Final draft ETS| ES 202 781 V1.6.1 (2018-03)

<d

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions:
Configuration and Deployment Support

2 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Reference
RES/MTS-202781ConfDepled161

Keywords
protocol, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.orq/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2018.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Contents

INtellectual Property RIGNES.ooiiiiiieeeee bttt bt e e se b en e e nan 6
(=11 o PSSR 6
MOdal VEIDS TEIMINOIOQY ... veveeeeeteeee ettt et e et s bt st b et e e e e e e e st nn e b e nr e s e nnennas 6
1 o0 o< PP P PSP PRORPRPRN 7
2 REFEIBINCES ...ttt ettt s bt b e e et e A e b et et e Rt e be e b e s b e et e e et e e et enenrenbeneen 7
21 NOIMBLTVE FEFEIEICES ...ttt ettt R et R e et r e et r e e s 7
22 INFOIMELIVE FEFEIENCES.ttt et e e r e et renn s 7
3 Definitions and @DBreVIBLIONS...........ccuiiiieeeeee e e 8
31 D= T T (0] 1 USSR 8
3.2 Y o] 1= V7= 0] 1SRRI 8
4 Package conformance and COMPEaLibDilityccoeeiiiiiie i e 8
5 Package Concepts for the COre LanQUETE.ccceiviiieiieieeie ettt sttt ae e ens 9
5.0 (€T 1< - OSSPSR PP PSP PRSPPI 9
51 SEALIC CONTIQUIBLIONS.eeetieieeiee ettt ettt et e et e e s e eseesseesseesseeseeneesneesaeesseenseanseenseeneennaenneessnns 10
511 The specia configuration type: CONfIGUIELIONooveiriirieirieieesieee et 10
512 The configuration FUNCLIONc.oiiiiiiei bbb bbb 10
513 Starting a Static teSt CONFIGUIALTON.eiieiiieeeterieet ettt b e bbb seenea 12
514 Destruction of statiC teSt CONFIGUIALIONS...........ceririeirie ettt 12
515 Creation Of Static tESt COMPONENES.......c.iiirieiiitereet ettt sb e et sb e e b e b b seebe b snenen 13
516 Establishment of static connections and Static MapPINGS.........coveerrererireierereese et 14
5.1.7 Test case definitions for static test CONfiQUIaLION............ccocveieeiieie e 14
5.1.8 Executing test cases on static test CONFIQUIELIONScccueieeiieiieie et 15
519 FUPNEN TESITTCHIONS.cveeeeest ettt ettt r e et r e n et r e r e r e r e 17
5.1.10 Logging the status of StatiC CONFIQUIELIONSc.cccuiiieiiesee e e et enes 17
52 Ports with translation Capabilitycecueiieiiesicse et eese e e e sreesae e reeneens 17
5.2.0 GENENAL ...ttt et b e R Rt R R R R R R R Rt R R R e R Rt e Rt e bt e r e 17
521 Trangdlation capability in Port type deClaration. ..o e 19
522 MappiNg and CONNECLING POITS........couerueuirierieeete ettt ettt sttt se bt bese bt bese e b s et b see e ebe b s 20
523 TrangatioN FUNCHIONS ..ottt sttt e e e et e e e e e e besbeeaeeneenee e eneees 20
524 L= S = 1o I = (= SR 21
525 S 116] 0T OSSOSO PO O ST PP PSSP 22
5.2.6 S0 Y oo P 23
5.2.7 AAAAIESS ... e R R R R R R R e R Rt R R e r et n e 24
5.2.8 Clear, start, Stop and halt OPEIralioNccccueiie i e e st e e e reereeneeeaes 25
6 PACKBOE SEMBINTICS.......cveetietete ettt e et b bbb s e e e n e e e st b ne s 25
6.0 LT 0T P RSSRR 25
6.1 Replacement Of SO FOMMS.......c.oiiii bbb bbb ens 27
6.2 Order Of rEPIACEMENE SIEPS......eieeeeieieeeete ettt st b e et b e et b e bt b e e e st ebese et b e bt eb e b 28
6.3 Flow graph representation Of TTCN-3 DENAVIOUIcoueiiiriiiiirieerecee s 28
6.4 Flow graph CONSLrUCEION PrOCEOUNE........cc.cueitieeieriieet ettt sttt sttt b bbb st b e bt ebe e ens 29
6.5 Flow graph representation of configuration fUNCLIONS............cccciiiiiiiiiesece e 29
6.6 Retrieval of start NOAeS Of FIOW Qraphs.........oee i e e e e s 30
6.7 IMOTUIE SEBLE ...ttt e r et r e ne e Rt e Rt e st n et e se e Rt e e e n e e nnenr e nns 30
6.8 ACCESSING the MOAUIE SLBLE ..ottt et e st et e et e e eesaeesaeesseeseenteenseeneenseesneas 30
6.9 (0001 110U 1= Lo TS -1 =SS 31
6.10 Accessing the CONfIQUIation SLALE..........c.eecuiiececee ettt s e s e sreesae e reenseeneeenaesreesneas 31
6.11 ENEITY SEAEES ...ttt bbb e b £ R R R R R bR b et bt b e n et 32
6.12 ACCESSING ENEITY STBLES.eeueeteeeieetirt ettt ettt b et b et b e st b e s e bt s e e s e e bt e e st b e e e bt b e s e s e b et e e nn e b e nnis 34
6.13 Handling of CONNECLIONS AMONQ POITS........couiitiiriirieieiert ettt b bbbt b et sb e e 35
6.14 HEANAITNG OF POMT SLAEES ...ttt e b bbbt b et b et 35
6.15 The evaluation procedure for A TTCN-3 MOTUIEc.ciiiiiriiiieieee e 36
6.16 EVAIUBLION PRESES.... .ot bbb bbb bbbt nb et 36
6.17 Phase 17 TNITBIIZBIION...........ooeeiiieere e e et nr e n s 37

