ETSIES 202 915-1 vi1.3.1 (2005-03)

ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);
Part 1: Overview

(Parlay 4)

D

2 ETSI ES 202 915-1 V1.3.1 (2005-03)

Reference
RES/TISPAN-01009-01-OSA

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
© The Parlay Group 2005.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 202 915-1 V1.3.1 (2005-03)

Contents

Intellectual Property RIGNES.........oo et 6
0 Yo (o SRS 6
1 o010 SRS 7
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 7
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 9
31 D= T aT] (0] PO P TP PR UPTPRUSUSII 9
3.2 ADDIEVIBLIONS ...ttt bbbt bt ae st e e eeE e e bt e bt e he e b e e e et e Rt eh e e Re e b e R e bt bt eneene e e re e 10
4 OPEN SEIVICE ACCESS APIS ...ttt b et b et ettt se e st st e sb e be st e bebeseeneeneeneas 11
5 DOCUMENE SETUCTUIE ...ttt ettt sttt ettt e e sae e s ae e sab e et e e be e beeeaeesaeeenbeenbeeseee e 12
6 A= (g e e (oo |V AR UP PR PPR 14
6.1 TOOIS AN LBNQUBOES.ecveeveeiteesieeite et eeesteesteeees e sstessaesseesseesseesseasseaseesseesseesseansesnsessessaeesseenseenseensessenssenssens 14
6.2 0 o T o TS (1 14
6.3 1670 Lo 1§ £= ST US U PP PRUSROTRP 16
6.4 AN T a0 RS o = 16
6.5 State Transition Diagram text and teXt SYMDOIS.........ccveiiriie e 17
6.6 Exception handling and PassinNg FESUITS..........cceeeiieiriie ettt b e sae e enas 17
6.7 REFEIEICES ...ttt sttt et et e e te st et e sae e bt e st e aeea e e e e teseeeEe e Rt en e e st e eenteeeeereeReene et eneenes 17
6.8 SEINGS ANA COIECLIONS.......eeeieetiieeete ettt ettt st b e bbbt e et b e e et et et et eb e b 17
6.9 = (ST 17
7 INtroduction t0 Parlay/OSA APIS........o et b e 17
7.1 L0 =N 1Y 0= 18
7.2 S Vo c N o= o o SR 18
7.3 USE OF SESSIONS......eiteteetieieeute sttt sttt ettt et et sh e eb e heeh e e e e e e besh e b e e Heeheeae e s e e b e sE e ekt e bt eb e e meene e e e abeabeebeebeeneeneennen 18
74 INEEITACES BNO SESTIONS.......ceitiiteite ettt e e bbbt b et e e s e e b e s b sh e b e e st e st e e e e e besheebesaeene e e enrenes 18
75 (0 1 o= ot S g 1= = ot SRS 18
7.6 SEING CAlIDACKS. ...ttt bbbt b e bt b e et b e et bt b e n e 18
7.7 Synchronous versus ASynNChronoUS MELhOUS ..ot 19
7.8 OUL PaIGIMIELEL'S ... ettt ettt ettt e sttt te s ee s st e saeesae e et eaeeeaeees e e beeabeenbeeaeeeaeesaeeaae e eaeesaeenseamseenbeaneesneesaeesaeas 19
7.9 EXCEPIION HIEIAICHY ...t b et b et bbbt 19
7.10 COMIMON EXCEPLIONS ...ttt sttt sttt et b e et b e et b e s b e e b s e bt b e s e he s b e se e bt e b e e e st ebese e st ebe s b et ebenne e 20
7.11 LS o N ST 20
7.12 Lo) 1 Tor= 1K) N =" o oo S 20
8 Relationship between ETSI, Parlay and 3GPP OSA rel€aSES.......cccoviueevieiecieceeeese et 21
Annex A (normative): (@ 1Y K 1 ST STR 23
N R oo FY= 0o a0 U= o =S TSR 23
L =011 7= o TP P TP PRPT 23
A3 ODJECE REFEIENCES.......cueieiitiieit ettt a bt bbb b e e e e e eae bt bt ne e e s e 23
YNV F=To o T a0 o)l DT = 1Y - TSRS 23
A4l BaSIC DBIALYPES. ... ecveveueettrt etttk sttt ettt a bt s bbbt a R R R bR R R R AR R Rt R e Rt bR Rt bbb b 23
AA4d2 (00 = 10 | F SRR 23
A.43 L0011t 10 1TSS 23
Ad4 SEOUBICES. ...ttt ettt e e r et ee e e R e et e R e R e e b e e e e e s e e R e AR e AR e AR e e b e e R e e e e Rt AR e R e e Re R e e e n e E e Rt Rt neans 24
A.45 L 00 = o] SRS 24
A.46 L0130 T 0= PSSR 24
y T U £ X o N[SR 25
F G (o= oo = TP 25

ETSI

4 ETSI ES 202 915-1 V1.3.1 (2005-03)

A.7 Naming space across CORBA MOAUIES...........cceeiiiiieieeii et stee e e et te et ss e aesre e e besreenresne s 25
Annex B (informative): W3BC WSDL ettt 26
B.1l TOOISANA LANQUAGES.citiiieeiiitieie it st e e st et et e st et s b e s e s teebeeaesteeaa e besreeseeabeensessesreensesteensensesreensenneens 26
B.2 Proposed Namespaces for the OSA WSDLoci ittt 26
B.3 ODJECE REFEIENCES.........eiuiieiieite et et e et b e nr s nr s e 27
B.4 Mapping UML Data TypesSto XIML SCREMAL.......cociiiiiieie ettt s ne 28
B.4.1 [F= = 1Y 0= PRSPPI 28
B.411 G 00412 | TP PSPPSRSO 28
B.4.1.2 SINAMEV BIUBPAITSS ...t bbb b e bt bt he bt et et et sb e b e s aeene e e ennas 28
B.4.1.3 <<SeqUENCEOTDALAEI EMENESS ...ttt b e n et b 28
B.4.14 G Y/ 0= = PR 29
B.4.15 <<KNUMbEredSetOfDataEl @MENESS ..ottt sre b e ene e e eneas 29
B.4.1.6 <<TaggedChoi CEOfDAIAEIBMENISS> ..ottt 29
B.5 Mapping Of UML SCF IO WSDLciiiiiitiriisieieiee ettt e nn e 30
B.5.1 Mapping of Operationsto WSDL meSSage ElEMENLcccvvueieeiieriesie s see st este et eae e sre e nee e 30
B.5.2 Mapping of Exception to WSDL mMeSSage El@MENL.........ccviiiiieiee e sae e 30
B.5.3 Mapping of CommonEXxceptions to WSDL mMessage El@MENtccceoveveeieeiesieseeseeseseesee e e seeesse e e 31
B.5.4 Mapping of Interface Classto WSDL portType and binding elements...........cccocevveveeiecce e 31
B.5.5 Mapping of UML SCF t0 WSDL SErVIiCE €l @MENtcceiiiriiiiirieesieseeest s 32
Annex C (informative): Java™ Realisation APl ...t 33
C.1 Java™ RealiSAON OVEIVIEIWueiuiiiieieieeeieiesie sttt sttt sse b sbesbesbese et e e e e eseeneseesseneeneenes 33
Cl1 S L N o SRR 33
Cl2 12 L N SOOI 33
C.13 = = o oL 33
C.2 TOOISAN IANQUAGES......ccueiteeeeieciieite st ete sttt e te s e e ee st e s e e tesbeetestessa e besteeasessesseetesseessestesseensestesseensensenn 34
C.3 Generic Mappings (Elements common to J2SE™ and J2ZEE™)........cccoeiiieeie e s 34
C31 NBMEGDACE ... s e e e e s e st e e b e e b e h e e e e e e e e sae e sn e reeaneea 34
C3.2 Package Naming CONVENTIONS...........ciireiiiieirierier ettt b bbb et sb et sb e et 34
C33 OB ECE REFEIEINCES. ...ttt bbbt bt et b e e st b e s e et b s b e Rt e b s e et eb e s b et et e s b et b e b 34
C34 ELEMENT INGIMINGttt b bbb bRt b e bbb st b et et eb e b 35
C35 Element NamMiNG COllISIONS........c.oiiiiirieietirie ettt bbbt et b et b et sb e e 35
C36 (D= v B IV o =N I L T a1 o] S 35
C36.1 S Lol = = R Y o= P 35
C36.2 L0001 = £ TSRO RPR TSRS 35
C.36.3 NumberedSetsOf DataEl ementS (COHIECLIONS)........ccuiecieeieiie ettt srae et nae e e e 36
C364 SequenceOf DataEl €MENES (SIFUCIUINES)eeiueeie ettt e et e nae e teeneeneeenes 36
C.365 NameValuePair (ENUMEIBLIONS)cccuvieiiiesiieitieieeteseesee st e steeae e s e e e s se e aeestesseessaesseesteeseeseensesneesnes 37
C.3.6.6 TaggedChoiceOf DataEI emMENtS (UNIONS)oiviiriieiriirieisies ettt bbb e 38
C.3.6.7 O ONS... .ttt bbb bt b e h e b e R b e R R e R R Rt bRt b e bbb 40
C36.7.1 PLAtfONMEXCEPLION ..ottt bbb bt b e b e b s b e sb e e et e sbe e ebesbennenen 40
C36.7.2 P_XXX XXX EXCEPLIONS ... eeeeeeie sttt sttt ettt s eae et e e seestesaesaeeseeneeneeneesseseeseessesneenseneans 41
C.3.6.7.3 TPCOMMONEXCEPIIONS. ...ttt bbb bbbt b et b et s b e e e 41
C36.74 TpCommonEXception's assoCi ated EXCEPLIONS.cuiieeieereee e see e seesee e e et re e ae e sneeenes 42
C.36.75 Additional abStraCt EXCEPLIONSccvieieeiecie et e e e e esteeteseesaeesneesneeseensenns 42
C.36.7.6 INValidUni ONA CCESSOTEXCEPLION.ecueieeietieeee ettt ste et e e et e e e e e e saessaesreesreesneesneeseenseans 43
C36.7.7 INValidENUMY BIUEEXCEPLION ...ttt et e st e e teetesneesseesneesneesneeseenneans 43
C.36.8 1= 1= o £ o o T 43
C.4 J2SE™ Specific CONVENLIONS..........cccuiiiiiicic e 44
c41 REMOVA OF TP PrEFIX ... vttt bbbt b et b bbbt 44
c4z2 (00 = 0 | J OSSR USSR 44
C43 REMOVA OF "I PIEFIX ...eeveeieeeee et b bbbt b e n e 44
c44 Y=o o T o o) o= = ST 45
c45 Y=o o T o T 5= Y7o = TSR 45
c4.6 MapPiNg Of UML OPEraLIONS.ccveieeiieetieieeieesteeseesteetestesesseesseesseeseenseassesseesseesseessesssessesssessssesseenseenseans 45

ETSI

5 ETSI ES 202 915-1 V1.3.1 (2005-03)

ca7 MapPiNg Of TPSESSIONIDooieiiie ettt et e et e e s e e e re e be e te e teestesnaesneesseensesneesneesseesseanseensenns 46
c4.8 Mapping of TpAssignmentID to the creation of an ACtiVity ODJECE..........cecveceiiere e 46
C49 CAlIDBEK RUIE ...t bbb Rt b bt e et n b n e 49
LRt O o= ok (o] Y20 {1 = USSR 50
C.4.11 J2SE™ SPECITIC EXCEPLIONS.eeciieiicieee ettt te ettt e et e s aaesre e s teesaeeeesnaesaeesseenseenteenseenaessensrens 51
C4111 PeerUnavai | abl €EXCEPIION........c.eo ettt e s re et e et e e be e reeteeneeneeenes 51
C4.112 [11€0A1 SLALEEXCEPLION ...ttt ettt ettt b e et b e et b e e bt b et b e et eb e bbb 52
C.4.12 User INnteraCtion SPECITIC RUIES.c.ciiiieeiiereeeee ettt ettt et b e bbb e b b snenea 52
C4121 Interfaces representing UML 1pUIl and IpUICAl RUIE ... e 52
C4.122 Naming Collisions of GUI and CUI ACHIVITIES RUIEccoiiiiiiiiiieeee e 52
C.5 J2EE™ SPECITIC CONVENTIONSoouitiieitiieieieeeie ettt se e b s bt ss s e se e st b eneane e nenn e s 52
C51 |70 L TSSO PE TSP PT PV ST RPTRTSPTRON 53
C5.2 Remote INterface DEfiNITIONSooiiieeie ettt sb e bbb e e 53
Cbh21 0] L =P 53
Cbh.22 Methods fOr REMOLE INLEITACES........coeieeeeeie bbb e s b e neen 53
C53 LOCal INterface DEfiNITIONS.cciieeeesee ettt et e e e e e e naeseesaesaeeneeneaneeneens 53
C5h31 MethOdS fOr LOCEI INEEITACES.........e ettt e sre e e e neeneen 53
C54 Multi Party Call Control SPECITIC RUIES..........coueiiiieiriie e 53
C541 IpCallLeg and IpAppCallLeg method NAME CONFIICEScviviriciierese e 53
Annex D (informative): Bibliograpnyocue e e 55
[11 (TSR P PPN 56

ETSI

6 ETSI ES 202 915-1 V1.3.1 (2005-03)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETS| Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and I nternet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 1 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 202 915) is structured in the following
parts:

Part 1: " Overview";

Part 2. "Common Data Definitions";
Part 3: "Framework";

Part4: "Cdl Control";

Part5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF";

Part 13: "Policy management SCF";
Part 14: "Presence and Availability Management SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 4.2 set of specifications.

The present document is equivalent to 3GPP TS 29.198-1 V5.7.0 (Release 5).

ETSI

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/
http://www.java.sun.com/products/jain

7 ETSI ES 202 915-1 V1.3.1 (2005-03)

1 Scope

The present document is the part 1 of the Stage 3 specification for an Application Programming Interface for Open
Service Access (OSA), and provides an overview of the content and structure of the various parts of the present
document, and of the relation to other standards documents.

The OSA specifications define an architecture that enables service application devel opers to make use of network
functionality through an open standardized interface, i.e. the OSA APIs.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for
3GPP Specifications (3GPP TR 21.905)".

[2] ETSI TS 122 024: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Description of Charge Advice Information (CAI)
(3GPP TS 22.024)".

[3] ITU-T Recommendation Q.850: "Usage of cause and location in the Digital Subscriber Signalling
System No. 1 and the Signalling System No. 7 ISDN User Part".

