

ETSI ES 202 915-1 V1.1.1 (2003-01)

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);

Part 1: Overview

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 2

Reference
DES/SPAN-120091-1

Keywords
API, IDL, OSA, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.

© The Parlay Group 2003.
All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

mailto:editor@etsi.org
http://portal.etsi.org/tb/status/status.asp
http://www.etsi.org/

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 3

Contents

Intellectual Property Rights ..5

Foreword...5

1 Scope ..6

2 References ..6

3 Definitions and abbreviations...8
3.1 Definitions..8
3.2 Abbreviations ...9

4 Open Service Access APIs ...10

5 Document structure ..11

6 Methodology ..12
6.1 Tools and Languages..12
6.2 Packaging Structure..12
6.3 Colours ...15
6.4 Naming scheme ..15
6.5 State Transition Diagram text and text symbols...15
6.6 Exception handling and passing results..16
6.7 References ..16
6.8 Strings and Collections...16
6.9 Prefixes...16

7 Introduction to Parlay/OSA APIs...16
7.1 Interface Types ...16
7.2 Service Factory...17
7.3 Use of Sessions...17
7.4 Interfaces and Sessions...17
7.5 Callback Interfaces ...17
7.6 Setting Callbacks..17
7.7 Synchronous versus Asynchronous Methods ...17
7.8 Out Parameters ...18
7.9 Exception Hierarchy...18
7.10 Common Exceptions ..18
7.11 Use of NULL..19
7.12 Notification Handling...19

8 Relationship between ETSI, Parlay and 3GPP OSA releases ..20

Annex A (normative): OMG IDL ...21

A.1 Tools and languages ...21

A.2 Namespace ...21

A.3 Object References...21

A.4 Mapping of Datatypes ..21
A.4.1 Basic Datatypes ..21
A.4.2 Constants ..21
A.4.3 Collections..21
A.4.4 Sequences ...22
A.4.5 Enumerations..22
A.4.6 Choices ...22

A.5 Use of NULL..22

A.6 Exceptions ..23

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 4

A.7 Naming space across CORBA modules ...23

Annex B (informative): W3C WSDL..24

B.1 Tools and Languages..24

B.2 Proposed Namespaces for the OSA WSDL ...24

B.3 Object References...25

B.4 Mapping UML Data Types to XML Schema...26
B.4.1 Data Types..26
B.4.1.1 <<Constant>> ...26
B.4.1.2 <<NameValuePair>>..26
B.4.1.3 <<SequenceOfDataElements>>..26
B.4.1.4 <<TypeDef>> ...27
B.4.1.5 <<NumberedSetOfDataElements>> ...27
B.4.1.6 <<TaggedChoiceOfDataElements>>..27

B.5 Mapping of UML SCF to WSDL...28
B.5.1 Mapping of Operations to WSDL message element ..28
B.5.2 Mapping of Exception to WSDL message element..28
B.5.3 Mapping of CommonExceptions to WSDL message element ...29
B.5.4 Mapping of Interface Class to WSDL portType and binding elements..29
B.5.5 Mapping of UML SCF to WSDL service element ...30

Annex C (informative): Java API ...31

C.1 Tools and Languages..31

C.2 JAIN SPA Overview ..31

Annex D (informative): Bibliography...32

History ..33

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

All published ETSI deliverables shall include information which directs the reader to the above source of information.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN).

The present document is part 1 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), as identified below. The API specification (ES 202 915) is structured in the following
parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP,
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies.

The present document forms part of the Parlay 4.0 set of specifications.

The present document is equivalent to 3GPP TS 29.198-1 V5.1.0 (Release 5).

http://www.java.sun.com/products/jain
http://www.parlay.org/
http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 6

1 Scope
The present document is the part 1 of the Stage 3 specification for an Application Programming Interface for Open
Service Access (OSA), and provides an overview of the content and structure of the various parts of the present
document, and of the relation to other standards documents.

The OSA specifications define an architecture that enables service application developers to make use of network
functionality through an open standardized interface, i.e. the OSA APIs.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for
3GPP Specifications (3GPP TR 21.905)".

[2] ETSI TS 122 024: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal
Mobile Telecommunications System (UMTS); Description of Charge Advice Information (CAI)
(3GPP TS 22.024)".

[3] ITU-T Recommendation Q.850: "Usage of cause and location in the Digital Subscriber Signalling
System No. 1 (DSS1) and the Signalling System No. 7 (SS No. 7) ISDN User Part (ISUP)".

[4] ITU-T Recommendation Q.2931: "Digital Subscriber Signalling System No. 2 - User-Network
Interface (UNI) layer 3 specification for basic call/connection control".

[5] ETSI TS 122 101: "Universal Mobile Telecommunications System (UMTS); Service aspects;
Service principles (3GPP TS 22.101)".

[6] World Wide Web Consortium: "Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation". (http://www.w3.org/TR/NOTE-CCPP/).

[7] ETSI TS 129 002: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal
Mobile Telecommunications System (UMTS); Mobile Application Part (MAP) specification
(3GPP TS 29.002)".

[8] ETSI TS 129 078: "Universal Mobile Telecommunications System (UMTS); Digital cellular
telecommunications system (Phase 2+); Customised Applications for Mobile network Enhanced
Logic (CAMEL) Phase 3; CAMEL Application Part (CAP) specification (3GPP TS 29.078)".

[9] Wireless Application Protocol (WAP), Version 2.0: "User Agent Profiling Specification"
(WAP-248). (http://www.wapforum.org/what/technical.htm).

[10] ETSI TS 122 002: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal
Mobile Telecommunications System (UMTS); Circuit Bearer Services (BS) supported by a Public
Land Mobile Network (PLMN) (3GPP TS 22.002)".

[11] ETSI TS 122 003: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal
Mobile Telecommunications System (UMTS); Circuit Teleservices supported by a Public Land
Mobile Network (PLMN) (3GPP TS 22.003)".

http://www.wapforum.org/what/technical.htm
http://www.w3.org/TR/NOTE-CCPP/
http://docbox.etsi.org/Reference

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 7

[12] ETSI TS 124 002: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal
Mobile Telecommunications System (UMTS); GSM - UMTS Public Land Mobile Network
(PLMN) access reference configuration (3GPP TS 24.002)".

[13] ITU-T Recommendation Q.763: "Signalling System No. 7 - ISDN User Part formats and codes".

[14] ITU-T Recommendation Q.931: "ISDN user-network interface layer 3 specification for basic call
control".

[15] ISO 8601: "Data elements and interchange formats - Information interchange - Representation of
dates and times".

[16] ISO 4217: "Codes for the representation of currencies and funds".

[17] ISO 639: "Code for the representation of names of languages".

[18] IETF RFC 822: "Standard for the format of ARPA Internet text messages".

[19] IETF RFC 1738: "Uniform Resource Locators (URL)".

[20] ETSI TS 129 198 (V3.4.0): "Universal Mobile Telecommunications System (UMTS); Open
Service Architecture (OSA) Application Programming Interface (API) - Part 1 (3GPP TS 29.198
version 3.4.0 Release 1999)".

[21] ETSI TS 129 198 (all parts): "Universal Mobile Telecommunications System (UMTS); Open
Service Access (OSA) Application Programming Interface (API); (3GPP TS 29.198)".".

