Final draft ETS| ES 202 786 V1.3.1 (2015-03)

<

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions:

Support of interfaces with continuous signals

2 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Reference
RES/MTS-202786ContSign ed131

Keywords
interface, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://portal.etsi.org/tb/status/status.asp
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Contents

Intellectual Property RIGNES.... ..ottt bbb e s 5
01 Yo (o SR 5
Modal VErDS TEMINOIOQY.......ccveeeicie ettt et e st e e ae et e s aeete s se e e e steeneetesteensesseeneessesnenans 5
1 o0 0L SRS 6
2 L= £ 101 S 6
21 NOFMBLIVE FEFEIEINCESccueiteiteite ittt sttt h et e e se e besb e eb e bt e b e e st e e e s bese e besbeeb e e ae e b e beseeabesaeebenneeneennens 6
2.2 INFOrMELIVE FEFEIENCES.......eieieiete ettt ettt b e b bbbt e et se e e b e s bt eb e e e e s e eesn et e saeebenneeneennens 7
3 Definitions and @DBreVILiONS...........coveieieieiee ettt 7
31 D= 1T 0T (0] 1 USRS 7
3.2 Y o] =Y/ = 0] 1SRRI 7
4 Package conformance and COMPELTDIHTTYooiiiriiiieee e 7
5 Package concepts fOr the COre lanNQUAGE.ouriiirerire ettt 8
50 GBNENEL ...ttt bbb b a e R e e AR R R e eR e AE e R e e R e R e ARt AR e eRe Rt R e e ae e e e R e e e ebenheere e e e e s 8
51 LR 10 1= o] o SR 9
510 GBINENEL ...ttt b b e e R e R R R e R e e e e R e R e AR e R e Rt b e e Rt e n e e e e R e benaeehe e e e nes 9
511 THE NOW OPIEIBEON ...ttt b et b e e h bbb e b e b s e bt b e e bt e b e e e bt e b e e e it ebese et b e e e st et e e nees 9
512 Define the default step SIZe fOr SAMPIING......cocoiiii e e 10
52 DAL SITEAIMISttt ettt et h et e s ae e e be e e st e et et e aae e e b et e ae e ek et e neeeabe e e ne e e beeeneeeabeeeaneeeaneeennnee e 10
5.2.0 (€71 PP 10
521 Data Streams: StatiC PEISPECLIVEoveuiiieeeii ettt ettt sttt e et b e bbb 11
522 Data Streams. dyNamiC PEFSPECIVEc..ceiiirieeete ettt sttt b et b et b e et sb e e 12
5220 LC T o1 - TSR 12
5221 DEfiNiNG SrEAIM PO tYPES.....eeuieeieeeesieseesee st e st teete st e et e st e s e e te e teetesseesseesseesseesseenseensesseesseessenssens 12
5.2.2.2 Declaration and instantiation Of SIreaM POITS.........cccueieerieeriere e see e s see e e e e sreesrees 13
5.2.2.3 The Connect and Map OPEIALIONS.........civeieerieieeeeeeesee s e seesteeeesee s e seesse e teesteensesseessaeseeesesneesneesnes 14
523 Data Stream aCCESS OPEIALIONSeccuieeeieeseeste et eteeteseesteesteesteeeeseeseesseesseenseenseeseessaesteeseeseeseensesnsesnes 15
5.2.3.0 LC T o1 - TSR 15
5231 THE VEIUE OPEIALTON.ceetieceit ettt bbb et bbb b 15
5232 The tiMeSLaM OPEIELION.civieieirtier bbbt bbb et b e 16
5233 THE dEIta OPEILION.ccueitieeiet e bbb bbbt b et b e a e 16
524 Data Stream Navigation OPEIELIONS...........ceiueeeirierieie ettt sttt sttt b e b bt b e et be bt sb e se s 17
5240 LT 07 P RRRRUSR 17
5241 LI LS L=V A0 0= = 1 o o S 17
5242 QLIS 0] 1= = 1o o S 18
525 Data stream extraction and appliCation OPEraliONScceceiceeieereeri e eee e e e reesaeseesneeenes 19
5.25.0 LC T o1 - TSP 19
5251 I LS LES (0 Y 0] < £ e o I 19
5.25.2 ISRV LU S0 o == 1] o 20
5253 THE BPPIY OPEIELION.ceeeieeeeee ettt bbbt b ettt e et eb et b e a s 20
526 POt CONEIOl OPEIELIONS.......c.eeueiteieeieete sttt ettt b et b e et b e et b e e et b e se st e b e s e et eb e s b e eb e b 21
527 Stream portsin StatiC CONFIGUIBLIONS........coiiviirerieiete ettt e b e e b e e besreseenen 22
53 LI LSS S A = =001 0| 22
54 Control structures for continuous and hybrid BENAVIOUN ..o 23
5.4.0 (€71 PP 23
54.1 1Y e 1= SOOI 23
54.1.0 LC T o1 - TSR 23
5411 Definition of the UNtil BIOCKccoiiii e e 25
54.1.1.0 LC T g1 - ST 25
54.1.1.1 Definition of transition guards and BVENES..........ccveieeie e 25
54112 Definition of fOllOW UP MOGES..........coiiieiiieee s 26
54113 THE rEPEaE SEALEIMIENLc.eeeeeee ettt ettt b et b e bbbt b et s b e bbb 27
54114 The CONLINUE SLAEEMENTeeeeeieeee ettt ettt ae e et n e e e steseeseeebeeneeneeneeneas 27
54.1.2 Definition of iNVariant DIOCKScouoiieeeesee et sa e e 27
54.1.3 Definition of the ONENtrY DIOCKc.coiiiiiiiee e 28

ETSI

4 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

5414 Definition of the 0NEXit DIOCKcccoiiiii e 29
54.15 Local predicate symbolsin the context of MOEScceeeerieiierieie e 30
54.1.6 I LSX0 U= (Ko 0] == o R 30
542 ALomMiC MOAES: the CONE SEAEEMENTeeeiie ittt et b et b et et b st eae e s 31
54.3 Parallel mode composition: the par StALEMENLccvverieeieere e et 32
54.4 Sequential mode composition: the SBQ SELALEMENT...........ccveiieere e 33
545 ParameteriZabl@ MOUEScc.eeieee ettt e eae e e be e be e beeabesstesbeesbeesbeenbeenresnneeans 34
545.0 (1= 0T - PR SRRUROPRSS 34
5451 Parameterizable mode defiNitioNS...........oooiiieree e 34
5452 MOdE LYPES (OPLIONEL) ...ttt et b e e b e et b e et b e et et esa e b b e ene 35
55 THE WAL STALEMENL. ... oottt te e s ste e te e e e e aeeebe e be e beeabesaeesbeesbeesbeensesaeesaeesseenteenteensesseesteessnns 35
6 TRI extensions fOr the PACKAOE........coviviee et st b e e ae e ne s 36
6.0 (€T 0T PSP O PP URUSROTRP 36
6.1 Extensionsto clause 5.5 of ETSI ES 201 873-5: Communication interface operations.............cccveeeveeveeenenne 36
6.2 Extensionsto clause 5.6 of ETSI ES 201 873-5: Platform interface operations............cccecvvceevieeveeseeseenneenn 37
6.3 Extensionsto clause 6.3.2 of ETSI ES 201 873-5: Structured type Mapping.........cocoevereeereneereneeeseseenennes 40
6.3.1 TrCONTIGUIEE I ONTATYPE. ...ttt bbbt bbbt b et b bbb ens 40
6.3.1.0 (€T 0T - TSSOSO PSS 40
6.3.1.1 IMEEENOUS. ...t e s bt et e et e e ateeaeeebeesheesbeesteebeenseenseeaeesseenbeenteenteentesaeesreesanas 40
6.4 Extensionsto clause 6.5.2.1 of ETSI ES 201 873-5: TriCommuniCationSAcccooeveeiereerenene e 40
6.5 Extensionsto clause 6.5.3.1 of ETSI ES 201 873-5: TriPlatformPA ... 40
6.6 Extensionsto clause 6.5.3.2 of ETSI ES 201 873-5: TriPlatformTEocoiiiiiiiineeeeee e 41
6.7 Extensionsto clause 7.2.1 of ETSI ES 201 873-5: Abstract type Mapping......cccceeveevereereeseesieesiesseesseesee e 41
6.8 Extensionsto clause 7.2.4 of ETSI ES 201 873-5: TRI operation Mapping........ccoveeveeeeseeseesieesesseesseesneesnes 42
6.9 Extensionsto clause 8.5.2 of ETSI ES 201 873-5: Abstract datatypeS......ccccoevveveecieircie e 42
6.9.1 BN e 11T 101 1o | USSR 42
6.9.1.0 (€T 0T - TSSOSO PSS 42
6.9.1.1 IMEEENOOS. ...t e s bt e bt e b e e ateeaeeebeesheesbeesbeebeenseeneeeaeeaseenbeenteeateentesaeesreesanas 42
6.10 Extensionsto clause 8.6.1 of ETSI ES 201 873-5: TriCommuniCatioNSAcccoooeieeerreerene e eeee e 43
6.11 Extensionsto clause 8.6.3 of ETSI ES 201 873-5: TriPlatformPA ..o 43
6.12 Extensionsto clause 8.6.4 of ETSI ES 201 873-5: TriPlatformTEccooiiiiii e 43
6.13 Extensionsto clause 9.4.2 of ETSI ES 201 873-5: Structured type Mapping.........c.coevereeerereereneeesesenenns 44
6.13.1 Lo 1Ko 10T (o] Ko 1Y/ o= USSR 44
6.13.1.0 LC 1= o1 - TSP 44
6.13.1.1 IVLEITIDENS ...ttt e b h e a e e e et bt bt eh e e ae e R e e sE e e R e e bt eh e eh e eheeme e e e b e nbesheebe e e enneneens 44
6.14 Extensionsto clause 9.5.2.1 of ETSI ES 201 873-5: ITriCOMMUNICALIONSAocoeririiririeeie e 44
6.15 Extensionsto clause 9.5.2.3 of ETSI ES 201 873-5: ITriPIafOrmPAocoiiiiiieeneeeeee e 45
6.16 Extensionsto clause 9.5.2.4 of ETSI ES 201 873-5: ITriPIafOrMTE........cccooiiiiinireeeeeeese e 45
7 TCl eXtensiONS fOr the PACKAGEcueiviieiei et 45
7.1 Extensionsto clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH providedccccoerreninieinineeneeeeseseeeees 45
7.2 Extensionsto clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH reqUIredccccvirieerineenineeseseeesieseeeees 46
7.3 Extensionsto clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH providedccccceevveiininnieseeseee e 47
7.4 Extensionsto clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH requiredcccocvevveeieeienieseeseese e 47
75 Extensionsto clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH providedcccccevveciiirniesieseee e 47
7.6 Extensionsto clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH requiredcccoovevveeeeirneeseeseese e 47
7.7 Extensionsto clause 10.6.3.1 of ETSI ES 201 873-6: TCIChREQUITEdccceeveeviveiecir e 47
7.8 Extensionsto clause 10.6.3.2 of ETSI ES 201 873-6: TCIChProvided............ccocevirerireniienene e 48
79 Extensionsto clause 12.5.3.1 of ETSI ES 201 873-6: TCI-CH provided...........ccccooeerineiinineincnese s 48
7.10 Extensionsto clause 12.5.3.2 of ETSI ES 201 873-6: TCI-CH requiredcccoererineineneeeneeeseenes 48
Annex A (normative): BNF and static SEMantiCS.......ccceviieeiie ettt 49
AL NEW TTCN-BLOIMUNAIS......ccieisieereeie ettt ettt e teese e tesae et e ssesaeessesseenseseeeneensesseensensens 49
A2 Changed BNF RUIES........cco oottt ettt ettt s te e te st s st etesaeeeesteeneeeesteeneensesreensenneens 49
A3 NEW BNF RUIES ...ttt ettt st ettt e st et e st e e ae e tesaeeaeesbeeneestesteeneebesreensenneens 50
Annex B (informative): Bibliography ... 52
[1S 0] Y PSSP 53

ETSI

5 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee

can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

Thisfinal draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

Theuse of underline (additional text) and strike through (deleted text) highlightsthe differ ences between base
document and extended documents.

The present document relates to the multi-part standard ETSI ES 201 873 covering the Testing and Test Control
Notation version 3, as identified below:

Part 1: "TTCN-3 Core Language";

Part4: "TTCN-3 Operational Semantics';
Part 5. "TTCN-3 Runtime Interface (TRI)";
Part 6: "TTCN-3 Control Interface (TCI)";
Part 7: "Using ASN.1 with TTCN-3";

Part 8. "ThelDL to TTCN-3 Mapping”;
Part9: "Using XML schemawith TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

http://webapp.etsi.org/IPR/home.asp
http://portal.etsi.org/Help/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

1 Scope

The present document defines the " Continuous Signal support" package of TTCN-3. TTCN-3 can be used for the
specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are
protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module
testing, testing of CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used
for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The
specification of test suites for physical layer protocolsis outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as conceptsin the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines concepts for testing systems using continuous signals as opposed to discrete messages and the
characterization of the progression of such signals by use of streams. For both the production as well as the evaluation
of continuous signals the concept of mode is introduced. Also, the signals can be processed as history-traces. Finally,
basic mathematical functions that are useful for analyzing such traces are defined for TTCN-3. It isthus especially
useful for testing systems which communicate with the physical world via sensors and actuators.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”.

[2] ETSI ES201 873-4 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics’.

[3] ETSI ES 201 873-5 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] I SO/IEC 9646-1: "Information technology -- Open Systems Interconnection -- Conformance
testing methodology and framework; Part 1. General concepts’.

[6] ETSI ES 202 785 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types'.

[7] ETSI ES 202 781 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions. Configuration and Deployment
Support".

ETSI

http://docbox.etsi.org/Reference

7 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-7 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.2] ETSI ES 201 873-8 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.3] ETSI ES201 873-9 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".

[i.4] ETSI ES201 873-10 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification”.

[i.5] ETSI ES 202 784 (V1.3.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions. Advanced Parameterization".

[i.6] ETSI ES202 782 (V1.2.1): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time
Testing".

3 Definitions and abbreviations
3.1 Definitions

For the purposes of the present document, the terms and definitions given in ETS| ES 201 873-1 [1],
ETSI ES201 873-4[2], ETSI ES 201 873-5 [3], ETSI ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI ES 201 873-1 [1], ETSI ES 201 873-4 [2],
ETSI ES 201 873-5[3], ETSI ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

4 Package conformance and compatibility

The package presented in the present document isidentified by the package tag:

o "TTCN-3:2012 Support for Testing Continuous Signals" - to be used with modules complying
with the present document.