[4] ITU-T Recommendation Q.2931: "Digital Subscriber Signalling System No. 2 - User-Network
Interface (UNI) layer 3 specification for basic call/connection control".

[5] ETSI TS 122 101: "Universal Mobile Telecommunications System (UMTS); Service aspects,
Service principles (3GPP TS 22.101)".

[6] World Wide Web Consortium: " Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation™. (http://www.w3.org/TR/NOTE-CCPP/).

[7] ETSI TS 129 002: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Mobile Application Part (MAP) specification
(3GPP TS 29.002)".

[8] ETSI TS 129 078: "Digital cellular telecommunications system (Phase 2+); Universal Mobile

Telecommunications System (UMTS); customized Applications for Mobile network Enhanced
Logic (CAMEL); CAMEL Application Part (CAP) specification (3GPP TS 29.078)".

[9] Wireless Application Protocol (WAP), Version 2.0: "User Agent Profiling Specification”
(WAP-248). (http://www.wapforum.org/what/technical.htm).

[10] ETSI TS 122 002: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Circuit Bearer Services (BS) supported by a Public Land
Mobile Network (PLMN) (3GPP TS 22.002)".

[11] ETSI TS 122 003: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Circuit Teleservices supported by a Public Land Maobile
Network (PLMN) (3GPP TS 22.003)".

ETSI

http://docbox.etsi.org/Reference
http://www.w3.org/TR/NOTE-CCPP/
http://www.wapforum.org/what/technical.htm

[12]

[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

[27]

[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

8 ETSI ES 202 915-1 V1.3.1 (2005-03)

ETSI TS 124 002: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); GSM-UMTS Public Land Mobile Network (PLMN)
Access Reference Configuration (3GPP TS 24.002)".

ITU-T Recommendation Q.763: "Signalling System No. 7 - ISDN User Part formats and codes".

ITU-T Recommendation Q.931: "ISDN user-network interface layer 3 specification for basic call
control".

SO 8601: "Data elements and interchange formats - Information interchange - Representation of
dates and times".

SO 4217: "Codes for the representation of currencies and funds'.

SO 639: "Code for the representation of names of languages”.

IETF RFC 822: "Standard for the format of ARPA Internet text messages'.
IETF RFC 1738: "Uniform Resource Locators (URL)".

ETSI TS 129 198 (V3.4.0): "Universal Mobile Telecommunications System (UMTS); Open
Service Architecture (OSA) Application Programming I nterface (API) - (3GPP TS 29.198
version 3.4.0 Release 1999)".

ETSI TS 129198 (al parts): "Universal Mobile Telecommunications System (UMTS); Open
Service Access (OSA) Application Programming Interface (API); (3GPP TS 29.198 Release 5)".

ETSI TS 123 107: "Universal Maobile Telecommunications System (UMTS); Quality of Service
(QoS) concept and architecture (3GPP TS 23.107)".

ETSI TS 123 271: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Location Services (LCS); Functional description; Stage 2
(3GPP TS 23.271)".

ANSI T1.113: "Signaling System No. 7 (SS7) - Integrated Services Digital Network (ISDN) User
Part".

IETF RFC 3261: "SIP: Session |nitiation Protocol".

ITU-T Recommendation Q.932: "Digital subscriber signalling system No. 1 - Generic procedures
for the control of ISDN supplementary services".

ITU-T Recommendation H.221: "Frame structure for a 64 to 1920 kbit/s channel in audiovisual
teleservices'.

ITU-T Recommendation H.323: "Packet-based multimedia communications systems".
IETF RFC 1994 "PPP Challenge Handshake Authentication Protocol (CHAP)".

IETF RFC 2630: " Cryptographic Message Syntax".

IETF RFC 2313: "PKCS #1: RSA Encryption Version 1.5".

IETF RFC 2459: "Internet X.509 Public Key Infrastructure Certificate and CRL Profile".
IETF RFC 2437: "PKCS #1: RSA Cryptography Specifications Version 2.0".

IETF RFC 1321: "The MD5 Message-Digest Algorithm".

IETF RFC 2404: "The Use of HMAC-SHA-1-96 within ESP and AH".

IETF RFC 2403: "The Use of HMAC-MD5-96 within ESP and AH".

ITU-T Recommendation G.722: "7 kHz audio-coding within 64 kbit/s".

ITU-T Recommendation G.711: "Pulse code modulation (PCM) of voice frequencies'.

ETSI

9 ETSI ES 202 915-1 V1.3.1 (2005-03)

[39] ITU-T Recommendation G.723.1: " Speech coders. Dual rate speech coder for multimedia
communications transmitting at 5.3 and 6.3 kbit/s".

[40Q] ITU-T Recommendation G.728: "Coding of speech at 16 kbit/s using low-delay code excited
linear prediction”.

[41] ITU-T Recommendation G.729: "Coding of speech at 8 kbit/s using conjugate-structure
a gebraic-code-excited linear-prediction (CS-ACELP)".

[42] ITU-T Recommendation H.261: "Video codec for audiovisual services at p x 64 kbit/s".

[43] ITU-T Recommendation H.263: "Video coding for low bit rate communication".

[44] ITU-T Recommendation H.262: "Information technology - Generic coding of moving pictures and
associated audio information: Video".

[45] World Geodetic System 1984 (WGS 84). (http://www.wgs84.com/files/wgsman24.pdf).

[46] ITU-T Recommendation X.400: "M essage handling services. Message handling system and
service overview".

[47] ITU-T Recommendation E.164: "The international public telecommunication numbering plan”.

[48] IETF RFC 2445: "Internet Calendaring and Scheduling Core Object Specification (iCalendar)".

[49] IETF RFC 2778: "A Model for Presence and Instant Messaging'”.

[50] ETSI ES 202 915-2: "Open Service Access (OSA); Application Programming Interface (API);
Part 2: Common Data Definitions (Parlay 4)".

[51] ITU-T Recommendation T.120: "Data protocols for multimedia conferencing".

[52] ISO/IEC 11172-3: "Information technology - Coding of moving pictures and associated audio for
digital storage media at up to about 1,5 Mbit/s - Part 3: Audio”.

[53] I SO/IEC 13818-3: "Information technology - Generic coding of moving pictures and associated
audio information - Part 3: Audio".

[54] ISO/IEC 11172-2: "Information technology - Coding of moving pictures and associated audio for
digital storage media at up to about 1,5 Mbit/s - Part 2: Video".

[55] I SO/IEC 14496-2: "Information technology - Coding of audio-visual objects - Part 2: Visua".

[56] IETF RFC 1737: "Functional Requirements for Uniform Resource Names'.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 122 101 [5] and the following apply:
applications: services, which are designed using service capability features
gateway: synonym for Service Capability Server

NOTE: From the viewpoint of applications, a Service Capability Server can be seen as a gateway to the core
network.

HE-VASP: Home Environment Value Added Service Provider
NOTE: ThisisaVASP that has an agreement with the Home Environment to provide services.

Home Environment: responsible for overall provision of servicesto users

ETSI

http://www.wgs84.com/files/wgsman24.pdf

10 ETSI ES 202 915-1 V1.3.1 (2005-03)

local service: service which can be exclusively provided in the current serving network by aVaue Added Service
Provider

OSA interface: standardized Interface used by application to access service capability features

Personal Service Environment (PSE): contains personalized information defining how subscribed services are
provided and presented towards the user

NOTE: The Personal Service Environment is defined in terms of one or more User Profiles.
Service Capabilities (SC): bearers defined by parameters, and/or mechanisms needed to realize services
NOTE: These are within networks and under network control.

Service Capability Feature (SCF): functionality offered by service capabilities that are accessible via the standardized
OSA interface

Service Capability Server (SCS): Functional Entity providing OSA interfaces towards an application
service: aternative for Service Capability Feature (in ES 202 915-1)

user interface profile: containsinformation to present the personalized user interface within the capabilities of the
terminal and serving network

user profile: label identifying a combination of one user interface profile, and one user services profile
user servicesprofile: contains identification of subscriber services, their status and reference to service preferences

value added service provider: provides services other than basic telecommunications service for which additional
charges may beincurred

Virtual Home Environment (VHE): concept for personal service environment portability across network boundaries
and between terminals

3.2 Abbreviations

For the purposes of the present document, the abbreviations defined in TR 121 905 [1] and the following apply:

AP Application Programming Interface

CAMEL Customized Application for Mobile network Enhanced Logic
Cal Cell Global Identification

Cl Cell Identification

CSE Camel Service Environment

GPS Global Positioning System

HE Home Environment

HE-VASP Home Environment Value Added Service Provider
HPLMN Home Public Land Mobile Network

IDL Interface Description Language

IMEI International Mobile station Equipment Identity
JSR Java™ Specification Request

LAC Location Area Code

LAI Location Area |dentification

LCS LoCation Services

MAP Mobile Application Part

MCC Mobile Country Code

MEXE Mobile station (application) Execution Environment
MNC Mobile Network Code

MS Mobile Station

MSC Mobile Switching Centre

NA-ESRD North American Emergency Services Routing Digits
NA-ESRK North American Emergency Services Routing Key
OoMG Object Management Group

OSA Open Service Access

PLMN Public Land Mobile Network

ETSI

11 ETSI ES 202 915-1 V1.3.1 (2005-03)

PSE Personal Service Environment
QoS Quality of Service
RMI Java™ Remote Method Invocation
SAG Subscription Assignment Group
SC Service Capabilities
SCF Service Capability Feature
SCS Service Capability Server
SIM Subscriber |dentity Module
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SPA Service Provider API
STD State Transition Diagrams
UML Unified Modelling Language
USSD Unstructured Supplementary Service Data
VASP Value Added Service Provider
VHE Virtual Home Environment
VLR Visited Location Register
VPLMN Visited Public Land Mobile Network
WAP Wireless Application Protocol
WSDL Web Services Definition Language
XML eXtensible Markup Language
4 Open Service Access APIs

The OSA specifications define an architecture that enables service application devel opers to make use of network
functionality through an open standardized interface, i.e. the OSA APIs. The network functionality is describes as
Service Capability Features or Services (see note). The OSA Framework isa general component in support of Services
(Service Capabilities) and Applications.

The OSA API is split into three types of interface classes, Service and Framework.

. Interface classes between the Applications and the Framework, that provide applications with basic
mechanisms (e.g. Authentication) that enable them to make use of the service capabilities in the network.

. Interface classes between Applications and Service Capability Features (SCF), which areindividual services
that may be required by the client to enable the running of third party applications over the interface

e.g. Messaging type service.

. Interface classes between the Framework and the Service Capability Features, that provide the mechanisms
necessary for multi-vendorship.

. Interface classes between the Enterprise Operator and the Framework that provides the Enterprise Operator
with basic mechanismsto allow them to administer client application accounts and to manage their service
contracts and profiles.

These interfaces represent interfaces 1, 2, 3 and 4 of the figure 1. The other interfaces are not yet part of the scope of the
work.

ETSI

12 ETSI ES 202 915-1 V1.3.1 (2005-03)

Enterprise

operator
admin tool

Not in
scope
of thisAPI
version

Not in scope of
this version of
the API

Not in scope of
this version of
the API

Service
supplier

Framework admin tool

operator
admin

Q Telecom Network %

Figure 1

Within the OSA concept a set of Service Capability Features has been specified. The OSA documentation is structured
in parts. The first part (the present document) contains an overview, the second Part contains common Data Definitions,
the third part the Framework interfaces. The rest of the parts contain the description of the SCFs.

NOTE: Theterms"Service" and " Service Capability Feature” are used as aternatives for the same concept in the
present document. In the OSA AP itself the Service Capability Features as identified in the 3GPP
requirements and architecture are reflected as 'service', in terms like service instance lifecycle manager,
serviceDiscovery.

5 Document structure

The parts of the present document ES 202 915 (apart from 1 (the present document) and 2) define the interfaces,
parameters and state models that form part of the API specification. UML is used to specify the interface classes. As
such it provides a UML interface class description of the methods (API calls) supported by that interface and the
relevant parameters and types. The interfaces are specified both in IDL and in WSDL. Reference is made to the Java™
API specification of the interfaces.

The purpose of the OSA API isto shield the complexity of the network, its protocols and specific implementation from
the applications. This means that applications do not have to be aware of the network nodes a Service Capability Server
interacts with in order to provide the Service Capability Features to the application. The specific underlying network
and its protocols are transparent to the application.

The API specification ES 202 915 is structured in the following parts:
Part1: "Overview";
Part 2. "Common Data Definitions";
Part 3: "Framework";
Part4: "Cdl Control";
Sub-part 1: "Call Control Common Definitions’;

Sub-part 2: "Generic Call Control SCF";

ETSI

13 ETSI ES 202 915-1 V1.3.1 (2005-03)

Sub-part 3: "Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";
Sub-part 5: " Conference Call Control SCF";

Part5: "User Interaction SCF";

Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy management SCF";

Part 14: "Presence and Availability Management SCF".

A 3GPP mapping document, TR 129 998, is also structured according to the same parts. It contains a possible mapping
from some of the APIs defined in ES 202 915 to various network protocols (i.e. MAP[7], CAP[8], etc.). Itisan
informative document, since this mapping is considered as implementation/vendor dependent. On the other hand this
mapping will provide potential service designers with a better understanding of the relationship of the OSA API
interface classes and the behaviour of the network associated to these interface classes. A mapping to network protocols
is not applicable for all parts, but the numbering of partsis kept. Also in case a part is not supported in a Release, the
numbering of the parts is maintained.

Structure of the parts of ES 202 915:
The parts with API specification themselves are structured as follows:

. The Sequence diagrams give the reader a practical idea of how each of the service capability featureis
implemented.

. The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

. The Interface specification clause describes in detail each of the interfaces shown within the Class diagram
part.

. The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

. The Data Definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of the present document.

The OSA API isdefined using UML and as such is technology independent. OSA can be realised in a number of ways
and in addition to the UML defined OSA API, the OSA specification includes:

. A normative annex with the OSA API in IDL that specifiesthe CORBA distribution technology realisation.

. An informative annex with the OSA APl in WSDL that specifies the SOAP/HTTP distribution technology
realisation.

. An informative annex that references the OSA API in Java™ (known as JAIN™ Service Provider API) that
specifies the Java™ local API technology realisation.

ETSI

14 ETSI ES 202 915-1 V1.3.1 (2005-03)

6 Methodology

Following is a description of the methodology used for the establishment of API specification for OSA.

6.1 Tools and Languages

The Unified Modelling Language (UML) (http://www.omg.org/uml/) is used as the means to specify class and state
transition diagrams.