[22] ETSI TS 123 107: "Universal Mobile Telecommunications System (UMTS); Quality of Service
(QoS) concept and architecture" (3GPP TS 23.107)".

[23] ETSI TS 123 271: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal
Mobile Telecommunications System (UMTS); Functional stage 2 description of location services
(3GPP TS 23.271)".

[24] ANSI T1.113: "Signalling System No. 7 (SS7) - Integrated Services Digital Network (ISDN) User
Part".

[25] IETF RFC 3261: "SIP: Session Initiation Protocol".

[26] ITU-T Recommendation Q.932: "Digital subscriber signalling system No. 1 - Generic procedures
for the control of ISDN supplementary services".

[27] ITU-T Recommendation H.221: "Frame structure for a 64 to 1920 kbit/s channel in audiovisual
teleservices".

[28] ITU-T Recommendation H.323: "Packet-based multimedia communications systems".

[29] IETF RFC 1994: "PPP Challenge Handshake Authentication Protocol (CHAP)".

[30] IETF RFC 2630: "Cryptographic Message Syntax".

[31] IETF RFC 2313: "PKCS #1: RSA Encryption Version 1.5". .

[32] IETF RFC 2459: "Internet X.509 Public Key Infrastructure Certificate and CRL Profile".

[33] IETF RFC 2437: "PKCS #1: RSA Cryptography Specifications Version 2.0".

[34] IETF RFC 1321: "The MD5 Message-Digest Algorithm".

[35] IETF RFC 2404: "The Use of HMAC-SHA-1-96 within ESP and AH".

[36] IETF RFC 2403: "The Use of HMAC-MD5-96 within ESP and AH".

[37] ITU-T Recommendation G.722: "7 kHz audio-coding within 64 kbit/s".

[38] ITU-T Recommendation G.711: "Pulse code modulation (PCM) of voice frequencies".

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 8

[39] ITU-T Recommendation G.723.1: "Speech coders : Dual rate speech coder for multimedia
communications transmitting at 5.3 and 6.3 kbit/s".

[40] ITU-T Recommendation G.728: "Coding of speech at 16 kbit/s using low-delay code excited
linear prediction".

[41] ITU-T Recommendation G.729: "Coding of speech at 8 kbit/s using conjugate-structure algebraic-
code-excited linear-prediction (CS-ACELP)".

[42] ITU-T Recommendation H.261: "Video codec for audiovisual services at p x 64 kbit/s".

[43] ITU-T Recommendation H.263: "Video coding for low bit rate communication".

[44] ITU-T Recommendation H.262: "Information technology - Generic coding of moving pictures and
associated audio information: Video".

[45] World Geodetic System 1984 (WGS 84). (http://www.wgs84.com/files/wgsman24.pdf).

[46] ITU-T Recommendation X.400: "Message handling services: Message handling system and
service overview".

[47] ITU-T Recommendation E.164: " The international public telecommunication numbering plan".

[48] IETF RFC 2445: "Internet Calendaring and Scheduling Core Object Specification (iCalendar)".

[49] IETF RFC 2778: "A Model for Presence and Instant Messaging".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 122 101 [5] and the following apply:

applications: services, which are designed using service capability features

gateway: synonym for Service Capability Server

NOTE: From the viewpoint of applications, a Service Capability Server can be seen as a gateway to the core
network.

HE-VASP: Home Environment Value Added Service Provider

NOTE: This is a VASP that has an agreement with the Home Environment to provide services.

Home Environment: responsible for overall provision of services to users

Local Service: service which can be exclusively provided in the current serving network by a Value Added Service
Provider

OSA Interface: standardized Interface used by application to access service capability features

Personal Service Environment (PSE): contains personalized information defining how subscribed services are
provided and presented towards the user

NOTE: The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities (SC): bearers defined by parameters, and/or mechanisms needed to realize services

NOTE: These are within networks and under network control.

Service Capability Feature (SCF): functionality offered by service capabilities that are accessible via the standardized
OSA interface

Service Capability Server: Functional Entity providing OSA interfaces towards an application

http://www.wgs84.com/files/wgsman24.pdf

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 9

Service: alternative for Service Capability Feature (in ES 202 915-1)

User Interface Profile: contains information to present the personalized user interface within the capabilities of the
terminal and serving network

User Profile: label identifying a combination of one user interface profile, and one user services profile

User Services Profile: contains identification of subscriber services, their status and reference to service preferences

Value Added Service Provider: provides services other than basic telecommunications service for which additional
charges may be incurred

Virtual Home Environment: concept for personal service environment portability across network boundaries and
between terminals

3.2 Abbreviations
For the purposes of the present document, the abbreviations defined in TR 121 905 [1] and the following apply:

API Application Programming Interface
CAMEL Customized Application for Mobile Network Enhanced Logic
CGI Cell Global Identification
CI Cell Identification
CSE Camel Service Environment
GPS Global Positioning System
HE Home Environment
HE-VASP Home Environment Value Added Service Provider
HPLMN Home Public Land Mobile Network
IDL Interface Description Language
JSR Java Specification Request
IMEI International Mobile station Equipment Identity
LAC Location Area Code
MAP Mobile Application Part
MCC Mobile Country Code
MExE Mobile Station (Application) Execution Environment
MNC Mobile Network Code
MS Mobile Station
MSC Mobile Switching Centre
NA-ESRD North American Emergency Services Routing Digits
NA-ESRK North American Emergency Services Routing Key
LAI Location Area Identification
LCS Location Services
OSA Open Service Access
PLMN Public Land Mobile Network
PSE Personal Service Environment
QoS Quality of Service
RMI Java Remote Method Invocation
SAG Subscription Assignment Group
SC Service Capabilities
SCF Service Capability Feature
SCS Service Capability Server
STD State Transition Diagrams
SIM Subscriber Identity Module
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SPA Service Provider API
USSD Unstructured Supplementary Service Data
VASP Value Added Service Provider
VLR Visited Location Register
VPLMN Visited Public Land Mobile Network
WAP Wireless Application Protocol

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 10

WSDL Web Services Definition Language
XML Extensible Markup Language

4 Open Service Access APIs
The OSA specifications define an architecture that enables service application developers to make use of network
functionality through an open standardized interface, i.e. the OSA APIs. The network functionality is describes as
Service Capability Features or Services (see note). The OSA Framework is a general component in support of Services
(Service Capabilities) and Applications.

The OSA API is split into three types of interface classes, Service and Framework.

• Interface classes between the Applications and the Framework, that provide applications with basic
mechanisms (e.g. Authentication) that enable them to make use of the service capabilities in the network.

• Interface classes between Applications and Service Capability Features (SCF), which are individual services
that may be required by the client to enable the running of third party applications over the interface
e.g. Messaging type service.

• Interface classes between the Framework and the Service Capability Features, that provide the mechanisms
necessary for multi-vendorship.

• Interface classes between the Enterprise Operator and the Framework that provides the Enterprise Operator
with basic mechanisms to allow them to administer client application accounts and to manage their service
contracts and profiles.

These interfaces represent interfaces 1, 2, 3 and 4 of the figure 1. The other interfaces are not yet part of the scope of the
work.

