

Final draft ETSI ES 202 782 V1.2.1 (2014-04)

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;

TTCN-3 Language Extensions:
TTCN-3 Performance and Real Time Testing

ETSI Standard

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)2

Reference
RES/MTS-113ed121 T3Ext_Perf

Keywords
performance, real time, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definitions and abbreviations ... 7

3.1 Definitions .. 7

3.2 Abbreviations ... 7

4 Package conformance and compatibility .. 7

5 Package concepts for the core language ... 8

5.1 The test system clock ... 8

5.1.1 Accessing the current test system time ... 8

5.1.2 The precision of the system time .. 9

5.2 Communication port types for real-time measurements ... 9

5.3 Measuring timing information for dedicated incoming communication events ... 9

5.3.1 Obtain the reception time for messages with the receive statement .. 10

5.3.2 Obtain the reception time for messages with the trigger statement .. 10

5.3.3 Obtain the reception time for procedure calls with getcall statement ... 11

5.3.4 Obtain the reception time for procedure replies with the getreply statement .. 11

5.3.5 Obtain the reception time for exceptions with the catch statement ... 12

5.4 The wait statement.. 12

5.5 Measuring timing information for outgoing communication operations .. 13

5.5.1 Obtain the sending time for messages with the send statement .. 13

5.5.2 Obtain the sending time for procedure calls with call statement .. 13

5.5.3 Obtain the sending time for procedure replies with the reply statement ... 14

5.5.4 Obtain the sending time for exceptions with the raise statement .. 14

6 TRI extensions for the package .. 14

6.1 triStartClock (TE → PA) .. 14

6.2 triReadClock (TE → PA) ... 15

6.3 triBeginWait (TE → PA) ... 15

6.4 triEndWait (PA → TE) ... 15

6.5 triWaitUntil (SA → PA) ... 16

6.6 Communication Operations .. 16

6.6.1 triSendRT (TE → SA) .. 16

6.6.2 triSendBCRT (TE → SA) ... 17

6.6.3 triSendMCRT (TE → SA) .. 17

6.6.4 triEnqueueMsgRT (SA → TE) ... 18

6.6.5 triCallRT (TE → SA) ... 18

6.6.6 triCallBCRT (TE → SA) .. 19

6.6.7 triCallMCRT (TE → SA) ... 20

6.6.8 triReplyRT (TE → SA) ... 21

6.6.9 triReplyBCRT (TE → SA) ... 22

6.6.10 triReplyMCRT (TE → SA) .. 23

6.6.11 triRaiseRT (TE → SA) ... 24

6.6.12 triRaiseBCRT (TE → SA) .. 24

6.6.13 triRaiseMCRT (TE → SA) ... 25

6.6.14 triEnqueueCallRT (SA → TE) .. 25

6.6.15 triEnqueueReplyRT (SA → TE) ... 26

6.6.16 triEnqueueExceptionRT (SA → TE) .. 26

6.7 Definition of Interfaces .. 27

6.8 Changes for JavaTM Language Mapping... 27

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)4

6.8.1 Mapping of interface triCommunicationSART .. 27

6.8.2 Mapping of interface triCommunicationTERT ... 28

6.8.3 Mapping of interface triPlatformPART .. 28

6.8.4 Mapping of interface triPlatformTE ... 28

6.9 Changes for ANSI C Language Mapping ... 29

6.10 Changes for C++ Language Mapping .. 30

6.10.1 Mapping of interface triCommunicationSART .. 30

6.10.2 Mapping of interface triCommunicationTERT ... 31

6.10.3 Mapping of interface triPlatformPART .. 32

6.10.4 Mapping of interface triPlatformTERT .. 32

7 TCI extensions for the package .. 32

Annex A (normative): BNF and static semantics .. 33

A.1 Changed BNF Rules ... 33

A.2 New BNF Rules ... 33

Annex B (informative): Bibliography ... 34

History .. 35

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This final draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document relates to the multi-part standard ES 201 873 covering the Testing and Test Control Notation
version 3, as identified below:

ES 201 873-1: "TTCN-3 Core Language";

ES 201 873-2: "TTCN-3 Tabular presentation Format (TFT)";

ES 201 873-3: "TTCN-3 Graphical presentation Format (GFT)";

ES 201 873-4: "TTCN-3 Operational Semantics";

ES 201 873-5: "TTCN-3 Runtime Interface (TRI)";

ES 201 873-6: "TTCN-3 Control Interface (TCI)";

ES 201 873-7: "Using ASN.1 with TTCN-3";

ES 201 873-8: "The IDL to TTCN-3 Mapping";

ES 201 873-9: "Using XML schema with TTCN-3";

ES 201 873-10: "TTCN-3 Documentation Comment Specification".

http://webapp.etsi.org/IPR/home.asp

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)6

1 Scope
The present document defines the real time and performance testing support package of TTCN-3. TTCN-3 can be used
for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of
application are protocol testing (including mobile and Internet protocols), service testing (including supplementary
services), module testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance
testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and
integration testing. The specification of test suites for physical layer protocols is outside the scope of the present
document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language".

[2] ETSI ES 201 873-4 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".

[3] ETSI ES 201 873-5 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] ISO/IEC 9646-1: "Information technology - Open Systems Interconnection - Conformance testing
methodology and framework; Part 1: General concepts".

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-3 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

http://docbox.etsi.org/Reference

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)7

[i.2] ETSI ES 201 873-7 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.3] ETSI ES 201 873-8 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.4] ETSI ES 201 873-9 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".

[i.5] ETSI ES 201 873-10 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5 [3], ES 201 873-6 [4] and ISO/IEC 9646-1 [5] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5 [3], ES 201 873-6 [4] and ISO/IEC 9646-1 [5] apply.

4 Package conformance and compatibility
The package presented in the present document is identified by the package tag:

 "TTCN-3:2014 Real Time and Performance Testing" - to be used with modules complying with the
present document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ES 201 873-1 [1],
ES 201 873-4 [2], ES 201 873-5 [3] and ES 201 873-6 [4].

The package presented in the present document is compatible to:

ES 201 873-1 (V4.6.1) [1]

ES 201 873-4 (V4.4.1) [2]

ES 201 873-5 (V4.6.1) [3]

ES 201 873-6 (V4.6.1) [4]

ES 201 873-7 (V4.5.1) [i.2]

ES 201 873-8 (V4.5.1) [i.3]

ES 201 873-9 (V4.5.1) [i.4]

ES 201 873-10 (V4.5.1) [i.5]

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually. The present document is also compatible with the versions V.4.2.1,
V.4.3.1, V.4.4.1, V.4.5.1 of the above documents.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)8

5 Package concepts for the core language
Real-time systems have to respect special requirements for timing. Often functional requirements are directly connected
to the timing of the messages and procedure calls. Thus, checking the message values and the message order is not
sufficient here. A test component shall be able to check whether a message has been received in time and shall be able
to control the timing for the stimulation.

Thus, a test language has to provide means to measure time, to specify time points and time spans, to control the timing
of the stimulation, and to calculate and compare time values. Moreover the test execution engine has to ensure that the
specified actions (time measurement, timed stimulation) are executed correctly with respect to the required precision.

To fulfil the requirements for testing real time system we define the following TTCN-3 core language extensions:

• A test system wide available test system clock, that allows the measurement of time during test case execution.

• Means to directly and precisely access the time points of the relevant interaction events between the test
system and the system under test.