6.2 Packaging Structure

A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.csapi

The following diagram shows the packaging hierarchy. The root package is shown on the left most side of the figure.
Extending from the root package are the framework and services branch packages, then the associated leaf packages.
Listed against each package are the interfaces, data types, exceptions and service propertiesit contains.

Packaging hierarchy Contains
org.csapi Ipinterface
IpService
All common data types
All common exceptions
All common service properties
fw Common Framework data types
Common Framework exceptions
Common Framework service

properties
.access
.trust_and_security Package interfaces
Package data types
Package exceptions
Package service properties
.application

.notification Package interfaces
Package data types
Package exceptions
Package service properties
.integrity Package interfaces
Package data types
Package exceptions
Package service properties
.service_agreement Package interfaces
Package data types
Package exceptions
Package service properties
.discovery Package interfaces
Package data types
Package exceptions
Package service properties

.enterprise_operator

.service_subscription [Package interfaces
Package data types
Package exceptions
Package service properties

service

.notification Package interfaces
Package data types
Package exceptions
Package service properties

ETSI

http://www.omg.org/uml/

15 ETSI ES 202 915-1 V1.3.1 (2005-03)

Packaging hierarchy Contains

.integrity Package interfaces
Package data types
Package exceptions
Package service properties

.discovery Package interfaces
Package data types
Package exceptions
Package service properties

.service_lifecycle Package interfaces
Package data types
Package exceptions
Package service properties

.service_registration Package interfaces
Package data types
Package exceptions
Package service properties

.services Common Service data types
Common Service exceptions
Common Service service
properties

.cc Common Call Control data types
Common Call Control exceptions
Common Call Control service
properties

.gces Package interfaces
Package data types
Package exceptions
Package service properties

.mpccs Package interfaces
Package data types
Package exceptions
Package service properties

.mmccs Package interfaces
Package data types
Package exceptions
Package service properties

.cccs Package interfaces
Package data types
Package exceptions
Package service properties

i Package interfaces
Package data types
Package exceptions
Package service properties

.mm Common Mobility management
data types

Common Mobility management
exceptions

Common Mobility management
service properties

ul Package interfaces
Package data types
Package exceptions
Package service properties

.ulc Package interfaces
Package data types
Package exceptions
Package service properties

.ule Package interfaces
Package data types
Package exceptions
Package service properties

.us Package interfaces
Package data types
Package exceptions
Package service properties

ETSI

16 ETSI ES 202 915-1 V1.3.1 (2005-03)

Packaging hierarchy Contains
.termcap Package interfaces
Package data types
Package exceptions
Package service properties
.dsc Package interfaces
Package data types
Package exceptions
Package service properties
.gms Package interfaces
Package data types
Package exceptions
Package service properties
.cm Package interfaces
Package data types
Package exceptions
Package service properties
.am Package interfaces
Package data types
Package exceptions
Package service properties
.cs Package interfaces
Package data types
Package exceptions
Package service properties

NOTE 1: Not all the packages given above may be found in the 3GPP OSA specifications.

NOTE 2: Where datatypes, exceptions and service properties are indicated in the figure above their presence, or
otherwise, is dependent upon the package in question. For example, if there are no common Framework
exceptions then none will be present in the org.csapi.fw package.

6.3 Colours

For clarity, class diagrams follow a certain colour scheme. Blue for application interface packages and yellow for al the
others.

6.4 Naming scheme
The following naming scheme is used for documentation.
packages:
lowercase

Using the domain-based naming (For example, org.csapi)
classes, structuresand types. Start with T:

TpCapitalizedWithlnternalWordsAlsoCapitalized
Exception class:

TpClassNameEndsWithException and
P_UPPER_CASE_WITH_UNDERSCORES AND_START_WITH_P

Interface. Start with Ip:
IpThislsAninterface
constants:

P_UPPER_CASE_WITH_UNDERSCORES AND_START WITH_P

ETSI

17 ETSI ES 202 915-1 V1.3.1 (2005-03)

methods:
firstWordL owerCaseButl nternal WordsCapitalized()
method's parameters.
firstWordL owerCaseButl nternal WordsCapitalized
collections (set, array or list types):
TpCollectionEndsWithSet
class/structure member s;
FirstWordAndl nternal WordsCapitalized

Spaces in between words are not allowed.

6.5 State Transition Diagram text and text symbols
The descriptions of the State Transitionsin the State Transition Diagrams follow the convention:
when_this event_is received [guard condition istrue] /do_this_action ~send_this_message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified
which one).

6.6 Exception handling and passing results

OSA methods communicate errors in the form of exceptions. OSA methods themselves always use the return parameter
to passresults. If no results are to be returned avoid is used instead of the return parameter. In order to support mapping
to as many languages as possible, no method out parameters are allowed.

6.7 References

In the interface specification whenever Interface parameters are to be passed as an in parameter, they are done so by
reference, and the "Ref" suffix is appended to their corresponding type (e.g. | pAninterfaceRef aninterface), a reference
can also be viewed as alogical indirection.

Original type IN parameter declaration
Ipinterface parm : IN IpinterfaceRef
6.8 Strings and Collections

For character strings, the String data type is used without regard to the maximum length of the string. For homogeneous
collections of instances of a particular data type the following naming scheme is used: <datatype>Set.

6.9 Prefixes

OSA constants and data types are defined in the global name space: org.csapi module.

7 Introduction to Parlay/OSA APIs

This clause contains the general rules that were followed by the design of the Parlay/OSA APIs and advice for how to
use them. Note however that exceptions to these "rules’ may exist and that examples are not exhaustive.

ETSI

18 ETSI ES 202 915-1 V1.3.1 (2005-03)

7.1 Interface Types
In the Parlay/OSA specifications different types of interfaces are distinguished:

. Application side (callback) interfaces. This type of interface needs to be implemented by an application
(client) and the name of such an interface is prefixed with "IpApp".

. Interfaces of an SCF that are used by the Framework. The name of thistype of server interface is prefixed with
"IpSvc".

. Application side interfaces and SCF interfaces that are shared. The name of thistype of interface is prefixed
with "IpClient".

. Interfaces of the Framework that are used by an SCF. The name of this type of server interface is prefixed with
"lIpFw".

The name of all other interfaces of the Framework and SCFsthat are used by an application, is prefixed with "Ip".

7.2 Service Factory

For each application that uses an SCF, a separate object is created to handle all communication to the application. This
object isreferred to as the Service Manager. The pattern used is often referred to as the Factory Pattern. The Service
Manager creates any new objects in the SCF. The Service Manager and all the objects created by it are referred to as
"service instance".

Once an application is granted access to an SCF, the Framework requests the SCF to create a new Service Manager.
The reference to this Service Manager is provided to the application. From this moment onwards the application can
start using the SCF.

7.3 Use of Sessions

A session is a series of interactions between two communication end points that occur during the span of asingle
connection. An exampleisal operations to set-up, control, and tear down a (multi-party) call. A session isidentified by
aSession ID. ThisID isunique within the scope of a service instance and can be related to session numbers used in the
network.

7.4 Interfaces and Sessions

Some interfaces have a one-to-one relation with a session. For every session there is a separate interface instance. In this
case, thisinstance of an interface represents the session. All methods invoked on such an interface operate on the same
session. These interfaces make no use of Session IDs.

Other interfaces can represent multiple sessions. The underlying implementation can then either create an instance per
session or it can handle multiple sessions per instance (e.g. to combat extensive resource usage). When a method on
such an interface isinvoked it requires a Session ID to uniquely identify the session to which it applies.

7.5 Callback Interfaces
Some Parlay/OSA interfaces require an application to register a callback interface. Thisinterface resides on the client

(application) side and is used by the server (service) to report events, results, and errors. An application shall register its
callback interface as soon as the corresponding server side interface is created.

7.6 Setting Callbacks

Two methods are available in every service interface that can be used for setting the callback interface: setCallback()
and setCallbackWithSessionl D(). Interfaces that do not use sessions shall (obviously) only implement setCallback(). An
invocation of setCallbackWithSessionlD() on such interfaces shall result in an exception (P_TASK_REFUSED).

ETSI

19 ETSI ES 202 915-1 V1.3.1 (2005-03)

Interfaces that use sessions shall only implement setCallbackWithSessionlD(). An invocation of setCallback() on such
interfaces shall result in an exception (P_TASK_REFUSED). This regardless of whether an interface instance actually
implements multiple sessions or not.

7.7 Synchronous versus Asynchronous Methods

Two types of methods exist in Parlay/OSA interfaces. When a method does not require the SCS to contact other nodes
in the network it isimplemented as a synchronous method. When the method returns, the result (if applicable) of the
operation is provided to the application. When an error occurs, an exception is thrown. Examples of synchronous
methods are methods to retrieve data that is available in the SCS and methods that create an object.

In other cases, a method requires the SCS to contact other nodes in the network. There can be a delay between the
moment a message is sent into the network and the moment that the result is received or an error is detected. To prevent
that the application is blocked or that an application hasto "guess’ whether there is a problem in the SCS, these types of
methods are made asynchronous.

An asynchronous method of an interface can be recognized by the fact that its name ends with "Req" (from request) and
that in the corresponding callback interface two methods are included with the same name but ending with "Res" (from
result) and "Err" (from error) instead. When no error has occurred, the "Res' method will be invoked when the result is
available. In case an error has been detected, the "Err" method isinvoked. Problems that can be detected by the SCS
itself (for instanceillegal parameter values) will result in exceptions being thrown when the "Req" method is called.
After a"Req" method has returned, only errors shall be reported.

Because it is possible that multiple requests can be donein parallel (invoking multiple timesa"Req" method without
having received aresult or error) a mechanism is needed to link requests with responses. Therefore, the "Req" method
returns an Assignment ID and the "Res" and "Err" methods have this Assignment ID asinput parameter. For session
based interfaces the Session ID can be used also.

Some "Req" methods can result in multiple "Res" methods being invoked. However, the corresponding "Err" method
will never be invoked more than once.

Note that methods on client side interfaces shall never raise an exception unless thisis explicitly described in the
specification.

Some methods switch on/off reports (for instance triggered location reports). These methods are of a different kind and
do not follow the pattern that is described in this clause.

A deadlock is a potential danger when using asynchronous methods, especially in single threaded systems. It can occur
that client and server are waiting for each other for atask to be completed. It is considered good practice to build in
mechanisms to prevent deadlock from occurring, for instance by using multiple threads or using time-outs on remote
method calls.

7.8 Out Parameters

Methods used in Parlay/OSA interfaces only have input parameters. Any result can only be reported by areturn value.
If multiple values need to be returned, a datatype is required that consists of a sequence of values. A value of this
datatype is then returned by a method. This approach has been chosen because not all middleware solutions are (or may
be) capable of dealing with (multiple) output parameters.

7.9 Exception Hierarchy

Exceptions are organized in an exception hierarchy. For the general exceptions and for each service type an abstract
exception class is defined. Advantage for an application programmer is that (s)he does not need to catch all the specific
exceptions, but may catch only the abstract exceptions.

Note however that the exception hierarchy is only available when the applicable Parlay/OSA realisation supports this.
Java™ does, but CORBA and WSDL/SOAP do not.

ETSI

20 ETSI ES 202 915-1 V1.3.1 (2005-03)

7.10 Common Exceptions

Exception TpCommonExceptions can be thrown by any method. It is an aggregate of a number of general problems. To
prevent that each method's signature requires all these exceptions they are al included in a single exception class.

The following rules apply on when what type of general exception shall be thrown:
. P_RESOURCES UNAVAILABLE isthrown when a physical resource in the network is not available.

. P_INVALID_STATE isthrown when amethod is called that is not allowed in the state that the Parlay/OSA
state machines arein.

. P_TASK_CANCELLED isthrownin case of atemporary problem.
. P_TASK_NO_CALLBACK_ADDRESS _SET isthrown when no callback address has been set.

. P_METHOD_NOT_SUPPORTED is thrown when the application initiates methods that are either not
according to the Service Level Agreement or not supported in the SCS.

. P_TASK_REFUSED isthrown in case of a problem that is not temporary and when none of the other common
or dedicated exceptions apply.

Note that methods on application side callback interfaces shall never raise an exception unless explicitly stated in the
specification.

7.11 Use of NULL

The Parlay/OSA specifications contain references to the NULL value to indicate the absence of a certain parameter. An
example wherethisis used is for specifying NULL as a callback reference.

A parameter description for parameters of any datatype can indicate that NULL isa possible value. The realisation of
NULL can differ per technology. A NULL value for a sequencein CORBA meansthat all its members shall be NULL
whilein Java™ the whole structure could be NULL.

Note that it always shall be stated in the specification when a NULL value can be expected.

7.12 Notification Handling

Several Parlay/OSA SCFs provide a mechanism for creating and receiving notifications. A notification is the reporting
of an event occurring in the network or SCS. Examples of notifications are answer, busy, and on hook events.

This clause describes the general mechanism of notification handling. Note that it might not apply (exactly) to every
API.

There are two types of notifications. One that is created by an application and one that is controlled by the network. The
first type normally is used when an ASP is responsible for service provisioning and hasto create its own notificationsin
order to be able to serve subscribers. The second type is used when the network operator does service provisioning. The
network operator creates the notifications and an application only needs to handle them.

Note that normally both mechanisms will not be used by one application. However, the Parlay/OSA interfaces do not
prohibit this.

Another way to distinguish notifications is by monitor mode. Notifications can be requested in either NOTIFY or
INTERRUPT mode. When requested in NOTIFY mode, the notifications is reported to the application but the SCS
continues processing. For notifications requested in INTERRUPT mode, processing in the SCSis suspended when the
notification is reported to the application. The application has to instruct the SCS explicitly (within a certain maximum
time) how to proceed the processing. Note that not all SCFs support notificationsin INTERRUPT mode.

ETSI

21 ETSI ES 202 915-1 V1.3.1 (2005-03)

When a notification is created and when an application registers for network controlled notifications a callback interface
needs to be provided. This callback interface is used for reporting the notifications. There are however afew things that
are worth mentioning here:

Each time a (set of) notifications(s) is created, a callback is specified that is used for reporting the requested
notifications. This callback interface may be the same, but may also differ. The assignment ID can be used to
link a notification report to the creation of registration.

Registering a callback for network controlled notifications needs to be done only once. The callback interface
that is provided may be the same as the one used for creating a notification (note again that it is however not
recommended to use both mechanismsin the same application).