For an implementation claiming to conform to this package version, al features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ETSI ES 201 873-1 [1],
ETSI ES201 873-4[2], ETSI ES 201 873-5[3] and ETSI ES 201 873-6 [4].

The package presented in the present document is compatibl e to:
ETSI ES201 873-1 (V4.6.1) [1]
ETSI ES201 873-4 (V4.4.1) [2]
ETSI ES 201 873-5 (V4.6.1) [3]

ETSI

8 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

ETS| ES 201 873-6 (V4.6.1) [4]
ETS| ES202 785 (V1.3.1) [6]
ETSI ES202 781 (V1.3.1) [7]
ETS| ES 201 873-7 (V4.5.1) [i.1]
ETS| ES 201 873-8 (V4.5.1) [i.2]
ETS| ES 201 873-9 (V4.5.1) [i.3]
ETS| ES 201 873-10 (V4.5.1) [i.4]
ETSI ES202 784 (V1.3.1) [i.5]
ETS| ES202 782 (V1.2.1) [i.6]

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5 Package concepts for the core language
5.0 General

Systems can communicate its data or signals, either in discrete form (e.g. as an integer value) or in continuous form
(e.g. real values). With respect to this difference signals are classified into four categories. The categories distinguish
whether the time and value domain of asignal is of discrete or continuous nature:

1) Analogue signalsare continuousin the time and value domain. Analogue signals are the most 'natural’ signal
category, characterized by physical units (e.g. current, voltage, velocity) and measured with sensors. Typical
examples of the physical quantities used in the area of embedded system development are the vehicle velocity,
the field intensity of aradio station etc. Analogue signals can be described as a piecewise function over time

(e.g. vx =1 (1)).

2) Time quantified signals are discrete signals in the time domain. The signal values are defined only at
predetermined time points (sampling points). Typical examples of time quantified signals are the time-value
pairs of arecorded signal. A typical representation of atime quantified signal isaseries or an array of real
numbers. Even if the original signal is a synthetic function it can only be reconstructed from atime quantified
signal with considerable mathematical effort.

3) Vaue quantified signals are time-continuous signals with discrete values. Typical examples of avalue
guantified signal are data that are derived from analogue signals and which are dedicated to further processing,
e.g. an A/D converted sensor signal that is provided to an electrical control unit.

4) Digita signals are discrete on the time and value domain. If the set of possible signal values includes only two
elements, one speaks about binary signals. Typical examples of binary signals are switching positions or flags.

Thus on atheoretical level, we distinguish between the continuous and discrete evolution of time and values. In a
discrete system, the changes of states are processed at fixed and finite time steps. In a continuous system state changes
occur for infinitesimally small time steps. |mportant mathematical models for continuous systems are ordinary
differential equations. A mixed system, which shows continuous and discrete dynamics, is known as a hybrid system.
Hybrid systems can be modelled with hybrid automatons. Examples for systems that show such variable dynamics are
often found in the area of embedded control systems e.g. in the automotive and aircraft industry.

In the general case, atest description notation for embedded software systems shall support all of four categories of
signals mentioned above. TTCN-3 currently supports the signal categories (2) and (4). The extension of the language
with respect to a support of the signal categories (1) and (3) is the content of the present document.

ETSI

9 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

TTCN-3isaprocedural testing language, thus test behaviour is defined by algorithms that typically send messagesto
ports and receive messages from ports. For the evaluation of different alternatives of expected messages, or timeout
events, the port queues and the timeout queues are frozen when the evaluation starts. This kind of snapshot semantics
guarantees a consistent view on the test system input during an individual evaluation step. Whereas the snapshot
semantics provides means for a pseudo parallel evaluation of messages from several ports, there is no notion of
simultaneous stimulation and time triggered evaluation. To enhance the core language to the requirements of continuous
and hybrid behaviour we introduce:

. the notions of time and sampling;
e thenotions of streams, stream ports and stream variables;

. the definition of an automaton alike control flow structure to support the specification of hybrid behaviour.
5.1 Time and Sampling
5.1.0 General

The TTCN-3 extensions defined in this package adopt the concept of a global clock and enhance it with the notion of
sampling and sampled time. Asin TTCN-3, all time values are denoted as float values and represent time in seconds.
For sampling we intend to support simple equidistant sampling models as well as dynamic sampling models.

On technical level an equidistant sampling model of the form t=k*bdelta, where t describesthetime progress, d
specifies the number of executed sampling steps and, bdelta yields the minimal achievable step size for a given test
system, is used as an overall basisto model equidistant samplings with larger step size or dynamic sampling.

The basic sampling with its minimal step sizebdelta isa property of aconcrete test system and not intended to be
specified as part of the test case specification. However, as a consequence of this underlying model, atest systemis able
to execute user defined samplingsif and only if al specified sampling rates at test specification level provide step sizes
that are multiples of bdelta.

When using the TTCN-3 extension defined in this package, each reference to time, either used for the definition and
evaluation of signals but as well by means of ordinary TTCN-3 timers, is considered to be completely synchronized to
the global clock and the base sampling.

51.1 The now operator

For the specification of time-dependent signal sequences, it is necessary to be able to track the passage of time. The
access of timeis guaranteed by a globally available clock whose current value can be accessed by means of the now
operator. Time progress starts at the beginning of each test case execution, thus time values are related to the start of the
test case execution.

Syntactical Structure

now
Semantic Description

Evaluation of the now operator yields the current value of the clock which is the duration of time since the start of the
currently running test case.

Restrictions

The now operator shall only be applied from within atest case, i.e. by test cases, functions and altsteps executed on test
components. The now operator shall neither directly nor indirectly be called by TTCN-3 control part.

Example

EXAMPLE:

// Use of now to retrieve the actual time since the test case has started
var float actualTime := now;

ETSI

10 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

5.1.2 Define the default step size for sampling

For sampling, a globally valid base sampling rate defined by the test systemis provided. In addition, sampling rates can
be set separately and as part of the test specification by means of stepsize attribute.

Syntactic Structure

stepsize StepSizeValue
Semantic Description

The StepSizeValue isastring-litera which shall contain adecima number. This number interpreted as secondsis
used as the default rate of sampling values over the stream ports to which are affected by this stepsize attribute. The
actual sampling rate of a specific port can be changed dynamically with the delta operation.

Restrictions

A stepsize attribute can only appear in awith-annotation. A stepsize attribute can be applied to individual
modules, test cases, groups, component types and stream port types and effects either the statements that are contained
in one of these entities or in case of component types and stream port types the respective instances.

Examples

EXAMPLE 1:

// sets the stepsize for a module
module myModule{

? with {stepsize " 0.0001" };
EXAMPLE 2:

// sets the stepsize for a testcase
testcase myTestcase() runs on myComponent{

} with {stepsize " 0.0001" };

EXAMPLE 3:

// sets the stepsize for all instances of the port type StreamOut
type port StreamOut stream { out float} with {stepsize " 0.0001" };

5.2 Data streams
520 General

In computer science the term data stream is used to describe a continuous or discrete sequence of data. Normally the
length of a stream cannot be established in advance. The datarate, i.e. the number of samples per time unit, can vary.
Data streams are continuously processed and are particularly suited to represent dynamically evolving variables over a
course of time. Thus, streams are an ideal representation of the different discrete and continuous signals mentioned in
the beginning of clause 5.

While in standard TTCN-3 interactions between the test components and the SUT are realized by sending and receiving
messages through ports, the interaction between continuous systems can be represented by means of so called streams.
In contrast to scalar values, a stream represents the whol e all ocation history applied to a port. In computer science,
streams are widely used to describe finite or infinite data flows. To represent the relation to time, so called timed
streams are used. Timed streams additionally provide timing information for each stream value and thus enable the
traceability of timed behaviour. The TTCN-3 extension defined by this package provides timed streams. In the
following we will use the term measurement (record) to denote the unity of a stream value and the related timing in
timed streams. Thus, concerning the recording of continuous data, a measurement record represents an individual
measurement, consisting of a stream value that represents the data side and timing information that represents the
temporal perspective of such a measurement.

ETSI

11 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Standard TTCN-3 offers no direct support for the specification, management and modification of data streams. In this
TTCN-3 extension, we introduce two different but not complementary representations of timed data streams. The term
timed considers the fact that we are interested in the time and value domain of a signal. As a consequence we consider a
stream to consist of a sequence of samples, which each provide information about the timing and the value perspective
of the sample.

1) Static perspective: The static perspective provides a direct mapping between atimed stream and the TTCN-3
data structures record and record of. Thiskind of mapping is referred to below as the static
representation of a data stream and allows random access to all elements of the data stream.

2) Dynamic perspective: To provide dynamic online access to data streams, we extend the existing concepts of
TTCN-3 port type and port to provide access to data streams and their content. A so called stream port
references exactly one data stream and provides access to the dynamically changing values of the referenced
data stream.

Please note: to represent streams in the present document we use a tabular notation. The table has two rows by which
the first one represents the val ue perspective of a stream and the second represents the temporal perspective. The
temporal perspective is defined by means of timestamps that are synchronized with the overall clock. The columns
represent the samples of the stream.

EXAMPLE:
Value 1.2 J1.4 1.5]1.7]1.7 1.5 1.2]1.0 1.1 [1.4 1.5 [1.2 [1.0 1.1 [1.4
Timestamp 0 Jo.1]0.2]0.3]o.4]o.5]o.6]0o.7]o.8Jo.or.0o]1.1 1.2 1.3]1.4

The example shows a stream with the length of 1.4 seconds and float values that change between 1.0 and 1.5.

5.2.1 Data Streams: static perspective

A TTCN-3 data stream can be mapped directly to existing TTCN-3 data structures. The mapping considers each stream
to be represented by means of a TTCN-3 record of data structure. This structure itself consists of individual entities, so
called samples, each sample representing either a measurement on an incoming stream or stimulus that is dedicated to
be applied to an outgoing stream.

A sampleitsalf isrepresented by means of a TTCN-3 record data structure. The record consists of two fields. It has two
fields of type £loat. Thefirst field with the name value represents what we call the value of a stream. Its data type
should be aligned with the data type of the corresponding stream. The second field denotes the temporal perspective of
asample. It denotes the temporal distance to the preceding sample (the sasmpling step size delta). The second field is
of type £loat and represents time values that have the physical unit second. Example 1 shows the exemplary
definition of a data structure to specify individual samples.

EXAMPLE 1.

type record Sample(
float value,
float delta

Given such a structure, atimed data stream of an arbitrary data type is modelled as arecord of samples.

EXAMPLE 2:

type record of Sample MyStreamType;

The static representation of data streams can be used for the online and offline evaluation of streams as well as for the
piecewise in-memory definition of streams or stream templates, which are to be applied to stream portsin the
subsequent test case execution. Thus, the static representation of streams can be used to assess incoming streams and to
define outgoing or reference streams and template streams mostly by means of ordinary TTCN-3 operations and control
structures and as such provide an ideal interface between ordinary TTCN-3 concepts and the concepts defined in this
package. The following example shows a short specification of a sampled stream.

ETSI

12 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

EXAMPLE 3:

var MyStreamType myStreamVar := {
{value:=0.0, delta:=0.1
{value:=0.2, delta:=0.2
{value:=0.1, delta:=0.1
{value: 0, delta:=0.3

i

1
1

e

}

If the stream definition from above is applied to an outgoing stream port directly with the beginning of atest case, the
result will look as follows.

EXAMPLE 4:

Value 0.0 [0.0 |0.2 |0.1 |O.
Timestamp 0 0.1 0.3 |0.4 |0.7

o

Each stream port isinitialized with a value that defines the valuation of a stream at time 0.0. Thusthe first samplein
Example 4 is not defined by the specification in Example 3 but by the base initialization of the stream port. More
information is provided in the following clauses.

NOTE 1: Inorder to create larger streams a manual specification approach is not feasible. In this case we propose
to use the data processing capabilities of TTCN-3 to programmatically/agorithmically construct the
dedicated record structures.

NOTE 2: The data structures presented in this section serve for illustration purposes only. They show how timed
data streams can be mapped to standard TTCN-3 data structures and thus can be processed easily by using
the existing TTCN-3 language features and operators. The TTCN-3 extensions provided in this package
do not include type declarations from above.

5.2.2 Data Streams: dynamic perspective
5.2.2.0 General

In standard TTCN-3 ports are used for the communication among test components and between test components and the
SUT. To be ableto initiate, modify and eval uate a stream based communication between the entities of atest system,
this package extends the concepts of standard TTCN-3 port types and ports with the notion of stream-based
communication and stream ports. Stream ports are the endpoints of a stream based communication. Thus stream portsin
TTCN-3 embedded are used to provide access to streams, their values and the respective timing information. A stream
port references exactly one data stream and thus provides access to the respective stream values and timing information.

5.2.2.1 Defining stream port types

The TTCN-3 port concept of message-based and procedure-based ports is extended with stream-based ports. Stream
ports support stream-based communication.

Syntactical Structure

type port PortTypeldentifier stream "{"

{ ((in | out | inout) StreamValueType [";"])
(map param " (" { FormalValuePar [","] }+ ")" [";"]) |
(unmap param " (" { FormalValuePar [","] }+ ")" [";"]) }

n } n
Semantic Description

Stream port types shall be declared by using the keyword stream. Stream ports are directional. The directions are
specified by the keywords in (for the in direction), out (for the out direction) and inout (for both directions).

The specified SreamValueType references the type of values which can be sent or received (depending on the direction
of the port) over ports of the type PortTypel dentifier.

Like message and procedure ports, stream ports can use map and unmap parameters to pass additional information to
the system adapter.

ETSI

13 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Restrictions

Each stream port type definition shall have one and only one entry indicating the allowed type together with the allowed
communication direction.

a) Stream port type definition shall always contain exactly one stream value definition.
b) At most one map parameter list should be defined for a port type.
c) At most one unmap parameter list should be defined for a port type.

Example

EXAMPLE:

// Stream-based port which allows stream values of type float to be received
type port StreamIn stream { in float }

//Stream-based port which allows stream values of type float to be sent
type port StreamOut stream { out float }

//Stream-based port with map and unmap parameter definitions
type port StreamOut stream

{

in float;
map param (integer p parl, integer p par2);
unmap param (integer p parl);

5.2.2.2 Declaration and instantiation of stream ports

The declaration of stream-based portsis similar to the declaration of message-based and procedure-based ports. The
component type declares which ports are associated with a component. A component type can have ports with
different communication characteristics (e.g. stream-based ports, message-based ports, and procedure based). All ports
are instantiated together with the component that owns the port, i.e. when the component is created.

