registration time
READONLY 2 The value of the corresponding SCF property type is optional, but once given a

value it can not be modified/restricted by a service level agreement

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not
subsequently be modified/restricted by a service level agreement

11.1.21 TpServicePropertyTypeName

This datatypeisidentical to TpString and describes avalid SCF property type name. Valid service property type names
aredetailed in 10.1.

11.1.22 TpServicePropertyName

This datatypeisidentical to TpString. It defines avalid SCF property name. The valid service property names are
detailed in clause 10.2 and in the SCF data definitions.

11.1.23 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

11.1.24 TpServicePropertyValue

This datatypeisidentical to TpString and describes a valid value of a SCF property.

ETSI

162 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.1.25 TpServicePropertyValueList

This data type defines aNumbered Set of Data Elements of type TpServicePropertyVaue

11.1.26 TpServiceProperty

This datatypeis a Sequence of Data Elements which describes an " SCF property". It is a structured data type which

consists of:

Sequence Element Name

Sequence Element Type

Documentation

ServicePropertyName

TpServicePropertyName

ServicePropertyValueList

TpServicePropertyValueList

11.1.27 TpServicePropertyList

This data type defines aNumbered Set of Data Elements of type TpServiceProperty.

11.1.28 TpServiceSupplierlD

Thisisan identifier for aservice supplier. It is used to identify the supplier to the Framework. This datatype isidentical

toTpStri ng.

11.1.29 TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element Name

Sequence Element Type

Documentation

ServiceTypePropertyList

TpServiceTypePropertyList

A sequence of property name and
property mode tuples associated
with the SCF type.

ServiceTypeNameList TpServiceTypeNameList The names of the super types of
the associated SCF type.
AvailableOrUnavailable TpBoolean An indication whether the SCF

type is available (true) or
unavailable (false).

ETSI

11.1.30 TpServiceTypeName

163

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may aso be used, but should be preceded by the string

"SP_". The following values are defined.

Character String Value

Description

NULL

An empty (NULL) string indicates nho SCF name

P _GENERIC CALL CONTROL

The name of the Generic Call Control SCF

P_MULTI_PARTY_CALL_CONTROL

The name of the MultiParty Call Control SCF

P_MULTI MEDIA CALL CONTROL

The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL CONTROL

The name of the Conference Call Control SCF

P_USER_INTERACTION

The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES

The name of the Terminal Capabilities SCF

P_USER_LOCATION

The name of the User Location SCF

P _USER LOCATION CAMEL

The name of the Network User Location SCF

P _USER LOCATION EMERGENCY

The name of the User Location Emergency SCF

P_USER_STATUS

The name of the User Status SCF

P _DATA SESSION CONTROL

The name of the Data Session Control SCF

P_GENERIC_MESSAGING

The name of the Generic Messaging SCF

P_CONNECTIVITY_MANAGER

The name of the Connectivity Manager SCF

P_CHARGING

The name of the Charging SCF

P_ACCOUNT_MANAGEMENT

The name of the Account Management SCF

P_POLICY_MANAGEMENT

The name of the Policy Management SCF

P _PAM PRESENCE_AND AVAILABILITY

The name of PAM presentity SCF

P_PAM_EVENT_MANAGEMENT

The name of PAM watcher SCF

P_PAM PROVISIONING

The name of PAM provisioning SCF

11.1.31 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

11.1.32 TpSubjectType

Defines the subject of a query/notification request/result.

Name Value Description
P_SUBJECT_UNDEFINED 0 The subject is neither the framework
nor the client application.
P_SUBJECT _CLIENT_APP 1 The subject is the client application.
P _SUBJECT FW 2 The subject is the framework.

11.2

11.2.1 TpFwEventName

Defines the name of event being notified.

Event Notification Data Definitions

Name

Value Description

P_EVENT_FW_NAME_UNDEFINED

0 Undefined.

P_EVENT FW SERVICE AVAILABLE

1 Notification of SCS(s) available.

P_EVENT_FW_SERVICE_UNAVAILABLE

2 Notification of SCS(s) becoming
unavailable.

ETSI

164 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.2.2 TpFwEventCriteria

Definesthe Tagged Choi ce of Data El enent s that specify the criteriafor an event notification to be
generated.

Tag Element Type
TpFwEventName
Tag Element Value Choice Element Type Choice Element Name
P EVENT FW NAME UNDEFINED TpString EventNameUndefined
P_EVENT FW_ SERVICE_AVAILABLE TpServiceTypeNameList ServiceTypeNamelList
P_EVENT FW_SERVICE_UNAVAILABLE TpServiceTypeNameList UnavailableServiceTypeNameList

11.2.3 TpFwEventinfo

Definesthe Tagged Choi ce of Data El enent s that specify the information returned to the application in an
event notification.

Tag Element Type
TpFwEventName
Tag Element Value Choice Element Type Choice Element Name
P EVENT FW NAME UNDEFINED TpString EventNameUndefined
P_EVENT _FW_ SERVICE_AVAILABLE TpServicelDList ServicelDList
P_EVENT FW_SERVICE_UNAVAILABLE TpServicelDList UnavailableServicelDList

11.3 Trust and Security Management Data Definitions

11.3.1 TpAccessType

Thisdatatypeisidentical to a TpString. Thisidentifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value Description
P_OSA ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

11.3.2 TpAuthType

This datatype isidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication isthe default
authentication method. Other Network operator specific capabilities may a so be used, but should be preceded by the
string "SP_". The following values are defined:

String Value Description

P_OSA_AUTHENTICATION [Authenticate using the OSA API Level Authentication Interfaces:
IpAPILevelAuthentication and IpClientAPILevelAuthentication

P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA
Security.

ETSI

165 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.3.3 TpEncryptionCapability

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES 56 A simple transfer of secret information that is shared between the client application and

the Framework with protection against interception on the link provided by the DES
algorithm with a 56-bit shared secret key.

P_DES_128 A simple transfer of secret information that is shared between the client entity and the
Framework with protection against interception on the link provided by the DES algorithm
with a 128-bit shared secret key.

P_RSA_512 A public-key cryptography system providing authentication without prior exchange of
secrets using 512-bit keys.
P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of

secrets using 1 024-bit keys.

11.3.4 TpEncryptionCapabilityList

Thisdatatypeisidentical to a TpString. It isastring of multiple TpEncryptionCapability concatenated using a comma
(,)as the separation character.

11.3.5 TpEndAccessProperties

This datatypeis of type TpPropertyList. It identifies the actions that the Framework should perform when an

application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or left running).

11.3.6 TpAuthDomain

ThisisSequence of Data El enent s containing al the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain

Sequence Element Name Sequence Element Type Description

DomainlID TpDomainID Identifies the domain for authentication. This
identifier is assigned to the domain during the
initial contractual agreements, and is valid during
the lifetime of the contract.

Authinterface IpinterfaceRef Identifies the authentication interface of the
specific entity. This data element has the same
lifetime as the domain authentication process,
i.e. in principle a new interface reference can be
provided each time a domain intends to access
another.