The callback specified when creating or registering for events overrules the callback set with setCallback() or
setCallbackWithSessionlD(). This means that this one will NOT be used for reporting notifications. It will
however be used for all other methods that require the callback interface.

Only if NULL is provided as callback interface reference, the callback interface that was set using
setCallback() or setCallbackWithSessionlD() is used for reporting notifications.

Itis possible to recreate a (set of) notification(s) or re-register for notifications. Thisisonly useful when
providing a different callback interface reference. In this case, the last provided interface is used for reporting
notifications. The earlier provided callback interface is used as "backup” interface (this can be the one
provided with setCallback() or setCallbackWithSessionID() if NULL was provided initially). Notifications are
reported on this interface when calls to the most recent provided callback interface fail (object providing the
interfaceis crashed or overloaded). When re-creating or re-registering, the same assignment ID is returned.

8

Relationship between ETSI, Parlay and 3GPP OSA
releases

The following table explains how the various releases of ETSI, Parlay and 3GPP OSA specifications correspond. Each
ETSI and 3GPP specification carries a version number and is updated independently. The frequency of 3GPP updates
may be up to every 3 months, which is greater than that of ETSI or Parlay, therefore, while there is a corresponding
version of 3GPP TS 29.198 for every version of ETS| ES 201 915 or ES 202 915, there is not necessarily a
corresponding version of the ETSI specification for each version of the 3GPP specification. For example, thereis no
ETSI or Parlay specification version which corresponds exactly to the 3GPP issue of TS 29.198 Release 4 from
December 2001.

ETSIES 201 915/ Parlay 3/ 3GPP TS 29.198 Release 4 (version 4.x.x)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version
- - Release 4, March 2001 Plenary
- - Release 4, June 2001 Plenary
ES 201 915 v.1.1.1 (complete release) Parlay 3.0 Release 4, September 2001 Plenary
- - Release 4, December 2001 Plenary
ES 201 915 v.1.2.1 (complete release) Parlay 3.1 Release 4, March 2002 Plenary
ES 201 915 v.1.3.1 (complete release) Parlay 3.2 Release 4, June 2002 Plenary
- - Release 4, September 2002 Plenary
ES 201 915 v.1.4.1 (complete release) Parlay 3.3 Release 4, March 2003 Plenary
- - Release 4, June 2003 Plenary
- - Release 4, December 2003 Plenary
- - Release 4, June 2004 Plenary
ES 201 915 v1.5.1 (Partial Release) Parlay 3.4 Release 4, September 2004 Plenary

ETSI

22

ETSI ES 202 915-1 V1.3.1 (2005-03)

ETSI ES 202 915/ Parlay 4 / 3GPP TS 29.198 Release 5 (version 5.x.x)

ETSI OSA Specification Set

Parlay Phase

3GPP TS 29.198 version

Release 5, March 2002 Plenary

ES 202 915 v.1.1.1 (complete release)

Parlay 4.0

Release 5, September 2002 Plenary

Parlay 4.1

Release 5, March 2003 Plenary

ES 202 915v.1.2.1 (not parts 9, 13, 14)

Release 5, June 2003 Plenary

Release 5, September 2003 Plenary

Release 5, December 2003 Plenary

Release 5, March 2004 Plenary

Release 5, June 2004 Plenary

ES 202 915v1.3.1, (v1.2.1 for parts 9, 13, 14)

Parlay 4.2

Release 5, September 2004 Plenary

ETSIES 203 915/ Parlay 5/ 3GPP TS 29.198 Release 6 (version 6.x.x)

ETSI OSA Specification Set

Parlay Phase

3GPP TS 29.198 version

Release 6, June 2003 Plenary

Release 6, December 2003 Plenary

Release 6, June 2004 Plenary

ES 203 915v1.1.1

Parlay 5.0

Release 6, September 2004 Plenary

ETSI

23 ETSI ES 202 915-1 V1.3.1 (2005-03)

Annex A (normative):
OMG IDL

A.1 Tools and languages

The Object Management Group's (OMG) (http://www.omg.org/) Interface Definition Language (IDL) isused as a
means to programmatically define the interfaces. IDL files are either generated manually from class diagrams or by
using a UML tool. In the case IDLs are manually written and/or being corrected manually, correctness has been
verified using a CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. SUN IDL Compiler
(http://java.sun.com/products/jdk/idl/index.html).

A.2 Namespace

The used namespace in CORBA IDL isorg.csapi.

A.3 Object References

In CORBA IDL it isnot needed to explicitly indicate a reference to an object. Where the specifications explicitly
indicate areference to an object by adding "Ref" to the object type, this addition is removed when mapped to the IDL.

EXAMPLE 1. struct TpMultiPartyCallldentifier {
IpMultiPartyCall CallReference;
TpSessionlD CallSessionID;
h

A.4 Mapping of Datatypes

A.4.1 Basic Datatypes

InIDL, the data type String is typedefed (see note below) from the CORBA primitive string. This CORBA primitiveis
made up of alength and avariable array of byte.

NOTE: A typedef isatype definition declarationin IDL.

TpBoolean maps to a CORBA boolean, TpInt32 to a CORBA long, TpFloat to a CORBA float, and TpOctet to a
CORBA octet.

A.4.2 Constants

All constants are mapped to a CORBA const of type TpInt32.
EXAMPLE 2: const TpInt32 P_TASK_REFUSED = 14;

A.4.3 Collections

In OMG IDL, collections (Numbered Set and Numbered List) map to a sequence of the datatype. A CORBA sequence
isimplicitly made of alength and avariable array of elements of the same type.

EXAMPLE 3: typedef sequence<TpSessionl D> TpSessionl DSet;

ETSI

http://www.omg.org/
http://java.sun.com/products/jdk/idl/index.html

24 ETSI ES 202 915-1 V1.3.1 (2005-03)

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part, and
an array for the data part.

EXAMPLE 4: The TpAddressSet data type may be defined in C++ as:

typedef struct {
short nunber ;
TpAddr ess address [];
} TpAddressSet;

The array "address' is allocated dynamically with the exact number of required TpAddress elements based on
"number".

A.4.4 Sequences
In OMG IDL sequences map to a CORBA Struct.

EXAMPLEDS5: struct TpAddress{
TpAddressPlan Plan;
TpString AddrString;
TpString Name;
TpAddressPresentation Presentation;
TpAddressScreening Screening;
TpString SubAddressString;

h

A.4.5 Enumerations
In OMG IDL enumerations map to a CORBA enum.

EXAMPLE 6: enum TpAddressScreening {
P_ADDRESS SCREENING_UNDEFINED,
P_ADDRESS SCREENING_USER_VERIFIED_PASSED,
P_ADDRESS SCREENING_USER_NOT_VERIFIED,
P_ADDRESS SCREENING_USER VERIFIED _FAILED ,
P_ADDRESS SCREENING_NETWORK

1

A.4.6 Choices

A choice mapsto a CORBA union. For entries that do not have a corresponding type (defined asNULL in the
specification) no union entry is generated. These entries are grouped in the default clause where NULL is replaced by
short and the entry name (Undefined) by the name Dummy. When there are no NULL entries, the default clause is not
generated.

EXAMPLE 7: union TpCallAdditional Errorinfo switch (TpCallErrorType) {
case P CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorinvalidAddress;
default: short Dummy;

b

EXAMPLE 8: union TpCallChargeOrder switch(TpCallChargeOrderCategory) {
case P_CALL_CHARGE_TRANSPARENT: TpOctetSet TransparentCharge;
case P_CALL_CHARGE_PREDEFINED_SET: TpInt32 ChargePlan;

1

ETSI

25 ETSI ES 202 915-1 V1.3.1 (2005-03)

A.5 Use of NULL

CORBA alowsthe value NULL to be used for object references only. When the specification mentions NULL as
possible value of astruct, it means that each object reference in the struct shall be set to NULL. NULL does not apply to
other datatypes then object references.

A.6 Exceptions

The TpCommonExceptions is mapped to a CORBA exception containing a data item of type TpInt32 to indicate the
type of general exception and extrainformation of type TpString.

EXAMPLE9: exception TpCommonExceptions {
TpInt32 ExceptionType;
TpString Extralnformation;

b
All other exceptions are also mapped to CORBA exceptions but containing a data item of type TpString to indicate
additional information.

EXAMPLE 10: exception P_INVALID_ASSIGNMENT_ID {
TpString Extral nformation;

b

A.7 Naming space across CORBA modules

The following shows the naming space used in the present document.

nodul e org {
nodul e csapi {
/* The fully qualified nane of the followi ng constant is
org::csapi::P_TH S IS AN OSA GLOBAL_CONST */
const long P TH S | S AN OSA GLOBAL_CONST= 1999;
/1 Add other OSA gl obal constants and types here
nodul e fw {
/* no scoping required to access P_TH S IS AN OSA GLOBAL_CONST */
const long P_FWCONST= P_THI S | S AN OSA GLOBAL_CONST;

nodul e nm {

/1 scoping required to access P_FW CONST
const |ong P_M CONST= fw : P_FW CONST;
s

b
b

ETSI

26 ETSI ES 202 915-1 V1.3.1 (2005-03)

Annex B (informative):
W3C WSDL

B.1 Tools and Languages

The W3C (http://www.w3c.org) WSDL (Web Services Definition Language) isan XML format for describing network
services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented
information. WSDL files are generated from the UML model using scripts. The generated WSDL files are verified
using WSDL compilers. The WSDL is based on W3C WSDL 1.1.

B.2 Proposed Namespaces for the OSA WSDL

Namespaces are an important part of an XML Schema. They are used to qualify the source of a particular XML
element.

There are several XML/SOAP/WSDL related Namespaces which are used within each of the WSDL documents. The
Namespace Prefix and the Namespace are noted below.

xmins:wsdl = "http://schemas.xmlsoap.org/wsdl/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins.SOAP-ENC="http://schemas.xml soap.org/soap/encoding/"
xmins:xsd:="http://www.w3c.org/2001/X ML Schema

There are also OSA specific namespaces which are used within the OSA WSDL documents. The OSA related
namespaces present within each WSDL document depends on the WSDL document and which WSDL documents it
imports. The guidelines used to derive these namespaces are;

. The root namespace for the OSA WSDL and XML schemas is http://www.csapi.org/.

. There is one document generated for each component (Module) within the Analysis UML model. The
document will have the name of the UML component with the extension ".wsdl" For each wsdl document
generated the following additional namespaces will be included:

o0 xmlns:<component name>="http://www.csapi.org/<component name>/wsdl".
0 xmlns.<component name>xsd="http://www.csapi.org/<component name>/schema’/.

o For each OSA wsdl document which is referenced by an import statement within the current wsdl
document then the following additional namespaces will be included:

= xmlns:<imported component name>="http://www.csapi.org/<imported component name>/wsdl".

L] xmins.<imported component name>xsd="http://www.csapi.org/<imported component
name>/schema’.

. Attributes which require a QName value shall use the appropriate Namespace Prefix (as defined in the
definitions element of the wsdl fil€) to qualify the element being referenced.

The namespaces are defined within the "definitions' element of awsdl document. For example, the definitions element
of the am.wsdl document would look like:

<definitions
name="am
t ar get Nanespace=' http://ww. csapi . or g/ am wsdl '
xm ns="http://schemas. xm soap. org/ wsdl /'
xm ns: wsdl =" http://schemas. xm soap. or g/ wsdl /'
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"'

ETSI

http://www.w3c.org/

27 ETSI ES 202 915-1 V1.3.1 (2005-03)

xm ns: SOAP- ENC=' htt p: / / schemas. xnl soap. or g/ soap/ encodi ng/
xm ns: xsd="http://ww:. w3. or g/ 2001/ XM_Schema

xm ns: ame' http://ww. csapi . or g/ anf wsdl

xm ns: amxsd="http://ww. csapi . or g/ am schema

xm ns: osa=" http://ww. csapi . or g/ osa/ wsdl

xm ns: osaxsd='http://ww. csapi . or g/ osa/ schema' >

<i nmport namespace='http://ww. csapi . org/ osa/ wsdl
| ocation='"osa.wsdl' />

B.3 Object References

Object references are used to identify a particular remote object instance. Object references are used in two ways:

1) Passed as a parameter within a method to a remote object or passed as an attribute of a structured type
parameter within a method to the remote object.

2) Included within a message to identify the object for which the message is intended.

Within the context of SOAP, an object reference can be represented as a URL appended with a String. The String suffix
identifies the particular remote object instance in the context of the URL.

An object reference will be represented by the new type ObjectRef. The ObjectRef type is defined within osawsdl as:

<xsd: si npl eType name="(bj ectref">
<xsd:restriction base="xsd:string" />
</ xsd: si npl eType>

When an object reference is passed as a parameter, the parameter type is defined as a reference to an interface. When an
object reference is an attribute of a structured type, that attribute is defined as a reference to an interface. Each interface
will have a corresponding reference type associated with it. The interface reference will be defined as:

<xsd: si npl eType nanme="Int er f aceNameRef" >
<xsd:restriction base="osaxsd: Obj ect Ref" />
</ xsd: si npl eType>

where InterfaceName is the name of the particular interface.