ETSI

4 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.18 Phase 112 UPAELEcovieeeiitieeit ettt bbbt b bbb et b e bbb 38
6.19 L T S 1=t 1 o] o SRR 38
6.20 PhESE [V 1 EXECULION ...ttt sttt ettt te et e bt se et emeese e besae et e eaeeneeneeneensensesseasesaeesenneeneeseens 38
6.21 (€1 o] o 7= I 11T 1 LSRR 39
6.22 ClEAI POt OPEIBEION. ...ttt sttt sttt sttt sttt et b e s e et b e e e bt s R et eb e s b et e bt s b e e e bt e b e bt e b e s e e st ebese e st eb e s e et ebenneneee 39
6.23 Configuration FUNCLION Call..........cuiiieiie ettt s e s e sae e s ae e aeenteenteenaeeneesnaesreas 40
6.24 (01011 o100 0= = 1 o SRS 41
6.25 L@ = (ST o 0 < = 1] SRS 42
6.26 Flow graph segment <AiSCONNECE-AlI>..........ccouiiiiiece et e e e e e sne e reenreens 44
6.27 Flow graph segment <diSCONNECE-COMS..........ccouiiieiieieeeeieseeseeseeseesteetesaessaessae s e e steessessessseesseesseenseensenns 45
6.28 Flow graph segment <diSCONNECE-POMSc.cuiiieiiiieieiseee ettt aesestesaesesresaeneens 46
6.29 Flow graph segment <diSCONNECE-tWO-PAr-PAITS>coueieruirieiririeisiesie st sb e e 46
6.30 EXECULE SLALEIMENT.......ce ittt ettt ettt ettt ettt e e bt e she e e bt e e sk e e e be e e saeeebe e e abeeenn e e sabeeemneesabeeenneesnneesnneean 47
6.31 Flow graph segment <exeCute-WithOUL-CONFIGSoiriiririeirire e 48
6.32 Flow graph segment <eXeCULE-0N-CONTIG™c.ciirieiriiieiriiie st 48
6.33 Flow graph segment <execute-on-config-WithOUE-timMEOUL> ..o e 48
6.34 Flow graph segment <exeCute-0n-CONfig-tiMEOULS..........cccccivieiiee e sre e 49
6.35 Flow graph segment <statement-BIOCK>cco oo 51
6.36 L L 00 0] 7= 1o o PSSR 52
6.37 Kill COMPONENE OPEIBLIONeeiteeeiceeceeeste e st et e et e s e e saeesse e teenteeaeessaesseeseesseensesneesneessensseansennsenns 53
6.38 Flow graph segment SKilI-MIECSocoiieee e e e e e s te e tesseesneesaeesneeseenseens 55
6.39 Flow graph segment <Kill-all-COmP>cc.oiiiiiice et a e e sreesne e reenreens 55
6.40 KTl EXECULTON SEALEIMIENT ... ettt ettt e e s teseesbeese e e enee e e eeseeseesbesaeeseeneeneensessesaesneeneeneaneeseens 57
6.41 Kill CONFIQUIELiON OPEIELIONcuetiieeitieet sttt b ettt b et b et nb e b 58
6.42 IVLBID OPIEIBEION ...tttk b bbb H e bbbt e h et b et bt b et b et b n e 58
6.43 SEAMT POIT OPEFELION........eveteeete ettt b et h b e b e b e h e b e e e bt b e e e bt b e se e bt e b e st e b e s e e st et e se et eb e s b et eb e b e e 59
6.44 SLOP COMPONENTE OPEIBEION......eeeeeeete et sttt sttt sttt et et e et b e s bt eb e b et e bt s be st ebeebene e bt ee e st ebesb et ebe s b et sbenbeneees 60
6.45 FIOW graph SEgMENT SSEOP-MIECSottt eesb et e reese e e e eeseeseesbesaeereeneaneeseens 62
6.46 Flow graph Segment <SOP-CONFIGSuiiieiieir ettt e e e te e tesneesseesaeesneesneeseensenns 63
6.47 Flow graph segment <StOP-tC-CONTITS.......iiiiiiiiiiece st te e reeaesneesreesne e seenseens 64
6.48 S 0] o) oo 0] 0= 7= 1 oo S 65
6.49 Flow graph segment SUNMEaP-all>.........ocuv oo se e e e sreesne e seenreens 66
6.50 Flow graph segment <UNMED-COMIP™oieeieeieerieeieetesseesseeseeseesteesseensssseesseesseasseesseessessesnsessesssesnsesnessnes 67
6.51 Flow graph Segment SUNMED-POIESccoiriieeeerieeer ettt b et b et e bt e bt ae b ne e sbe e eneenis 68
7 TRI EXtensionS for the PaCKagEcooviiuiiie ettt st s 68
7.1 Changes and extensions to clause 5.5.2 of ETSI ES 201 873-5 [3] Connection handling operations.............. 68
72 Extensionsto clause 6 of ETSI ES 201 873-5 [3] Java™ language Mappingc.coceeeeerrerireresesseeseenssesennns 70
7.3 Extensionsto clause 7 of ETSI ES 201 873-5[3] ANSI C language Mappingcccccveeereeneereeseesesseesseeenns 70
7.4 Extensionsto clause 8 of ETSI ES 201 873-5 [3] C++ language Mappingcccceeeveereeeereeseeseesesssesseesessees 70
75 Extensionsto clause 9 of ETSI ES 201 873-5 [3] C# language Mappingccccceeeeerreeereeeseesieeseesesseesessens 71
8 TCl EXtensionS fOr the PaCKagEcooviieece ettt 71
8.1 Extensionsto clause 7.2.1.1 of ETSI ES 201 873-6 [4] Management..........ccooeererieerereneneneeseeseeesieseeeees 71
8.2 Extensions to clause 7.3.1.1 of ETSI ES 201 873-6 [4] TCI-TM F€qUIredcovuevueveecerereereeeeereeseessenennen 71
8.3 Extensionsto clause 7.3.1.2 of ETSI ES 201 873-6 [4] TCI-TM Provided...........ccoeoevineienineinineiseneenes 73
8.4 Extensionsto clause 7.3.3.1 of ETSI ES 201 873-6 [4] TCI-CH required..........c.ccoeoevineienineincneseseeenes 73
85 Extensionsto clause 7.3.3.2 of ETSI ES 201 873-6 [4] TCI CH providedcooeovieinineenineeseseenes 74
8.6 Extensionsto clause 7.3.4 of ETSI ES 201 873-6 [4] TCI-TL provided.........cccccvevvecveersienieseese e esee e 75
8.7 Extensionsto clause 8 of ETSI ES 201 873-6 [4] Java™ language Mappingccceevevereeeeeeeeeereeeesaereenenas 77
8.8 Extensionsto clause 9 of ETSI ES 201 873-6 [4] ANSI C language Mappingc.cccveeeereereereesesseeseesseesnns 79
8.9 Extensionsto clause 10 of ETSI ES 201 873-6 [4] C++ language MapPiNg........cccevvereereereeneesiesseesseesneses 8l
8.10 Extensionsto clause 11 of ETSI ES 201 873-6 [4] W3C XML MaEPPINGceivvereerreeieeirneeseeseesieeseeeseeeee e 83
8.11 Extensionsto clause 12 of ETS| ES 201 873-6 [4] C# [anguage Mappingcoeeeeereereeersermeesseseeesesseneenes 86
Annex A (nor mative): BNF and StatiC SEMaNTICS.......coeieeieeeeeeeesierese e 88
Al Additiona TTCN-3tEIMINGIS......ccceeiiiieieree ettt e e saeeseesteeeeseesse e sensesreensenneens 88
A.2 Modified TTCN-3 syntax BNF PrOQUCTIONScoueieieiniiisiesesiesee st 88
A.3 Additional TTCN-3 syntaX BNF pProduCiONS..........ccceiieieiieiieie ettt sne e 89
Annex B (informative): Library of USEfUl tYPES ...ccuieeeeeeeeee e 91

ETSI

5 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

2 T R 0 ¢ = o RS PSRSRRN 91
B.2 USEfUl TTCON-BIYPES.....oiitieiiiticie it ceete st ette e st e st st s e s te s ae e besaeeaeesbesaeestesaeensesbeeneesbesaeeneessesneensesrenneens 91
B.2.1 SALUS VAl UES FOF POI SLALES.....ecuvieevieeie ettt sttt ettt et e st e te e teetessaesaeesaeesseeseenseenteeneesneessennrens 91
L 11 (TSP OPT PR PRTORPRPROTN 92

ETSI

6 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

Thisfinal draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The use of underline (additional text) and strike through (deleted text) highlights the differ ences between base
document and extended documents.

The present document relates to the multi-part series ETSI ES 201 873 covering the Testing and Test Control Notation
version 3, asidentified below:

Part 1: "TTCN-3 Core Language";

Part4: "TTCN-3 Operational Semantics';

Part 5. "TTCN-3 Runtime Interface (TRI)";

Part 6 "TTCN-3 Control Interface (TCI)";

Part 7: "Using ASN.1 with TTCN-3";

Part8: "ThelDL to TTCN-3 Mapping";

Part9: "Using XML schemawith TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”.

Part 11: "Using JSON with TTCN-3"

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

7 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

1 Scope

The present document defines the Configuration and Deployment Supportpackage of TTCN-3. TTCN-3 can be used for
the specification of al types of reactive system tests over avariety of communication ports. Typical areas of application
are protocol testing (including mobile and Internet protocols), service testing (including supplementary services),
module testing, testing of APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other
kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of
test suites for physical layer protocolsis outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines the TTCN-3 support for static test configurations.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

[2] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics®.

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] I SO/IEC 9646-1: "Information technology - Open Systems | nterconnection -Conformance testing
methodology and framework; Part 1: General concepts'.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

ETSI

https://docbox.etsi.org/Reference

8 Final draft ETSI ES 202 781 V1.6.1 (2018-03)
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.2] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[1.3] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

[i.4] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification”.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1], ETSI
ES 201 873-4[2], ETSI ES 201 873-5[3], ETSI ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI ES 201 873-1[1], ETS| ES 201 873-4 [2],
ETSI ES 201 873-5[3], ETSI ES 201 873-6 [4], ISO/IEC 9646-1 [5] and the following apply:

MTC Main Test Component
PTC Parallel Test Component
4 Package conformance and compatibility

The package presented in the present document is identified by the package tag:

"TTCN- 3: 2009 Static Test Configurations" -to be used with modules complying with the present
document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ETSI ES 201 873-1 [1] and
ETSI ES 201 873-4[2].

The package presented in the present document is compatible to:

. ETSI ES 201 873-1[1] version 4.9.1;

. ETSI ES 201 873-4[2] version 4.6.1;

. ETSI ES201 873-5[3] version 4.8.1;

. ETSI ES 201 873-6 [4] version 4.9.1;

. ETSI ES201 873-7 [i.1];

e ETSI ES201873-8][i.2];

e ETSIES201873-9[i.3];

. ETSI ES 201 873-10[i.4].