Real-time measurements at ports require additional resources (e.g. functionality that monitor ports and collect
timestamps that describe the reception time of messages, calls, replies or exceptions) that may slow down the test
execution. In order to avoid unnecessary delays at ports, such resources may only be provided when needed. An
additional real-time clause for ports shall indicate the need for real-time measurement at a port.

5.1 The test system clock
In RT TTCN-3 time progress is measured with a test system clock. The clock is initialized (set to 0.0) at the beginning
of each test case execution and is available during the complete test run in each component. The clock values are
represented as float values. The system clock and the already available TTCN-3 timer mechanisms are synchronized
with respect to time progress.

5.1.1 Accessing the current test system time

The current value of the test system clock by means of the symbol now. The now symbol is used as a TTCN-3
expression that yields the current test system clock value in seconds. The test system clock value is represented by
means of a float number. The symbol now can be applied in each expression inside of testcase definitions and
function definitions. It is not allowed for the TTCN-3 control part and in guard conditions of alt branches.

EXAMPLE 1:

 // Use of now to retrieve the actual time
 var float myTimePoint := now;

EXAMPLE 2:

 // Use of now to retrieve the send time of a message
 var float sendTimePoint;
 // ...
 p.send(m);
 sendTimePoint:= now;

EXAMPLE 3:

 // Measuring time progress
 var float startTime;
 startTime:= now;
 p.send(m1);
 // ...
 p.receive(m2);
 if(now-startTime >= 10.0){...};

Syntactical Structure

OpCall ::= ConfigurationOps | VerdictOps | TimerOps | TestcaseInstance |
 FunctionInstance | TemplateOps | ActivateOp | NowOperation
NowOperation ::= NowKeyword
NowKeyword ::= "now"

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)9

5.1.2 The precision of the system time

The requirements on the overall precision of the test system clock can be specified by means of the stepsize annotation.
The stepsize annotation is allowed for modules only and can be used to state the minimal necessary precision for time
measurement provided by the test system clock. The precision is defined by means of a charstring value that represents
a decimal number which states the smallest necessary time distance in seconds that is measureable by the test system
clock. A concrete test system has to fulfil the requirements given by the stepsize annotation to be adequate for the
execution of the respective test case definitions. When a test system is not adequate for the test case execution the user
shall be informed, at least test run shall end with an error verdict.

EXAMPLE:

// specifies the requirement on a necessary precision of a millisecond
module myModule{
…
} with {stepsize “0.001”};

In case of module imports with different stepsize annotation the test system has to respect the stepsize annotation with
the highest precision.

5.2 Communication port types for real-time measurements
This package extends the port type definition of message-based and procedure-based ports with a realtime clause.
Ports facilitate communication between test components and between test components and the test system interface.

Only instances of ports with a realtime clause shall be used for real-time measurements. This means, the redirection
operator -> timestamp shall only be used by receiving operations (i.e. the operations receive, trigger,
getcall, getreply and catch) applied to ports with a realtime clause.

Syntactical Structure

Message-based port:

type port PortTypeIdentifier message [realtime] "{"
 { (in | out | inout) { MessageType [","] }+ ";" }
"}"

Procedure-based port:

type port PortTypeIdentifier procedure [realtime] "{"
 { (in | out | inout) { Signature [","] }+ ";" }
"}"

5.3 Measuring timing information for dedicated incoming
communication events

Testing real time systems requires exact timing information that relates directly to the communication (reception and
distribution of messages and procedure calls) between the test system and the system under test. The timing information
that can be obtained by the now symbol or the TTCN-3 timer construct is related to the logical structure of the test
program, thus it allows the measurement on TTCN-3 statement level. Time measurement on TTCN-3 statement level
may be affected by blocked queues, decoding and matching procedures. It is not exact with respect to the real timing of
the reception and disposal of messages and procedure calls at the interface between the test system and the SUT.

RT TTCN-3 introduces a mechanism to store the arrival time of messages, procedure calls at system adapter level. The
time points of message reception are automatically registered by the system adapter, communicated to the test
executable and stored with the message. The timing information can be retrieved directly at the communication
statements by means of the redirection operator -> timestamp .

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)10

The existing redirections for getcall, getreply, receive, trigger, catch, and check operations are extended by an optional
clause timestamp. A redirect specification of the form:

 -> timestamp VariableRef

specifies the redirection of the time point, which has been measured at message, procedure call, reply or exception
arrival to a given float variable. The redirection is processed when the respective communication statement matches.

Restrictions

The redirection operator -> timestamp shall only be used by receiving operations (i.e. the operations receive,
trigger, getcall, getreply and catch) applied to ports with a realtime clause.

5.3.1 Obtain the reception time for messages with the receive statement

The existing redirections for receive are extended by an optional clause "timestamp VariableRef". A receive statement
that holds a timestamp clause and that is executed successfully (i.e. it matches a message) allocates the given variable
with the reception time of the matched message.

EXAMPLE 1:

 p.receive(t)-> timestamp myTime;
 // yields the reception time of a message
 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

 interleave{
 [] FrontOut.receive(ON) -> timestamp f_actv{
 if(f_actv>MAX){setverdict(fail);}
 };
 [] RearOut.receive(ON) -> timestamp r_actv{
 if(r_actv>MAX){setverdict(fail);}
 };
 }

Syntactical Structure

(Port | any port) "." receive ["(" TemplateInstance ")"] [from AddressRef]
[-> [value VariableRef] [sender VariableRef] [timestamp VariableRef]]

5.3.2 Obtain the reception time for messages with the trigger statement

The existing redirections for trigger are extended by an optional clause "timestamp VariableRef". A trigger statement
that holds a timestamp clause and that is executed successfully (i.e. it matches a message) allocates the given variable
with the reception time of the matched message.

EXAMPLE 1:

 p.trigger(t)-> timestamp myTime;
 // yields the reception time of a message
 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

 interleave{
 [] FrontOut.trigger(ON) -> timestamp f_actv{
 if(f_actv>MAX){setverdict(fail);}
 };

 [] RearOut.trigger(ON) -> timestamp r_actv{
 if(r_actv>MAX){setverdict(fail);}
 };
 }

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)11

Syntactical Structure

(Port | any port) "." trigger ["(" TemplateInstance ")"] [from AddressRef]
[-> [value VariableRef] [sender VariableRef]] [timestamp VariableRef]]

5.3.3 Obtain the reception time for procedure calls with getcall statement

The existing redirections for getcall are extended by an optional clause "timestamp VariableRef". A getcall statement
that holds a timestamp clause and that is executed successfully (i.e. it matches an incoming call) allocates the given
variable with the reception time of the matched message.

EXAMPLE 1:

 p.getcall(proc: {m})-> timestamp myTime;
 // yields the reception time of the message call matched by m
 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

 alt{
 [] p.getcall(proc: {m1})-> timestamp f_actv {
 if(f_actv>MAX){setverdict(fail);}
 };
 [] p.getcall(proc: {m2})-> timestamp r_actv {
 if(f_actv>MAX){setverdict(fail);}
 };
 }

Syntactical Structure

(Port | any port) "." getcall ["(" TemplateInstance ")"] [from AddressRef]
 ["->" [param "(" { VariableRef ":=" ParameterIdentifier) "," } |
 { VariableRef | NotUsedSymbol) "," }
 ")"]
 [sender VariableRef]
 [timestamp VariableRef]
]

5.3.4 Obtain the reception time for procedure replies with the getreply
statement

The existing redirections for getreply are extended by an optional clause "timestamp VariableRef". A getreply
statement that holds a timestamp clause and that is executed successfully (i.e. it matches an incoming procedure reply)
allocates the given variable with the reception time of the matched message.