Framework
operator

admin

Enterprise
operator

admin tool

Service
supplier

admin tool

1144

33

55

Not in scope of
this version of

the API

Not in scope of
this version of

the API

Telecom Network

Not in scope of
this version of

the API

Not in scope of
this version of

the API22 66

Client
Application

Not in
scope
of this API
version

Figure 1

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 11

Within the OSA concept a set of Service Capability Features has been specified. The OSA documentation is structured
in parts. The first Part (the present document) contains an overview, the second Part contains common Data Definitions,
the third Part the Framework interfaces. The rest of the Parts contain the description of the SCFs.

NOTE: The terms "Service" and "Service Capability Feature" are used as alternatives for the same concept in the
present document. In the OSA API itself the Service Capability Features as identified in the 3GPP
requirements and architecture are reflected as 'service', in terms like service instance lifecycle manager,
serviceDiscovery.

5 Document structure
The OSA API documentation contains two document sets:

 The API specification (ES 202 915)
The Parts of the present document ES 202 915 (apart from 1 (the present document) and 2) define the
interfaces, parameters and state models that form part of the API specification. UML is used to specify the
interface classes. As such it provides a UML interface class description of the methods (API calls) supported
by that interface and the relevant parameters and types. The interfaces are specified both in IDL and in WSDL.
Reference is made to the Java API specification of the interfaces.

 The Mapping specification of the OSA APIs and network protocols (TR 101 917)
The Parts of TR 101 917 contain a possible mapping from the APIs defined in ES 202 915 to various network
protocols (i.e. MAP [7], CAP [8], etc.). It is an informative document, since this mapping is considered as
implementation/vendor dependent. On the other hand this mapping will provide potential service designers
with a better understanding of the relationship of the OSA API interface classes and the behaviour of the
network associated to these interface classes.

The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from
the applications. This means that applications do not have to be aware of the network nodes a Service Capability Server
interacts with in order to provide the Service Capability Features to the application. The specific underlying network
and its protocols are transparent to the application.

The API specification ES 202 915 is structured in the following parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control";

Sub-part 1: "Call Control Common Definitions";

Sub-part 2: "Generic Call Control SCF";

Sub-part 3: "Multi-Party Call Control SCF";

Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 12

Part 11: "Account Management SCF";

Part 12: "Charging SCF";

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF".

The Mapping document TR 101 917 is also structured according to the same parts. A mapping to network protocols is
however not applicable for all parts, but the numbering of parts is kept. Also in case a part is not supported in a Release,
the numbering of the parts is maintained.

Structure of the Parts of ES 202 915:

The Parts with API specification themselves are structured as follows:

• The Sequence diagrams give the reader a practical idea of how each of the service capability feature is
implemented.

• The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

• The Data Definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of the present document.

The OSA API is defined using UML and as such is technology independent. OSA can be realised in a number of ways
and in addition to the UML defined OSA API, the OSA specification includes:

• A normative annex with the OSA API in IDL that specifies the CORBA distribution technology realisation.

• An informative annex with the OSA API in WSDL that specifies the SOAP/HTTP distribution technology
realisation.

• An informative annex that references the OSA API in Java (known as JAIN™ Service Provider API) that
specifies the Java local API technology realisation.

6 Methodology
Following is a description of the methodology used for the establishment of API specification for OSA.

6.1 Tools and Languages
The Unified Modelling Language (UML) (http://www.omg.org/uml/) is used as the means to specify class and state
transition diagrams.

6.2 Packaging Structure
A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

 org.csapi

The following diagram shows the packaging hierarchy. The root package is shown on the left most side of the figure.
Extending from the root package are the framework and services branch packages, then the associated leaf packages.
Listed against each package are the interfaces, data types, exceptions and service properties it contains.

http://www.omg.org/uml/

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 13

Packaging Hierarchy Contains
org.csapi IpInterface

IpService
All common data types
All common exceptions
All common service properties

 .fw Common Framework data types
Common Framework exceptions
Common Framework service
properties

 .access
 .trust_and_security Package interfaces

Package data types
Package exceptions
Package service properties

 .application
 .notification Package interfaces

Package data types
Package exceptions
Package service properties

 .integrity Package interfaces
Package data types
Package exceptions
Package service properties

 .service_agreement Package interfaces
Package data types
Package exceptions
Package service properties

 .discovery Package interfaces
Package data types
Package exceptions
Package service properties

 .enterprise_operator
 .service_subscription Package interfaces

Package data types
Package exceptions
Package service properties

 service
 .notification Package interfaces

Package data types
Package exceptions
Package service properties

 .integrity Package interfaces
Package data types
Package exceptions
Package service properties

 .discovery Package interfaces
Package data types
Package exceptions
Package service properties

 .service_lifecycle Package interfaces
Package data types
Package exceptions
Package service properties

 .service_registration Package interfaces
Package data types
Package exceptions
Package service properties

 .services Common Service data types
Common Service exceptions
Common Service service
properties

 .cc Common Call Control data types
Common Call Control exceptions
Common Call Control service
properties

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 14

Packaging Hierarchy Contains
 .gccs Package interfaces

Package data types
Package exceptions
Package service properties

 .mpccs Package interfaces
Package data types
Package exceptions
Package service properties

 .mmccs Package interfaces
Package data types
Package exceptions
Package service properties

 .cccs Package interfaces
Package data types
Package exceptions
Package service properties

 .ui Package interfaces
Package data types
Package exceptions
Package service properties

 .mm Common Mobility management
data types
Common Mobility management
exceptions
Common Mobility management
service properties

 .ul Package interfaces
Package data types
Package exceptions
Package service properties

 .ulc Package interfaces
Package data types
Package exceptions
Package service properties

 .ule Package interfaces
Package data types
Package exceptions
Package service properties

 .us Package interfaces
Package data types
Package exceptions
Package service properties

 .termcap Package interfaces
Package data types
Package exceptions
Package service properties

 .dsc Package interfaces
Package data types
Package exceptions
Package service properties

 .gms Package interfaces
Package data types
Package exceptions
Package service properties

 .cm Package interfaces
Package data types
Package exceptions
Package service properties

 .am Package interfaces
Package data types
Package exceptions
Package service properties

 .cs Package interfaces
Package data types
Package exceptions
Package service properties

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 15

NOTE 1: Not all the packages given above may be found in the 3GPP OSA specifications.

NOTE 2: Where data types, exceptions and service properties are indicated in the figure above their presence, or
otherwise, is dependent upon the package in question. For example, if there are no common Framework
exceptions then none will be present in the org.csapi.fw package.

6.3 Colours
For clarity, class diagrams follow a certain colour scheme. Blue for application interface packages and yellow for all the
others.

6.4 Naming scheme
The following naming scheme is used for documentation.

 packages:

 lowercase

 Using the domain-based naming (For example, org.csapi)

 classes, structures and types. Start with T:

 TpCapitalizedWithInternalWordsAlsoCapitalized

 Exception class:

 TpClassNameEndsWithException and
P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

 Interface. Start with Ip:

 IpThisIsAnInterface

 constants:

 P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

 methods:

 firstWordLowerCaseButInternalWordsCapitalized()

 method's parameters:

 firstWordLowerCaseButInternalWordsCapitalized

 collections (set, array or list types):

 TpCollectionEndsWithSet

 class/structure members:

 FirstWordAndInternalWordsCapitalized

Spaces in between words are not allowed.