ETSI

9 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5

5.0

Package Concepts for the Core Language

General

This package defines the TTCN-3 means to define static test configurations. A static test configuration is a test
configuration with alifetime that is not bound to a single test case. The test components of a static test configuration
may be used by several test cases. This package realizes the following concepts:

A specia configuration function is introduced which can only be called in the control part of a TTCN-3
module to create static test configurations. The configuration function returns a handle of the predefined type
confi gurati on to access an existing static test configuration.

A static test configuration consists of static test components, atest system interface, static connections and
static mappings. These constituents have the following semantics:

- A static test component is a special kind of test component that can only be created during the creation of
a static test configuration and can only be destroyed during the destruction of a static test configuration.
By definition, the MTC of a static test configuration is a static test component.

- The test system interface of a static test configuration plays the same role as the test system interface of a
test configuration created by atest case.

- A static connection is a connection between static test components. It can only be established during the
creation of a static test configuration and only be destroyed during the destruction of a static test
configuration.

- A static mapping is a mapping of a port of a static test component to a port of the test system interface of
a static test configuration. Such a mapping can only be established during the creation of a static test
configuration and only be destroyed during the destruction of a static test configuration.

A static test configuration can be used by several test cases. For thisthe test caseis started on a previoudy
created static test configuration. This means:

- The body of the test case is executed on the MTC of the static test configuration.
- The MTC may start behaviour on other static test components of the static test configuration.

- Static test components may create, start, stop and kill normal and alive test components. The lifetime of
these componentsis bound to the actual test case that is executed on the static test configuration. In case
that a normal and alive test component is not destroyed explicitly by another test component, it is
implicitly destroyed when the test case ends.

- During test case execution non-static connections and non-static mappings may be established. The
lifetime of non-static connections and non-static mappings is bound to the actual test case that is
executed on the static test configuration. In case that a non-static connection or a non-static mapping is
not destroyed explicitly by another test component, it isimplicitly destroyed when the test case ends.

Component timers and variables of static test components are not reset or reininitialized when atest case is
started on a static test configuration. They remain in the same state as when they were left after the creation of
the static test configuration or after the termination of a previoustest case. This allowsto transfer information
from one test case to another.

Ports of static test components are not emptied or restarted when atest case is started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign. In addition, all port operations (i.e. cl ear,start,stop andhal t) are
disallowed for ports of static test components. All ports of a static test component remain started during the
whole lifetime of a static test configuration.

ETSI

10 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

. In contrast to component timers, variables and ports, the verdict and the default handling is reset. This means
all activated defaults are deactiviated, all loca verdicts and the global verdict are set to none.

5.1 Static configurations

5.1.1 The special configuration type: configuration

The specia configuration type conf i gur at i on isahandle for static test configurations. The special valuenul | is
available to indicate an undefined configuration reference, e.g. for theinitialization of variables to handle a static test
configuration.

Values of typeconf i gur at i on shall be the result of configuration functions, they can be checked for equality,

e.g. to check if two variables store the same value, and they can be used in execut e statements for starting atest case
on an existing static test configuration and inki | | configuration statements to destroy an existing static test
configuration.

Each successful execution of a configuration function resultsin a different configuration value which is only equal to
itself.

Restrictions
The following restrictions apply to usages of the configuration type:

a) Theconfiguration type cannot be subtyped or constrained.

b) The configuration type is not a data type, therefore, the anytype does not include the configuration type.
€¢) Module parameters shall not be of type configuration.

d) Signature parameters shall not be of type configuration.

€e) Templates shall not be of type configuration.

f) Templates shall not be of a structured type that contains fields or elements of type configuration on any level
of nesting.

g) Externa functions are not allowed to contain parameters or return values of type configuration.

EXAMPLES:
var configuration nyStaticConfig := null; /1 Declaration and initialization of a
/1 configuration variable.
nyStaticConfig := aStaticConfig(); /1 Assigns a value to the previously declared
/Il configuration variable. It is assunmed that
/laStaticConfig() is a configuration function.
nyStaticConfig.kill /1 Kills the static test configuration stored in

/'l variable nyStaticConfig.

5.1.2 The configuration function
A configuration function allows the start of a static test configuration.

Syntactical Structure

configuration Configurationldentifier

"(" [{ (Formal Val uePar | Fornal TenplatePar) [","] }] ")"
runs on Component Type

[system Conponent Type]

St at ement Bl ock

ETSI

11 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Semantic Description

A configuration function allows the start of a static test configuration. A configuration function has to be defined in the
definitions part of a TTCN-3 module and shall only be invoked in the control part of a TTCN-3 module. By definition, a
configuration function returns avalue of type conf i gur at i on if the start of the configuration was successful, or

nul | if the start of the configuration was not successful.

The invocation of a configuration function causes the creation of the MTC and the test system interface of the static test
configuration. The types of MTC and test system interface shall be referencedinar uns on and asyst emclause.
The syst emclauseisoptiona and can be omitted, if the test system has exactly the same ports asthe MTC and these
ports are mapped one to one to each other.

The behaviour in the body of a configuration function shall be executed on the newly created MTC. During the start of
atest configuration only behaviour on the MTC shall be executed and only static test components, static connections
and static mappings shall be created or established. Communication with the SUT or with static PTCsis not allowed.

NOTE: The configuration function only returns areference to atest configuration and no verdict. However,
communication with the SUT might have to be checked. For this purpose, initial communication, e.g. for
registration or coordination purposes, could be defined in form of atest case.

A static test configuration is successfully started if the behaviour of the corresponding configuration function has been
executed till itsend or if ar et ur n statement in the corresponding configuration function is reached. In case of a
successful start, areference to the newly created configuration is returned. The usage of ast op or aki | | statement
allows to specify an unsuccessful start of a static test configuration. In case of an unsuccessful start, thevaluenul | is
returned.

Restrictions

a) Therulesfor formal parameter lists for the configuration function shall be followed as defined in clause 5.4 of
ETSI ES 201 873-4[2].

b) Configuration functions shall only be invoked in the module control part.

c) For the behaviour definition in the body of the configuration function and all functions directly or indirectly
from the configuration function, the following restrictions shall hold:

- Only static test components, static connections and static mappings shall be created or established. All
created test components, connections and mappings during the execution of a configuration function are
static.

- Once created or established static test components, static connections and static mappings shall not be
destroyed.

- It isnot allowed to start behaviour on newly created static test components.
- Communication, timer and port operations are not allowed.

EXAMPLES:

/1 The follow ng configuration function can be used to start a sinple static test configuration
/1 which only consists of one MIC

configuration sinpleStaticConfig () runs on MYMICtype{}

/1 The followi ng configuration function starts a nore conplex static configuration.
/1 Configuration information is stored in MIC conponent variables. Further non-static
/1 connections and nmappi ngs nay be established by the test cases that are executed

/1 on this configuration.

configuration aConpl exStaticConfig (in integer NoOF PTCs) runs on MyMICtype system MySysteniType {
var integer i;

if (NOPTCs < 0) {

| og ("Negative nunber of PTCs");
kill; /'l unsuccessful termnation

ETSI

12 Final draft ETSI ES 202 781 V1.6.1 (2018-03)
else if (NoOFPTCs > MaxNoOf PTCs) { /1 MaxNoOF PTCs is a constant
log ("Nunmber of PTCs is too high");
kill; /'l unsuccessful termnation
el se {
for (i :=1, i <= NOOPTCs, i :=1i + 1) {
PTC[i] := PtcType.create static; /1 creation of static PTGCs,

connect (ntc: SyncPort,

}
map(ntc: PCO, system PCOL) static; I/

PTCi]:SyncPort) static;

/1 Array PTC[] is a conponent variable
/] static connection

static mappi ng of MIC.

some static mappi ngs of PTCs,
further non-static mappings may be
established during test runs

successful termnation

map(PTC[1] : PCO, system PCO2); I
map(PTC[2] : PCO, system PCX) ; /1
/1
}
return; /1
}
5.1.3 Starting a static test configuration

A static test configuration is started by calling a configuration function in the control part of a TTCN-3 module. In case
of asuccessful start, areference to the newly created static test configuration is returned. In case of an unsuccessful

start, the special value null is returned.

EXAMPLES:
control {
var configuration nyStaticConfig := null; I
/1
nyStaticConfig := aStaticConfig(); I/
/1
/1
if (nyStaticConfig == null) {
st op; I/

el se {
execut e(MyTest Case(), nyStati cConfi g) /1

5.1.4

Declaration and initialization of a
configuration variable.