Outgoing stream ports start to emit stream values directly after the component, which contains the respective stream
port, has been started. The same applies for incoming stream ports. They start receiving data directly after their
component has been started. Both incoming and outgoing stream ports are updated for each sampling step. If no explicit
step size is defined by means of step size annotations on module level, test case level, port type level, etc. the port is
initially sampled with the test systems' base sampling, which is the smallest available step size.

Outgoing stream ports may already be initialized before its first use, so that their values before the start of their
component are defined. Theinitialization occursin the context of their declaration.

Outgoing stream ports, when they are not explicitly initialized, are automatically initialized with implicit default values.
The implicit default values for the various TTCN-3 basic data types can be found in table 1.

Table 1

float |integer |boolean | charstring |bitstring | octetstring
0.0 0 FALSE '0'B '00'0

Theinitial stream port value for outgoing stream port applies to the time point 0.0 and for the following sample steps as
long as no other stream value is set. The value initialization for incoming streamsisin responsibility of the data
provider. Hence either the system adapter or the emitting component (in case of a PTC) isresponsible to initialize the
streams.

Syntactical Structure

port StreamPortTypeReference
{ streamPortIdentifier [":=" StreamDefaultValue 1 [","] }+ [";"]

ETSI

14 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Semantic Description

A stream port Portlnstance named SreamPortldentifier is declared inside a component type definition using a
SreamPortTypeReference which is a type-reference expression for an existing stream port type. Optionally, a
StreamDefaultValue can be supplied which defines the value of the stream before the first sampling over this port.

Restrictions

The SreamDefaultVValue shall be of the type StreamValueType in the port type definition referenced by
StreamPortTypeReference.

Examples

EXAMPLE 1.

type port StreamIn stream { in float }
type port StreamOut stream { out float }

type component SUT ({
port StreamIn A, B;
port StreamOut C,D;

}
EXAMPLE 2:

type component SUT {
port StreamIn A,B;
port StreamOut C:=1.0,D:=2.0;

5.2.2.3 The Connect and Map operations

Stream ports can be mapped and connected. The syntax and general rules for the map and connect operations are
described in ETSI ES 201 873-1[1].

Restrictions

In addition to the general static rules of TTCN-3 givenin clauses 9 and 21.1 of ETSI ES 201 873-1[1], the following
restrictions apply:

a) Stream ports can be connected or mapped to stream ports only. Connection or mapping between a stream port
and a message port is not allowed.

b) Assuming the following:
1) Ports PORT1 and PORT2 are the stream ports to be connected or mapped,;
2) Inva-PORT1 defines the value type of the in-direction of PORT1;
3) Outval-PORT 1defines the value type of the out-direction of PORT1,
4) Inval-PORT2 defines the value type of the in-direction of PORT2; and
5) Outval-PORT2 defines the value type of the out-direction of PORT2.

6) If novaluetypeisdefined for adirection, the value type is considered to be undefined. When checking
conditions for stream port connecting and mapping, the undefined typeis equal to the undefined type
only.

¢) Theconnect operationisallowed if and only if:

outval-PORT1 = inval-PORT2 and outval-PORT2 = inval-PORT1
d) Themap operationisallowed if and only if:

outval-PORT1 = outval-PORT2 and inval-PORT2 = inval-PORT1

€) Inall other cases, the connect and map operations shall not be allowed.

ETSI

15 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

f) Incoming stream ports of test components and outgoing stream ports of the system adapter cannot be
connected or mapped to more than one port.

NOTE: Therestriction on the number of connected and mapped ports does not apply to outgoing stream ports of
test components and incoming ports of the system adapter, making stream broadcast possible.

5.2.3 Data stream access operations
5.2.3.0 General

Similar to message-based and procedure-based communication incoming streams can be examined and outgoing
streams can be controlled. In general, we provide access to the actual sample of a stream (i.e. the stream value, the
respective timing and sampling information) by means of stream data operations. Moreover, we provide access to the
preceding samples by means of dedicated navigation operations. Last but not least, we are able to extract record
structured stream data as explained in clause 5.2.1 by means of stream evaluation statements.

In contrast to message-based and procedure-based communication, we integrate stream data operations and stream
navigation operations on expression level. Thus, we are able to directly assign valuesto streams and read values from
streams by means of ordinary TTCN-3 assignments.

5.2.3.1 The value operation

Each data stream connected to a stream port allows accessing its current value by means of the value operation. In
case of incoming streams, the value operation yields the actual value that is available at a stream port.

Syntactical Structure
(StreamPortReference | StreamPortSampleReference) "." value
Semantic Description

The value operation can be applied to either a SreamPortReference expression or a StreamPortSampleReference
expression which is yielded by the application of a navigation operation on a StreamPortReference. In the first case, it
yields the current value of the stream port; in the second case it yields the value in the referenced sampling.

When using a StreamPortReference to an outgoing stream port, the value operation expression can aso be used on the
left hand side of an assignment or as an out parameter to afunction.

When using avalue operation expression as a va ue expression the type of the value is the StreamVaueType of the
referenced stream port.

If the value operation is used for setting the actual output value of a stream, the effectiveness of the stream port
evauation is delayed. A vaue, which has been assigned to a stream port value handle, becomes effective inside and
outside the component at the beginning of the next sampling step.

Restrictions

If the value operation expression is used as the target of an assignment, the type of the assigned value shall be
compatible with the StreamV alueType of the referenced stream port.

Examples

EXAMPLE 1.

// accessing the actual input value of a stream
var float myVar:=streamInPort.value;

EXAMPLE 2:

// accessing the actual input value of a stream
// and compare it with a given expectation
if (streamInPort.value>= 100.0) {..};

NOTE 1. The vaue, which is provided by means of the value operation, isthe value that has been measured at
the beginning of the actual sampling period.

ETSI

16 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

EXAMPLE 3:

// setting the actual output value of a stream
streamOutPort.value:= 100.0;

NOTE 2: The use of the value operation can be combined in such away that the specification of complex
equations and equation systems s supported.

EXAMPLE 4:

// calculating the Ohms' law
voltage.value:= amperage.value * resistance.value;

5.2.3.2 The timestamp operation

Similar to the value operation the timestamp operation allows to access the time related information of the actual
sample.

Syntactical Structure
(StreamPortReference | StreamPortSampleReference) "." timestamp
Semantic Description

The timestamp operation can be applied to a stream port referenced by a StreamPortReference expression or a
StreamPortSampl eReference referring to a specific sample of a stream port.

The application of the timestamp operation on a StreamPortReference yields the exact time point at which the actual
stream port value has been measured. The application of the timestamp operation on a SreamPortSampl eReference
yields the exact time point at which the referenced sample has been measured. The exact sample time denotes the
moment when a stream val ue has been made available at the test system's input and thus strongly dependent on the
sampling rate.

Thetime point is provided as a floating-point number (£loat) and hasthe physical unit seconds. The time information
is completely synchronized with the test system clock described in clause 5.1.

Restrictions
The timestamp operation always yields a non-negative float value.
Example

EXAMPLE:

// access of the sample time
// for the current sample
var float measurementTimel:=streamport.timestamp;

NOTE: Datastreams are used to represent samples in a dynamic measurement process. A sample that istaken
from a data stream is usually historical information, i.e. the result of a timestamp operation refers to
the state of the system (i.e. the SUT) at atime in the past.

5.2.3.3 The delta operation

The step size of adata stream can dynamically change during atest execution. The change can be initiated either by the
test specification or by means of the measurement system (i.e. the system adapter). The delta operation provides access
to the actual step size of a port.

In addition to the timestamp operator TTCN-3 embedded allows to obtain the step size that has been used to measure a
certain value. Thisinformation is provided by the delta operation. The delta operation can be used in a similar way than
the value and the timestamp operation. It returns the size of the last sampling step (in seconds).

Syntactical Structure

(StreamPortReference | StreamPortSampleReference) "." delta

ETSI

17 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Semantic Description

When used on a SreamPortReference, the delta operation allows read and write access to the actual step size of a port.
When the delta operation is used for reading on a SreamPortReference, it yields the actual step size for a given port.
When the delta operation is used for writing on a SreamPortReference it sets the length of the step size for future
writing and reading at the given port. The step sizeis defined asa £1oat humber and has the unit seconds.

When used on a StreamPortSampleReference it yields the actual step size active at the time of the referenced sample
measurement.

A value, which has been assigned to a stream port delta handle, affects the length of the next sampling period, not the
actual one. Thus, it cannot be used to shorten or lengthen the actual sampling step.

Restrictions
When used on a SreamPortSampleReference, the delta operation only allows read access.
Examples

EXAMPLE 1:

var float actualStepSize;
// reads the actual stream size from a port
actualStepSize: = streamport.delta;

EXAMPLE 2:

// sets the actual step size for a port
streamport.delta:= 0.001;

5.2.4 Data stream navigation operations
5.2.4.0 General

Beside access to the actual values of a stream, additional access to the history of streams by means of so called stream
navigation operationsis provided. The result of a navigation operation is a handle, which allows the application of the
value, timestamp or delta operation for preceding stream states. Such a state isidentified by means of two different
operations. The at operation demands atime index of type £1oat that denotes the time that has passed since the
beginning of the test case. The prev operation backtracks the sample steps beginning with the actual step and demands
an integer index value to define the number of sampling steps to step back.

5.24.1 The prev operation
The prev operation returns a handle to obtain stream related information for previous states of a stream.

Syntactic Structure
StreamPortReference "." prev ["(" PrevIndex ")"]
Semantic Description

The prev operation can be applied to a stream port StreamPortReference. It can optionally be parameterized with an
integer index parameter Previndex and returns a StreamPortSampleReference handle to retrieve val ues, timestamps and
sampling step sizes for preceding stream states. The index parameter denotes the number of samplesto step back in
stream history. If no parameter list is given, thisis equivalent with theindex 1.

Restrictions
The prev operation can only appear as an operand to avalue, timestamp or delta read operation.

NOTE 1. The application of the prev operation needs the combination with the value operation, the
timestamp operation or the delta operation to provide meaningful results.

ETSI

18 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Examples

EXAMPLE 1:

port.prev(0) .value; // provides access to the actual stream value
port.prev.value; // provides access to the previous stream value
port.prev(l) .value; // provides access to the previous stream value
port.prev(2) .value; // provides access to the stream value 2 steps ago

NOTE 2: The expressionsport.prev and port.prev(1) Yieldidentical results.

EXAMPLE 2:

port.prev(0) .timestamp; // provides access to the timestamp

// that denotes the beginning the actual sampling step
port.prev(0) .delta; // provides access to the length of the last sampling step
port.prev(l) .timestamp; // provides access to the timestamp

// that denotes the beginning the preceding sampling step

port.prev(l) .delta; // provides access to the length of the sampling step 2 steps ago
EXAMPLE 3:

Value 1.2 1.4 |1.5 (1.7 (1.7 (1.5 |1.2 |1.0 |1.1 |1.4 (1.5 (1.2 |1.0 |1.1 |1.4
Timestamp 0 0.1 (0.2 (0.3 |[0.4 |0.5 |0.6 |0.7 (0.8 [0.9 |1.0 |1.1 1.2 (1.3 (1.4

port.prev(0) .value; // yields 1.4

port.prev.value; // yields 1.1

port.prev(l) .value; // yields 1.1

port.prev(2) .value; // yields 1.0

port.prev(0) .timestamp; // yields 1.4

port.prev(0) .delta; // yields 0.1

port.prev(l) .timestamp; // yields 1.3

port.prev(l) .delta; // yields 0.1

5.2.4.2 The at operation

The at operation returns a handle to obtain stream related information for previous states of a stream, which are
identified by means of atimestamp value.

Syntactical Structure

StreamPortReference "." at [" (" Timepoint ")"]
Semantic Description

The at operation can be applied to a stream port StreamPortReference. The at operation can optionally be
parameterized with a £1oat parameter Timepoint and returns a StreamPortSampleReference handle to retrieve values,
timestamps and sampling step sizes for preceding stream states. The Timepoint parameter represents a time stamp that
identifies a sample at a certain place in time. The time stamp denotes the time that has passed since the start of the test
case (see clause 5.1). It references the sample that has either the same time stamp or, if such a sample does not exist, the
sample with the next smaller time stamp.

Restrictions
The at operation can only appear as an operand to avalue, timestamp or delta read operation.

NOTE: The application of the at operation has to be done in combination with avalue operation, atimestamp
operation or a delta operation to provide meaningful results.

Examples

EXAMPLE 1:

port.at (now) .value; // provides access to the actual stream value
port.at(0) .value; // provides access to the initial stream value

// (i.e. the stream value at beginning of the test case)
port.at(10.0) .value; // provides the stream value at the time point 10.0

// (i.e. 10. Seconds after the beginning of the test case)

ETSI

19 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

EXAMPLE 2:
port.at (now) .timestamp; // provides access to the beginning of the actual sampling step
port.at(0) .timestamp; // provides access to the beginning of the initial sampling

// step (i.e. always 0.0)

port.at(10.0) .timestamp; // provides access to the beginning of the sampling step
// at time point 10.0

EXAMPLE 3:

Value 1.2 |1.4 |1.5 (1.7 (1.7 .5 .2 .0 . .4 .5 11.2 |1.0 . .4
Timestamp 0 0.1 (0.2 (0.3 |[0.4 |0.5 |0.6 |0.7 (0.8 [0.9 |1.0 |1.1 1.2 (1.3 (1.4

port.at (now) .value; // yields 1.4

port.at(0) .value; // yields 1.2

port.at(1.0) .value; // yields 1.5

port.at(1.09) .value; // yields 1.5

port.at (now) .timstamp; // yields 1.4

port.at(0) .timstamp; // yields 0.0

port.at(1.09) .timestamp; // yields 1.0

5.2.5 Data stream extraction and application operations
5.25.0 General

Beside access to individual values of a stream, this package supports the extraction and application of stream segments
that are represented by means of the record of data structure (data perspective) described in clause 5.2.1. The history
operation allows to extract arbitrary stream segments. The apply operation is used to apply extracted or manually or
programmatically defined stream segments to stream ports.

5.25.1 The history operation

The history operation allows obtaining the complete or partial history of astream asa TTCN-3 record of structure (see
clause 5.1, data representation). The history operation has two parameters that denote the start time and end time of the
desired stream segment.

Syntactical Structure

StreamPortReference "." history " (" StartTime "," EndTime ")"
Semantic Description

The history operation provides arecord of based sample representation of a stream. The operation has two parameters
StartTime and EndTime that denote the start time and end time of the stream segment that is designated for export. The
parameters are each of type float and represent the time that has passed since the beginning of the respective test case.
Time values are given in units of seconds. The first parameter describes the measurement time of the first stream entry
to be considered for history export. The second parameter denotes the time of the last record. If the specified start time
value is greater than the specified end time value the history operation resultsin an empty record of structure.