6.5 State Transition Diagram text and text symbols
The descriptions of the State Transitions in the State Transition Diagrams follow the convention:

 when_this_event_is_received [guard condition is true] /do_this_action ^send_this_message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified
which one).

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 16

6.6 Exception handling and passing results
OSA methods communicate errors in the form of exceptions. OSA methods themselves always use the return parameter
to pass results. If no results are to be returned a void is used instead of the return parameter. In order to support mapping
to as many languages as possible, no method out parameters are allowed.

6.7 References
In the interface specification whenever Interface parameters are to be passed as an in parameter, they are done so by
reference, and the "Ref" suffix is appended to their corresponding type (e.g. IpAnInterfaceRef anInterface), a reference
can also be viewed as a logical indirection.

Original type IN parameter declaration
IpInterface parm : IN IpInterfaceRef

6.8 Strings and Collections
For character strings, the String data type is used without regard to the maximum length of the string. For homogeneous
collections of instances of a particular data type the following naming scheme is used: <datatype>Set.

6.9 Prefixes
OSA constants and data types are defined in the global name space: org.csapi module.

7 Introduction to Parlay/OSA APIs
This clause contains the general rules that were followed by the design of the Parlay/OSA APIs and advice for how to
use them. Note however that exceptions to these "rules" may exist and that examples are not exhaustive.

7.1 Interface Types
In the Parlay/OSA specifications different types of interfaces are distinguished:

• Application side (callback) interfaces. This type of interface needs to be implemented by an application
(client) and the name of such an interface is prefixed with "IpApp".

• Interfaces of an SCF that are used by the Framework. The name of this type of server interface is prefixed with
"IpSvc".

• Application side interfaces and SCF interfaces that are shared. The name of this type of interface is prefixed
with "IpClient".

• Interfaces of the Framework that are used by an SCF. The name of this type of server interface is prefixed with
"IpFw".

The name of all other interfaces of the Framework and SCFs that are used by an application, is prefixed with "Ip".

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 17

7.2 Service Factory
For each application that uses an SCF, a separate object is created to handle all communication to the application. This
object is referred to as the Service Manager. The pattern used is often referred to as the Factory Pattern. The Service
Manager creates any new objects in the SCF. The Service Manager and all the objects created by it are referred to as
"service instance".

Once an application is granted access to an SCF, the Framework requests the SCF to create a new Service Manager.
The reference to this Service Manager is provided to the application. From this moment onwards the application can
start using the SCF.

7.3 Use of Sessions
A session is a series of interactions between two communication end points that occur during the span of a single
connection. An example is all operations to set-up, control, and tear down a (multi-party) call. A session is identified by
a Session ID. This ID is unique within the scope of a service instance and can be related to session numbers used in the
network.

7.4 Interfaces and Sessions
Some interfaces have a one-to-one relation with a session. For every session there is a separate interface instance. In this
case, this instance of an interface represents the session. All methods invoked on such an interface operate on the same
session. These interfaces make no use of Session IDs.

Other interfaces can represent multiple sessions. The underlying implementation can then either create an instance per
session or it can handle multiple sessions per instance (e.g. to combat extensive resource usage). When a method on
such an interface is invoked it requires a Session ID to uniquely identify the session to which it applies.

7.5 Callback Interfaces
Some Parlay/OSA interfaces require an application to register a callback interface. This interface resides on the client
(application) side and is used by the server (service) to report events, results, and errors. An application shall register its
callback interface as soon as the corresponding server side interface is created.

7.6 Setting Callbacks
Two methods are available in every service interface that can be used for setting the callback interface: setCallback()
and setCallbackWithSessionID(). Interfaces that do not use sessions shall (obviously) only implement setCallback(). An
invocation of setCallbackWithSessionID() on such interfaces shall result in an exception (P_TASK_REFUSED).

Interfaces that use sessions shall only implement setCallbackWithSessionID(). An invocation of setCallback() on such
interfaces shall result in an exception (P_TASK_REFUSED). This regardless of whether an interface instance actually
implements multiple sessions or not.

7.7 Synchronous versus Asynchronous Methods
Two types of methods exist in Parlay/OSA interfaces. When a method does not require the SCS to contact other nodes
in the network it is implemented as a synchronous method. When the method returns, the result (if applicable) of the
operation is provided to the application. When an error occurs, an exception is thrown. Examples of synchronous
methods are methods to retrieve data that is available in the SCS and methods that create an object.

In other cases, a method requires the SCS to contact other nodes in the network. There can be a delay between the
moment a message is sent into the network and the moment that the result is received or an error is detected. To prevent
that the application is blocked or that an application has to "guess" whether there is a problem in the SCS, these types of
methods are made asynchronous.

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 18

An asynchronous method of an interface can be recognized by the fact that its name ends with "Req" (from request) and
that in the corresponding callback interface two methods are included with the same name but ending with "Res" (from
result) and "Err" (from error) instead. When no error has occurred, the "Res" method will be invoked when the result is
available. In case an error has been detected, the "Err" method is invoked. Problems that can be detected by the SCS
itself (for instance illegal parameter values) will result in exceptions being thrown when the "Req" method is called.
After a "Req" method has returned, only errors shall be reported.

Because it is possible that multiple requests can be done in parallel (invoking multiple times a "Req" method without
having received a result or error) a mechanism is needed to link requests with responses. Therefore, the "Req" method
returns an Assignment ID and the "Res" and "Err" methods have this Assignment ID as input parameter. For session
based interfaces the Session ID can be used also.

Some "Req" methods can result in multiple "Res" methods being invoked. However, the corresponding "Err" method
will never be invoked more than once.

Note that methods on client side interfaces shall never raise an exception unless this is explicitly described in the
specification.

Some methods switch on/off reports (for instance triggered location reports). These methods are of a different kind and
do not follow the pattern that is described in this clause.

A deadlock is a potential danger when using asynchronous methods, especially in single threaded systems. It can occur
that client and server are waiting for each other for a task to be completed. It is considered good practice to build in
mechanisms to prevent deadlock from occurring, for instance by using multiple threads or using time-outs on remote
method calls.

7.8 Out Parameters
Methods used in Parlay/OSA interfaces only have input parameters. Any result can only be reported by a return value.
If multiple values need to be returned, a datatype is required that consists of a sequence of values. A value of this
datatype is then returned by a method. This approach has been chosen because not all middleware solutions are (or may
be) capable of dealing with (multiple) output parameters.

7.9 Exception Hierarchy
Exceptions are organized in an exception hierarchy. For the general exceptions and for each service type an abstract
exception class is defined. Advantage for an application programmer is that (s)he does not need to catch all the specific
exceptions, but may catch only the abstract exceptions.

Note however that the exception hierarchy is only available when the applicable Parlay/OSA realisation supports this.
Java does, but CORBA and WSDL/SOAP do not.

7.10 Common Exceptions
Exception TpCommonExceptions can be thrown by any method. It is an aggregate of a number of general problems. To
prevent that each method's signature requires all these exceptions they are all included in a single exception class.