Assigns a value to the previously declared
configuration variable. It is assuned that
aStaticConfig() is a configuration function.

Stop test canpaign due to an unsuccessful start

Successful start, continuation of test canpaign

Destruction of static test configurations

A static test configuration can be destroyed by executing a kill configuration operation.

Syntactical Structure

Confi gurationReference. kil |

Semantic Description

The execution of akill configuration operation causes the destruction of a static test configuration. The destructionis
similar to stopping atest case by killing the MTC. This means, resources of all static PTCs shall be released and the

PTCsshall be removed. The only differenceisthat no test verdict is calculated and returned. After executing theki | |
configuration operation, it is not possible to execute a test case on the killed static test configuration.

Executing the kill configuration operation with the special value nul | shall have no effect, executing akill
configuration operation with a reference to a non existing static test configuration shall cause a runtime error.

ETSI

13 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Restrictions
a) Thekill configuration operation shall only be executed in the control part of a TTCN-3 module.
EXAMPLES:
control {
var configuration nyStaticConfig := null; /1 Declaration and initialization of a
/1 configuration variable.
nyStaticConfig := aStaticConfig(); /'l Assigns a value to the previously declared
/l configuration variable. It is assunmed that
/'l aStaticConfig() is a configuration function.
myStaticConfig.kill /] Destruction of the previously started static

/1 test configuration.

5.1.5 Creation of static test components

All create operations invoked directly or indirectly from configuration functions create static test components. The
creation of static test components can be indicated by the additional optional keyword st ati ¢ inthecr eat e
operation. The extension of the cr eat e operation in clause 21.2.1 of ETSI ES 201 873-4 [2] required for the creation
of static test componentsis described in the following clauses.

Syntactical Structure
Conponent Type "." create ["(" (Name | "-") ["," Hostld] ")"] [alive | static]

Semantic Description

Thecr eat e operation in combination with the keyword st at i ¢ shall only be used to create static test components.
Static test components can only be created by executing a configuration function and by functions directly or indirectly
invoked by configuration functions. The keyword st at i c inacr eat e operation shall not be used in combination
with the keyword al i ve.

NOTE 1. During the lifetime of a static test configuration, a static component behaves like an alive component.

Static test components are created in the same manner as hormal test components that are not declared as alive
components. Further details on this can be found in clause 21.2.1 of ETSI ES 201 873-4[2].

NOTE 2: Static test components can only be created directly or indirectly by a configuration function. This may be
checkable at runtime and therefore the keyword static may not be required, but for having an explicit
specification of static test configurations and for keeping the feature of static test configurations
extendible, the keyword st at i ¢ has been introduced.

Restrictions

a) Thecr eat e operation in combination with the keyword st at i ¢ shall only be invoked in configuration
functions and in function that may be directly or indirectly called by such a configuration function.

b) Thekeywordst ati c inacr eat e operation shall not be used in combination with the keyword al i ve.

EXAMPLES:

/1 This exanple declares variables of type MyConponent Type, which are used to store the
Il references of newy created static conponent instances of type MyConponent Type.

/1 An associated nane is allocated to sone of the created conponent instances.

vér MyConponent Type MyNewConponent ;
var MyConponent Type MyNewest Conponent ;

M/NewOorrponent : = MyConponent Type. create static;
M/Newest Conponent : = MyConponent Type. creat e("Newest") static;

ETSI

14 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

5.1.6 Establishment of static connections and static mappings

Themap and connect operations called directly or indirectly from configuration functions establish static
connections and static mappings. This can be indicated by the additional optional keyword st at i ¢ inconnect and
the map operations. The extension of the connect and map operation in clause 21.1.1 of ETSI ES 201 873-4 [2]
required for the establishment of static connections and mapping is described in the following clauses.

Syntactical Structure

connect "(" ConponentRef ":" Port "," ConmponentRef ":" Port ")" [static]
map " (" ConponentRef ":" Port "," ConponentRef ":" Port ")"
[param"(" [{ ActualPar [","] }+] ")"] [static]

Semantic Description

Theconnect and map the operation in combination with the keyword st at i ¢ shall only be used to establish static
connections and static mappings. Static connections and static mappings can only be established by executing the
creator function of a configuration type and by functions directly or indirectly invoked by the creator functions of
configuration type.

Static connections and static mappings are established in the same manner as normal connections and mappings. Further
details on this can be found in clause 21.1.1 of ETSI ES 201 873-4 [2].

NOTE: Static connections and mappings can only be established directly or indirectly by acreator function of a
configuration type. This may be checkable at runtime and therefore the keyword st at i ¢ may not be
required, but for having an explicit specification of static test configurations and for keeping the feature of
static test configurations extendible, the keyword st at i ¢ has been introduced.

Restrictions

a) Theconnect and map operationin combination with the keyword st at i ¢ shall only beusedin
configuration functions and in functions that may be directly or indirectly called by a configuration function.

b) Static connections and static mappings shall only be established to connect ports of static test components and
to map ports of a static component to the ports of the test system interface of a configuration type.

EXAMPLES:

/1 The following code fragnent may be part of a creator function of a configuration type.
/1 1t is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

v;ar My Conponent Type M/NewPTC;
M/NewPTC : = MyConponent Type. create static;

cbnnect (MyNewPTC: Port1, ntc:Port3) static;
map(MyNewPTC: Port 2, system PCOL) static;

5.1.7 Test case definitions for static test configuration

Test cases that are executed on a static test configuration have to be defined in a special manner. Such test cases shall
reference the configuration function that starts a static configuration on which the test case can be executed. The type of
the MTC and the type of the test system interface are referenced in the configuration function and shall therefore not be
specified in the test case header. The extension of the test case definition in clause 16.3 of ETSI ES 201 873-4 [2]
required for the execution of atest case on a static test configuration is described in the following clauses.

Syntactical Structure

testcase Testcaseldentifier

"(" [{ (Formal Val uePar | Fornmal TenplatePar) [","] }] ")"

(runs on Conponent Type [system Conponent Type] | execute on ConfigurationType)
St at enent Bl ock

ETSI

15 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Semantic Description

A test case definition that includes an execut e on clause will be executed on previoudly created static test
configuration of the given configuration type. The type of the MTC and the type of the test system interface is defined
in the referenced configuration type. A test case definition that includes an execut e on clause shall not havear uns
on or asyst emclause.

Apart from the execute on clause, the definition of test cases to be executed on a static test configuration follows the
same rules as described in clause 16.3 of ETS| ES 201 873-4 [2].

Restrictions
a) A test case definition that includesan execut e on clause shall not havear uns on or asyst emclause.
EXAMPLES:
configuration aConfiguration () runs on MYMICtype system M/Systenilype {

/1 creation of a static PTC
/| Peer Conponent is a conponent vari able

Peer Conponent := MyPTCType.create static;

connect (ntc: syncPort, Peer Conmponent:syncPort); /] static connection
map (ntc: PCOL,

map (Peer Conponent: PCQO2,

syst em PCOL)
system PCQ2) ;

/1 static mapping ot MIC
/'l static mapping of Peer Conponent

return /'l successful start of test configuration

}

testcase MyTest Case () execute on aConfiguration {

default := activate(UnexpectedReceptions()); // activate a default

Peer Conponent . start (PTChehavi our()); /1 starting PTC behavi our
SyncPort.send (Ready); /1 synchronization with PTC
SyncPort.recei ve(Ready) ; /'l PTC ready

PCOL. send (stinulus); /] test starts

/1

test behavi our

5.1.8

This clause only describes the syntax extensions of the execut e statement to allow the execution of test cases with an
execut e on clause on static test configurations and the semantics for executing such test cases. The semantics of the
execut e statement for test cases without execut e on clause remains unchanged.

Executing test cases on static test configurations

Syntactical Structure

execute "(" TestcaseRef "(" [{ Tenplatelnstance [","] }] ")"
[*," (TimerValue | "-")
[" (Hostld | "-")
["," ConfigurationRef]] 1 ")"

Semantic Description

A test case definition that includes an execut e on clause shall be executed on previously started static test
configuration of a given configuration function. The reference of the previoudly started static test configuration shall be
referenced in the execut e statement.

Trying to execute atest case on a non-existing or unfitting static test configuration shall cause a run time error.
Unfitting test configuration means that the referenced static test configuration has not been created by the configuration
function referenced in the test case header.

If the execution of atest case on a static test configuration causesan er r or verdict, all following usages of this static
test configuration in execut e statements shall cause a runtime error.