Restrictions
The EndTime parameter shall not have a value greater than now.
Examples

EXAMPLE 1.

myStreamRec:= myPort.history (0.0, now);

EXAMPLE 2:
type record BoolSample {boolean v, float t}
type port BoolStreamType stream {in boolean}
type component MyStreamComponent {port myPort BoolStreamType}
var record of BoolSample myStreamRec;

myStreamRec:= myPort.history (0.0, now);

ETSI

20 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

EXAMPLE 3:
Value 1.2 1.4 1.5 1,771,715 1.2 1011 1.4 1.5 1.2 1.0 1.1 1.4
Timestamp 0 Jo.1]0.2]0.3]o.4]o.5]o.6]o.7]o.8 Jo.ogJ1.0]1.1 1.2 1.3 1.4

myStreamRec:= port.history (0.0, now);

// yields

// {{1.2,0.0}, {1.4,0.1},{1.5,0.2},{1.7,0.1},{1.7,0.1},{1.5,0.1},{1.2,0.1},{1.0,0.1},
// {1.1,0.1},{1.4,0.1},{1.5,0.1},{1.2,0.1},{1.0,0.1},{1.1,0.1},{1.4,0.1}}

5.25.2 The values operation

The values function allows obtaining the complete or partial history of astream asa TTCN-3 record of structure
without any timing information.

Syntactical Structure
StreamPortReference "." values " (" StartTime "," EndTime ")"
Semantic Description

The value operation has two parameters StartTime and EndTime that denote the start time and end time of the desired
stream segment.

The history function provides arecord of based value representation of a stream. The parameters are each of type float
and represent the time that has passed since the beginning of the respective test case. Time values are given in units of
seconds. The first parameter describes the measurement time of the first stream entry to be considered for history
export. The second parameter denotes the time of the last record. If the specified start time value is greater than end
time value the history operation resultsin an empty record of structure.

The result of the value operation applied to a stream port of type T isavalue of record of T.
Restrictions

The EndTime parameter shall not have a value greater than now.

Examples

EXAMPLE 1:

myStreamRec:= port.values (0.0, now);

EXAMPLE 2:
type port BoolStreamType {in boolean}
type component{ port myPort BoolStreamType}

var record of boolean myStreamRec;

myStreamRec:= myPort.values (0.0, now);

EXAMPLE 3:
Value 1.2 1.4 1.5 1.7 1.7 1.5]1.2[1.0]1.1]1.4 1.5]1.2 1.0 1.1 1.4
Timestamp 0 0.1 0.2 [0.3 Jo.4 Jo.5 Jo.6 [0.7 J0.8 [0o.9 [1.0 1.1 [1.2 1.3 [1.4

myStreamRec:= port.history (0.0, now);
// yields
// {1.2, 1.4, 1.5, 1.7, 1.7, 1.5, 1.2, 1.0, 1.2, 1.4, 1.5, 1.2, 1.0, 1.1, 1.4}

5.25.3 The apply operation

The apply operation is used to apply stream data to a stream port that are represented by means of a TTCN-3 record of
structure. The apply operation applies the sample records contained in the record of data structure one after the other in
time to the given port.

Syntactical Structure

StreamPortReference "." apply " (" Samples ")"

ETSI

21 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Semantic Description

Application of the apply operation to the stream port StreamPortReference, it will consecutively write the values of the
given record of Samplesto the port, using the sampling deltas from Samples as deltas for writing the values, as well.

The application of an apply operation p.apply (v) iSequivaent to the following construction:

var float v_nextSample := p.timestamp + p.delta; // time of the scheduled next step
for (var integer i := 0; i < lengthof(v); 1 := i + 1)
{

if (i + 1 < lengthof (v))

{
}

// value will become efficient at the beginning of the next sampling step
p.value := v[i].value;
wait (v_nextSample); // wait for the current sampling step to finish
if (i + 1 < lengthof(v))
{
// time of the next sampling step
v_nextSample := v_nextSample + v[i + 1].delta;
}

}

Examples

p.delta := v[i + 1].delta; // schedule delta for the next step

EXAMPLE 1:

type port FloatIn {in float}
type port FloatOut {out float}

type component{ port myInPort FloatIn;
port myOutPort FloatOut }

type record Sample {boolean value, float delta};
var record of Sample myStreamRec;

testcase myTestcase () runs on tester{
// measure on all incoming ports for 100 seconds
wait (100.0) ;

// get the all sampless at myInport until now
myStreamRec:= myInPort.history (0.0, now);
// and apply the measured data to myOutPort.
myOutPort .apply (myStreamRec); // lasts 100 seconds
}

EXAMPLE 2
var MyStreamType<float> myStream := {
{o.0, 0.1},

1

{0.2, 0.2},
{o.1, 0.1},
{o.0, 0.3}

}

port.apply (myStream) ;
// yield -> see table below

Value 0.0
Timestamp 0

o|Oo
RO
oo
w|N
o|Oo
W |k
o|Oo
g O

5.2.6 Port control operations

This clause specifies the rules for port control operation in case they are applied to a stream port. The operations behave
differently specified in the clause 22.5 of ETSI ES 201 873-1 [1] as steam ports don’'t have any queues, but might
contain sampling history.

The close operation applied to a stream port removes the port history completely. Only the last acquired sampleis
kept and it is still possible to access it with the value and timestamp operations.

ETSI

22 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

The start operation applied to a stream port removes port history completely, activates port sampling (if it was
suspended by the stop or halt operation) and allows the use of data stream access operation (value, timestamp,
delta), data navigation operations (prev, at) and data extraction and application operations (history, values,
apply). The started port will have its default value.

The stop operation applied to a stream port removes port history and suspends port sampling, i.e. port history will not
be updated while the port is stopped. In case of stopped out ports, the value of all ports connected or mapped to the
stopped port will not change while the port is stopped. During the time when the port is stopped, it is hot allowed to call
any of the data stream access operation (value, timestamp, delta), data navigation operations (prev, at) and
data extraction and application operations (history, values, apply). Caling any of these operations shall cause an
error.

The halt operation applied to a stream port suspends port sampling, i.e. port history will not be updated while the port
is halted. In case of halted out ports, the value of all ports connected or mapped to the halted port will not change while
the port is halted. During the time when the port is halted, it is not allowed to use any of the data stream access
operation (value, timestamp, delta) on theleft hand side of an assignment and the apply operation. Caling any
of these operations shall cause an error. The history of the halted port is hot discarded and it possible to use any of the
data stream access operation (value, timestamp, delta) if they occur on the right hand side of an assignment, data
navigation operations (prev, at) and data extraction operationshistory and values.

5.2.7 Stream ports in static configurations

Components containing stream ports can be used in static configurations specified in ETSI ES 202 781 [7]. Most of the
rules valid for non-static components apply in this case too, with the following differences:

a) Time progress for static MTCs starts in the begining of configuration function(and not in the beginning of a
test case).

b) Sampling of static ports shall be active even when atest case is not running (during transition between test
cases).

5.3 The assert statement

The assert statement is used as a short hand for the specification of expected system behaviour.

Syntactical Structure
assert " (" Predicate { "," Predicate } ")"
Semantic Description

The assert statement specifies one or alist of predicates that express the expectation on the SUT. A predicate consist of
an arbitrary TTCN-3 boolean expression. If one of the predicates fail, the assert statement automatically sets the verdict
to £ail. The assert statement is alowed at any place in the TTCN-3 source code that allows the application of the
setverdict statement. To assess continuous data it will be used in particular within the hybrid machine alike control
flow structures described in clause 5.4.

NOTE: The semantics of the assert statement can be mapped to existing TTCN-3 statements in the following
way:

assert (predl, pred2,...,predn);
isfully equivaent to

if (! predl) setverdict(fail);
if (! Pred2) setverdict(fail);

if (! predn) setverdict (fail);
Examples

EXAMPLE 1:

assert (a.value==4.0) ;

ETSI

23 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

EXAMPLE 2:

assert (a.value==4.0, b.value ==5.0, d.value ==445.0);

54 Control structures for continuous and hybrid behaviour
5.4.0 General

This clause introduces control flow structures that allow the parallel and sampled application and assessment of stream
values at ports. The concepts defined in clauses 5.1, 5.2 and 5.3 allow the construction, application and assessment of
individual streams. For more advanced test behaviour, such as concurrent application and assessment of multiple
streams and the detection of complex events (e.g. zero crossing or flag changes at multiple ports), we need stronger
concepts. For this purpose, we combine the concepts defined in the last clauses with state-machine-like specification
concepts, so called modes.

A mode expresses a certain runtime mode of a system or an SUT. Thiskind of runtime mode is characterized by a
defined behaviour at ports and a set of predicates that limit the applicability of the behaviour. Unlike ordinary
behavioural TTCN-3 statements, a mode applies its behaviour over time (at least for one sampling step).

54.1 Modes
54.1.0 General

The term mode is used to specify the discrete and countable macro states of a dynamic hybrid system. It mainly serves
to distinguish the macro states of a hybrid system from the theoretically infinite number of micro-states. By means of
modes, this package provides alayer of abstraction that helps distinguishing between the discrete changes of a hybrid
system (or test system) that are relevant from the users (and testers) perspective and the discrete changes that are
introduced by the underlying test execution environment in order to map continuous behaviour to a computational
environment (which is naturally discrete). The interpretation and cal culation of micro steps depend on the underlying
technical environment, i.e. the sampling. Thus, a micro step is calculated by the combination of the active macro-states
with the sampled evaluation of data at the stream ports.

If the velocity v remains
constant for more than 5
sec., it shall not underrun
the limit x for 5 seconds.
To detect: the velocity
remains constant for
more than 5 seconds

To check: v shall not
underrun the limit x for 5
seconds

Figure 1. Abstract test specification for a continuous system that show the values v and x

Modes and the transitions between modes can be written down in a state-machine-like structure, which is closely
defined in the theory of hybrid automatons. Figure 1 shows an abstract test specification that consists of three atomic
modes, transitions, invariants and assertions.

For realizing such hybrid automatons, three new block statements are introduced, the cont statement, the seq statement
and the par statement. While the cont statement is used for the specification of atomic modes, the par and seq
statement are used to aggregate modes to larger constructs by means of parallel and sequential composition.

ETSI

24 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Modes in general are characterized by their duration and their internal behaviour (i.e. the assignment and assessment of
values at stream ports). The duration, or better the duration of the mode's activity, is defined by a set of predicates,
which relates to time or the valuation of (stream) ports, variables, etc.

Syntactical Structure

(cont | par | seq) "{"
{Declaration}
[OnEntryBlock]
[InvariantBlock]
Body
[OnExitBlock]

n}n

[UntilBlock]
A mode specification consists of several syntactical compartments:
J local declarations to be used inside the mode;
. an optional onentry block, that defines behaviour that has to be executed once at the activation of the mode;
. an optional invariant block that defines predicates that should not be hurt while the mode is active;
. an obligatory body to specify the mode's internal behaviour;

. an optional onexit block that defines the behaviour that has to be executed once at the deactivation of the
mode; and

. an optional transition block (UntilBlock) that defines the exit conditions to end the mode's activity.

Atomic modes may be composed to composite modes. Composite modes show nearly the same structural setup as
atomic modes. The only differences refer to their behavioural descriptions. While atomic modes contain assignments,
assert statements and the inv, onexit, onentry blocks described above, composite modes contain other modes instead of
statements. Asfar asinvariants, onentry and onexit blocks and transitions are concerned, the structural setup and the
behaviour of composite modes both are identical to atomic modes.

Semantic Description

While amode is active, each invariant of a composite mode has to hold. Additionally, each transition of a composite
mode ends the activity of the mode when it applies.

When a mode is entered, its onentry-block is executed. When a mode is exited, its onexit-block is executed.

For every step of an active mode, the contents (either modes or statements) of the mode are executed. Modes always use
the base sampling rate when processing steps. The stepsize attribute has no effect on the mode sampling rate.

NOTE: Mode sampling isjust atheoretical concept for describing behaviour of the mode statement. The way how
TTCN-3 tools perform mode sampling isimplementation specific. It is possible e.g. to implement mode
sampling so that it is automatically triggered after port sampling or by areceiving event that has occurred
on areferenced port.

Examples

Example 1 shows the definition of an atomic mode consisting of two assignments to stream ports, an invariant that
checks the state of an outgoing stream port, an onentry block that initializes the variable x, and an onexit block that
resets the stream port to_set_point tothevalue of o.o0, and transitions that check the valuation of an incoming
stream port.

EXAMPLE 1

cont{//body
onentry{x:=10.0;}
inv{//invariant
to_Set Point.value>20000.0;
}

to_Set_ Point.value:=3.0*now;

to_Engine Perturbation.value:=0.0+Xx;
onexit{to Set Point.value:=0.0}

ETSI

25 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

}

until{//transition
[ti Engine Speed.value>2000.0] {to_Engine Perturbation.value:=2.0;}
[ti Engine Speed.value>3000.0] {to_Engine Perturbation.value:=1.0;}

}

Example 2 shows the setup of a parallel mode that contains two sequential modes, which each of them containing
further atomic modes.

EXAMPLE 2:

par { // overall perturbation and assessment
inv{//invariant

seq{// perturbation sequence
cont{// stimulation action 1}
cont{// stimulation action 2}

seq{// assessment sequence
cont{// assessment action 1}
cont{// assessment action 1}

.
}

until{ //transition

}

54.1.1 Definition of the until block
54.1.1.0 General

The until block allows the specification of exit conditions for modes and additionally the specification of explicit
transitions between modes. The entries of the until block are called transitions. Each transition specifies conditions for
their activation (i.e. guards and trigger events) and may provide an explicit definition of the mode that has to be
activated next (target mode). An until block can contain several aternative transitions that each specify different exit
conditions and target modes.

54111 Definition of transition guards and events

The until block defines a number of transitions between modes. A transition contains either aguard or atrigger event
specification or both. The guard and the trigger event specification are both used to determine whether atransition can
fire or not. A guard is modelled as aboolean TTCN-3 expression. A trigger event is modelled by means of TTCN-3
receiving operations (receive statement, trigger statement, getcall statement, etc.). The predicate or the TTCN-3
receiving operations may be followed by an optional statement block, which contain instructions to be executed upon
activation of the transition. At the end of the transition there may be a goto clause which specifies the follow-up mode.

