ETSI ES 202 786 vi.5.1 (2022-04)

(—gﬁd_);

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions:

Support of interfaces with continuous signals

2 ETSI ES 202 786 V1.5.1 (2022-04)

Reference
RES/MTS-202786ed151

Keywords
interface, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fithess
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.
All rights reserved.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

3 ETSI ES 202 786 V1.5.1 (2022-04)

Contents

INtellectual Property RIGNES.... ..ottt b e n e n e e 5
01 Yo (o PSS 5
Modal VErDS TEMINOIOQY.......ccveeiieiieeeeie ettt e e e s te e e e s besbe e tesbeeseebesneensessesaeenseseeeseesessens 5
1 o0 0L SR 6
2 L= £ 101 S 6
21 NOIMELIVE FEFEIBINCES ... ecneeeeeeeste ettt ettt st e et e e st e s teste s et eteeneeneeseeeeseesbeebeeneeseeneensenseseesbesaeesesneeneensens 6
22 INfOrMEEIVE FEFEIENCES. ...ttt ettt et ettt a et e st e e seeebe s st eae et enseneeseesbesaeeresneeneeneens 7
3 Definition of terms, symbols and abbreviations............c.covieeiiieeieie e e e 7
31 LIS 0PTSRS 7
3.2 Y 101 7
33 ADDIEVIBLIONS ...ttt etk bt bttt e b b eh e eb e e ae e s e e e e aR e bt sR e eb e e Rt e Rt e e e R et sheebeeneeneennen 7
4 Package conformance and COMPALTDIHTTYcoureriririre e 7
5 Package concepts for the COre [anQUAGE............ocveie ettt 8
5.0 LT 0T SRR 8
51 LIRS 10 IS = 0T o] 1T o PSR 9
510 GBINETE ...ttt b bt h e A Ee R R R R e e e e R e R e SR e R e Rt eh e e ae e Rt e R e R e be Rt ere e e ennenes 9
51.1 THE NOW OPEIBEON eeuieeiieeieeseeeste et et et e st e st e e s e e s teeeesaeesaeesseesseenseassesseessaesseeseanseeneesnseessensenseeseensenneesnensnes 9
5.1.2 Define the default step Size fOr SAMPIING.......cov i 10
52 Dz 2 <2 1 T TP P PR PRPRPPTO 10
520 (CT= 0T - OSSP PSPPSN 10
521 Data Streams: StatiC PEISPECIIVEc.ceuiieeeeie ettt ettt b bt b e se et b e et b e 11
522 Data Streams: dyNamiC PEFSPECIVEc.oiueiririeieit ettt sttt b e et s b et se et sb e 12
5.2.20 LT 0T P RRRSUSR 12
5221 DefiNiNg SIrEAM POIT TYPES.eeuiieieiteriee ettt sttt sttt ekt b e e st b e et et se et et e e ebesbe e b e sbenneneas 12
5222 Declaration and instantiation Of SrEAM POITS........cc.ciiireireriere e e seene 13
5223 The Connect and Map OPEIELIONS...........uoueeririeiriereei ettt ettt b et sb et b e b nn e 14
523 Data Streams: aCCESS OPEIAIONS......ccuiecuieiieieetieseesteesteestesaeseeseesteesaeeeeessesseesseeseestesssesseesseesseesessesneesnes 15
5.2.3.0 LC T o1 | TSR 15
5231 ISRz LU L0 o L= = 1o o 15
5.2.3.2 The tiMESLaMP OPEIALION........cuieie et e e e e s reenae et e esaeeseesteesse e seeseeneeeneennes 16
5.2.3.3 IS0 (5 = 0] 0= 4 oo P 16
524 Data Streams: NaVigation OPEIaLIONS.........civeerterieiete ettt sttt ebe et b e se b e bbb et sbe s s s 17
5240 LT 0T P RRRRSSR 17
5241 THE PrEV OPEFELION ...ttt bbb et b et b bt b ket b e et e b e bt bena e 17
5242 THE 8L OPEIALION ...ttt b et b bbbt b bbb et b e bbb 18
525 Data Streams: extraction and appliCation OPEratioNnS...........coeeiereereree et 19
5.25.0 LT 0T PSRRI 19
5251 LS 1K (0] Y 0] <= £ e o I 19
5.25.2 LISz LU =Yoo 1= = (o] o 20
5.25.3 LIS o) 0 LY 0] £ o] T 21
5.2.6 POIt CONEIOl OPEIALIONS. ... cciieeieeie et ste ettt et e s et e st e e e eeesseesaeesaeesseenseenteeseesseestaesseesseenseensenneennes 22
5.2.7 Stream ports in StatiC CONFIQUIALIONS..........ciiiiieceeceese ettt aeera et e reesteeneeneeenes 22
53 THE @SSEIT STAIEIMENL ...ttt bbb e bbbt e e e b e se e b e saeeb e e ae e e e b e sbeebesheebe e e ennees 22
54 Control structures for continuous and hybrid BENAVIOUN ..o 23
5.4.0 (€77 | PSR 23
54.1 11700 == 23
54.1.0 LT 0T PSRRI 23
5411 Definition of the UNtil DIOCKcoeeieeee e 25
54.1.1.0 LC T 0T = | OSSR 25
54.1.1.1 Definition of transition guards and BVENLS..........cc.veverievee s 26
54.1.1.2 Definition Of fFOIIOW UP MOUES........cceiiieiieceee ettt 26
54.1.1.3 RSN L 0= B = (= 0 1 | SR 27
54114 The CONLINUE SLEEIMENT.......ceiieieieeee ettt st b et b e e et sr s b st ene e e ennas 28
5412 Definition of INVariant DIOCKScoiiie e e 28

ETSI

4 ETSI ES 202 786 V1.5.1 (2022-04)

54.1.3 Definition of the ONENtry DIOCKcouciiiiic bbb 29
5414 Definition of the ONEXit DIOCKcooiieiie e e 29
54.15 Local predicate symbolsin the context of MOUES ..o 30
54.1.6 THE AUIELION OPEIBION ...ttt ettt b et b e ae bbbt et e et e b bbb 31
54.2 AtomMiC MOES. the CONE SEEEEMENoeieceeeeee ettt s e e e e et e sresbesneene e e eneees 31
54.3 Parallel mode composition: the par StAEEMENTcccevieiee et 32
54.4 Sequential mode composition: the SEQ STALEMENT...........ccveiiee e 33
545 ParameteriZabl @ MOES........ccui it b et ettt et bt sb e e e e e 34
5.4.5.0 LC T o1 | TSRS 34
5451 Parameterizable mode defiNitiONS...........coiiiiiiiee e e b 35
5452 MOdE tYPES (OPLIONEAIY ...ttt ettt b bbb e b s e e eb e sa e b b nnene s 35
55 I LR TR = (=001 L O 36
6 TRI extensions fOr the PACKAOE.ccoiiieeece et s r e ne b e 36
6.0 LT 0T SRR 36
6.1 Extensions to clause 5.5 of ETSI ES 201 873-5: Communication interface operations...........c.cceveeeveeveenenne 37
6.2 Extensions to clause 5.6 of ETSI ES 201 873-5: Platform interface operations............ccceveveevieeseeseeseesneene 38
6.3 Extensionsto clause 6.3.2 of ETSI ES 201 873-5: Structured type Mapping.........cceceeveeereereereesesiesiessee e 40
6.3.1 I Lo g1 Ko 01 (o] Ko L5 o= PSR 40
6.3.1.0 LC T o1 | TR 40
6.3.1.1 LY =1 0T LSS 40
6.4 Extensionsto clause 6.5.2.1 of ETSI ES 201 873-5: TriCommuniCationSAcccocereeiereneneeneseeeeeeeees 41
6.5 Extensionsto clause 6.5.3.1 of ETSI ES 201 873-5: TriPlatformPA ... 41
6.6 Extensionsto clause 6.5.3.2 of ETSI ES 201 873-5: TriPlatformTEcooiiiiiieeeeeee e 42
6.7 Extensionsto clause 7.2.1 of ETSI ES 201 873-5: Abstract type Mapping.........cooeeeerereeereneereneeeseeneeenees 42
6.8 Extensionsto clause 7.2.4 of ETSI ES 201 873-5: TRI operation Mapping..........coeeereereeerermeesienseesessenennes 42
6.9 Extensionsto clause 8.5.2 of ETSI ES 201 873-5: Abstract datatypes......cccccevvevvecieeirsieseeseese e 43
6.9.1 BN e 11T 10 = £ e o USSR 43
6.9.1.0 LC T o1 | TSRS 43
6.9.1.1 LY =1 0 LS TSRS 43
6.10 Extensionsto clause 8.6.1 of ETSI ES 201 873-5: TriCommuNiCatioNSAcccoierirerieneenie e 43
6.11 Extensionsto clause 8.6.3 of ETSI ES 201 873-5: TriPlatformPAcooiiiiii e 44
6.12 Extensionsto clause 8.6.4 of ETSI ES 201 873-5: TriPlatformTEccooiiiiii e 44
6.13 Extensionsto clause 9.4.2 of ETSI ES 201 873-5: Structured type Mapping.........cccoeveeerereneeereneesesenennes 44
6.13.1 TH CONT I GUIALT ONIATYIE. ..ttt b et b bbb bt b et b e et b e bt 44
6.13.1.0 GENENEL ...ttt ettt et Rt Rt Rt Rt et et e EeeReeEe Rt eReene e teteeeeeteeneeneeneeneeneens 44
6.13.1.1 = 001 7 USRS 44
6.14 Extensionsto clause 9.5.2.1 of ETSI ES 201 873-5: ITriCoOMMUNICatiONSAoooviiereeieeene e 45
6.15 Extensionsto clause 9.5.2.3 of ETSI ES 201 873-5: ITriPlatformPA ..o 45
6.16 Extensionsto clause 9.5.2.4 of ETSI ES 201 873-5: ITriPlatfOrmTE.........ccoeiiiinereeeeeeeee e 45
7 TCl eXtensiONS fOr the PACKAJE.......ccueveeeeeeeieeie ettt r e e e nnenas 46
7.1 Extensionsto clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH providedcccoereeninecinineencneseseeeenes 46
7.2 Extensionsto clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH reqUiredccccovireenineenineenesecsieseeeees 47
7.3 Extensionsto clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH providedcccoeveenineinineneneeseseeeeees 47
7.4 Extensionsto clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH requUiredccccovireenineinineeneneeesieseeeees 48
75 Extensionsto clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH providedcccoereenineiinineneneeseseeenes 48
7.6 Extensionsto clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH reqUIredccccovireenineienineeseseeesieseeeees 48
7.7 Extensions to clause 10.6.3.1 of ETSI ES 201 873-6: TCIChREQUITEdccceeveevieeiieir e 48
7.8 Extensions to clause 10.6.3.2 of ETSI ES 201 873-6: TCIChProvided............ccocevirerineriienene e 48
7.9 Extensionsto clause 12.5.3.1 of ETSI ES 201 873-6: TCI-CH provided..........ccccovveeveireieseeseesee e 49
7.10 Extensionsto clause 12.5.3.2 of ETSI ES 201 873-6: TCI-CH requiredccccevveveeieeeeseeseeseee e 49
Annex A (normative): BNF and StatiC SEMaNTICS........couevrieiriiiriesiesiesee et 50
A N\ = Y O Ve (= 101 = ST 50
A2 Changel BNF RUIES........coi ettt sttt st e et e tesae et e stesneeseseeeneentesseeneensesneenes 50
A3 NEW BNF RUIES ...ttt ettt et e et e te e st e e s ae e s ae e s ateeate e teesbeesaeesreeentesnteeteesseesneesnnean 51
Annex B (informative): Bibliographycooeciiiicie ettt st ne e 53
11 (PP P PRSP PRTPRPRPRON 54

ETSI

5 ETSI ES 202 786 V1.5.1 (2022-04)

Intellectual Property Rights

Essential patents

IPRs essentia or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI member s and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https./ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which areindicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ logo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

Theuse of underline (additional text) and strike through (deleted text) highlights the differ ences between base
document and extended documents.

The present document relates to the multi-part standard ETSI ES 201 873 covering the Testing and Test Control
Notation version 3, asidentified in ETSI ES 201 873-1[1].

Modal verbs terminology

In the present document "shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto be interpreted as described in clause 3.2 of the ETS| Drafting Rules (Verbal formsfor the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 ETSI ES 202 786 V1.5.1 (2022-04)

1 Scope

The present document defines the " Continuous Signal support” package of TTCN-3. TTCN-3 can be used for the
specification of al types of reactive system tests over avariety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as conceptsin the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines concepts for testing systems using continuous signal's as opposed to discrete messages and the
characterization of the progression of such signals by use of streams. For both the production as well as the evaluation
of continuous signals the concept of mode isintroduced. Also, the signals can be processed as history-traces. Finally,
basic mathematical functionsthat are useful for analyzing such traces are defined for TTCN-3. It is thus especialy
useful for testing systems which communicate with the physical world via sensors and actuators.

While the design of TTCN-3 package has taken into account the consistency of acombined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES201 873-1 (V4.9.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”.

[2] ETSI ES 201 873-4 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics'.

[3] ETSI ES 201 873-5 (V4.8.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6 (V4.9.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] I SO/IEC 9646-1: "Information technology -- Open Systems Interconnection -- Conformance
testing methodology and framework; Part 1: General concepts'.

[6] ETSI ES202 785 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types'.

[7] ETSI ES202 781 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment
Support".

ETSI

https://docbox.etsi.org/Reference

7 ETSI ES 202 786 V1.5.1 (2022-04)

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.2] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[1.3] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

[i.4] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

[i.5] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Advanced Parameterization”.

[i.6] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Real Time Testing".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in ETSI ES 201 873-1 [1], ETSI ES 201 873-4[2], ETSI
ES 201 873-5[3], ETSI ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the abbreviations givenin ETSI ES 201 873-1[1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5[3], ETSI ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

4 Package conformance and compatibility

The package presented in the present document is identified by the package tag:

. "TTCN- 3: 2012 Support for Testing Continuous Signals" -tobeused with modules complying
with the present document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ETS| ES 201 873-1 [1], ETS
ES 201 873-4[2], ETSI ES201 873-5[3] and ETSI ES 201 873-6 [4].

ETSI

8 ETSI ES 202 786 V1.5.1 (2022-04)

The package presented in the present document is compatible to:
e ETSI ES201873-1(V4.9.1) [1]
e ETSIES201873-4(V46.1)[2]
e ETSI ES201873-5(V4.8.1) [3]
e ETSI ES201873-6 (V4.9.1) [4]
e ETSIES202785(V1.3.1)[6]

e ETSIES202781(V1.3.1)[7]
e ETSI ES201873-7][i.1]

. ETSI ES201 873-8i.2]

e ETSI ES201873-9]i.3]

. ETSI ES201 873-10i.4]

. ETSI ES202 784 [i.5]

e ETSI ES202782[i.6]

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5 Package concepts for the core language

5.0 General

Systems can communicate its data or signals, either in discrete form (e.g. as an integer value) or in continuous form
(e.0. real values). With respect to this difference signals are classified into four categories. The categories distinguish
whether the time and value domain of asignal is of discrete or continuous nature:

1) Analogue signals are continuousin the time and value domain. Analogue signals are the most 'natural’ signal
category, characterized by physical units (e.g. current, voltage, velocity) and measured with sensors. Typical
examples of the physical quantities used in the area of embedded system development are the vehicle velocity,
the field intensity of aradio station etc. Analogue signals can be described as a piecewise function over time

(eg. vx =1 (t)).