ETSI

166 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.3.7 TplinterfaceName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

Character String Value Description

P_DISCOVERY The name for the Discovery interface.

P _EVENT NOTIFICATION The name for the Event Notification interface.

P_OAM The name for the OA&M interface.

P_LOAD_MANAGER The name for the Load Manager interface.

P FAULT MANAGER The name for the Fault Manager interface.

P HEARTBEAT MANAGEMENT The name for the Heartbeat Management interface.

P_SERVICE_AGREEMENT MANAGEMENT |The name of the Service Agreement Management interface.

P_REGISTRATION The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator
Account Management interface.

P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator
Account Information Query interface.

P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract
Management interface.

P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract
Information Query interface.

P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application
Management interface.

P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application
Information Query interface.

P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile
Management interface.

P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile
Information Query interface.

11.3.8 TplinterfaceNameList

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

11.3.9 TpServiceToken

This datatype isidentical to a TpString, and identifies a selected SCF. Thisis a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has alimited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P_I NVALI D_SERVI CE_TOKEN). Service Tokens will
automatically expireif the client or Framework invokes the endAccess method on the other's corresponding access
interface.

11.3.10 TpSignatureAndServiceMgr

Thisis a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Name Sequence Element Type
DigitalSignature TpOctetSet
ServiceMgrinterface IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.

The ServiceMgrinterface is areference to the SCF manager interface for the selected SCF.

ETSI

167 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.3.11 TpSigningAlgorithm

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

String Value

Description

NULL

An empty (NULL) string indicates no signing algorithm is required

P_MD5_RSA 512

MDS5 takes an input message of arbitrary length and produces as
output a 128-bit message digest of the input. This is then encrypted
with the private key under the RSA public-key cryptography system
using a 512-bit modulus. The signature generation follows the
process and format defined in RFC 2313 (PKCS#1 v1.5). The use of
this signing method is deprecated..

P_MD5_RSA_1024

MD?5 takes an input message of arbitrary length and produces as
output a 128-bit message digest of the input. This is then encrypted
with the private key under the RSA public- key cryptography system
using a 1024-bit modulus. .The signature generation follows the
process and format defined in RFC 2313 (PKCS#1 v1.5). The use of
this signing method is deprecated.

P_RSASSA_PKCS1 vl 5 SHA1_ 1024 |SHA-1is used to produce a 160-bit message digest based on the

input message to be signed. RSA is then used to generate the
signature value, following the process defined in section 8 of RFC
2437 and format defined in section 9.2.1 of RFC 2437. The RSA
private/public key pair is using a 1024-bit modulus.

P_SHA1 DSA

SHA-1 is used to produce a 160-bit message digest based on the
input message to be signed. DSA is then used to generate the
signature value. The signature generation follows the process and
format defined in section 7.2.2 of RFC 2459.

11.3.12 TpSigningAlgorithmCapabilityList

Thisdatatypeisidentical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,)as

the separation character.

11.3.13 TpAuthMechanism

This datatypeisidentical to a TpString. It identifies an authentication mechanism to be used for API Level
Authentication. The following values are defined:

String Value

Description

P_OSA_MD5

Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to
generate a response based on a shared secret and a challenge received via
authenticate() method. The capability to use this algorithm is required to be
supported when using CHAP (RFC 1994) but its use is not recommended.

P_OSA_HMAC_SHA1 96

Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing
algorithm to generate a response based on a shared secret and a challenge
received via authenticate() method.

P_OSA_HMAC_MD5_96

Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm
to generate a response based on a shared secret and a challenge received via
authenticate() method.

11.3.14 TpAuthMechanismList

Thisdatatypeisidentical to a TpString. It isastring of multiple TpAuthMechanism concatenated using a comma (,)as

the separation character.

ETSI

168 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.4 Integrity Management Data Definitions

11.4.1 TpActivityTestRes

Thistypeisidentical to TpString and is an implementation specific result. The valuesin this data type are "Available"
or "Unavailable".

11.4.2 TpFaultStatsRecord

This defines the set of recordsto be returned giving fault information for the requested time period.

Sequence Element Name Sequence Element Type
Period TpTimelnterval
FaultStatsSet TpFaultStatsSet

11.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Name Sequence Element Type Description
Fault TplinterfaceFault
Occurrences TpInt32 The number of separate instances of this fault
MaxDuration TpInt32 The number of seconds duration of the longest fault
TotalDuration Tpint32 The cumulative duration (all occurrences)
NumberOfClientsAffected Tpint32 The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and Total Duration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is
the number of clients informed of the fault by the Framework.

11.4.4 TpFaultStatisticsError

Defines the error code associated with afailed attempt to retrieve any fault statistics information.

Name Value Description
P_FAULT INFO ERROR_UNDEFINED 0 Undefined error
P FAULT INFO UNAVAILABLE 1 Fault statistics unavailable

11.45 TpFaultStatsSet

Thisdatatype definesaNunber ed Set of Data El enent s of type TpFaultStats.

11.4.6 TpActivityTestID

Thisdatatypeisidentical to a TpInt32, and is used as a token to match activity test requests with their results.

ETSI

169 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)
11.4.7 TplinterfaceFault
Defines the cause of the interface fault detected.

Name Value Description
INTERFACE_FAULT_UNDEFINED 0 Undefined
INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware has

been detected
INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or hardware has
been detected
INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-gateway
link has been detected
11.4.8 TpSvcUnavailReason
Defines the reason why a SCF is unavailable.

Name Value Description
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined
SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed
SERVICE UNAVAILABLE GATEWAY FAILURE 2 The gateway API software or hardware has failed
SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded
SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from fraud

or malicious attack)
11.4.9 TpFwUnavailReason
Defines the reason why the Framework is unavailable.
Name Value Description
FW_UNAVAILABLE_UNDEFINED 0 Undefined
FW_ UNAVAILABLE LOCAL FAILURE 1 The Local API software or hardware has failed
FW_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed
FW_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded
FW_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect
from fraud or malicious attack)

FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link has

failed

11.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD LEVEL NORMAL 0 Normal load
LOAD LEVEL OVERLOAD 1 Overload
LOAD LEVEL SEVERE OVERLOAD 2 Severe Overload

11.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold valueis
application and SCF dependent, so is their relationship with load level.

Sequence Element Name

Sequence Element Type

LoadThreshold

TpFloat

ETSI

11.4.12 TpLoadinitVal

170

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Defines the Sequence of Data Elements that specify the pair of load level and associated |oad threshold value.

Sequence Element Name

Sequence Element Type

LoadLevel

TpLoadLevel

LoadThreshold

TpLoadThreshold

11.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name

Sequence Element Type

LoadPolicy

TpString

11.4.14 TpLoadStatistic

Definesthe Sequence of Data El enment s that represents aload statistic record for a specific entity (i.e.
Framework, service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntitylD

TpLoadStatisticEntitylD

TimeStamp

TpDateAndTime

LoadStatisticInfo

TpLoadStatisticlnfo

11.4.15 TpLoadStatisticList

DefinesaNunbered List of Data El enents of type TpLoadStatistic.

