

Final draft ETSI ES 202 786 V1.4.1 (2017-03)

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;

TTCN-3 Language Extensions:
Support of interfaces with continuous signals

ETSI STANDARD

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)2

Reference
RES/MTS-202786 ed141ContSign

Keywords
interface, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2017.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 7

3 Definitions and abbreviations ... 7

3.1 Definitions .. 7

3.2 Abbreviations ... 7

4 Package conformance and compatibility .. 7

5 Package concepts for the core language ... 8

5.0 General ... 8

5.1 Time and Sampling .. 9

5.1.0 General .. 9

5.1.1 The now operator .. 9

5.1.2 Define the default step size for sampling .. 10

5.2 Data streams ... 10

5.2.0 General .. 10

5.2.1 Data Streams: static perspective ... 11

5.2.2 Data Streams: dynamic perspective .. 12

5.2.2.0 General .. 12

5.2.2.1 Defining stream port types .. 12

5.2.2.2 Declaration and instantiation of stream ports .. 13

5.2.2.3 The Connect and Map operations .. 14

5.2.3 Data stream access operations .. 15

5.2.3.0 General .. 15

5.2.3.1 The value operation ... 15

5.2.3.2 The timestamp operation ... 16

5.2.3.3 The delta operation .. 16

5.2.4 Data stream navigation operations .. 17

5.2.4.0 General .. 17

5.2.4.1 The prev operation .. 17

5.2.4.2 The at operation .. 18

5.2.5 Data stream extraction and application operations ... 19

5.2.5.0 General .. 19

5.2.5.1 The history operation .. 19

5.2.5.2 The values operation ... 20

5.2.5.3 The apply operation... 20

5.2.6 Port control operations .. 21

5.2.7 Stream ports in static configurations ... 22

5.3 The assert statement ... 22

5.4 Control structures for continuous and hybrid behaviour .. 23

5.4.0 General .. 23

5.4.1 Modes ... 23

5.4.1.0 General .. 23

5.4.1.1 Definition of the until block .. 25

5.4.1.1.0 General .. 25

5.4.1.1.1 Definition of transition guards and events ... 25

5.4.1.1.2 Definition of follow up modes ... 26

5.4.1.1.3 The repeat statement .. 27

5.4.1.1.4 The continue statement .. 27

5.4.1.2 Definition of invariant blocks ... 27

5.4.1.3 Definition of the onentry block ... 28

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)4

5.4.1.4 Definition of the onexit block ... 29

5.4.1.5 Local predicate symbols in the context of modes ... 30

5.4.1.6 The duration operator .. 30

5.4.2 Atomic modes: the cont statement .. 31

5.4.3 Parallel mode composition: the par statement .. 32

5.4.4 Sequential mode composition: the seq statement.. 33

5.4.5 Parameterizable modes ... 34

5.4.5.0 General .. 34

5.4.5.1 Parameterizable mode definitions ... 34

5.4.5.2 Mode types (optional) ... 35

5.5 The wait statement.. 35

6 TRI extensions for the package .. 36

6.0 General ... 36

6.1 Extensions to clause 5.5 of ETSI ES 201 873-5: Communication interface operations 36

6.2 Extensions to clause 5.6 of ETSI ES 201 873-5: Platform interface operations... 37

6.3 Extensions to clause 6.3.2 of ETSI ES 201 873-5: Structured type mapping ... 40

6.3.1 TriConfigurationIdType .. 40

6.3.1.0 General .. 40

6.3.1.1 Methods ... 40

6.4 Extensions to clause 6.5.2.1 of ETSI ES 201 873-5: TriCommunicationSA ... 40

6.5 Extensions to clause 6.5.3.1 of ETSI ES 201 873-5: TriPlatformPA ... 40

6.6 Extensions to clause 6.5.3.2 of ETSI ES 201 873-5: TriPlatformTE ... 41

6.7 Extensions to clause 7.2.1 of ETSI ES 201 873-5: Abstract type mapping .. 41

6.8 Extensions to clause 7.2.4 of ETSI ES 201 873-5: TRI operation mapping ... 42

6.9 Extensions to clause 8.5.2 of ETSI ES 201 873-5: Abstract data types ... 42

6.9.1 TriConfigurationId .. 42

6.9.1.0 General .. 42

6.9.1.1 Methods ... 42

6.10 Extensions to clause 8.6.1 of ETSI ES 201 873-5: TriCommunicationSA .. 43

6.11 Extensions to clause 8.6.3 of ETSI ES 201 873-5: TriPlatformPA .. 43

6.12 Extensions to clause 8.6.4 of ETSI ES 201 873-5: TriPlatformTE .. 43

6.13 Extensions to clause 9.4.2 of ETSI ES 201 873-5: Structured type mapping ... 44

6.13.1 TriConfigurationIdType .. 44

6.13.1.0 General .. 44

6.13.1.1 Members ... 44

6.14 Extensions to clause 9.5.2.1 of ETSI ES 201 873-5: ITriCommunicationSA .. 44

6.15 Extensions to clause 9.5.2.3 of ETSI ES 201 873-5: ITriPlatformPA .. 45

6.16 Extensions to clause 9.5.2.4 of ETSI ES 201 873-5: ITriPlatformTE .. 45

7 TCI extensions for the package .. 45

7.1 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH provided .. 45

7.2 Extensions to clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH required ... 46

7.3 Extensions to clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH provided .. 47

7.4 Extensions to clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH required ... 47

7.5 Extensions to clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH provided .. 47

7.6 Extensions to clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH required ... 47

7.7 Extensions to clause 10.6.3.1 of ETSI ES 201 873-6: TciChRequired .. 47

7.8 Extensions to clause 10.6.3.2 of ETSI ES 201 873-6: TciChProvided ... 48

7.9 Extensions to clause 12.5.3.1 of ETSI ES 201 873-6: TCI-CH provided... 48

7.10 Extensions to clause 12.5.3.2 of ETSI ES 201 873-6: TCI-CH required ... 48

Annex A (normative): BNF and static semantics .. 49

A.1 New TTCN-3 terminals .. 49

A.2 Changed BNF Rules ... 49

A.3 New BNF Rules ... 50

Annex B (informative): Bibliography ... 52

History .. 53

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This final draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The use of underline (additional text) and strike through (deleted text) highlights the differences between base
document and extended documents.

The present document relates to the multi-part standard ETSI ES 201 873 covering the Testing and Test Control
Notation version 3, as identified below:

Part 1: "TTCN-3 Core Language";

Part 4: "TTCN-3 Operational Semantics";

Part 5: "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part 8: "The IDL to TTCN-3 Mapping";

Part 9: "Using XML schema with TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification".

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)6

1 Scope
The present document defines the "Continuous Signal support" package of TTCN-3. TTCN-3 can be used for the
specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocols is outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines concepts for testing systems using continuous signals as opposed to discrete messages and the
characterization of the progression of such signals by use of streams. For both the production as well as the evaluation
of continuous signals the concept of mode is introduced. Also, the signals can be processed as history-traces. Finally,
basic mathematical functions that are useful for analyzing such traces are defined for TTCN-3. It is thus especially
useful for testing systems which communicate with the physical world via sensors and actuators.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1 (V4.9.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language".

[2] ETSI ES 201 873-4 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".

[3] ETSI ES 201 873-5 (V4.8.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6 (V4.9.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] ISO/IEC 9646-1: "Information technology -- Open Systems Interconnection -- Conformance
testing methodology and framework; Part 1: General concepts".

[6] ETSI ES 202 785 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types".

[7] ETSI ES 202 781 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment
Support".

https://docbox.etsi.org/Reference

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)7

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.2] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.3] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schema with TTCN-3".

[i.4] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

[i.5] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".

[i.6] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1], ETSI
ES 201 873-4 [2], ETSI ES 201 873-5 [3], ETSI ES 201 873-6 [4] and ISO/IEC 9646-1 [5] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in ETSI ES 201 873-1 [1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5 [3], ETSI ES 201 873-6 [4] and ISO/IEC 9646-1 [5] apply.

4 Package conformance and compatibility
The package presented in the present document is identified by the package tag:

• "TTCN-3:2012 Support for Testing Continuous Signals" - to be used with modules complying
with the present document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ETSI ES 201 873-1 [1],
ETSI ES 201 873-4 [2], ETSI ES 201 873-5 [3] and ETSI ES 201 873-6 [4].

The package presented in the present document is compatible to:

ETSI ES 201 873-1 (V4.9.1) [1]

ETSI ES 201 873-4 (V4.6.1) [2]

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)8

ETSI ES 201 873-5 (V4.8.1) [3]

ETSI ES 201 873-6 (V4.9.1) [4]

ETSI ES 202 785 (V1.3.1) [6]

ETSI ES 202 781 (V1.3.1) [7]

ETSI ES 201 873-7 [i.1]

ETSI ES 201 873-8 [i.2]

ETSI ES 201 873-9 [i.3]

ETSI ES 201 873-10 [i.4]

ETSI ES 202 784 [i.5]

ETSI ES 202 782 [i.6]

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5 Package concepts for the core language

5.0 General
Systems can communicate its data or signals, either in discrete form (e.g. as an integer value) or in continuous form
(e.g. real values). With respect to this difference signals are classified into four categories. The categories distinguish
whether the time and value domain of a signal is of discrete or continuous nature:

1) Analogue signals are continuous in the time and value domain. Analogue signals are the most 'natural' signal
category, characterized by physical units (e.g. current, voltage, velocity) and measured with sensors. Typical
examples of the physical quantities used in the area of embedded system development are the vehicle velocity,
the field intensity of a radio station etc. Analogue signals can be described as a piecewise function over time
(e.g. vx = f (t)).

2) Time quantified signals are discrete signals in the time domain. The signal values are defined only at
predetermined time points (sampling points). Typical examples of time quantified signals are the time-value
pairs of a recorded signal. A typical representation of a time quantified signal is a series or an array of real
numbers. Even if the original signal is a synthetic function it can only be reconstructed from a time quantified
signal with considerable mathematical effort.

3) Value quantified signals are time-continuous signals with discrete values. Typical examples of a value
quantified signal are data that are derived from analogue signals and which are dedicated to further processing,
e.g. an A/D converted sensor signal that is provided to an electrical control unit.

4) Digital signals are discrete on the time and value domain. If the set of possible signal values includes only two
elements, one speaks about binary signals. Typical examples of binary signals are switching positions or flags.

Thus on a theoretical level, continuous and discrete evolution of time and values have to be distinguised. In a discrete
system, the changes of states are processed at fixed and finite time steps. In a continuous system state changes occur for
infinitesimally small time steps. Important mathematical models for continuous systems are ordinary differential
equations. A mixed system, which shows continuous and discrete dynamics, is known as a hybrid system. Hybrid
systems can be modelled with hybrid automatons. Examples for systems that show such variable dynamics are often
found in the area of embedded control systems e.g. in the automotive and aircraft industry.

In the general case, a test description notation for embedded software systems shall support all of four categories of
signals mentioned above. TTCN-3 currently supports the signal categories (2) and (4). The extension of the language
with respect to a support of the signal categories (1) and (3) is the content of the present document.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)9

TTCN-3 is a procedural testing language, thus test behaviour is defined by algorithms that typically send messages to
ports and receive messages from ports. For the evaluation of different alternatives of expected messages, or timeout
events, the port queues and the timeout queues are frozen when the evaluation starts. This kind of snapshot semantics
guarantees a consistent view on the test system input during an individual evaluation step. Whereas the snapshot
semantics provides means for a pseudo parallel evaluation of messages from several ports, there is no notion of
simultaneous stimulation and time triggered evaluation. To enhance the core language to the requirements of continuous
and hybrid behaviour the following are introduced:

• the notions of time and sampling;

• the notions of streams, stream ports and stream variables;

• the definition of an automaton alike control flow structure to support the specification of hybrid behaviour.

5.1 Time and Sampling

5.1.0 General

The TTCN-3 extensions defined in this package adopt the concept of a global clock and enhance it with the notion of
sampling and sampled time. As in TTCN-3, all time values are denoted as float values and represent time in seconds.
For sampling, simple equidistant sampling models as well as dynamic sampling models are supported.

On technical level an equidistant sampling model of the form t=k*bdelta, where t describes the time progress, d
specifies the number of executed sampling steps and, bdelta yields the minimal achievable step size for a given test
system, is used as an overall basis to model equidistant samplings with larger step size or dynamic sampling.

The basic sampling with its minimal step size bdelta is a property of a concrete test system and not intended to be
specified as part of the test case specification. However, as a consequence of this underlying model, a test system is able
to execute user defined samplings if and only if all specified sampling rates at test specification level provide step sizes
that are multiples of bdelta.

When using the TTCN-3 extension defined in this package, each reference to time, either used for the definition and
evaluation of signals but as well by means of ordinary TTCN-3 timers, is considered to be completely synchronized to
the global clock and the base sampling.

5.1.1 The now operator

For the specification of time-dependent signal sequences, it is necessary to be able to track the passage of time. The
access of time is guaranteed by a globally available clock whose current value can be accessed by means of the now
operator. Time progress starts at the beginning of each test case execution, thus time values are related to the start of the
test case execution.

Syntactical Structure

now

Semantic Description

Evaluation of the now operator yields the current value of the clock which is the duration of time since the start of the
currently running test case.

Restrictions

The now operator shall only be applied from within a test case, i.e. by test cases, functions and altsteps executed on test
components. The now operator shall neither directly nor indirectly be called by TTCN-3 control part.

Example

EXAMPLE:

 // Use of now to retrieve the actual time since the test case has started
var float actualTime := now;

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)10

5.1.2 Define the default step size for sampling

For sampling, a globally valid base sampling rate defined by the test system is provided. In addition, sampling rates can
be set separately and as part of the test specification by means of stepsize attribute.