2) Time quantified signals are discrete signalsin the time domain. The signal values are defined only at
predetermined time points (sampling points). Typical examples of time quantified signals are the time-value
pairs of arecorded signal. A typical representation of atime quantified signal isaseriesor an array of real
numbers. Even if the original signal is a synthetic function it can only be reconstructed from a time quantified
signal with considerable mathematical effort.

3) Vaue quantified signals are time-continuous signals with discrete values. Typical examples of avalue
quantified signal are data that are derived from analogue signals and which are dedicated to further processing,
e.g. an A/D converted sensor signal that is provided to an electrical control unit.

4) Digita signals are discrete on the time and value domain. If the set of possible signal values includes only two
elements, one speaks about binary signals. Typical examples of binary signals are switching positions or flags.

Thus on atheoretical level, continuous and discrete evolution of time and values have to be distinguished. In adiscrete
system, the changes of states are processed at fixed and finite time steps. In a continuous system state changes occur for
infinitesimally small time steps. Important mathematical models for continuous systems are ordinary differential
equations. A mixed system, which shows continuous and discrete dynamics, is known as a hybrid system. Hybrid
systems can be modelled with hybrid automatons. Examples for systems that show such variable dynamics are often
found in the area of embedded control systems e.g. in the automotive and aircraft industry.

ETSI

9 ETSI ES 202 786 V1.5.1 (2022-04)

In the general case, atest description notation for embedded software systems shall support all of four categories of
signals mentioned above. TTCN-3 currently supports the signal categories 2) and 4). The extension of the language with
respect to a support of the signal categories 1) and 3) is the content of the present document.

TTCN-3isaprocedural testing language, thus test behaviour is defined by algorithms that typically send messagesto
ports and receive messages from ports. For the evaluation of different alternatives of expected messages, or timeout
events, the port queues and the timeout queues are frozen when the evaluation starts. Thiskind of snapshot semantics
guarantees a consistent view on the test system input during an individual evaluation step. Whereas the snapshot
semantics provides means for a pseudo parallel evaluation of messages from several ports, there is no notion of
simultaneous stimulation and time triggered evaluation. To enhance the core language to the requirements of continuous
and hybrid behaviour the following are introduced:

. the notions of time and sampling;
. the notions of streams, stream ports and stream variables;

e thedefinition of an automaton alike control flow structure to support the specification of hybrid behaviour.

5.1 Time and Sampling

51.0 General

The TTCN-3 extensions defined in this package adopt the concept of a global clock and enhance it with the notion of
sampling and sampled time. Asin TTCN-3, all time values are denoted as float values and represent time in seconds.
For sampling, simple equidistant sampling models as well as dynamic sampling models are supported.

On technical level an equidistant sampling model of the formt =k* bdel t a, wheret describesthe time progress,
d specifies the number of executed sampling steps and, bdel t a yields the minimal achievable step size for agiven test
system, isused as an overall basis to model equidistant samplings with larger step size or dynamic sampling.

The basic sampling with its minimal step sizebdel t a isa property of a concrete test system and not intended to be
specified as part of the test case specification. However, as a consequence of this underlying model, atest system is able
to execute user defined samplingsif and only if all specified sampling rates at test specification level provide step sizes
that are multiples of bdel t a.

When using the TTCN-3 extension defined in this package, each reference to time, either used for the definition and
evaluation of signals but aswell by means of ordinary TTCN-3 timers, is considered to be completely synchronized to
the global clock and the base sampling.

51.1 The now operator

For the specification of time-dependent signal sequences, it is necessary to be able to track the passage of time. The
access of time is guaranteed by a globally available clock whose current value can be accessed by means of the now
operator. Time progress starts at the beginning of each test case execution, thus time values are related to the start of the
test case execution.

Syntactical Structure

now
Semantic Description

Evaluation of the now operator yields the current value of the clock which is the duration of time since the start of the
currently running test case.

Restrictions

The now operator shall only be applied from within atest case, i.e. by test cases, functions and altsteps executed on test
components. The now operator shall neither directly nor indirectly be called by TTCN-3 control part.

ETSI

10 ETSI ES 202 786 V1.5.1 (2022-04)

Example

EXAMPLE:
/1 Use of nowto retrieve the actual tinme since the test case has started

var float actual Time := now,

5.1.2 Define the default step size for sampling

For sampling, aglobally valid base sampling rate defined by the test system is provided. In addition, sampling rates can
be set separately and as part of the test specification by means of st epsi ze attribute.

Syntactic Structure

st epsi ze StepSi zeVal ue
Semantic Description

The St epSi zeVal ue isasdtring-literal which shall contain a decimal number. This number interpreted as secondsis
used as the default rate of sampling values over the stream ports to which are affected by thisst epsi ze attribute. The
actual sampling rate of a specific port can be changed dynamically with the del t a operation.

Restrictions

A st epsi ze attribute can only appear in awith-annotation. A st epsi ze attribute can be applied to individual
modules, test cases, groups, component types and stream port types and effects either the statements that are contained
in one of these entities or in case of component types and stream port types the respective instances.

Examples

EXAMPLE 1:

Il sets the stepsize for a nodul e
nodul e nyMdul e{

]:“with {stepsize " 0.0001" };
EXAMPLE 2:

Il sets the stepsize for a testcase
testcase nyTestcase() runs on nyConponent {

]:“with {stepsize " 0.0001" };
EXAMPLE 3:

/] sets the stepsize for all instances of the port type StreamCut
type port Streanfut stream{ out float} with {stepsize " 0.0001" };

5.2 Data streams

520 General

In computer science the term data stream is used to describe a continuous or discrete sequence of data. Normally the
length of a stream cannot be established in advance. The data rate, i.e. the number of samples per time unit, can vary.
Data streams are continuously processed and are particularly suited to represent dynamically evolving variables over a
course of time. Thus, streams are an ideal representation of the different discrete and continuous signals mentioned in
the beginning of clause 5.

ETSI

11 ETSI ES 202 786 V1.5.1 (2022-04)

While in standard TTCN-3 interactions between the test components and the SUT are realized by sending and receiving
messages through ports, the interaction between continuous systems can be represented by means of so called streams.
In contrast to scalar values, a stream represents the whole allocation history applied to a port. In computer science,
streams are widely used to describe finite or infinite data flows. To represent the relation to time, so called timed
streams are used. Timed streams additionally provide timing information for each stream value and thus enable the
traceability of timed behaviour. The TTCN-3 extension defined by this package provides timed streams. In the
following, the term measurement (record) to denote the unity of a stream value and the related timing in timed streams
will be used. Thus, concerning the recording of continuous data, a measurement record represents an individual
measurement, consisting of a stream value that represents the data side and timing information that represents the
temporal perspective of such a measurement.

In this TTCN-3 extension, two different but not complementary representations of timed data streams are introduced.
The term timed considers the fact that the time and value domain of asignal are of interest. As a consequence, a stream
is considered to consist of a sequence of samples. Each sample provides information about the timing and the value
perspective of the sample:

1) Static perspective: The static perspective provides a direct mapping between atimed stream and the TTCN-3
data structuresr ecor d andrecor d of . Thiskind of mapping is referred to below as the static
representation of a data stream and allows random access to all elements of the data stream.

2) Dynamic perspective: To provide dynamic online access to data streams, the existing concepts of TTCN-3 port
type and port are extended to provide access to data streams and their content. A so called st r eam port
references exactly one data stream and provides access to the dynamically changing values of the referenced
data stream.

NOTE: To represent streamsin the present document, a tabular notation is used. The table has two rows by which
the first one represents the value perspective of a stream and the second represents the temporal
perspective. The temporal perspective is defined by means of timestamps that are synchronized with the
overall clock. The columns represent the samples of the stream.

EXAMPLE:
Val ue 1.2 (1.4 1.5 [1.7 [1.7 [1.5 [1.2 [1.0 [1.1 [1.4 [1.5 [1.2 [1.0 [1.1 1.4
Ti mest anp 0 0.11]0.2 0.3 [0.4[0.50.6]0.7]0.8]0.9 [1.0 |1.1 |1.2 |1.3 [1.4

The example shows a stream with the length of 1.4 seconds and float values that change between 1.0 and 1.5.

5.2.1 Data Streams: static perspective

A TTCN-3 data stream can be mapped directly to existing TTCN-3 data structures. The mapping considers each stream
to be represented by means of a TTCN-3 record of data structure. This structure itself consists of individual entities, so
called samples, each sample representing either a measurement on an incoming stream or stimulus that is dedicated to
be applied to an outgoing stream.

A sampleitself isrepresented by means of a TTCN-3 record data structure. The record consists of two fields. It has two
fields of typef | oat . Thefirst field with the name val ue represents what is called the value of a stream. Its datatype
should be aigned with the data type of the corresponding stream. The second field denotes the temporal perspective of
asample. It denotes the temporal distance to the preceding sample (the sampling step sizedel t a). The second field is
of typef | oat and representstime values that have the physical unit second. Example 1 shows the exemplary
definition of a data structure to specify individual samples.

EXAMPLE 1.

type record Sanpl e{
float val ue,
float delta

Given such a structure, atimed data stream of an arbitrary datatype is modelled as a record of samples.

EXAMPLE 2:

type record of Sanple M/Streaniype;

ETSI

12 ETSI ES 202 786 V1.5.1 (2022-04)

The static representation of data streams can be used for the online and offline evaluation of streams aswell asfor the
piecewise in-memory definition of streams or stream templates, which are to be applied to stream portsin the
subsequent test case execution. Thus, the static representation of streams can be used to assess incoming streams and to
define outgoing or reference streams and template streams mostly by means of ordinary TTCN-3 operations and control
structures and as such provide an ideal interface between ordinary TTCN-3 concepts and the concepts defined in this
package. Example 3 shows a short specification of a sampled stream.

EXAMPLE 3:

var MyStreaniType nyStreanVar := {
{val ue: =0. 0, delta:=0.1},
{val ue: =0. 2, delta:=0.2},
{val ue: =0.1, delta:=0.1},
{val ue: =0. 0, del ta: =0. 3}

}

If the stream definition from above is applied to an outgoing stream port directly with the beginning of atest case, the
result will look as follows.

EXAMPLE 4:

Val ue 0.0
Ti nest anp 0

0 0
1 7

0.2 0.1 |0.
0.3 0.4 |0.

0.
0.

Each stream port isinitialized with a value that defines the valuation of a stream at time 0.0. Thus the first samplein
Example 4 is not defined by the specification in example 3 but by the base initialization of the stream port.

NOTE 1. Inorder to create larger streams a manual specification approach is not feasible. In this case, the data
processing capabilities of TTCN-3 can be used. This alows to programmatically/algorithmically
construct the dedicated record structures.

NOTE 2. The data structures presented in this clause serve for illustration purposes only. They show how timed
data streams can be mapped to standard TTCN-3 data structures and thus can be processed easily by using
the existing TTCN-3 language features and operators. The TTCN-3 extensions provided in this package
do not include type declarations from above.

5.2.2 Data Streams: dynamic perspective

5.2.2.0 General

In standard TTCN-3 ports are used for the communication among test components and between test components and the
SUT. To be ableto initiate, modify and evaluate a stream based communication between the entities of atest system,
this package extends the concepts of standard TTCN-3 port types and ports with the notion of stream-based
communication and stream ports. Stream ports are the endpoints of a stream based communication. Thus stream portsin
TTCN-3 embedded are used to provide access to streams, their values and the respective timing information. A stream
port references exactly one data stream and thus provides access to the respective stream values and timing information.

5.2.2.1 Defining stream port types

The TTCN-3 port concept of message-bhased and procedure-based ports is extended with stream-based ports. Stream
ports support stream-based communication.

Syntactical Structure

type port PortTypeldentifier stream"{"

{ ((in]| out | inout) StreanVal ueType [";"])
(map param" (" { Fornal ValuePar [","] }+ ")" [";"]) |
(unmap param"(" { Fornul Val uePar [","] }+ ")" [";"]) }

Semantic Description

Stream port types shall be declared by using the keyword st r eam Stream ports are directional. The directions are
specified by the keywordsi n (for thein direction), out (for the out direction) and i nout (for both directions).

ETSI

13 ETSI ES 202 786 V1.5.1 (2022-04)

The specified StreamValueType references the type of values which can be sent or received (depending on the direction
of the port) over ports of the type PortTypel dentifier.

Like message and procedure ports, stream ports can use map and unmap parameters to pass additional information to
the system adapter.

Restrictions

Each stream port type definition shall have one and only one entry indicating the allowed type together with the allowed
communication direction:

a) Stream port type definition shall always contain exactly one stream value definition.
b) At most one map parameter list should be defined for a port type.
c) At most one unmap parameter list should be defined for a port type.

Example

EXAMPLE:

/'l Stream based port which allows streamvalues of type float to be received
type port Streamn stream{ in float }

/] Stream based port which allows streamvalues of type float to be sent
type port Streanmfut stream{ out float }

/1 Stream based port with map and unmap paraneter definitions
type port StreanmQut stream

in float;
map param (integer p_parl, integer p_par?2);
unmap param (i nteger p_parl);

5.2.2.2 Declaration and instantiation of stream ports

The declaration of stream-based portsis similar to the declaration of message-based and procedure-based ports. The
conponent type declares which ports are associated with a component. A component type can have ports with
different communication characteristics (e.g. stream-based ports, message-based ports, and procedure based). All ports
are instantiated together with the component that owns the port, i.e. when the component is created.

Outgoing stream ports start to emit stream values directly after the component, which contains the respective stream
port, has been started. The same applies for incoming stream ports. They start receiving data directly after their
component has been started. Both incoming and outgoing stream ports are updated for each sampling step. If no explicit
step size is defined by means of step size annotations on module level, test case level, port type level, etc. the port is
initially sampled with the test systems' base sampling, which is the smallest available step size.

Outgoing stream ports may already beinitialized beforeitsfirst use, so that their values before the start of their
component are defined. The initialization occurs in the context of their declaration.

Outgoing stream ports, when they are not explicitly initialized, are automatically initialized with implicit default values.
The implicit default values for the various TTCN-3 basic data types can be found in table 1.

Table 1

float |integer |boolean |charstring | bitstring | octetstring
0.0 0 FALSE '0'B '00' O

Theinitia stream port value for outgoing stream port applies to the time point 0.0 and for the following sample steps as
long as no other stream value is set. The value initialization for incoming streamsisin responsibility of the data
provider. Hence either the system adapter or the emitting component (in case of a PTC) isresponsible to initialize the
streams.

ETSI

14 ETSI ES 202 786 V1.5.1 (2022-04)

Syntactical Structure

port StreanPort TypeRef erence
{ StreanPortldentifier [":=" StreanDefaultValue] [","] }+ [";"]

Semantic Description

A stream port Portlnstance named StreamPortldentifier is declared inside a component type definition using a
SreamPortTypeReference which is a type-reference expression for an existing stream port type. Optionally, a
SreamDefaultValue can be supplied which defines the value of the stream before the first sampling over this port.

Restrictions

The SreamDefaultVValue shall be of the type StreamValueType in the port type definition referenced by
SreamPortTypeReference.

Examples

EXAMPLE 1:

type port Streamin stream{ in float }
type port Streanmfut stream{ out float }

type conponent SUT {
port Stream n A B;
port Streanmtut C, D

}
EXAMPLE 2:

type conponent SUT {
port Stream n A B;
port Streantut C =1.0,D =2.0;

5.2.2.3 The Connect and Map operations

Stream ports can be mapped and connected. The syntax and general rules for the map and connect operations are
described in ETSI ES 201 873-1 [1].