Syntactical Structure

until " {"
{ "[" [Guard] "1" [TriggerEvent] [StatementBlock] [goto Target] }

n } n
Semantic Description

A transition is considered to be activated if the guard expression is satisfied and a valid receiving event occurred at the
specified TTCN-3 receiving operation and the invariant of the target mode holds (with the exception of thenotinv
predicate, see clause 5.4.1.5 for more details). Transitions are checked for each active mode at each sampling step. If a
transition becomes active then the optional statement block is executed once. Afterwards the enclosing mode and all his
child modes are deactivated. The control flow is continued with the activation of the follow-up mode. The transitionsin
an until block are checked in the given order. If multiple transitions exist, the first transition that fulfils the activation
conditionsis activated.

ETSI

26 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Restrictions
In addition to the general semantic rules the following restrictions apply:

. The functions invoked from the guard statement or trigger event shall not use any blocking instructions (i.e.
the following operations and statements: all receiving operations, timeout, done, killed, wait and mode). Such
constructs may block evaluation of the guard or trigger with the consequence, that the next sampling step is
missed.

. In the optional statement block of atransition any TTCN-3 statement is principally allowed, except each type
of control flow related statement that leads to the leaving of the enclosing mode (e.g. goto, return).

Example

EXAMPLE:

cont{ //mode
A.value:=3;

until { // transitions
[C.value > 4.0] MPortl.receive(TemplExp) { log(" statement block 1"); }
[C.value > 4.0 and D.value > E.value]{ log(" statement block 1"); }
[1 Port2.receive (TemplExp) { log(" statement block 1"); }

}

54.1.1.2 Definition of follow up modes

The explicit definition of follow up modes by means of a goto clause is possible. Each mode specification can have a
preceding label that defines the target for a goto clause. Moreover each transition can have an optional goto clause that
refers to an mode label.

Semantic Description

If atransition with agoto clause is activated, the optional statement block is executed and afterwards the execution is
continued at the label position with the activation of the following mode.

Restrictions

Besides the restrictions that already exist for the use of the goto statement, this package defines additional restrictions
for the use of the goto clause in the context of modes. Goto jumps are only allowed in a sequential environment, either
inside seq modes or on the top level of acomposition, i.e. directly on testcase level. Moreover, goto jumps are not
allowed to violate the composition hierarchy, thusit is not possible to jump to a parent mode or into a child mode.
Jumps are only allowed between modes on the same hierarchy level.

However, if no follow up mode is explicitly defined by means of a goto statement the sequential ordering of mode
specification implicitly defines the follow up mode. Thus, when two atomic modes follow each other in the
specification, the second mode is the follow up mode for al active transition transitions of the preceding mode that do
not have an explicit goto clause.

Examples

Example 1 shows the application of labels and goto statements in the context of modes.

EXAMPLE 1.

label statel;
cont{ //mode
A.value:=3;
1
until{[C.value > 2.0]}
label state2;
cont{ //mode
A.value:=4;
} until { // transitions

[C.value > 4.0] { log(" statement block 1"); } goto statel
[D.value > E.valuel{ log(" statement block 2"); } goto state2
[1 Port2.receive (TemplExp) { log(" statement block 1"); }

}

ETSI

27 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

EXAMPLE 2
cont{ A.value:=3;} until {[B.value >3]}

cont{ A.value:=5;} until {[C.value >=3*D.value]}
cont{ A.value:=7;} until {[C.value >=31}

54.1.1.3 The repeat statement
The control flow of a mode's transition's statement block may end in arepeat statement.
Semantic Description

The repeat statement causes the re-execution of apar statement, seq statement or cont statement, i.e. the
execution of the par statement, seq statement or cont isactivated again and executed with the next sampling step.

NOTE 1: In case of the execution of the repeat statement the local time of the respective mode (see duration
symbol in clause 5.4.1.3) isreset, in case of composite modes the child modes are first deactivated and
then again activated according to the kind (parallel or sequential) of the mode. Moreover, the respective
onentry and onexit blocks are executed.

Example

EXAMPLE:

cont{ //mode
A.value:=4;

} until { // transitions
[C.value > 4.0] { log(" statement block 1"); } goto statel
[D.value > E.value]{ log(" repeat the execution"); repeat}
[] Port2.receive (TemplExp) { log(" statement block 1"); }

}

NOTE 2: Therepeat statement isfunctional equivalent to the use of a goto clause that addresses alabel directly
above the current mode.

54114 The continue statement
The control flow of a mode's transition's statement block may end with a continue statement.
Semantic Description

The continue statement causes the further execution of apar statement, seq statement or cont statement, i.e. the
execution of the par statement, seq Statement or cont is continued with the next sampling step without a reset to
the local time (see duration symbol in clause 5.4.1.3). The onentry and onexit blocks are not executed.

Example

EXAMPLE:

cont{ //mode
A.value:=4;

} until { // transitions
[C.value > 4.0] { log(" statement block 1"); } goto statel
[D.value > E.valuel{ log(" continue the execution"); continue}
[1 Port2.receive (TemplExp) { log(" statement block 1"); }

}

541.2 Definition of invariant blocks

Syntactical Structure

inv "{" Predicate {"," Predicate} "}"
Semantic Description

Aninvariant block contains boolean predicates (expressions) which characterize the applicability of amode. Thus, an
invariant block is always related to its containing mode specification and it specifies the conditions that shall be valid
for amode during runtime.

ETSI

28 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

For each mode, all invariants are checked for each sampling step when the mode is active. While amode is active the
invariants of a mode shall not be violated. The invariant block is always checked at the beginning of each sampling
step, even before the body of each mode is executed. Violation of the invariant causes that the body of the mode is not
executed and processing continues with theuntil clause which shall only handle notinv predicatesin this case. If
theuntil block is not present or if it does not handle the notinv predicate, the active mode shall be terminated and
the execution shall continue with the implicit follow-up mode (i.e. the mode immediately textually following the active
mode statement). If no implicit follow-up mode is available, the test system shall generate a dynamic error.

Restrictions
In the general semantic rules the following restrictions apply:

. The functions invoked from the invariant statement shall not use any blocking instructions (i.e. the following
operations and statements: al receiving operations, timeout, done, killed, wait and mode). Such constructs
would potentially block the execution of the invariant block with the consequence, that the next sampling step
is missed.

Examples

Example 1 below shows the definition of an atomic mode that sets the out port A continuously with the value of 3.0.
Moreover, the invariant prescribes conditions on the incoming ports B, C and D. When one of the invariantsis violated
by the actual value at ports, mode execution is stopped.

EXAMPLE 1:

type port StreamIn stream { in float }
type port StreamOut stream { out float }

type component SUT {
port StreamIn A,B;
port StreamOut C,D;

}

cont {
A.value:=3;
inv {B.value > 3,C.value >=3*D.value}

}

The specification of invariants allows the easy definition of ending conditions for the execution of modes. Based on a
simple sequentia control flow paradigm, this supports the specification of sequences of modes, that are executed one
after the other whenever the invariant state of the active mode changes.

EXAMPLE 2:

cont {
A.value:=3;
inv {B.value >3,C.value >=3*D.value}

}

cont {
A.value:=5;
inv {B.value <=3,C.value >=3*D.value}

}

5.4.1.3 Definition of the onentry block
The onentry block contains a statement list that isto be executed once and only once during the activation of a mode.

Syntactical Structure

onentry StatementBlock
Semantic Description

The onentry block is executed as part of the activation procedure of a mode. To successfully start the onentry block all
invariants shall satisfy their conditions. The onentry blocks of hierarchically ordered modes are executed sequentialy,
beginning with the onentry block of the outer-most mode to the inner modes.

ETSI

29 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Restrictions
In an onentry block of a mode any TTCN-3 statement is principally allowed, except:

. Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) referenced directly or called inside functions invoked from the onentry block shall not
be used. Such constructs would potentialy block the execution of the statement block with the consequence,
that the next sampling step is missed.

. Each type of control flow related statement that leads to the leaving of the mode (e.g. goto, return).
Example
The example below shows the definition of an atomic mode that sets the sampling of a port during its activation time.

EXAMPLE:

cont {
onentry {A.delta:=0.001;}
A.value:=3;

}

5414 Definition of the onexit block
The onexit block contains a statement list that is to be executed once and only once during the deactivation of a mode.
Syntactical Structure
onexit StatementBlock
Semantic Description

The onexit block is executed as part of the deactivation procedure of a mode. The execution of the onexit block is
triggered either by an activated transition or the violation of an invariant that lead to the leaving of the mode. In case of
an active transition the onexit block is executed directly after the execution of the transition's optional action block. The
onexit blocks of hierarchically ordered modes are executed sequentially, beginning with the onexit blocks of the inner-
most modes towards the outer modes.

Restrictions
In an onexit block of amode any TTCN-3 statement is principally allowed, except:

. Blocking instructions (i.e. the following operations and statements: all receiving operations, timeout, done,
killed, wait and mode) referenced directly or called inside functions invoked from the onexit block shall not be
used. Such constructs would potentially block the execution of the statement block with the consequence, that
the next sampling step is missed.

o Each type of control flow related statement that |eads to the leaving of the mode (e.g. goto, return).

Example

The following example shows the definition of an atomic mode that sets the sampling of a port during its deactivation
time.

EXAMPLE:

cont {

A.value:=3.0;

onexit {A.value:=1.0;}
} until {[B.value> 3.0]}

ETSI

30 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

54.1.5 Local predicate symbols in the context of modes

To enable an explicit treatment of some exceptional situations, we introduce the keywordsnotinv and finished
that represent special predicates with amode local evaluation.

Semantic Description

The keyword notinv can be used as a predicate that indicates the violation of any local mode invariant. Thus, if one
of the invariants of amode is violated and the mode is active, the evaluation of the notinv symbol yieldstrue for all
expressions in the contained until block. Otherwiseit yields false. Thus, thenot inv symbol alows the explicit
handling of occurring invariant violation by means of transitions. The notinv predicate isthe only predicate that
alows activating atransition when an invariant is violated. The notinv predicate shall not be followed by any trigger
event.

The £inished keyword can be used as a predicate to handle the proper termination of a composite mode. A proper
termination is given when the termination is triggered by the status of the child elements of a composite mode and not
by itstransitions or invariants. If and only if a mode is terminated by the status of its child elements the term finished
yields true. Thus, the £inished predicate allows the explicit handling of proper mode terminations by means of
transitions.

Examples

EXAMPLE 1:

cont{ //mode
A.value:=3;

until { // transitions

[notinv] { log(" Invariant violated"); }
[] Port2.receive(TemplExp) { log(" Invariant not violated"); }
1
EXAMPLE 2:

par { //mode
cont { //inner mode 1
A.value:=3.0;
} until {[C.value>3.0]}
cont { //inner mode 2
B.value:=3.0;

} until {[D.value>3.0]}
} until { // transitions

[finished] { log(" finished by childs' state"); }
[D.value > 4.0] { log(" not finished by childs' state"); }
!
5.4.1.6 The duration operator

Within a mode there is continuous access to the time that has el apsed since the beginning of the test case by using the
now operator. It is also possible to access the time that has elapsed since the activation of the enclosing mode
construct. The accessis provided by means of the duration operator, whichisapplicablein expressionsin all
mode related substructures like the body block, the invariant block and the until block.

NOTE: The evauation of the duration operator depends on its context. Thus, it may differ dependent on its
place of application.

Examples

EXAMPLE 1:

cont{ A.value:=3.0;} until {[now > 4.0]}
// executes the content of the body block until
// the overall test case time has reached 4.0 seconds

ETSI

31 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

EXAMPLE 2:

cont{ A.value:=3.0;} until {[duration > 4.0]}
// executes the content of the body block for 4.0 seconds

The following example shows the application of the duration operator in two different modes. Both modes are
activated at different times and thus the application of the duration symbol in the second cont mode yields different
results than the application of the duration operator in the enclosing par mode.

EXAMPLE 3:

par{
cont{ A.value:=2.0;} until (duration > 4.0)
cont{ A.value:=3.0;} until (duration > 4.0)
} until{[duration > 6.0]}

5.4.2 Atomic modes: the cont statement

Syntactical Structure

The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.
Semantic Description

The cont statement is used to define atomic modes. Atomic modes directly define the test behaviour at stream ports by
means of value allocation and value assessments. A cont mode may contain assignments and assert statements and
forms the leaves of a hierarchical mode structure.

When a cont statement is activated, al contained elements are executed repetitively for each sample step. The
execution ends when a transition fires or an invariant is violated.

Restrictions
a) A cont mode shall not invoke any potentially blocking behaviour.
b) A cont mode cannot contain other modes.

Examples

EXAMPLE 1:

// executes the assignments at each sample step
cont { // Mode
Portl.value :
Port2.value :

}

until (duration > 5.0)

10.0;
2.0 * duration;

L

NOTE: Assignment and evaluation of the cont modeis, in atheoretical sense, continuous, i.e. executed at each
step, provided for sampling. The cont mode allows the organization of periodic assignments and
periodic revisions of values or variables of stream and stream ports.

EXAMPLE 2
cont { // mode 1
outportl.value := inportl.prev.value *2;
streamvar.value := inportl.prev(5).value;
1
EXAMPLE 3
cont { // mode 1
outportl.value := inportl.prev.value *2;
streamvar.value := inportl.prev(5).value;
inv {

streamvar.value > 200.0

}

until { // Transition
[streamvar.value >150] { streamvar.value =0; }

ETSI

32 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

[streamvar.value >180] {}

}

5.4.3 Parallel mode composition: the par statement

The parallel composition of modes is specified by means of the par statement. A parallel composition may contain
sequential modes, parallel modes and atomic modes.

Syntactical Structure
The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

The general structure of the par statement is similar to the cont statement and the seq statement. It consists of a body
part, which defines the overall behaviour of the mode. In case of the par statement the body part contains the mode
definitions that are to be composed in parallel. The mode can define an optional invariant and atransition part, as well
as onentry and onexit blocks.

Semantic Description
In case of its activation, a parallel composition leads to a parallel execution of all composed (i.e. contained) modes.

While being active, each invariant of a composite mode hasto hold. Additionally, each transition of a composite mode
ends the activity of the mode when it fires. Furthermore, each mode provides access to an individual local clock that
returns the time that has passed since the mode has been activated. The value of the local clock can be obtained by
means of the duration keyword.

The activation of aparallel mode leads to the parallel activation of all child modes. During execution, the parallel mode
isresponsible to check the status of all contained modes. The execution of a parallel mode ends, either when atransition
in the transition block has fired or when the execution of at |east one child mode has been completed. The second
situation is called a proper termination of a parallel mode and forces the local symbol finished to yield true (see

clause 5.4.1.3).