11.4.16 TpLoadStatisticData

Definesthe Sequence of Data El enent s that represents load statistic information

Sequence Element Name

Sequence Element Type

LoadValue (see note)

TpFloat

LoadLevel

TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

11.4.17 TpLoadStatisticEntitylD

Definesthe Tagged Choi ce of Data El enent s that specify the type of entity (i.e. service, application or
Framework) providing load statistics.

Tag Element Type
TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name

P_LOAD STATISTICS FW _TYPE TpFwID FrameworkID
P LOAD STATISTICS SVC TYPE TpServicelD ServicelD
P LOAD STATISTICS APP TYPE TpClientAppID ClientAppID

ETSI

171

11.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Name Value Description
P LOAD STATISTICS FW TYPE 0 Framework-type load statistics
P_LOAD _STATISTICS SVC _TYPE 1 Service-type load statistics
P LOAD STATISTICS APP TYPE 2 Application-type load statistics

11.4.19 TpLoadStatisticinfo

Definesthe Tagged Choi ce of Data El ement s that specify the type of load statistic information (i.e. valid or

invalid).

Tag Element Type

TpLoadStatisticinfoType

Tag Element Value

Choice Element Type

Choice Element Name

P_LOAD_STATISTICS VALID TpLoadStatisticData LoadStatisticData
P LOAD STATISTICS INVALID TpLoadStatisticError LoadStatisticError
11.4.20 TpLoadStatisticinfoType
Defines the type of load statistic information (i.e. valid or invalid).
Name Value Description
P LOAD STATISTICS VALID 0 Valid load statistics
P LOAD STATISTICS INVALID 1 Invalid load statistics

11.4.21 TpLoadStatisticError

Defines the error code associated with afailed attempt to retrieve any load statistics information.

Name Value Description
P_LOAD INFO ERROR_UNDEFINED 0 Undefined error
P LOAD INFO UNAVAILABLE 1 Load statistics unavailable

11.5

11.5.1 TpPropertyName

Service Subscription Data Definitions

Thisdatatypeisidentical to TpSt r i ng. It isthe name of a generic "property".

11.5.2 TpPropertyValue

Thisdatatypeisidentical to TpSt ri ng. It isthe vaue (or the list of values) associated with a generic "property”.

ETSI

172 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.5.3 TpProperty

ThisdatatypeisaSequence of Data El enent s which describesageneric "property”. It isastructured data
type consisting of the following { name, value} pair:

Sequence Element Name Sequence Element Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

11.5.4 TpPropertyList

Thisdatatype definesaNunber ed Li st of Data El enent s of type TpProperty.

11.5.5 TpEntOpProperties

This datatypeis of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

11.5.6 TpENtOp

ThisdatatypeisaSequence of Data El enent s which describes an enterprise operator. It isa structured data
type, consisting of a unique "enterprise operator ID" and alist of "enterprise operator properties’, as follows:

Sequence Element Name Sequence Element Type
EntOpID TpENtOpID
EntOpProperties TpEntOpProperties

11.5.7 TpServiceContractiD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSA service by the enterprise.

11.5.8 TpServiceContractIDList

Thisdatatype definesaNunber ed Li st of Data El enent s of type TpServiceContractID.

11.5.9 TpPersonName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "person”.

11.5.10 TpPostalAddress

Thisdatatypeisidentical to TpSt ri ng. It isthe mailing address of a generic "person”.

11.5.11 TpTelephoneNumber

Thisdatatypeisidentical to TpSt ri ng. It isthe telephone number of a generic "person”.

11.5.12 TpEmail

Thisdatatypeisidentical to TpSt ri ng. It isthe email address of a generic "person”.

ETSI

173 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.5.13 TpHomePage

Thisdatatypeisidentical to TpSt ri ng. It isthe web address of a generic "person”.

11.5.14 TpPersonProperties

This datatypeis of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic "person”.

11.5.15 TpPerson

ThisdatatypeisaSequence of Data El enent s which describesageneric "person”: e.g. abilling contact, a
service requestor. It is a structured data type which consists of:

Sequence Element Name Sequence Element Type
PersonName TpPersonName
PostalAddress TpPostalAddress
TelephoneNumber TpTelephoneNumber
Email TpEmail
HomePage TpHomePage
PersonProperties TpPersonProperties

11.5.16 TpServiceStartDate

Thisis of type TpDat eAndTi ne. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.17 TpServiceEndDate

Thisisof type TpDat eAndTi nme. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.18 TpServiceRequestor

Thisis of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

11.5.19 TpBillingContact

Thisis of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise's
use of an OSA service.

11.5.20 TpServiceSubscriptionProperties

Thisis of type TpServicePropertyList. It specifies a subset of all available service properties and service property values
that apply to an enterprise's use of an OSA service.

11.5.21 TpServiceContract

ThisdatatypeisaSequence of Data El enents which represents a service contract. It isa structured data type
which consists of:

Sequence Element Name Sequence Element Type
ServiceContractID TpServiceContractID
ServiceContractDescription TpServiceContractDescription

ETSI

174 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.5.22 TpServiceContractDescription

ThisdatatypeisaSequence of Data El enent s which describes a service contract. This contract should
conform to a previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ServiceRequestor TpServiceRequestor
BillingContact TpBillingContact
ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName
ServicelD TpServicelD
ServiceSubscriptionProperties TpServiceSubscriptionProperties

11.5.23 TpClientAppProperties

Thisis of type TpPropertyList. The client application propertiesisalist of { name, value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

11.5.24 TpClientAppDescription

ThisdatatypeisaSequence of Data El enent s which describesan enterprise client application. Itisa
structured data type, consisting of a unique "client application D", password and alist of client application properties.

Sequence Element Name Sequence Element Type
ClientAppID TpClientAppID
ClientAppProperties TpClientAppProperties

11.5.25 TpSagIiD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

11.5.26 TpSagIDList
This datatype definesaNunber ed Li st of Data El enent s of type TpSagID.

11.5.27 TpSagDescription

This datatypeisidentical to TpSt r i ng. It describes a SAG: e.g. alist of identifiers of the constituent client
applications, the purpose of the "grouping”.

11.5.28 TpSag

ThisdatatypeisaSequence of Data El enent s which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element Name Sequence Element Type
Saglb TpSagID
SagDescription TpSagDescription

ETSI

175 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

11.5.29 TpServiceProfilelD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

11.5.30 TpServiceProfileIDList

Thisdatatype definesaNunber ed Li st of Data El ements of type TpServiceProfilelD.