The following rules apply on when what type of general exception shall be thrown:

• P_RESOURCES_UNAVAILABLE is thrown when a physical resource in the network is not available.

• P_INVALID_STATE is thrown when a method is called that is not allowed in the state that the Parlay/OSA
state machines are in.

• P_TASK_CANCELLED is thrown in case of a temporary problem.

• P_TASK_NO_CALLBACK_ADDRESS_SET is thrown when no callback address has been set.

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 19

• P_METHOD_NOT_SUPPORTED is thrown when the application initiates methods that are either not
according to the Service Level Agreement or not supported in the SCS.

• P_TASK_REFUSED is thrown in case of a problem that is not temporary and when none of the other common
or dedicated exceptions apply.

Note that methods on application side callback interfaces shall never raise an exception unless explicitly stated in the
specification.

7.11 Use of NULL
The Parlay/OSA specifications contain references to the NULL value to indicate the absence of a certain parameter. An
example where this is used is for specifying NULL as a callback reference.

A parameter description for parameters of any datatype can indicate that NULL is a possible value. The realisation of
NULL can differ per technology. A NULL value for a sequence in CORBA means that all its members shall be NULL
while in Java the whole structure could be NULL.

Note that it always shall be stated in the specification when a NULL value can be expected.

7.12 Notification Handling
Several Parlay/OSA SCFs provide a mechanism for creating and receiving notifications. A notification is the reporting
of an event occurring in the network or SCS. Examples of notifications are answer, busy, and on hook events.

This clause describes the general mechanism of notification handling. Note that it might not apply (exactly) to every
API.

There are two types of notifications. One that is created by an application and one that is controlled by the network. The
first type normally is used when an ASP is responsible for service provisioning and has to create its own notifications in
order to be able to serve subscribers. The second type is used when the network operator does service provisioning. The
network operator creates the notifications and an application only needs to handle them.

Note that normally both mechanisms will not be used by one application. However, the Parlay/OSA interfaces do not
prohibit this.

Another way to distinguish notifications is by monitor mode. Notifications can be requested in either NOTIFY or
INTERRUPT mode. When requested in NOTIFY mode, the notifications is reported to the application but the SCS
continues processing. For notifications requested in INTERRUPT mode, processing in the SCS is suspended when the
notification is reported to the application. The application has to instruct the SCS explicitly (within a certain maximum
time) how to proceed the processing. Note that not all SCFs support notifications in INTERRUPT mode.

When a notification is created and when an application registers for network controlled notifications a callback interface
needs to be provided. This callback interface is used for reporting the notifications. There are however a few things that
are worth mentioning here:

• Each time a (set of) notifications(s) is created, a callback is specified that is used for reporting the requested
notifications. This callback interface may be the same, but may also differ. The assignment ID can be used to
link a notification report to the creation of registration.

• Registering a callback for network controlled notifications needs to be done only once. The callback interface
that is provided may be the same as the one used for creating a notification (note again that it is however not
recommended to use both mechanisms in the same application).

• The callback specified when creating or registering for events overrules the callback set with setCallback() or
setCallbackWithSessionID(). This means that this one will NOT be used for reporting notifications. It will
however be used for all other methods that require the callback interface.

• Only if NULL is provided as callback interface reference, the callback interface that was set using
setCallback() or setCallbackWithSessionID() is used for reporting notifications.

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 20

• It is possible to recreate a (set of) notification(s) or re-register for notifications. This is only useful when
providing a different callback interface reference. In this case, the last provided interface is used for reporting
notifications. The earlier provided callback interface is used as "backup" interface (this can be the one
provided with setCallback() or setCallbackWithSessionID() if NULL was provided initially). Notifications are
reported on this interface when calls to the most recent provided callback interface fail (object providing the
interface is crashed or overloaded). When re-creating or re-registering, the same assignment ID is returned.

8 Relationship between ETSI, Parlay and 3GPP OSA
releases

The following table explains how the various releases of ETSI, Parlay and 3GPP OSA specifications correspond. Each
ETSI and 3GPP specification carries a version number and is updated independently. The frequency of 3GPP updates is
every 3 months, which is greater than that of ETSI or Parlay, therefore, while there is a corresponding version of 3GPP
TS 29.198 for every version of ETSI ES 201 915 or ES 202 915, there is not a corresponding version of the ETSI
specification for each version of the 3GPP specification. For example, there is no ETSI or Parlay specification version
which corresponds exactly to the 3GPP issue of TS 29.198 Release 4 from December 2001.

ETSI ES 201 915 / Parlay 3 / 3GPP TS 29.198 Release 4 (version 4.x.x)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version
ES 201 915 v.1.1.1 (complete release) Parlay 3.0 Release 4, September 2001 Plenary
ES 201 915 v.1.2.1 (complete release) Parlay 3.1 Release 4, March 2002 Plenary
ES 201 915 v.1.3.1 (complete release) Parlay 3.2 Release 4, June 2002 Plenary

ETSI ES 202 915 / Parlay 4 / 3GPP TS 29.198 Release 5 (version 5.x.x)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version
ES 202 915 v.1.1.1 (complete release) Parlay 4.0 Release 5, September 2002 Plenary

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 21

Annex A (normative):
OMG IDL

A.1 Tools and languages
The Object Management Group's (OMG) (http://www.omg.org/) Interface Definition Language (IDL) is used as a
means to programmatically define the interfaces. IDL files are either generated manually from class diagrams or by
using a UML tool. In the case IDLs are manually written and/or being corrected manually, correctness has been
verified using a CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. SUN IDL Compiler
(http://java.sun.com/products/jdk/idl/index.html).

A.2 Namespace
The used namespace in CORBA IDL is org.csapi.

A.3 Object References
In CORBA IDL it is not needed to explicitly indicate a reference to an object. Where the specifications explicitly
indicate a reference to an object by adding "Ref" to the object type, this addition is removed when mapped to the IDL.

EXAMPLE 1: struct TpMultiPartyCallIdentifier {
 IpMultiPartyCall CallReference;
 TpSessionID CallSessionID;
};

A.4 Mapping of Datatypes

A.4.1 Basic Datatypes
In IDL, the data type String is typedefed (see note below) from the CORBA primitive string. This CORBA primitive is
made up of a length and a variable array of byte.

NOTE: A typedef is a type definition declaration in IDL.

TpBoolean maps to a CORBA boolean, TpInt32 to a CORBA long, TpFloat to a CORBA float, and TpOctet to a
CORBA octet.

A.4.2 Constants
All constants are mapped to a CORBA const of type TpInt32.

EXAMPLE 2: const TpInt32 P_TASK_REFUSED = 14;

A.4.3 Collections
In OMG IDL, collections (Numbered Set and Numbered List) map to a sequence of the data type. A CORBA sequence
is implicitly made of a length and a variable array of elements of the same type.

EXAMPLE 3: typedef sequence<TpSessionID> TpSessionIDSet;

http://java.sun.com/products/jdk/idl/index.html
http://www.omg.org/

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 22

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part, and
an array for the data part.

EXAMPLE 4: The TpAddressSet data type may be defined in C++ as:

typedef struct {
 short number;
 TpAddress address [];
} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on
"number".