Restrictions

In addition to the general static rules of TTCN-3 givenin clauses 9 and 21.1 of ETSI ES 201 873-1[1], the following
restrictions apply:

a) Stream ports can be connected or mapped to stream ports only. Connection or mapping between a stream port
and a message port is not allowed.

b) Assuming the following:
1) Ports PORT1 and PORT2 are the stream ports to be connected or mapped;
2) Inval-PORT1 defines the value type of the in-direction of PORT1;
3) Outval-PORT 1defines the value type of the out-direction of PORT1;
4) Inval-PORT?2 defines the value type of the in-direction of PORT2; and
5) Outval-PORT2 defines the value type of the out-direction of PORT2; and

6) If novauetypeisdefined for adirection, the value typeis considered to be undefined. When checking
conditions for stream port connecting and mapping, the undefined typeis equal to the undefined type
only.

c) Theconnect operationisallowed if and only if:

outval-PORT1 = inval-PORT2 and outval-PORT2 = inval-PORT1

ETSI

15 ETSI ES 202 786 V1.5.1 (2022-04)

d) Themap operation isallowed if and only if:
outval-PORT1 = outval-PORT?2 and inval-PORT2 = inval-PORT1
€) Inall other cases, the connect and map operations shall not be allowed.

f) Incoming stream ports of test components and outgoing stream ports of the system adapter cannot be
connected or mapped to more than one port.

NOTE: Therestriction on the number of connected and mapped ports does not apply to outgoing stream ports of
test components and incoming ports of the system adapter, making stream broadcast possible.

5.2.3 Data Streams: access operations

5230 General

Similar to message-based and procedure-based communication incoming streams can be examined and outgoing
streams can be controlled. In general, access to the actual sample of a stream (i.e. the stream value, the respective timing
and sampling information) is provided by means of stream data operations. Moreover, access to the preceding samples
by means of dedicated navigation operationsis provided. Last but not least, record structured stream data can be
extracted as explained in clause 5.2.1 by means of stream evaluation statements.

In contrast to message-based and procedure-based communication, stream data operations and stream navigation
operations on expression level have been integrated. This allows testers to directly assign values to streams and read
values from streams by means of ordinary TTCN-3 assignments.

5.2.3.1 The value operation

Each data stream connected to a stream port allows accessing its current value by means of the val ue operation. In
case of incoming streams, the value operation yields the actual value that is available at a stream port.

Syntactical Structure

(StreanPortReference | StreanPortSanpl eReference) "." val ue
Semantic Description

Theval ue operation can be applied to either a SreamPortReference expression or a StreamPortSampleReference
expression which isyielded by the application of anavigation operation on a StreamPortReference. In the first case, it
yields the current value of the stream port; in the second case it yields the value in the referenced sampling.

When using a StreamPortReference to an outgoing stream port, the val ue operation expression can also be used on the
left hand side of an assignment or as an out parameter to a function.

When using aval ue operation expression as a value expression the type of the value is the StreamValueType of the
referenced stream port.

If the value operation is used for setting the actual output value of a stream, the effectiveness of the stream port
evaluation isdelayed. A value, which has been assigned to a stream port value handle, becomes effective inside and
outside the component at the beginning of the next sampling step.

Restrictions

If theval ue operation expression is used as the target of an assignment, the type of the assigned value shall be
compatible with the StreamVaueType of the referenced stream port.

Examples

EXAMPLE 1:

/] accessing the actual input value of a stream
var float nyVar:=stream nPort. val ue;

ETSI

16 ETSI ES 202 786 V1.5.1 (2022-04)

EXAMPLE 2:
/| accessing the actual input value of a stream

/1 and conpare it with a given expectation
if (stream nPort.val ue>= 100.0) {.};

NOTE 1. Thevalue, which is provided by means of the val ue operation, is the value that has been measured at
the beginning of the actual sampling period.

EXAMPLE 3:

/] setting the actual output value of a stream
streanmQut Port . val ue: = 100. O;

NOTE 2: The use of the val ue operation can be combined in such away that the specification of complex
eguations and equation systems is supported.

EXAMPLE 4:

I/ calculating the Chns' |aw
vol t age. val ue: = anper age. val ue * resi stance. val ue;

5.2.3.2 The timestamp operation

Similar to the value operation the timestamp operation alows to access the time related information of the actual
sample.

Syntactical Structure
(StreanPort Reference | StreanPort Sanpl eReference) "." timestanp
Semantic Description

The timestamp operation can be applied to a stream port referenced by a StreamPortReference expression or a
SreamPortSampleReference referring to a specific sample of a stream port.

The application of the timestamp operation on a StreamPortReference yields the exact time point at which the actual
stream port value has been measured. The application of the timestamp operation on a StreamPortSampl eReference
yields the exact time point at which the referenced sample has been measured. The exact sample time denotes the
moment when a stream value has been made available at the test system's input and thus strongly dependent on the
sampling rate.

The time point is provided as a floating-point number (f | oat) and has the physical unit seconds. The time information
is completely synchronized with the test system clock described in clause 5.1.

Restrictions
The timestamp operation always yields a non-negative float value.
Example

EXAMPLE:

/'l access of the sanple tine
/1 for the current sanple
var float measurenent Ti mel: =streanport.tinestanp;

NOTE: Datastreams are used to represent samplesin a dynamic measurement process. A samplethat is taken
from adata stream is usually historical information, i.e. theresult of at i mest anp operation refersto
the state of the system (i.e. the SUT) at atimein the past.

5.2.3.3 The delta operation
The step size of a data stream can dynamically change during atest execution. The change can be initiated either by the

test specification or by means of the measurement system (i.e. the system adapter). The delta operation provides access
to the actual step size of a port.

ETSI

17 ETSI ES 202 786 V1.5.1 (2022-04)

In addition to the timestamp operator TTCN-3 embedded allows to obtain the step size that has been used to measure a
certain value. Thisinformation is provided by the delta operation. The delta operation can be used in asimilar way than
the value and the timestamp operation. It returns the size of the last sampling step (in seconds).

Syntactical Structure
(StreanPortReference | StreanPortSanpl eReference) "." delta
Semantic Description

When used on a StreamPortReference, the delta operation allows read and write access to the actual step size of aport.
When the delta operation is used for reading on a StreamPortReference, it yields the actual step size for agiven port.
When the delta operation is used for writing on a SreamPortReference it sets the length of the step size for future
writing and reading at the given port. The step sizeisdefined asaf | oat number and has the unit seconds.

When used on a StreamPortSampleReference it yields the actual step size active at the time of the referenced sample
measurement.

A value, which has been assigned to a stream port delta handle, affects the length of the next sampling period, not the
actual one. Thus, it cannot be used to shorten or lengthen the actual sampling step.

Restrictions

When used on a StreamPortSampl eReference, the del t a operation only allows read access.

Examples

EXAMPLE 1:
var float actual StepSize;

/1 reads the actual streamsize froma port
actual StepSi ze: = streanport.delta;

EXAMPLE 2:

/] sets the actual step size for a port
streanport.delta: = 0.001;

5.2.4 Data Streams: navigation operations

5.24.0 General

Beside access to the actual values of a stream, additional access to the history of streams by means of so called stream
navigation operationsis provided. The result of anavigation operation is a handle, which alows the application of the
value, timestamp or delta operation for preceding stream states. Such a state isidentified by means of two different
operations. The at operation demands atime index of typef | oat that denotes the time that has passed since the
beginning of the test case. The pr ev operation backtracks the sample steps beginning with the actual step and demands
an integer index value to define the number of sampling steps to step back.

5.24.1 The prev operation

The prev operation returns a handle to obtain stream related information for previous states of a stream.

Syntactic Structure
StreanPort Reference "." prev ["(" Prevlindex ")"]
Semantic Description

The prev operation can be applied to a stream port SreamPortReference. It can optionally be parameterized with an
integer index parameter Previndex and returns a StreamPortSampleReference handle to retrieve values, timestamps and
sampling step sizes for preceding stream states. The index parameter denotes the number of samplesto step back in
stream history. If no parameter list is given, thisis equivalent with the index 1.

ETSI

18 ETSI ES 202 786 V1.5.1 (2022-04)

Restrictions
The prev operation can only appear as an operand to avalue, timestamp or delta read operation.

NOTE 1: The application of the pr ev operation needs the combination with the val ue operation, the
ti mest anp operation or thedel t a operation to provide meaningful results.

Examples

EXAMPLE 1:

port.prev(0).value; // provides access to the actual stream val ue
port. prev. val ue; /'l provides access to the previous stream val ue
port.prev(1l).value; // provides access to the previous stream val ue
port.prev(2).value; // provides access to the streamvalue 2 steps ago

NOTE 2: Theexpressionsport.prev andport.prev(1) yieldidentical results.

EXAMPLE 2:

port.prev(0).timestanp; // provides access to the timestanp

/1 that denotes the beginning the actual sanpling step
port. prev(0).delta; /'l provides access to the length of the | ast sanpling step
port.prev(1l).timestanp; // provides access to the tinmestanp

/1 that denotes the beginning the preceding sanpling step

port.prev(1l).delta; /'l provides access to the length of the sanpling step 2 steps ago
EXAMPLE 3:

Val ue 1.2 1.4 |1.5 |1.7 |1.7 |1.5 |1.2 [1.0 |1.1 1.4 |1.5 |1.2 [1.0 |1.1 (1.4
Ti nest anp 0 0.1 (0.2 (0.3 (0.4 [0.5 |0.6 [0.7 [0.8 |0.9 |1.0 |1.1 |1.2 |1.3 |1.4

port. prev(0). val ue; Il yields 1.4

port. prev.val ue; /Il yields 1.1

port.prev(1).val ue; /1l yields 1.1

port. prev(2).val ue; /] yields 1.0

port.prev(0).timestanp; // yields 1.4

port.prev(0).delta; /1 yields 0.1

port.prev(l).timestanp; // yields 1.3

port.prev(1l).delta; /1 yields 0.1

5.2.4.2 The at operation

The at operation returns a handle to obtain stream related information for previous states of a stream, which are
identified by means of atimestamp value.

Syntactical Structure
StreanPort Reference "." at ["(" Timepoint ")"]
Semantic Description

The at operation can be applied to a stream port SreamPortReference. The at operation can optionally be
parameterized with af | oat parameter Timepoint and returns a StreamPortSampl eReference handle to retrieve values,
timestamps and sampling step sizes for preceding stream states. The Timepoint parameter represents a time stamp that
identifies a sample at a certain place in time. The time stamp denotes the time that has passed since the start of the test
case (see clause 5.1). It references the sample that has either the same time stamp or, if such a sample does not exist, the
sample with the next smaller time stamp.

Restrictions
The at operation can only appear as an operand to a value, timestamp or delta read operation.

NOTE: The application of the at operation has to be done in combination with a value operation, atimestamp
operation or a delta operation to provide meaningful results.

ETSI

19 ETSI ES 202 786 V1.5.1 (2022-04)

Examples

EXAMPLE 1:

port. at (now). val ue; /1 provides access to the actual stream val ue
port.at(0).value; // provides access to the initial streamval ue

/1 (i.e. the streamvalue at beginning of the test case)
port.at(10.0).value; // provides the streamvalue at the time point 10.0

/1 (i.e. 10. Seconds after the beginning of the test case)

EXAMPLE 2:
port.at (now).ti mestanp; /] provides access to the beginning of the actual sanpling step
port.at(0).tinmestanp; /'l provides access to the beginning of the initial sanpling

/Il step (i.e. always 0.0)

port.at(10.0).ti mestanp; // provides access to the beginning of the sanpling step
/] at tine point 10.0

EXAMPLE 3:

Val ue 1.2 1.4 |1.5|1.7 |1.7 |1.5 |1.2 [1.0 |1.1 [1.4 |1.5 |1.2 [1.0 |1.1 (1.4
Ti nest anp 0 0.1 (0.2]0.3 (0.4 (0.5 /0.6 [0.7 (0.8 (0.9 (1.0 |1.1 |1.2 |1.3 (1.4
port.at (now).val ue; /] yields 1.4

port.at(0).val ue; /] yields 1.2

port.at(1.0).val ue; /1 yields 1.5

port.at(1.09).val ue; /1 yields 1.5

port.at (now).timstanp; /] yields 1.4

port.at(0).tinstanp; /1l yields 0.0

port.at(1.09).timestanp; // yields 1.0
5.2.5 Data Streams: extraction and application operations

5.25.0 General

Beside access to individual values of a stream, this package supports the extraction and application of stream segments
that are represented by means of the record of data structure (data perspective) described in clause 5.2.1. The history
operation allows to extract arbitrary stream segments. The apply operation is used to apply extracted or manually or
programmatically defined stream segments to stream ports.

5.25.1 The history operation

The history operation allows obtaining the complete or partial history of a stream asa TTCN-3 record of structure (see
clause 5.1, datarepresentation). The history operation has two parameters that denote the start time and end time of the
desired stream segment.

Syntactical Structure
StreanPort Reference "." history "(" StartTine "," EndTine ")"
Semantic Description

The history operation provides arecord of based sample representation of a stream. The operation has two parameters
StartTime and EndTime that denote the start time and end time of the stream segment that is designated for export. The
parameters are each of type float and represent the time that has passed since the beginning of the respective test case.
Time values are given in units of seconds. The first parameter describes the measurement time of the first stream entry
to be considered for history export. The second parameter denotes the time of the last record. If the specified start time
value is greater than the specified end time value the history operation results in an empty record of structure.

Restrictions

The EndTime parameter shall not have a value greater than now.

ETSI

20 ETSI ES 202 786 V1.5.1 (2022-04)

Examples

EXAMPLE 1:

myStreanRec: = nmyPort. history(0.0, now);

EXAMPLE 2:

type record Bool Sanpl e {bool ean v, float t}

type port Bool StreaniType stream {in bool ean}

type conponent M/StreanConponent {port nyPort Bool Streanilype}
var record of Bool Sanpl e nyStreanRec;

;ﬁ./StreanRec: = myPort. history(0.0, now);

EXAMPLE 3:
Val ue 1.2 1.4J1.51.7 1.7 [1.5 [1.2 [1.0 [1.1 [1.4 [1.5 1.2 [1.0 [1.1 [1. 4
Ti mest anp 0 0.1]0.2]0.3]0.4[0.510.61]0.7]0.8]0.9 1.0 [1.1]1.2 |1.3 [1.4

myStreanRec: = port. history(0.0, now);

/'l yields

/1 {{1.2,0.0}, {1.4,0.1},{21.5,0.1},{21.7,0.1},{21.7,0.1},{1.5,0.1},{1.2,0.1},{1.0,0. 1},
// {1.1,0.1},{1.4,0.1},{1.5,0.1},{1.2,0.1},{1.0,0.1},{1.12,0.1},{1.4,0.1}}

5.25.2 The values operation

The values function allows obtaining the complete or partial history of a stream asa TTCN-3 record of structure
without any timing information.

Syntactical Structure
StreanPort Reference "." values "(" StartTinme "," EndTinme ")"
Semantic Description

The value operation has two parameters StartTime and EndTime that denote the start time and end time of the desired
stream segment.

The history function provides arecord of based value representation of a stream. The parameters are each of type float
and represent the time that has passed since the beginning of the respective test case. Time values are given in units of
seconds. The first parameter describes the measurement time of the first stream entry to be considered for history
export. The second parameter denotes the time of the last record. If the specified start time value is greater than end
time value the history operation results in an empty record of structure.