When an object reference is used to identify the intended recipient of a message, then the object referenceisincluded in
the SOAP Header element as an ObjectRefHeader. The ObjectRefHeader is defined in the osa.wsdl document as
follows:

<nessage name=' Cbj ect Ref Header' >
<part nane='header' el ement="o0saxsd: bj ect Ref' />
</ message>

Within each method, the ObjectRefHeader is bound to the message within the wsdl soap:header element of the input
message of the binding element. For example:

<bi ndi ng nanme='| pAccount Manager Bi ndi ng' type='am | pAccount Manager"' >
<soap: bi nding style="rpc' transport="http://schemas. xm soap. org/ soap/ http' />
<operation name='createNotification >
<soap: operati on soapActi on="http://ww. csapi.org/anm | pAccount Manager #cr eat eNoti fi cati on' />

<i nput >
<soap: body
encodi ngStyl e=' htt p://schemas/ xm soap. or g/ soap/ encodi ng/'
nanespace = 'http://ww. csapi.org/am wsdl

use=' encoded' />
<soap: header
message=' osaxsd: bj ect Ref Header' part='header' />
</input >

ETSI

28 ETSI ES 202 915-1 V1.3.1 (2005-03)

B.4 Mapping UML Data Types to XML Schema

B.4.1 Data Types

B.4.1.1 <<Constant>>
The UML Constant data type contains the following attributes:
* Name
e Constant Value
This type would then map to the following XML Schema construct:

This mapping assumesthat all constants are of type Tplnt32

<xsd: si npl et ype name="Nane" >
<xsd:restriction base="osaxsd: Tpl nt 32" >
<xsd: m nl ncl usi ve val ue="Constant Val ue" />
<xsd: maxl ncl usi ve val ue="Constant Val ue" />
</xsd:restriction>
</ xs: si npl eType>

B.4.1.2 <<NameValuePair>>

The UML NameVauePair data type contains the following attributes:

« Name
* Attributes
¢ Name

This type would then map to the following XML Schema construct:

<xsd: si npl eType base="xsd: string" name="Nane">
<xsd:restriction base="xsd: String">
<xsd: enunerati on val ue="Attri bute-Name" />
<xsd: enuner ati on val ue="Attri bute-Name" />

<xsd: enunerati on val ue="Attribute-Nane" />
</xsd:restriction>
</ xsd: si npl eType>

B.4.1.3 <<SequenceOfDataElements>>

The UML SequenceOfDataElements data type contains the following attributes:

* Name

* Roles
* Name
* Type

This type would then map to the following XML Schema construct:

<xsd: conpl exType nane="Nane"
<xsd: sequence>
<xsd: el ement
Nane=" Rol e- Nane"
type="Rol e-Type" />
<xsd: el ement
Nane=" Rol e- Nane"

ETSI

29 ETSI ES 202 915-1 V1.3.1 (2005-03)

type="Rol e-Type" />

<xsd: el ement
Narre="Rol e- Nane"
type="Rol e-Type" />
</ xsd: sequence>
</ xsd: conpl exType>

B.4.1.4 <<TypeDef>>

The UML TypeDef data type contains the following attributes:
* Name
¢ ImplementationType
If the Implementation type is atechnology specific type, then the following mappings have been made:
TpBoolean — xsd:boolean
TpInt32 — xsd:float
TpFloat — xsd:float
TpLongString — xsd:string
TpString — xsd:string
TpOctet — xsd:hexBinary

This type would then map to the following XML Schema construct:

<conpl exType nane="Nane" base="I|npl enent ati onType" />

B.4.1.5 <<NumberedSetOfDataElements>>

The UML NumberedSetOfDataElements data type for sequences types contains the following attributes:
* Name
¢ ImplementationType

This type would then map to the following XML Schema construct:

<xsd: conpl exType name="Nane" >
<xsd: sequence>
<xsd: el ement
nanme="Nane"
type="Inpl enent ati onType"
m nCccur s="0"
maxCccur s="unbounded" />
</ xsd: sequence>
</ xsd: conpl exType>

B.4.1.6 <<TaggedChoiceOfDataElements>>
The UML TaggedChoiceOf DataElements data type contains the following attributes:
» Name
e SwitchType
* Roles
* Name

e Type

ETSI

30 ETSI ES 202 915-1 V1.3.1 (2005-03)

This type would then map to the following XML Schema construct:

<xsd: conmpl exType nanme="Nane" >
<xsd: sequence>
<xsd: el ement name="Sw t chNanme" type="Sw tchType" />
<xsd: choi ce>
<xsd: el enent nane="Rol e- Name" type="Rol e- Type" />
<xsd: el enent nane="Rol e- Name" type="Rol e- Type" />

<xsd: el ement nanme="Rol e- Nane" type="Rol e- Type" />
</ xsd: choi ce>
</ xsd: sequence>
</ conpl exType>

B.5 Mapping of UML SCF to WSDL

B.5.1 Mapping of Operations to WSDL message element
A UML Operation contains the following attributes:
* Interface
+ Name
* Module Name
* Return Type
* Parameter
+ Name
. Type
This type would then map to the following XML Schema construct:

<nessage nanme="I|nterface_Nane">
<part
nanme=" Par anet er - Nane"
type="Par anet er - Type"/ >

<part
name=" Par anet er - Nane"
type="Par anet er - Type"/ >
</ nessage>
<message nane="I|nt erface_NameResponse">

<part name="return" type="ReturnType"/>
</ nessage>

NOTE: If the ReturnTypeis void, then no ‘part’ element would be included in the Response message.
(i.e.<message nane="Interface_NaneResponse" />).

B.5.2 Mapping of Exception to WSDL message element

A UML Exception has the following attributes:
* Name

All exceptions (except for CommonExceptions), contain a parameter called Extralnformation which is of type TpString.

ETSI

31 ETSI ES 202 915-1 V1.3.1 (2005-03)

This type would then map to the following XML Schema Construct:
<nessage name="Nane">
<part
nane="Extral nf or nati on"
type="osaxsd: TpStri ng"/>
</ nessage>

B.5.3 Mapping of CommonExceptions to WSDL message
element
The UML CommonExceptions type has the following attributes:
¢ Name ("CommonExceptions")

The UML CommonExceptions contains two parameters; ExceptionType which is of type osaxsd: Tplnt32 and
Extral nformation which is of type osaxsd: TpString.

This type would then map to the following XML Schema Construct:
<nmessage nane="CommonExcepti ons">
<part
name="Excepti onType"
type="osaxsd: Tpl nt 32" />
<part
nane="Extr al nf or nati on"
type="osaxsd: TpStri ng" />
</ nessage>

B.5.4 Mapping of Interface Class to WSDL portType and binding
elements

A UML Interface Class contains the following attributes:
* Name
e Associated module (i.e. component)
¢ Operations
* Name

e Parameters

¢ Name
¢ Exceptions
¢ Name

This type would then map to the following WSDL portType element:

<port Type nanme="Nane">
<operation
nane=" COper at i on- Nang"
<i nput message="Cperati on- Nane"/ >
<out put message="Qperati on- NamreResponse"/ >
<fault nmessage="(perati on—-Excepti on— Name" />

<fault message="Operati on—-Excepti on—-Nanme" />
</ operati on>

<operation
name=" Oper at i on- Nane"
<i nput message="Cperati on- Nanme"/ >
<out put nessage="QCper ati on- NamreResponse"/ >
<fault name="Cperati on- Excepti on- Name" message="Cper ati on—-Excepti on—-Nanme" />

ETSI

32 ETSI ES 202 915-1 V1.3.1 (2005-03)

<fault nmessage="(Cperati on—-Excepti on—Name" />
</ operati on>
</ port Type>

This type would aso then map into the following WSDL binding element:

<bi ndi ng
nane="1|nt er f ace- NaneBi ndi ng"
type="Interface- Nane">
<soap: bi ndi ng style="rpc" transport="http://schemas. xm soap. org/ soap/ http"/>

<operati on name="Qperati on- Narme" >
<soap: operati on soapActi on="http://ww. csapi . or g/ am Name#Qper ati on- Narme"/ >
<i nput >
<soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://ww. csapi . or g/ Modul e- Nane/ wsdl "
use="encoded"/ >
<soap: header message="osaxsd: Obj Ref Header" part="header" />
</input >
<out put >
<soap: body
encodi ngStyl e="http://schemas. xnm soap. or g/ soap/ encodi ng/ "
nanmespace=" http://ww. csapi . or g/ Modul e- Nane/ wsdl
use="encoded"/ >
</ out put >
<faul t>
<soap: fault name="QOperati on- Excepti on- Nane"
encodi ngStyl e="http://schemas. xnl soap. or g/ soap/ encodi ng/ "
nanespace="http://ww. csapi . or g/ Mbdul e- Nane/ wsdl "
use="encoded"/ >
</faul t>

...additional fault elements
</ operati on>
...addi tional operation elenents

</ bi ndi ng>

B.5.5 Mapping of UML SCF to WSDL service element

A UML Module contains the following attributes:
* Name
e Interfaces
* Name
This type would then map to the following WSDL service element:
<servi ce nane="Nane">
<port binding="Interface-NanmeBi ndi ng" name="Interface- Narme">
<soap: address | ocation="http://{Service Address}"/>
</ port>

...addi tional port elements
</ service>

</definitions>

ETSI

33 ETSI ES 202 915-1 V1.3.1 (2005-03)

Annex C (informative):
Java™ Realisation API

C.1 Java™ Realisation Overview

The Parlay/OSA UML specifications are defined in atechnology neutral manner. This annex aimsto deliver for Java™,
adeveloper API, provided as arealisation, supporting a Java™ API that represents the UML specifications.

C.1.1 J2SE™ API

The J2SE™ API supports a J2SE™ devel opment environment that:
. provides an abstraction of the Parlay/OSA APIsthat provides alocal API for 2SE™ developers;
. supports a listener based API for SCFs and a callback API for the Framework;

. uses local object references as correlation mechanisms as Java™ devel opers are familiar with object
correlation;

. isalocal APl without visibility to the underlying transport.

C.1.2 J2EE™ API

The J2EE™ API supports a development environment which allows the creation of J2EE™ and Java™ RMI| interfaces
for both the server and client, ensuring consistent interfaces for interoperability. These interfaces may be used for
Java™ RMI on either JRMP or 110P (RMI/110P), allowing use in J2EE™ environments. The interfaces may also be
used as athin layer on other transports, similar to other Java™ technologies that provide a RMI programming interface.

The J2EE™ API isasuitable base for Java™ across Java™ platforms, allowing creation of implementations that:
. may be athin layer on transport protocols;
. may support J2EE™ remote interfaces,
. may support 2EE™ local interfaces.
The Java™ files created with the realisation will be made available with the Parlay/OSA specifications.
The remaining clauses of this annex deal with the following areas:
. clause C.2 covers the tools and languages used to produce and define the Java™ Realisation;
. clause C.3 covers the mappings that are common across both Java™ Realisation APIs;
. clause C.4 covers the mappings specific to the 2SE™ API;

. clause C.5 covers the mappings specific to the 2EE™ API.

C.1.3 Javadoc™

The Javadoc™ that accompanies the 2SE™ realisation of the Parlay/OSA API specification is provided as archive
20291501J2SE.zip.

The Javadoc™ that accompanies the 2EE™ realisation of the Parlay/OSA API specification is provided as archive
20291501J2EE.zip.

Both these archives can be found in es_20291501v010301p0.zip which accompanies the present document.

ETSI

34 ETSI ES 202 915-1 V1.3.1 (2005-03)

C.2 Tools and languages

The Java™ language is used as a means to programmatically define the interfaces. Java™ source files are generated
automatically from UML. The Java™ source files are created in accordance with the mappings defined within this
annex.

The generated Java™ source files are verified syntactically using Java™ compilers such as javac. The Java™ API
comprises.

. J2SE™ API designed to be compatible with the Java™ 2 SDK, Standard Edition, version 1.3
(http://java.sun.com/j2se/1.3/) or later; and a

. J2EE™ API compatible with the Java™ 2 Enterprise Edition (http://java.sun.com/j2ee/).

The J2SE™ API, developed in accordance to the conventions defined in clauses C.3 and C.4 will enable:
. portable Java™ applications, as far as the Java™ API is concerned;

. independence of distribution mechanism technology (e.g. CORBA,SOAP,RMI).

C.3 Generic Mappings (Elements common to J2SE™
and J2EE™)

NOTE: All Java™ code examples given in this clause are taken from the J2SE™ Java™ Realisation API. See the
appropriate Java™ files for examples for 2EE™ classes.

C.3.1 Namespace
The UML namespace org.csapi is represented by the Java™ package org.csapi.jr.

Packages under the org.csapi.jr package will contain "se" packages for J2SE™ specific Java™ artefacts and "ee" and
‘eelocal’ packages for J2EE™ specific Java™ artefacts.

For example, the User Location Camel Service package structure would appear as follows:
org.csapi.jr.se.mm.ulc containing J2SE™ API Java™ artefacts
org.csapi.jr.eelocal.mm.ulc containing J2EE™ local APl Java™ artefacts

org.csapi.jr.ee.mm.ulc containing the 2EE™ remote/RMI API Java™ artefacts

C.3.2 Package Naming Conventions

UML packages will be represented by Java™ packages. The sub-namespaces bel ow the root namespaces described
above will follow the naming used for the UML namespaces.

C.3.3 Object References

In Java™ there is no need to explicitly indicate areference to an object asin Java™ objects are passed by value and not
by reference. Where the specifications explicitly indicate a reference to an object by adding 'Ref' to the object type, this
addition is removed in the Java™ realisation.

EXAMPLE 1:
UML Java™ Realisation
IpUserLocationCamelRef UserLocationCamel
IpCallRef Call

ETSI

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2ee/

35 ETSI ES 202 915-1 V1.3.1 (2005-03)

C.3.4 Element Naming

The UML element names that begin with an uppercase will follow the Java™ naming conventions of with aleading
lower case letter and mixed case names. The UML elements are equivalent to Java™ field names.

EXAMPLE 2:

UML Java™ Realisation
AddressPlan addressPlan

C.3.5 Element Naming Collisions
If an element name collides with a Java™ keyword, the element name will be prefixed with an underscore.

EXAMPLE 3:

UML Java™ Realisation
Final _final

C.3.6 Data Type Definitions

C.3.6.1 Basic Data Types

Java™ does not support type definitions (typedefs); therefore types are unwound to their basic datatypese.g.:

EXAMPLE 4:
UML Java™ Realisation
TpCallAlertingMechanism int
TpAccessType java.lang.String

The following mappings apply to the basic data types:

UML Java™ Realisation
TpBoolean boolean
TpInt32 int
TpInt64 long
TpFloat float
TpOctet byte
TpString java.lang.String
TpLongString java.lang.String
TpAny java.lang.Object

C.3.6.2 Constants

Constants are associated with a type definition or as a standalone entity. In both cases, the constant itself will be defined
asa"public final static"fiedusingitsnameand value.

When defined associated with a type definition, an interface using the name of the type definition will be defined
enclosing al constants associated with the type definition.

Standal one constants within a package are defined within a Java™ interface with the name "Constants' within that
package.