A.4.4 Sequences
In OMG IDL sequences map to a CORBA Struct.

EXAMPLE 5: struct TpAddress {
 TpAddressPlan Plan;
 TpString AddrString;
 TpString Name;
 TpAddressPresentation Presentation;
 TpAddressScreening Screening;
 TpString SubAddressString;
};

A.4.5 Enumerations
In OMG IDL enumerations map to a CORBA enum.

EXAMPLE 6: enum TpAddressScreening {
 P_ADDRESS_SCREENING_UNDEFINED ,
 P_ADDRESS_SCREENING_USER_VERIFIED_PASSED,
 P_ADDRESS_SCREENING_USER_NOT_VERIFIED,
 P_ADDRESS_SCREENING_USER_VERIFIED_FAILED ,
 P_ADDRESS_SCREENING_NETWORK
};

A.4.6 Choices
A choice maps to a CORBA union. For entries that do not have a corresponding type (defined as NULL in the
specification) no union entry is generated. These entries are grouped in the default clause where NULL is replaced by
short and the entry name (Undefined) by the name Dummy. When there are no NULL entries, the default clause is not
generated.

EXAMPLE 7: union TpCallAdditionalErrorInfo switch (TpCallErrorType) {
 case P_CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorInvalidAddress;
 default: short Dummy;
};

EXAMPLE 8: union TpCallChargeOrder switch(TpCallChargeOrderCategory) {
 case P_CALL_CHARGE_TRANSPARENT: TpOctetSet TransparentCharge;
 case P_CALL_CHARGE_PREDEFINED_SET: TpInt32 ChargePlan;
};

A.5 Use of NULL
CORBA allows the value NULL to be used for object references only. When the specification mentions NULL as
possible value of a struct, it means that each object reference in the struct shall be set to NULL. NULL does not apply to
other datatypes then object references.

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 23

A.6 Exceptions
The TpCommonExceptions is mapped to a CORBA exception containing a data item of type TpInt32 to indicate the
type of general exception and extra information of type TpString.

EXAMPLE 9: exception TpCommonExceptions {
 TpInt32 ExceptionType;
 TpString ExtraInformation;
};

All other exceptions are also mapped to CORBA exceptions but containing a data item of type TpString to indicate
additional information.

EXAMPLE 10: exception P_INVALID_ASSIGNMENT_ID {
 TpString ExtraInformation;
};

A.7 Naming space across CORBA modules
The following shows the naming space used in the present document.

module org {
module csapi {
/* The fully qualified name of the following constant is
org::csapi::P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;
// Add other OSA global constants and types here
module fw {
/* no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST */
const long P_FW_CONST= P_THIS_IS_AN_OSA_GLOBAL_CONST;

};
module mm {
// scoping required to access P_FW_CONST
const long P_M_CONST= fw::P_FW_CONST;

};
};

};

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 24

Annex B (informative):
W3C WSDL

B.1 Tools and Languages
The W3C (http://www.w3c.org) WSDL (Web Services Definition Language) is an XML format for describing network
services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented
information. WSDL files are generated from the UML model using scripts. The generated WSDL files are verified
using WSDL compilers. The WSDL is based on W3C WSDL 1.1.

B.2 Proposed Namespaces for the OSA WSDL
Namespaces are an important part of an XML Schema. They are used to qualify the source of a particular XML
element.

There are several XML/SOAP/WSDL related Namespaces which are used within each of the WSDL documents. The
Namespace Prefix and the Namespace are noted below.

xmlns:wsdl = "http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd:="http://www.w3c.org/2001/XMLSchema"

There are also OSA specific namespaces which are used within the OSA WSDL documents. The OSA related
namespaces present within each WSDL document depends on the WSDL document and which WSDL documents it
imports. The guidelines used to derive these namespaces are:

• The root namespace for the OSA WSDL and XML schemas is http://www.csapi.org/

• There is one document generated for each component (Module) within the Analysis UML model. The document
will have the name of the UML component with the extension ".wsdl" For each wsdl document generated the
following additional namespaces will be included:

o xmlns:<component name>="http://www.csapi.org/<component name>/wsdl"

o xmlns:<component name>xsd="http://www.csapi.org/<component name>/schema"

o For each OSA wsdl document which is referenced by an import statement within the current wsdl
document then the following additional namespaces will be included.

� xmlns:<imported component name>="http://www.csapi.org/<imported component name>/wsdl"

� xmlns:<imported component name>xsd="http://www.csapi.org/<imported component
name>/schema"

• Attributes which require a QName value shall use the appropriate Namespace Prefix (as defined in the definitions
element of the wsdl file) to qualify the element being referenced.

The namespaces are defined within the "definitions" element of a wsdl document. For example, the definitions element
of the am.wsdl document would look like:

<definitions
 name='am'
 targetNamespace='http://www.csapi.org/am/wsdl'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

http://www.w3c.org/

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 25

 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:am='http://www.csapi.org/am/wsdl'
 xmlns:amxsd='http://www.csapi.org/am/schema'
 xmlns:osa='http://www.csapi.org/osa/wsdl'
 xmlns:osaxsd='http://www.csapi.org/osa/schema'>

<import namespace='http://www.csapi.org/osa/wsdl'
 location='osa.wsdl' />

B.3 Object References
Object references are used to identify a particular remote object instance. Object references are used in two ways:

1) Passed as a parameter within a method to a remote object or passed as an attribute of a structured type
parameter within a method to the remote object.

2) Included within a message to identify the object for which the message is intended.

Within the context of SOAP, an object reference can be represented as a URL appended with a String. The String suffix
identifies the particular remote object instance in the context of the URL.

An object reference will be represented by the new type ObjectRef. The ObjectRef type is defined within osa.wsdl as:

<xsd:simpleType name="Objectref">
 <xsd:restriction base="xsd:string" />
</xsd:simpleType>

When an object reference is passed as a parameter, the parameter type is defined as a reference to an interface. When an
object reference is an attribute of a structured type, that attribute is defined as a reference to an interface. Each interface
will have a corresponding reference type associated with it. The interface reference will be defined as:

<xsd:simpleType name="InterfaceNameRef">
 <xsd:restriction base="osaxsd:ObjectRef" />
</xsd:simpleType>

where InterfaceName is the name of the particular interface.