Syntactic Structure

stepsize StepSizeValue

Semantic Description

The StepSizeValue is a string-literal which shall contain a decimal number. This number interpreted as seconds is
used as the default rate of sampling values over the stream ports to which are affected by this stepsize attribute. The
actual sampling rate of a specific port can be changed dynamically with the delta operation.

Restrictions

A stepsize attribute can only appear in a with-annotation. A stepsize attribute can be applied to individual
modules, test cases, groups, component types and stream port types and effects either the statements that are contained
in one of these entities or in case of component types and stream port types the respective instances.

Examples

EXAMPLE 1:

// sets the stepsize for a module
module myModule{
…
} with {stepsize " 0.0001" };

EXAMPLE 2:

// sets the stepsize for a testcase
testcase myTestcase() runs on myComponent{
…
} with {stepsize " 0.0001" };

EXAMPLE 3:

// sets the stepsize for all instances of the port type StreamOut
type port StreamOut stream { out float} with {stepsize " 0.0001" };

5.2 Data streams

5.2.0 General

In computer science the term data stream is used to describe a continuous or discrete sequence of data. Normally the
length of a stream cannot be established in advance. The data rate, i.e. the number of samples per time unit, can vary.
Data streams are continuously processed and are particularly suited to represent dynamically evolving variables over a
course of time. Thus, streams are an ideal representation of the different discrete and continuous signals mentioned in
the beginning of clause 5.

While in standard TTCN-3 interactions between the test components and the SUT are realized by sending and receiving
messages through ports, the interaction between continuous systems can be represented by means of so called streams.
In contrast to scalar values, a stream represents the whole allocation history applied to a port. In computer science,
streams are widely used to describe finite or infinite data flows. To represent the relation to time, so called timed
streams are used. Timed streams additionally provide timing information for each stream value and thus enable the
traceability of timed behaviour. The TTCN-3 extension defined by this package provides timed streams. In the
following, the term measurement (record) to denote the unity of a stream value and the related timing in timed streams
will be used. Thus, concerning the recording of continuous data, a measurement record represents an individual
measurement, consisting of a stream value that represents the data side and timing information that represents the
temporal perspective of such a measurement.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)11

In this TTCN-3 extension, two different but not complementary representations of timed data streams are introduced.
The term timed considers the fact that the time and value domain of a signal are of interest. As a consequence, a stream
is considered to consist of a sequence of samples. Each sample provides information about the timing and the value
perspective of the sample.

of the sample.

1) Static perspective: The static perspective provides a direct mapping between a timed stream and the TTCN-3
data structures record and record of. This kind of mapping is referred to below as the static
representation of a data stream and allows random access to all elements of the data stream.

2) Dynamic perspective: To provide dynamic online access to data streams, the existing concepts of TTCN-3 port
type and port are extended to provide access to data streams and their content. A so called stream port
references exactly one data stream and provides access to the dynamically changing values of the referenced
data stream.

NOTE: To represent streams in the present document, a tabular notation is used. The table has two rows by which
the first one represents the value perspective of a stream and the second represents the temporal
perspective. The temporal perspective is defined by means of timestamps that are synchronized with the
overall clock. The columns represent the samples of the stream.

EXAMPLE:

Value 1.2 1.4 1.5 1.7 1.7 1.5 1.2 1.0 1.1 1.4 1.5 1.2 1.0 1.1 1.4
Timestamp 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

The example shows a stream with the length of 1.4 seconds and float values that change between 1.0 and 1.5.

5.2.1 Data Streams: static perspective

A TTCN-3 data stream can be mapped directly to existing TTCN-3 data structures. The mapping considers each stream
to be represented by means of a TTCN-3 record of data structure. This structure itself consists of individual entities, so
called samples, each sample representing either a measurement on an incoming stream or stimulus that is dedicated to
be applied to an outgoing stream.

A sample itself is represented by means of a TTCN-3 record data structure. The record consists of two fields. It has two
fields of type float. The first field with the name value represents what is called the value of a stream. Its data type
should be aligned with the data type of the corresponding stream. The second field denotes the temporal perspective of
a sample. It denotes the temporal distance to the preceding sample (the sampling step size delta). The second field is
of type float and represents time values that have the physical unit second. Example 1 shows the exemplary
definition of a data structure to specify individual samples.

EXAMPLE 1:

type record Sample{
 float value,
 float delta
}

Given such a structure, a timed data stream of an arbitrary data type is modelled as a record of samples.

EXAMPLE 2:

type record of Sample MyStreamType;

The static representation of data streams can be used for the online and offline evaluation of streams as well as for the
piecewise in-memory definition of streams or stream templates, which are to be applied to stream ports in the
subsequent test case execution. Thus, the static representation of streams can be used to assess incoming streams and to
define outgoing or reference streams and template streams mostly by means of ordinary TTCN-3 operations and control
structures and as such provide an ideal interface between ordinary TTCN-3 concepts and the concepts defined in this
package. The following example shows a short specification of a sampled stream.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)12

EXAMPLE 3:

var MyStreamType myStreamVar := {
 {value:=0.0, delta:=0.1},
 {value:=0.2, delta:=0.2},
 {value:=0.1, delta:=0.1},
 {value:=0.0, delta:=0.3}
}

If the stream definition from above is applied to an outgoing stream port directly with the beginning of a test case, the
result will look as follows.

EXAMPLE 4:

Value 0.0 0.0 0.2 0.1 0.0
Timestamp 0 0.1 0.3 0.4 0.7

Each stream port is initialized with a value that defines the valuation of a stream at time 0.0. Thus the first sample in
Example 4 is not defined by the specification in Example 3 but by the base initialization of the stream port.

NOTE 1: In order to create larger streams a manual specification approach is not feasible. In this case, the data
processing capabilities of TTCN-3 can be used. This allows to programmatically/algorithmically
construct the dedicated record structures.

NOTE 2: The data structures presented in this section serve for illustration purposes only. They show how timed
data streams can be mapped to standard TTCN-3 data structures and thus can be processed easily by using
the existing TTCN-3 language features and operators. The TTCN-3 extensions provided in this package
do not include type declarations from above.

5.2.2 Data Streams: dynamic perspective

5.2.2.0 General

In standard TTCN-3 ports are used for the communication among test components and between test components and the
SUT. To be able to initiate, modify and evaluate a stream based communication between the entities of a test system,
this package extends the concepts of standard TTCN-3 port types and ports with the notion of stream-based
communication and stream ports. Stream ports are the endpoints of a stream based communication. Thus stream ports in
TTCN-3 embedded are used to provide access to streams, their values and the respective timing information. A stream
port references exactly one data stream and thus provides access to the respective stream values and timing information.

5.2.2.1 Defining stream port types

The TTCN-3 port concept of message-based and procedure-based ports is extended with stream-based ports. Stream
ports support stream-based communication.

Syntactical Structure

 type port PortTypeIdentifier stream "{"
 { ((in | out | inout) StreamValueType [";"])
 (map param "(" { FormalValuePar [","] }+ ")" [";"]) |
 (unmap param "(" { FormalValuePar [","] }+ ")" [";"]) }
 "}"

Semantic Description

Stream port types shall be declared by using the keyword stream. Stream ports are directional. The directions are
specified by the keywords in (for the in direction), out (for the out direction) and inout (for both directions).

The specified StreamValueType references the type of values which can be sent or received (depending on the direction
of the port) over ports of the type PortTypeIdentifier.

Like message and procedure ports, stream ports can use map and unmap parameters to pass additional information to
the system adapter.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)13

Restrictions

Each stream port type definition shall have one and only one entry indicating the allowed type together with the allowed
communication direction:

a) Stream port type definition shall always contain exactly one stream value definition.

b) At most one map parameter list should be defined for a port type.

c) At most one unmap parameter list should be defined for a port type.

Example

EXAMPLE:

 // Stream-based port which allows stream values of type float to be received
type port StreamIn stream { in float }

 //Stream-based port which allows stream values of type float to be sent
type port StreamOut stream { out float }

 //Stream-based port with map and unmap parameter definitions
type port StreamOut stream
{
 in float;
 map param (integer p_par1, integer p_par2);
 unmap param (integer p_par1);
}

5.2.2.2 Declaration and instantiation of stream ports

The declaration of stream-based ports is similar to the declaration of message-based and procedure-based ports. The
component type declares which ports are associated with a component. A component type can have ports with
different communication characteristics (e.g. stream-based ports, message-based ports, and procedure based). All ports
are instantiated together with the component that owns the port, i.e. when the component is created.

Outgoing stream ports start to emit stream values directly after the component, which contains the respective stream
port, has been started. The same applies for incoming stream ports. They start receiving data directly after their
component has been started. Both incoming and outgoing stream ports are updated for each sampling step. If no explicit
step size is defined by means of step size annotations on module level, test case level, port type level, etc. the port is
initially sampled with the test systems' base sampling, which is the smallest available step size.

Outgoing stream ports may already be initialized before its first use, so that their values before the start of their
component are defined. The initialization occurs in the context of their declaration.

Outgoing stream ports, when they are not explicitly initialized, are automatically initialized with implicit default values.
The implicit default values for the various TTCN-3 basic data types can be found in table 1.

Table 1

float integer boolean charstring bitstring octetstring
0.0 0 FALSE "" '0'B '00'O

The initial stream port value for outgoing stream port applies to the time point 0.0 and for the following sample steps as
long as no other stream value is set. The value initialization for incoming streams is in responsibility of the data
provider. Hence either the system adapter or the emitting component (in case of a PTC) is responsible to initialize the
streams.

Syntactical Structure

 port StreamPortTypeReference
 { StreamPortIdentifier [":=" StreamDefaultValue] [","] }+ [";"]

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)14

Semantic Description

A stream port PortInstance named StreamPortIdentifier is declared inside a component type definition using a
StreamPortTypeReference which is a type-reference expression for an existing stream port type. Optionally, a
StreamDefaultValue can be supplied which defines the value of the stream before the first sampling over this port.

Restrictions

The StreamDefaultValue shall be of the type StreamValueType in the port type definition referenced by
StreamPortTypeReference.

Examples

EXAMPLE 1:

type port StreamIn stream { in float }
type port StreamOut stream { out float }

type component SUT {
 port StreamIn A,B;
 port StreamOut C,D;
}

EXAMPLE 2:

type component SUT {
 port StreamIn A,B;
 port StreamOut C:=1.0,D:=2.0;
}

5.2.2.3 The Connect and Map operations

Stream ports can be mapped and connected. The syntax and general rules for the map and connect operations are
described in ETSI ES 201 873-1 [1].

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 9 and 21.1 of ETSI ES 201 873-1 [1], the following
restrictions apply:

a) Stream ports can be connected or mapped to stream ports only. Connection or mapping between a stream port
and a message port is not allowed.

b) Assuming the following:

1) Ports PORT1 and PORT2 are the stream ports to be connected or mapped;

2) Inval-PORT1 defines the value type of the in-direction of PORT1;

3) Outval-PORT1defines the value type of the out-direction of PORT1;

4) Inval-PORT2 defines the value type of the in-direction of PORT2; and

5) Outval-PORT2 defines the value type of the out-direction of PORT2.

6) If no value type is defined for a direction, the value type is considered to be undefined. When checking
conditions for stream port connecting and mapping, the undefined type is equal to the undefined type
only.

c) The connect operation is allowed if and only if:

 outval-PORT1 = inval-PORT2 and outval-PORT2 = inval-PORT1

d) The map operation is allowed if and only if:

 outval-PORT1 = outval-PORT2 and inval-PORT2 = inval-PORT1

e) In all other cases, the connect and map operations shall not be allowed.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)15

f) Incoming stream ports of test components and outgoing stream ports of the system adapter cannot be
connected or mapped to more than one port.

NOTE: The restriction on the number of connected and mapped ports does not apply to outgoing stream ports of
test components and incoming ports of the system adapter, making stream broadcast possible.

5.2.3 Data stream access operations

5.2.3.0 General

Similar to message-based and procedure-based communication incoming streams can be examined and outgoing
streams can be controlled. In general, access to the actual sample of a stream (i.e. the stream value, the respective timing
and sampling information) is provided by means of stream data operations. Moreover, access to the preceding samples
by means of dedicated navigation operations is provided. Last but not least, record structured stream data can be
extracted as explained in clause 5.2.1 by means of stream evaluation statements.

In contrast to message-based and procedure-based communication, stream data operations and stream navigation
operations on expression level have been integrated. This allows testers to directly assign values to streams and read
values from streams by means of ordinary TTCN-3 assignments.

5.2.3.1 The value operation

Each data stream connected to a stream port allows accessing its current value by means of the value operation. In
case of incoming streams, the value operation yields the actual value that is available at a stream port.

Syntactical Structure

 (StreamPortReference | StreamPortSampleReference) "." value

Semantic Description

The value operation can be applied to either a StreamPortReference expression or a StreamPortSampleReference
expression which is yielded by the application of a navigation operation on a StreamPortReference. In the first case, it
yields the current value of the stream port; in the second case it yields the value in the referenced sampling.

When using a StreamPortReference to an outgoing stream port, the value operation expression can also be used on the
left hand side of an assignment or as an out parameter to a function.

When using a value operation expression as a value expression the type of the value is the StreamValueType of the
referenced stream port.

If the value operation is used for setting the actual output value of a stream, the effectiveness of the stream port
evaluation is delayed. A value, which has been assigned to a stream port value handle, becomes effective inside and
outside the component at the beginning of the next sampling step.

Restrictions

If the value operation expression is used as the target of an assignment, the type of the assigned value shall be
compatible with the StreamValueType of the referenced stream port.