EXAMPLE 1:

 p.getreply(proc: {m})-> timestamp myTime;
 // yields the reception time of the message call matched by m
 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

 p.call(proc: {_message:= m},20.0){
 [] p.getreply(proc: {m1})-> timestamp f_actv {
 if(f_actv>MAX){setverdict(fail);}
 };
 [] p.getreply(proc: {m2})-> timestamp r_actv {
 if(f_actv>MAX){setverdict(fail);}
 };
 }

Syntactical Structure

(Port | any port) "." getreply ["(" TemplateInstance [value TemplateInstance] ")"] [from
AddressRef]
["->" [value VariableRef]
 [param "(" { VariableRef ":=" ParameterIdentifier) "," } |
 { VariableRef | NotUsedSymbol) "," }

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)12

 ")"]
 [sender VariableRef]
 [timestamp VariableRef]
]

5.3.5 Obtain the reception time for exceptions with the catch statement

The existing redirections for catch are extended by an optional clause "timestamp VariableRef". A catch statement
that holds a timestamp clause and that is executed successfully (i.e. it matches an incoming exception) allocates the
given variable with the reception time of the matched message.

EXAMPLE 1:

 p.catch(timeout)-> timestamp myTime;
 // yields the reception time of the message call matched by m
 if(myTime>MAX){setverdict(fail);}

EXAMPLE 2:

 p.call(proc: {_message:= m},20.0){
 [] p.getreply(proc: {m1})-> timestamp f_actv {
 if(f_actv>MAX){setverdict(fail);}
 };
 [] p.catch(*)-> timestamp r_actv {
 if(f_actv>MAX){setverdict(fail);}
 };
 }

Syntactical Structure

(Port | any port) "." catch ["(" (Signature "," TemplateInstance) | TimeoutKeyword ")"] [
from AddressRef]
["->" [value VariableRef
 [sender VariableRef]
 [timestamp VariableRef]
]

5.4 The wait statement
The wait statement suspends the execution of a component until a given point in time. The time point is specified as a
float value and relates to the internal clock.

The execution of wait statement suspends the execution of the related component until the point in time specified by its
argument. If the argument holds a value that precedes the actual clock value an error verdict shall be set.

EXAMPLE 1:

 wait(100.0); // suspends the execution of a component
 // until 100.0 seconds after the start of the testcase

Syntactical Structure

WaitStatement::= wait "(" Expression ")"

Besides the exact measurement of timing information regarding incoming communication events, a real time test
system has to ensure the correct timing for message and procedure call application. Actually we consider realizing this
correct scheduling of message and procedure call application by combining the wait statement directly with the send
operation. In this case, the execution of a test component is suspended until the given point in time is reached and
afterwards the send operation is executed.

EXAMPLE 2:

 wait(specified_send_time);
 p_out.send(OUT_MSG);
 // suspends the sending of OUT_MSG until specified_send_time is reached

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)13

5.5 Measuring timing information for outgoing communication
operations

Realtime measurements should be as exact as possible. Therefore, it has to be possible to measure the exact time when
the adapter has sent a message or a call to the SUT. The point in time to be measured should be after the message or call
parameters have been encoded (if necessary), right before the actual sending to the SUT is performed. By comparing
this timestamp with the timestamp obtained from the responding incoming communication operation, the exact
stimulus-response duration can be measured by the testcase.

To that end, all outgoing communication operations are augmented by an optional timestamp redirection assignment
notation that allows the measuring of the time when the communication to the SUT is performed.

A redirect specification of the form:

 -> timestamp VariableRef

specifies the redirection of the time point, which has been measured right before message, procedure call, reply or
exception sending to the SUT by the adapter to a given float variable. The redirection is processed after the sending
operation is successful.

Restrictions

The redirection operator -> timestamp shall only be used by sending operations (i.e. the operations send, call,
reply and raise) applied to ports with a realtime clause.

NOTE: If the wait operation is used right before the operation, the variable will be initialized with the value given
to the wait operation.

5.5.1 Obtain the sending time for messages with the send statement

The send statement is extended by an optional redirection clause "-> timestamp VariableRef". A send statement that
holds a timestamp redirection clause and that is executed successfully assigns the given variable with the sending time
of the sent message.

EXAMPLE:

 p.send(t)-> timestamp myTime;
 // yields the sending time of a message
 p.receive(t2) -> timestamp myTime2;
 if(myTime2-myTime>MAX){setverdict(fail);}

Syntactical Structure

Port "." send ["(" TemplateInstance ")"] [to AddressRef]
[-> timestamp VariableRef]

5.5.2 Obtain the sending time for procedure calls with call statement

The call statement is extended by an optional redirection clause "-> timestamp VariableRef". A call statement that
holds a timestamp redirection clause and that is executed successfully assigns the given variable with the sending time
of the call.

EXAMPLE:

 p.call(proc: {m}, nowait) -> timestamp myTime;
 // yields the sending time of the message call
 p.getreply(proc: ?) -> timestamp myTime2;
 if(myTime2-myTime>MAX){setverdict(fail);}

Syntactical Structure

Port "." call ["(" TemplateInstance, CallTimeout ")"] [to AddressRef]
 ["->" timestamp VariableRef]
 [{ CallAlternatives }]

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)14

5.5.3 Obtain the sending time for procedure replies with the reply
statement

The existing reply statement is extended by an optional redirection clause "-> timestamp VariableRef". A reply
statement that holds a timestamp redirection clause and that is executed successfully assigns the given variable with the
sending time of the reply.

EXAMPLE:

 p.reply(proc: {m})-> timestamp myTime;
 // yields the sending time of the reply
 if(myTime>MAX){setverdict(fail);}

Syntactical Structure

Port "." reply ["(" TemplateInstance [value TemplateInstance] ")"] [to AddressRef]
["->" timestamp VariableRef]

5.5.4 Obtain the sending time for exceptions with the raise statement

The existing raise statement is extended by an optional redirection clause "-> timestamp VariableRef". A raise
statement that holds a timestamp redirection clause and that is executed successfully assigns the given variable with the
sending time of the exception.

EXAMPLE 1:

 p.raise(proc, e) -> timestamp myTime;
 // yields the sending time of the raised exception
 if(myTime>MAX){setverdict(fail);}

Syntactical Structure

Port "." raise ["(" (Signature "," TemplateInstance) ")"] [to AddressRef]
["->" timestamp VariableRef]

6 TRI extensions for the package

6.1 triStartClock (TE → PA)
Signature TriStatus triStartClock(in long ticksPerSecond)
In Parameters ticksPerSecond the precision of the clock given in ticks per

second
Out Parameters n.a
Return Value The return status of the operation. The return status indicates the

success (TRI_OK) or failure (TRI_Error) of the operation
Constraints n.a.
Effect The operation starts the test system clock with a given precision. The

precision is defined by the in parameter ticksPerSecond. The
parameter specifies the number of time units (ticks) that characterizes
a second

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)15

6.2 triReadClock (TE → PA)
Signature TriStatus triReadClock(out long timepoint)
In Parameters n.a.
Out Parameters timepoint current time
Return Value The return status of the operation. The return status indicates the

success (TRI_OK) or failure (TRI_Error) of the operation
Constraints There was a preceding invocation of

triStartClock(in long ticksPerSecond)
Effect The operation yields the actual clock value. The clock value is given

by the out parameter timepoint, which represents the number of
time units (ticks) that has elapsed since the start of the clock (see
triStartClock)

6.3 triBeginWait (TE → PA)

Signature TriStatus triBeginWait(in long timepoint,
in TriComponentIDType component)