The result of the value operation applied to a stream port of type T isavalue of record of T.
Restrictions

The EndTime parameter shall not have a value greater than now.

Examples

EXAMPLE 1:

myStreanRec: = port.val ues(0.0, now);
EXAMPLE 2:

type port Bool StreanType {in bool ean}

type conponent{ port nyPort Bool Streaniype}

var record of bool ean nyStreanRec;

myStreanRec: = nmyPort. val ues(0.0, now);

ETSI

21 ETSI ES 202 786 V1.5.1 (2022-04)

EXAMPLE 3:
Val ue 1.2 1.4]1.5|1.7 |1.7 |1.5 1.2 |1.0 |1.1 (1.4 (1.5 (1.2 [1.0 (1.1 |1.4
Ti nest anp 0 0.1 (0.2 (0.3 [0.4 [0.5 [0.6 [0.7 [0.8 |0.9 |1.0 |1.1 |1.2 |1.3 |1.4

myStreanRec: = port. history(0.0, now);
/1l yields
/I {1.2, 1.4, 1.5, 1.7, 1.7, 1.5, 1.2, 1.0, 1.1, 1.4, 1.5, 1.2, 1.0, 1.1, 1.4}

5.253 The apply operation

The apply operation is used to apply stream data to a stream port that are represented by means of a TTCN-3 record of
structure. The apply operation applies the sample records contained in the recor d of data structure one after the other in

time to the given port.

Syntactical Structure

StreanPort Reference "." apply "(" Sanples ")"

Semantic Description

Application of the apply operation to the stream port SreamPortReference, it will consecutively write the values of the
given record of Samplesto the port, using the sampling deltas from Samples as deltas for writing the values, as well.

The application of an apply operation p. appl y(v) isequivalent to the following construction:

var float v_nextSanple := p.tinestanp + p.delta; // tine of the schedul ed next step
for(var integer i :=0; i < lengthof(v); i =i + 1)

if (i +1 < lengthof(v))
p.delta := v[i + 1].delta; // schedule delta for the next step

/1 value will becone efficient at the beginning of the next sanpling step
p.value := v[i].val ue;
wait (v_nextSanple); // wait for the current sanpling step to finish
if (i +1 < lengthof(v))

/1 tinme of the next sanpling step
v_next Sanple := v_nextSample + v[i + 1].delta;
}

}
Examples

EXAMPLE 1:

type port Floatln {in float}
type port FloatCQut {out float}

type conponent{ port nylnPort Floatln;
port nyQutPort FloatQut }

type record Sanple {bool ean value, float delta};
var record of Sanple nyStreanRec;
testcase nmyTestcase () runs on tester{
/1 measure on all incomng ports for 100 seconds
wai t (100. 0);
/1 get the all sanpless at nylnport until now
myStreanRec: = nyl nPort. history(0.0, now);
/1 and apply the measured data to myCQutPort.
nmyCQut Port. appl y(nyStreanRec); // lasts 100 seconds

}
EXAMPLE 2:

var MyStreanfType<fl oat> nyStream: = {
{0.0, 0.1},
{0.2, 0.2},
{0.1, 0.1},
{0.0, 0.3}
}

port.apply(nyStrean;
/1 yield -> see table bel ow

ETSI

22 ETSI ES 202 786 V1.5.1 (2022-04)

Val ue 0.0
Ti nest anp 0

o|e
O
o|e
w(N
o|e
I
o|e
~N| O

5.2.6 Port control operations

This clause specifies the rules for port control operation in case they are applied to a stream port. The operations behave
differently specified in the clause 22.5 of ETSI ES 201 873-1 [1] as steam ports do not have any queues, but might
contain sampling history.

The cl ose operation applied to a stream port removes the port history completely. Only the last acquired sampleis
kept and it is still possible to accessit with theval ue andt i nest anp operations.

Thest art operation applied to a stream port removes port history completely, activates port sampling (if it was
suspended by the st op or hal t operation) and alows the use of data stream access operation (val ue, ti nmest anp,
del t a), data navigation operations (pr ev, at) and data extraction and application operations (hi st ory, val ues,
appl y). The started port will have its default value.

The st op operation applied to a stream port removes port history and suspends port sampling, i.e. port history will not
be updated while the port is stopped. In case of stopped out ports, the value of al ports connected or mapped to the
stopped port will not change while the port is stopped. During the time when the port is stopped, it is not allowed to call
any of the data stream access operation (val ue, ti mest anp, del t a), data navigation operations (pr ev, at) and
data extraction and application operations (hi st or y, val ues, appl y). Caling any of these operations shall cause an
error.

Thehal t operation applied to a stream port suspends port sampling, i.e. port history will not be updated while the port
ishalted. In case of halted out ports, the value of all ports connected or mapped to the halted port will not change while
the port is halted. During the time when the port is halted, it is not allowed to use any of the data stream access
operation (val ue, t i nest anp, del t a) on the left hand side of an assignment and the appl y operation. Calling any
of these operations shall cause an error. The history of the halted port is not discarded and it possible to use any of the
data stream access operation (val ue, ti nest anp, del t a) if they occur on the right hand side of an assignment, data
navigation operations (pr ev, at) and data extraction operations hi st ory andval ues.

5.2.7 Stream ports in static configurations

Components containing stream ports can be used in static configurations specified in ETSI ES 202 781 [7]. Most of the
rules valid for non-static components apply in this case too, with the following differences:

a) Time progressfor static MTCs starts in the beginning of configuration function (and not in the beginning of a
test case).

b) Sampling of static ports shall be active even when atest case is not running (during transition between test
cases).

5.3 The assert statement
Theassert statement is used as a short hand for the specification of expected system behaviour.
Syntactical Structure
assert "(" Predicate { "," Predicate })"
Semantic Description

The assert statement specifies one or alist of predicates that express the expectation on the SUT. A predicate consist of
an arbitrary TTCN-3 boolean expression. If one of the predicatesfail, the assert statement automatically sets the verdict
tof ai | . The assert statement is allowed at any place in the TTCN-3 source code that allows the application of the
setverdict statement. To assess continuous dataiit will be used in particular within the hybrid machine alike control
flow structures described in clause 5.4.

ETSI

23 ETSI ES 202 786 V1.5.1 (2022-04)

NOTE: The semantics of the assert statement can be mapped to existing TTCN-3 statements in the following
way:

assert (predl, pred2,..., predn);
isfully equivalent to:

if(! predl) setverdict(fail);
if(! Pred2) setverdict(fail);

|f(I predn) setverdict(fail);
Examples

EXAMPLE 1:

assert (a.val ue==4.0);

EXAMPLE 2:

assert(a.val ue==4.0, b.value ==5.0, d.value ==445.0);

54 Control structures for continuous and hybrid behaviour

54.0 General

This clause introduces control flow structures that allow the parallel and sampled application and assessment of stream
values at ports. The concepts defined in clauses 5.1, 5.2 and 5.3 allow the construction, application and assessment of
individual streams. For more advanced test behaviour, such as concurrent application and assessment of multiple
streams and the detection of complex events (e.g. zero crossing or flag changes at multiple ports), stronger concepts are
needed. For this purpose, the concepts defined in the last clauses are combined with state-machine-like specification
concepts, so called modes.

A mode expresses a certain runtime mode of a system or an SUT. Thiskind of runtime mode is characterized by a
defined behaviour at ports and a set of predicates that limit the applicability of the behaviour. Unlike ordinary
behavioural TTCN-3 statements, a mode applies its behaviour over time (at least for one sampling step).

541 Modes

54.1.0 General

The term mode is used to specify the discrete and countable macro states of a dynamic hybrid system. It mainly serves
to distinguish the macro states of a hybrid system from the theoretically infinite number of micro-states. By means of
modes, this package provides alayer of abstraction that helps distinguishing between the discrete changes of a hybrid
system (or test system) that are relevant from the users (and testers) perspective and the discrete changes that are
introduced by the underlying test execution environment in order to map continuous behaviour to a computational
environment (which is naturally discrete). The interpretation and cal culation of micro steps depend on the underlying
technical environment, i.e. the sampling. Thus, amicro step is calculated by the combination of the active macro-states
with the sampled evaluation of data at the stream ports.

ETSI

24 ETSI ES 202 786 V1.5.1 (2022-04)

If the velocity v remains
constant for more than 5
sec., it shall not underrun
the limit x for 5 seconds.
To detect: the velocity
remains constant for
more than 5 seconds

To check: v shall not
underrun the limit x for 5
seconds

Figure 1: Abstract test specification for a continuous system that show the values v and x

Modes and the transitions between modes can be written down in a state-machine-like structure, which is closely
defined in the theory of hybrid automatons. Figure 1 shows an abstract test specification that consists of three atomic
modes, transitions, invariants and assertions.

For realizing such hybrid automatons, three new block statements are introduced, the cont statement, the seq statement
and the par statement. Whilethe cont statement is used for the specification of atomic modes, the par and seq
statement are used to aggregate modes to larger constructs by means of parallel and sequential composition.

Modes in general are characterized by their duration and their internal behaviour (i.e. the assignment and assessment of
values at stream ports). The duration, or better the duration of the mode's activity, is defined by a set of predicates,
which relates to time or the valuation of (stream) ports, variables, etc.

Syntactical Structure
(cont | par | seq) "{"
{Decl aration}
[OnEnt r yBIl ock]
[I'nvari ant Bl ock]
Body
[OnExi t Bl ock]
"y
[Unti | Bl ock]
A mode specification consists of several syntactical compartments:
. local declarations to be used inside the mode;
. an optional onentry block, that defines behaviour that has to be executed once at the activation of the mode;
. an optional invariant block that defines predicates that should not be hurt while the modeis active;
. an obligatory body to specify the mode's internal behaviour;

. an optional onexit block that defines the behaviour that has to be executed once at the deactivation of the
mode; and

. an optional transition block (UntilBlock) that defines the exit conditions to end the mode's activity.

Atomic modes may be composed to composite modes. Composite modes show nearly the same structural setup as
atomic modes. The only differences refer to their behavioura descriptions. While atomic modes contain assignments,
assert statements and the inv, onexit, onentry blocks described above, composite modes contain other modes instead of
statements. Asfar asinvariants, onentry and onexit blocks and transitions are concerned, the structural setup and the
behaviour of composite modes both are identical to atomic modes.

ETSI

25 ETSI ES 202 786 V1.5.1 (2022-04)

Semantic Description

While amode is active, each invariant of a composite mode has to hold. Additionally, each transition of a composite
mode ends the activity of the mode when it applies.

When amode is entered, its onentry-block is executed. When a mode is exited, its onexit-block is executed.

For every step of an active mode, the contents (either modes or statements) of the mode are executed. Modes always use
the base sampling rate when processing steps. The st epsi ze attribute has no effect on the mode sampling rate.

NOTE: Modesamplingisjust atheoretical concept for describing behaviour of the mode statement. The way how
TTCN-3 tools perform mode sampling isimplementation specific. It is possible e.g. to implement mode
sampling so that it is automatically triggered after port sampling or by areceiving event that has occurred
on areferenced port.

Examples

Example 1 shows the definition of an atomic mode consisting of two assignments to stream ports, an invariant that
checks the state of an outgoing stream port, an onentry block that initializes the variable x, and an onexit block that
resets the stream port t o_Set _Poi nt to thevalue of 0.0, and transitions that check the valuation of an incoming
stream port.

EXAMPLE 1:

cont {// body
onent ry{x: =10. 0; }
inv{//invariant
to_Set _Poi nt. val ue>20000. 0O;
}

t o_Set _Poi nt. val ue: =3. 0* now,
t o_Engi ne_Perturbation. val ue: =0. 0+x;
onexi t{to_Set_Poi nt. val ue: =0. 0}

until {//transition
[ti _Engi ne_Speed. val ue>2000. 0] {t o_Engi ne_Pert ur bati on. val ue:
[ti _Engi ne_Speed. val ue>3000. 0] {t o_Engi ne_Pert ur bati on. val ue:

}

11
=N
oo
——

Example 2 shows the setup of a parallel mode that contains two sequential modes, which each of them containing
further atomic modes.

EXAMPLE 2:

par { // overall perturbation and assessnent
inv{//invariant

seqg{// perturbati on sequence
cont{// stimulation action 1}
cont{// stimulation action 2}

seqg{// assessment sequence
cont{// assessnent action 1}
cont{// assessnment action 1}

,

until{ //transition

}
54.1.1 Definition of the until block

54.1.1.0 General

The until block allows the specification of exit conditions for modes and additionally the specification of explicit
transitions between modes. The entries of the until block are called transitions. Each transition specifies conditions for
their activation (i.e. guards and trigger events) and may provide an explicit definition of the mode that has to be
activated next (target mode). An until block can contain several aternative transitions that each specify different exit
conditions and target modes.

ETSI

26 ETSI ES 202 786 V1.5.1 (2022-04)

54111 Definition of transition guards and events

The until block defines a number of transitions between modes. A transition contains either aguard or atrigger event
specification or both. The guard and the trigger event specification are both used to determine whether atransition can
fire or not. A guard is modelled as a boolean TTCN-3 expression. A trigger event is modelled by means of TTCN-3
receiving operations (receive statement, trigger statement, getcall statement, etc.). The predicate or the TTCN-3
receiving operations may be followed by an optional statement block, which contain instructions to be executed upon
activation of the transition. At the end of the transition there may be a goto clause which specifies the follow-up mode.

Syntactical Structure

until "{"
{ "[" [Quard] "]" [TriggerEvent] [StatenentBlock] [goto Target] }
"y

Semantic Description

A transition is considered to be activated if the guard expression is satisfied and a valid receiving event occurred at the
specified TTCN-3 receiving operation and the invariant of the target mode holds (with the exception of the not i nv
predicate, see clause 5.4.1.5 for more details). Transitions are checked for each active mode at each sampling step. If a
transition becomes active then the optional statement block is executed once. Afterwards the enclosing mode and all his
child modes are deactivated. The control flow is continued with the activation of the follow-up mode. The transitionsin
an until block are checked in the given order. If multiple transitions exist, the first transition that fulfils the activation
conditionsis activated.

Restrictions
In addition to the general semantic rules the following restrictions apply:

. The functions invoked from the guard statement or trigger event shall not use any blocking instructions (i.e.
the following operations and statements: al receiving operations, timeout, done, killed, wait and mode). Such
constructs may block evaluation of the guard or trigger with the consegquence, that the next sampling step is
missed.

. In the optional statement block of atransition any TTCN-3 statement is principally allowed, except each type
of control flow related statement that leads to the leaving of the enclosing mode (e.g. goto, return).

Example

EXAMPLE:

cont{ //node
A. val ue: =3;

until { // transitions

[C value > 4.0] MPortl.receive(Tenpl Exp) { |og(" statenent block 1"); }
[C.value > 4.0 and D.value > E. value]{ log(" statement block 1"); }

[T Port2.receive(Tenpl Exp) { log(" statement block 1"); }

}

54.1.1.2 Definition of follow up modes

The explicit definition of follow up modes by means of a goto clause is possible. Each mode specification can have a
preceding label that defines the target for a goto clause. Moreover each transition can have an optional goto clause that
refersto an mode label.

Semantic Description

If atransition with agoto clause is activated, the optional statement block is executed and afterwards the execution is
continued at the label position with the activation of the following mode.

ETSI

27 ETSI ES 202 786 V1.5.1 (2022-04)

Restrictions

Besides the restrictions that already exist for the use of the goto statement, this package defines additional restrictions
for the use of the goto clause in the context of modes. Goto jumps are only alowed in a sequentia environment, either
inside seq modes or on the top level of a composition, i.e. directly on testcase level. Moreover, goto jumps are not
alowed to violate the composition hierarchy, thusit is not possible to jump to a parent mode or into a child mode.
Jumps are only allowed between modes on the same hierarchy level.