Examples

EXAMPLE 1:

// accessing the actual input value of a stream
var float myVar:=streamInPort.value;

EXAMPLE 2:

// accessing the actual input value of a stream
// and compare it with a given expectation
if (streamInPort.value>= 100.0) {…};

NOTE 1: The value, which is provided by means of the value operation, is the value that has been measured at
the beginning of the actual sampling period.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)16

EXAMPLE 3:

// setting the actual output value of a stream
streamOutPort.value:= 100.0;

NOTE 2: The use of the value operation can be combined in such a way that the specification of complex
equations and equation systems is supported.

EXAMPLE 4:

// calculating the Ohms' law
voltage.value:= amperage.value * resistance.value;

5.2.3.2 The timestamp operation

Similar to the value operation the timestamp operation allows to access the time related information of the actual
sample.

Syntactical Structure

 (StreamPortReference | StreamPortSampleReference) "." timestamp

Semantic Description

The timestamp operation can be applied to a stream port referenced by a StreamPortReference expression or a
StreamPortSampleReference referring to a specific sample of a stream port.

The application of the timestamp operation on a StreamPortReference yields the exact time point at which the actual
stream port value has been measured. The application of the timestamp operation on a StreamPortSampleReference
yields the exact time point at which the referenced sample has been measured. The exact sample time denotes the
moment when a stream value has been made available at the test system's input and thus strongly dependent on the
sampling rate.

The time point is provided as a floating-point number (float) and has the physical unit seconds. The time information
is completely synchronized with the test system clock described in clause 5.1.

Restrictions

The timestamp operation always yields a non-negative float value.

Example

EXAMPLE:

// access of the sample time
// for the current sample
var float measurementTime1:=streamport.timestamp;

NOTE: Data streams are used to represent samples in a dynamic measurement process. A sample that is taken
from a data stream is usually historical information, i.e. the result of a timestamp operation refers to
the state of the system (i.e. the SUT) at a time in the past.

5.2.3.3 The delta operation

The step size of a data stream can dynamically change during a test execution. The change can be initiated either by the
test specification or by means of the measurement system (i.e. the system adapter). The delta operation provides access
to the actual step size of a port.

In addition to the timestamp operator TTCN-3 embedded allows to obtain the step size that has been used to measure a
certain value. This information is provided by the delta operation. The delta operation can be used in a similar way than
the value and the timestamp operation. It returns the size of the last sampling step (in seconds).

Syntactical Structure

 (StreamPortReference | StreamPortSampleReference) "." delta

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)17

Semantic Description

When used on a StreamPortReference, the delta operation allows read and write access to the actual step size of a port.
When the delta operation is used for reading on a StreamPortReference, it yields the actual step size for a given port.
When the delta operation is used for writing on a StreamPortReference it sets the length of the step size for future
writing and reading at the given port. The step size is defined as a float number and has the unit seconds.

When used on a StreamPortSampleReference it yields the actual step size active at the time of the referenced sample
measurement.

A value, which has been assigned to a stream port delta handle, affects the length of the next sampling period, not the
actual one. Thus, it cannot be used to shorten or lengthen the actual sampling step.

Restrictions

When used on a StreamPortSampleReference, the delta operation only allows read access.

Examples

EXAMPLE 1:

var float actualStepSize;
// reads the actual stream size from a port
actualStepSize: = streamport.delta;

EXAMPLE 2:

// sets the actual step size for a port
streamport.delta:= 0.001;

5.2.4 Data stream navigation operations

5.2.4.0 General

Beside access to the actual values of a stream, additional access to the history of streams by means of so called stream
navigation operations is provided. The result of a navigation operation is a handle, which allows the application of the
value, timestamp or delta operation for preceding stream states. Such a state is identified by means of two different
operations. The at operation demands a time index of type float that denotes the time that has passed since the
beginning of the test case. The prev operation backtracks the sample steps beginning with the actual step and demands
an integer index value to define the number of sampling steps to step back.

5.2.4.1 The prev operation

The prev operation returns a handle to obtain stream related information for previous states of a stream.

Syntactic Structure

 StreamPortReference "." prev ["(" PrevIndex ")"]

Semantic Description

The prev operation can be applied to a stream port StreamPortReference. It can optionally be parameterized with an
integer index parameter PrevIndex and returns a StreamPortSampleReference handle to retrieve values, timestamps and
sampling step sizes for preceding stream states. The index parameter denotes the number of samples to step back in
stream history. If no parameter list is given, this is equivalent with the index 1.

Restrictions

The prev operation can only appear as an operand to a value, timestamp or delta read operation.

NOTE 1: The application of the prev operation needs the combination with the value operation, the
timestamp operation or the delta operation to provide meaningful results.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)18

Examples

EXAMPLE 1:

port.prev(0).value; // provides access to the actual stream value
port.prev.value; // provides access to the previous stream value
port.prev(1).value; // provides access to the previous stream value
port.prev(2).value; // provides access to the stream value 2 steps ago

NOTE 2: The expressions port.prev and port.prev(1) yield identical results.

EXAMPLE 2:

port.prev(0).timestamp; // provides access to the timestamp
 // that denotes the beginning the actual sampling step
port.prev(0).delta; // provides access to the length of the last sampling step
port.prev(1).timestamp; // provides access to the timestamp
 // that denotes the beginning the preceding sampling step
port.prev(1).delta; // provides access to the length of the sampling step 2 steps ago

EXAMPLE 3:

Value 1.2 1.4 1.5 1.7 1.7 1.5 1.2 1.0 1.1 1.4 1.5 1.2 1.0 1.1 1.4
Timestamp 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

port.prev(0).value; // yields 1.4
port.prev.value; // yields 1.1
port.prev(1).value; // yields 1.1
port.prev(2).value; // yields 1.0

port.prev(0).timestamp; // yields 1.4
port.prev(0).delta; // yields 0.1
port.prev(1).timestamp; // yields 1.3
port.prev(1).delta; // yields 0.1

5.2.4.2 The at operation

The at operation returns a handle to obtain stream related information for previous states of a stream, which are
identified by means of a timestamp value.

Syntactical Structure

 StreamPortReference "." at ["(" Timepoint ")"]

Semantic Description

The at operation can be applied to a stream port StreamPortReference. The at operation can optionally be
parameterized with a float parameter Timepoint and returns a StreamPortSampleReference handle to retrieve values,
timestamps and sampling step sizes for preceding stream states. The Timepoint parameter represents a time stamp that
identifies a sample at a certain place in time. The time stamp denotes the time that has passed since the start of the test
case (see clause 5.1). It references the sample that has either the same time stamp or, if such a sample does not exist, the
sample with the next smaller time stamp.

Restrictions

The at operation can only appear as an operand to a value, timestamp or delta read operation.

NOTE: The application of the at operation has to be done in combination with a value operation, a timestamp
operation or a delta operation to provide meaningful results.

Examples

EXAMPLE 1:

port.at(now).value; // provides access to the actual stream value
port.at(0).value; // provides access to the initial stream value
 // (i.e. the stream value at beginning of the test case)
port.at(10.0).value; // provides the stream value at the time point 10.0
 // (i.e. 10. Seconds after the beginning of the test case)

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)19

EXAMPLE 2:

port.at(now).timestamp; // provides access to the beginning of the actual sampling step
port.at(0).timestamp; // provides access to the beginning of the initial sampling
 // step (i.e. always 0.0)

port.at(10.0).timestamp; // provides access to the beginning of the sampling step
 // at time point 10.0

EXAMPLE 3:

Value 1.2 1.4 1.5 1.7 1.7 1.5 1.2 1.0 1.1 1.4 1.5 1.2 1.0 1.1 1.4
Timestamp 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

port.at(now).value; // yields 1.4
port.at(0).value; // yields 1.2
port.at(1.0).value; // yields 1.5
port.at(1.09).value; // yields 1.5

port.at(now).timstamp; // yields 1.4
port.at(0).timstamp; // yields 0.0
port.at(1.09).timestamp; // yields 1.0

5.2.5 Data stream extraction and application operations

5.2.5.0 General

Beside access to individual values of a stream, this package supports the extraction and application of stream segments
that are represented by means of the record of data structure (data perspective) described in clause 5.2.1. The history
operation allows to extract arbitrary stream segments. The apply operation is used to apply extracted or manually or
programmatically defined stream segments to stream ports.

5.2.5.1 The history operation

The history operation allows obtaining the complete or partial history of a stream as a TTCN-3 record of structure (see
clause 5.1, data representation). The history operation has two parameters that denote the start time and end time of the
desired stream segment.

Syntactical Structure

 StreamPortReference "." history "(" StartTime "," EndTime ")"

Semantic Description

The history operation provides a record of based sample representation of a stream. The operation has two parameters
StartTime and EndTime that denote the start time and end time of the stream segment that is designated for export. The
parameters are each of type float and represent the time that has passed since the beginning of the respective test case.
Time values are given in units of seconds. The first parameter describes the measurement time of the first stream entry
to be considered for history export. The second parameter denotes the time of the last record. If the specified start time
value is greater than the specified end time value the history operation results in an empty record of structure.

Restrictions

The EndTime parameter shall not have a value greater than now.

Examples

EXAMPLE 1:

myStreamRec:= myPort.history(0.0, now);

EXAMPLE 2:

type record BoolSample {boolean v,float t}
type port BoolStreamType stream {in boolean}
type component MyStreamComponent {port myPort BoolStreamType}
var record of BoolSample myStreamRec;
…
myStreamRec:= myPort.history(0.0, now);

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)20

EXAMPLE 3:

Value 1.2 1.4 1.5 1.7 1.7 1.5 1.2 1.0 1.1 1.4 1.5 1.2 1.0 1.1 1.4
Timestamp 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

myStreamRec:= port.history(0.0, now);
// yields
// {{1.2,0.0}, {1.4,0.1},{1.5,0.1},{1.7,0.1},{1.7,0.1},{1.5,0.1},{1.2,0.1},{1.0,0.1},
// {1.1,0.1},{1.4,0.1},{1.5,0.1},{1.2,0.1},{1.0,0.1},{1.1,0.1},{1.4,0.1}}

5.2.5.2 The values operation

The values function allows obtaining the complete or partial history of a stream as a TTCN-3 record of structure
without any timing information.

Syntactical Structure

 StreamPortReference "." values "(" StartTime "," EndTime ")"

Semantic Description

The value operation has two parameters StartTime and EndTime that denote the start time and end time of the desired
stream segment.

The history function provides a record of based value representation of a stream. The parameters are each of type float
and represent the time that has passed since the beginning of the respective test case. Time values are given in units of
seconds. The first parameter describes the measurement time of the first stream entry to be considered for history
export. The second parameter denotes the time of the last record. If the specified start time value is greater than end
time value the history operation results in an empty record of structure.

The result of the value operation applied to a stream port of type T is a value of record of T.

Restrictions

The EndTime parameter shall not have a value greater than now.

Examples

EXAMPLE 1:

myStreamRec:= port.values(0.0, now);

EXAMPLE 2:

type port BoolStreamType {in boolean}
type component{ port myPort BoolStreamType}
var record of boolean myStreamRec;
…
myStreamRec:= myPort.values(0.0, now);

EXAMPLE 3:

Value 1.2 1.4 1.5 1.7 1.7 1.5 1.2 1.0 1.1 1.4 1.5 1.2 1.0 1.1 1.4
Timestamp 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

myStreamRec:= port.history(0.0, now);
// yields
// {1.2, 1.4, 1.5, 1.7, 1.7, 1.5, 1.2, 1.0, 1.1, 1.4, 1.5, 1.2, 1.0, 1.1, 1.4}

5.2.5.3 The apply operation

The apply operation is used to apply stream data to a stream port that are represented by means of a TTCN-3 record of
structure. The apply operation applies the sample records contained in the record of data structure one after the other in
time to the given port.

Syntactical Structure

 StreamPortReference "." apply "(" Samples ")"

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)21

Semantic Description

Application of the apply operation to the stream port StreamPortReference, it will consecutively write the values of the
given record of Samples to the port, using the sampling deltas from Samples as deltas for writing the values, as well.

The application of an apply operation p.apply(v) is equivalent to the following construction:

 var float v_nextSample := p.timestamp + p.delta; // time of the scheduled next step
for(var integer i := 0; i < lengthof(v); i := i + 1)
{
 if (i + 1 < lengthof(v))
 {
 p.delta := v[i + 1].delta; // schedule delta for the next step
 }
// value will become efficient at the beginning of the next sampling step
 p.value := v[i].value;
 wait(v_nextSample); // wait for the current sampling step to finish
 if (i + 1 < lengthof(v))
 {
// time of the next sampling step
 v_nextSample := v_nextSample + v[i + 1].delta;
 }
}

Examples

EXAMPLE 1:

type port FloatIn {in float}
type port FloatOut {out float}

type component{ port myInPort FloatIn;
 port myOutPort FloatOut }

type record Sample {boolean value, float delta};
var record of Sample myStreamRec;
testcase myTestcase () runs on tester{
 // measure on all incoming ports for 100 seconds
 wait(100.0);
 // get the all sampless at myInport until now
 myStreamRec:= myInPort.history(0.0, now);
 // and apply the measured data to myOutPort.
 myOutPort.apply(myStreamRec); // lasts 100 seconds
}

EXAMPLE 2:

var MyStreamType<float> myStream := {
 {0.0, 0.1},
 {0.2, 0.2},
 {0.1, 0.1},
 {0.0, 0.3}
}
port.apply(myStream);
// yield -> see table below

Value 0.0 0.0 0.2 0.1 0.0
Timestamp 0 0.1 0.3 0.4 0.7

5.2.6 Port control operations

This clause specifies the rules for port control operation in case they are applied to a stream port. The operations behave
differently specified in the clause 22.5 of ETSI ES 201 873-1 [1] as steam ports don't have any queues, but might
contain sampling history.