11.5.31 TpServiceProfile

ThisdatatypeisaSequence of Data El enents which representsa Service Profile. It isastructured data type
which consists of:

Sequence Element Name Sequence Element Type
ServiceProfilelD TpServiceProfileID
ServiceProfileDescription TpServiceProfileDescription

11.5.32 TpServiceProfileDescription

ThisdatatypeisaSequence of Data El enents which describesa Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profileis arestriction of
the service contract in order to provide restricted service features to a SAG. It isa structured data type which consists
of:

Sequence Element Name Sequence Element Type
ServiceContractID TpServiceContractlD
ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName

ServiceSubscriptionProperties TpServiceSubscriptionProperties

11.5.33 TpSagProfilePair

This datatypeis a Sequence of Data Elements which describes a pair of a SAG and a Service Profile. It isa structured
data type which consists of:

Sequence Element Name Sequence Element Type
Sag TpSagID
ServiceProfile TpServiceProfileID

11.5.34 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are
added to a SAG - see method addSagM embers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service. It includes the current service profile. The ConflictGeneratingSagProfilePair describes
another SAG, to which the client application should be added, and the corresponding service profile, through which the
client application is also connected to this service. This creates a conflict, as there may exist only a single service profile
for each service.

ETSI

176 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

The TpAddSagM embersConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ClientApplication TpClientAppID
ConflictGeneratingSagProfilePair TpSagProfilePair
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

11.5.35 TpAddSagMembersConflictList

This datatype definesaNunber ed Li st of Data El enments of type TpAddSagMembersConflict.

11.5.36 TpAssignSagToServiceProfileConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when a SAG isassigned to a
Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service.

The TpAssignSagT oServiceProfileConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ClientApplication TpClientAppID
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

11.5.37 TpAssignSagToServiceProfileConflictList

This datatype definesaNunber ed Li st of Data El ements of type TpAssignSagToServiceProfileConflict.

12 Exception Classes

The following are the list of exception classes which are used in thisinterface of the API.

Name Description

P_ACCESS_DENIED The client is not currently authenticated
with the framework

P_DUPLICATE_PROPERTY_NAME A duplicate property name has been
received

P ILLEGAL SERVICE_ID lllegal Service ID

P _ILLEGAL_SERVICE_TYPE lllegal Service Type

P_INVALID_ACCESS_TYPE The framework does not support the type
of access interface requested by the
client.

P_INVALID_ACTIVITY_TEST_ID ID does not correspond to a valid activity
test request

P_INVALID_ADDITION_TO_SAG A client application cannot be added to

the SAG because this would imply that the
client application has two concurrent
service profiles at a particular moment in
time for a particular service.

P_INVALID_AGREEMENT_TEXT Invalid agreement text

P_INVALID ENCRYPTION_CAPABILITY Invalid encryption capability

P INVALID AUTH TYPE Invalid type of authentication mechanism
P_INVALID_CLIENT_APP_ID Invalid Client Application ID
P_INVALID_DOMAIN_ID Invalid client ID

P INVALID ENT OP ID Invalid Enterprise Operator 1D

ETSI

177 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Name Description
P_INVALID_PROPERTY The framework does not recognise the
property supplied by the client
P_INVALID_SAG_ID Invalid Subscription Assignment Group 1D

P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT [A SAG cannot be assigned to the service
profile because this would imply that a
client application has two concurrent
service profiles at a particular moment in
time for a particular service.

P_INVALID_SERVICE_CONTRACT_ID Invalid Service Contract ID

P_INVALID_SERVICE_ID Invalid service ID

P INVALID SERVICE PROFILE ID Invalid service profile ID

P_INVALID_SERVICE_TOKEN The service token has not been issued, or
it has expired.

P_INVALID_SERVICE_TYPE Invalid Service Type

P_INVALID SIGNATURE Invalid digital signature

P_INVALID_SIGNING_ALGORITHM Invalid signing algorithm

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY No encryption mechanism, which is
acceptable to the framework, is supported
by the client

P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM |No authentication mechanism, which is
acceptable to the framework, is supported

by the client
P_NO_ACCEPTABLE_SIGNING_ALGORITHM No signing algorithm, which is acceptable
to the framework, is supported by the
client
P_PROPERTY_TYPE_MISMATCH Property Type Mismatch
P_SERVICE_ACCESS DENIED The client application is not allowed to
access this service.
P_SERVICE_NOT_ENABLED The service ID does not correspond to a
service that has been enabled
P_SERVICE_TYPE_UNAVAILABLE The service type is not available
according to the Framework.
P_UNKNOWN_SERVICE_ID Unknown Service ID
P UNKNOWN SERVICE TYPE Unknown Service Type
Each exception class contains the following structure:
Structure Element Name Structure Element Type Structure Element Description
Extralnformation TpString Carries extra information to help identify the source of
the exception, e.g. a parameter name

ETSI

178 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_entop.idl, fw_if _service.idl contained in archive es 20291503v010101m0.ZIP) which accompany
the present document.

ETSI

179 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of thisinterface specification is contained in text files (fw_data.wsdl,
fw_if_access.wsdl, fw_if _app.wsdl, fw_if_entop.wsdl and fw_if service.wsdl contained in archive
es 20291503v010101m0.Z1P) which accompanies the present document.

ETSI

180 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Annex C (informative):
Java API Description of the Framework

The Java API representation of thisinterface specification can be obtained from the following URLSs:

¢ JAIN SPA Framework Access Session (http://jcp.org/jsr/detail/24.j sp)

¢ JAIN SPA Framework to Application (http://jcp.org/jsr/detail/119.jsp)

Each JSR webpage contains a table identifying the relationships between the different versions of the Parlay,
ETSI/OSA, 3GPP/OSA and JAIN SPA specifications. In addition, each JAIN SPA specification version indicates to
which Parlay, ETSI/OSA and 3GPP/OSA specification versionsit corresponds to.

ETSI

http://jcp.org/jsr/detail/119.jsp
http://jcp.org/jsr/detail/24.jsp

181 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Annex D (informative):
Contents of 3GPP OSA R5 Framework

All parts of the present document, except clause 8, Framework to Enterprise Operator API, are relevant for
TS 129 198-3 V5 (Release 5).

ETSI

182 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

Annex E (informative):
Record of changes

Thefollowing isalist of the changes made to the present document for each release. The list contains the names of all
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change
information that isimportant to the reader is put in the final clause of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table
alowing the reader to know when the actual change was made.