When an object reference is used to identify the intended recipient of a message, then the object reference is included in
the SOAP Header element as an ObjectRefHeader. The ObjectRefHeader is defined in the osa.wsdl document as
follows:

<message name='ObjectRefHeader'>
 <part name='header' element='osaxsd:ObjectRef' />
</message>

Within each method, the ObjectRefHeader is bound to the message within the wsdl soap:header element of the input
message of the binding element. For example:

<binding name='IpAccountManagerBinding' type='am:IpAccountManager'>
 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />
 <operation name='createNotification'>
 <soap:operation soapAction='http://www.csapi.org/am/IpAccountManager#createNotification' />
 <input>
 <soap:body
 encodingStyle='http://schemas/xmlsoap.org/soap/encoding/'
 namespace = 'http://www.csapi.org/am.wsdl'
 use='encoded' />
 <soap:header
 message='osaxsd:ObjectRefHeader' part='header' />
 </input>

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 26

B.4 Mapping UML Data Types to XML Schema

B.4.1 Data Types

B.4.1.1 <<Constant>>

The UML Constant data type contains the following attributes:

• Name

• Constant Value

This type would then map to the following XML Schema construct:

This mapping assumes that all constants are of type TpInt32

<xsd:simpletype name="Name">
 <xsd:restriction base="osaxsd:TpInt32">
 <xsd:minInclusive value="Constant Value" />
 <xsd:maxInclusive value="Constant Value" />
 </xsd:restriction>
</xs:simpleType>

B.4.1.2 <<NameValuePair>>

The UML NameValuePair data type contains the following attributes:

• Name

• Attributes

• Name

This type would then map to the following XML Schema construct:

<xsd:simpleType base="xsd:string" name="Name">
 <xsd:restriction base="xsd:String">
 <xsd:enumeration value="Attribute-Name" />
 <xsd:enumeration value="Attribute-Name" />
 …
 <xsd:enumeration value="Attribute-Name" />
 </xsd:restriction>
</xsd:simpleType>

B.4.1.3 <<SequenceOfDataElements>>

The UML SequenceOfDataElements data type contains the following attributes:

• Name

• Roles

• Name

• Type

This type would then map to the following XML Schema construct:

<xsd:complexType name="Name"
 <xsd:sequence>
 <xsd:element
 Name="Role-Name"
 type="Role–Type" />
 <xsd:element
 Name="Role-Name"

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 27

 type="Role–Type" />
 …
 <xsd:element
 Name="Role-Name"
 type="Role–Type" />
 </xsd:sequence>
</xsd:complexType>

B.4.1.4 <<TypeDef>>

The UML TypeDef data type contains the following attributes:

• Name

• ImplementationType

If the Implementation type is a technology specific type, then the following mappings have been made:

TpBoolean – xsd:boolean

TpInt32 – xsd:float

TpFloat – xsd:float

TpLongString – xsd:string

TpString – xsd:string

TpOctet – xsd:hexBinary

This type would then map to the following XML Schema construct:

<complexType name="Name" base="ImplementationType" />

B.4.1.5 <<NumberedSetOfDataElements>>

The UML NumberedSetOfDataElements data type for sequences types contains the following attributes:

• Name

• ImplementationType

This type would then map to the following XML Schema construct:

<xsd:complexType name="Name">
 <xsd:sequence>
 <xsd:element
 name="Name"
 type="ImplementationType"
 minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:complexType>

B.4.1.6 <<TaggedChoiceOfDataElements>>

The UML TaggedChoiceOfDataElements data type contains the following attributes:

• Name

• SwitchType

• Roles

• Name

• Type

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 28

This type would then map to the following XML Schema construct:

<xsd:complexType name="Name">
 <xsd:sequence>
 <xsd:element name="SwitchName" type="SwitchType" />
 <xsd:choice>
 <xsd:element name="Role-Name" type="Role-Type" />
 <xsd:element name="Role-Name" type="Role-Type" />
 …
 <xsd:element name="Role-Name" type="Role-Type" />
 </xsd:choice>
 </xsd:sequence>
</complexType>

B.5 Mapping of UML SCF to WSDL

B.5.1 Mapping of Operations to WSDL message element
A UML Operation contains the following attributes:

• Interface

• Name

• Module Name

• Return Type

• Parameter

• Name

• Type

This type would then map to the following XML Schema construct:

<message name="Interface_Name">
 <part
 name="Parameter-Name"
 type="Parameter-Type"/>
 …
 <part
 name="Parameter-Name"
 type="Parameter-Type"/>
</message>

<message name="Interface_NameResponse">
 <part name="return" type="ReturnType"/>
</message>

NOTE: If the ReturnType is void, then no 'part' element would be included in the Response message.
(i.e. <message name="Interface_NameResponse" />).

B.5.2 Mapping of Exception to WSDL message element
A UML Exception has the following attributes:

• Name

All exceptions (except for CommonExceptions), contain a parameter called ExtraInformation which is of type TpString.

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 29

This type would then map to the following XML Schema Construct:

<message name="Name">
 <part
 name="ExtraInformation"
 type="osaxsd:TpString"/>
</message>

B.5.3 Mapping of CommonExceptions to WSDL message
element

The UML CommonExceptions type has the following attributes:

• Name ("CommonExceptions")

The UML CommonExceptions contains two parameters; ExceptionType which is of type osaxsd:TpInt32 and
ExtraInformation which is of type osaxsd:TpString.

This type would then map to the following XML Schema Construct:

<message name="CommonExceptions">
 <part
 name="ExceptionType"
 type="osaxsd:TpInt32" />
 <part
 name="ExtraInformation"
 type="osaxsd:TpString" />
</message>

B.5.4 Mapping of Interface Class to WSDL portType and binding
elements

A UML Interface Class contains the following attributes:

• Name

• Associated module (i.e. component)

• Operations

• Name

• Parameters

• Name

• Exceptions

• Name

This type would then map to the following WSDL portType element:

<portType name="Name">
 <operation
 name="Operation-Name"
 <input message="Operation-Name"/>
 <output message="Operation-NameResponse"/>
 <fault message="Operation–Exception– Name" />
 …
 <fault message="Operation–Exception–Name" />
 </operation>
 …
 <operation
 name="Operation-Name"
 <input message="Operation-Name"/>
 <output message="Operation-NameResponse"/>
 <fault name="Operation-Exception-Name" message="Operation–Exception–Name" />

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 30

 …
 <fault message="Operation–Exception–Name" />
 </operation>
</portType>

This type would also then map into the following WSDL binding element:

<binding
 name="Interface-NameBinding"
 type="Interface-Name">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Operation-Name">
 <soap:operation soapAction="http://www.csapi.org/am/Name#Operation-Name"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.csapi.org/Module-Name/wsdl"
 use="encoded"/>
 <soap:header message="osaxsd:ObjRefHeader" part="header" />
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace=" http://www.csapi.org/Module-Name/wsdl "
 use="encoded"/>
 </output>
 <fault>
 <soap:fault name="Operation-Exception-Name"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://www.csapi.org/Module-Name/wsdl"
 use="encoded"/>
 </fault>

 … additional fault elements

 </operation>

 … additional operation elements

</binding>

B.5.5 Mapping of UML SCF to WSDL service element
A UML Module contains the following attributes:

• Name

• Interfaces

• Name

This type would then map to the following WSDL service element:

<service name="Name">

 <port binding="Interface-NameBinding" name="Interface-Name">
 <soap:address location="http://{Service Address}"/>
 </port>

 … additional port elements
</service>

</definitions>

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 31

Annex C (informative):
Java API

C.1 Tools and Languages
The Java language is used as a means to programmatically define the interfaces. Java files are either generated manually
from class diagrams or by using a UML tool and editing scripts. Either way, the Java files are generated by the JAIN
Community (http://www.java.sun.com/products/jain) in accordance with the Parlay UML to Java API Rulebook, which
define a set of rules that are used to rapidly generate the Java APIs from the OSA/Parlay UML.

The generated Java files are verified using Java compilers such as javac. The Java API specifications are designed to be
compatible with the Java 2 SDK, Standard Edition, version 1.4.0
(http://java.sun.com/j2se/1.4/docs/relnotes/features.html) or later. The Java API Realizations of the OSA/Parlay APIs
are known as the JAIN Service Provider APIs (JAIN SPA).