The close operation applied to a stream port removes the port history completely. Only the last acquired sample is
kept and it is still possible to access it with the value and timestamp operations.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)22

The start operation applied to a stream port removes port history completely, activates port sampling (if it was
suspended by the stop or halt operation) and allows the use of data stream access operation (value, timestamp,
delta), data navigation operations (prev, at) and data extraction and application operations (history, values,
apply). The started port will have its default value.

The stop operation applied to a stream port removes port history and suspends port sampling, i.e. port history will not
be updated while the port is stopped. In case of stopped out ports, the value of all ports connected or mapped to the
stopped port will not change while the port is stopped. During the time when the port is stopped, it is not allowed to call
any of the data stream access operation (value, timestamp, delta), data navigation operations (prev, at) and
data extraction and application operations (history, values, apply). Calling any of these operations shall cause an
error.

The halt operation applied to a stream port suspends port sampling, i.e. port history will not be updated while the port
is halted. In case of halted out ports, the value of all ports connected or mapped to the halted port will not change while
the port is halted. During the time when the port is halted, it is not allowed to use any of the data stream access
operation (value, timestamp, delta) on the left hand side of an assignment and the apply operation. Calling any
of these operations shall cause an error. The history of the halted port is not discarded and it possible to use any of the
data stream access operation (value, timestamp, delta) if they occur on the right hand side of an assignment, data
navigation operations (prev, at) and data extraction operations history and values.

5.2.7 Stream ports in static configurations

Components containing stream ports can be used in static configurations specified in ETSI ES 202 781 [7]. Most of the
rules valid for non-static components apply in this case too, with the following differences:

a) Time progress for static MTCs starts in the begining of configuration function (and not in the beginning of a
test case).

b) Sampling of static ports shall be active even when a test case is not running (during transition between test
cases).

5.3 The assert statement
The assert statement is used as a short hand for the specification of expected system behaviour.

Syntactical Structure

 assert "(" Predicate { "," Predicate } ")"

Semantic Description

The assert statement specifies one or a list of predicates that express the expectation on the SUT. A predicate consist of
an arbitrary TTCN-3 boolean expression. If one of the predicates fail, the assert statement automatically sets the verdict
to fail. The assert statement is allowed at any place in the TTCN-3 source code that allows the application of the
setverdict statement. To assess continuous data it will be used in particular within the hybrid machine alike control
flow structures described in clause 5.4.

NOTE: The semantics of the assert statement can be mapped to existing TTCN-3 statements in the following
way:

 assert (pred1, pred2,...,predn);

 is fully equivalent to

 if(! pred1) setverdict(fail);
 if(! Pred2) setverdict(fail);
 ...
 if(! predn) setverdict(fail);

Examples

EXAMPLE 1:

assert(a.value==4.0);

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)23

EXAMPLE 2:

assert(a.value==4.0, b.value ==5.0, d.value ==445.0);

5.4 Control structures for continuous and hybrid behaviour

5.4.0 General

This clause introduces control flow structures that allow the parallel and sampled application and assessment of stream
values at ports. The concepts defined in clauses 5.1, 5.2 and 5.3 allow the construction, application and assessment of
individual streams. For more advanced test behaviour, such as concurrent application and assessment of multiple
streams and the detection of complex events (e.g. zero crossing or flag changes at multiple ports), stronger concepts are
needed. For this purpose, the concepts defined in the last clauses are combined with state-machine-like specification
concepts, so called modes.

A mode expresses a certain runtime mode of a system or an SUT. This kind of runtime mode is characterized by a
defined behaviour at ports and a set of predicates that limit the applicability of the behaviour. Unlike ordinary
behavioural TTCN-3 statements, a mode applies its behaviour over time (at least for one sampling step).

5.4.1 Modes

5.4.1.0 General

The term mode is used to specify the discrete and countable macro states of a dynamic hybrid system. It mainly serves
to distinguish the macro states of a hybrid system from the theoretically infinite number of micro-states. By means of
modes, this package provides a layer of abstraction that helps distinguishing between the discrete changes of a hybrid
system (or test system) that are relevant from the users (and testers) perspective and the discrete changes that are
introduced by the underlying test execution environment in order to map continuous behaviour to a computational
environment (which is naturally discrete). The interpretation and calculation of micro steps depend on the underlying
technical environment, i.e. the sampling. Thus, a micro step is calculated by the combination of the active macro-states
with the sampled evaluation of data at the stream ports.

Figure 1: Abstract test specification for a continuous system that show the values v and x

Modes and the transitions between modes can be written down in a state-machine-like structure, which is closely
defined in the theory of hybrid automatons. Figure 1 shows an abstract test specification that consists of three atomic
modes, transitions, invariants and assertions.

inv:

assert(v>

[duration>5.0]/

[duration>5.0]/ inv:

If the velocity v remains
constant for more than 5

sec., it shall not underrun

the limit x for 5 seconds.
To detect: the velocity

remains constant for

more than 5 seconds
To check: v shall not
underrun the limit x for 5

seconds

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)24

For realizing such hybrid automatons, three new block statements are introduced, the cont statement, the seq statement
and the par statement. While the cont statement is used for the specification of atomic modes, the par and seq
statement are used to aggregate modes to larger constructs by means of parallel and sequential composition.

Modes in general are characterized by their duration and their internal behaviour (i.e. the assignment and assessment of
values at stream ports). The duration, or better the duration of the mode's activity, is defined by a set of predicates,
which relates to time or the valuation of (stream) ports, variables, etc.

Syntactical Structure

 (cont | par | seq) "{"
 {Declaration}
 [OnEntryBlock]
 [InvariantBlock]
 Body
 [OnExitBlock]
 "}"
 [UntilBlock]

A mode specification consists of several syntactical compartments:

• local declarations to be used inside the mode;

• an optional onentry block, that defines behaviour that has to be executed once at the activation of the mode;

• an optional invariant block that defines predicates that should not be hurt while the mode is active;

• an obligatory body to specify the mode's internal behaviour;

• an optional onexit block that defines the behaviour that has to be executed once at the deactivation of the
mode; and

• an optional transition block (UntilBlock) that defines the exit conditions to end the mode's activity.

Atomic modes may be composed to composite modes. Composite modes show nearly the same structural setup as
atomic modes. The only differences refer to their behavioural descriptions. While atomic modes contain assignments,
assert statements and the inv, onexit, onentry blocks described above, composite modes contain other modes instead of
statements. As far as invariants, onentry and onexit blocks and transitions are concerned, the structural setup and the
behaviour of composite modes both are identical to atomic modes.

Semantic Description

While a mode is active, each invariant of a composite mode has to hold. Additionally, each transition of a composite
mode ends the activity of the mode when it applies.

When a mode is entered, its onentry-block is executed. When a mode is exited, its onexit-block is executed.

For every step of an active mode, the contents (either modes or statements) of the mode are executed. Modes always use
the base sampling rate when processing steps. The stepsize attribute has no effect on the mode sampling rate.

NOTE: Mode sampling is just a theoretical concept for describing behaviour of the mode statement. The way how
TTCN-3 tools perform mode sampling is implementation specific. It is possible e.g. to implement mode
sampling so that it is automatically triggered after port sampling or by a receiving event that has occurred
on a referenced port.

Examples

Example 1 shows the definition of an atomic mode consisting of two assignments to stream ports, an invariant that
checks the state of an outgoing stream port, an onentry block that initializes the variable x, and an onexit block that
resets the stream port to_Set_Point to the value of 0.0, and transitions that check the valuation of an incoming
stream port.

EXAMPLE 1:

cont{//body
 onentry{x:=10.0;}

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)25

inv{//invariant
 to_Set_Point.value>20000.0;
}
 to_Set_Point.value:=3.0*now;
 to_Engine_Perturbation.value:=0.0+x;
onexit{to_Set_Point.value:=0.0}
}
until{//transition
 [ti_Engine_Speed.value>2000.0]{to_Engine_Perturbation.value:=2.0;}
 [ti_Engine_Speed.value>3000.0]{to_Engine_Perturbation.value:=1.0;}
}

Example 2 shows the setup of a parallel mode that contains two sequential modes, which each of them containing
further atomic modes.

EXAMPLE 2:

par { // overall perturbation and assessment
 inv{//invariant
 }
 seq{// perturbation sequence
 cont{// stimulation action 1}
 cont{// stimulation action 2}
 ...
 }
 seq{// assessment sequence
 cont{// assessment action 1}
 cont{// assessment action 1}
 ...
 }
}
until{ //transition
}

5.4.1.1 Definition of the until block

5.4.1.1.0 General

The until block allows the specification of exit conditions for modes and additionally the specification of explicit
transitions between modes. The entries of the until block are called transitions. Each transition specifies conditions for
their activation (i.e. guards and trigger events) and may provide an explicit definition of the mode that has to be
activated next (target mode). An until block can contain several alternative transitions that each specify different exit
conditions and target modes.

5.4.1.1.1 Definition of transition guards and events

The until block defines a number of transitions between modes. A transition contains either a guard or a trigger event
specification or both. The guard and the trigger event specification are both used to determine whether a transition can
fire or not. A guard is modelled as a boolean TTCN-3 expression. A trigger event is modelled by means of TTCN-3
receiving operations (receive statement, trigger statement, getcall statement, etc.). The predicate or the TTCN-3
receiving operations may be followed by an optional statement block, which contain instructions to be executed upon
activation of the transition. At the end of the transition there may be a goto clause which specifies the follow-up mode.

Syntactical Structure

 until "{"
 { "[" [Guard] "]" [TriggerEvent] [StatementBlock] [goto Target] }
 "}"

Semantic Description

A transition is considered to be activated if the guard expression is satisfied and a valid receiving event occurred at the
specified TTCN-3 receiving operation and the invariant of the target mode holds (with the exception of the notinv
predicate, see clause 5.4.1.5 for more details). Transitions are checked for each active mode at each sampling step. If a
transition becomes active then the optional statement block is executed once. Afterwards the enclosing mode and all his
child modes are deactivated. The control flow is continued with the activation of the follow-up mode. The transitions in
an until block are checked in the given order. If multiple transitions exist, the first transition that fulfils the activation
conditions is activated.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)26

Restrictions

In addition to the general semantic rules the following restrictions apply:

• The functions invoked from the guard statement or trigger event shall not use any blocking instructions (i.e.
the following operations and statements: all receiving operations, timeout, done, killed, wait and mode). Such
constructs may block evaluation of the guard or trigger with the consequence, that the next sampling step is
missed.

• In the optional statement block of a transition any TTCN-3 statement is principally allowed, except each type
of control flow related statement that leads to the leaving of the enclosing mode (e.g. goto, return).

Example

EXAMPLE:

cont{ //mode
A.value:=3;
}
until { // transitions
 [C.value > 4.0] MPort1.receive(TemplExp) { log(" statement block 1"); }
 [C.value > 4.0 and D.value > E.value]{ log(" statement block 1"); }
 [] Port2.receive(TemplExp) { log(" statement block 1"); }
}

5.4.1.1.2 Definition of follow up modes

The explicit definition of follow up modes by means of a goto clause is possible. Each mode specification can have a
preceding label that defines the target for a goto clause. Moreover each transition can have an optional goto clause that
refers to an mode label.

Semantic Description

If a transition with a goto clause is activated, the optional statement block is executed and afterwards the execution is
continued at the label position with the activation of the following mode.

Restrictions

Besides the restrictions that already exist for the use of the goto statement, this package defines additional restrictions
for the use of the goto clause in the context of modes. Goto jumps are only allowed in a sequential environment, either
inside seq modes or on the top level of a composition, i.e. directly on testcase level. Moreover, goto jumps are not
allowed to violate the composition hierarchy, thus it is not possible to jump to a parent mode or into a child mode.
Jumps are only allowed between modes on the same hierarchy level.

However, if no follow up mode is explicitly defined by means of a goto statement the sequential ordering of mode
specification implicitly defines the follow up mode. Thus, when two atomic modes follow each other in the
specification, the second mode is the follow up mode for all active transition transitions of the preceding mode that do
not have an explicit goto clause.

Examples

Example 1 shows the application of labels and goto statements in the context of modes.

EXAMPLE 1:

label state1;
cont{ //mode
 A.value:=3;
}
until{[C.value > 2.0]}
label state2;
cont{ //mode
 A.value:=4;
} until { // transitions
 [C.value > 4.0] { log(" statement block 1"); } goto state1
 [D.value > E.value]{ log(" statement block 2"); } goto state2
 [] Port2.receive(TemplExp) { log(" statement block 1"); }
}

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)27

EXAMPLE 2:

cont{ A.value:=3;} until {[B.value >3]}
cont{ A.value:=5;} until {[C.value >=3*D.value]}
cont{ A.value:=7;} until {[C.value >=3]}

5.4.1.1.3 The repeat statement

The control flow of a mode's transition's statement block may end in a repeat statement.

Semantic Description

The repeat statement causes the re-execution of a par statement, seq statement or cont statement, i.e. the
execution of the par statement, seq statement or cont is activated again and executed with the next sampling step.

NOTE 1: In case of the execution of the repeat statement the local time of the respective mode (see duration
symbol in clause 5.4.1.3) is reset, in case of composite modes the child modes are first deactivated and
then again activated according to the kind (parallel or sequential) of the mode. Moreover, the respective
onentry and onexit blocks are executed.

Example

EXAMPLE:

cont{ //mode
 A.value:=4;
} until { // transitions
 [C.value > 4.0] { log(" statement block 1"); } goto state1
 [D.value > E.value]{ log(" repeat the execution"); repeat}
 [] Port2.receive(TemplExp) { log(" statement block 1"); }
}

NOTE 2: The repeat statement is functional equivalent to the use of a goto clause that addresses a label directly
above the current mode.