ETSI

16 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

NOTE: Itisallowed to kill the possibly erroneous static test configuration and to start a new one by invoking the
configuration function again.

A test case that shall be started on afitting static test configuration can rely on the following things:

e All static test components, static connections and static mappings created or established by the referenced
configuration function shall exist.

. No static test component is running.
. No non-static test components, non-static connections and non-static mappings shall exist.

. Component timers and variables of static test components shall not be reset or reininitialized when atest case
is started on a static test configuration. They remain in the same state as when they were |eft after the creation
of the static test configuration or after the termination of a previous test case, except for running timers which
can change their state to timed out. This allows to transfer information from one test case to another. If atimer
of a static component is running when atest case terminates, it can still time out even before the next test case
starts. However, this can only be observed during the execution of atestcase.

. Ports of static test components shall not emptied or restarted when atest case is started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign. Messages, calls, replies, exceptions and call-timeouts can still be
engueued at ports of static test components after the termination of atestcase, but they can only be observed
and processed during a following testcase.

. In contrast to component timers, variables and ports, the verdict and the default handling shall be reset. This
means all activated defaults are deactiviated, al local verdicts and the global verdict are set to none.

Executing atest case on a static test configuration means that the body of the test case is executed on the MTC of the
static test configuration. During test execution, all static PTCs behave like alive test components. This means, static
PTCs may be stopped and started several times. During test case execution, non-static normal and alive components
may be created, started, killed and stopped. In addition, non-static connections and mappings may be established and
destroyed.

A test case that is executed on a static test configuration shall end when the behaviour of the MTC ends. In this case, the

final test case verdict is returned. The final test case verdict shall be calculated based on the local verdicts of all static
and non static test components. Furthermore, all test components (static and non-static) shall be stopped, all non-static
test components, non-static connections and all non static mappings shall be discarded.

Restrictions

All restrictions mentioned in clause 26.1 of the core language document [1] apply.

EXAMPLES:
var verdict MyVerdict /1 local variable
var configuration MyConfiguration := aConfiguration(); // starting a static test configuration
MyVerdi ct : = execut e(MyTest Case (), MyConfiguration); /] execution of a test case on a static
/1 test configuration
if (MyVerdict :== pass) {
MyVerdict := execute MyTestCase (), 10.0, MyConfiguration); // executing the sane test case

/1l with time guard

/1 further test behaviour
st op;

ETSI

17 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

51.9 Further restrictions

Static test components, static connections and static mappings have a special semantics. Therefore, situations shall
cause aruntime error:

e Applyingaki | | test component operation to a static test component.
e Applying port operations (cl ear , st art, st op and hal t) to aport owned by a static test component.
e Applying adisconnect operation to a static connection.

. Applying unmap operation to a static mapping.

5.1.10 Logging the status of static configurations

Thel og statement can be used to log the status of static configurations. Table 17 "TTCN 3 language elements that can
be logged” of ETSI ES 201 873-1 [1] isto be extended as follows:

Table 1: TTCN-3 language elements that can be logged

Used in a log statement What is logged Comment
configuration reference actual state Configurations states shall be logged
according to note 9.

NOTE ..; ...
NOTE 9: Configuration states that can be logged are: Started and Killed.

5.2 Ports with translation capability

520 General

This clause describes an extension of a message port type definition adding trand ation capability into it.

Trandation feature is a set of rules that allows to convert messages and/or addresses of one type into messages and/or
addresses of different type during sending or receiving.

It can be used e.g. in situations where the test behaviour is defined on one set of data types but the system under test (or
connected component) actually communicates using a different set of datatypes, i.e. if the test system workson a
different layer of the protocol stack than the system under test.

To dlow flexible adaptation to the system under test, the user shall have the means to control this trandation in the
abstract test suite.

Syntactical Structure

type port Port Typel dnessage

[map to { QuterPortType [","] }+ 1]
[connect to { QuterPortType [","] }+ 1 "{"
{
(in { InnerinType [from{ QuterlnType with InFunction "(" ")" ["," 1 }+1 1 "," 1 }+|
out { InnerQutType [to { QuterQutType with QutFunction "(" ")" ["," 1}+1 [","] }+|
inout { InQutType [","] }+ |
address AddrType [to { QuterAddr Typew th AddrCQut Function "(" ")" [","] }+ 1]
[from{ CQuterAddr Typewi th AddrlnFunction"("")"[","]1}+] |
map param " (" { Formal ValuePar [","] }+ ")"]
unmap param " (" { Formal ValuePar [","] }+ ")" |
Var | nstance) ";"
1+
ny

NOTE: Please note that the same OuterInType may appear in more than onei n message specifications for
different InnerInType-s. In each such clause the InFunction is different.

ETSI

18 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Semantic Description

PortTypeld is name of the type being defined.

/ Port in translation mode \

Standard port
behaviour

Translation behaviour

OutFunction is
implicitly invoked

ouT
Inner out message (of

\ 4

P

type InnerOutType)
InFunction is
Inner queve [[T e implicitly invoked
1IN Inner in message (of
. /,' type InnerinType) . A
k """"""""""" Outer queue /
Outer out message
Outer in message (of (of type
type OuterInType) N ouT | CuteroutType)

Figure 1: lllustration of ports with translation capability

. OuterPortType references the outer message port type this port is mapped to. If the referenced portisa
mapped port, it shall not contain direct or indirect reference to the PortTypeld in the list of its OuterPortTypes.

. InnerInType references a type that can be received over such a port.

. OuterInType references atype that is actually received and which shall be trandlated to InnerlnType.

. InFunction references a function which shall be used to trandate OuterInType to InnerinType.

. InnerOutType references atype that can be sent over such a port.

. OuterOutType references a type that is actually sent which has been trandated from InnerOutType.

e OutFunction references a function which shall be used to translate InnerOutType to Outer OutType.

. InOutType references atype that can be sent and received by the port.

e AddrTypeisthe address type bound to the port type being defined.

. Outer Addr Type is the address type into which the Addr Type is translated.

. AddrOutFunction references a function which shall be used to trandate the Addr Type to theOuter Addr Type.
e AddrinFunction references afunction which shall be used to trandate the Outer Addr Type to theAddr Type.

e Varlnstanceisadeclaration of aport variable.

ETSI

19 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

5.2.1 Translation capability in port type declaration

If aport type declaration includes trand ation capability, it shall always contain at least one map or connect clause.
These clauses define one or more port types for which trans ation mechanism is defined.

If aport type is referenced in the map clause, the following applies:

. All types fromthei n message list of the OuterPortType shall be referenced either as InnerinType,
OuterInType or InOutType in the port type with tranglation capability.

e All InOutTypes shall be present either in thein and out lists (at the same time) or in the inout message list of
the OuterPortType.

. All InnerOutTypes shall be referenced in the out message list of the OuterPortType or if such areference does
not exist, the OuterPortType shall contain at |east one reference to any of the Outer OutTypes associated with
the InnerOutType in its out message list.

NOTE 1: If these conditions are met, it is aways safe to map TS| ports of Outer OutType to instances of the port
type with translation capability.

If aport typeisreferenced in the connect clause, the following applies:

. All types from the out message list of the OuterPortType shall be referenced either as InnerinType,
OuterInType or InOutType in the port type with tranglation capability.

e All InOutTypes shall be present either in thein and out lists (at the same time) or in the inout message list of
the OuterPortType.

e All InnerOutTypes shall be referenced in the in message list of the OuterPortType or if such areference does
not exist, the Outer PortType shall contain at least one reference to any of the Outer OutTypes associated with
the InnerOutType initsin message list.

NOTE 2: If these conditions are met, it is aways safe to connect ports with trandation capability to ports of
Outer OutType.

Port types with translation capability can contain variable declarations. These variables are created and initialized when
aport instance is created and have the same lifetime as the port instance itself. Every port instance has its own copy of
these variables. Port variables can be accessed only from InFunctions and OutFunctions. They are not visible outside of
the trandlation procedure. The variables can be used e.g. for buffering data between individual calls of InFunctions and
OutFunctions(e.g. in case of fragmented messages).