E.1 Interfaces

E.1.1 New

Identifier | Comments

Interfaces added in ES 202 915-3 version 1.1.1 (Parlay 4.0)

E.1.2 Deprecated

Identifier | Comments

Interfaces deprecated in ES 202 915-3 version 1.1.1 (Parlay 4.0)

E.1.3 Removed

Identifier \ Comments

Interfaces removed in ES 202 915-3 version 1.1.1 (Parlay 4.0)

ETSI

183 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

E.2 Methods

E.2.1 New

Identifier

| Comments

Methods added in ES 202 915-3 version 1.1.1 (Parlay 4.0)

IpInitial.initiate AuthenticationWithVersion

replaces initiateAuthentication()

IpAPILevelAuthentication.selectAuthenticationMechanism

replaces selectEncryptionMethod

IpAPILevelAuthentication.challenge

replaces authenticate

IpClientAPILevelAuthentication.challenge

replaces authenticate

IpAccess.selectSigningAlgorithm

IpAccess.terminateAccess

replaces endAccess

IpAccess.relinquishinterface

replaces releaselnterface

IpClientAppManagement.requestConflictinfo

IpServiceProfileManagement.requestConflictinfo

IpFwFaultManager.generateFaultStatsRecordRes

replaces genFaultStatsRecordRes

IpFwFaultManager.generateFaultStatsRecordErr

replaces genFaultStatsRecordErr

IpSvcFaultManager.generateFaultStatsRecordReq

replaces genFaultStatsRecordReq

E.2.2 Deprecated

Identifier

| Comments

Methods deprecated in ES 202 915-3 version 1.1.1 (Parlay 4.0)

IpInitial.initiateAuthentication

replaced with initiateAuthenticationWithVersion()

IpAPILevelAuthentication.selectEncryptionMethod

replaced by selectAuthenticationMechanism

IpAPILevelAuthentication.authenticate

replaced by challenge

IpClientAPILevelAuthentication.authenticate

replaced by challenge

IpAccess.endAccess

replaced by terminateAccess

IpAccess.releaselnterface

replaced by relinquishinterface

IpFwFaultManager.genFaultStatsRecordRes

replaced by generateFaultStatsRecordRes

IpFwFaultManager.genFaultStatsRecordErr

replaced by generateFaultStatsRecordErr

IpSvcFaultManager.genFaultStatsRecordReq

replaced by generateFaultStatsRecordReq

IpFaultManager.appUnavailablelnd

broken

E.2.3 Modified

Identifier |

Comments

Methods modified in ES 202 915-3 version 1.1.1 (Parlay 4.0)

IpClientAppManagement.addSAGMembers

P INVALID ADDITION TO SAG added to exceptions

IpServiceProfileManagement.assign

P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT added to
exceptions

IpFwServiceRegistration.registerService

Exceptions P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID
removed

IpFaultManager.appActivityTestRes

Exception P_INVALID SERVICE ID removed.

E.2.4 Removed

Identifier |

Comments

Methods removed in ES 202 915-3 version 1.1.1 (Parlay 4.0)

ETSI

184 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

E.3 Data Definitions

E.3.1 New

Identifier | Comments

Data Definitions added in ES 202 915-3 version 1.1.1 (Parlay 4.0)

TpSagProfilePair

TpAddSagMembersConflict

TpAddSagMembersConflictList

TpAssignSagToServiceProfileConflict

TpAssignSagToServiceProfileConflictList

TpAuthMechanism

TpAuthMechanismList

TpSigningAlgorithmCapabilityList

E.3.2 Maodified

Identifier | Comments

Data Definitions modified in ES 202 915-3 version 1.1.1 (Parlay 4.0)

TpSigningAlgorithm [New values added

E.3.3 Removed

Identifier | Comments

Data Definitions removed in ES 202 915-3 version 1.1.1 (Parlay 4.0)

TpServiceSpecString [No longer used

E.4 Service Properties

E.4.1 New

Identifier | Comments

Service Properties added in ES 202 915-3 version 1.1.1 (Parlay 4.0)

E.4.2 Deprecated

Identifier | Comments

Service Properties deprecated in ES 202 915-3 version 1.1.1 (Parlay 4.0)

Supported Interfaces |

ETSI

185 Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

E.4.3 Modified

Identifier | Comments
Service Properties modified in ES 202 915-3 version 1.1.1 (Parlay 4.0)

P SERVICE NAME Property Name Defined

P SERVICE VERSION Property Name Defined

P SERVICE ID Property Name Defined, renamed from Service Instance ID

P SERVICE DESCRIPTION Property Name Defined, renamed from Service Instance Description
P PRODUCT NAME Property Name Defined

P PRODUCT VERSION Property Name Defined

E.4.4 Removed

Identifier | Comments

Service Properties removed in ES 202 915-3 version 1.1.1 (Parlay 4.0)

E.5 Exceptions

E.5.1 New

Identifier | Comments

Exceptions added in ES 202 915-3 version 1.1.1 (Parlay 4.0)

P_INVALID ADDITION_TO_SAG

P INVALID SAG TO SERVICE PROFILE ASSIGNMENT

P NO ACCEPTABLE AUTHENTICATION MECHANISM

P _NO ACCEPTABLE SIGNING ALGORITHM

E.5.2 Maodified

Identifier | Comments

Exceptions modified in ES 202 915-3 version 1.1.1 (Parlay 4.0)

E.5.3 Removed

Identifier | Comments
Exceptions removed in ES 202 915-3 version 1.1.1 (Parlay 4.0)
P_APPLICATION NOT ACTIVATED |Exists in part 2, never existed in Framework IDL

E.6 Others

ETSI

186

Final draft ETSI ES 202 915-3 V1.1.1 (2002-11)

History

Document history

V111

November 2002

Membership Approval Procedure

MV 20030117: 2002-11-19 to 2003-01-17

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService
	5.4.1.1 Method setCallback()
	5.4.1.2 Method setCallbackWithSessionID()

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access
	6.1.1.2 Framework Terminates Access
	6.1.1.3 Application Terminates Access
	6.1.1.4 Non-API level Authentication
	6.1.1.5 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.1.1 Method <<deprecated>> authenticate()
	6.3.1.1.2 Method abortAuthentication()
	6.3.1.1.3 Method authenticationSucceeded()
	6.3.1.1.4 Method <<new>> challenge()

	6.3.1.2 Interface Class IpClientAccess
	6.3.1.2.1 Method terminateAccess()

	6.3.1.3 Interface Class IpInitial
	6.3.1.3.1 Method <<deprecated>> initiateAuthentication()
	6.3.1.3.2 Method <<new>> initiateAuthenticationWithVersion()

	6.3.1.4 Interface Class IpAuthentication
	6.3.1.4.1 Method requestAccess()

	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.5.1 Method <<deprecated>> selectEncryptionMethod()
	6.3.1.5.2 Method <<deprecated>> authenticate()
	6.3.1.5.3 Method abortAuthentication()
	6.3.1.5.4 Method authenticationSucceeded()
	6.3.1.5.5 Method <<new>> selectAuthenticationMechanism()
	6.3.1.5.6 Method <<new>> challenge()

	6.3.1.6 Interface Class IpAccess
	6.3.1.6.1 Method obtainInterface()
	6.3.1.6.2 Method obtainInterfaceWithCallback()
	6.3.1.6.3 Method <<deprecated>> endAccess()
	6.3.1.6.4 Method listInterfaces()
	6.3.1.6.5 Method <<deprecated>> releaseInterface()
	6.3.1.6.6 Method <<new>> selectSigningAlgorithm()
	6.3.1.6.7 Method <<new>> terminateAccess()
	6.3.1.6.8 Method <<new>> relinquishInterface()

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Authenticating Framework State
	6.4.1.2.3 Framework Authenticated State
	6.4.1.2.4 Authenticating Client State
	6.4.1.2.5 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Application reports current load condition
	7.1.2.4 Load Management: Application queries load statistics
	7.1.2.5 Load Management: Application callback registration and load control
	7.1.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.7 Fault Management: Framework detects a Service failure
	7.1.2.8 Fault Management: Application requests a Framework activity test