5.4.1.1.4 The continue statement

The control flow of a mode's transition's statement block may end with a continue statement.

Semantic Description

The continue statement causes the further execution of a par statement, seq statement or cont statement, i.e. the
execution of the par statement, seq statement or cont is continued with the next sampling step without a reset to
the local time (see duration symbol in clause 5.4.1.3). The onentry and onexit blocks are not executed.

Example

EXAMPLE:

cont{ //mode
 A.value:=4;
} until { // transitions
 [C.value > 4.0] { log(" statement block 1"); } goto state1
 [D.value > E.value]{ log(" continue the execution"); continue}
 [] Port2.receive(TemplExp) { log(" statement block 1"); }
}

5.4.1.2 Definition of invariant blocks

Syntactical Structure

 inv "{" Predicate {"," Predicate} "}"

Semantic Description

An invariant block contains boolean predicates (expressions) which characterize the applicability of a mode. Thus, an
invariant block is always related to its containing mode specification and it specifies the conditions that shall be valid
for a mode during runtime.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)28

For each mode, all invariants are checked for each sampling step when the mode is active. While a mode is active the
invariants of a mode shall not be violated. The invariant block is always checked at the beginning of each sampling
step, even before the body of each mode is executed. Violation of the invariant causes that the body of the mode is not
executed and processing continues with the until clause which shall only handle notinv predicates in this case. If
the until block is not present or if it does not handle the notinv predicate, the active mode shall be terminated and
the execution shall continue with the implicit follow-up mode (i.e. the mode immediately textually following the active
mode statement). If no implicit follow-up mode is available, the test system shall generate a dynamic error.

Restrictions

In the general semantic rules the following restrictions apply:

• The functions invoked from the invariant statement shall not use any blocking instructions (i.e. the following
operations and statements: all receiving operations, timeout, done, killed, wait and mode). Such constructs
would potentially block the execution of the invariant block with the consequence, that the next sampling step
is missed.

Examples

Example 1 below shows the definition of an atomic mode that sets the out port A continuously with the value of 3.0.
Moreover, the invariant prescribes conditions on the incoming ports B, C and D. When one of the invariants is violated
by the actual value at ports, mode execution is stopped.

EXAMPLE 1:

type port StreamIn stream { in float }
type port StreamOut stream { out float }

type component SUT {
port StreamIn A,B;
port StreamOut C,D;
}

cont{
 A.value:=3;
inv {B.value > 3,C.value >=3*D.value}
}

The specification of invariants allows the easy definition of ending conditions for the execution of modes. Based on a
simple sequential control flow paradigm, this supports the specification of sequences of modes, that are executed one
after the other whenever the invariant state of the active mode changes.

EXAMPLE 2:

cont{
A.value:=3;
inv {B.value >3,C.value >=3*D.value}
}
cont{
A.value:=5;
inv {B.value <=3,C.value >=3*D.value}
 }

5.4.1.3 Definition of the onentry block

The onentry block contains a statement list that is to be executed once and only once during the activation of a mode.

Syntactical Structure

 onentry StatementBlock

Semantic Description

The onentry block is executed as part of the activation procedure of a mode. To successfully start the onentry block all
invariants shall satisfy their conditions. The onentry blocks of hierarchically ordered modes are executed sequentially,
beginning with the onentry block of the outer-most mode to the inner modes.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)29

Restrictions

In an onentry block of a mode any TTCN-3 statement is principally allowed, except:

• Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) referenced directly or called inside functions invoked from the onentry block shall not
be used. Such constructs would potentially block the execution of the statement block with the consequence,
that the next sampling step is missed.

• Each type of control flow related statement that leads to the leaving of the mode (e.g. goto, return).

Example

The example below shows the definition of an atomic mode that sets the sampling of a port during its activation time.

EXAMPLE:

cont{
 onentry {A.delta:=0.001;}
 A.value:=3;
}

5.4.1.4 Definition of the onexit block

The onexit block contains a statement list that is to be executed once and only once during the deactivation of a mode.

Syntactical Structure

 onexit StatementBlock

Semantic Description

The onexit block is executed as part of the deactivation procedure of a mode. The execution of the onexit block is
triggered either by an activated transition or the violation of an invariant that lead to the leaving of the mode. In case of
an active transition the onexit block is executed directly after the execution of the transition's optional action block. The
onexit blocks of hierarchically ordered modes are executed sequentially, beginning with the onexit blocks of the inner-
most modes towards the outer modes.

Restrictions

In an onexit block of a mode any TTCN-3 statement is principally allowed, except:

• Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) referenced directly or called inside functions invoked from the onexit block shall not be
used. Such constructs would potentially block the execution of the statement block with the consequence, that
the next sampling step is missed.

• Each type of control flow related statement that leads to the leaving of the mode (e.g. goto, return).

Example

The following example shows the definition of an atomic mode that sets the sampling of a port during its deactivation
time.

EXAMPLE:

cont{
 A.value:=3.0;
 onexit {A.value:=1.0;}
} until {[B.value> 3.0]}

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)30

5.4.1.5 Local predicate symbols in the context of modes

To enable an explicit treatment of some exceptional situations, the keywords notinv and finished have been
introduced. They represent special predicates with a mode local evaluation.

Semantic Description

The keyword notinv can be used as a predicate that indicates the violation of any local mode invariant. Thus, if one
of the invariants of a mode is violated and the mode is active, the evaluation of the notinv symbol yields true for all
expressions in the contained until block. Otherwise it yields false. Thus, the notinv symbol allows the explicit
handling of occurring invariant violation by means of transitions. The notinv predicate is the only predicate that
allows activating a transition when an invariant is violated. The notinv predicate shall not be followed by any trigger
event.

The finished keyword can be used as a predicate to handle the proper termination of a composite mode. A proper
termination is given when the termination is triggered by the status of the child elements of a composite mode and not
by its transitions or invariants. If and only if a mode is terminated by the status of its child elements the term finished
yields true. Thus, the finished predicate allows the explicit handling of proper mode terminations by means of
transitions.

Examples

EXAMPLE 1:

cont{ //mode
 A.value:=3;
}
until { // transitions
 [notinv] { log(" Invariant violated"); }
 [] Port2.receive(TemplExp) { log(" Invariant not violated"); }
}

EXAMPLE 2:

par { //mode
 cont { //inner mode 1
 A.value:=3.0;
 } until {[C.value>3.0]}
 cont { //inner mode 2
 B.value:=3.0;

 } until {[D.value>3.0]}
 } until { // transitions
 [finished] { log(" finished by childs' state"); }
 [D.value > 4.0] { log(" not finished by childs' state"); }
}

5.4.1.6 The duration operator

Within a mode there is continuous access to the time that has elapsed since the beginning of the test case by using the
now operator. It is also possible to access the time that has elapsed since the activation of the enclosing mode
construct. The access is provided by means of the duration operator, which is applicable in expressions in all
mode related substructures like the body block, the invariant block and the until block.

NOTE: The evaluation of the duration operator depends on its context. Thus, it may differ dependent on its
place of application.

Examples

EXAMPLE 1:

cont{ A.value:=3.0;} until {[now > 4.0]}
// executes the content of the body block until
// the overall test case time has reached 4.0 seconds

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)31

EXAMPLE 2:

cont{ A.value:=3.0;} until {[duration > 4.0]}
// executes the content of the body block for 4.0 seconds

The following example shows the application of the duration operator in two different modes. Both modes are
activated at different times and thus the application of the duration symbol in the second cont mode yields different
results than the application of the duration operator in the enclosing par mode.

EXAMPLE 3:

par{
 cont{ A.value:=2.0;} until (duration > 4.0)
 cont{ A.value:=3.0;} until (duration > 4.0)
} until{[duration > 6.0]}

5.4.2 Atomic modes: the cont statement

Syntactical Structure

The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

Semantic Description

The cont statement is used to define atomic modes. Atomic modes directly define the test behaviour at stream ports by
means of value allocation and value assessments. A cont mode may contain assignments and assert statements and
forms the leaves of a hierarchical mode structure.

When a cont statement is activated, all contained elements are executed repetitively for each sample step. The
execution ends when a transition fires or an invariant is violated.

Restrictions

a) A cont mode shall not invoke any potentially blocking behaviour.

b) A cont mode cannot contain other modes.

Examples

EXAMPLE 1:

// executes the assignments at each sample step
cont { // Mode 1
 Port1.value := 10.0;
 Port2.value := 2.0 * duration;
}
until (duration > 5.0)

NOTE: Assignment and evaluation of the cont mode is, in a theoretical sense, continuous, i.e. executed at each
step, provided for sampling. The cont mode allows the organization of periodic assignments and
periodic revisions of values or variables of stream and stream ports.

EXAMPLE 2:

cont { // mode 1
 outport1.value := inport1.prev.value *2;
 streamvar.value := inport1.prev(5).value;
}

EXAMPLE 3:

cont { // mode 1
 outport1.value := inport1.prev.value *2;
 streamvar.value := inport1.prev(5).value;
 inv {
 streamvar.value > 200.0
 }
}
until { // Transition
 [streamvar.value >150] { streamvar.value =0; }

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)32

 [streamvar.value >180] {}
}

5.4.3 Parallel mode composition: the par statement

The parallel composition of modes is specified by means of the par statement. A parallel composition may contain
sequential modes, parallel modes and atomic modes.

Syntactical Structure

The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

The general structure of the par statement is similar to the cont statement and the seq statement. It consists of a body
part, which defines the overall behaviour of the mode. In case of the par statement the body part contains the mode
definitions that are to be composed in parallel. The mode can define an optional invariant and a transition part, as well
as onentry and onexit blocks.

Semantic Description

In case of its activation, a parallel composition leads to a parallel execution of all composed (i.e. contained) modes.

While being active, each invariant of a composite mode has to hold. Additionally, each transition of a composite mode
ends the activity of the mode when it fires. Furthermore, each mode provides access to an individual local clock that
returns the time that has passed since the mode has been activated. The value of the local clock can be obtained by
means of the duration keyword.

The activation of a parallel mode leads to the parallel activation of all child modes. During execution, the parallel mode
is responsible to check the status of all contained modes. The execution of a parallel mode ends, either when a transition
in the transition block has fired or when the execution of at least one child mode has been completed. The second
situation is called a proper termination of a parallel mode and forces the local symbol finished to yield true (see
clause 5.4.1.3).

Examples

EXAMPLE 1:

var integer count := 0;
par{

cont{
x.value:=1;
y.value:=2;

}
until { // Transition

[z.value> 3.0] { }
[] Port2.receive {}

}
cont{

x.value:=2;
y.value:=1;

}
until { // Transition

[z.value> 10.0] { }
[] Port1.receive {}

}
}
until { // Transition
[finished] {if(count > 1) {count++; continue}}
}

NOTE 1: The predicate finished yields true only during the distinct sample step when a child of a parallel mode
has finished. Moreover, it yields true for every child element that has finished. Thus, it serves as a
notification event, which can be used to model complex termination conditions for parallel modes.

NOTE 2: For parallel execution, it is always possible that several children modes terminate at the same time. Thus,
counting the finished child modes to determine if all child modes have finished is not reliable. Instead, the
child modes should set conditions that can be queried in the finished.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)33

EXAMPLE 2:

par{
cont{

x.value:=1;
y.value:=2;

}
until { // Transition

[z.value> 1.0] { }
[] Port1.receive(msg1) {}

}
cont{

x.value:=2;
y.value:=1;

}
until { // Transition

[z.value> 10.0] { }
[] Port1.receive() {}

}
}
until { // Transition

[z.value > 11.0] { }
[] Port1.receive(msg) {}

}

5.4.4 Sequential mode composition: the seq statement

The sequential composition of modes is specified by means of the seq statement. A sequential composition may contain
sequential modes, parallel modes and atomic modes.

Syntactical Structure

The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

The general structure of the seq statement is similar to the cont statement and the par statement. It consists of a body
part, which defines the overall behaviour of the mode. In case of the seq statement the body part contains the mode
definitions that are to be composed.

Semantic Description

In case of its activation, a sequential composition leads to a sequential execution of the composed (i.e. contained)
modes.

While being active, each invariant of a composite mode has to hold. Additionally, each transition of a composite mode
ends the activity of the mode when it fires. Furthermore, each mode provides access to an individual local clock that
returns the time that has passed since the mode has been activated. The value of the local clock can be obtained by
means of the duration keyword.

The activation of a sequential mode leads to the activation of its first child mode. During execution, the sequential mode
is responsible to schedule the contained modes in their sequential order. Thus, when a child mode has finished, the
target mode of the exit transition is activated. Per default, the target mode is the next mode is the sequence\. The
execution of a sequential mode ends either when a transition in the transition block is fired or when the execution of the
last child mode has been completed. The second situation is called a proper termination of a sequential mode and forces
the local symbol finished to yield true (see clause 5.4.1.3).

Example

The following example defines the sequential execution of two atomic modes, which are composed sequentially by
means of a sequential mode.

EXAMPLE:

seq{
cont{

x.value:=1;
y.value:=2;

}
until { // Transition

[z.value> 2.0] { }
[] Port1.receive() {}

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)34

}
cont{

x.value:=2;
y.value:=1;

}
until { // Transition

[z.value> 1.0] { }
[] Port1.receive() {}

}
}
until { // Transition

[z.value> 12.0] { }
[] Port1.receive(msg) {}

}

5.4.5 Parameterizable modes

5.4.5.0 General

To provide a higher degree of flexibility, it is possible to specify parameterizable modes. Values, templates, ports, and
modes can be used as mode parameters. The definition of parameterizable modes is similar to the definition of TTCN-3
functions.