Examples

EXAMPLE 1.

var integer count := 0;
par{
cont {
x.value:=1;
y.value:=2;

until { // Transition
[z.value> 3.0] { }
[] Port2.receive {}

}

cont {
x.value:=2;
y.value:=1;

until { // Transition
[z.value> 10.0] { }
[l Portl.receive {}
}
1
until { // Transition
[finished] {if(count > 1) {count++; continue}}

}

NOTE 1: The predicate finished yields true only during the distinct sample step when a child of a parallel mode
has finished. Moreover, it yields true for every child element that has finished. Thus, it servesasa
notification event, which can be used to model complex termination conditions for parallel modes.

NOTE 2: For parallel execution, it is always possible that several children modes terminate at the same time. Thus,
counting the finished child modes to determineif all child modes have finished is not reliable. Instead, the
child modes should set conditions that can be queried in the finished.

ETSI

33 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

EXAMPLE 2:

par{
cont {
x.value:=1;
y.value:=2;

until { // Transition
[z.value> 1.0] { }
[l Portl.receive(msgl) {}

}

cont
x.value:=2;
y.value:=1;

until { // Transition
[z.value> 10.0] { }
[l Portl.receive() {}

}

until { // Transition
[z.value > 11.0] { }
[1 Portl.receive(msg) {}

5.4.4 Sequential mode composition: the seq statement

The sequential composition of modesis specified by means of the seq statement. A sequential composition may contain
sequential modes, parallel modes and atomic modes.

Syntactical Structure
The syntactical structure and context for the cont statement is part of the syntactical structure provided in clause 5.4.1.

The general structure of the seq statement is similar to the cont statement and the par statement. It consists of a body
part, which defines the overall behaviour of the mode. In case of the seq statement the body part contains the mode
definitions that are to be composed.

Semantic Description

In case of its activation, a sequential composition leads to a sequential execution of the composed (i.e. contained)
modes.

While being active, each invariant of a composite mode hasto hold. Additionally, each transition of a composite mode
ends the activity of the mode when it fires. Furthermore, each mode provides access to an individual local clock that
returns the time that has passed since the mode has been activated. The value of the local clock can be obtained by
means of the duration keyword.

The activation of a sequential mode leads to the activation of itsfirst child mode. During execution, the sequential mode
is responsible to schedul e the contained modes in their sequential order. Thus, when a child mode has finished, the
target mode of the exit transition is activated. Per default, the target mode is the next mode is the sequence\. The
execution of a sequential mode ends either when a transition in the transition block is fired or when the execution of the
last child mode has been completed. The second situation is called a proper termination of a sequential mode and forces
the local symbol finished to yield true (see clause 5.4.1.3).

Example

The following example defines the sequential execution of two atomic modes, which are composed sequentially by
means of a sequential mode.

EXAMPLE:

seq{
cont {
x.value:=1;
y.value:=2;

until { // Transition

[z.value> 2.0] { }
[] Portl.receive() {}

ETSI

34 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

}

cont {
x.value:=2;
y.value:=1;

until { // Transition
[z.value> 1.0] { }
[] Portl.receive() {}

}
1
until { // Transition

[z.value> 12.0] { }
[] Portl.receive(msg) {}

545 Parameterizable modes
5450 General

To provide a higher degree of flexihility, it is possible to specify parameterizable modes. Va ues, templates, ports, and
modes can be used as mode parameters. The definition of parameterizable modesis similar to the definition of TTCN-3
functions.

NOTE: Unlike functions parameterizable modes are not called in the sense of afunction call but inserted by
means of a substitution mechanism at compile time. Thus, the recursive application of parameterizable
modes is not possible.

545.1 Parameterizable mode definitions

A parameterizable mode definition allows the definition of reusable and parameterizable modes. A parameterizable
mode may be defined within a module.

Syntactical Structure

mode ModeName
["(" { (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar | FormalModePar)
[, "] } nyn
[runs on ComponentType]
(ContMode | ParMode | SegMode)

Semantic Description

In amodule, the behaviour of a mode can be defined by using the statements and operations described in clauses 5.4.1
t05.4.4.

Restrictions

a) If amode uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using the runs on keywords in the mode header. The one exception to
thisruleisif all component-wide information used within the mode is passed in as parameters.

b) A modewithout runs on clause shall never invoke functions or modes with aruns on clauselocally.

Examples

EXAMPLE 1:

mode myMode runs on Tester cont{assert (engine speed >= 500.0)}

EXAMPLE 2:

mode pert_seq 2(in float startVal, in float increase, in float expected_speed)
runs on Tester
par{
seq{// perturbation sequence
cont{to Set Point:=startVal} until {[duration>=2.0]}
cont{to Set Point:=startVal + duration/to_Set Point.delta*increase}
until {[duration>=5.0]}

}

ETSI

35 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

cont{assert (engine speed >= expected speed) ;

}

testcase myTestcase runs on EngineTester ({
pert_seq_2(lOO0.0, 10.0, 500.0);
pert_seq 2(5000.0, 1.0, 0.0);

}

5.45.2 Mode types (optional)

Mode types are optional. They are available only if this extension package is used in combination with the TTCN-3
extension package ETS| ES 202 785 [6] "Behaviour Types'. If this package is used in combination with [6], both
packages have to be named with their package tags in the language clause of the TTCN-3 module in which the packages
are used.

Mode types are the set of identifiers of mode definitions with a specific parameter list and runs on clauses. They denote
those modes defined in the test suite that have a compatible parameter list and compatible runs on clauses.

Syntactical Structure

type mode BehaviorTypelIdentifier
(" { (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar | FormalModePar)
[,] } o

[runs on (ComponentType | self]
Example

EXAMPLE:

type mode ModeType assert mode () runs on Tester;

5.5 The wait statement

Syntactical Structure
wait " (" Expression ")"
Semantic Description

The wait statement suspends the execution of a component until a given point in time. The time point is specified asa
float value and relatesto the internal clock.

The execution of the wait statement suspends the execution of the related component until the point in time specified by
itsargument. If the argument holds a val ue that precedes the actual clock value an error verdict shall be set.

Example

EXAMPLE:

streamoutport.value = 10.0;
wait (100.0 + now) ; // suspends the execution of a component

// until 100.0 seconds after the start of the testcase
streamoutport.value = 12.0;

NOTE: Thewait statement has no impact on sampling. All stream ports of the given component are till
sampled with respect to their sampling rate.

ETSI

36 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

6 TRI extensions for the package
6.0 General

In addition to the TRI types defined in [3], the following type is used in TRI operationsif static configurations specified
in[7] are supported.

TriConfigurationIdType A value of type TriconfigurationIdType includesaunique identifier of the
configuration and the configuration function name as specified inthe TTCN-3 ATS.
This abstract typeis used to resolve clock operations related to specific configurations
as there might be several configurations active in the same time.

6.1 Extensions to clause 5.5 of ETSI ES 201 873-5:
Communication interface operations

Clause 5.5.6 Stream operations
5.5.6.1 triSetStreamValue (TE — SA)
Signature TriStatusType triSetStreamValue

(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,

in TriMessageType streamValue)

In Parameters component Id identifier of the sending test component
tsiPortId identifier of the test system interface port via which the
message is sent to the SUT Adapter

streamValue the encoded stream value (message) to be sent
Out Parameters n.a.

Return Value The return status of the triSetStreamvalue operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of
the operation.

Constraints The TE calls this operation when it executes a new sampling step on
a sampled output stream port, which has been mapped to a TSI port.
The TE calls the operation for all sampling steps of all outgoing
stream ports if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.

The encoding of streamvValue has to be done in the TE prior to this
TRI operation call.

Effect The SA can update the message to the SUT.

The triSetStreamValue operation returns TRI_OK in case it has
been completed successfully. Otherwise TRI_Error shall be returned.
Notice that the return value TRI_OK does not imply that the SUT has
received streamvValue.

ETSI

5.5.6.2

37 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

triGetStreamValue (TE — SA)

Signature

TriStatusType triGetStreamValue
(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,

out TriMessageType streamValue)

In Parameters

component Id identifier of the sending test component
tsiPortId identifier of the test system interface port via which the
message is sent to the SUT Adapter

Out Parameters

streamValue the encoded stream value (message) that has been
received from the SUT.

Return Value

The return status of the triGetStreamvalue operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of
the operation.

Constraints

The TE calls this operation when it executes a new sampling step on
a sampled input stream port, which has been mapped to a TSI port.
The TE calls the operation for all sampling steps of all outgoing
stream ports if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.

The decoding of streamvalue has to be done in the TE after to this
TRI operation call.

Effect

The SA can update the stream value at the input port.
The triGetStreamValue operation returns TRI_OK in case it has
been completed successfully. Otherwise TRI_Error shall be returned.

6.2

Clause 5.6.4
5.6.4.1

Extensions to clause 5.6 of ETSI ES 201 873-5: Platform
interface operations

Clock and sampling operations

triStartClock (TE — PA)

Signature

TriStatusType triStartClock (in long ticksPerSecond)

In Parameters

ticksPerSecond the precision of the clock given in ticks per
second.

Out Parameters

n.a.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

n.a.

Effect

The operation starts the test system clock with a given precision. The
precision is defined by the in parameter ticksPerSecond. The
parameter specifies the number of time units (ticks) that characterizes
a second.

5.6.4.2

triReadClock (TE — PA)

Signature

TriStatusType triReadClock (out long timepoint)

In Parameters

n.a.

Out Parameters

timepoint current time.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

There was a preceding invocation of
triStartClock (int long ticksPerSecond) .

Effect

The operation yields the actual clock value. The clock value is given
by the out parameter t imepoint, which represents the number of
time units (ticks) that has elapsed since the start of the clock (see
triStartClock).

ETSI

5.6.4.3

38 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

triNextSampling (TE — PA, SA — PA)

Signature

TriStatusType triNextSampling
(in long timepoint,
in TriPortIDType port)

In Parameters

timepoint point in time when the execution of the next sample step
for a given stream port shall be started
port the stream port the sample step is requested for

Out Parameters

n.a.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

There was a preceding invocation of
triStartClock (int long ticksPerSecond) .

Effect

The operation signals that the next sample step for a given port shall
start at the specified point of time timepoint.
At this point in time the PA will issue a

triProcessStep (in TriPortIDListType ports)
operation to inform the TE which ports shall be sampled next.
The parameter timepoint is expressed as the number of time units
(ticks), that has elapsed since the start of the clock (see
triStartClock).
A call to this operation returns immediately. The operation merely
triggers the corresponding triProcessStep operation.
If timepoint represent a point of time in the past then the operation
returns a TRI_Error value and has no other effect.

5.6.4.4

triBeginWait (TE — PA)

Signature

TriStatusType triBeginWait
(in long timepoint,
in TriComponentIdType component)

In Parameters

timepoint point in time until execution of a component should be
suspended
component component whose execution should be suspended

Out Parameters

n.a.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

There was a preceding invocation of
triStartClock (int long ticksPerSecond).

Effect

The operation signals that the execution of component component
should be suspended until the specified point of time timepoint.
At this point in time the PA will issue a

triEndWait (component)
operation.
timepoint is expressed as the number of time units (ticks), that has
elapsed since the start of the clock (see trisStartClock).
A call to this operation returns immediately. The operation merely
triggers the corresponding triEndwWait operation, it does not
schedule the execution of the component.
If timepoint represent a point of time in the past then the operation
returns a TRI_Error value and has no other effect.

ETSI

5.6.4.5

39 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

triProcessStep (PA — TE)

Signature

void triProcessStep(in TriPortIDListType ports)

In Parameters

Ports a list of ports that shall be sampled at the operation call

Out Parameters

n.a.

Return Value

n.a.

Constraints

There was a preceding invocation of
triNextSampling (timepoint, port)

5.6.4.6

5.6.4.7

5.6.4.8

Effect The operation signals that the point in time timepoint that was
specified in the corresponding
triNextSampling (timepoint, port)
has been reached.
triEndWait (PA — TE)
Signature void triEndWait (in TriComponentIdType component)
In Parameters component component of the corresponding triBeginWait operation.
Out Parameters n.a.
Return Value n.a.
Constraints There was a preceding invocation of
triBeginWait (timepoint, component).
Effect The operation signals that the point in time timepoint that was
specified in the corresponding
triBeginWait (timepoint, component)
has been reached.
triStartClockStatic (TE — PA)
Signature TriStatusType triStartClock(in long ticksPerSecond,
TriConfigurationIdType ref)
In Parameters ticksPerSecond the precision of the clock given in ticks per
second.
ref reference to the static configuration owning the clock.
Out Parameters n.a.
Return Value The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is optional and shall be present in the interface only if
static configurations specified in [7] are supported.

Effect The operation starts the test system clock with a given precision. The
precision is defined by the in parameter ticksPerSecond. The
parameter specifies the number of time units (ticks) that characterizes
a second.

triReadClockStatic (TE — PA)

Signature

TriStatusType triReadClock (out long timepoint,
TriConfigurationIdType ref)

In Parameters

n.a.

Out Parameters

timepoint current time.
ref reference to the static configuration owning the clock.

Return Value

The return status of the operation. The return status indicates the
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

This operation is optional and shall be present in the interface only if
static configurations specified in [7] are supported.

There was a preceding invocation of

triStartClockStatic (int long ticksPerSecond,
TriConfigurationIdType ref).

Effect

The operation yields the actual clock value. The clock value is given
by the out parameter t imepoint, which represents the number of
time units (ticks) that has elapsed since the start of the clock (see
triStartClock).

ETSI

40 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

6.3 Extensions to clause 6.3.2 of ETSI ES 201 873-5:
Structured type mapping

6.3.1 TriConfigurationldType
6.3.1.0 General

TriConfigurationIdType ismapped to the following interface:

// TRI IDL TriConfigurationIdType
package org.etsi.ttcn.tri;
public interface TriConfigurationId ({
public String getConfigurationId() ;
public String getConfigurationName () ;
public boolean equals (TriConfigurationId component) ;

6.3.1.1 Methods

. getConfigurationId
Returns a representation of this unique configuration identifier.

L] getConfigurationName

Returns the configuration function name as defined in the TTCN-3 specification.

L4 equals
Compares configuration withthisTriConfigurationlId for equality. Returns true if and only if
both configurations have the same representation of the unique configuration identifier, false otherwise.