	7.1.3 Service Agreement Management Sequence Diagrams
	7.1.3.1 Service Selection

	7.1.4 Service Discovery Sequence Diagrams
	7.1.4.1 Service Discovery

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Event Notification Interface Classes
	7.3.1.1 Interface Class IpAppEventNotification
	7.3.1.1.1 Method reportNotification()
	7.3.1.1.2 Method notificationTerminated()

	7.3.1.2 Interface Class IpEventNotification
	7.3.1.2.1 Method createNotification()
	7.3.1.2.2 Method destroyNotification()

	7.3.2 Integrity Management Interface Classes
	7.3.2.1 Interface Class IpAppFaultManager
	7.3.2.1.1 Method activityTestRes()
	7.3.2.1.2 Method appActivityTestReq()
	7.3.2.1.3 Method fwFaultReportInd()
	7.3.2.1.4 Method fwFaultRecoveryInd()
	7.3.2.1.5 Method svcUnavailableInd()
	7.3.2.1.6 Method genFaultStatsRecordRes()
	7.3.2.1.7 Method fwUnavailableInd()
	7.3.2.1.8 Method activityTestErr()
	7.3.2.1.9 Method genFaultStatsRecordErr()
	7.3.2.1.10 Method appUnavailableInd()
	7.3.2.1.11 Method genFaultStatsRecordReq()

	7.3.2.2 Interface Class IpFaultManager
	7.3.2.2.1 Method activityTestReq()
	7.3.2.2.2 Method appActivityTestRes()
	7.3.2.2.3 Method svcUnavailableInd()
	7.3.2.2.4 Method genFaultStatsRecordReq()
	7.3.2.2.5 Method appActivityTestErr()
	7.3.2.2.6 Method <<deprecated>> appUnavailableInd()
	7.3.2.2.7 Method genFaultStatsRecordRes()
	7.3.2.2.8 Method genFaultStatsRecordErr()

	7.3.2.3 Interface Class IpAppHeartBeatMgmt
	7.3.2.3.1 Method enableAppHeartBeat()
	7.3.2.3.2 Method disableAppHeartBeat()
	7.3.2.3.3 Method changeInterval()

	7.3.2.4 Interface Class IpAppHeartBeat
	7.3.2.4.1 Method pulse()

	7.3.2.5 Interface Class IpHeartBeatMgmt
	7.3.2.5.1 Method enableHeartBeat()
	7.3.2.5.2 Method disableHeartBeat()
	7.3.2.5.3 Method changeInterval()

	7.3.2.6 Interface Class IpHeartBeat
	7.3.2.6.1 Method pulse()

	7.3.2.7 Interface Class IpAppLoadManager
	7.3.2.7.1 Method queryAppLoadReq()
	7.3.2.7.2 Method queryLoadRes()
	7.3.2.7.3 Method queryLoadErr()
	7.3.2.7.4 Method loadLevelNotification()
	7.3.2.7.5 Method resumeNotification()
	7.3.2.7.6 Method suspendNotification()

	7.3.2.8 Interface Class IpLoadManager
	7.3.2.8.1 Method reportLoad()
	7.3.2.8.2 Method queryLoadReq()
	7.3.2.8.3 Method queryAppLoadRes()
	7.3.2.8.4 Method queryAppLoadErr()
	7.3.2.8.5 Method createLoadLevelNotification()
	7.3.2.8.6 Method destroyLoadLevelNotification()
	7.3.2.8.7 Method resumeNotification()
	7.3.2.8.8 Method suspendNotification()

	7.3.2.9 Interface Class IpOAM
	7.3.2.9.1 Method systemDateTimeQuery()

	7.3.2.10 Interface Class IpAppOAM
	7.3.2.10.1 Method systemDateTimeQuery()

	7.3.3 Service Agreement Management Interface Classes
	7.3.3.1 Interface Class IpAppServiceAgreementManagement
	7.3.3.1.1 Method signServiceAgreement()
	7.3.3.1.2 Method terminateServiceAgreement()

	7.3.3.2 Interface Class IpServiceAgreementManagement
	7.3.3.2.1 Method signServiceAgreement()
	7.3.3.2.2 Method terminateServiceAgreement()
	7.3.3.2.3 Method selectService()
	7.3.3.2.4 Method initiateSignServiceAgreement()

	7.3.4 Service Discovery Interface Classes
	7.3.4.1 Interface Class IpServiceDiscovery
	7.3.4.1.1 Method listServiceTypes()
	7.3.4.1.2 Method describeServiceType()
	7.3.4.1.3 Method discoverService()
	7.3.4.1.4 Method listSubscribedServices()

	7.4 State Transition Diagrams
	7.4.1 Event Notification State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpEventNotification

	7.4.2 Integrity Management State Transition Diagrams
	7.4.2.1 State Transition Diagrams for IpLoadManager
	7.4.2.1.1 Idle State
	7.4.2.1.2 Notification Suspended State
	7.4.2.1.3 Active State

	7.4.2.2 State Transition Diagrams for LoadManagerInternal
	7.4.2.2.1 Normal load State
	7.4.2.2.2 Application Overload State
	7.4.2.2.3 Internal overload State
	7.4.2.2.4 Internal and Application Overload State

	7.4.2.3 State Transition Diagrams for IpOAM
	7.4.2.3.1 Active State

	7.4.2.4 State Transition Diagrams for IpFaultManager
	7.4.2.4.1 Framework Active State
	7.4.2.4.2 Framework Faulty State
	7.4.2.4.3 Framework Activity Test State
	7.4.2.4.4 Service Activity Test State

	7.4.3 Service Agreement Management State Transition Diagrams
	7.4.4 Service Discovery State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpServiceDiscovery
	7.4.4.1.1 Active State

	8 Framework-to-Enterprise Operator API
	8.1 Sequence Diagrams
	8.1.1 Service Subscription Sequence Diagrams
	8.1.1.1 Service Discovery and Subscription Scenario
	8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Subscription Interface Classes
	8.3.1.1 Interface Class IpClientAppManagement
	8.3.1.1.1 Method createClientApp()
	8.3.1.1.2 Method modifyClientApp()
	8.3.1.1.3 Method deleteClientApp()
	8.3.1.1.4 Method createSAG()
	8.3.1.1.5 Method modifySAG()
	8.3.1.1.6 Method deleteSAG()
	8.3.1.1.7 Method addSAGMembers()
	8.3.1.1.8 Method removeSAGMembers()
	8.3.1.1.9 Method <<new>> requestConflictInfo()

	8.3.1.2 Interface Class IpClientAppInfoQuery
	8.3.1.2.1 Method describeClientApp()
	8.3.1.2.2 Method listClientApps()
	8.3.1.2.3 Method describeSAG()
	8.3.1.2.4 Method listSAGs()
	8.3.1.2.5 Method listSAGMembers()
	8.3.1.2.6 Method listClientAppMembership()