In Parameters timepoint point in time until execution of a component should be
suspended
component component whose execution should be suspended

Out Parameters n.a.
Return Value The return status of the operation. The return status indicates the

success (TRI_OK) or failure (TRI_Error) of the operation
Constraints There was a preceding invocation of

triStartClock(in long ticksPerSecond)
Effect The operation signals that the execution of component component

should be suspended until the specified point of time timepoint
At this point in time the PA will issue a
triEndWait(component) operation
timepoint is expressed as the number of time units (ticks) that has
elapsed since the start of the clock (see triStartClock)
A call to this operation returns immediately. The operation merely
triggers the corresponding triEndWait operation, it does not
schedule the execution of the component
If timepoint represent a point of time in the past then the operation
returns a TRI_Error value and has no other effect

6.4 triEndWait (PA → TE)

Signature void triEndWait(in TriComponentIDType component)
In Parameters component component of the corresponding triBeginWait

operation
Out Parameters n.a.
Return Value n.a.
Constraints There was a preceding invocation of

triBeginWait(timepoint, component)
Effect The operation signals that the point in time timepoint that was

specified in the corresponding
triBeginWait(timepoint, component)
has been reached

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)16

6.5 triWaitUntil (SA → PA)
To be able to handle the timestamp reference passed down to the adapter by the sending operations, the adapter shall
call the function triWaitUntil. This function, if given an actual timestamp will block until the given time is reached. It
will call triBeginWait with the given timestamp value and then wait for the corresponding triEndWait before returning.
If given a negative timestamp value, it will read the clock by usage of triReadClock and initialize the given timestamp
reference with the current time before returning. If no other way of determining the correct time when to send the
message is available, this function can be called directly before sending the message in the adapter.

Signature TriStatus triWaitUntil(inout TriTimerDuration timestamp, in
TriComponentIdType componentId)

In Parameters timestamp the point in time to wait for or -1 if no waiting is required
componentId identifier of the receiving test component

Out Parameters timestamp If the timestamp is initialized with -1, it
will be initialized with the current time.

Return Value The return status of the triCall operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the SA before sending a message to the SUT.
Effect This operation shall, if given a positive timestamp, wait until that time has arrived,

and, if successful, return TRI_OK. If the time is already in the past, the function will
result in Tri_Error. If the given timestamp is -1, it will initialize the timestamp with the
current value of the clock before returning TRI_OK.

6.6 Communication Operations
To be able to allow the time triggered message scheduling at system adapter level, we extend the original sending
operations with an additional parameter inout TriTimerDuration timestamp. The parameter allows the definition of a
message scheduling time that has to be controlled by the adapter. Thus, it becomes possible to deliver a message to the
system adapter before its intended scheduling time. The adapter is then responsible to schedule the message in time.

To be able to access the arrival time of a message, the receiving operations also get an additional parameter in
TriTimerDuration timestamp. This parameter indicates the actual time of arrival so it can be accessed when the message
is taken from the queue.

6.6.1 triSendRT (TE → SA)

Signature TriStatusType triSendRT(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriMessageType sendMessage,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the message is

sent to the SUT Adaptor
SUTaddress (optional) destination address within the SUT
sendMessage the encoded message to be sent
timestamp the point in time when the message has to be sent or has been

sent to the SUT
Out Parameters n.a.
Return Value The return status of the triSendRT operation. The return status indicates the local

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 unicast send operation on

a component port, which has been mapped to a TSI port. This operation is called by the
TE for all TTCN-3 send operations if no system component has been specified for a test
case, i.e. only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can send the message to the SUT.
The triSendRT operation returns TRI_OK in case it has been completed successfully
and in time. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK
does not imply that the SUT has received sendMessage.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)17

6.6.2 triSendBCRT (TE → SA)

Signature TriStatusType triSendBC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,

in TriMessageType sendMessage,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the
 message is sent to the SUT Adaptor
sendMessage the encoded message to be sent
timestamp the point in time when the message has to be sent or has been
 sent to the SUT

Out Parameters n.a.
Return Value The return status of the triSendBC operation. The return status indicates the local

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 broadcast send operation

on a component port, which has been mapped to a TSI port. This operation is called by
the TE for all TTCN-3 send operations if no system component has been specified for a
test case, i.e. only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can broadcast the message to the SUT.
The triSendBC operation returns TRI_OK in case it has been completed successfully
and in time. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK
does not imply that the SUT has received sendMessage.

6.6.3 triSendMCRT (TE → SA)

Signature TriStatusType triSendMC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressListType SUTaddresses,
in TriMessageType sendMessage,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the sending test component
tsiPortId identifier of the test system interface port via which the message is
 sent to the SUT Adaptor
SUTaddresses destination addresses within the SUT
sendMessage the encoded message to be sent
timestamp the point in time when the message has to be sent or has been
 sent to the SUT

Out Parameters n.a.
Return Value The return status of the triSendMC operation. The return status indicates the local

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 multicast send operation on a

component port, which has been mapped to a TSI port. This operation is called by the TE
for all TTCN-3 send operations if no system component has been specified for a test case,
i.e. only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

Effect The SA can multicast the message to the SUT.
The triSendMC operation returns TRI_OK in case it has been completed successfully and
in time. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does
not imply that the SUT has received sendMessage.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)18

6.6.4 triEnqueueMsgRT (SA → TE)

Signature void triEnqueueMsg(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriMessageType receivedMessage,
in TriTimerDuration timestamp)

In Parameters tsiPortId identifier of the test system interface port via which the message is
 enqueued by the SUT Adaptor
SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
receivedMessage the encoded received message
timestamp the point in time when the message has been received from the SUT

Out Parameters n.a.
Return Value Void
Constraints This operation is called by the SA after it has received a message from the SUT. It can only be

used when tsiPortId has been either previously mapped to a port of componentId or has been
referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueMsg operation receivedMessage shall contain an
encoded value.

Effect This operation shall pass the message to the TE indicating the component componentId to
which the TSI port tsiPortId is mapped.
The decoding of receivedMessage has to be done in the TE.

6.6.5 triCallRT (TE → SA)

Signature TriStatusType triCall(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure call is

sent to the SUT Adaptor
SUTaddress (optional) destination address within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The

parameters in parameterList are ordered as they appear in the TTCN-3
signature declaration

timestamp the point in time when the call has to be sent or has been sent to the SUT
Out Parameters n.a.
Return Value The return status of the triCall operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 unicast call operation on a

component port, which has been mapped to a TSI port. This operation is called by the TE for all
TTCN-3 call operations if no system component has been specified for a test case, i.e. only a MTC
test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature template. Their
encoding has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate the procedure call corresponding to the signature
identifier signatureId and the TSI port tsiPortId.
The triCall operation shall return without waiting for the return of the issued procedure call (see
note). This TRI operation returns TRI_OK on successful initiation of the procedure call in time,
TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out parameter
is non-null. Notice that the return value of this TRI operation does not make any statement about
the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN-3 ATS for a call operation,
is not included in the triCall operation signature. The TE is responsible to address this issue by
starting a timer for the TTCN-3 call operation in the PA with a separate TRI operation call,
i.e. triStartTimer.