NOTE: Unlike functions parameterizable modes are not called in the sense of a function call but inserted by
means of a substitution mechanism at compile time. Thus, the recursive application of parameterizable
modes is not possible.

5.4.5.1 Parameterizable mode definitions

A parameterizable mode definition allows the definition of reusable and parameterizable modes. A parameterizable
mode may be defined within a module.

Syntactical Structure

 mode ModeName
 ["(" { (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar | FormalModePar)
[","] } ")"]
 [runs on ComponentType]
 (ContMode | ParMode | SeqMode)

Semantic Description

In a module, the behaviour of a mode can be defined by using the statements and operations described in clauses 5.4.1
to 5.4.4.

Restrictions

a) If a mode uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using the runs on keywords in the mode header. The one exception to
this rule is if all component-wide information used within the mode is passed in as parameters.

b) A mode without runs on clause shall never invoke functions or modes with a runs on clause locally.

Examples

EXAMPLE 1:

mode myMode runs on Tester cont{assert(engine_speed >= 500.0)}

EXAMPLE 2:

 mode pert_seq_2(in float startVal, in float increase, in float expected_speed)
 runs on Tester
 par{
 seq{// perturbation sequence
 cont{to_Set_Point:=startVal} until {[duration>=2.0]}
 cont{to_Set_Point:=startVal + duration/to_Set_Point.delta*increase}
 until {[duration>=5.0]}

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)35

 }
 cont{assert(engine_speed >= expected_speed);
 }

 testcase myTestcase runs on EngineTester {
 pert_seq_2(1000.0, 10.0, 500.0);
 pert_seq_2(5000.0, 1.0, 0.0);
 }

5.4.5.2 Mode types (optional)

Mode types are optional. They are available only if this extension package is used in combination with the TTCN-3
extension package ETSI ES 202 785 [6] "Behaviour Types". If this package is used in combination with [6], both
packages have to be named with their package tags in the language clause of the TTCN-3 module in which the packages
are used.

Mode types are the set of identifiers of mode definitions with a specific parameter list and runs on clauses. They denote
those modes defined in the test suite that have a compatible parameter list and compatible runs on clauses.

Syntactical Structure

type mode BehaviorTypeIdentifier
"(" { (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar | FormalModePar)
[","] } ")"
[runs on (ComponentType | self]

Example

EXAMPLE:

type mode ModeType assert_mode() runs on Tester;

5.5 The wait statement
Syntactical Structure

wait "(" Expression ")"

Semantic Description

The wait statement suspends the execution of a component until a given point in time. The time point is specified as a
float value and relates to the internal clock.

The execution of the wait statement suspends the execution of the related component until the point in time specified by
its argument. If the argument holds a value that precedes the actual clock value an error verdict shall be set.

Example

EXAMPLE:

 streamoutport.value = 10.0;
 wait(100.0 + now); // suspends the execution of a component
 // until 100.0 seconds after the start of the testcase
 streamoutport.value = 12.0;

NOTE: The wait statement has no impact on sampling. All stream ports of the given component are still
sampled with respect to their sampling rate.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)36

6 TRI extensions for the package

6.0 General
In addition to the TRI types defined in ETSI ES 201 873-5 [3], the following type is used in TRI operations if static
configurations specified in ETSI ES 202 781 [7] are supported.

TriConfigurationIdType A value of type TriConfigurationIdType includes a unique identifier of the
configuration and the configuration function name as specified in the TTCN-3 ATS.
This abstract type is used to resolve clock operations related to specific configurations
as there might be several configurations active in the same time.

6.1 Extensions to clause 5.5 of ETSI ES 201 873-5:
Communication interface operations

Clause 5.5.6 Stream operations

5.5.6.1 triSetStreamValue (TE → SA)

Signature TriStatusType triSetStreamValue
(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriMessageType streamValue)

In Parameters componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the
message is sent to the SUT Adapter
streamValue the encoded stream value (message) to be sent

Out Parameters n.a.
Return Value The return status of the triSetStreamValue operation. The return

status indicates the local success (TRI_OK) or failure (TRI_Error) of
the operation.

Constraints The TE calls this operation when it executes a new sampling step on
a sampled output stream port, which has been mapped to a TSI port.
The TE calls the operation for all sampling steps of all outgoing
stream ports if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.
The encoding of streamValue has to be done in the TE prior to this
TRI operation call.

Effect The SA can update the message to the SUT.
The triSetStreamValue operation returns TRI_OK in case it has
been completed successfully. Otherwise TRI_Error shall be returned.
Notice that the return value TRI_OK does not imply that the SUT has
received streamValue.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)37

5.5.6.2 triGetStreamValue (TE → SA)

Signature TriStatusType triGetStreamValue
(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,

 out TriMessageType streamValue)

In Parameters componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the
message is sent to the SUT Adapter.

Out Parameters streamValue the encoded stream value (message) that has been
received from the SUT.

Return Value The return status of the triGetStreamValue operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of
the operation.

Constraints The TE calls this operation when it executes a new sampling step on
a sampled input stream port, which has been mapped to a TSI port.
The TE calls the operation for all sampling steps of all outgoing
stream ports if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.
The decoding of streamValue has to be done in the TE after to this
TRI operation call.

Effect The SA can update the stream value at the input port.
The triGetStreamValue operation returns TRI_OK in case it has
been completed successfully. Otherwise TRI_Error shall be returned.

6.2 Extensions to clause 5.6 of ETSI ES 201 873-5: Platform
interface operations

Clause 5.6.4 Clock and sampling operations

5.6.4.1 triStartClock (TE → PA)

Signature TriStatusType triStartClock(in long ticksPerSecond)
In Parameters ticksPerSecond the precision of the clock given in ticks per

second.
Out Parameters n.a.

Return Value The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints n.a.
Effect The operation starts the test system clock with a given precision. The

precision is defined by the in parameter ticksPerSecond. The
parameter specifies the number of time units (ticks) that characterizes
a second.

5.6.4.2 triReadClock (TE → PA)

Signature TriStatusType triReadClock(out long timepoint)
In Parameters n.a.

Out Parameters timepoint current time.
Return Value The return status of the operation. The return status indicates the

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints There was a preceding invocation of

 triStartClock(int long ticksPerSecond).
Effect The operation yields the actual clock value. The clock value is given

by the out parameter timepoint, which represents the number of
time units (ticks) that has elapsed since the start of the clock (see
triStartClock).

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)38

5.6.4.3 triNextSampling (TE → PA, SA → PA)

Signature TriStatusType triNextSampling
(in long timepoint,
 in TriPortIDType port)

In Parameters timepoint point in time when the execution of the next sample step
for a given stream port shall be started
port the stream port the sample step is requested for.

Out Parameters n.a.
Return Value The return status of the operation. The return status indicates the

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints There was a preceding invocation of

 triStartClock(int long ticksPerSecond).
Effect The operation signals that the next sample step for a given port shall

start at the specified point of time timepoint.
At this point in time the PA will issue a
 triProcessStep(in TriPortIDListType ports)
operation to inform the TE which ports shall be sampled next.
The parameter timepoint is expressed as the number of time units
(ticks), that has elapsed since the start of the clock (see
triStartClock).
A call to this operation returns immediately. The operation merely
triggers the corresponding triProcessStep operation.
If timepoint represent a point of time in the past then the operation
returns a TRI_Error value and has no other effect.

5.6.4.4 triBeginWait (TE → PA)

Signature TriStatusType triBeginWait
(in long timepoint,
 in TriComponentIdType component)

In Parameters timepoint point in time until execution of a component should be
suspended
component component whose execution should be suspended.

Out Parameters n.a.
Return Value The return status of the operation. The return status indicates the

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints There was a preceding invocation of

 triStartClock(int long ticksPerSecond).
Effect The operation signals that the execution of component component

should be suspended until the specified point of time timepoint.
At this point in time the PA will issue a
 triEndWait(component)
operation.
timepoint is expressed as the number of time units (ticks), that has
elapsed since the start of the clock (see triStartClock).
A call to this operation returns immediately. The operation merely
triggers the corresponding triEndWait operation, it does not
schedule the execution of the component.
If timepoint represent a point of time in the past then the operation
returns a TRI_Error value and has no other effect.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)39

5.6.4.5 triProcessStep (PA → TE)

Signature void triProcessStep(in TriPortIDListType ports)
In Parameters Ports a list of ports that shall be sampled at the operation call.
Out Parameters n.a.
Return Value n.a.
Constraints There was a preceding invocation of

 triNextSampling(timepoint, port)
Effect The operation signals that the point in time timepoint that was

specified in the corresponding
 triNextSampling(timepoint, port)
has been reached.

5.6.4.6 triEndWait (PA → TE)

Signature void triEndWait(in TriComponentIdType component)
In Parameters component component of the corresponding triBeginWait operation.

Out Parameters n.a.
Return Value n.a.
Constraints There was a preceding invocation of

 triBeginWait(timepoint, component).
Effect The operation signals that the point in time timepoint that was

specified in the corresponding
 triBeginWait(timepoint, component)
has been reached.

5.6.4.7 triStartClockStatic (TE → PA)

Signature TriStatusType triStartClock(in long ticksPerSecond,
TriConfigurationIdType ref)

In Parameters ticksPerSecond the precision of the clock given in ticks per
second.
ref reference to the static configuration owning the clock.

Out Parameters n.a.
Return Value The return status of the operation. The return status indicates the

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is optional and shall be present in the interface only if

static configurations specified in ETSI ES 202 781 [7] are supported.
Effect The operation starts the test system clock with a given precision. The

precision is defined by the in parameter ticksPerSecond. The
parameter specifies the number of time units (ticks) that characterizes
a second.

5.6.4.8 triReadClockStatic (TE → PA)

Signature TriStatusType triReadClock(out long timepoint,
TriConfigurationIdType ref)

In Parameters n.a.
Out Parameters timepoint current time.

ref reference to the static configuration owning the clock.
Return Value The return status of the operation. The return status indicates the

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is optional and shall be present in the interface only if

static configurations specified in ETSI ES 202 781 [7] are supported.
There was a preceding invocation of
 triStartClockStatic(int long ticksPerSecond,
TriConfigurationIdType ref).

Effect The operation yields the actual clock value. The clock value is given
by the out parameter timepoint, which represents the number of
time units (ticks) that has elapsed since the start of the clock (see
triStartClock).

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)40

6.3 Extensions to clause 6.3.2 of ETSI ES 201 873-5:
Structured type mapping

6.3.1 TriConfigurationIdType

6.3.1.0 General

TriConfigurationIdType is mapped to the following interface:

// TRI IDL TriConfigurationIdType
package org.etsi.ttcn.tri;
public interface TriConfigurationId {
 public String getConfigurationId();
 public String getConfigurationName();
 public boolean equals(TriConfigurationId component);
}

6.3.1.1 Methods

• getConfigurationId

Returns a representation of this unique configuration identifier.

• getConfigurationName

Returns the configuration function name as defined in the TTCN-3 specification.

• equals

Compares configuration with this TriConfigurationId for equality. Returns true if and only if
both configurations have the same representation of the unique configuration identifier, false otherwise.

6.4 Extensions to clause 6.5.2.1 of ETSI ES 201 873-5:
TriCommunicationSA

The triCommunicationSA interface is to be extended as follows:

public interface triCommunicationSA {
 :
 :
 // Stream operations
 // Ref: 5.5.6.1
 public TriStatus triSetStreamValue(TriComponentId componentId,
 TriPortId tsiPortId,
 TriMessage streamValue);
 // Ref: 5.5.6.2
 public TriStatus triGetStreamValue(TriComponentId componentId,
 TriPortId tsiPortId,
 TriAddress SUTaddress,
 TriMessage streamValue);
}

6.5 Extensions to clause 6.5.3.1 of ETSI ES 201 873-5:
TriPlatformPA

The triPlatformPA interface is to be extended as follows:

public interface triPlatformPA {
 :
 // Clock and sampling operations
 // Ref: 5.6.4.1
 public TriStatus triStartClock(long ticksPerSecond);
 // Ref: 5.6.4.2
 public TriStatus triReadClock(TriLong timepoint);
 // Ref: 5.6.4.3
 public TriStatus triNextSampling(long timepoint, TriPortId port);

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)41

 // Ref: 5.6.4.4
 public TriStatus triBeginWait(int timepoint, TriComponentId component);
 // Ref: 5.6.4.7 (optional)
 public TriStatus triStartClockStatic(long ticksPerSecond, TriConfigurationId ref);
 // Ref: 5.6.4.8 (optional)
 public TriStatus triReadClockStatic(TriLong timepoint, TriConfigurationId ref);
}

where TriLong is defined as follows:

package org.etsi.ttcn.tri;

public interface TriLong {
 public void setLongValue(long value);
 public long getLongValue();
}

6.6 Extensions to clause 6.5.3.2 of ETSI ES 201 873-5:
TriPlatformTE

The triPlatformTE interface is to be extended as follows:

public interface triPlatformTE {
 :
 // Clock and sampling operations
 // Ref: 5.6.4.5
 public void triProcessStep(TriPortIdList ports);
 // Ref: 5.6.4.6
 public void triEndWait(TriComponentId component);}

6.7 Extensions to clause 7.2.1 of ETSI ES 201 873-5: Abstract
type mapping

TRI ADT ANSI C Representation Notes and comments
TriConfigurationId typedef struct

TriConfigurationId
{
 BinaryString confId;
 QualifiedName confName;
} TriComponentId;

confId is stands for the unique
configuration identifier and
confName is used for the name of
the realated configuration function.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)42

6.8 Extensions to clause 7.2.4 of ETSI ES 201 873-5: TRI
operation mapping

The table is to be extended as follows:

IDL Representation ANSI C Representation
: :
TriStatusType triSetStreamValue(
in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriMessageType streamValue)