	8.3.1.3 Interface Class IpServiceProfileManagement
	8.3.1.3.1 Method createServiceProfile()
	8.3.1.3.2 Method modifyServiceProfile()
	8.3.1.3.3 Method deleteServiceProfile()
	8.3.1.3.4 Method assign()
	8.3.1.3.5 Method deassign()
	8.3.1.3.6 Method <<new>> requestConflictInfo()

	8.3.1.4 Interface Class IpServiceProfileInfoQuery
	8.3.1.4.1 Method listServiceProfiles()
	8.3.1.4.2 Method describeServiceProfile()
	8.3.1.4.3 Method listAssignedMembers()

	8.3.1.5 Interface Class IpServiceContractManagement
	8.3.1.5.1 Method createServiceContract()
	8.3.1.5.2 Method modifyServiceContract()
	8.3.1.5.3 Method deleteServiceContract()

	8.3.1.6 Interface Class IpServiceContractInfoQuery
	8.3.1.6.1 Method describeServiceContract()
	8.3.1.6.2 Method listServiceContracts()
	8.3.1.6.3 Method listServiceProfiles()

	8.3.1.7 Interface Class IpEntOpAccountManagement
	8.3.1.7.1 Method modifyEntOpAccount()
	8.3.1.7.2 Method deleteEntOpAccount()

	8.3.1.8 Interface Class IpEntOpAccountInfoQuery
	8.3.1.8.1 Method describeEntOpAccount()

	8.4 State Transition Diagrams
	8.4.1 Service Subscription State Transition Diagrams

	9 Framework-to-Service API
	9.1 Sequence Diagrams
	9.1.1 Event Notification Sequence Diagrams
	9.1.2 Integrity Management Sequence Diagrams
	9.1.2.1 Load Management: Service callback registration and load control
	9.1.2.2 Load Management: Client and Service Load Balancing
	9.1.2.3 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	9.1.2.4 Fault Management: Service requests Framework activity test
	9.1.2.5 Fault Management: Service requests Application activity test
	9.1.2.6 Fault Management: Application requests Service activity test
	9.1.2.7 Fault Management: Application detects service is unavailable

	9.1.3 Service Discovery Sequence Diagrams
	9.1.4 Service Instance Lifecycle Manager Sequence Diagrams
	9.1.4.1 Sign Service Agreement

	9.1.5 Service Registration Sequence Diagrams
	9.1.5.1 New SCF Registration

	9.2 Class Diagrams
	9.3 Interface Classes
	9.3.1 Event Notification Interface Classes
	9.3.1.1 Interface Class IpFwEventNotification
	9.3.1.1.1 Method createNotification()
	9.3.1.1.2 Method destroyNotification()

	9.3.1.2 Interface Class IpSvcEventNotification
	9.3.1.2.1 Method reportNotification()
	9.3.1.2.2 Method notificationTerminated()

	9.3.2 Integrity Management Interface Classes
	9.3.2.1 Interface Class IpFwFaultManager
	9.3.2.1.1 Method activityTestReq()
	9.3.2.1.2 Method svcActivityTestRes()
	9.3.2.1.3 Method appUnavailableInd()
	9.3.2.1.4 Method genFaultStatsRecordReq()
	9.3.2.1.5 Method svcUnavailableInd()
	9.3.2.1.6 Method svcActivityTestErr()
	9.3.2.1.7 Method <<deprecated>> genFaultStatsRecordRes()
	9.3.2.1.8 Method <<deprecated>> genFaultStatsRecordErr()
	9.3.2.1.9 Method <<new>> generateFaultStatsRecordRes()
	9.3.2.1.10 Method <<new>> generateFaultStatsRecordErr()

	9.3.2.2 Interface Class IpSvcFaultManager
	9.3.2.2.1 Method activityTestRes()
	9.3.2.2.2 Method svcActivityTestReq()
	9.3.2.2.3 Method fwFaultReportInd()
	9.3.2.2.4 Method fwFaultRecoveryInd()
	9.3.2.2.5 Method fwUnavailableInd()
	9.3.2.2.6 Method svcUnavailableInd()
	9.3.2.2.7 Method appUnavailableInd()
	9.3.2.2.8 Method genFaultStatsRecordRes()
	9.3.2.2.9 Method activityTestErr()
	9.3.2.2.10 Method genFaultStatsRecordErr()
	9.3.2.2.11 Method <<deprecated>> genFaultStatsRecordReq()
	9.3.2.2.12 Method <<new>> generateFaultStatsRecordReq()

	9.3.2.3 Interface Class IpFwHeartBeatMgmt
	9.3.2.3.1 Method enableHeartBeat()
	9.3.2.3.2 Method disableHeartBeat()
	9.3.2.3.3 Method changeInterval()

	9.3.2.4 Interface Class IpFwHeartBeat
	9.3.2.4.1 Method pulse()

	9.3.2.5 Interface Class IpSvcHeartBeatMgmt
	9.3.2.5.1 Method enableSvcHeartBeat()
	9.3.2.5.2 Method disableSvcHeartBeat()
	9.3.2.5.3 Method changeInterval()

	9.3.2.6 Interface Class IpSvcHeartBeat
	9.3.2.6.1 Method pulse()

	9.3.2.7 Interface Class IpFwLoadManager
	9.3.2.7.1 Method reportLoad()
	9.3.2.7.2 Method queryLoadReq()
	9.3.2.7.3 Method querySvcLoadRes()
	9.3.2.7.4 Method querySvcLoadErr()
	9.3.2.7.5 Method createLoadLevelNotification()
	9.3.2.7.6 Method destroyLoadLevelNotification()
	9.3.2.7.7 Method suspendNotification()
	9.3.2.7.8 Method resumeNotification()

	9.3.2.8 Interface Class IpSvcLoadManager
	9.3.2.8.1 Method querySvcLoadReq()
	9.3.2.8.2 Method queryLoadRes()
	9.3.2.8.3 Method queryLoadErr()
	9.3.2.8.4 Method loadLevelNotification()
	9.3.2.8.5 Method suspendNotification()
	9.3.2.8.6 Method resumeNotification()

	9.3.2.9 Interface Class IpFwOAM
	9.3.2.9.1 Method systemDateTimeQuery()

	9.3.2.10 Interface Class IpSvcOAM
	9.3.2.10.1 Method systemDateTimeQuery()

	9.3.3 Service Discovery Interface Classes
	9.3.3.1 Interface Class IpFwServiceDiscovery
	9.3.3.1.1 Method listServiceTypes()
	9.3.3.1.2 Method describeServiceType()
	9.3.3.1.3 Method discoverService()
	9.3.3.1.4 Method listRegisteredServices()

	9.3.4 Service Instance Lifecycle Manager Interface Classes
	9.3.4.1 Interface Class IpServiceInstanceLifecycleManager
	9.3.4.1.1 Method createServiceManager()
	9.3.4.1.2 Method destroyServiceManager()