NOTE: This might be achieved for example by spawning a new thread or process. This handling of this procedure call
is, however, dependent on implementation of the TE.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)19

6.6.6 triCallBCRT (TE → SA)

Signature TriStatusType triCallBC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure call is

sent to the SUT Adaptor
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration.

timestamp the point in time when the call has to be sent or has been sent to the SUT
Out Parameters n.a.
Return Value The return status of the triCallBC operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 broadcast call operation on a

component port, which has been mapped to a TSI port. This operation is called by the TE for all
TTCN-3 call operations if no system component has been specified for a test case, i.e. only a MTC
test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature template. Their
encoding has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate and broadcast the procedure call corresponding
to the signature identifier signatureId and the TSI port tsiPortId.
The triCallBC operation shall return without waiting for the return of the issued procedure call
(see note). This TRI operation returns TRI_OK on successful initiation of the procedure call in time,
TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out parameter
is non-null. Notice that the return value of this TRI operation does not make any statement about
the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN-3 ATS for a call operation,
is not included in the triCallBC operation signature. The TE is responsible to address this issue
by starting a timer for the TTCN-3 call operation in the PA with a separate TRI operation call,
i.e. triStartTimer.

NOTE: This might be achieved for example by spawning a new thread or process. This handling of this procedure call
is, however, dependent on implementation of the TE.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)20

6.6.7 triCallMCRT (TE → SA)

Signature TriStatusType triCallMC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressListType SUTaddresses,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the test component issuing the procedure call
tsiPortId identifier of the test system interface port via which the procedure call is

sent to the SUT Adaptor
SUTaddresses destination addresses within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration.

timestamp the point in time when the call has to be sent or has been sent to the
SUT

Out Parameters n.a.
Return Value The return status of the triCallMC operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 multicast call operation on a

component port, which has been mapped to a TSI port. This operation is called by the TE for all
TTCN-3 call operations if no system component has been specified for a test case, i.e. only a
MTC test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN-3 signature template. Their
encoding has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can initiate and multicast the procedure call corresponding
to the signature identifier signatureId and the TSI port tsiPortId.
The triCallMC operation shall return without waiting for the return of the issued procedure call
(see note). This TRI operation returns TRI_OK on successful initiation of the procedure call in
time, TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out
parameter is non-null. Notice that the return value of this TRI operation does not make any
statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN-3 ATS for a call
operation, is not included in the triCallMC operation signature. The TE is responsible to
address this issue by starting a timer for the TTCN-3 call operation in the PA with a separate TRI
operation call, i.e. triStartTimer.

NOTE: This might be achieved for example by spawning a new thread or process. This handling of this procedure call
is, however, dependent on implementation of the TE.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)21

6.6.8 triReplyRT (TE → SA)

Signature TriStatusType triReply(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriParameterType returnValue,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent to

the SUT Adaptor
SUTaddress (optional) destination address within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in the
TTCN-3 signature declaration

returnValue (optional) encoded return value of the procedure call
timestamp the point in time when the reply has to be sent or has been sent to the
 SUT

Out Parameters n.a.
Return Value The return status of the triReply operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 unicast reply operation on a

component port that has been mapped to a TSI port. This operation is called by the TE for all
TTCN-3 reply operations if no system component has been specified for a test case, i.e. only a
MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the
parameters specified in the TTCN-3 signature template. Their encoding has to be done in the
TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the distinct
value null shall be passed for the return value.

Effect On invocation of this operation the SA can issue the reply to a procedure call corresponding to
the signature identifier signatureId and the TSI port tsiPortId.
The triReply operation will return TRI_OK on successful execution of this operation in time,
TRI_Error otherwise. The SA shall indicate no error in case the value of any in parameter or an
undefined return value is different from null.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)22

6.6.9 triReplyBCRT (TE → SA)

Signature TriStatusType triReplyBC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriParameterType returnValue,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent

to the SUT Adaptor
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated

signature. The parameters in parameterList are ordered as they
appear in the TTCN-3 signature declaration

returnValue (optional) encoded return value of the procedure call
timestamp the point in time when the reply has to be sent or has been sent to
 the SUT

Out Parameters n.a.
Return Value The return status of the triReplyBC operation. The return status indicates the local

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 broadcast reply operation on a

component port that has been mapped to a TSI port. This operation is called by the TE for
all TTCN-3 reply operations if no system component has been specified for a test case,
i.e. only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the
parameters specified in the TTCN-3 signature template. Their encoding has to be done in
the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the
distinct value null shall be passed for the return value.

Effect On invocation of this operation the SA can broadcast the reply to procedure calls
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReplyBC operation will return TRI_OK on successful execution of this operation in
time, TRI_Error otherwise. The SA shall indicate no error in case the value of any in
parameter or an undefined return value is different from null.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)23

6.6.10 triReplyMCRT (TE → SA)

Signature TriStatusType triReplyMC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressListType SUTaddresses,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriParameterType returnValue,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the replying test component
tsiPortId identifier of the test system interface port via which the reply is sent

to the SUT Adaptor
SUTaddresses destination addresses within the SUT
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated

signature. The parameters in parameterList are ordered as they
appear in the TTCN-3 signature declaration

returnValue (optional) encoded return value of the procedure call
timestamp the point in time when the reply has to be sent or has been sent to
 the SUT

Out Parameters n.a.
Return Value The return status of the triReplyMC operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 multicast reply operation on a

component port that has been mapped to a TSI port. This operation is called by the TE for all
TTCN-3 reply operations if no system component has been specified for a test case, i.e. only
a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the
parameters specified in the TTCN-3 signature template. Their encoding has to be done in the
TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the distinct
value null shall be passed for the return value.

Effect On invocation of this operation the SA can multicast the reply to procedure calls
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReplyMC operation will return TRI_OK on successful execution of this operation in
time, TRI_Error otherwise. The SA shall indicate no error in case the value of any in
parameter or an undefined return value is different from null.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)24

6.6.11 triRaiseRT (TE → SA)

Signature TriStatusType triRaise(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriSignatureIdType signatureId,
in TriExceptionType exc,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is

sent to the SUT Adaptor
SUTaddress (optional) destination address within the SUT
signatureId identifier of the signature of the procedure call which the exception is

associated with
Exc the encoded exception
timestamp the point in time when the exception has to be sent or has been sent to

the SUT
Out Parameters n.a.
Return Value The return status of the triRaise operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 unicast raise operation on a

component port that has been mapped to a TSI port. This operation is called by the TE for all
TTCN-3 raise operations if no system component has been specified for a test case, i.e. only
a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise an exception to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaise operation returns TRI_OK on successful execution of the operation in time,
TRI_Error otherwise.

6.6.12 triRaiseBCRT (TE → SA)

Signature TriStatusType triRaiseBC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriSignatureIdType signatureId,
in TriExceptionType exc,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is

sent to the SUT Adaptor
signatureId identifier of the signature of the procedure call which the exception is

associated with
exc the encoded exception
timestamp the point in time when the exception has to be sent or has been sent

to the SUT
Out Parameters n.a.
Return Value The return status of the triRaiseBC operation. The return status indicates the local

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 broadcast raise operation on

a component port that has been mapped to a TSI port. This operation is called by the TE for
all TTCN-3 raise operations if no system component has been specified for a test case,
i.e. only a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise and broadcast an exception to procedure
calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaiseBC operation returns TRI_OK on successful execution of the operation in
time, TRI_Error otherwise.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)25

6.6.13 triRaiseMCRT (TE → SA)

Signature TriStatusType triRaiseMC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressListType SUTaddresses,
in TriSignatureIdType signatureId,
in TriExceptionType exc,
inout TriTimerDuration timestamp)

In Parameters componentId identifier of the test component raising the exception
tsiPortId identifier of the test system interface port via which the exception is

sent to the SUT Adaptor
SUTaddresses destination addresses within the SUT
signatureId identifier of the signature of the procedure call which the exception

is associated with
exc the encoded exception
timestamp the point in time when the exception has to be sent or has been sent

to the SUT
Out Parameters n.a.
Return Value The return status of the triRaiseMC operation. The return status indicates the local

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 multicast raise operation on a

component port that has been mapped to a TSI port. This operation is called by the TE for
all TTCN-3 raise operations if no system component has been specified for a test case,
i.e. only a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

Effect On invocation of this operation the SA can raise and multicast an exception to a procedure
calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaiseMC operation returns TRI_OK on successful execution of the operation in
time, TRI_Error otherwise.