However, if no follow up mode is explicitly defined by means of a goto statement the sequential ordering of mode
specification implicitly defines the follow up mode. Thus, when two atomic modes follow each other in the
specification, the second mode is the follow up mode for all active transition transitions of the preceding mode that do
not have an explicit goto clause.

Examples
Example 1 shows the application of labels and goto statements in the context of modes.

EXAMPLE 1

| abel statel,;
cont{ //node
A. val ue: =3;

}

until {[C value > 2.0]}

| abel state2;

cont{ //node

A val ue: =4,

} until { // transitions
[Cvalue > 4.0] { log(" statenment block 1"); } goto statel
[D.value > E.value]{ log(" statement block 2"); } goto state2
[T Port2.receive(Tenpl Exp) { log(" statement block 1"); }

}

EXAMPLE 2:

cont{ A value:=3;} until {[B.value >3]}
cont{ A value:=5;} until {[C value >=3*D.val ue]}
cont{ A value:=7;} until {[C value >=3]}

54.1.1.3 The repeat statement
The control flow of a mode's transition's statement block may end in arepeat statement.
Semantic Description

Ther epeat statement causes the re-execution of apar statement, seq statement or cont statement, i.e. the
execution of the par statement, seq statement or cont isactivated again and executed with the next sampling step.

NOTE 1. In case of the execution of ther epeat statement the local time of the respective mode (see duration
symbol in clause 5.4.1.3) is reset, in case of composite modes the child modes are first deactivated and
then again activated according to the kind (parallel or sequential) of the mode. Moreover, the respective
onentry and onexit blocks are executed.

Example

EXAMPLE:

cont{ //node

A. val ue: =4;
} until { // transitions

[C.value > 4.0] { log(" statenment block 1"); } goto statel
[D.value > E.value]{ log(" repeat the execution"); repeat}
[1 Port2.receive(Tenpl Exp) { |og(" statenent block 1"); }
}

NOTE 2: Therepeat statement isfunctional equivalent to the use of agoto clause that addresses alabel directly
above the current mode.

ETSI

28 ETSI ES 202 786 V1.5.1 (2022-04)

54114 The continue statement
The control flow of a mode's transition's statement block may end with a continue statement.
Semantic Description

Thecont i nue statement causes the further execution of apar statement, seq statement or cont statement, i.e. the
execution of the par statement, seq statement or cont is continued with the next sampling step without areset to
the local time (see duration symbol in clause 5.4.1.3). The onentry and onexit blocks are not executed.

Example

EXAMPLE:

cont{ //node

A. val ue: =4;
} until { // transitions

[Cvalue > 4.0] { log(" statenment block 1"); } goto statel
[D.value > E.value]{ log(" continue the execution"); continue}
[T Port2.receive(Tenpl Exp) { log(" statement block 1"); }
}

54.1.2 Definition of invariant blocks

Syntactical Structure

inv "{" Predicate {"," Predicate} "}"
Semantic Description

Aninvariant block containsbool ean predicates (expressions) which characterize the applicability of amode. Thus, an
invariant block is always related to its containing mode specification and it specifies the conditions that shall be valid
for amode during runtime.

For each mode, all invariants are checked for each sampling step when the mode is active. While amode is active the
invariants of amode shall not be violated. The invariant block is aways checked at the beginning of each sampling
step, even before the body of each mode is executed. Violation of the invariant causes that the body of the modeis not
executed and processing continues with theunt i | clause which shall only handle not i nv predicatesin this case. If
theunt i | block isnot present or if it does not handle the not i nv predicate, the active mode shall be terminated and
the execution shall continue with the implicit follow-up mode (i.e. the mode immediately textually following the active
mode statement). If no implicit follow-up mode is available, the test system shall generate a dynamic error.

Restrictions
In the general semantic rules the following restrictions apply:

e Thefunctionsinvoked from the invariant statement shall not use any blocking instructions (i.e. the following
operations and statements: all receiving operations, timeout, done, killed, wait and mode). Such constructs
would potentially block the execution of the invariant block with the consequence, that the next sampling step
is missed.

Examples

Example 1 below shows the definition of an atomic mode that sets the out port A continuously with the value of 3.0.
Moreover, the invariant prescribes conditions on the incoming ports B, C and D. When one of the invariantsis violated
by the actual value at ports, mode execution is stopped.

EXAMPLE 1:

type port Streamn stream{ in float }
type port Streamfut stream{ out float }

type conponent SUT {

port Stream n A B;
port StreamCut C, D

}

cont {

ETSI

29 ETSI ES 202 786 V1.5.1 (2022-04)

A. val ue: =3;
inv {B.value > 3, C val ue >=3*D. val ue}

}

The specification of invariants allows the easy definition of ending conditions for the execution of modes. Based on a
simple sequential control flow paradigm, this supports the specification of sequences of modes, that are executed one
after the other whenever the invariant state of the active mode changes.

EXAMPLE 2:

cont{
A. val ue: =3;
inv {B.val ue >3, C val ue >=3*D. val ue}

}

cont{

A. val ue: =5;

inv {B.val ue <=3, C val ue >=3*D. val ue}

}

5.4.1.3 Definition of the onentry block
The onentry block contains a statement list that is to be executed once and only once during the activation of a mode.

Syntactical Structure

onentry Statemnent Bl ock
Semantic Description

The onentry block is executed as part of the activation procedure of a mode. To successfully start the onentry block all
invariants shall satisfy their conditions. The onentry blocks of hierarchically ordered modes are executed sequentially,
beginning with the onentry block of the outer-most mode to the inner modes.

Restrictions
In an onentry block of amode any TTCN-3 statement is principally allowed, except:

. Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) referenced directly or called inside functions invoked from the onentry block shall not
be used. Such constructs would potentially block the execution of the statement block with the consegquence,
that the next sampling step is missed.

. Each type of control flow related statement that leads to the leaving of the mode (e.g. goto, return).
Example
The example below shows the definition of an atomic mode that sets the sampling of a port during its activation time.

EXAMPLE:

cont {
onentry {A delta:=0.001;}
A. val ue: =3;

}

5414 Definition of the onexit block
The onexit block contains a statement list that isto be executed once and only once during the deactivation of a mode.

Syntactical Structure

onexit StatenentBl ock

ETSI

30 ETSI ES 202 786 V1.5.1 (2022-04)

Semantic Description

The onexit block is executed as part of the deactivation procedure of a mode. The execution of the onexit block is
triggered either by an activated transition or the violation of an invariant that |ead to the leaving of the mode. In case of
an active transition the onexit block is executed directly after the execution of the transition's optional action block. The
onexit blocks of hierarchically ordered modes are executed sequentially, beginning with the onexit blocks of the inner-
most modes towards the outer modes.

Restrictions
In an onexit block of amode any TTCN-3 statement is principally allowed, except:

. Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) referenced directly or called inside functions invoked from the onexit block shall not be
used. Such constructs would potentially block the execution of the statement block with the consegquence, that
the next sampling step is missed.

. Each type of control flow related statement that leads to the leaving of the mode (e.g. goto, return).
Example

The following example shows the definition of an atomic mode that sets the sampling of a port during its deactivation
time.

EXAMPLE:

cont {
A. val ue: =3. 0;
onexit {A value:=1.0;}
} until {[B.value> 3.0]}

54.1.5 Local predicate symbols in the context of modes

To enable an explicit treatment of some exceptional situations, the keywordsnot i nv andf i ni shed have been
introduced. They represent specia predicates with amode local evaluation.

Semantic Description

The keyword not i nv can be used as a predicate that indicates the violation of any local mode invariant. Thus, if one
of the invariants of amode is violated and the mode is active, the evaluation of the not i nv symbol yields true for all
expressions in the contained until block. Otherwise it yieldsfalse. Thus, the not i nv symbol allows the explicit
handling of occurring invariant violation by means of transitions. The not i nv predicate is the only predicate that
allows activating a transition when an invariant is violated. The not i nv predicate shall not be followed by any trigger
event.

Thefi ni shed keyword can be used as a predicate to handle the proper termination of a composite mode. A proper
termination is given when the termination is triggered by the status of the child elements of a composite mode and not
by itstransitions or invariants. If and only if amode is terminated by the status of its child elements the term finished
yieldstrue. Thus, thef i ni shed predicate allows the explicit handling of proper mode terminations by means of
transitions.

Examples

EXAMPLE 1:

cont{ //node
A. val ue: =3;

until { // transitions
[notinv] { log(" Invariant violated"); }
[T Port2.receive(Tenpl Exp) { log(" Invariant not violated"); }

}

ETSI

31 ETSI ES 202 786 V1.5.1 (2022-04)

EXAMPLE 2:

par { //node
cont { //inner node 1
A. val ue: =3. 0;
} until {[C. value>3.0]}
cont { //inner node 2
B. val ue: =3. 0;

} until {[D.value>3.0]}
} until { // transitions

[finished] { log(" finished by childs' state"); }
[D.value > 4.0] { log(" not finished by childs' state"); }

5.4.1.6 The duration operator

Within a mode there is continuous access to the time that has el apsed since the beginning of the test case by using the
now operator. It is also possible to access the time that has elapsed since the activation of the enclosing mode
construct. The accessis provided by means of thedur ati on oper at or, which isapplicablein expressionsin al
mode related substructures like the body block, the invariant block and the until block.

NOTE: Theevauation of thedur at i on operator depends on its context. Thus, it may differ dependent on its
place of application.

Examples

EXAMPLE 1:

cont{ A value:=3.0;} until {[now > 4.0]}
/'l executes the content of the body block until
/1 the overall test case tine has reached 4.0 seconds

EXAMPLE 2:

cont{ A value:=3.0;} until {[duration > 4.0]}
/'l executes the content of the body block for 4.0 seconds

Example 3 shows the application of the dur at i on operator in two different modes. Both modes are activated at
different times and thus the application of the duration symbol in the second cont mode yields different results than the
application of thedur at i on operator in the enclosing par mode.

EXAMPLE 3:

par {
cont{ A value:=2.0;} until (duration > 4.0)
cont{ A value:=3.0;} until (duration > 4.0)
} until{[duration > 6.0]}

542 Atomic modes: the cont statement

Syntactical Structure

The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

Semantic Description

Thecont statement is used to define atomic modes. Atomic modes directly define the test behaviour at stream ports by
means of value allocation and value assessments. A cont mode may contain assignments and assert statements and
forms the leaves of a hierarchical mode structure.

When acont statement is activated, al contained elements are executed repetitively for each sample step. The
execution ends when atransition fires or an invariant is violated.

ETSI

32 ETSI ES 202 786 V1.5.1 (2022-04)

Restrictions
a A cont mode shall not invoke any potentially blocking behaviour.
b) A cont mode cannot contain other modes.

Examples

EXAMPLE 1:

/] executes the assignnents at each sanple step
cont { // Mdde 1
Port 1. val ue :
Port 2. val ue :

10. 0;
2.0 * duration;

until (duration > 5.0)

NOTE: Assignment and evaluation of the cont modeis, in atheoretical sense, continuous, i.e. executed at each
step, provided for sampling. The cont mode allows the organization of periodic assignments and
periodic revisions of values or variables of stream and stream ports.

EXAMPLE 2:
cont { // node 1
outportl.value : = inportl. prev.value *2;
streanvar.val ue := inportl. prev(5).val ue;
}
EXAMPLE 3:
cont { // node 1
outportl.value := inportl. prev.value *2;
streanvar.value : = inportl. prev(5).val ue;
inv {

streanvar.val ue > 200.0

}

until { // Transition
[streanvar.val ue >150] { streanvar.value =0; }
[streamvar. val ue >180] {}

}

5.4.3 Parallel mode composition: the par statement

The parallel composition of modes is specified by means of the par statement. A parallel composition may contain
sequential modes, parallel modes and atomic modes.

Syntactical Structure
The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

The general structure of the par statement is similar to the cont statement and the seq statement. It consists of a body
part, which defines the overall behaviour of the mode. In case of the par statement the body part contains the mode
definitions that are to be composed in parallel. The mode can define an optional invariant and a transition part, as well
as onentry and onexit blocks.

Semantic Description
In case of its activation, aparallel composition leads to aparallel execution of all composed (i.e. contained) modes.

While being active, each invariant of a composite mode has to hold. Additionally, each transition of a composite mode
ends the activity of the mode when it fires. Furthermore, each mode provides access to an individual local clock that
returns the time that has passed since the mode has been activated. The value of the local clock can be obtained by
means of the duration keyword.

ETSI

33 ETSI ES 202 786 V1.5.1 (2022-04)

The activation of a parallel mode leads to the parallel activation of all child modes. During execution, the parallel mode
is responsible to check the status of all contained modes. The execution of aparallel mode ends, either when atransition
in the transition block has fired or when the execution of at least one child mode has been completed. The second
situation is called a proper termination of a parallel mode and forces the local symbol finished to yield true (see
clause5.4.1.3).

Examples

EXAMPLE 1:

var integer count := 0
par {
cont {
x.val ue: =1
y.val ue: =2

until { // Transition
[z.value> 3.0] { }
[1 Port2.receive {}

}

cont {
x.val ue: =2
y.val ue: =1

until { // Transition
[z.value> 10.0] { }
[1 Portl.receive {}

}

until { // Transition
[finished] {if(count > 1) {count++; continue}}

NOTE 1. The predicate finished yieldst r ue only during the distinct sample step when a child of a parallel mode
has finished. Moreover, it yields true for every child element that has finished. Thus, it servesasa
notification event, which can be used to model complex termination conditions for parallel modes.

NOTE 2: For parallel execution, it is always possible that several children modes terminate at the same time. Thus,
counting the finished child modes to determine if al child modes have finished is not reliable. Instead, the
child modes should set conditions that can be queried in the finished.

EXAMPLE 2:

par {
cont {
x.val ue: =1
y.val ue: =2

until { // Transition
[z.value> 1.0] { }
[1 Portl.receive(nsgl) {}

}

cont {
x. val ue: =2
y.val ue: =1

until { // Transition
[z.value> 10.0] { }
[1 Portl.receive() {}

}

until { // Transition
[z.value > 11.0] { }
[1 Portl.receive(nsg) {}

54.4 Sequential mode composition: the seq statement

The sequential composition of modesis specified by means of the seq statement. A sequential composition may contain
sequential modes, parallel modes and atomic modes.

ETSI

34 ETSI ES 202 786 V1.5.1 (2022-04)

Syntactical Structure
The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

The genera structure of the seq statement is similar to the cont statement and the par statement. It consists of a body
part, which defines the overall behaviour of the mode. In case of the seq statement the body part contains the mode
definitions that are to be composed.

Semantic Description

In case of its activation, a sequential composition leads to a sequential execution of the composed (i.e. contained)
modes.

While being active, each invariant of a composite mode has to hold. Additionally, each transition of a composite mode
ends the activity of the mode when it fires. Furthermore, each mode provides access to an individual local clock that
returns the time that has passed since the mode has been activated. The value of the local clock can be obtained by
means of the duration keyword.

The activation of a sequential mode leads to the activation of itsfirst child mode. During execution, the sequential mode
isresponsible to schedule the contained modesin their sequential order. Thus, when a child mode has finished, the
target mode of the exit transition is activated. Per default, the target mode is the next mode is the sequence\. The
execution of a sequential mode ends either when atransition in the transition block is fired or when the execution of the
last child mode has been completed. The second situation is called a proper termination of a sequential mode and forces
the local symbol finished to yield true (see clause 5.4.1.3).