ETSI

36 ETSI ES 202 915-1 V1.3.1 (2005-03)

EXAMPLE 5:

package org.csapi.jr.se;
public interface Constants {
public static final i
public static final
public static final
public static final
public static final
public static final

i nt METHOD _NOT_SUPPORTED = 22;
int NO_CALLBACK_ADDRESS SET = 17;
i nt RESOURCES UNAVAI LABLE = 13:
int TASK CANCELLED = 15;

i nt TASK_REFUSED = 14;

int | NVALI D_STATE = 744;

EXAMPLE 6:
package org.csapi.jr.se.cc;
public interface Call Supervi seReport {
public static final int CALL_SUPERVI SE TI MEQUT = 1;

public static final int CALL_SUPERVI SE CALL_ENDED = 2;
public static final int CALL _SUPERVI SE TONE APPLI ED = 4;

C.3.6.3 NumberedSetsOfDataElements (Collections)

In Java™, Numbered Set and Numbered List are realised as an array of the data type.
EXAMPLE 7:

UML Java™ Realisation
TpAddressSet Address]]

C.3.6.4 SequenceOfDataElements (Structures)
Struct data types are represented in Java™ as public final classes that implement java.io.Serializable, and have:
. each data element made available as a private variable in the class
. adefault constructor and a constructor for all values are provided
. accessor and mutator methods are given for each variable
. the first letter of each sequence element name is changed to lower case
« anequals method is provided determining the equality of objects by their content
« ahashCode method is provided supporting the rules for hashCode relative to equals

EXAMPLE 8:

package org.csapi.jr.se;
public final class Address inplenents java.io.Serializable {
private AddressPl an pl an;
private String addrString = "'";
private String name = "'";
private AddressPresentation presentation;
private AddressScreeni ng screening;
private String subAddressString = "'";

public Address () {
}

public Address (AddressPlan plan, String addrString,
String name, AddressPresentation presentation,
Addr essScreeni ng screening, String subAddressString) {
this.plan = plan;
this.addrString = addrString;
this. name = nare;
this.presentation = presentation;
this.screening = screening;
this. subAddressString = subAddressString;

ETSI

37 ETSI ES 202 915-1 V1.3.1 (2005-03)

}

publ i c TpAddressPlan getPlan () {
return (plan);
}

public void setPlan (TpAddressPl an pl an) {
this.plan = plan;
}

public String getAddrString () {
return (addrString);
}

public void setAddrString (String addrString) {
this.addrString = addrString;

}

...other get and set methods ...

publ i c bool ean equal s (Cbject object) {

/1 equality logic
}

public int hashcode () {
/'l hash code cal cul ation

}

C.3.6.5 NameValuePair (Enumerations)

NameVauePair data types are represented in Java™ as public final classes that implement java.io.Seriaizable, and
have:

. two static final data members per name-val ue pair

. avalue returning method, named getVal ue()

. a name returning method, named getValueText()

. an integer conversion method, named getObject()

. a private constructor

. readResolve(), hashCode and equal s i mplementations

No default constructor is provided. One of the data members per name-value pair has the same name as the name-value
pair name. The other has an underscore' ' prepended and is intended for use in switch statements. Values are assigned
sequentially, starting with O.

The getObject() method returns the name-value pair class with the specified value if the specified value corresponds to
an element of the name-value pair data type. If the specified value is out of range, an InvalidEnumV al ueException
exception israised

EXAMPLE 9:

package org.csapi.jr.se;
public final class AddressScreening inplenents java.io.Serializable {
private int _val ue;
private static int _size = 5;
private static AddressScreening[] _array = new AddressScreeni ng[_si ze];

public static final int _ADDRESS SCREEN NG _UNDEFI NED = O0;
public static final AddressScreeni ng ADDRESS SCREENI NG _UNDEFI NED = new
Addr essScr eeni ng(_ADDRESS_SCREENI NG_UNDEFI NED) ;

public static final int _ADDRESS SCREEN NG USER VERI Fl ED PASSED = 1;

public static final AddressScreeni ng ADDRESS SCREENI NG _USER VERI FI ED_PASSED = new
Addr essScr eeni ng(_ADDRESS SCREENI NG_USER VERI FI ED_PASSED) ;

ETSI

38 ETSI ES 202 915-1 V1.3.1 (2005-03)

public static final int _ADDRESS SCREEN NG USER NOT_VERI FI ED = 2;
public static final AddressScreeni ng ADDRESS SCREENI NG USER NOT_VERI Fl ED = new
Addr essScr eeni ng(_ADDRESS SCREENI NG _USER NOT_VER! FI ED) ;

public static final int ADDRESS SCREENI NG USER VERI FI ED FAI LED = 3;
public static final AddressScreeni ng ADDRESS SCREENI NG USER VERI FI ED FAI LED = new
Addr essScr eeni ng(_ADDRESS_SCREENI NG_USER_VERI FI ED_FAI LED) ;

public static final int _ADDRESS SCREENI NG NETWORK = 4;
public static final AddressScreeni ng ADDRESS SCREENI NG NETWORK = new
Addr essScr eeni ng(_ADDRESS_SCREENI NG_NETWORK) ;

private AddressScreening(int value) {
this._val ue = val ue;
this. _array[this._value] = this;

}

private Object readResolve() throws java.io.Object StreanException {
return _array[_val ue];
}

public int getValue() {
return _val ue;
}

public String getVal ueText () {
switch (_value) {
case _ADDRESS_SCREEN NG_UNDEFI NED:
return " ADDRESS_SCREEN NG_UNDEFI NED';
case _ADDRESS_SCREEN NG USER VERI FlI ED_PASSED:
return "ADDRESS SCREENI NG USER VERI Fl ED_PASSED';
case _ADDRESS_SCREEN NG USER NOT_VERI FI ED:
return " ADDRESS_SCREENI NG _USER_NOT_VERI FI ED';
case _ADDRESS_SCREEN NG USER VERI Fl ED_FAIl LED:
return " ADDRESS_SCREENI NG _USER VERI FI ED_FAI LED';
case _ADDRESS SCREEN NG_NETWORK:
return "ADDRESS_SCREEN NG _NETWORK";
defaul t:
return "ERROR';
}

}

public static AddressScreeni ng get Object(int value) throws
org. csapi.jr.se.lnvalidEnunVal ueException {
if(value >= 0 && value < _size) {
return _array[val ue];
} else {
throw new org. csapi.jr.se.lnvalidEnunVval ueException();
}

}

publ i c bool ean equal s(Obj ect o) {
/lequality |ogic
}

public int hashCode() ({
/' hash code cal cul ation

}

C.3.6.6 TaggedChoiceOfDataElements (Unions)

Union data types are represented in Java™ as public final classes that implement java.io.Seriadlizable, and have:
. adefault constructor
. adiscriminator field
. a discriminator accessor method, named getDiscriminator()

. an accessor and modifier method for each data element, the names of which are derived from choice element
name

. hashCode and equal s implementations

ETSI

39 ETSI ES 202 915-1 V1.3.1 (2005-03)

Conflicting names should be resolved by prefixing the field name with an underscore for getDiscriminator if thereisa
name clash with the mapped data type name or any of the data element names.

Where choice element type and choice element name are 'NULL' and 'Undefined’, respectively, a Java™ Object set as
null replaces the NULL. If multiple NULL/Undefined combinations occur in the tagged choice of data elements, the
method, setUndefined, will receive the discriminator as a parameter and set _object to null.

Accessor methods shall raise an InvalidUnionAccessorException exception if the expected data element has not been
Set.

EXAMPLE 10:

package org.csapi.jr.se;

public final class AoCOrder inplenents java.io.Serializable {
private Cal |l AoCOrderCategory _discrimnator = null;
private java.lang. Obj ect _object;

public AoCOrder() {
}

public Cal | AoCOrder Category getDiscrimnator() throws
org.csapi.jr.se.lnvalidUni onAccessor Exception {
if(_discrimnator == null) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return _discrimnator;

}

public org.csapi.jr.se.ChargeAdvi cel nfo get ChargeAdvi cel nfo() throws
org.csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOr der Cat egory. CHARGE_ADVI CE_| NFO) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((org.csapi.jr.se.ChargeAdvi celnfo) _object);

public void set ChargeAdvi cel nfo(org. csapi.jr.se.ChargeAdvi celnfo val ue) {
_discrimnator = Call AoCOr der Cat egory. CHARGE_ADVI CE_| NFG,
_object = val ue;

}

public org.csapi.jr.se.ChargePerTi ne getChargePerTinme() throws
org. csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOrder Cat egory. CHARGE_PER Tl ME) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((org.csapi.jr.se.ChargePerTinme) _object);

public void set ChargePerTi ne(org. csapi.jr.se. ChargePerTi ne val ue) {
_discrimnator = Call AoCOr der Cat egory. CHARGE_PER TI ME;
_object = val ue;

}

public java.lang. String get Net workCharge() throws
org. csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOrder Cat egory. CHARGE_NETWORK) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((java.lang.String) _object);

public void set NetworkCharge(java.lang. String val ue) {
_discrimnator = Call AoCOr der Cat egory. CHARGE_NETWORK;
_object = val ue;

}

public void setUndefined(Call AocOrderCategory discrimnator) {
__discrimnator = discrinmnator;
__object = null;

}

publ i c bool ean equal s(bject o) {
/lequality |ogic

ETSI

40 ETSI ES 202 915-1 V1.3.1 (2005-03)

public int hashCode() ({
/' hash code cal cul ation

}

C.3.6.7 Exceptions

An exception maps to a constructed exception, providing appropriate constructors and accessor methods for the data
contained within the exception. Each exception is defined as a public class extending java.lang.Exception, and
containing a private field for each information element contained within the exception.

A default constructor is provided, a ong with a constructor containing only an embedded exception, a constructor
containing alist of the fields in the exception and a constructor that contains the fields plus an embedded exception.

An accessor method is provided for each field, and for the embedded exception.
The following Java™ Realisations apply to mapping of exceptions:

. PlatformException

. P_XXX_XXX Exceptions

. TpCommonExceptions

. TpCommonExceptions' associated exceptions

. Additional abstract exceptions

. InvalidUnionA ccessorException

. InvalidEnumV alueException

C.3.6.7.1 PlatformException
PlatformException exception handles local platform and communication problem exceptions.

EXAMPLE 11:

package org.csapi.jr.se;
public class PlatfornException extends java.lang. Runti neException {
private Throwabl e _cause = null;

public Pl atfornException () {
super () ;

public Pl atfornException (String nessage) {
super (nmessage) ;

public PlatfornmException (String nmessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

public Pl atfornmExcepti on (Throwabl e cause) ({
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

ETSI

41 ETSI ES 202 915-1 V1.3.1 (2005-03)

C.3.6.7.2 P_XXX_XXX Exceptions
P_XXX_XXX exceptions follow the XxxXxxException naming pattern, and inherit from java.lang.Exception.

EXAMPLE 12:

package org.csapi.jr.se;
public class InvalidlnterfaceTypeException extends java.lang. Exception {
private Throwabl e _cause = null;

public InvalidlnterfaceTypeException() {
super ();

public InvalidlnterfaceTypeException(String nessage) {
super (nmessage) ;

public InvalidlnterfaceTypeException(String nessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

public InvalidlnterfaceTypeException(Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

C.3.6.7.3 TpCommonExceptions

The name for TpCommonExceptions exception is made singular, i.e. CommonException, and inherits from
java.lang.Exception.

EXAMPLE 13:

package org.csapi.jr.se;

public class CommpnException extends java.lang. Exception {
private Throwabl e _cause = null;
private int _exceptionType;
private String _extral nformation;

publ i ¢ CommonException () {
super () ;

publ i ¢ CommpbnException (String nessage) {
super (nmessage) ;

publ i ¢ CommonException (String nessage, Throwabl e cause) {
super (nmessage) ;
_Ccause = cause;

}

publ i ¢ CommobnException (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

public int getExceptionType() {
return _exceptionType;
}

public void set ExceptionType(int exceptionType) {
_exceptionType = exceptionType;
}

ETSI

42 ETSI ES 202 915-1 V1.3.1 (2005-03)

public String getExtralnformation() {
return _extral nformation;
}

public void setExtralnformation(String extralnformation) {
_extralnformati on = extral nformation;
}

C.3.6.7.4 TpCommonException's associated exceptions

P_XXX_XXX exception types (constants) associated with TpCommonExceptions follow the X xxXxxException
naming pattern and inherit from CommonException.

EXAMPLE 14:

package org.csapi.jr.se;
public cl ass ResourcesUnavai |l abl eExcepti on extends org.csapi.jr.se. CoomonException {
private Throwabl e _cause = null;

publ i ¢ Resour cesUnavai |l abl eException () {
super () ;

publ i ¢ Resour cesUnavai | abl eException (String message) {
super (nmessage) ;

publ i ¢ Resour cesUnavai | abl eException (String message, Throwabl e cause) {
super (message, cause);

publ i ¢ Resour cesUnavai |l abl eException (Throwabl e cause) {
_cause = cause;
}

C.3.6.7.5 Additional abstract exceptions

Additional abstract exceptions (See ES 202 915-2 [50], annex D) have been defined which are
TplnvalidArgumentException, TpFrameworkException, TpMobilityException, TpDataSessionException,

TpM essagingException, TpConnectivityException, TpAccountException, TpPAM Exception and TpPolicyException
and are mapped as follows:

EXAMPLE 15:

package org.csapi.jr.se;
public class InvalidArgunent Exception extends java.lang. Exception {
private Throwabl e _cause = null;

public I nvalidArgunent Exception () {
super () ;

public InvalidArgunent Exception (String nessage) {
super (nessage) ;
}

public I nvalidArgunent Exception (String nessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

public | nvalidArgunent Excepti on (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

ETSI

43 ETSI ES 202 915-1 V1.3.1 (2005-03)

C.3.6.7.6 InvalidUnionAccessorException

An additional exception, InvalidUnionAccessorException, is defined which indicates that the expected data element has
not been set.

EXAMPLE 16:
package org.csapi.jr.se;
public class I|nvalidUni onAccessor Exception extends org.csapi.jr.se.lnvalidArgunent Exception {
private Throwabl e _cause = null
public I nvalidUni onAccessor Exception (){
super ();

public I nvalidUni onAccessor Exception (String nessage) {
super (message);

public InvalidUni onAccessor Exception (String nessage, Throwabl e cause){
super (message, cause);

public I nvalidUni onAccessor Excepti on (Throwabl e cause) {
_cause = cause;
}

C.3.6.7.7 InvalidEnumValueException

An additional exception, InvalidEnumV alueException, is defined which indicates that an enum data type was accessed
with an invalid request value.

EXAMPLE 17:

package org.csapi.jr.se;
public class |nvalidEnunVal ueExcepti on extends org.csapi.jr.se.|nvalidArgunent Exception {
private Throwabl e _cause = null

public I nvalidEnunVal ueException () {
super ();

public I nvalidEnunVal ueExceptions (String nessage) {
super (nessage);

public | nvalidEnunVal ueException (String message, Throwabl e cause) {
super (nmessage, cause);

public | nvalidEnunVal ueExcepti on (Throwabl e cause) ({
_cause = cause;
}

C.3.6.8 Deprecation
Java™ source can evolve between one version and the next. Three causes of evolution are identified:
. Through applying changes to the UML
. Through applying changes to the rulebook
. Through improving the Java™ production process
In order to maintain backward compatibility, the Java™ community appliesthe /** @deprecated */ tag. Java™ source

shall maintain backward compatibility. Changes between subsequent versions shall be indicated through applying the
deprecated tag.