6.6.14 triEnqueueCallRT (SA → TE)

Signature void triEnqueueCall(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriTimerDuration timestamp)

In Parameters tsiPortId identifier of the test system interface port via which the procedure call
is enqueued by the SUT Adaptor

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature.

The parameters in parameterList are ordered as they appear in
the TTCN-3 signature declaration. Description of data passed as
parameters to the operation from the calling entity to the called entity

timestamp the point in time when the call has been received from the SUT
Out Parameters n.a.
Return Value Void
Constraints This operation can be called by the SA after it has received a procedure call from the SUT. It

can only be used when tsiPortId has been either previously mapped to a port of
componentId or referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueCall operation all in and inout procedure parameters
contain encoded values.

Effect The TE can enqueue this procedure call with the signature identifier signatureId at the
port of the component componentId to which the TSI port tsiPortId is mapped. The
decoding of procedure parameters has to be done in the TE.
The TE shall indicate no error in case the value of any out parameter is different from null.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)26

6.6.15 triEnqueueReplyRT (SA → TE)

Signature void triEnqueueReply(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriParameterType returnValue,
in TriTimerDuration timestamp)

In Parameters tsiPortId identifier of the test system interface port via which the reply is enqueued by
the SUT Adaptor

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call
parameterList a list of encoded parameters which are part of the indicated signature. The

parameters in parameterList are ordered as they appear in the TTCN-3
signature declaration

returnValue (optional) encoded return value of the procedure call
timestamp the point in time when the reply has been received from the SUT

Out Parameters n.a.
Return Value Void
Constraints This operation can be called by the SA after it has received a reply from the SUT. It can only be

used when tsiPortId has been either previously mapped to a port of componentId or
referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueReply operation all out and inout procedure parameters and
the return value contain encoded values.
If no return type has been defined for the procedure signature in the TTCN-3 ATS, the distinct
value null shall be used for the return value.

Effect The TE can enqueue this reply to the procedure call with the signature identifier signatureId
at the port of the component componentId to which the TSI port tsiPortId is mapped. The
decoding of the procedure parameters has to be done within the TE.
The TE shall indicate no error in case the value of any in parameter or an undefined return
value is different from null.

6.6.16 triEnqueueExceptionRT (SA → TE)

Signature void triEnqueueException(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in TriExceptionType exc,
in TriTimerDuration timestamp)

In Parameters tsiPortId identifier for the test system interface port via which the exception is
enqueued by the SUT Adaptor

SUTaddress (optional) source address within the SUT
componentId identifier of the receiving test component
signatureId identifier of the signature of the procedure call which the exception

is associated with
exc the encoded exception
timestamp the point in time when the exception has been received from the SUT

Out Parameters n.a.
Return Value Void
Constraints This operation can be called by the SA after it has received a reply from the SUT. It can only be

used when tsiPortId has been either previously mapped to a port of componentId or
referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueException operation exception shall contain an encoded
value.

Effect The TE can enqueue this exception for the procedure call with the signature identifier
signatureId at the port of the component componentId to which the TSI port tsiPortId is
mapped.
The decoding of the exception has to be done within the TE.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)27

6.7 Definition of Interfaces
Instead of changing the existing interfaces, we define new additional interfaces containing the newly introduced
declarations:

• triCommunicationSART – TE → SA

• triCommunicationTERT – SA → RT

• triPlatformPART – TE → SA

• triPlatformTERT – TE → SA

6.8 Changes for JavaTM Language Mapping
For all methods, the timestamp parameter is mapped to a parameter of type TriTimerDuration.

6.8.1 Mapping of interface triCommunicationSART
package org.etsi.ttcn.tri.rt;

import org.etsi.ttcn.tri.*;

public interface TriCommunicationSART {
 // Message based communication operations
 // Ref: TRI-Definition 5.5.3.1
 public TriStatus triSend(TriComponentId componentId, TriPortId tsiPortId,
 TriAddress sutAddress, TriMessage sendMessage, inout TriTimerDuration timestamp);
 // Ref: TRI-Definition 5.5.3.2
 public TriStatus triSendBC(TriComponentId componentId, TriPortId tsiPortId,
 TriMessage sendMessage, inout TriTimerDuration timestamp);
 // Ref: TRI-Definition 5.5.3.3
 public TriStatus triSendMC(TriComponentId componentId, TriPortId tsiPortId,
 TriAddressList sutAddresses, TriMessage sendMessage, inout TriTimerDuration timestamp);

 // Procedure based communication operations
 // Ref: TRI-Definition 5.5.4.1
 public TriStatus triCall(TriComponentId componentId,
 TriPortId tsiPortId, TriAddress sutAddress,
 TriSignatureId signatureId, TriParameterList parameterList, inout TriTimerDuration
timestamp);
 // Ref: TRI-Definition 5.5.4.2
 public TriStatus triCallBC(TriComponentId componentId,
 TriPortId tsiPortId,
 TriSignatureId signatureId, TriParameterList parameterList, inout TriTimerDuration
timestamp);
 // Ref: TRI-Definition 5.5.4.3
 public TriStatus triCallMC(TriComponentId componentId,
 TriPortId tsiPortId, TriAddressList sutAddresses,
 TriSignatureId signatureId, TriParameterList parameterList, inout TriTimerDuration
timestamp);

 // Ref: TRI-Definition 5.5.4.4
 public TriStatus triReply(TriComponentId componentId,
 TriPortId tsiPortId, TriAddress sutAddress,
 TriSignatureId signatureId, TriParameterList parameterList,
 TriParameter returnValue, inout TriTimerDuration timestamp);
 // Ref: TRI-Definition 5.5.4.5
 public TriStatus triReplyBC(TriComponentId componentId,
 TriPortId tsiPortId,
 TriSignatureId signatureId, TriParameterList parameterList,
 TriParameter returnValue, inout TriTimerDuration timestamp);
 // Ref: TRI-Definition 5.5.4.6
 public TriStatus triReplyMC(TriComponentId componentId,
 TriPortId tsiPortId, TriAddressList sutAddresses,
 TriSignatureId signatureId, TriParameterList parameterList,
 TriParameter returnValue, inout TriTimerDuration timestamp);

 // Ref: TRI-Definition 5.5.4.7
 public TriStatus triRaise(TriComponentId componentId, TriPortId tsitPortId,
 TriAddress sutAddress,
 TriSignatureId signatureId,

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)28

 TriException exc, inout TriTimerDuration timestamp);
 // Ref: TRI-Definition 5.5.4.8
 public TriStatus triRaiseBC(TriComponentId componentId,
 TriPortId tsitPortId,
 TriSignatureId signatureId,
 TriException exc, inout TriTimerDuration timestamp);
 // Ref: TRI-Definition 5.5.4.9
 public TriStatus triRaiseMC(TriComponentId componentId, TriPortId tsitPortId,
 TriAddresses sutAddresses,
 TriSignatureId signatureId,
 TriException exc, inout TriTimerDuration timestamp);
}