Example

The following example defines the sequential execution of two atomic modes, which are composed sequentialy by
means of a sequential mode.

EXAMPLE:

seq{
cont {
x. val ue: =1;
y.val ue: =2;

until { // Transition
[z.value> 2.0] { }
[1 Portl.receive() {}

cont {
x. val ue: =2;
y.val ue: =1;

until { // Transition
[z.value> 1.0] { }
[T Portl.receive() {}

}

until { // Transition
[z.value> 12.0] { }
[T Portl.receive(nmsg) {}

545 Parameterizable modes

5.45.0 General

To provide ahigher degree of flexibility, it is possible to specify parameterizable modes. Values, templates, ports, and
modes can be used as mode parameters. The definition of parameterizable modesis similar to the definition of TTCN-3
functions.

NOTE: Unlike functions parameterizable modes are not called in the sense of afunction call but inserted by
means of a substitution mechanism at compile time. Thus, the recursive application of parameterizable
modesis not possible.

ETSI

35 ETSI ES 202 786 V1.5.1 (2022-04)

5451 Parameterizable mode definitions

A parameterizable mode definition allows the definition of reusable and parameterizable modes. A parameterizable
mode may be defined within amodule.

Syntactical Structure
node MobdeNarre
["(" { (Formal Val uePar | Formal Ti merPar | Formal Tenpl atePar | Formal PortPar | Fornmal ModePar)
"."11 "l
[runs on Conponent Type]
(Cont Mbde | ParMbde | SegMode)

Semantic Description

In amodule, the behaviour of a mode can be defined by using the statements and operations described in clauses 5.4.1
t05.4.4.

Restrictions

a) If amode uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using ther uns on keywords in the mode header. The one exception to
thisruleisif al component-wide information used within the mode is passed in as parameters.

b) A modewithout r uns on clause shall never invoke functions or modeswith ar uns on clause localy.
Examples

EXAMPLE 1

mode nyMode runs on Tester cont{assert(engi ne_speed >= 500.0)}

EXAMPLE 2:
node pert_seq_2(in float startVal, in float increase, in float expected_speed)
runs on Tester
par {

seq{// perturbation sequence
cont{to_Set_Point:=startVal} until {[duration>=2.0]}
cont{to_Set_Point:=startVal + duration/to_Set_Point.delta*increase}
until {[duration>=5.0]}

cont{assert (engi ne_speed >= expected_speed);

}

testcase nmyTestcase runs on Engi neTester {
pert_seq_2(1000.0, 10.0, 500.0);
pert_seq_2(5000.0, 1.0, 0.0);

}

545.2 Mode types (optional)

Mode types are optional. They are available only if this extension package is used in combination with the TTCN-3
extension package ETSI ES 202 785 [6] "Behaviour Types'. If this package is used in combination with [6], both
packages have to be named with their package tags in the language clause of the TTCN-3 module in which the packages
are used.

Mode types are the set of identifiers of mode definitions with a specific parameter list and runs on clauses. They denote
those modes defined in the test suite that have a compatible parameter list and compatibler uns on clauses.

Syntactical Structure

type node Behavi or Typel dentifier
"(" { (Formal Val uePar | Formal Ti mer Par | Fornal Tenpl atePar | Fornal PortPar | Formal ModePar)

[(">"1' 1"
[runs on (Conponent Type | self]

ETSI

36 ETSI ES 202 786 V1.5.1 (2022-04)

Example

EXAMPLE:

type node ModeType assert_node() runs on Tester;

5.5 The wait statement

Syntactical Structure
wait "(" Expression ")"
Semantic Description

The wait statement suspends the execution of a component until a given point in time. The time point is specified asa
float value and relates to the internal clock.

The execution of the wait statement suspends the execution of the related component until the point in time specified by
its argument. If the argument holds a value that precedes the actual clock value an error verdict shall be set.

Example

EXAMPLE:

st reanout port.val ue = 10.0;
wai t (100. 0 + now); /'l suspends the execution of a conponent

/1] until 100.0 seconds after the start of the testcase
streanout port.value = 12.0;

NOTE: Thewait statement has no impact on sampling. All stream ports of the given component are still
sampled with respect to their sasmpling rate.

6 TRI extensions for the package

6.0 General

In addition to the TRI types defined in ETSI ES 201 873-5[3], the following type is used in TRI operations if static
configurations specified in ETSI ES 202 781 [7] are supported.

Tri Confi gurationl dType A value of type Tri Confi gurati onl dType includesauniqueidentifier of the
configuration and the configuration function name as specified in the TTCN-3 ATS.
This abstract type is used to resolve clock operations related to specific configurations
as there might be several configurations active in the same time.

ETSI

6.1

Clause 5.5.6

5.5.6.1

37 ETSI ES 202 786 V1.5.1 (2022-04)

Extensions to clause 5.5 of ETSI ES 201 873-5:
Communication interface operations

Stream operations

triSetStreamValue (TE — SA)

Signature

Tri StatusType tri Set Streanval ue
(in Tri Conponent | dType conponent|d,
in TriPortldType tsiPortld,
in Tri MessageType streanval ue)

In Parameters

component | d identifier of the sending test component

t si Por t | d identifier of the test system interface port via which the
message is sent to the SUT Adapter.

st r eanVal ue the encoded stream value (message) to be sent.

Out Parameters

n.a.

Return Value

The return status of the t ri Set St r eanVal ue operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of
the operation.

Constraints

The TE calls this operation when it executes a new sampling step on
a sampled output stream port, which has been mapped to a TSI port.
The TE calls the operation for all sampling steps of all outgoing
stream ports if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.

The encoding of st r eamVal ue has to be done in the TE prior to this
TRI operation call.

Effect

The SA can update the message to the SUT.

The tri Set St r eanVal ue operation returns TRI_OK in case it has
been completed successfully. Otherwise TRI_Error shall be returned.
Notice that the return value TRI_OK does not imply that the SUT has
received st r eanVal ue.

5.5.6.2

triGetStreamValue (TE — SA)

Signature

Tri StatusType tri Get Streanval ue
(in Tri Conponent | dType conponentld,
in TriPortldType tsiPortld,

out Tri MessageType streanVal ue)

In Parameters

conponent | d identifier of the sending test component.
t si Por t | d identifier of the test system interface port via which the
message is sent to the SUT Adapter.

Out Parameters

st r eanVal ue the encoded stream value (message) that has been
received from the SUT.

Return Value

The return status of the t ri Get St r eanVal ue operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of
the operation.

Constraints

The TE calls this operation when it executes a new sampling step on
a sampled input stream port, which has been mapped to a TSI port.
The TE calls the operation for all sampling steps of all outgoing
stream ports if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.

The decoding of st r eamVal ue has to be done in the TE after to this
TRI operation call.

Effect

The SA can update the stream value at the input port.
The t ri Get St r eamVal ue operation returns TRI_OK in case it has
been completed successfully. Otherwise TRI_Error shall be returned.

ETSI

6.2

38 ETSI ES 202 786 V1.5.1 (2022-04)

Extensions to clause 5.6 of ETSI ES 201 873-5: Platform
interface operations

Clause 5.6.4 Clock and sampling operations
5.6.4.1 triStartClock (TE — PA)
Signature Tri StatusType tri Startd ock(in |Iong ticksPerSecond)
In Parameters ti cksPer Second the precision of the clock given in ticks per
second.
Out Parameters n.a.
Return Value The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints n.a.

Effect The operation starts the test system clock with a given precision. The
precision is defined by the in parameter ticksPerSecond. The
parameter specifies the number of time units (ticks) that characterizes
a second.

5.6.4.2 triReadClock (TE — PA)
Signature Tri StatusType tri Readd ock(out | ong timepoint)
In Parameters n.a.
Out Parameters ti mepoi nt current time.

Return Value The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints There was a preceding invocation of
triStartd ock(int long ticksPerSecond).

Effect The operation yields the actual clock value. The clock value is given
by the out parameter t i mepoi nt, which represents the number of
time units (ticks) that has elapsed since the start of the clock (see
tri Startd ock).

5.6.4.3 triNextSampling (TE — PA, SA — PA)

Signature

Tri StatusType tri Next Sanpling
(in long timepoint,
in TriPortlDType port)

In Parameters

ti mepoi nt pointin time when the execution of the next sample step
for a given stream port shall be started
port the stream port the sample step is requested for.

Out Parameters

n.a.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

There was a preceding invocation of
triStartd ock(int long ticksPerSecond).

Effect

The operation signals that the next sample step for a given port shall
start at the specified point of time timepoint.
At this point in time the PA will issue a

tri ProcessStep(in TriPortlDLi st Type ports)
operation to inform the TE which ports shall be sampled next.
The parameter t i nepoi nt is expressed as the number of time units
(ticks), that has elapsed since the start of the clock (see
triStartd ock).
A call to this operation returns immediately. The operation merely
triggers the corresponding t ri Pr ocessSt ep operation.
Ifti mepoi nt represent a point of time in the past then the operation
returns a TRl _Er r or value and has no other effect.

ETSI

39 ETSI ES 202 786 V1.5.1 (2022-04)

5.6.4.4 triBeginWait (TE — PA)

Signature

Tri StatusType tri Begi nWai t
(in long tinmepoint,
in Tri Conponent | dType conponent)

In Parameters

ti mepoi nt pointin time until execution of a component should be
suspended.
conmponent component whose execution should be suspended.

Out Parameters

n.a.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

There was a preceding invocation of
triStartd ock(int long ticksPerSecond).

Effect

The operation signals that the execution of component component
should be suspended until the specified point of time t i mepoi nt .
At this point in time the PA will issue a

tri EndWai t (conmponent)
operation.
timepoint is expressed as the number of time units (ticks), that has
elapsed since the start of the clock (seetri St art O ock).
A call to this operation returns immediately. The operation merely
triggers the corresponding t ri EndWi t operation, it does not
schedule the execution of the component.
Ifti mepoi nt represent a point of time in the past then the operation
returns a TRl _Er r or value and has no other effect.

5.6.4.5

triProcessStep (PA — TE)

Signature

void triProcessStep(in TriPortlDListType ports)

In Parameters

Por t s a list of ports that shall be sampled at the operation call.

Out Parameters

n.a.

Return Value

n.a.

Constraints

There was a preceding invocation of
tri Next Sanpl i ng(tinmepoint, port).

5.6.4.6

Effect The operation signals that the point in time t i mepoi nt that was
specified in the corresponding
tri Next Sanpling(timepoint, port)
has been reached.
triEndWait (PA — TE)
Signature void tri EndWait (in Tri Conponent|dType conponent)

In Parameters

conmponent component of the corresponding triBeginWait operation.

Out Parameters

n.a.

Return Value

n.a.

Constraints

There was a preceding invocation of
triBegi nVi t (tinepoint, conponent).

Effect

The operation signals that the point in time t i mepoi nt that was
specified in the corresponding
triBegi nWAi t (tinepoint, conponent)

has been reached.

ETSI

40 ETSI ES 202 786 V1.5.1 (2022-04)

5.6.4.7 triStartClockStatic (TE — PA)
Signature Tri StatusType tri Startd ock(in Iong ticksPerSecond,
Tri ConfigurationldType ref)
In Parameters ti cksPer Second the precision of the clock given in ticks per
second.
r ef reference to the static configuration owning the clock.
Out Parameters n.a.
Return Value The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is optional and shall be present in the interface only if
static configurations specified in ETSI ES 202 781 [7] are supported.
Effect The operation starts the test system clock with a given precision. The
precision is defined by the in parameter ticksPerSecond. The
parameter specifies the number of time units (ticks) that characterizes
a second.
5.6.4.8 triReadClockStatic (TE — PA)
Signature Tri StatusType tri Readd ock(out |ong timepoint,
Tri ConfigurationldType ref)
In Parameters n.a.
Out Parameters ti mepoi nt current time.
r ef reference to the static configuration owning the clock.
Return Value The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is optional and shall be present in the interface only if

static configurations specified in ETSI ES 202 781 [7] are supported.
There was a preceding invocation of

triStartC ockStatic(int long ticksPerSecond,

Tri ConfigurationldType ref).

Effect The operation yields the actual clock value. The clock value is given
by the out parameter t i mepoi nt, which represents the number of
time units (ticks) that has elapsed since the start of the clock (see
tri Startd ock).

6.3 Extensions to clause 6.3.2 of ETSI ES 201 873-5:
Structured type mapping

6.3.1 TriConfigurationldType

6.3.1.0 General

Tri Confi gurationl dType is mapped to the following interface:

/1 TR 1DL TriConfigurationldType
package org.etsi.ttcn.tri;
public interface TriConfigurationld {
public String getConfigurationld();
public String getConfigurati onNanme();
publ i c bool ean equal s(Tri Configurationld conponent);

6.3.1.1 Methods

. get Configurationld
Returns a representation of this unique configuration identifier.

. get Confi gurati onNane
Returns the configuration function name as defined in the TTCN-3 specification.

ETSI

41 ETSI ES 202 786 V1.5.1 (2022-04)

° equal s
Comparesconf i gur ati on withthisTr i Confi gur ati onl d for equality. Returnst r ue if and only if
both configurations have the same representation of the unique configuration identifier, f al se otherwise.

6.4 Extensions to clause 6.5.2.1 of ETSI ES 201 873-5:
TriCommunicationSA

Thet ri Cormuni cat i onSA interface isto be extended as follows:

public interface tri Communi cationSA {

/| Stream operations

/] Ref: 5.5.6.1

public TriStatus tri Set StreanVal ue(Tri Conponentld conponent|d,
TriPortld tsiPortld,
Tri Message streanVal ue);

/] Ref: 5.5.6.2

public TriStatus tri Get StreanVal ue(Tri Conponentld conponent|d,
TriPortld tsiPortld,
Tri Address SUTaddr ess,
Tri Message streanVal ue);

6.5 Extensions to clause 6.5.3.1 of ETSI ES 201 873-5:
TriPlatformPA

Thetri Pl at f or nPA interface isto be extended as follows:
public interface triPlatfornPA {

// O ock and sanpling operations

/]l Ref: 5.6.4.1

public TriStatus triStartC ock(long ticksPerSecond);

/] Ref: 5.6.4.2

public TriStatus tri Readd ock(TrilLong tinmepoint);

/] Ref: 5.6.4.3

public TriStatus tri NextSanpling(long tinmepoint, TriPortld port);

/] Ref: 5.6.4.4

public TriStatus triBeginWait(int timepoint, TriConponentld conponent);

/] Ref: 5.6.4.7 (optional)

public TriStatus triStartC ockStatic(long ticksPerSecond, TriConfigurationld ref);
/] Ref: 5.6.4.8 (optional)

public TriStatus tri ReadC ockStatic(TrilLong tinmepoint, TriConfigurationld ref);

}
where Tri Long is defined asfollows:

package org.etsi.ttcn.tri;

public interface Trilong {
public void setlLongVal ue(long val ue);
public | ong getlLongVal ue();

ETSI

6.6
TriPlatformTE

42 ETSI ES 202 786 V1.5.1 (2022-04)

Extensions to clause 6.5.3.2 of ETSI ES 201 873-5:

Thetri Pl at f or niTE interface is to be extended as follows:

public interface triPlatfornTE {

)/ Cl ock and sanpling operations
/] Ref: 5.6.4.5

public void triProcessStep(TriPortldList ports);

/l Ref: 5.6.4.6

public void tri EndWait (Tri Conponentld conponent);}

6.7
type mapping

Extensions to clause 7.2.1 of ETSI ES 201 873-5: Abstract

TRIADT

ANSI C Representation

Notes and comments

Tri Configurationld

typedef struct
Tri Configurationld

Bi naryString confld;
Qual i fi edNanme conf Nane;
} Tri Conmponent | d;

conf | d is stands for the unique
configuration identifier and

conf Name is used for the name of
the related configuration function.