ETSI

44 ETSI ES 202 915-1 V1.3.1 (2005-03)

Deprecated Java™ source remains deprecated for aslong as UML deprecation history is remained.

C.4 J2SE™ Specific Conventions

The UML interfaces are represented by Java™ public interfaces; those interfaces that inherit from other interfaces are
represented in Java™ as extending that interface. The Java™ realisations of OSA/Parlay SCFs use an Event Listener
design pattern while the Framework uses the Callback pattern.

This annex provides the information on realisation of the Java™ developer API including:
. How Java™ APIs are realised from Parlay UML
. Where the listener pattern is used, new classes to be generated from the UML
. Changes required to data types and methods to support correlation using object references

. Use of hierarchical exceptions

C.4.1 Removal of "Tp" Prefix

The UML datatypes labelled with the prefix 'Tp' are represented in Java™ without this prefix.
EXAMPLE 18:

UML Java™ Realisation
TpCallAppinfo CallApplinfo

In the case of name collisions between data types and interfaces as with |pTerminal Capabilities and | pService the UML
data types labelled with the prefix "Tp' are represented in Java™ with an alternative prefix 'Type'.

EXAMPLE 19:

UML

Java™ Realisation

IpTerminalCapabilities

TerminalCapabilities

TpTerminalCapabilities

TypeTerminalCapabilities

The above example is based in conjunction with C.4.3 Removal of "Ip" Prefix.

C.4.2 Constants

The UML constants |abelled with the prefix 'P_' are represented in Java™ without this prefix.

EXAMPLE 20:

UML Constant

Java™ Constant

P_NO CALLBACK ADDRESS SET

NO_CALLBACK_ADDRESS SET

C.4.3 Removal of "Ip" prefix

The"Ip" prefix isremoved in the Java™ realisation of UML interfaces.

EXAMPLE 21:

UML

Java™

IpCallControlManager

CallControlManager

ETSI

45 ETSI ES 202 915-1 V1.3.1 (2005-03)

C.4.4 Mapping of Ipinterface

Iplnterface interface is represented by the Csapilnterface interface. Thisisa"marker" interface, in that it contains no
methods, but provides a common interface for related interfaces to inherit from. All interfaces to be serializable; this
can be done by Csapilnterface extending Serializable.

EXAMPLE 22
package org.csapi.jr.se;

public interface Csapilnterface extends Serializabl e{

}

C.4.5 Mapping of IpService

IpService interface is represented by the Java™ Service interface. This provides a common interface for related
interfacesto inherit from.

EXAMPLE 23:

Service Interface:
package org.csapi.jr.se;
public interface Service extends Csapilnterface {
public final static int | N _SERVI CE_STATE=0 ;
public final static int OUT_OF SERVI CE_STATE=1,
voi d addServi ceSt at eChangelLi st ener (Servi ceSt at eChangelLi st ener |i stener)

int getServiceState();
voi d renoveServi ceSt at eChangelLi st ener (Servi ceSt at eChangelLi stener |istener) ;

Listener interface:
package org.csapi.jr.se;
public interface ServiceStateChangeli stener extends java.util.EventListener {
voi d onQut O Servi ce(Qut Of Servi ceEvent event);
}
Event class:
package org.csapi.jr.se;
public class QutOf ServiceEvent extends jav.util.EventObject {

publ i c Qut Of Servi ceEvent (j ava. | ang. Obj ect source){
super (source)

C.4.6 Mapping of UML Operations
The UML operations are represented in Java™ as methods.

Exceptions that can be raised by UML operations are represented in Java™ with the throws clause and the Java™
Realisation of the UML Exceptions.

UML 'in' parameters, represented by 'in ' preceding the parameter type are represented in Java™ without this clause.
EXAMPLE 24:

public void nanager Resurmed ();

public Csapilnterface obtainlnterface (InterfaceNane interfaceNane) throws
I nval i dl nt er f aceNaneExcepti on;

public Service createServi ceManager (dientApplD application, ServicePropertyList serviceProperties,
Servi cel nstancel D servi cel nstancel D);

The above example method signatures are based on generic mapping of interfaces, exceptions and data types.

ETSI

46 ETSI ES 202 915-1 V1.3.1 (2005-03)

C.4.7 Mapping of TpSessionID

The UML TpSessionl D data types will be hidden in the J2SE™ APIs (and optionally supported by the underlying
Java™ implementation). Consequently, the TpSessionlDSet data type and | pService.setCallbackWithSessionl D()
method are superfluous. Also, structures with only TpSessionlD and interface references (e.g. TpCallldentifier) are no
longer necessary and references to these structures should be replaced by just the reference to the interface. For data
types that contain TpSessionl D the Java™ API Realisation object replaces theTpSessioniD.

The following figure shows how Java™ API Realisation objects relate to Parlay UML objects and sessions. How thisis
realised in the adaptors is implementation dependent.

Java APl Realisation Objects

Rel atiénshi ps

Parlay UML Object

Parlay UML Sessions

C.4.8 Mapping of TpAssignmentID to the creation of an Activity
object

The UML TpAssignmentl D data types, which differentiate between multiple parallel asynchronous method invocations
(activities) on the same (‘parent’) interface, are deleted and replaced with createXxx methods (one for each parallel
asynchronous activity) that create (‘child’) activity interfaces. Where this would result in method names of the pattern
createCreateX xx, this should be changed to method names with the pattern createXxx. Associated listeners would then
remove the Create prefix from their name. These activity interfaces, in addition to possibly supporting other methods,
will support one of the previously mentioned multiple parallel asynchronous method invocations. Hence, the Java™
API readlisation creates multiple (activity) objects and invokes a single request per object rather than creating asingle
object and invoking multiple requests on that object, each request being differentiated using the TpAssignmentI D value.
The results of the asynchronous method invocation will be handled by the activity interface's listener interface. To
create the activity interface, the original IpXxx interface (to be named Xxx) will replace its parallel supporting
asynchronous method invocations, yyyY yyReq, with createY yyYyy methods that take no parameters but returns the
activity interface, YyyYyy. Where this would result in method names of the pattern createCreateX xx, this should be
changed to method names with the pattern createXxx. Associated listeners would then remove the Create prefix from
their name. The activity interface will extend Activity interface (see next rule), have a simple FSM, the
addYyyYyyListener, removeY yyY yyListener and the asynchronous method that previously supported a parallel
capability (typically named yyyYyyReq, but also yyyY yyStop).

An Activity interface, packaged in org.csapi.jr.se, is added as a parent to all activity interfaces. An application may add
listeners of type ActivityStateChangeL istener to an Activity if it wishes be explicitly informed when the activity
becomesinvalid.

The YyyYyyListener activity listener interfaces will extend java.util.EventListener. The asynchronous methods of
previously named | pAppXxx, typically labelled yyyYyyRes and yyyY yyErr but also yyyYyy, will be renamed
onYyyYyyRes and onYyyY yyErr but also onYyyYyy. Each method will have an event parameter, typically labelled
YyyYyyResEvent and YyyY yyErrEvent, but aso YyyYyyEvent. Events will be classes that extend
java.util.EventObject and contain a public constructor (with multiple parameters — one per class carried by the event)
and anumber of public getter methods (one per 'gettable’ class carried by the event). As aresult of adding activity
listener interfaces, this may cause the requirement for the original 1pAppXxx to disappear, since the yyyY yyRes and
yyyY yyErr methods will effectively be ported to the activity listener interfaces.

ETSI

a7 ETSI ES 202 915-1 V1.3.1 (2005-03)

For data types that contain TpAssignmentID the activity object replaces the TpAssignmentID.
EXAMPLE 25:

Activity Interface:

package org.csapi.jr.se;
public interface Activity extends Csapilnterface {
public final static int |DLE STATE = 0;
public final static int ACTIVE_STATE = 1;
public final static int |INVALID STATE = 2;
public int getState();
public void addActivityStateChangeli stener (ActivityStateChangelistener |istener);
public void renoveActivityStateChageli stener (ActivityStateChangelistener |istener);

Activity Listener Interface and Event class:

package org.csapi.jr.se;
public interface ActivityStateChangeli stener {

onlnval i dStateEvent (Il nvalidActivityEvent event)
}

public class InvalidActivityEvent extends java.util.Event Cbject {
public InvalidActivityEvent(java.lang. Object source){
super (source)

Parent interface:

package org.csapi.jr.se.mmul;

public interface UserlLocation extends org.csapi.jr.se. Service {
public LocationReport createlLocationReport();
publ i ¢ ExtendedLocati onReport creat eExt endedLocati onReport ();
public Periodi cLocati onReporting createPeriodi cLocati onReporting();

Child Interface:

package org.csapi.jr.se.mmul;

public interface LocationReport extends org.csapi.jr.se.Activity {
public void addLocati onReportListener(Locati onReportListener |istener)
public void renpvelLocati onReportListener(Locati onReportlListener |istener)
public void | ocationReportReq(Address[] users) throws ...

Listener Interface:

package org.csapi.jr.se.mmul;
public interface LocationReportlListener extends java.util.EventListener {

public void onLocati onReport ResEvent (Locati onReport ResEvent event);
public void onLocati onReportErrEvent (Locati onReportErr Event event);

Event classes:

package org.csapi.jr.se.mmul;

public class LocationReportResEvent extends java.util.Event Object {
/1 with a public UserLocation[] constructor and a public getter
/1 method for the paraneter of the event

}

public classLocati onReport Err Event extends java.util.Event Object {
/1 with a public MbilityError and MobilityD agnostic constructor
/1 and two public getter nmethods, one for each of the paraneters
/1 of the event

ETSI

48 ETSI ES 202 915-1 V1.3.1 (2005-03)

The Finite State Model for the Activity interface is given below:

Idle

a‘ Invalid

Thisinterface specifies an activity, which might be provided by a service. An activity has three states: "idle", "active"
and "invalid". Theinitial stateis"idle" and here the listeners should be registered. It performsin the "active" state. It

entersthe "invalid" state when it has fulfilled its task or afatal error occurred. In special cases state transition from
"idle" to "invalid" is possible.

An example activity interface FSM is given below for a single activity request with a single response:

addL ocationReportListener()
Idle removel ocationReportListener()

|ocationReportReq()

Active removel ocationReportL istener()

LocationReportResEvent
LocationReportErrEvent

locationReportReq() exception

ETSI

49 ETSI ES 202 915-1 V1.3.1 (2005-03)

An example activity interface FSM is given below for a single activity request with repeating responses:

addPeriodicL ocationReportingListener()
| dl e removePeriodicL ocationReportingListener()

periodocL ocationReportingStartReq()

) removePeriodicL ocationReportingListener()
Active "PeriodicL ocationReportEvent
periodicL ocationReportingStop(“ selected users’)

periodicLocationReportingStop(“all users’)
"PeriodicL ocationReportErrEvent

Invalid

periodicLocationReportingStartReq() exceptjon

C.4.9 Callback Rule

The UML callback design pattern for all callbacks that return atype is represented in Java™ with the callback design
pattern. The UML callback design pattern for al callbacks that return void is represented in Java™ with the event
listener design pattern.

The UML client-to-service interfaces with the IpAppXxxx naming convention are represented in Java™ with the
XxxxListener naming convention.

The IpService.setCallback method can be deleted; the interfaces that inherited the setCallback method now have
associated addX xxxListener and removeXxxxListener methods. According to the TpSessionl D mapping,
| pService.setCallbackWithSessionl D() method is deleted.

The XxxxListener listener interfaces will extend java.util.EventListener. The asynchronous methods of previously
named | pAppXxxx, typically labelled yyyyYyyyRes and yyyyY yyyyErr but also yyyyY yyy, will be renamed
onYyyyYyyyRes and onYyyyY yyyErr but also onYyyyYyyy. Each method will have an event parameter, typically
labelled YyyyYyyyResEvent and YyyyYyyyErrEvent, but aso YyyyY yyyEvent. Events will be classes that extend
java.util.EventObject and contain a private constructor (with multiple parameters — one per class carried by the event)
and a number of public getter methods (one per 'gettable’ class carried by the event). Events are read-only and
serializable.

EXAMPLE 26:

Listener Interface:
package org.csapi.jr.se.cc. npccs;
Mul ti PartyCal | Li stener extends java.util.EventListener{

public void onGCetlnfoResEvent (Get| nf oResEvent event)

public void onGetlnfoErrEvent (GetlnfoErrEvent event)

public void onSupervi seResEvent (Supervi seResEvent event)

public void onSupervi seErrEvent (Supervi seErr Event event)

public void onCal | EndedEvent (Cal | EndedEvent event)

public void onCreat eAndRout eCal | LegEr r Event (Cr eat eAndRout eCal | LegErr Event event)

}

ETSI

50 ETSI ES 202 915-1 V1.3.1 (2005-03)

MuliPartyCall I nterface additional methods:

public void addMul ti PartyCal | Li stener (Ml ti PartyCallListener nultiPartyCallListener);
public void removeMil ti PartyCal |l Li stener(MiltiPartyCallListener nultiPartyCallListener);

C.4.10 Factory Rule

The following Factory class allows applications to obtain proprietary peer API objects. The term "peer" is Java™
nomenclature for a particular platform-specific implementation of a Java™ interface.