6.8.2 Mapping of interface triCommunicationTERT
package org.etsi.ttcn.tri.rt;

import org.etsi.ttcn.tri.*;

public interface TriCommunicationTERT {
 // Message based communication operations
 // Ref: TRI-Definition 5.5.3.4
 public void triEnqueueMsg(TriPortId tsiPortId,
 TriAddress sutAddress, TriComponentId componentId,
 TriMessage receivedMessage, TriTimerDuration timestamp);

 // Procedure based communication operations
 // Ref: TRI-Definition 5.5.4.10
 public void triEnqueueCall(TriPortId tsiPortId,
 TriAddress sutAddress, TriComponentId componentId,
 TriSignatureId signatureId, TriParameterList parameterList, TriTimerDuration timestamp);

 // Ref: TRI-Definition 5.5.4.11
 public void triEnqueueReply(TriPortId tsiPortId, TriAddress sutAddress,
 TriComponentId componentId, TriSignatureId signatureId,
 TriParameterList parameterList, TriParameter returnValue, TriTimerDuration timestamp);

 // Ref: TRI-Definition 5.5.4.12
 public void triEnqueueException(TriPortId tsiPortId,
 TriAddress sutAddress, TriComponentId componentId,
 TriSignatureId signatureId, TriException exc, TriTimerDuration timestamp);
}

6.8.3 Mapping of interface triPlatformPART
package org.etsi.ttcn.tri.rt;

import org.etsi.ttcn.tri.*;

public interface TriPlatformPART {

 // Timer handling operations
 // Ref: TRI-Definition 6.1
 public TriStatus triStartClock(long ticksPerSecond);

 // Ref: TRI-Definition 6.2
 public TriStatus triReadClock(TriTimerDuration timestamp);

 // Ref: TRI-Definition 6.3
 public TriStatus triBeginWait(TriTimerDuration timestamp, TriComponentId componentId);

 // Ref: TRI-Definition 6.5
 public TriStatus triWaitUntil(TriTimerDuration timestamp, TriComponentId componentId);

}

6.8.4 Mapping of interface triPlatformTE

The following declarations have to be added to the interface triPlatformTE:

package org.etsi.ttcn.tri.rt;

import org.etsi.ttcn.tri.*;

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)29

public interface TriPlatformTERT {

 // Ref: TRI-Definition 6.4
 public TriStatus triEndWait(TriComponentId componentId);
}

6.9 Changes for ANSI C Language Mapping
The following declarations have to be added:

TriStatus triStartClock
(long ticksPerSecond)
TriStatus triReadClock
(TriTimerDuration* timepoint)
TriStatus triBeginWait
(TriTimerDuration timepoint,
 TriComponentId* componentId)
TriStatus triWaitUntil
(TriTimerDuration* timepoint,
 TriComponentId* componentId)
TriStatus triEndWait
(TriComponentId* componentId)
TriStatus triSendRTRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriMessage* sendMessage,
 TriTimerDuration* timepoint)
TriStatus triSendBCRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriMessage* sendMessage,
 TriTimerDuration* timepoint)
TriStatus triSendMCRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriMessage* sendMessage,
 TriTimerDuration* timepoint)
void triEnqueueMsgRT
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriMessage* receivedMessage,
 TriTimerDuration timepoint)
TriStatus triCallRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 TriTimerDuration* timepoint)
TriStatus triCallRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 TriTimerDuration* timepoint)
TriStatus triCallBCRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 TriTimerDuration* timepoint)
TriStatus triCallMCRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 TriTimerDuration* timepoint)
TriStatus triReplyRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)30

 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue,
 TriTimerDuration* timepoint)
TriStatus triReplyBCRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue,
 TriTimerDuration* timepoint)
TriStatus triReplyMCRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue,
 TriTimerDuration* timepoint)
TriStatus triRaiseRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriException* exception,
 TriTimerDuration* timepoint)
TriStatus triRaiseBCRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriException* exception,
 TriTimerDuration* timepoint)
TriStatus triRaiseMCRT
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriException* exception,
 TriTimerDuration* timepoint)
void triEnqueueCallRT
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 TriTimerDuration timepoint)
void triEnqueueReplyRT
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue,
 TriTimerDuration timepoint)
void triEnqueueExceptionRT
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriException* exception,
 TriTimerDuration timepoint)

6.10 Changes for C++ Language Mapping

6.10.1 Mapping of interface triCommunicationSART
class TriCommunicationSART {
public:

//Destructor.
 virtual ~TriCommunicationSART ();

//To reset the System Adaptor
virtual TriStatus triSAReset ()=0;

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)31

//Send operation on a component which has been mapped to a TSI port.
virtual TriStatus triSend (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriAddress *SUTaddress, const TriMessage *sendMessage, TriTimerDuration* timepoint)=0;

//Send (broadcast) operation on a component which has been mapped to a TSI port.
virtual TriStatus triSendBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriMessage *sendMessage, TriTimerDuration* timepoint)=0;

//Send (multicast) operation on a component which has been mapped to a TSI port.
virtual TriStatus triSendMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriAddressList *SUTaddresses, const TriMessage *sendMessage, TriTimerDuration*
timepoint)=0;

//Initiate the procedure call.
virtual TriStatus triCall (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriAddress *sutAddress, const TriSignatureId *signatureId, TriParameterList
parameterList, const TriTimerDuration timepoint)=0;

//Initiate and broadcast the procedure call.
virtual TriStatus triCallBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriSignatureId *signatureId, const TriParameterList *parameterList, TriTimerDuration*
timepoint)=0;

//Initiate and multicast the procedure call.
virtual TriStatus triCallMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriAddressList *sutAddresses, const TriSignatureId *signatureId, const TriParameterList
parameterList, TriTimerDuration timepoint)=0;

//Issue the reply to a procedure call.
virtual TriStatus triReply (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriAddress *sutAddress, const TriSignatureId *signatureId, const TriParameterList
*parameterList, const TriParameter *returnValue, TriTimerDuration* timepoint)=0;

//Broadcast the reply to a procedure call.
virtual TriStatus triReplyBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriSignatureId *signatureId, const TriParameterList *parameterList, const TriParameter
returnValue, TriTimerDuration timepoint)=0;

//Multicast the reply to a procedure call.
virtual TriStatus triReplyMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriAddressList *sutAddresses, const TriSignatureId *signatureId, const TriParameterList
*parameterList, const TriParameter *returnValue, TriTimerDuration* timepoint)=0;

//Raise an exception to a procedure call.
virtual TriStatus triRaise (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriAddress *sutAddress, const TriSignatureId *signatureId, const TriException *exc,
TriTimerDuration* timepoint)=0;

//Raise an broadcast an exception to a procedure call.
virtual TriStatus triRaiseBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriSignatureId *signatureId, const TriException *exc, TriTimerDuration* timepoint)=0;

//Raise an multicast an exception to a procedure call.
virtual TriStatus triRaiseMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriAddressList *sutAddresses, const TriSignatureId *signatureId, const TriException
exc, TriTimerDuration timepoint)=0;

}

6.10.2 Mapping of interface triCommunicationTERT
class TriCommunicationTERT {
public:

//Destructor.
virtual ~TriCommunicationTERT ();

//Called by SA after it has received a message from the SUT.
virtual void triEnqueueMsg (const TriPortId *tsiPortId, const TriAddress *SUTaddress, const
TriComponentId *componentId, const TriMessage *receivedMessage, const TriTimerDuration*
timepoint)=0;