Restrictions

In addition to the genera static rules of TTCN-3 restrictions specified in clause 6.2.9 of ETS| ES 201 873-1[1], the
following restrictions apply:

a) If the OuterPortTypeis aport type with translation capability, it shall neither directly nor indirectly reference
PortTypeld in its map or connect clause (i.e. port types with translation capability cannot reference each
other).

b) All OuterAddrTypes shall be used as an address type at least in one of the OuterPortTypes.
¢) All InFunction, OutFunction and AddrFunction identifiers shall be references to a trand ation function.
EXAMPLE:

type port Transport Port
{

i nout Transport Message;

}

type port DataPort map to TransportPort

in Dat aMessage from TransportMessage with transport ToData();
out DataMessage to TransportMessage with dataToTransport();

ETSI

20 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

5.2.2 Mapping and connecting ports

Ports with trandlation capability can work in two different modes. normal and translation mode. In normal mode, the
port behaves as a standard message port according to the rules specified in ETSI ES 201 873-1 [1]. In translation mode,
the port uses rules described in the following clauses of the present document to convert messages and addresses when
communicating with linked ports.

The trand ation mode is activated in these cases:

. A map operation is applied to a component port and TSI port and the component port type contains a reference
to the TSI port type in its map clause.

. A port type of one operands of a connect operation contains a reference to the port type of the other operand in
its connect clause.

In all other cases, normal mode is activated.

EXAMPLE:

type port TransportPort {

}

type port DataPort map to TransportPort {

}

type conponent SystenConponent {
port DataPort dataPort;
port TransportPort transportPort;

}

type conponent Test Conponent {
port DataPort dataPort;
}

testcase TC runs on Test Conponent system SystemConponent

{
i f (PX_TRANSPORT_USED) {
/] activate translation nmode (TransportPort is inplicitly referenced via transportPort
/1 in the map operation)
map(ntc: dataPort, systemtransportPort);

el se{

/'l activate normal node (TransportPort is not referenced in the map operation)
map(ntc: dataPort, systemdataPort);

523 Translation functions

Trangd ation functions are used by ports working in translation mode for converting incoming and outgoing messages
and addresses from one type to another.

Syntactical Structure

function Functionldentifier"("in Formal Val uePar ", "out Formal Val uePar ")"
[port Port Typel d]
St at erent Bl ock

Semantic Description

Trand ation functions have always two parameters. The first oneisawaysani n parameter and it isused to passin a
value that shall be trandated by the function. The second oneis always an out parameter and it shall be used to pass
the result of the trangdlation to the translation procedure (see clauses 5.2.5, 5.2.6 and 5.2.7) in case of successful
tranglation.

Unlike standard functions described in clause 16.1 of ETSI ES 201 873-1 [1], trandation functions can contain apor t
clause. If the port clause is present, all variables defined in the referenced port type become visible in the function body.

ETSI

21 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Restrictions

a)

Trandation functions shall never return a value.

NOTE: Theset st at e operation is used to inform the test system about the success of trandation.

b) Trandation functions shall not contain a runs on clause.

c) Trandation function containing aport clause can be referenced only in the port type referenced in this port
clause.

d) Thetypeof thei n parameter of atrandation function referenced as an InFunctionin ani n clause shall be the
OuterInType immediately preceding the InFunction reference and the type of itsout parameter shall be the
InnerinType.

€) Thetypeof thei n parameter of atrandation function referenced as an OutFunction in an out clause shall be
the InnerOutType and the type of itsout parameter shall be the OuterOutType immediately preceding the
OutFunction reference.

f) Thetypeof thei n parameter of atrangation function referenced as an AddrOutFunction in aport addr ess
declaration shall be the AddrType and the type of itsout parameter shall be the Outer Addr Type that
immediately precedes the AddrFunction reference.

g) Thetypeof thei n parameter of atransation function referenced as an AddrinFunction in aport addr ess
declaration shall be the Outer Addr Type that immediately precedes the AddrFunction reference and the type of
itsout parameter shall be the AddrType.

h) Trandation functions shall not contain any blocking operations.

i) Invoking afunction withaport clause explicitly shall cause an error.

EXAMPLE:

type port DataPort map to Transport Port

}

in Dat aMessage from TransportMessage with transport ToData();
out DataMessage to TransportMessage with dataToTransport();
var octetstring vp_renainings

function transportToData(i nTransport Message p_nsg, outDataMessage p_res) port DataPort {

}

port.setstate("Transl ated");

function dataToTransport (i nDat aMessage p_nsg, outTransportMessage p_res) port DataPort {

5.2.4

port.setstate("Transl ated");

Translation state

In addition to port state dimensions defined ETSI ES 201 873-1 [1], all ports working in trandlation mode have an
additional port state dimension called tranglation state. The trandlation state always contains the result of the last
executed translation function performed by the port.

There are five possible trandation states:

unset isthe default state before invoking atrandation error. If atrandation function ends with this state, an
error is generated;

not trandated means that the trand ation function has not been successful;

fragmented indicates the trandation function did not finish translation, because the input data did not contain
a complete message (i.e. more fragments are needed to finish trandation);

ETSI

22 Final draft ETSI ES 202 781 V1.6.1 (2018-03)
e trandated meansthat the trandation function successfully performed trandation and there are no
non-trandated data | eft;

. partially trandlated is used when the trandlation function successfully performed trandlation, but there are
additional data which has not been translated yet (i.e. the input data contained more than one message).

Trandation state is set implicitly to unset whenever atranslation function is called to translate a sent or received
message. The translation state can be changed by aset st at e operation.

Syntactical Structure
port.setstate"("Singl eExpression { "," (FreeText | Tenplatelnstance) } ")"
Semantic Description

Theset st at e operation can be used only inside afunction that is called during a trandation procedure to trandate a
sent or received a message. It changes the trandation state of the related port.

The optional parameters allow to provide information that explains the reasons for setting a port trandation state. This
information is composed to a string and might be used for logging purposes.

Restrictions

a) Thevauepassedtotheset st at e operation in the first parameter shall be of thei nt eger type and shall
have one of the following values:

- 0 (meaning trand ated)
- 1 (meaning not translated)
- 2 (meaning fragmented)
- 3 (meaning partially trans ated)
NOTE 1: Numeric parameter values O, 1 and 2 are the same as results of the predefined decval ue function.

NOTE 2: Clause B.2.1 of the present document includes the type definition translation state and the constant
definitions TRANSLATED, NOT_TRANSLATED, FRAGMENTED, PARTIALLY_TRANSLATED.

b) Callingtheset st at e operation withani nt eger not listed in d) in the first parameter shall lead to an
error.

c¢) Cdlingtheset st at e operation outside of a tranglation function or in atrandation function translating an
address shall cause a runtime error.

d) For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of the log
statement. See clause 19.11 of ETSI ES 201 873-1 [1] for more details.

NOTE 3: The unset state cannot be set by the set st at e operation, it is reserved for TE interna use only.

5.2.5 Sending
When a message is to be sent over a port, working in translation mode, the following shall apply:
. If no OutFunction is specified for the given InnerOutType, it is sSimply sent over the port transparently.

. If an OutFunction is specified for the InnerOutType, the trand ation procedure first sets the trandation state to
Unset. Then the OutFunction is automatically invoked to trang ate the InnerOutType to the Outer OutType.
When the function execution is finished, then depending on the current trandation state one of the following
actionsistaken:

- The unset state shall cause an error (i.e. if thereisno set st at e operation isinvoked in the translation
function).

ETSI

NOTE:

5.2.6

23 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

If the state is not trandated, the trandation procedure tries to trandate the message using the next
OutFunction specified for the given InnerOutType. OutFunction-s are tried according to their textual
order in the port type definition. If there is no such a function, an error is generated.

If the state is fragmented, the translation procedure ends but no datais sent to the connected or mapped
port (the port will wait for the next fragment to complete translation). Thet o clause of the following
send operation shall be the same asthet o clause of the current send operation or missing if the current
send operation does not contain any to clause.

If the state istrandated, the translation procedure sends the translated message (retrieved from the out
parameter of the OutFunction) to the port it is mapped or connected to.

If the state is partially trandated, the sent message of thel nner OutType contains several messages (or
message fragments) of theOuter OutType. In this case, the trandation procedure sends the translated
message to the mapped or connected port. The trandation function isthen called again, with the samei n
parameter value, to enable sending of the remaining messages.

In the fragmented case the non-translated part of InnerOutType has to be explicitly assigned to port
variables.

Receiving

Unlike a port working in standard mode, ports working in translation mode maintain two different queues. The outer
gueueis used to keep not translated messages that are either enqueued or sent to the port working in trandation mode.
The inner message queue contains aready translated messages. Receiving operations access this inner queue. In case of
successful receiving (see clause 22.2.2 of ETSI ES 201 873-1 [1]), the successfully received message is removed from
the inner queue. Messages stored in the outer queue can be removed from it only by the translation procedure as
described below.