6.8
operation mapping

The tableisto be extended as follows:

Extensions to clause 7.2.4 of ETSI ES 201 873-5: TRI

IDL Representation

ANSI C Representation

Tri StatusType tri Set StreanVal ue(
in Tri Conponent | dType conponent|d,
in TriPortldType tsiPortld,

in Tri MessageType streanVal ue)

TriStatus tri Set StreanVal ue(

const Tri Conponent!|d *conponent|d,
const TriPortld *tsiPortld,

const Tri Message *streanVal ue)

Tri StatusType tri Get StreanVal ue(
in Tri Conponent | dType conponent|d,
in TriPortldType tsiPortld,

out Tri MessageType streanVal ue)

TriStatus tri GetStreanVal ue(

const Tri Conponent!|d *conponentld,
const TriPortld *tsiPortld,

const Tri Message *streanVal ue)

Tri StatusType tri Startd ock(in |ong
ti cksPer Second)

TriStatus triStartd ock(
const long |ong ticksPer Second)

Tri StatusType tri Readd ock(out |ong
ti mepoint)

Tri Status tri Readd ock(
const long long *tinmepoint)

Tri StatusType tri Next Sanpling
(inlong tinmepoint, in TriPortldType port)

Tri Status tri Next Sampling(
const long |long tinepoint,

const TriPortld port)

Tri StatusType tri Begi nWi t
(in long timepoint,
in Tri Conponent | dType conponent)

Tri Status triBegi nVait (
const long |ong tinmepoint,
const Tri Conponent|d conponent)

void triProcessStep(in TriPortldListType

void tri ProcessStep(

ports) const TriPortldList *ports)
void tri EndWait (in Tri Conponent|dType void tri EndWiit (
conponent) const Tri Conponent | d *conponent)

Tri StatusType triStartd ock(in |ong

ti cksPer Second)

TriStatus triStartC ockStatic(
const long long ticksPerSecond,
const TriConfigurationld *ref)

Tri StatusType tri Readd ock(out | ong
ti mepoint)

Tri Status tri Readd ockStati c(
const long |ong *timepoint,
const TriConfigurationld *ref)

ETSI

6.9

6.9.1

6.9.1.0

43 ETSI ES 202 786 V1.5.1 (2022-04)

Extensions to clause 8.5.2 of ETSI ES 201 873-5: Abstract
data types

TriConfigurationld

General

A value of type TriComponentld includes an identifier and configuration function name. This abstract typeisfor
distinguishing between different parallel configurationsin static clock operations:

class TriConfigurationld {

publi c:
vi rtual
vi rtual
vi rtual
vi rtual
vi rtual
vi rtual

6.9.1.1

~Tri Configurationld ();

const QualifiedName & get Configurati onName () const =0;

const Tstring & getConfigurationld () const =0;

Thool ean operator== (const Tri Configurationld &np) const =0;
Tri Configurationld * cloneConfigurationld () const =0;

Tbool ean operator< (const Tri Configurationld &np) const =0;

Methods

e ~TriConfigurationld

Destructor.

e get ConfigurationNane

Returns a const reference to the configuration function name.

e getConfigurationld

Returns the configuration unique identifier.

e operator==

Returnstrueif both TriConfigurationld objects are equal.

e cloneConponent|d

Returns a copy of the TriConfigurationld.

. oper at or <

6.10

Operator < overload.

Extensions to clause 8.6.1 of ETSI ES 201 873-5:
TriCommunicationSA

Thetri Cormuni cat i onSA interface isto be extended as follows:

class Tri Communi cationTe {

publi c:
)/ St ream operati ons
/] Ref: 5.5.6.1
vi rtual

Tri Status tri Set StreanVal ue(const Tri Conponent!|d *conponentld,

const TriPortld *tsiPortld,

const Tri Message *streanVal ue) =0;

/] Ref:

5.5.6.2

vi rtual

Tri Status tri GetStreanVal ue(const Tri Conponent!|d *conponentl!d,

const TriPortld *tsiPortld,

const Tri Message *streanVal ue) =0;

ETSI

44 ETSI ES 202 786 V1.5.1 (2022-04)

6.11 Extensions to clause 8.6.3 of ETSI ES 201 873-5:
TriPlatformPA

Thetri Pl at f or nPA interface is to be extended as follows:

class TriPlatfornPa {
public:

// dock and sanpling operations
/] Ref: 5.6.4.1
virtual TriStatus triStartd ock(const long |ong ticksPerSecond)=0;
/] Ref: 5.6.4.2
virtual TriStatus tri Readd ock(const |long | ong *tinepoint)=0;
/] Ref: 5.6.4.3
virtual TriStatus tri NextSanpling(const long long tinepoint, const TriPortld *port)=0;
/] Ref: 5.6.4.4
virtual TriStatus triBegi nWiit(const long |ong tinepoint, const TriConponentld *conponent)=0;
/] Ref: 5.6.4.7 (optional)
virtual TriStatus triStartd ockStatic(const long |ong ticksPerSecond,
const Tri Configurationld *ref)=0;
/] Ref: 5.6.4.8 (optional)
virtual TriStatus tri Readd ockStatic(const long |ong *tinepoint,
const Tri Configurationld *ref)=0;

6.12 Extensions to clause 8.6.4 of ETSI ES 201 873-5:
TriPlatformTE

Thetri Pl at f or niTE interface is to be extended as follows:

class TriPlatfornile {
public:

/] O ock and sanpling operations

/] Ref: 5.6.4.5

virtual void triProcessStep(const TriPortldList *ports)=0;
/] Ref: 5.6.4.6

virtual void tri EndWait(const Tri Conponentld *conponent) =0;

6.13 Extensions to clause 9.4.2 of ETSI ES 201 873-5:
Structured type mapping

6.13.1 TriConfigurationldType

6.13.1.0 General

TriConfigurationldTypeis mapped to the following interface:
public interface |Tri Configurationld {
string Configurationld { get; }

I QualifiedNane ConfigurationName { get; }
bool Equal s(ITri Configurationld conp);

6.13.1.1 Members

(] Configurationld
Returns a representation of this unique configuration identifier.

. Confi gurati onNane
Returns the configuration function name as defined in the TTCN-3 specification.

ETSI

45 ETSI ES 202 786 V1.5.1 (2022-04)

. Equal s
Compares a configuration with thisTr i Conf i gur at i onl d for equality. Returnst r ue if and only if both
configurations have the same representation of the unique configuration identifier, f al se otherwise.

6.14 Extensions to clause 9.5.2.1 of ETSI ES 201 873-5:
ITriCommunicationSA

Thel Tri Conmmuni cati onSA interface isto be extended as follows:
public interface | Tri Comuni cati onSA {

/| Stream operations

/] Ref: 5.5.6.1

Tri Status Tri Set Streanval ue(l Tri Conponent | d conponent|d,
| TriPortld tsiPortld,
| Tri Message streanval ue);

/] Ref: 5.5.6.2

Tri Status Tri Get Streanval ue(l Tri Conponent|d conponentld,
| TriPortld tsiPortld,
| Tri Message streanval ue);

6.15 Extensions to clause 9.5.2.3 of ETSI ES 201 873-5:
ITriPlatformPA

Thel Tri Pl at f or nPA interface isto be extended as follows:
public interface |TriPlatfornPA {

// dock and sanpling operations

/]l Ref: 5.6.4.1

TriStatus TriStartd ock(long ticksPerSecond);

/] Ref: 5.6.4.2

Tri Status Tri Readd ock(out |ong tinepoint);

/] Ref: 5.6.4.3

Tri Status Tri Next Sanpling(long tinmepoint, ITriPortld port);

/] Ref: 5.6.4.4

Tri Status TriBegi nWait(long tinmepoint, |TriConponentld conponent);

/] Ref: 5.6.4.7 (optional)

TriStatus TriStartC ockStatic(long ticksPerSecond, |TriConfigurationld refConf);
/] Ref: 5.6.4.8 (optional)

Tri Status Tri Readd ockStatic(out long tinmepoint, |TriConfigurationld refConf);

6.16 Extensions to clause 9.5.2.4 of ETSI ES 201 873-5:
ITriPlatformTE

Thel Tri Pl at f or nTE interfaceisto be extended as follows:
public interface |TriPlatfornTE {

// dock and sanpling operations

// Ref: 5.6.4.5

void TriProcessStep(l TriPortldList ports);
// Ref: 5.6.4.6

voi d Tri EndWi t (I Tri Conponent|d conponent);

ETSI

46 ETSI ES 202 786 V1.5.1 (2022-04)

7 TCI extensions for the package

7.1 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH
provided

Clause 7.3.3.2.31 tciSetStreamValueReq (TE — CH)

Signature

voi d tci Set StreanVal ueReq

(in TriPortldType sender,
in TriConponent| dType receiver,
in Val ue streanval ue)

In Parameters

sender identifier of the port via which the message is sent to the
receiving component.

recei ver identifier of the receiving component.

st r eanVal ue the stream value to be set.

Out Parameters

n.a.

Return Value

voi d

Constraints

The TE calls this operation at the CH when it executes a new
sampling step on a sampled output stream port, which has been
connected with a test component port.

Effect

If receiving at ci Set St r eanVal ueReq operation, the CH can call
t ci Set St reanVal ue in the TE on the node where the receiver
component is deployed.

Clause 7.3.3.2.33

tciGetStreamValueReq (TE — CH)

Signature

voi d tci Get StreanVal ueReq

(in TriPortldType receiver,
in TriConponent| dType sender,
i n Val ue streanval ue)

In Parameters

recei ver identifier of the port via which the message is received
from the sending component.

sender identifier of the sending component.

st r eanVal ue the stream value to be received.

Out Parameters

n.a.

Return Value

voi d

Constraints

The TE calls this operation at the CH when it executes a new
sampling step on a sampled input stream port, which has been
connected with a test component port.

Effect

The CH calls t ci Get St r eanVal ue in the TE on the node where the
sending component is deployed.

ETSI

47 ETSI ES 202 786 V1.5.1 (2022-04)

7.2 Extensions to clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH

required

Clause 7.3.3.1.23

tciSetStreamValue (CH — TE)

Signature

voi d tci Set StreanVval ue

(in TriPortldType sender,
in Tri Conponent| dType receiver,
in Val ue streanval ue)

In Parameters

sender identifier of the port via which the message is sent to the
receiving component.

recei ver identifier of the receiving component.

st r eanVal ue the stream value to be set.

Out Parameters

n.a.

Return Value

voi d

Constraints

The CH calls this operation in the local TE where r ecei ver is
deployed when t ci Set St r eanVal ueReq has been called.

Effect

The CH updates the respective outgoing stream port on the test
component.

Clause 7.3.3.1.24

tciGetStreamValue (CH — TE)

Signature

voi d tci Get Streanval ue

(in TriPortldType receiver,
in Tri Conponent| dType sender,
in Val ue streanval ue)

In Parameters

recei ver identifier of the port via which the message is received
from the sending component.

sender identifier of the sending component.

st r eanVal ue the stream value to be received.

Out Parameters

n.a.

Return Value

voi d

Constraints

The CH calls this operation in the local TE where sender is deployed
when t ci Get St r eanVal ueReq has been called.

Effect

The CH updates the respective incoming stream port on the test

component.

7.3 Extensions to clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH

provided

Theinterface Tci CHPr ovi ded isto be extended as follows:

public interface Tci CHProvi ded {

publ i ¢ voi d

tci SetStreanval ue (TriPortld sender,

Tri Conponent | d receiver
Val ue streanwval ue) ;

tci GetStreanval ue (TriPortld receiver
Tri Conponent | d sender
Val ue streanval ue)

public void

ETSI

48 ETSI ES 202 786 V1.5.1 (2022-04)

7.4 Extensions to clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH
required

Theinterface Tci CHRequi r ed isto be extended as follows:
public interface Tci CHRequired extends Tci CDRequired {

public void tci Set StreanVal ueReq (Tri Portld sender,
Tri Conponent | d receiver,
Val ue streanval ue) ;

public void tci Get Streanval ueReq (TriPortld receiver,
Tri Conponent | d sender,
Val ue streanval ue) ;

7.5 Extensions to clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH
provided

Theinterface TCl - CH Provi ded isto be extended as follows:

voi d tci Set Streanval ue (Tri Portld sender, Tri Conponentld receiver, Value streanVal ue)
voi d tci GetStreanvalue (TriPortld receiver, TriConponentld sender, Val ue streanVal ue)

7.6 Extensions to clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH
required

Theinterface TCl - CH Requi r ed isto be extended as follows:

voi d t ci Set Streanval ueReq
(TriPortld sender, TriConponentld receiver, Value streanVal ue)
voi d t ci Get Streanval ueReq

(TriPortld receiver, TriConponentld sender, Value streanVal ue)

7.7 Extensions to clause 10.6.3.1 of ETSI ES 201 873-6:
TciChRequired

The class that defines the TCI_CH required interface is to be extended as follows:

virtual void tci SetStreanval ueReq

(const TriPortld *sender, const Tri Conponentld *receiver, const TciVal ue *streanVal ue) =0;
virtual void tci GetStreanval ueReq

(const TriPortld *receiver, const Tri Conponentld *sender, const Tci Val ue *streanVal ue) =0;

7.8 Extensions to clause 10.6.3.2 of ETSI ES 201 873-6:
TciChProvided

The class that defines the TCI_CH provided interface is to be extended as follows:

virtual void tci SetStreanval ue

(const TriPortld *sender, const Tri Conponentld *receiver, const TciValue *streanVal ue)=0;
virtual void tciCetStreanval ue

(const TriPortld *receiver, const Tri Conponentld *sender, const Tci Val ue *streanVal ue) =0;

ETSI

49 ETSI ES 202 786 V1.5.1 (2022-04)

7.9 Extensions to clause 12.5.3.1 of ETSI ES 201 873-6:
TCI-CH provided

Theinterface| Tci CHPr ovi ded isto be extended as follows:

public interface |Tci CHProvided {

public void tci Set Streamval ue (I TriPortld sender,
| Tri Conponent I d receiver,
| Tci Val ue streanval ue) ;
public void tci GetStreanvalue (I TriPortld receiver,
| Tri Conponent I d sender,
| Tci Val ue streanval ue) ;

7.10 Extensions to clause 12.5.3.2 of ETSI ES 201 873-6:
TCI-CH required

Theinterface| Tci CHRequi r ed isto be extended as follows:

public interface | Tci CHRequired {

public void tci Set Streanval ueReq (I TriPortld sender,
| Tri Conponent I d receiver,
| Tci Val ue streanval ue) ;
public void tci Get Streanval ueReq (I TriPortld receiver,
| Tri Conponent I d sender,
| Tci Val ue streanval ue) ;

~

ETSI

50 ETSI ES 202 786 V1.5.1 (2022-04)

Annex A (normative):
BNF and static semantics

Al New TTCN-3 terminals

Table A.1: List of new TTCN-3 terminals defined in this package which are reserved words

apply hi story par val ues

assert prev

at inv wai t
seq

cont node st epsi ze
stream

delta noti nv

duration ti mestanp

onentry
finished onexi t unti |

The TTCN-3 terminalslisted in table A.1 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be
written in al lowercase | etters.