//Called by SA after it has received a procedure call from the SUT.
virtual void triEnqueueCall (const TriPortId *tsiPortId, const TriAddress *SUTaddress, const
TriComponentId *componentId, const TriSignatureId *signatureId, const TriParameterList
parameterList, const TriTimerDuration timepoint)=0;

//Called by SA after it has received a reply from the SUT.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)32

virtual void triEnqueueReply (const TriPortId *tsiPortId, const TriAddress *SUTaddress, const
TriComponentId *componentId, const TriSignatureId *signatureId, const TriParameterList
*parameterList, const TriParameter *returnValue, const TriTimerDuration* timepoint)=0;

//Called by SA after it has received an exception from the SUT.
virtual void triEnqueueException (const TriPortId *tsiPortId, const TriAddress *SUTaddress,
const TriComponentId *componentId, const TriSignatureId *signatureId, const TriException *exc,
const TriTimerDuration* timepoint)=0;

}

6.10.3 Mapping of interface triPlatformPART
class TriPlatformPART {
public:

//Destructor.
virtual ~TriPlatformPART ();

//Reset all realtime activities which it is currently performing.
virtual TriStatus triPAReset ()=0;

//Start the global clock for the testcase with the given time progress.
virtual TriStatus triStartClock (const long ticksPerSecond)=0;

//Access the time that elapsed since the testcase was started.
virtual TriStatus triReadClock (TriTimerDuration *elapsedTime)=0;

//Begin waiting before the indicated component is notified that given timepoint is reached.
virtual TriStatus triBeginWait (const TriTimerDuration *timepoint, const TriComponentId*
componentId)=0;

//Wait until the given timepoint is reached or initialize timepoint with the time that

//that elapsed since the testcase was started
virtual TriStatus triBeginWait (TriTimerDuration *timepoint, const TriComponentId*
componentId)=0;

}

6.10.4 Mapping of interface triPlatformTERT
class TriPlatformTERT {
public:

//Destructor.
virtual ~TriPlatformTERT ();

//Notify the TE that the indicated component should stop waiting.
virtual void triEndWAit(const TriComponentId *componentId);

}

7 TCI extensions for the package
No changes in TCI necessary.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)33

Annex A (normative):
BNF and static semantics

A.1 Changed BNF Rules
OpCall ::= ConfigurationOps |
 GetLocalVerdict |
 TimerOps |
 TestcaseInstance |
 (FunctionInstance [ExtendedFieldReference]) |
 (TemplateOps [ExtendedFieldReference]) |
 ActivateOp |
 NowOp
PortRedirect ::= PortRedirectSymbol
 (ValueSpec [SenderSpec] [TimestampSpec] |
 SenderSpec [TimestampSpec] |
 TimestampSpec)
MessageAttribs ::= MessageKeyword [RealtimeSpec]
 "{" {(AddressDecl | MessageList | ConfigParamDef) [SemiColon]}+ "}"
ProcedureAttribs ::= ProcedureKeyword [RealtimeSpec]
 "{" {(AddressDecl | ProcedureList | ConfigParamDef) [SemiColon]}+ "}"
MixedAttribs ::= MixedKeyword [RealtimeSpec]
 "{" {AddressDecl | MixedList | ConfigParamDef) [SemiColon]}+ "}"
FunctionStatement ::= ConfigurationStatements |
 TimerStatements |
 CommunicationStatements |
 BasicStatements |
 BehaviourStatements |
 SetLocalVerdict |
 SUTStatements |
 TestcaseOperation |
 RealtimeStatement

A.2 New BNF Rules
NowOp ::= "now"
TimestampSpec ::= "timestamp" VariableRef
RealtimeSpec ::= "realtime"
RealtimeStatement ::= WaitStatement
WaitStatement ::= "wait" "(" SingleExpression ")"
/* STATIC SEMANTICS - the SingleExpression operand shall be of type float or derivatives of this
type. */

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)34

Annex B (informative):
Bibliography
Recommendation ITU-T T.50 (1992): "International Reference Alphabet (IRA) (Formerly International Alphabet No. 5
or IA5) - Information technology - 7-bit coded character set for information interchange".

ISO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets - Part 1: Latin alphabet
No. 1", 1998.

Object Management Group (OMG): "The Common Object Request Broker: Architecture and Specification - IDL
Syntax and Semantics". Version 2.6, FORMAL/01-12-01, December 2001.

ETSI

Final draft ETSI ES 202 782 V1.2.1 (2014-04)35

History

Document history

V1.1.1 July 2010 Publication

V1.2.1 April 2014 Membership Approval Procedure MV 20140614: 2014-04-15 to 2014-06-16

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Package conformance and compatibility
	5 Package concepts for the core language
	5.1 The test system clock
	5.1.1 Accessing the current test system time
	5.1.2 The precision of the system time

	5.2 Communication port types for real-time measurements
	5.3 Measuring timing information for dedicated incoming communication events
	5.3.1 Obtain the reception time for messages with the receive statement
	5.3.2 Obtain the reception time for messages with the trigger statement
	5.3.3 Obtain the reception time for procedure calls with getcall statement
	5.3.4 Obtain the reception time for procedure replies with the getreply statement
	5.3.5 Obtain the reception time for exceptions with the catch statement

	5.4 The wait statement
	5.5 Measuring timing information for outgoing communication operations
	5.5.1 Obtain the sending time for messages with the send statement
	5.5.2 Obtain the sending time for procedure calls with call statement
	5.5.3 Obtain the sending time for procedure replies with the reply statement
	5.5.4 Obtain the sending time for exceptions with the raise statement

	6 TRI extensions for the package
	6.1 triStartClock (TE ? PA)
	6.2 triReadClock (TE ? PA)
	6.3 triBeginWait (TE ? PA)
	6.4 triEndWait (PA ? TE)
	6.5 triWaitUntil (SA (PA)
	6.6 Communication Operations
	6.6.1 triSendRT (TE ? SA)
	6.6.2 triSendBCRT (TE (SA)
	6.6.3 triSendMCRT (TE (SA)
	6.6.4 triEnqueueMsgRT (SA (TE)
	6.6.5 triCallRT (TE (SA)
	6.6.6 triCallBCRT (TE (SA)
	6.6.7 triCallMCRT (TE (SA)
	6.6.8 triReplyRT (TE (SA)
	6.6.9 triReplyBCRT (TE (SA)
	6.6.10 triReplyMCRT (TE (SA)
	6.6.11 triRaiseRT (TE (SA)
	6.6.12 triRaiseBCRT (TE (SA)
	6.6.13 triRaiseMCRT (TE (SA)
	6.6.14 triEnqueueCallRT (SA (TE)
	6.6.15 triEnqueueReplyRT (SA (TE)
	6.6.16 triEnqueueExceptionRT (SA (TE)

	6.7 Definition of Interfaces
	6.8 Changes for JavaTM Language Mapping
	6.8.1 Mapping of interface triCommunicationSART
	6.8.2 Mapping of interface triCommunicationTERT
	6.8.3 Mapping of interface triPlatformPART
	6.8.4 Mapping of interface triPlatformTE

	6.9 Changes for ANSI C Language Mapping
	6.10 Changes for C++ Language Mapping
	6.10.1 Mapping of interface triCommunicationSART
	6.10.2 Mapping of interface triCommunicationTERT
	6.10.3 Mapping of interface triPlatformPART
	6.10.4 Mapping of interface triPlatformTERT

	7 TCI extensions for the package
	Annex A (normative): BNF and static semantics
	A.1 Changed BNF Rules
	A.2 New BNF Rules

	Annex B (informative): Bibliography
	History