The TTCN-3 Executable (TE, see ETSI ES 201 873-6 [4]) shall control the trandlation process and the normal decoding
algorithm (see note 1) in co-operation, as specified below. But yet, the normal decoding algorithm itself is not changed.

e

=

p.receive(A:?) InFunction <
S (in B,out A) J
Saw, 4
h\
X\/ e

: N

Port in translation mode

Outer queue

Inner queue

~

F <o
~~.
\\
~
~
\\

decoded value ecode (TRI message, decoding hypothesis? B)

Figure 2: lllustration of the interworking of decoding and translation procedure during receiving

NOTE 1: Inthisclause the "normal decoding algorithm" refersto the process that the TE invokes decoding the

received bitstring as specified in clauses 7.3.2 and C.5.4 of ETS| ES 201 873-6 [4].

ETSI

24 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

The tranglation procedure for receiving operations isinvoked by the snapshot mechanism. This procedure iterates
through all i n clauses (InnerInType -s) defined in the port type definition. Thei n clauses are iterated according to their
textua order. During thisiteration, the following shall apply:

If no InFunction is specified for the given InnerInType, the trandation procedure checks, if the top item of the
outer queueis of InnerInType (i.e. invokes the normal decoding algorithm, and the check is successful if the
decoding is successful). If the result of the check is positive, the message is moved from the outer queue into
the inner queue (i.e. the port will relay the message from the outer port to the inner port transparently) and
iteration ends.

Otherwise (if the InFunction is present for the InnerinType), then the translation procedure checks if the top
item of the outer queue is of the OuterInType, by invoking the normal decoding algorithm, as described above.
If the check is successful, the trandation procedure automatically executes the InFunction: first setsthe

trand ation state to Unset and passes the message of the OuterInTypeto it, in the first parameter. When the
function execution is finished, the translation procedure checks the tranglation state of the port:

- The unset state shall cause an error (i.e. if thereisno set st at e operation isinvoked in the trandation
function).

- If the state is not trandated, the iteration shall continue with the next InFunction for the same
OuterInType. If there is no more such InFunction, the trand ation procedure shall continue with the next
OuterInType. If there is no more OuterInType -s for the given InnerInType, the iteration process shall
continue with the next InnerinType. The order is determined by the textual order in the port type
definition.

- If the state is fragmented, the top item of the outer queue is removed and the iteration shall be restarted to
process the next message in the outer queue. The next message shall have the same address as the current
one (including a missing address). If there is no such message, the iteration shall continue with the next
InnerinType.

- If the state istrandlated, the top item of the outer queue is removed and the translated message (retrieved
from the out parameter of the InFunction) isinserted into the inner queue. This ends the whole iteration.

- If the state is partially trandated, the received message of the OuterInType contains several messages (or
message fragments) of the InnerInType. In this case, the trandated message (retrieved from the out
parameter of the InFunction) isinserted into the inner queue. Unlike in the trandated case, the top
message is not removed from the outer queue. Instead, it is kept in its decoded form in the queue to
enable trandation of the remaining messages embedded in the outer message in subsequent receive cals.

NOTE 2: Inthe fragmented case the non-translated part of OuterInTypehas to be explicitly assigned to port

5.2.7

variables.

If theiteration has processed all i n clauses without any success (no transparently relayed message was
successfully moved from the outer to inner queue and al InFunction calls ended with the not trandated state),
the iteration process returns.

In case the iteration produces a successful result, the tranglation procedure might restart the iteration in order to
trandate the remai ning messages in the outer queue (if there are any), or it might for performance
consideration postpone this translation to the moment when the next snapshot is taken. For the same
performance reasons, the snapshot mechanism is not required to start the translation procedure in case the
inner queue already contains some messages.

Address

When an address type associated with a mapped port working in the translation mode containsat o or f r omclause and
one of the Outer Addr Type-sis the same as the address type of the mapped TS| port, the trandation procedure is applied
to all addresses used by sending or receiving calls of the port.

ETSI

25 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

In case of sending a message, the trandlation procedure automatically invokes the Addr OutFunction passing the address
value defined inthet o clause to it, initsfirst parameter. In case of receiving a message, the translation procedure
automatically invokes the AddrInFunction passing the received address value to it, in itsfirst parameter. When the
function execution is over, the translation procedure retrieves the trandated address from the out parameter of the
trandation function and the control is returned to the calling sending or receiving procedure to finish the operation using
the trandlated address value.

NOTE: Unliketrandation functions used for trandating sent or received messages, the translation functions for
addresses do not use trandlation states.

EXAMPLE:

type port Transport Port

address Transport Address;

}

type port DataPort map to Transport Port

éaaress Dat aAddress to TransportAddress with toTransport Address()
from Transport Address wi th froniransport Address;

}

function toTransportAddr ess(Dat aAddress p_addr, out TransportAddress p_translated) { ...}
function fronfransport Addr ess(Transport Address p_addr, out DataAddress p_translated) { ... }

5.2.8 Clear, start, stop and halt operation

Thecl ear and st art operations clean messages both from inner and outer message queues. In addition to that, all
port variables are reset in the following way: if a variable declaration contains an assignment, the assignment operation
will be performed as a part of the clear or start operation restoring the initial value of the variable. Otherwise (if the
variable declaration does not contain an assignment part), the value of the variable will be uninitialized after the clear or
start operation.

Thehal t operation affects the outer queue only. The trandation procedure can still insert translated messages into the
inner queue of a halted port, provided that there are available messagesin the outer queue.

Since the st op port operation requires all communication operations to cease before the port is stopped, all unfinished
trandation operations shall be completely performed before the working of the port is suspended.

6 Package Semantics

6.0 General

The complete semantics of the using the package in TTCN-3 is defined by copying the following clauses in the
following manner into of ETSI ES 201 873-4 [2]: TTCN-3 Operational Semantics.

. Clause 6.1 replaces clause 7 in ETSI ES 201 873-4 [2].

e Clause 6.2 replacesclause 7.1in ETSI ES 201 873-4 [2].

e Clause 6.3 replacesclause 8.2in ETSI ES 201 873-4 [2].

. Clause 6.4 replaces clause 8.2.1 in ETSI ES 201 873-4 [2].

e Clause 6.5isanew clause. It would become clause 8.2.6ain ETSI ES 201 873-4 [2].
. Clause 6.6 replaces clause 8.2.7 in ETSI ES 201 873-4 [2].

e Clause 6.7 replaces clause 8.3.1in ETSI ES 201 873-4 [2].

ETSI

26 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause 6.8 replaces clause 8.3.1.1ain ETS| ES 201 873-4 [2].

Clause 6.9 replaces clause 8.3.1ain ETSI ES 201 873-4 [2].

Clause 6.10 replaces clause 8.3.1.1ain ETSI ES 201 873-4[2].

Clause 6.11 replaces clause 8.3.2 in ETSI ES 201 873-4 [2].

Clause 6.12 replaces clause 8.3.2.1in ETS| ES 201 873-4 [2].

Clause 6.13 replaces clause 8.3.3.1in ETS| ES 201 873-4 [2].

Clause 6.14 replaces clause 8.3.3.2 in ETSI ES 201 873-4 [2].

Clause 6.15 replaces clause 8.6 in ETS| ES 201 873-4 [2].

Clause 6.16 replaces clause 8.6.1 in ETSI ES 201 873-4 [2].

Clause 6.17 replaces clause 8.6.1.1 in ETS| ES 201 873-4 [2].

Clause 6.18 replaces clause 8.6.1.2 in ETS| ES 201 873-4 [2].

Clause 6.19 replaces clause 8.6.1.3 in ETSI ES 201 873-4 [2].

Clause 6.20 replaces clause 8.6.1.4 in ETS| ES 201 873-4 [2].

Clause 6.21 replaces clause 8.6.2 in ETSI ES 201 873-4 [2].

Clause 6.22 replaces clause 9.9 in ETS| ES 201 873-4 [2].

Clause 6.23 isa new clause. It would become clause 9.9ain ETSI ES 201 873-4 [2].
Clause 6.24 replaces clause 9.10 in ETS| ES 201 873-4 [2].

Clause 6.25 replaces clause 9.12 in ETSI ES 201 873-4 [2].

Clause 6.26 replaces clause 9.14.2 in ETS| ES 201 873-4 [2].