A.2 Changed BNF Rules

This clause includes al BNF productions that are modifications of BNF rules defined in the TTCN-3 core language
document ETSI ES 201 873-1 [1]. When using this package the BNF rules below replace the corresponding BNF rules
in the TTCN-3 core language document. The rule numbers define the correspondence of BNF rules.

Additions to clause A.1.6 of ETSI ES 201 873-1 [1] are identified by underlined font, deletions are identified by
strikethrough font. In case of contradiction between the above clause of ETSI ES 201 873-1 [1] and this clause (i.e.
parts of the productions not marked by strikethrough font is changed in ETSI ES 201 873-1[1]), ETSI ES 201 873-1[1]
takes precedence, i.e. tools supporting the present document shall apply the insertions and del etions of this clause to the
actual ETSI ES 201 873-1 [1] production or static semantics rule automatically.

7. Modul eDefinition ::= (([Visibility] (TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al t st epDef |
| npor t Def |
Ext Functi onDef |
Ext Const Def |
Modul eCont r ol Def |
ModeDef
)) |
(["public"] G oupDef) |
(["private"] FriendMddul eDef)
) [WthStatenent]

52. PortDef Attribs ::= MessageAttribs |

ProcedureAttribs |

M xedAttribs |

StreamAttribs
81. PortElement ::= ldentifier [ArrayDef] [AssignmentChar Portlnitial Val ue]
177. FunctionStatenent ::= ConfigurationStatenents |

Ti mer St at ement s |

Conmuni cati onSt at ement s |
Basi cStatenents |

Behavi our St at enent s |

Set Local Verdict |

SUTSt at ement s |

Test caseQperation |
Assert St at enent |

Wi t St at ement

ETSI

51 ETSI ES 202 786 V1.5.1 (2022-04)

308. Communi cationStatenments ::= SendStatenent |
Cal | Statenment |
Repl ySt at enent |
Rai seSt at ement |
[NoDef aul t Modi fier] ReceivingStatenment |
Cl ear Statenent |
Start Statement |
St opSt at enent |
Hal t St at emrent |
CheckSt at eSt at ement |
St reanEval St at enent s
479. AttribKeyword ::= EncodeKeyword |
Di spl ayKeyword |
Ext ensi onKeyword |
Opt i onal Keyword |
St epsi zeKeywor d
492. Behavi our Statenents ::= Testcasel nstance |
Functi onl nst ance |
Ret ur nSt at enent |
Al t Construct |
I nterl eavedConstruct |
Label St at enent |
Got oSt at enent |
Repeat St at enent |
Deacti vat eSt at enent |
Al t st epl nstance |
ActivateOp |
Br eakSt at enent |
Conti nueSt atenent |
MbdeSpeci fi cati on
557. pCall ::= ConfigurationQOps |
Get Local Verdi ct |
Ti mer Ops |
Test casel nst ance |
(Functionl nstance [Ext endedFi el dRef erence]) |
(Tenpl at eOps [Ext endedFi el dRef erence]) |
ActivateQp |
CGetAttributeQ |
NowQp |
St r eanDat aQps |
St reanNavi gati onQps |
MbdeLocal Ops

A.3 New BNF Rules

This clause includes all additional BNF productions that needed to define the syntax introduced by this package. All
rules start with the digits " 786". The numbering of other new rules start with number 786001.

786001. NowOp ::= "now'

786002. StepsizeKeyword ::= "stepsize"

786003. StreamAttribs ::= StreankKeyword "{" {(StreanVal ueDef | ConfigParanDef) [Sem Colon]}+ "}"
786004. StreanVal ueDef ::= StreanDirection Type

786005. StreankKeyword ::= "streant

786006. StreanmDirection ::= | nParKeyword | QutParKeyword | | nQut Par Keyword

786007. PortlnitialValue ::= Expression

786008. StreanDataQps ::= ArrayldentifierRef Dot PortDataQp

[** STATI C SEMANTI CS The ArrayldentifierRef part shall identify a stream port*/
786009. PortDataQp ::= PortVal ue® |

PortTi nmest anpQp |

PortDel taQp |

Port Hi storyQp |

Port Val uesQp

786010. PortVal ueQp ::= Val ueKeyword

786011. PortTi nestanpOp ::= "tinestanp"

786012. PortDeltaQ®p ::= "delta"

786013. PortH storyQp ::= HistoryOpKeyword ["(" StartValue ["," EndValue] ")"]

786014. Hi storyOpKeyword ::= "history"

786015. StartVal ue ::= Expression

786016. EndVal ue ::= Expression

786017. PortVal uesQp ::= Val uesQoKeyword ["(" StartValue ["," EndValue] ")"]

786018. Val uesOpKeyword ::= "val ues"

786019. StreamNavi gationOps ::= ArrayldentifierRef Dot (PortPrevOp | PortAtOp) [Dot PortDataQp]

/** STATI C SEMANTI CS The ArrayldentifierRef part shall identify a stream port*/

ETSI

52 ETSI ES 202 786 V1.5.1 (2022-04)

786020. PortPrevQp ::= PrevOpKeyword ["(" IndexValue ")"]
786021. PrevOpKeyword ::= "prev"
786022. |ndexVal ue ::= Expression
786023. PortAtOp ::= At OpKeyword [" (" Timel ndexValue ")"]
786024. At OpKeyword ::= "at"
786025. Ti el ndexVal ue ::= Expression
786026. MddelLocal Ops ::= DurationCp | FinishedOp | NotinvOp
786027. DurationOp ::= "duration"
786028. Fini shedOp ::= "finished"
786029. NotinvOp ::= "notinv"
786030. Streanktval Statements ::= ArrayldentifierRef Dot PortApplyQp
/** STATI C SEMANTI CS The ArrayldentifierRef part shall identify a streamport*/
786031. PortAppl yOp ::= Appl yKeyword ["(" ApplyParanmeter ")"]
786032. Appl yKeyword ::= "apply"
786033. Appl yParaneter ::= Tenpl at el nstance
786034. AssertStatenent ::= AssertKeyword [" (" AssertionList ")"]
786035. AssertKeyword ::= "assert"
786036. AssertionList ::= Expression {"," Expression }
786037. Wit Statenent = Wi t Keyword " (" WaitDuration ")"
786038. \WaitKeyword ::= "wait"
786039. Wi tDuration ::= Expression
786040. MbdeSpecification ::= (BasicMdde | SeqMbde | ParMbde) [UntilBlock] | Mddel nstance
786041. BasicMdde ::= Cont Keyword "{" {Varlnstance [Semni Col on]}

[OnEnt ryBIl ock]

[I nvari ant Bl ock]

{Basi cModeOp [Sem Col on]}

[OnExi t Bl ock]

nye

786042. Cont Keyword ::= "cont"
786043. OnEntryBl ock ::= OnEntryKeyword "{" StatenentBl ock "}"
786044. OnEntryKeyword ::= "onentry"
786045. InvariantBlock ::= InvKeyword "{" InvariantList "}"
786046. |nvKeyword ::= "inv"
786047. InvariantlList ::= [Bool eanExpression {"," Bool eanExpression }]

786048. Basi cMbde(p ::
786049. OnExitBlock ::

Assi gnment | Assert St at enment
OnExi t Keyword "{" StatenentBl ock "}"

786050. OnExitKeyword ::= "onexit"
786051. SegMbde ::= SeqgKeyword "{" {Varlnstance}

[OnEnt ryBI ock]

[I nvari ant Bl ock]

ModelLi st

[OnExi t Bl ock]

ny

786052. Par Mbde ::= ParKeyword "{" {Varlnstance}

[OnEnt r yBI ock]

[I nvari ant Bl ock]

{ ModeSpecification [Seni Col on] }

[OnExi t Bl ock]

ny

786053. SeqKeyword ::= "seq"
786054. Par Keyword ::= "par"
786055. Mbdelist ::= { [Label Statenent [Sem Colon]] MdeSpecification [Sem Col on] }
786056. UntilBlock ::= Until Keyword "{" Until GuardList "}"
786057. Until Keyword ::= "until"
786058. Until QuardList ::= {Until GuardSt at enent}
786059. Until GuardStatenent ::= (("[" Bool eanExpression "]" [QuardOp]) | ("[" "]1" GuardOp))

[St at enent Bl ock] [Got oSt at enent |

786060. ModeTypeDef TypeDef Keywor d ModeKeyword | dentifier

["(" Tenpl ateOrVal ueFor mal ParList ")"]
[RunsOnSpec

786061. MbdeKeyword ::= "node"

786062. MbdeDef ::= MddeKeyword ldentifier
["(" Tenpl ateOr Val ueFormal ParList ")"]
[RunsOnSpec
MbdeSpeci fi cati on

786063. Mbddel nstance ::= MdeRef "(" Actual ParList ")"

786064. ModeRef ::= [ldentifier Dot] Identifier

ETSI

53 ETSI ES 202 786 V1.5.1 (2022-04)

Annex B (informative):
Bibliography

ALUR, Rgjeev; COURCOUBETIS, Costas;, HENZINGER, Thomas A.; HO, Pei-Hsin: "Hybrid Automata:
An Algorithmic Approach to the Specification and Verification of Hybrid Systems'. In: Hybrid Systems,
1992, S. 209-229.

ALUR, Rajeev (Hrsg.); HENZINGER, Thomas A. (Hrsg.); SONTAG, Eduardo D. (Hrsg.): Hybrid

Systems |11: "Verification and Control, Proceedings of the DIMACS/SY CONWorkshop", October 22-25,
1995, Ruttgers University, New Brunswick, NJ, USA. Bd. 1066. Springer, 1996 (L ecture Notesin Computer
Science). - ISBN 3-540-61155-X.

BROY, Manfred: "Refinement of Time". In: BERTRAN, M. (Hrsg.); RUS, Th. (Hrsg.): Transformation-Based
Reactive System Development, ARTS97, TCS, 44 - 63.

CONRAD, M.: "Modell-basierter Test eingebetteter Software im Automobil™: Auswahl und Beschreibung von
Testszenarien. Dissertation, Deutscher Universitétsverlag, Wiesbaden (D), 2004.

CONRAD, M.; SAX, E.: "Mixed Signals'. In: E. Broekman, E. Notenboom: "Testing Embedded Software".
Addison-Wesley, London (GB), 2003, S. 229-249.

DIN 40146: "Begriffe der Nachrichtenlbertragung”.

ETSI

54 ETSI ES 202 786 V1.5.1 (2022-04)

History
Document history

V111 April 2012 Publication

V121 June 2014 Publication

V131 June 2015 Publication

V1i4.1 May 2017 Publication

V151 February 2022 Membership Approval Procedure MV 20220410: 2022-02-09 to 2022-04-11
V15.1 April 2022 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Package conformance and compatibility
	5 Package concepts for the core language
	5.0 General
	5.1 Time and Sampling
	5.1.0 General
	5.1.1 The now operator
	5.1.2 Define the default step size for sampling

	5.2 Data streams
	5.2.0 General
	5.2.1 Data Streams: static perspective
	5.2.2 Data Streams: dynamic perspective
	5.2.2.0 General
	5.2.2.1 Defining stream port types
	5.2.2.2 Declaration and instantiation of stream ports
	5.2.2.3 The Connect and Map operations

	5.2.3 Data Streams: access operations
	5.2.3.0 General
	5.2.3.1 The value operation
	5.2.3.2 The timestamp operation
	5.2.3.3 The delta operation

	5.2.4 Data Streams: navigation operations
	5.2.4.0 General
	5.2.4.1 The prev operation
	5.2.4.2 The at operation

	5.2.5 Data Streams: extraction and application operations
	5.2.5.0 General
	5.2.5.1 The history operation
	5.2.5.2 The values operation
	5.2.5.3 The apply operation

	5.2.6 Port control operations
	5.2.7 Stream ports in static configurations

	5.3 The assert statement
	5.4 Control structures for continuous and hybrid behaviour
	5.4.0 General
	5.4.1 Modes
	5.4.1.0 General
	5.4.1.1 Definition of the until block
	5.4.1.1.0 General
	5.4.1.1.1 Definition of transition guards and events
	5.4.1.1.2 Definition of follow up modes
	5.4.1.1.3 The repeat statement
	5.4.1.1.4 The continue statement

	5.4.1.2 Definition of invariant blocks
	5.4.1.3 Definition of the onentry block
	5.4.1.4 Definition of the onexit block
	5.4.1.5 Local predicate symbols in the context of modes
	5.4.1.6 The duration operator

	5.4.2 Atomic modes: the cont statement
	5.4.3 Parallel mode composition: the par statement
	5.4.4 Sequential mode composition: the seq statement
	5.4.5 Parameterizable modes
	5.4.5.0 General
	5.4.5.1 Parameterizable mode definitions
	5.4.5.2 Mode types (optional)

	5.5 The wait statement

	6 TRI extensions for the package
	6.0 General
	6.1 Extensions to clause 5.5 of ETSI ES 201 873-5: Communication interface operations
	6.2 Extensions to clause 5.6 of ETSI ES 201 873-5: Platform interface operations
	6.3 Extensions to clause 6.3.2 of ETSI ES 201 873-5: Structured type mapping
	6.3.1 TriConfigurationIdType
	6.3.1.0 General
	6.3.1.1 Methods

	6.4 Extensions to clause 6.5.2.1 of ETSI ES 201 873-5: TriCommunicationSA
	6.5 Extensions to clause 6.5.3.1 of ETSI ES 201 873-5: TriPlatformPA
	6.6 Extensions to clause 6.5.3.2 of ETSI ES 201 873-5: TriPlatformTE
	6.7 Extensions to clause 7.2.1 of ETSI ES 201 873-5: Abstract type mapping
	6.8 Extensions to clause 7.2.4 of ETSI ES 201 873-5: TRI operation mapping
	6.9 Extensions to clause 8.5.2 of ETSI ES 201 873-5: Abstract data types
	6.9.1 TriConfigurationId
	6.9.1.0 General
	6.9.1.1 Methods

	6.10 Extensions to clause 8.6.1 of ETSI ES 201 873-5: TriCommunicationSA
	6.11 Extensions to clause 8.6.3 of ETSI ES 201 873-5: TriPlatformPA
	6.12 Extensions to clause 8.6.4 of ETSI ES 201 873-5: TriPlatformTE
	6.13 Extensions to clause 9.4.2 of ETSI ES 201 873-5: Structured type mapping
	6.13.1 TriConfigurationIdType
	6.13.1.0 General
	6.13.1.1 Members

	6.14 Extensions to clause 9.5.2.1 of ETSI ES 201 873-5: ITriCommunicationSA
	6.15 Extensions to clause 9.5.2.3 of ETSI ES 201 873-5: ITriPlatformPA
	6.16 Extensions to clause 9.5.2.4 of ETSI ES 201 873-5: ITriPlatformTE

	7 TCI extensions for the package
	7.1 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH provided
	7.2 Extensions to clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH required
	7.3 Extensions to clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.4 Extensions to clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH required
	7.5 Extensions to clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.6 Extensions to clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH required
	7.7 Extensions to clause 10.6.3.1 of ETSI ES 201 873-6: TciChRequired
	7.8 Extensions to clause 10.6.3.2 of ETSI ES 201 873-6: TciChProvided
	7.9 Extensions to clause 12.5.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.10 Extensions to clause 12.5.3.2 of ETSI ES 201 873-6: TCI-CH required

	Annex A (normative): BNF and static semantics
	A.1 New TTCN-3 terminals
	A.2 Changed BNF Rules
	A.3 New BNF Rules

	Annex B (informative): Bibliography
	History