	9.3.5 Service Registration Interface Classes
	9.3.5.1 Interface Class IpFwServiceRegistration
	9.3.5.1.1 Method registerService()
	9.3.5.1.2 Method announceServiceAvailability()
	9.3.5.1.3 Method unregisterService()
	9.3.5.1.4 Method describeService()
	9.3.5.1.5 Method unannounceService()

	9.4 State Transition Diagrams
	9.4.1 Event Notification State Transition Diagrams
	9.4.2 Integrity Management State Transition Diagrams
	9.4.2.1 State Transition Diagrams for IpFwLoadManager
	9.4.2.1.1 Idle State
	9.4.2.1.2 Notification Suspended State
	9.4.2.1.3 Active State

	9.4.3 Service Discovery State Transition Diagrams
	9.4.4 Service Instance Lifecycle Manager State Transition Diagrams
	9.4.5 Service Registration State Transition Diagrams
	9.4.5.1 State Transition Diagrams for IpFwServiceRegistration
	9.4.5.1.1 SCF Registered State
	9.4.5.1.2 SCF Announced State

	10 Service Properties
	10.1 Service Property Types
	10.2 General Service Properties
	10.2.1 Service Name
	10.2.2 Service Version
	10.2.3 Service ID
	10.2.4 Service Description
	10.2.5 Product Name
	10.2.6 Product Version
	10.2.7 <<deprecated>> Supported Interfaces
	10.2.8 Operation Set

	11 Data Definitions
	11.1 Common Framework Data Definitions
	11.1.1 TpClientAppID
	11.1.2 TpClientAppIDList
	11.1.3 TpDomainID
	11.1.4 TpDomainIDType
	11.1.5 TpEntOpID
	11.1.6 TpPropertyName
	11.1.7 TpPropertyValue
	11.1.8 TpProperty
	11.1.9 TpPropertyList
	11.1.10 TpEntOpIDList
	11.1.11 TpFwID
	11.1.12 TpService
	11.1.13 TpServiceList
	11.1.14 TpServiceDescription
	11.1.15 TpServiceID
	11.1.16 TpServiceIDList
	11.1.17 TpServiceInstanceID
	11.1.18 TpServiceTypeProperty
	11.1.19 TpServiceTypePropertyList
	11.1.20 TpServiceTypePropertyMode
	11.1.21 TpServicePropertyTypeName
	11.1.22 TpServicePropertyName
	11.1.23 TpServicePropertyNameList
	11.1.24 TpServicePropertyValue
	11.1.25 TpServicePropertyValueList
	11.1.26 TpServiceProperty
	11.1.27 TpServicePropertyList
	11.1.28 TpServiceSupplierID
	11.1.29 TpServiceTypeDescription
	11.1.30 TpServiceTypeName
	11.1.31 TpServiceTypeNameList
	11.1.32 TpSubjectType

	11.2 Event Notification Data Definitions
	11.2.1 TpFwEventName
	11.2.2 TpFwEventCriteria
	11.2.3 TpFwEventInfo

	11.3 Trust and Security Management Data Definitions
	11.3.1 TpAccessType
	11.3.2 TpAuthType
	11.3.3 TpEncryptionCapability
	11.3.4 TpEncryptionCapabilityList
	11.3.5 TpEndAccessProperties
	11.3.6 TpAuthDomain
	11.3.7 TpInterfaceName
	11.3.8 TpInterfaceNameList
	11.3.9 TpServiceToken
	11.3.10 TpSignatureAndServiceMgr
	11.3.11 TpSigningAlgorithm
	11.3.12 TpSigningAlgorithmCapabilityList
	11.3.13 TpAuthMechanism
	11.3.14 TpAuthMechanismList

	11.4 Integrity Management Data Definitions
	11.4.1 TpActivityTestRes
	11.4.2 TpFaultStatsRecord
	11.4.3 TpFaultStats

	11.4.4 TpFaultStatisticsError
	11.4.5 TpFaultStatsSet
	11.4.6 TpActivityTestID
	11.4.7 TpInterfaceFault
	11.4.8 TpSvcUnavailReason
	11.4.9 TpFwUnavailReason
	11.4.10 TpLoadLevel
	11.4.11 TpLoadThreshold
	11.4.12 TpLoadInitVal
	11.4.13 TpLoadPolicy
	11.4.14 TpLoadStatistic
	11.4.15 TpLoadStatisticList
	11.4.16 TpLoadStatisticData
	11.4.17 TpLoadStatisticEntityID
	11.4.18 TpLoadStatisticEntityType
	11.4.19 TpLoadStatisticInfo
	11.4.20 TpLoadStatisticInfoType
	11.4.21 TpLoadStatisticError

	11.5 Service Subscription Data Definitions
	11.5.1 TpPropertyName
	11.5.2 TpPropertyValue
	11.5.3 TpProperty
	11.5.4 TpPropertyList
	11.5.5 TpEntOpProperties
	11.5.6 TpEntOp
	11.5.7 TpServiceContractID
	11.5.8 TpServiceContractIDList
	11.5.9 TpPersonName
	11.5.10 TpPostalAddress
	11.5.11 TpTelephoneNumber
	11.5.12 TpEmail
	11.5.13 TpHomePage
	11.5.14 TpPersonProperties
	11.5.15 TpPerson
	11.5.16 TpServiceStartDate
	11.5.17 TpServiceEndDate
	11.5.18 TpServiceRequestor
	11.5.19 TpBillingContact
	11.5.20 TpServiceSubscriptionProperties
	11.5.21 TpServiceContract
	11.5.22 TpServiceContractDescription
	11.5.23 TpClientAppProperties
	11.5.24 TpClientAppDescription
	11.5.25 TpSagID
	11.5.26 TpSagIDList
	11.5.27 TpSagDescription
	11.5.28 TpSag
	11.5.29 TpServiceProfileID
	11.5.30 TpServiceProfileIDList
	11.5.31 TpServiceProfile
	11.5.32 TpServiceProfileDescription
	11.5.33 TpSagProfilePair
	11.5.34 TpAddSagMembersConflict
	11.5.35 TpAddSagMembersConflictList
	11.5.36 TpAssignSagToServiceProfileConflict
	11.5.37 TpAssignSagToServiceProfileConflictList

	12 Exception Classes

	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): W3C WSDL Description of Framework
	Annex C (informative): Java API Description of the Framework
	Annex D (informative): Contents of 3GPP OSA R5 Framework
	Annex E (informative): Record of changes
	E.1 Interfaces
	E.1.1 New
	E.1.2 Deprecated
	E.1.3 Removed

	E.2 Methods
	E.2.1 New
	E.2.2 Deprecated
	E.2.3 Modified
	E.2.4 Removed

	E.3 Data Definitions
	E.3.1 New
	E.3.2 Modified
	E.3.3 Removed

	E.4 Service Properties
	E.4.1 New
	E.4.2 Deprecated
	E.4.3 Modified
	E.4.4 Removed

	E.5 Exceptions
	E.5.1 New
	E.5.2 Modified
	E.5.3 Removed

	E.6 Others

	History