TriStatus triSetStreamValue(
const TriComponentId *componentId,
const TriPortId *tsiPortId,
const TriMessage *streamValue)

TriStatusType triGetStreamValue(
in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
out TriMessageType streamValue)

TriStatus triGetStreamValue(
const TriComponentId *componentId,
const TriPortId *tsiPortId,
const TriMessage *streamValue)

TriStatusType triStartClock(in long
ticksPerSecond)

TriStatus triStartClock(
const long long ticksPerSecond)

TriStatusType triReadClock(out long
timepoint)

TriStatus triReadClock(
const long long *timepoint)

TriStatusType triNextSampling
(in long timepoint, in TriPortIdType port)

TriStatus triNextSampling(
const long long timepoint,
const TriPortId port)

TriStatusType triBeginWait
(in long timepoint,
 in TriComponentIdType component)

TriStatus triBeginWait(
const long long timepoint,
const TriComponentId component)

void triProcessStep(in TriPortIdListType
ports)

void triProcessStep(
const TriPortIdList *ports)

void triEndWait(in TriComponentIdType
component)

void triEndWait(
const TriComponentId *component)

TriStatusType triStartClock(in long
ticksPerSecond)

TriStatus triStartClockStatic(
const long long ticksPerSecond,
const TriConfigurationId *ref)

TriStatusType triReadClock(out long
timepoint)

TriStatus triReadClockStatic(
const long long *timepoint,
const TriConfigurationId *ref)

6.9 Extensions to clause 8.5.2 of ETSI ES 201 873-5: Abstract
data types

6.9.1 TriConfigurationId

6.9.1.0 General

A value of type TriComponentId includes an identifier and configuration function name. This abstract type is for
distinguishing between different parallel configurations in static clock operations:

class TriConfigurationId {
public:
 virtual ~TriConfigurationId ();
 virtual const QualifiedName & getConfigurationName () const =0;
 virtual const Tstring & getConfigurationId () const =0;
 virtual Tboolean operator== (const TriConfigurationId &cmp) const =0;
 virtual TriConfigurationId * cloneConfigurationId () const =0;
 virtual Tboolean operator< (const TriConfigurationId &cmp) const =0;
}

6.9.1.1 Methods

• ~TriConfigurationId

Destructor.

• getConfigurationName

Returns a const reference to the configuration function name.

• getConfigurationId

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)43

Returns the configuration unique identifier.

• operator==

Returns true if both TriConfigurationId objects are equal.

• cloneComponentId

Returns a copy of the TriConfigurationId.

• operator<

Operator < overload.

6.10 Extensions to clause 8.6.1 of ETSI ES 201 873-5:
TriCommunicationSA

The triCommunicationSA interface is to be extended as follows:

class TriCommunicationTe {
public:
 :
 // Stream operations
 // Ref: 5.5.6.1
 virtual TriStatus triSetStreamValue(const TriComponentId *componentId,
 const TriPortId *tsiPortId,
 const TriMessage *streamValue)=0;
 // Ref: 5.5.6.2
 virtual TriStatus triGetStreamValue(const TriComponentId *componentId,
 const TriPortId *tsiPortId,
 const TriMessage *streamValue)=0;
}

6.11 Extensions to clause 8.6.3 of ETSI ES 201 873-5:
TriPlatformPA

The triPlatformPA interface is to be extended as follows:

class TriPlatformPa {
public:
 :
 // Clock and sampling operations
 // Ref: 5.6.4.1
 virtual TriStatus triStartClock(const long long ticksPerSecond)=0;
 // Ref: 5.6.4.2
 virtual TriStatus triReadClock(const long long *timepoint)=0;
 // Ref: 5.6.4.3
 virtual TriStatus triNextSampling(const long long timepoint, const TriPortId *port)=0;
 // Ref: 5.6.4.4
 virtual TriStatus triBeginWait(const long long timepoint, const TriComponentId *component)=0;
 // Ref: 5.6.4.7 (optional)
 virtual TriStatus triStartClockStatic(const long long ticksPerSecond,
 const TriConfigurationId *ref)=0;
 // Ref: 5.6.4.8 (optional)
 virtual TriStatus triReadClockStatic(const long long *timepoint,
 const TriConfigurationId *ref)=0;
}

6.12 Extensions to clause 8.6.4 of ETSI ES 201 873-5:
TriPlatformTE

The triPlatformTE interface is to be extended as follows:

class TriPlatformTe {
public:
 :
 // Clock and sampling operations
 // Ref: 5.6.4.5
 virtual void triProcessStep(const TriPortIdList *ports)=0;
 // Ref: 5.6.4.6

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)44

 virtual void triEndWait(const TriComponentId *component)=0;
}

6.13 Extensions to clause 9.4.2 of ETSI ES 201 873-5:
Structured type mapping

6.13.1 TriConfigurationIdType

6.13.1.0 General

TriConfigurationIdType is mapped to the following interface:

public interface ITriConfigurationId {
 string ConfigurationId { get; }
 IQualifiedName ConfigurationName { get; }
 bool Equals(ITriConfigurationId comp);
}

6.13.1.1 Members

• ConfigurationId

Returns a representation of this unique configuration identifier.

• ConfigurationName

Returns the configuration function name as defined in the TTCN-3 specification.

• Equals

Compares a configuration with this TriConfigurationId for equality. Returns true if and only if both
configurations have the same representation of the unique configuration identifier, false otherwise.

6.14 Extensions to clause 9.5.2.1 of ETSI ES 201 873-5:
ITriCommunicationSA

The ITriCommunicationSA interface is to be extended as follows:

public interface ITriCommunicationSA {
 :
 // Stream operations
 // Ref: 5.5.6.1
 TriStatus TriSetStreamValue(ITriComponentId componentId,
 ITriPortId tsiPortId,
 ITriMessage streamValue);
 // Ref: 5.5.6.2
 TriStatus TriGetStreamValue(ITriComponentId componentId,
 ITriPortId tsiPortId,
 ITriMessage streamValue);
}

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)45

6.15 Extensions to clause 9.5.2.3 of ETSI ES 201 873-5:
ITriPlatformPA

The ITriPlatformPA interface is to be extended as follows:

public interface ITriPlatformPA {
 :
 // Clock and sampling operations
 // Ref: 5.6.4.1
 TriStatus TriStartClock(long ticksPerSecond);
 // Ref: 5.6.4.2
 TriStatus TriReadClock(out long timepoint);
 // Ref: 5.6.4.3
 TriStatus TriNextSampling(long timepoint, ITriPortId port);
 // Ref: 5.6.4.4
 TriStatus TriBeginWait(long timepoint, ITriComponentId component);
 // Ref: 5.6.4.7 (optional)
 TriStatus TriStartClockStatic(long ticksPerSecond, ITriConfigurationId refConf);
 // Ref: 5.6.4.8 (optional)
 TriStatus TriReadClockStatic(out long timepoint, ITriConfigurationId refConf);
}

6.16 Extensions to clause 9.5.2.4 of ETSI ES 201 873-5:
ITriPlatformTE

The ITriPlatformTE interface is to be extended as follows:

public interface ITriPlatformTE {
 :
 // Clock and sampling operations
 // Ref: 5.6.4.5
 void TriProcessStep(ITriPortIdList ports);
 // Ref: 5.6.4.6
 void TriEndWait(ITriComponentId component);
}

7 TCI extensions for the package

7.1 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH
provided

Clause 7.3.3.2.31 tciSetStreamValueReq (TE → CH)

Signature void tciSetStreamValueReq
(in TriPortIdType sender,
 in TriComponentIdType receiver,
 in Value streamValue)

In Parameters sender identifier of the port via which the message is sent to the
receiving component.
receiver identifier of the receiving component.
streamValue the stream value to be set.

Out Parameters n.a.
Return Value void
Constraints The TE calls this operation at the CH when it executes a new

sampling step on a sampled output stream port, which has been
connected with a test component port.

Effect If receiving a tciSetStreamValueReq operation, the CH can call
tciSetStreamValue in the TE on the node where the receiver
component is deployed.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)46

Clause 7.3.3.2.33 tciGetStreamValueReq (TE → CH)

Signature void tciGetStreamValueReq
(in TriPortIdType receiver,
 in TriComponentIdType sender,
 in Value streamValue)

In Parameters receiver identifier of the port via which the message is received
from the sending component.
sender identifier of the sending component.
streamValue the stream value to be received.

Out Parameters n.a.
Return Value void
Constraints The TE calls this operation at the CH when it executes a new

sampling step on a sampled input stream port, which has been
connected with a test component port.

Effect The CH calls tciGetStreamValue in the TE on the node where the
sending component is deployed.

7.2 Extensions to clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH
required

Clause 7.3.3.1.23 tciSetStreamValue (CH → TE)

Signature void tciSetStreamValue
(in TriPortIdType sender,
 in TriComponentIdType receiver,
 in Value streamValue)

In Parameters sender identifier of the port via which the message is sent to the
receiving component.
receiver identifier of the receiving component.
streamValue the stream value to be set.

Out Parameters n.a.
Return Value void
Constraints The CH calls this operation in the local TE where receiver is

deployed when tciSetStreamValueReq has been called.
Effect The CH updates the respective outgoing stream port on the test

component.

Clause 7.3.3.1.24 tciGetStreamValue (CH → TE)

Signature void tciGetStreamValue
(in TriPortIdType receiver,
 in TriComponentIdType sender,
 in Value streamValue)

In Parameters receiver identifier of the port via which the message is received
from the sending component.
sender identifier of the sending component.
streamValue the stream value to be received.

Out Parameters n.a.
Return Value void
Constraints The CH calls this operation in the local TE where sender is deployed

when tciGetStreamValueReq has been called.
Effect The CH updates the respective incoming stream port on the test

component.

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)47

7.3 Extensions to clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH
provided

The interface TciCHProvided is to be extended as follows:

public interface TciCHProvided {
 :
 public void tciSetStreamValue (TriPortId sender,
 TriComponentId receiver,
 Value streamValue) ;
 public void tciGetStreamValue (TriPortId receiver,
 TriComponentId sender,
 Value streamValue) ;
}

7.4 Extensions to clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH
required

The interface TciCHRequired is to be extended as follows:

public interface TciCHRequired extends TciCDRequired {
 :
 public void tciSetStreamValueReq (TriPortId sender,
 TriComponentId receiver,
 Value streamValue) ;
 public void tciGetStreamValueReq (TriPortId receiver,
 TriComponentId sender,
 Value streamValue) ;
}

7.5 Extensions to clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH
provided

The interface TCI-CH Provided is to be extended as follows:

void tciSetStreamValue (TriPortId sender, TriComponentId receiver, Value streamValue)
void tciGetStreamValue (TriPortId receiver, TriComponentId sender, Value streamValue)

7.6 Extensions to clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH
required

The interface TCI-CH Required is to be extended as follows:

void tciSetStreamValueReq
 (TriPortId sender, TriComponentId receiver, Value streamValue)
void tciGetStreamValueReq
 (TriPortId receiver, TriComponentId sender, Value streamValue)

7.7 Extensions to clause 10.6.3.1 of ETSI ES 201 873-6:
TciChRequired

The class that defines the TCI_CH required interface is to be extended as follows:

virtual void tciSetStreamValueReq
 (const TriPortId *sender, const TriComponentId *receiver, const TciValue *streamValue)=0;
virtual void tciGetStreamValueReq
 (const TriPortId *receiver, const TriComponentId *sender, const TciValue *streamValue)=0;

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)48

7.8 Extensions to clause 10.6.3.2 of ETSI ES 201 873-6:
TciChProvided

The class that defines the TCI_CH provided interface is to be extended as follows:

virtual void tciSetStreamValue
 (const TriPortId *sender, const TriComponentId *receiver, const TciValue *streamValue)=0;
virtual void tciGetStreamValue
 (const TriPortId *receiver, const TriComponentId *sender, const TciValue *streamValue)=0;

7.9 Extensions to clause 12.5.3.1 of ETSI ES 201 873-6:
TCI-CH provided

The interface ITciCHProvided is to be extended as follows:

public interface ITciCHProvided {
 :
 public void tciSetStreamValue (ITriPortId sender,
 ITriComponentId receiver,
 ITciValue streamValue) ;
 public void tciGetStreamValue (ITriPortId receiver,
 ITriComponentId sender,
 ITciValue streamValue) ;
}

7.10 Extensions to clause 12.5.3.2 of ETSI ES 201 873-6:
TCI-CH required

The interface ITciCHRequired is to be extended as follows:

public interface ITciCHRequired {
 :
 public void tciSetStreamValueReq (ITriPortId sender,
 ITriComponentId receiver,
 ITciValue streamValue) ;
 public void tciGetStreamValueReq (ITriPortId receiver,
 ITriComponentId sender,
 ITciValue streamValue) ;
}

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)49

Annex A (normative):
BNF and static semantics

A.1 New TTCN-3 terminals
Table A.1: List of new TTCN-3 terminals defined in this package which are reserved words

apply
assert
at

cont

delta
duration

finished

history

inv

mode

notinv

onentry
onexit

par
prev

seq
stepsize
stream

timestamp

until

values

wait

The TTCN-3 terminals listed in table A.1 shall not be used as identifiers in a TTCN-3 module. These terminals shall be
written in all lowercase letters.