EXAMPLE 27:
jr.se.fw

. se. Peer Unavai | abl eExcepti on;

.se. I nval i dAr gunent Excepti on;

. se. Resour cesUnavai | abl eExcepti on;
.se.fw access.tsmlnitial;

package org.csapi.
i nport org.csapi.]j
i mport org.csapi.
i mport org.csapi.
i mport org.csapi.
import java.util.

e
_ = = = —

public class Initial Factory {
private static Initial Factory nyFactory;
private static String className = null;

private static String |ang = "en";
private static String cntry = "us";
private Initial Factory() {
}
public synchronized Initial createlnitial (String initial PeerReference) throws
Peer Unavai | abl eExcepti on, ResourcesUnavai |l abl eException , |nvali dArgunent Exception {
Local e currentLocal g;
Resour ceBundl e nessages;
String tryMessage;
try {
currentLocal e = new Local e(l ang, cntry);
messages = ResourceBundl e. get Bundl e(" 1 ni tial Fact oryBundl e", currentlLocal e);
/1 Validate all used values before using themlater
/1 avoiding error text exception to hide the real exception
tryMessage = nessages.getString("Initial PeerReferenceNull");
tryMessage = nessages.getString("InitiallnstFailure");
tryMessage = nessage. get String("Destroylnitial Failure");
catch (Exception e) {
t hrow new Resour cesUnavai | abl eException ("Localisation failed to be initialized");
}
if (initialPeerReference == null) {
String errnsg = nessages. getString("Initial Peer ReferenceNull");
throw new | nval i dAr gunent Exception (errnsg);
}
try {
Cass ¢ = Cass.forNane (getlnplenentati onCl assNane ());
if(initial PeerReference.equals('')){
/]l Creates a new instance of the Object class
/1 using default constructor
return (Initial)c.new nstance ();
}
Class[] paraniTypes = {initial Peer Reference. getC ass()};
java.lang.refl ect.Constructor ctor =
c. get Construct or (par anifypes) ;
bj ect[] params = {initial PeerRef erence};
return (Initial) ctor.new nstance(parans);
} catch (Exception e) {
String errnmsg = nessages.getString("InitiallnstFailure");
t hrow new Peer Unavai | abl eException (errnsg);
}
}

ETSI

51 ETSI ES 202 915-1 V1.3.1 (2005-03)

public synchronized static Initial Factory getlnstance() {
if (nyFactory == null) {
nmyFactory = new Initial Factory ();
}

return nyFactory;

}

public String getlnplementati ond assNane () {
return cl assNane;
}

public static void setlnplenmentati onC assNane (String classNane) {
this.classNane = cl assNang;

}
public synchroni zed static void setlLocal e(String | anguage, String country) {
if (langauage == null) {
lang = "en";
el se {
I ang = | anguage;
}
if (country == null) {
cntry = "US";
el se {
cntry = country;
}
}
public void destroylnitial (Initial initiallnstance) {
if (initiallnstance == null) {
return;
}
try {
delete initiallnstance;
} catch (Exception e) {
String errnsg = nessages. getString("Destroylnitial Failure");
t hrow new Runti meExcepti on(errmsg);
}
}

C.4.11 J2SE™ Specific Exceptions

Exceptionsin this clause are only applicable within a J2SE™ environment.

C.4.11.1 PeerUnavailableException
PeerUnavailableException indicates failure to access an implementation of the Initial interface.

EXAMPLE 28:

public class PeerUnavail abl eExcepti on extends java.l ang. Exception {
private Throwabl e _cause = null;
publ i ¢ Peer Unavai | abl eException () {
super () ;

publ i ¢ Peer Unavai | abl eException (String nmessage) {
super (nmessage) ;

publ i ¢ Peer Unavai | abl eException (String nessage, Throwabl e cause) {
super (nessage) ;
_cause = cause;

}

publ i ¢ Peer Unavai | abl eExcepti on (Throwabl e cause) ({
_cause = cause;
}

ETSI

52 ETSI ES 202 915-1 V1.3.1 (2005-03)

publ i c Throwabl e get Cause() {
return _cause;
}

C.4.11.2 lllegalStateException

I1legal StateException exception signal s that a method has been invoked at an illegal or inappropriate time.
EXAMPLE 29:

package org.csapi.jr.se;
public class |l egal StateException extends java.lang. Exception {

private int _state;
private java.lang. Obj ect _object;

public |11 egal StateException(Cbject object, int state) {

super();
_obj ect = object;
_state = state;
}
public Illegal StateException(Cbject object, int state, String s) {
super (s);
_obj ect = object;
_state = state;
}

public Object getObject() {
return _object;
}

public int getState() {
return _state;
}

C.4.12 User Interaction Specific Rules

C.4.12.1 Interfaces representing UML IpUl and IpUICall Rule

The following mappings take account of the fact that when the TpAssignmentID ruleis applied the Java™ interfaces
representing UML IpUICall does not extend the Java™ interfaces representing UML [pUI.

Java™ Ul Generic replaces the UML IpUl. Methods common to both the Java™ Ul Generic and Java™ UlICall are
pulled up into a super-interface called Ul. UML IpAppUl and IpAppUiCall interfaces are replaced by a Ul Listener
interface.

C.4.12.2 Naming Collisions of GUI and CUI Activities Rule

Naming collisions that arise through GUI and CUI activities e.g. XXX, having the same name will be dealt with by
prefixing the Call Related Ul activity by 'CallRelated’. Methods to create the activity will become
createCallRelatedX X X ().

C.5 J2EE™ Specific Conventions

J2EE™ supports both remote and local interfaces.

ETSI

53 ETSI ES 202 915-1 V1.3.1 (2005-03)

C.5.1 Void

C.5.2 Remote Interface Definitions

C.5.2.1 IpInterface

Thisinterface implements java.io.Serializable. Sinceit isthe root interface for all other interfaces, this makes all
defined interfaces seriadizable.

EXAMPLE 30:

public interface Iplnterface extends javaio.Serializable

C.5.2.2 Methods for Remote Interfaces

A public method is defined within a remote interface for each method defined in the specification, with zero or one
output specified as the return value, and all other parameters listed without any input marker. Each method will return
java.rmi.RemoteException in addition to other exceptions, if any.

EXAMPLE 31:

public void deassignCall (int callSessionlD) throws java.rmn .RenpoteException,
org. csapi.jr.ee. TpCommonException, org.csapi.jr.ee.lnvalidSessionl dException;

C.5.3 Local Interface Definitions

C.5.3.1 Methods for Local Interfaces

A public method is defined within alocal interface for each method defined in the specification, with zero or one output
specified as the return value, and all other parameters listed without any input marker.

EXAMPLE 32:

public void deassignCall (int callSessionlD) throws org.csapi.jr.ee. TpConmonExcepti ons,
org.csapi.jr.ee.lnvalidSessionl dExcepti on;

C.5.4 Multi Party Call Control Specific Rules

The Multi Party Call Control Manager interface has specific Java™ Realisation considerations.

C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts

Some method names within the IpAppCallLeg interface have the same names as methods in the IpAppMultiPartyCall
interface. These method names conflict when both interfaces are implemented on the same object within an RMI/110OP
or CORBA environment.

For the method names that are the same in both IpMultiPartyCall and IpCallLeg interfaces or |pAppMultiPartyCall and
IpAppCallLeg, the call leg related method names are modified to include 'CallLeg’ as part of the method name to avoid
name conflicts. The following method names resullt:

Table C.1: IpCallLeg method name modifications

IpCallLeg Method Name Realisation Method Name
getinfoReq getCallLeginfoReq
superviseReq superviseCallLegReq

ETSI

54 ETSI ES 202 915-1 V1.3.1 (2005-03)

Table C.2: IpAppCallLeg method name modifications

IpAppCallLeg Method Name

Realisation Method Name

getinfoRes getCallLegInfoRes
getinfoErr getCallLeglnfoErr
superviseRes superviseCallLegRes
superviseErr superviseCallLegErr

ETSI

55 ETSI ES 202 915-1 V1.3.1 (2005-03)

Annex D (informative):
Bibliography

ETSI TR 129 998: "Universal Mobile Telecommunications System (UMTS); Open Service Access (OSA)
Application Programming Interface (API) Mapping for Open Service Access (3GPP TR 29.998 Release 5)".

ETSI TS 123 127: "Universal Mobile Telecommunications System (UMTS); Virtual Home Environment
(VHE) / Open Service Access (OSA); Stage 2 (3GPP TS 23.127)".

ETSI TS 122 127: "Universal Mobile Telecommunications System (UMTS); Service Requirement for the
Open Services Access (OSA); Stage 1 (3GPP TS 22.127)".

ETSI TS 123 057: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Mobile Execution Environment (MEXE); Functional description;
Stage 2 (3GPP TS 23.057)".

ETSI TS 123 078: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Customised Applications for Mabile network Enhanced Logic
(CAMEL) Phase 3 - Stage 2 (3GPP TS 23.078)".

"IDL to Java™ Compiler". (http://java.sun.com/products/jdk/idl/index.html).

"UML Unified Modelling Language". (http://www.omg.org/uml/).

"Object Management Group”. (http://www.omg.org/).

"The Parlay Group homepage". (http://www.parlay.org).

"JAIN™ Community homepage”. (http://www.java.sun.com/products/jain).

"JSR Overview". (http://jcp.org/jsr/overview/index.en.jsp).

"Java™ 2 SDK, Standard Edition". (http://java.sun.com/j2se/1.4/docs/relnotes/features.html).

"Java™ Community Process'. (http://jcp.org/).

"World Wide Web Consortium homepage". (http://www.w3c.org).

Wireless Application Protocol (WAP), Version 2.0: "WAP Service Indication Specification”
(WAP-167). (http://www.wapforum.org/what/technical.htm).

Wireless Application Protocol (WAP), Version 2.0: "Push Architectural Overview" (WAP-250).
(http://www.wapforum.org/what/technical .htm).

Wireless Application Protocol (WAP), Version 2.0: "Wireless Application Protocol Architecture
Specification" (WAP-210). (http://www.wapforum.org/what/technical.htm).

ETSI

http://java.sun.com/products/jdk/idl/index.html
http://www.omg.org/uml/
http://www.omg.org/
http://www.parlay.org/
http://www.java.sun.com/products/jain
http://jcp.org/jsr/overview/index.en.jsp
http://java.sun.com/j2se/1.4/docs/relnotes/features.html
http://jcp.org/
http://www.w3c.org/
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm

56

ETSI ES 202 915-1 V1.3.1 (2005-03)

History
Document history
V111 January 2003 Publication
V121 August 2003 Publication
V131 January 2005 Membership Approva Procedure MV 20050304: 2005-01-04 to 2005-03-04
V131 March 2005 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Open Service Access APIs
	5 Document structure
	6 Methodology
	6.1 Tools and Languages
	6.2 Packaging Structure
	6.3 Colours
	6.4 Naming scheme
	6.5 State Transition Diagram text and text symbols
	6.6 Exception handling and passing results
	6.7 References
	6.8 Strings and Collections
	6.9 Prefixes

	7 Introduction to Parlay/OSA APIs
	7.1 Interface Types
	7.2 Service Factory
	7.3 Use of Sessions
	7.4 Interfaces and Sessions
	7.5 Callback Interfaces
	7.6 Setting Callbacks
	7.7 Synchronous versus Asynchronous Methods
	7.8 Out Parameters
	7.9 Exception Hierarchy
	7.10 Common Exceptions
	7.11 Use of NULL
	7.12 Notification Handling

	8 Relationship between ETSI, Parlay and 3GPP OSA releases
	Annex A (normative): OMG IDL
	A.1 Tools and languages
	A.2 Namespace
	A.3 Object References
	A.4 Mapping of Datatypes
	A.4.1 Basic Datatypes
	A.4.2 Constants
	A.4.3 Collections
	A.4.4 Sequences
	A.4.5 Enumerations
	A.4.6 Choices

	A.5 Use of NULL
	A.6 Exceptions
	A.7 Naming space across CORBA modules

	Annex B (informative): W3C WSDL
	B.1 Tools and Languages
	B.2 Proposed Namespaces for the OSA WSDL
	B.3 Object References
	B.4 Mapping UML Data Types to XML Schema
	B.4.1 Data Types
	B.4.1.1 <<Constant>>
	B.4.1.2 <<NameValuePair>>
	B.4.1.3 <<SequenceOfDataElements>>
	B.4.1.4 <<TypeDef>>
	B.4.1.5 <<NumberedSetOfDataElements>>
	B.4.1.6 <<TaggedChoiceOfDataElements>>

	B.5 Mapping of UML SCF to WSDL
	B.5.1 Mapping of Operations to WSDL message element
	B.5.2 Mapping of Exception to WSDL message element
	B.5.3 Mapping of CommonExceptions to WSDL message element
	B.5.4 Mapping of Interface Class to WSDL portType and binding elements
	B.5.5 Mapping of UML SCF to WSDL service element

	Annex C (informative): JavaŽ Realisation API
	C.1 JavaŽ Realisation Overview
	C.1.1 J2SEŽ API
	C.1.2 J2EEŽ API
	C.1.3 JavadocŽ

	C.2 Tools and languages
	C.3 Generic Mappings (Elements common to J2SEŽ and J2EEŽ)
	C.3.1 Namespace
	C.3.2 Package Naming Conventions
	C.3.3 Object References
	C.3.4 Element Naming
	C.3.5 Element Naming Collisions
	C.3.6 Data Type Definitions
	C.3.6.1 Basic Data Types
	C.3.6.2 Constants
	C.3.6.3 NumberedSetsOfDataElements (Collections)
	C.3.6.4 SequenceOfDataElements (Structures)
	C.3.6.5 NameValuePair (Enumerations)
	C.3.6.6 TaggedChoiceOfDataElements (Unions)
	C.3.6.7 Exceptions
	C.3.6.7.1 PlatformException
	C.3.6.7.2 P_XXX_XXX Exceptions
	C.3.6.7.3 TpCommonExceptions
	C.3.6.7.4 TpCommonException's associated exceptions
	C.3.6.7.5 Additional abstract exceptions
	C.3.6.7.6 InvalidUnionAccessorException
	C.3.6.7.7 InvalidEnumValueException

	C.3.6.8 Deprecation

	C.4 J2SEŽ Specific Conventions
	C.4.1 Removal of "Tp" Prefix
	C.4.2 Constants
	C.4.3 Removal of "Ip" prefix
	C.4.4 Mapping of IpInterface
	C.4.5 Mapping of IpService
	C.4.6 Mapping of UML Operations
	C.4.7 Mapping of TpSessionID
	C.4.8 Mapping of TpAssignmentID to the creation of an Activity object
	C.4.9 Callback Rule
	C.4.10 Factory Rule
	C.4.11 J2SEŽ Specific Exceptions
	C.4.11.1 PeerUnavailableException
	C.4.11.2 IllegalStateException

	C.4.12 User Interaction Specific Rules
	C.4.12.1 Interfaces representing UML IpUI and IpUICall Rule
	C.4.12.2 Naming Collisions of GUI and CUI Activities Rule

	C.5 J2EEŽ Specific Conventions
	C.5.1 Void
	C.5.2 Remote Interface Definitions
	C.5.2.1 IpInterface
	C.5.2.2 Methods for Remote Interfaces

	C.5.3 Local Interface Definitions
	C.5.3.1 Methods for Local Interfaces

	C.5.4 Multi Party Call Control Specific Rules
	C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts

	Annex D (informative): Bibliography
	History