6.4 Extensions to clause 6.5.2.1 of ETSI ES 201 873-5:
TriCommunicationSA

The tricommunicationsa interfaceisto be extended as follows:

public interface triCommunicationSA {

// Stream operations

// Ref: 5.5.6.1

public TriStatus triSetStreamValue (TriComponentId componentId,
TriPortId tsiPortId,
TriMessage streamValue) ;

// Ref: 5.5.6.2

public TriStatus triGetStreamValue (TriComponentId componentlId,
TriPortId tsiPortId,
TriAddress SUTaddress,
TriMessage streamValue) ;

6.5 Extensions to clause 6.5.3.1 of ETSI ES 201 873-5:
TriPlatformPA

The triplatformPa interfaceisto be extended as follows:
public interface triPlatformPA {

// Clock and sampling operations

// Ref: 5.6.4.1

public TriStatus triStartClock (long ticksPerSecond) ;

// Ref: 5.6.4.2

public TriStatus triReadClock (Trilong timepoint) ;

// Ref: 5.6.4.3

public TriStatus triNextSampling(long timepoint, TriPortId port) ;

// Ref: 5.6.4.4

public TriStatus triBeginWait (int timepoint, TriComponentId component) ;

ETSI

41 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

// Ref: 5.6.4.7 (optional)

public TriStatus triStartClockStatic(long ticksPerSecond, TriConfigurationId ref) ;
// Ref: 5.6.4.8 (optional)

public TriStatus triReadClockStatic(TriLong timepoint, TriConfigurationId ref) ;

1
where TriLong is defined as follows:

package org.etsi.ttcn.tri;

public interface TriLong ({
public void setLongValue (long value) ;
public long getLongValue() ;

1

6.6 Extensions to clause 6.5.3.2 of ETSI ES 201 873-5:
TriPlatformTE

The triplat formTE interfaceisto be extended asfollows:
public interface triPlatformTE

// Clock and sampling operations

// Ref: 5.6.4.5

public void triProcessStep (TriPortIdList ports);
// Ref: 5.6.4.6

public void triEndWait (TriComponentId component) ;}

6.7 Extensions to clause 7.2.1 of ETSI ES 201 873-5: Abstract
type mapping

TRI ADT ANSI C Representation Notes and comments
TriConfigurationId typedef struct confId is stands for the unique
TriConfigurationId configuration identifier and
{ confName is used for the name of
BinaryString confld; the realated configuration function.
QualifiedName confName;
} TriComponentId;

ETSI

42 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

6.8 Extensions to clause 7.2.4 of ETSI ES 201 873-5: TR

operation mapping

The table is to be extended as follows:

IDL Representation

ANSI C Representation

TriStatusType triSetStreamValue (
in TriComponentIdType componentId,
in TriPortIdType tsiPortId,

in TriMessageType streamValue)

TriStatus triSetStreamValue (
const TriComponentId *componentId,
const TriPortId *tsiPortId,

const TriMessage *streamValue)

TriStatusType triGetStreamValue (
in TriComponentIdType componentId,
in TriPortIdType tsiPortId,

out TriMessageType streamValue)

TriStatus triGetStreamValue (
const TriComponentId *componentId,
const TriPortId *tsiPortId,

const TriMessage *streamValue)

TriStatusType triStartClock(in long

TriStatus triStartClock (

ticksPerSecond) const long long ticksPerSecond)
TriStatusType triReadClock (out long TriStatus triReadClock (
timepoint) const long long *timepoint)

TriStatusType triNextSampling
(in long timepoint, in TriPortIdType port)

TriStatus triNextSampling (
const long long timepoint,

const TriPortId port)

TriStatusType triBeginWait
(in long timepoint,
in TriComponentIdType component)

TriStatus triBeginWait (
const long long timepoint,
const TriComponentId component)

void triProcessStep (in TriPortIdListType

void triProcessStep (

ports) const TriPortIdList *ports)
void triEndWait (in TriComponentIdType void triEndWait (

component) const TriComponentId *component)
TriStatusType triStartClock(in long TriStatus triStartClockStatic(
ticksPerSecond) const long long ticksPerSecond,

const TriConfigurationId *ref)

TriStatusType triReadClock (out long
timepoint)

TriStatus triReadClockStatic (
const long long *timepoint,
const TriConfigurationId *ref)

6.9 Extensions to clause 8.5.2 of ETSI ES 201 873-5: Abstract

data types

6.9.1
6.9.1.0

TriConfigurationld

General

A value of type TriComponentld includes an identifier and configuration function name. This abstract typeis for
distinguishing between different parallel configurationsin static clock operations:

class TriConfigurationId
public:
virtual ~TriConfigurationId () ;

virtual const QualifiedName & getConfigurationName () const =0;
virtual const Tstring & getConfigurationId const =0;

virtual Tboolean operator== (const TriConfigurationId &cmp) const =0;
virtual TriConfigurationId * cloneConfigurationId () const =0;

virtual Tboolean operator< (const TriConfigurationId &cmp) const =0;

6.9.1.1 Methods
. ~TriConfigurationId
Destructor.

. getConfigurationName

Returns a const reference to the configuration function name.

. getConfigurationId

Returns the configuration unique identifier.

ETSI

43 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

. operator==

Returnstrue if both TriConfigurationld objects are equal.

. cloneComponentId

Returns a copy of the TriConfigurationld.

. operator<
Operator < overload.

6.10 Extensions to clause 8.6.1 of ETSI ES 201 873-5:
TriCommunicationSA

The tricommunicationSa interfaceisto be extended asfollows:

class TriCommunicationTe {
public:

// Stream operations

// Ref: 5.5.6.1

virtual TriStatus triSetStreamValue (const TriComponentId *componentId,
const TriPortId *tsiPortId,
const TriMessage *streamValue)=0;

// Ref: 5.5.6.2

virtual TriStatus triGetStreamValue (const TriComponentId *componentId,
const TriPortId *tsiPortId,
const TriMessage *streamValue)=0;

6.11 Extensions to clause 8.6.3 of ETSI ES 201 873-5:
TriPlatformPA

The triplatformPA interfaceisto be extended as follows:

class TriPlatformPa {
public:
// Clock and sampling operations
// Ref: 5.6.4.1
virtual TriStatus triStartClock (const long long ticksPerSecond)=0;
// Ref: 5.6.4.2
virtual TriStatus triReadClock (const long long *timepoint)=0;
// Ref: 5.6.4.3
virtual TriStatus triNextSampling(const long long timepoint, const TriPortId *port)=0;
// Ref: 5.6.4.4
virtual TriStatus triBeginWait (const long long timepoint, const TriComponentId *component)=0;
// Ref: 5.6.4.7 (optional)
virtual TriStatus triStartClockStatic(const long long ticksPerSecond,
const TriConfigurationId *ref)=0;
// Ref: 5.6.4.8 (optional)
virtual TriStatus triReadClockStatic(const long long *timepoint,
const TriConfigurationId *ref)=0;

6.12 Extensions to clause 8.6.4 of ETSI ES 201 873-5:
TriPlatformTE

The triPlatformTE interfaceisto be extended as follows:

class TriPlatformTe {
public:

// Clock and sampling operations

// Ref: 5.6.4.5

virtual void triProcessStep (const TriPortIdList *ports)=0;
// Ref: 5.6.4.6

virtual void triEndWait (const TriComponentId *component)=0;

ETSI

44 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

6.13 Extensions to clause 9.4.2 of ETSI ES 201 873-5:
Structured type mapping

6.13.1 TriConfigurationldType
6.13.1.0 General

TriConfigurationldTypeis mapped to the following interface:

public interface ITriConfigurationId {
string ConfigurationId { get; }
IQualifiedName ConfigurationName { get; }
bool Equals (ITriConfigurationId comp) ;

6.13.1.1 Members

(] ConfigurationId
Returns a representation of this unique configuration identifier.

L] ConfigurationName

Returns the configuration function name as defined in the TTCN-3 specification.

o Equals
Compares a configuration with this TriConfigurationId for equality. Returns true if and only if both

configurations have the same representation of the unique configuration identifier, false otherwise.

6.14 Extensions to clause 9.5.2.1 of ETSI ES 201 873-5:
ITriCommunicationSA

The ITricommunicationsa interfaceisto be extended as follows:
public interface ITriCommunicationSA ({

// Stream operations

// Ref: 5.5.6.1

TriStatus TriSetStreamValue (ITriComponentId componentId,
ITriPortId tsiPortId,
ITriMessage streamValue) ;

// Ref: 5.5.6.2

TriStatus TriGetStreamValue (ITriComponentId componentId,
ITriPortId tsiPortId,
ITriMessage streamValue) ;

ETSI

45 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

6.15 Extensions to clause 9.5.2.3 of ETSI ES 201 873-5:
ITriPlatformPA

The ITrirlatformPA interfaceisto be extended asfollows:
public interface ITriPlatformPA {

// Clock and sampling operations

// Ref: 5.6.4.1

TriStatus TriStartClock (long ticksPerSecond) ;

// Ref: 5.6.4.2

TriStatus TriReadClock (out long timepoint) ;

// Ref: 5.6.4.3

TriStatus TriNextSampling(long timepoint, ITriPortId port);

// Ref: 5.6.4.4

TriStatus TriBeginWait (long timepoint, ITriComponentId component) ;

// Ref: 5.6.4.7 (optional)

TriStatus TriStartClockStatic(long ticksPerSecond, ITriConfigurationId refConf);
// Ref: 5.6.4.8 (optional)

TriStatus TriReadClockStatic (out long timepoint, ITriConfigurationId refConf) ;

6.16 Extensions to clause 9.5.2.4 of ETSI ES 201 873-5:
ITriPlatformTE

The ITrirlatformTE interfaceisto be extended asfollows:
public interface ITriPlatformTE {

// Clock and sampling operations

// Ref: 5.6.4.5

void TriProcessStep (ITriPortIdList ports) ;
// Ref: 5.6.4.6

void TriEndWait (ITriComponentId component) ;

7 TCI extensions for the package

7.1 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH
provided

Clause 7.3.3.2.31 tciSetStreamValueReq (TE — CH)

Signature void tciSetStreamValueReq
(in TriPortIdType sender,
in TriComponentIdType receiver,
in Value streamValue)
In Parameters sender identifier of the port via which the message is sent to the
receiving component.
receiver identifier of the receiving component
streamValue the stream value to be set

Out Parameters n.a.
Return Value void
Constraints The TE calls this operation at the CH when it executes a new

sampling step on a sampled output stream port, which has been
connected with a test component port.

Effect If receiving a tciSetStreamValueReq operation, the CH can call
tcisetStreamvalue in the TE on the node where the receiver
component is deployed.

ETSI

46 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Clause 7.3.3.2.33 tciGetStreamValueReq (TE — CH)

Signature void tciGetStreamValueReq
(in TriPortIdType receiver,

in TriComponentIdType sender,

in Value streamValue)
receiver identifier of the port via which the message is received
from the sending component.
sender identifier of the sending component
streamValue the stream value to be received
Out Parameters n.a.

Return Value void

Constraints The TE calls this operation at the CH when it executes a new
sampling step on a sampled input stream port, which has been
connected with a test component port.
Effect The CH calls tciGetStreamValue in the TE on the node where the
sending component is deployed.

In Parameters

7.2 Extensions to clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH
required

Clause 7.3.3.1.23 tciSetStreamValue (CH — TE)

Signature

void tciSetStreamValue

(in TriPortIdType sender,

in TriComponentIdType receiver,
in Value streamValue)

In Parameters

sender identifier of the port via which the message is sent to the
receiving component.

receiver identifier of the receiving component

streamValue the stream value to be set

Out Parameters

n.a.

Return Value

void

Constraints

The CH calls this operation in the local TE where receiver is
deployed when tciSetStreamValueReq has been called.

Effect

The CH updates the respective outgoing stream port on the test

component.

Clause 7.3.3.1.24

tciGetStreamValue (CH — TE)

Signature

void tciGetStreamValue

(in TriPortIdType receiver,

in TriComponentIdType sender,
in Value streamValue)

In Parameters

receiver identifier of the port via which the message is received
from the sending component.

sender identifier of the sending component

streamValue the stream value to be received

Out Parameters

n.a.

Return Value

void

Constraints

The CH calls this operation in the local TE where sender is deployed
when tciGetStreamValueReq has been called.

Effect

The CH updates the respective incoming stream port on the test
component.

ETSI

a7 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

7.3 Extensions to clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH
provided

Theinterface TciCcHProvided isto be extended as follows:
public interface TciCHProvided (

public void tciSetStreamValue (TriPortId sender,
TriComponentId receiver,
Value streamValue) ;

public void tciGetStreamvalue (TriPortId receiver,
TriComponentId sender,
Value streamValue) ;

7.4 Extensions to clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH
required

Theinterface TciCHRequired isto be extended as follows:
public interface TciCHRequired extends TciCDRequired {

public void tciSetStreamValueReq (TriPortId sender,
TriComponentId receiver,
Value streamValue) ;

public void tciGetStreamValueReq (TriPortId receiver,
TriComponentId sender,
Value streamValue) ;

7.5 Extensions to clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH
provided

Theinterface TcI-CcH Provided isto be extended as follows:

void tciSetStreamValue (TriPortId sender, TriComponentId receiver, Value streamValue)
void tciGetStreamvValue (TriPortId receiver, TriComponentId sender, Value streamValue)

7.6 Extensions to clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH

required
Theinterface TCI-CH Required isto be extended as follows:
void tciSetStreamValueReqg
(TriPortId sender, TriComponentId receiver, Value streamValue)
void tciGetStreamvValueReqg

(TriPortId receiver, TriComponentId sender, Value streamValue)

7.7 Extensions to clause 10.6.3.1 of ETSI ES 201 873-6:
TciChRequired

The classthat definesthe TCI_CH required interface is to be extended as follows:

virtual void tciSetStreamValueReg

(const TriPortId *sender, const TriComponentId *receiver, const TciValue *streamvValue)=0;
virtual void tciGetStreamValueReq

(const TriPortId *receiver, const TriComponentId *sender, const TciValue *streamValue)=0;

ETSI

48 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

7.8 Extensions to clause 10.6.3.2 of ETSI ES 201 873-6:
TciChProvided

The class that definesthe TCI_CH provided interface is to be extended as follows:

virtual void tciSetStreamvalue

(const TriPortId *sender, const TriComponentId *receiver, const TciValue *streamValue)=0;
virtual void tciGetStreamValue

(const TriPortId *receiver, const TriComponentId *sender, const TciValue *streamvValue)=0;

7.9 Extensions to clause 12.5.3.1 of ETSI ES 201 873-6:
TCI-CH provided

Theinterface 1TcicHProvided isto be extended asfollows:

public interface ITciCHProvided {

public void tciSetStreamValue (ITriPortId sender,
ITriComponentId receiver,
ITciValue streamValue) ;

public void tciGetStreamValue (ITriPortId receiver,
ITriComponentId sender,
ITciValue streamValue) ;

7.10 Extensions to clause 12.5.3.2 of ETSI ES 201 873-6:
TCI-CH required

Theinterface 1TciCHRequired isto be extended as follows:

public interface ITciCHRequired ({

public void tciSetStreamValueReq (ITriPortId sender,
ITriComponentId receiver,
ITcivValue streamValue) ;

public void tciGetStreamValueReq (ITriPortId receiver,
ITriComponentId sender,
ITciValue streamValue) ;

ETSI

49 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Annex A (normative):
BNF and static semantics

A.l New TTCN-3 terminals

Table A.1: List of new TTCN-3 terminals defined in this package which are reserved words

apply history par values

assert prev

at inv wait
seq

cont mode stepsize
stream

delta notinv

duration timestamp

onentry
finished onexit until

The TTCN-3 terminaslisted in table A.1 shall not be used asidentifiersin a TTCN-3 module. These terminals shall be
written in al lowercase letters.