A.2 Changed BNF Rules
7. ModuleDefinition ::= (([Visibility] (TypeDef |
 ConstDef |
 TemplateDef |
 ModuleParDef |
 FunctionDef |
 SignatureDef |
 TestcaseDef |
 AltstepDef |
 ImportDef |
 ExtFunctionDef |
 ExtConstDef |
 ModeDef
)) |
 (["public"] GroupDef) |
 (["private"] FriendModuleDef)
) [WithStatement]
51. PortDefAttribs ::= MessageAttribs |
 ProcedureAttribs |
 MixedAttribs |
 StreamAttribs
80. PortElement ::= Identifier [ArrayDef] [AssignmentChar PortInitialValue]
174. FunctionStatement ::= ConfigurationStatements |
 TimerStatements |
 CommunicationStatements |
 BasicStatements |
 BehaviourStatements |
 SetLocalVerdict |
 SUTStatements |
 TestcaseOperation |
 AssertStatement |
 WaitStatement

301. CommunicationStatements ::= SendStatement |
 CallStatement |
 ReplyStatement |
 RaiseStatement |
 ReceiveStatement |
 TriggerStatement |
 GetCallStatement |
 GetReplyStatement |
 CatchStatement |
 CheckStatement |
 ClearStatement |
 StartStatement |

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)50

 StopStatement |
 HaltStatement |
 CheckStateStatement |
 StreamEvalStatements
466. AttribKeyword ::= EncodeKeyword |
 VariantKeyword |
 DisplayKeyword |
 ExtensionKeyword |
 OptionalKeyword |
 StepsizeKeyword
477. BehaviourStatements ::= TestcaseInstance |
 FunctionInstance |
 ReturnStatement |
 AltConstruct |
 InterleavedConstruct |
 LabelStatement |
 GotoStatement |
 RepeatStatement |
 DeactivateStatement |
 AltstepInstance |
 ActivateOp |
 BreakStatement |
 ContinueStatement |
 ModeSpecification
540. OpCall ::= ConfigurationOps |
 GetLocalVerdict |
 TimerOps |
 TestcaseInstance |
 (FunctionInstance [ExtendedFieldReference]) |
 (TemplateOps [ExtendedFieldReference]) |
 ActivateOp |
 NowOp |
 StreamDataOps |
 StreamNavigationOps |
 ModeLocalOps

A.3 New BNF Rules
786001. NowOp ::= "now"
786002. StepsizeKeyword ::= "stepsize"
786003. StreamAttribs ::= StreamKeyword "{" {(StreamValueDef | ConfigParamDef) [SemiColon]}+ "}"
786004. StreamValueDef ::= StreamDirection Type
786005. StreamKeyword ::= "stream"
786006. StreamDirection ::= InParKeyword | OutParKeyword | InOutParKeyword
786007. PortInitialValue ::= Expression

786008. StreamDataOps ::= ArrayIdentifierRef Dot PortDataOp
/** STATIC SEMANTICS The ArrayIdentifierRef part shall identify a stream port*/
786009. PortDataOp ::= PortValueOp |
 PortTimestampOp |
 PortDeltaOp |
 PortHistoryOp |
 PortValuesOp
786010. PortValueOp ::= ValueKeyword
786011. PortTimestampOp ::= "timestamp"
786012. PortDeltaOp ::= "delta"
786013. PortHistoryOp ::= HistoryOpKeyword ["(" StartValue ["," EndValue] ")"]
786014. HistoryOpKeyword ::= "history"
786015. StartValue ::= Expression
786016. EndValue ::= Expression
786017. PortValuesOp ::= ValuesOpKeyword ["(" StartValue ["," EndValue] ")"]
786018. ValuesOpKeyword ::= "values"
786019. StreamNavigationOps ::= ArrayIdentifierRef Dot (PortPrevOp | PortAtOp) [Dot PortDataOp]
/** STATIC SEMANTICS The ArrayIdentifierRef part shall identify a stream port*/
786020. PortPrevOp ::= PrevOpKeyword ["(" IndexValue ")"]
786021. PrevOpKeyword ::= "prev"
786022. IndexValue ::= Expression
786023. PortAtOp ::= AtOpKeyword ["(" TimeIndexValue ")"]
786024. AtOpKeyword ::= "at"
786025. TimeIndexValue ::= Expression
786026. ModeLocalOps ::= DurationOp | FinishedOp | NotinvOp
786027. DurationOp ::= "duration"
786028. FinishedOp ::= "finished"
786029. NotinvOp ::= "notinv"
786030. StreamEvalStatements ::= ArrayIdentifierRef Dot PortApplyOp

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)51

/** STATIC SEMANTICS The ArrayIdentifierRef part shall identify a stream port*/
786031. PortApplyOp ::= ApplyKeyword ["(" ApplyParameter ")"]
786032. ApplyKeyword ::= "apply"
786033. ApplyParameter ::= TemplateInstance
786034. AssertStatement ::= AssertKeyword ["(" AssertionList ")"]
786035. AssertKeyword ::= "assert"
786036. AssertionList ::= Expression {"," Expression }
786037. WaitStatement ::= WaitKeyword "(" WaitDuration ")"
786038. WaitKeyword ::= "wait"
786039. WaitDuration ::= Expression

786040. ModeSpecification ::= (BasicMode | SeqMode | ParMode) [UntilBlock] | ModeInstance

786041. BasicMode ::= ContKeyword "{" {VarInstance [SemiColon]}
 [OnEntryBlock]
 [InvariantBlock]
 {BasicModeOp [SemiColon]}
 [OnExitBlock]
 "}"

786042. ContKeyword ::= "cont"
786043. OnEntryBlock ::= OnEntryKeyword "{" StatementBlock "}"
786044. OnEntryKeyword ::= "onentry"
786045. InvariantBlock ::= InvKeyword "{" InvariantList "}"
786046. InvKeyword ::= "inv"
786047. InvariantList ::= [BooleanExpression {"," BooleanExpression }]
786048. BasicModeOp ::= Assignment | AssertStatement
786049. OnExitBlock ::= OnExitKeyword "{" StatementBlock "}"
786050. OnExitKeyword ::= "onexit"

786051. SeqMode ::= SeqKeyword "{" {VarInstance}
 [OnEntryBlock]
 [InvariantBlock]
 ModeList
 [OnExitBlock]
 "}"
786052. ParMode ::= ParKeyword "{" {VarInstance}
 [OnEntryBlock]
 [InvariantBlock]
 { ModeSpecification [SemiColon] }
 [OnExitBlock]
 "}"
786053. SeqKeyword ::= "seq"
786054. ParKeyword ::= "par"
786055. ModeList ::= { [LabelStatement [SemiColon]] ModeSpecification [SemiColon] }

786056. UntilBlock ::= UntilKeyword "{" UntilGuardList "}"
786057. UntilKeyword ::= "until"

786058. UntilGuardList ::= {UntilGuardStatement}
786059. UntilGuardStatement ::= (("[" BooleanExpression "]" [GuardOp]) | ("[" "]" GuardOp))
 [StatementBlock] [GotoStatement]

786060. ModeTypeDef ::= TypeDefKeyword ModeKeyword Identifier
 ["(" TemplateOrValueFormalParList ")"]
 [RunsOnSpec]
786061. ModeKeyword ::= "mode"

786062. ModeDef ::= ModeKeyword Identifier
 ["(" TemplateOrValueFormalParList ")"]
 [RunsOnSpec]
 ModeSpecification
786063. ModeInstance ::= ModeRef "(" ActualParList ")"
786064. ModeRef ::= [Identifier Dot] Identifier

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)52

Annex B (informative):
Bibliography

• ALUR, Rajeev; COURCOUBETIS, Costas; HENZINGER, Thomas A.; HO, Pei-Hsin: "Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems". In: Hybrid Systems, 1992, S.
209-229.

• ALUR, Rajeev (Hrsg.); HENZINGER, Thomas A. (Hrsg.); SONTAG, Eduardo D. (Hrsg.): Hybrid Systems
III: "Verification and Control, Proceedings of the DIMACS/SYCONWorkshop", October 22-25, 1995,
Ruttgers University, New Brunswick, NJ, USA. Bd. 1066. Springer, 1996 (Lecture Notes in Computer
Science). - ISBN 3-540-61155-X.

• BROY, Manfred: "Refinement of Time". In: BERTRAN, M. (Hrsg.); RUS, Th. (Hrsg.): Transformation-Based
Reactive System Development, ARTS'97, TCS, 44 - 63.

• CONRAD, M.: "Modell-basierter Test eingebetteter Software im Automobil": Auswahl und Beschreibung von
Testszenarien. Dissertation, Deutscher Universitätsverlag, Wiesbaden (D), 2004.

• CONRAD, M.; SAX, E.: "Mixed Signals". In: E. Broekman, E. Notenboom: "Testing Embedded Software".
Addison-Wesley, London (GB), 2003, S. 229-249.

• DIN 40146: "Begriffe der Nachrichtenübertragung".

ETSI

Final draft ETSI ES 202 786 V1.4.1 (2017-03)53

History

Document history

V1.1.1 April 2012 Publication

V1.2.1 June 2014 Publication

V1.3.1 June 2015 Publication

V1.4.1 March 2017 Membership Approval Procedure MV 20170505: 2017-03-06 to 2017-05-05

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Package conformance and compatibility
	5 Package concepts for the core language
	5.0 General
	5.1 Time and Sampling
	5.1.0 General
	5.1.1 The now operator
	5.1.2 Define the default step size for sampling

	5.2 Data streams
	5.2.0 General
	5.2.1 Data Streams: static perspective
	5.2.2 Data Streams: dynamic perspective
	5.2.2.0 General
	5.2.2.1 Defining stream port types
	5.2.2.2 Declaration and instantiation of stream ports
	5.2.2.3 The Connect and Map operations

	5.2.3 Data stream access operations
	5.2.3.0 General
	5.2.3.1 The value operation
	5.2.3.2 The timestamp operation
	5.2.3.3 The delta operation

	5.2.4 Data stream navigation operations
	5.2.4.0 General
	5.2.4.1 The prev operation
	5.2.4.2 The at operation

	5.2.5 Data stream extraction and application operations
	5.2.5.0 General
	5.2.5.1 The history operation
	5.2.5.2 The values operation
	5.2.5.3 The apply operation

	5.2.6 Port control operations
	5.2.7 Stream ports in static configurations

	5.3 The assert statement
	5.4 Control structures for continuous and hybrid behaviour
	5.4.0 General
	5.4.1 Modes
	5.4.1.0 General
	5.4.1.1 Definition of the until block
	5.4.1.1.0 General
	5.4.1.1.1 Definition of transition guards and events
	5.4.1.1.2 Definition of follow up modes
	5.4.1.1.3 The repeat statement
	5.4.1.1.4 The continue statement

	5.4.1.2 Definition of invariant blocks
	5.4.1.3 Definition of the onentry block
	5.4.1.4 Definition of the onexit block
	5.4.1.5 Local predicate symbols in the context of modes
	5.4.1.6 The duration operator

	5.4.2 Atomic modes: the cont statement
	5.4.3 Parallel mode composition: the par statement
	5.4.4 Sequential mode composition: the seq statement
	5.4.5 Parameterizable modes
	5.4.5.0 General
	5.4.5.1 Parameterizable mode definitions
	5.4.5.2 Mode types (optional)

	5.5 The wait statement

	6 TRI extensions for the package
	6.0 General
	6.1 Extensions to clause 5.5 of ETSI ES 201 873-5: Communication interface operations
	6.2 Extensions to clause 5.6 of ETSI ES 201 873-5: Platform interface operations
	6.3 Extensions to clause 6.3.2 of ETSI ES 201 873-5: Structured type mapping
	6.3.1 TriConfigurationIdType
	6.3.1.0 General
	6.3.1.1 Methods

	6.4 Extensions to clause 6.5.2.1 of ETSI ES 201 873-5: TriCommunicationSA
	6.5 Extensions to clause 6.5.3.1 of ETSI ES 201 873-5: TriPlatformPA
	6.6 Extensions to clause 6.5.3.2 of ETSI ES 201 873-5: TriPlatformTE
	6.7 Extensions to clause 7.2.1 of ETSI ES 201 873-5: Abstract type mapping
	6.8 Extensions to clause 7.2.4 of ETSI ES 201 873-5: TRI operation mapping
	6.9 Extensions to clause 8.5.2 of ETSI ES 201 873-5: Abstract data types
	6.9.1 TriConfigurationId
	6.9.1.0 General
	6.9.1.1 Methods

	6.10 Extensions to clause 8.6.1 of ETSI ES 201 873-5: TriCommunicationSA
	6.11 Extensions to clause 8.6.3 of ETSI ES 201 873-5: TriPlatformPA
	6.12 Extensions to clause 8.6.4 of ETSI ES 201 873-5: TriPlatformTE
	6.13 Extensions to clause 9.4.2 of ETSI ES 201 873-5: Structured type mapping
	6.13.1 TriConfigurationIdType
	6.13.1.0 General
	6.13.1.1 Members

	6.14 Extensions to clause 9.5.2.1 of ETSI ES 201 873-5: ITriCommunicationSA
	6.15 Extensions to clause 9.5.2.3 of ETSI ES 201 873-5: ITriPlatformPA
	6.16 Extensions to clause 9.5.2.4 of ETSI ES 201 873-5: ITriPlatformTE

	7 TCI extensions for the package
	7.1 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH provided
	7.2 Extensions to clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH required
	7.3 Extensions to clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.4 Extensions to clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH required
	7.5 Extensions to clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.6 Extensions to clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH required
	7.7 Extensions to clause 10.6.3.1 of ETSI ES 201 873-6: TciChRequired
	7.8 Extensions to clause 10.6.3.2 of ETSI ES 201 873-6: TciChProvided
	7.9 Extensions to clause 12.5.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.10 Extensions to clause 12.5.3.2 of ETSI ES 201 873-6: TCI-CH required

	Annex A (normative): BNF and static semantics
	A.1 New TTCN-3 terminals
	A.2 Changed BNF Rules
	A.3 New BNF Rules

	Annex B (informative): Bibliography
	History