C.2 JAIN SPA Overview
JAIN SPA is a local Java API realization of the OSA/Parlay specifications. The benefits of providing a local API (in
addition to a distribution or remote API, such as the OSA/Parlay OMG-IDL or the OSA/Parlay W3C WSDL) is that the
API is tailored to a particular programming language (in this case it is Java), which is distribution mechanism
independent, meaning that, providing the necessary adapters are put in place, Java applications can be written to this
local API that use any form of technology (e.g. CORBA, SOAP, RMI) for the purpose of distributing this API. With
remote APIs, although the programmer may be free to write in multiple programming languages, he needs knowledge
of, and is committed to, the particular distribution mechanism (e.g. CORBA, SOAP, RMI).

As the OSA/Parlay UML assumes a remote API, many optimizations have been made to the specifications, which,
although acceptable to a "specialist" programmer taking distribution into account, would appear alien to the large
community of "regular" Java programmers. As such, the JAIN SPA specifications are tailored to the Java language by
following Java language naming conventions, design patterns and object oriented practices for a local Java API, while
reusing as much Java codebase as possible. JAIN Service Provider APIs are developed by the JAIN Community under
the Java Community Process (JCP) (http://jcp.org/). Within the JCP, each JAIN Service Provider API is developed by
submitting a Java Specification Request (JSR) (http://jcp.org/jsr/overview/index.en.jsp). Each JAIN Service Provider
API is assigned a JSR number, and an associated webpage, that can be used to identify it.

Each JSR webpage contains a table identifying the relationships between the different versions of the Parlay,
ETSI/OSA, 3GPP/OSA and JAIN SPA specifications. In addition, each JAIN SPA specification version indicates to
which Parlay, ETSI/OSA and 3GPP/OSA specification versions it corresponds to.

http://jcp.org/jsr/overview/index.en.jsp
http://jcp.org/
http://java.sun.com/products/jdk/1.4/docs/relnotes/features.html
http://www.java.sun.com/products/jain

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 32

Annex D (informative):
Bibliography

• ETSI TR 101 917 (all parts): "Services and Protocols for Advanced Networks (SPAN); API mapping for Open
Service Access".

• ETSI TS 123 127: "Universal Mobile Telecommunications System (UMTS); Virtual Home Environment/Open
Service Architecture (3GPP TS 23.127)".

• ETSI TS 122 127: "Universal Mobile Telecommunications System (UMTS); Service Requirement for the
Open Services Access (OSA); Stage 1 (3GPP TS 22.127)".

• ETSI TS 123 057: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Mobile Execution Environment (MExE); Functional description;
Stage 2 (3GPP TS 23.057)".

• ETSI TS 123 078: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Customised Applications for Mobile network Enhanced Logic
(CAMEL) Phase 3 - Stage 2 (3GPP TS 23.078)".

• "IDL to Java Compiler". (http://java.sun.com/products/jdk/idl/index.html).

• "UML Unified Modelling Language". (http://www.omg.org/uml/).

• "Object Management Group". (http://www.omg.org/).

• "The Parlay Group homepage". (http://www.parlay.org).

• "JAIN Community homepage". (http://www.java.sun.com/products/jain).

• "JSR Overview". (http://jcp.org/jsr/overview/index.en.jsp).

• "Java 2 SDK, Standard Edition". (http://java.sun.com/j2se/1.4/docs/relnotes/features.html).

• "Java Community Process". (http://jcp.org/).

• "World Wide Web Consortium homepage". (http://www.w3c.org).

• Wireless Application Protocol (WAP), Version 2.0: "WAP Service Indication Specification"
(WAP-167). (http://www.wapforum.org/what/technical.htm).

• Wireless Application Protocol (WAP), Version 2.0: "Push Architectural Overview" (WAP-250).
(http://www.wapforum.org/what/technical.htm).

• Wireless Application Protocol (WAP), Version 2.0: "Wireless Application Protocol Architecture
Specification" (WAP-210). (http://www.wapforum.org/what/technical.htm).

http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.wapforum.org/what/technical.htm
http://www.w3c.org/
http://jcp.org/
http://java.sun.com/products/jdk/1.4/docs/relnotes/features.html
http://jcp.org/jsr/overview/index.en.jsp
http://www.java.sun.com/products/jain
http://www.parlay.org/
http://www.omg.org/
http://www.omg.org/uml/
http://java.sun.com/products/jdk/idl/index.html

ETSI

ETSI ES 202 915-1 V1.1.1 (2003-01) 33

History

Document history

V1.1.1 November 2002 Membership Approval Procedure MV 20030117: 2002-11-19 to 2003-01-17

V1.1.1 January 2003 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Open Service Access APIs
	5 Document structure
	6 Methodology
	6.1 Tools and Languages
	6.2 Packaging Structure
	6.3 Colours
	6.4 Naming scheme
	6.5 State Transition Diagram text and text symbols
	6.6 Exception handling and passing results
	6.7 References
	6.8 Strings and Collections
	6.9 Prefixes

	7 Introduction to Parlay/OSA APIs
	7.1 Interface Types
	7.2 Service Factory
	7.3 Use of Sessions
	7.4 Interfaces and Sessions
	7.5 Callback Interfaces
	7.6 Setting Callbacks
	7.7 Synchronous versus Asynchronous Methods
	7.8 Out Parameters
	7.9 Exception Hierarchy
	7.10 Common Exceptions
	7.11 Use of NULL
	7.12 Notification Handling

	8 Relationship between ETSI, Parlay and 3GPP OSA releases
	Annex A (normative): OMG IDL
	A.1 Tools and languages
	A.2 Namespace
	A.3 Object References
	A.4 Mapping of Datatypes
	A.4.1 Basic Datatypes
	A.4.2 Constants
	A.4.3 Collections
	A.4.4 Sequences
	A.4.5 Enumerations
	A.4.6 Choices

	A.5 Use of NULL
	A.6 Exceptions
	A.7 Naming space across CORBA modules

	Annex B (informative): W3C WSDL
	B.1 Tools and Languages
	B.2 Proposed Namespaces for the OSA WSDL
	B.3 Object References
	B.4 Mapping UML Data Types to XML Schema
	B.4.1 Data Types
	B.4.1.1 <<Constant>>
	B.4.1.2 <<NameValuePair>>
	B.4.1.3 <<SequenceOfDataElements>>
	B.4.1.4 <<TypeDef>>
	B.4.1.5 <<NumberedSetOfDataElements>>
	B.4.1.6 <<TaggedChoiceOfDataElements>>

	B.5 Mapping of UML SCF to WSDL
	B.5.1 Mapping of Operations to WSDL message element
	B.5.2 Mapping of Exception to WSDL message element
	B.5.3 Mapping of CommonExceptions to WSDL message element
	B.5.4 Mapping of Interface Class to WSDL portType and binding elements
	B.5.5 Mapping of UML SCF to WSDL service element

	Annex C (informative): Java API
	C.1 Tools and Languages
	C.2 JAIN SPA Overview

	Annex D (informative): Bibliography
	History