A.2 Changed BNF Rules

1.ModuleDefinition ::= (([Visibility] (TypeDef |
ConstDef |
TemplateDef |
ModuleParDef |
FunctionDef |
SignatureDef |
TestcaseDef |
AltstepDef |
ImportDef |
ExtFunctionDef |
ExtConstDef |
ModeDef
)) |
(["public"] GroupDef) |
(["private"] FriendModuleDef)
) [WithStatement]
2.0pCall ::= ConfigurationOps |
GetLocalVerdict |
TimerOps |
TestcaselInstance |
(FunctionInstance [ExtendedFieldReferencel]) |
(TemplateOps [ExtendedFieldReferencel) |
ActivateOp |
NowOp |
StreamDataOps |
StreamNavigationOps |
ModeLocalOps
3.AttribKeyword ::= EncodeKeyword |
VariantKeyword |
DisplayKeyword |
ExtensionKeyword |
OptionalKeyword |
StepsizeKeyword
4 .PortDefAttribs ::= MessageAttribs |
ProcedureAttribs |
MixedAttribs |
StreamAttribs
5.PortElement ::= Identifier [ArrayDef] [AssignmentChar PortInitialValue]

ETSI

50 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

6.CommunicationStatements ::= SendStatement |
CallStatement |
ReplyStatement |
RaiseStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
GetReplyStatement |
CatchStatement |
CheckStatement |
ClearStatement |
StartStatement |
StopStatement |
HaltStatement |
CheckStateStatement |
StreamEvalStatements
7.BehaviourStatements ::= TestcaseInstance |
FunctionInstance |
ReturnStatement |
AltConstruct |
InterleavedConstruct |
LabelStatement |
GotoStatement |
RepeatStatement |
DeactivateStatement |
AltsteplInstance |
ActivateOp |
BreakStatement |
ContinueStatement |
ModeSpecification
8.FunctionStatement ::= ConfigurationStatements |
TimerStatements |
CommunicationStatements |
BasicStatements |
BehaviourStatements |
SetLocalVerdict |
SUTStatements |
TestcaseOperation |
AssertStatement |
WaitStatement

A.3 New BNF Rules

9.NowOp ::= "now"
10.StepsizeKeyword ::= "stepsize"
11.StreamAttribs ::= StreamKeyword "{" {(StreamValueDef | ConfigParamDef) [SemiColon]}+ "}"
12.StreamValueDef ::= StreamDirection Type
13.StreamKeyword ::= "stream"
14 .StreamDirection ::= InParKeyword | OutParKeyword | InOutParKeyword
15.PortInitialvalue ::= Expression
16 .StreamDataOps ::= Port Dot PortDataOp
17.PortDataOp ::= PortValueOp |
PortTimestampOp |
PortDeltaOp |
PortHistoryOp |
PortValuesOp
18.PortValueOp ::= ValueKeyword
19.PortTimestampOp ::= "timestamp"
20.PortDeltalOp ::= "delta"
21.PortHistoryOp ::= HistoryOpKeyword [" (" StartValue [, EndvValue] ")"]
22 .HistoryOpKeyword ::= "history"
23.StartValue ::= Expression
24 .EndvValue ::= Expression
25.PortValuesOp ::= ValuesOpKeyword [" (" StartValue [, Endvalue] ")"]
26 .ValuesOpKeyword ::= "values"
27.StreamNavigationOps ::= Port Dot (PortPrevOp | PortAtOp) [Dot PortDataOp]
28 .PortPrevOp ::= PrevOpKeyword ["(" IndexValue ")"]
29.PrevOpKeyword ::= "prev"
30.IndexValue ::= Expression
31.PortAtOp ::= AtOpKeyword [" (" TimeIndexValue ")"]
32.AtOpKeyword ::= "at"
33.TimeIndexValue ::= Expression
34 .ModeLocalOps ::= DurationOp | FinishedOp | NotinvOp

ETSI

35
36

37.

38

39.

40

41.

42
43
44

45.

46
47

48

49

50.
51.

52
53
54

55.

56

57.

58

59

60

61.

62
63

64

65.

66

51 Final draft ETSI ES 202 786 V1.3.1 (2015-03)
.DurationOp ::= "duration"
.FinishedOp ::= "finished"
NotinvOp ::= "notinv"
.StreamEvalStatements ::= Port Dot PortApplyOp
PortApplyOp ::= ApplyKeyword [" (" ApplyParameter ")"]
.ApplyKeyword ::= "apply"
ApplyParameter ::= TemplateInstance
.AssertStatement ::= AssertKeyword [" (" AssertionList ")"]
.AssertKeyword ::= "assert"
.AssertionList ::= Expression {, Expression }
WaitStatement ::= WaitKeyword " (" WaitDuration ")"
.WaitKeyword ::= "wait"
.WaitDuration ::= Expression
.ModeSpecification ::= (BasicMode | SegMode | ParMode) [UntilBlock] | ModeInstance
.BasicMode ::= ContKeyword "{" {VarInstance [SemiColon]}
[OnEntryBlock]
[InvariantBlock]
{BasicModeOp [SemiColon] }
[OnExitBlock]
n } n
ContKeyword ::= "cont"
OnEntryBlock ::= OnEntryKeyword "{" StatementBlock "}"
.OnEntryKeyword ::= "onentry"
.InvariantBlock ::= InvKeyword "{" InvariantList "}"
.InvKeyword ::= "inv"
InvariantList ::= [BooleanExpression {"," BooleanExpression }]
.BasicModeOp ::= Assignment | AssertStatement
OnExitBlock ::= OnExitKeyword "{" StatementBlock "}"
.OnExitKeyword ::= "onexit™"
.SegMode ::= SegKeyword "{" {VarInstance}
[OnEntryBlock]
[InvariantBlock]
ModeList
[OnExitBlock]
n } n
.ParMode ::= ParKeyword "{" {VarInstance}
[OnEntryBlock]
[InvariantBlock]
{ ModeSpecification [SemiColon] }
[OnExitBlock]
n } n
SegKeyword ::= "seq"
.ParKeyword ::= "par"
.ModeList ::= { [LabelStatement [SemiColon]] ModeSpecification [SemiColon]
.UntilBlock ::= UntilKeyword "{" UntilGuardList "}"
UntilKeyword ::= "until"
.UntilGuardList ::= {UntilGuardStatement}
.UntilGuardStatement ::= (("[" BooleanExpression "]" [GuardOp]) | ("[" "]" GuardOp))
[StatementBlock] [GotoStatement]
.ModeTypeDef ::= TypeKeyword ModeKeyword Identifier
["(" TemplateOrValueFormalParList ")"]
[RunsOnSpec]
.ModeKeyword ::= "mode"
.ModeDef ::= ModeKeyword Identifier
["(" TemplateOrValueFormalParList ")"]
[RunsOnSpec]
ModeSpecification
.ModeInstance ::= ModeRef " (" FunctionActualParList ")"
.ModeRef ::= [Identifier Dot] Identifier

ETSI

52 Final draft ETSI ES 202 786 V1.3.1 (2015-03)

Annex B (informative):
Bibliography

ALUR, Rageev; COURCOUBETIS, Costas; HENZINGER, Thomas A.; HO, Pei-Hsin: "Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems'. In: Hybrid Systems, 1992, S.
209-229.

ALUR, Rgeev (Hrsg.); HENZINGER, Thomas A. (Hrsg.); SONTAG, Eduardo D. (Hrsg.): Hybrid Systems
I11: "Verification and Control, Proceedings of the DIMACS/SY CONWorkshop", October 22-25, 1995,
Ruttgers University, New Brunswick, NJ, USA. Bd. 1066. Springer, 1996 (Lecture Notes in Computer
Science). - ISBN 3-540-61155-X.

BROY, Manfred: "Refinement of Time". In: BERTRAN, M. (Hrsg.); RUS, Th. (Hrsg.): Transformation-Based
Reactive System Development, ARTS97, TCS, 44 - 63.

CONRAD, M.: "Modell-basierter Test eingebetteter Software im Automobil": Auswahl und Beschreibung von
Testszenarien. Dissertation, Deutscher Universitatsverlag, Wiesbaden (D), 2004.

CONRAD, M.; SAX, E.: "Mixed Signals’. In: E. Broekman, E. Notenboom: "Testing Embedded Software".
Addison-Wesley, London (GB), 2003, S. 229-249.

DIN 40146: "Begriffe der Nachrichtentbertragung".

ETSI

53

Final draft ETSI ES 202 786 V1.3.1 (2015-03)

History
Document history
V111 April 2012 Publication
V121 June 2014 Publication
V131 March 2015 Membership Approval Procedure MYV 20150524: 2015-03-25 to 2015-05-25

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Package conformance and compatibility
	5 Package concepts for the core language
	5.0 General
	5.1 Time and Sampling
	5.1.0 General
	5.1.1 The now operator
	5.1.2 Define the default step size for sampling

	5.2 Data streams
	5.2.0 General
	5.2.1 Data Streams: static perspective
	5.2.2 Data Streams: dynamic perspective
	5.2.2.0 General
	5.2.2.1 Defining stream port types
	5.2.2.2 Declaration and instantiation of stream ports
	5.2.2.3 The Connect and Map operations

	5.2.3 Data stream access operations
	5.2.3.0 General
	5.2.3.1 The value operation
	5.2.3.2 The timestamp operation
	5.2.3.3 The delta operation

	5.2.4 Data stream navigation operations
	5.2.4.0 General
	5.2.4.1 The prev operation
	5.2.4.2 The at operation

	5.2.5 Data stream extraction and application operations
	5.2.5.0 General
	5.2.5.1 The history operation
	5.2.5.2 The values operation
	5.2.5.3 The apply operation

	5.2.6 Port control operations
	5.2.7 Stream ports in static configurations

	5.3 The assert statement
	5.4 Control structures for continuous and hybrid behaviour
	5.4.0 General
	5.4.1 Modes
	5.4.1.0 General
	5.4.1.1 Definition of the until block
	5.4.1.1.0 General
	5.4.1.1.1 Definition of transition guards and events
	5.4.1.1.2 Definition of follow up modes
	5.4.1.1.3 The repeat statement
	5.4.1.1.4 The continue statement

	5.4.1.2 Definition of invariant blocks
	5.4.1.3 Definition of the onentry block
	5.4.1.4 Definition of the onexit block
	5.4.1.5 Local predicate symbols in the context of modes
	5.4.1.6 The duration operator

	5.4.2 Atomic modes: the cont statement
	5.4.3 Parallel mode composition: the par statement
	5.4.4 Sequential mode composition: the seq statement
	5.4.5 Parameterizable modes
	5.4.5.0 General
	5.4.5.1 Parameterizable mode definitions
	5.4.5.2 Mode types (optional)

	5.5 The wait statement

	6 TRI extensions for the package
	6.0 General
	6.1 Extensions to clause 5.5 of ETSI ES 201 873-5: Communication interface operations
	6.2 Extensions to clause 5.6 of ETSI ES 201 873-5: Platform interface operations
	6.3 Extensions to clause 6.3.2 of ETSI ES 201 873-5: Structured type mapping
	6.3.1 TriConfigurationIdType
	6.3.1.0 General
	6.3.1.1 Methods

	6.4 Extensions to clause 6.5.2.1 of ETSI ES 201 873-5: TriCommunicationSA
	6.5 Extensions to clause 6.5.3.1 of ETSI ES 201 873-5: TriPlatformPA
	6.6 Extensions to clause 6.5.3.2 of ETSI ES 201 873-5: TriPlatformTE
	6.7 Extensions to clause 7.2.1 of ETSI ES 201 873-5: Abstract type mapping
	6.8 Extensions to clause 7.2.4 of ETSI ES 201 873-5: TRI operation mapping
	6.9 Extensions to clause 8.5.2 of ETSI ES 201 873-5: Abstract data types
	6.9.1 TriConfigurationId
	6.9.1.0 General
	6.9.1.1 Methods

	6.10 Extensions to clause 8.6.1 of ETSI ES 201 873-5: TriCommunicationSA
	6.11 Extensions to clause 8.6.3 of ETSI ES 201 873-5: TriPlatformPA
	6.12 Extensions to clause 8.6.4 of ETSI ES 201 873-5: TriPlatformTE
	6.13 Extensions to clause 9.4.2 of ETSI ES 201 873-5: Structured type mapping
	6.13.1 TriConfigurationIdType
	6.13.1.0 General
	6.13.1.1 Members

	6.14 Extensions to clause 9.5.2.1 of ETSI ES 201 873-5: ITriCommunicationSA
	6.15 Extensions to clause 9.5.2.3 of ETSI ES 201 873-5: ITriPlatformPA
	6.16 Extensions to clause 9.5.2.4 of ETSI ES 201 873-5: ITriPlatformTE

	7 TCI extensions for the package
	7.1 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6: TCI-CH provided
	7.2 Extensions to clause 7.3.3.1 of ETSI ES 201 873-6: TCI-CH required
	7.3 Extensions to clause 8.5.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.4 Extensions to clause 8.5.3.2 of ETSI ES 201 873-6: TCI-CH required
	7.5 Extensions to clause 9.4.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.6 Extensions to clause 9.4.3.2 of ETSI ES 201 873-6: TCI-CH required
	7.7 Extensions to clause 10.6.3.1 of ETSI ES 201 873-6: TciChRequired
	7.8 Extensions to clause 10.6.3.2 of ETSI ES 201 873-6: TciChProvided
	7.9 Extensions to clause 12.5.3.1 of ETSI ES 201 873-6: TCI-CH provided
	7.10 Extensions to clause 12.5.3.2 of ETSI ES 201 873-6: TCI-CH required

	Annex A (normative): BNF and static semantics
	A.1 New TTCN-3 terminals
	A.2 Changed BNF Rules
	A.3 New BNF Rules

	Annex B (informative): Bibliography
	History