Clause 6.27 replaces clause 9.14.3 in ETS| ES 201 873-4 [2].

Clause 6.28 replaces clause 9.14.4 in ETS| ES 201 873-4 [2].

Clause 6.29 replaces clause 9.14.5in ETS| ES 201 873-4 [2].

Clause 6.30 replaces clause 9.17 in ETSI ES 201 873-4 [2].

Clause 6.31 isanew clause. It would become clause 9.17.0 in ETSI ES 201 873-4[2].
Clause 6.32 isanew clause. It would become clause 9.17.3in ETSI ES 201 873-4 [2].
Clause 6.33 isanew clause. It would become clause 9.17.4 in ETS| ES 201 873-4[2].
Clause 6.34 isanew clause. It would become clause 9.17.5in ETSI ES 201 873-4[2].
Clause 6.35 replaces clause 9.22 in ETS| ES 201 873-4 [2].

Clause 6.36 replaces clause 9.28ain ETSI ES 201 873-4 [2].

Clause 6.37 replaces clause 9.29ain ETSI ES 201 873-4 [2].

Clause 6.38 replaces clause 9.29a.1 in ETS| ES 201 873-4 [2].

Clause 6.39 replaces clause 9.29a.3 in ETSI ES 201 873-4 [2].

Clause 6.40 replaces clause 9.29b in ETSI ES 201 873-4 [2].

Clause 6.41 isanew clause. It would become clause 9.29c in ETSI ES 201 873-4 [2].

ETSI

6.1

27 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause 6.42 replaces clause 9.32 in ETSI ES 201 873-4[2].

Clause 6.43 replaces clause 9.47 in ETSI ES 201 873-4 [2].

Clause 6.44 replaces clause 9.49 in ETSI ES 201 873-4[2].

Clause 6.45 replaces clause 9.49.1 in ETSI ES 201 873-4 [2].

Clause 6.46 is anew clause. It would become clause 9.49.4 in ETS| ES 201 873-4 [2].
Clause 6.47 isanew clause. It would become clause 9.49.5in ETS| ES 201 873-4 [2].
Clause 6.48 replaces clause 9.51 in ETSI ES 201 873-4 [2].

Clause 6.49 replaces clause 9.56.1 in ETS| ES 201 873-4 [2].

Clause 6.50 replaces clause 9.56.2 in ETSI ES 201 873-4 [2].

Clause 6.51 replaces clause 9.56.3 in ETS| ES 201 873-4 [2].

Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;
stand-alone receiving operations;

stand-alone altsteps calls;

tri gger operations,

missing r et ur n and st op statements at the end of function, configuration function and test case definitions;
missing st op execution statements;

i nterl eave statements,

sel ect - case statements,

break and conti nue statements;

di sconnect and unmap operations without parameters; and

default values of missing actual parameters.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters,
global constants, i.e. constants that are defined in the modul e definitions part, and pre-processing macros. All references
to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it
is assumed that the value of module parameters, global constants and pre-processing macros can be determined before
the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constants in the operational semantics will be different

from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

ETSI

28 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,

6.2

functions and module control like variables. The wrong usage of local constantsor i n, out andi nout
parameters has to be checked statically.

Order of replacement steps

The textual replacements of short forms, global constants and module parameters have to be done in the following

order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete val ues;

3) replacement of al sel ect - case statements by equivalent nested i f - el se statements;

4) embedding stand-alone receiving operationsinto al t statements;

5) embedding stand-alone altstep callsinto al t statements;

6) expansionofi nterl eave statements;

7) replacement of al t ri gger operationsby equivalentr ecei ve operationsand r epeat statements;

8) addingr et ur n at the end of function and configuration function definitions without r et ur n statement,
adding sel f .st op operations at the end of test case definitions without ast op statement;

9) adding st op at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parametersto di sconnect and unnap operations without parameters; and

13) adding default values of parameters.

NOTE:

6.3

Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

Flow graph representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:

a module control;

b) test case definitions;

¢) function definitions;

d) atstep definitions;

€) component type definitions;

f) configuration functions.

ETSI

29 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in afunction-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type. Configuration functions specify the creation of static test configurations.

6.4 Flow graph construction procedure

The flow graphs presented in the figures 18 to 22 of ETSI ES 201 873-4 [2] and the flow graph segments presented in
clause 8 [2] are only templates. They include placeholders for information that has to be provided in order to produce a
concrete flow graph or flow graph segment. The placeholders are marked with "<" and ">" parenthesis.

The construction of aflow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, atstep, function, component type and configuration function
definition a concrete flow graph (with reference nodes) is constructed.

3) Inastepwise procedure al reference nodesin the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semanticsfor TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in aflow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of aflow graph isaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
aso has to be taken into consideration. However, the goal of the present document isto provide a correct
and complete semantics, not an optimal flow graph representation.

6.5 Flow graph representation of configuration functions

Schematically, the syntactical structure of a TTCN-3 test case definitioniis:

configuration <identifier> (<paraneter>) <testcase-interface> <statenent-bl ock>

The<t est case-i nt er f ace> aboverefersto the (mandatory) r uns on and the (optional) syst emclausesin the
configuration function definition. The flow graph description of a configuration function describes the behaviour of the
MTC when establishing a new static configuration. Variables, timers and constants defined and declared in the
component type definition are made visible to the MTC behaviour by ther uns on clausein the

<t est case-interface>. Thesyst emclauseisnot relevant for the MTC and is therefore not represented in the
flow graph representation of a configuration function.

The scheme of the flow graph representation of a configuration function is shown in figure 22a. The flow graph name
<i denti fi er > refersto the name of the represented configuration function. The nodes of the flow graph have
associated comments describing the meaning of the different nodes. The reference node <r et ur n- wi t h- val ue>
covers the case where no explicit r et ur n operation for the MTC is specified, i.e. the operational semantics assumes
that ar et ur n operation isimplicitly added. After a successful termination, a configuration function always returns a
handle to the newly created static test configuration.

ETSI

30 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

flow graph <identifier>

T /1 Consi ders scope information provi ded
/1 by the runs-on clause in the
< nit-scope-w th-runs-on> /] interface of the configuration
/1 function.

Y /1 - Actual parameter values are
/1 assunmed to be in the value stack

<par anet er -handl i ng>

/1 - Formal paraneters are handl ed
11 like local variabl es and | ocal
11 timers

A\ 4

/1 The body of the test case specifies
<stat ement - bl ock> /'l the configuration statements to be
/'l executed by the MIC.

* (1) /1 For the case that an explicit
/1 return statement is mssing. The
/'l configuration function returns a
<return-wth-val ue> /1l handle to the newy created

/1 configuration.

Figure 22a of ETSI ES 201 873-4 [2]: Flow graph representation of configuration functions

6.6 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of aflow graph the following function is required:

The GET- FLOM GRAPH functi on: GET- FLOM GRAPH (f 1 ow graph-identifier)

The function returns a reference to the start node of a flow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names, to altstep names
to component type names and configuration function names.

6.7 Module state

As shown in figure 23 amodule state is structured into a CONTROL state and an ALL-CONFIGURATIONS state. The
CONTROL state describes the state of the module control. Module control is handled like a test component,

i.e. CONTROL isan entity state asdefined in ETSI ES 201 873-4 [2], clause 8.3.2. ALL-CONFIGURATIONS isalist of
configuration states representing test configurations that are instantiated during the execution of module control.

CONTROL ALL-CONFIGURATIONS
| CONFIG; [.. | CONFIG, |

Figure 23 of ETSI ES 201 873-4 [2]: Structure of a module state

6.8 Accessing the module state

The CONTROL state and the ALL-CONFIGURATIONS state of the module state can be addressed by using their names,
i.e. CONTROL and ALL-CONFIGURATIONS. Configurations can be accessed by using the dot notation,

ETSI

31 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

e.g. ALL-CONFIGURATIONS CONFIG,, or by using the list operations defined in clause 8.3.1.1a of ETSI
ES 201 873-4[2].

6.9 Configuration state

Asshown in figure 23athe configuration state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES
TC-VERDICT, DONE and KILLED. ALL-ENTITY-STATES represents the states of all instantiated test components
during the execution of atest case. Thefirst element of ALL-ENTITY-STATES s the reference to the MTC of the
configuration. ALL-PORT-STATES describes the states of the different ports. TC-VERDICT stores the actual global test
verdict of atest case, DONE isalist of al currently stopped test components during test case execution and KILLED is
alist of al terminated test components during test case execution.

NOTE 1: The number of updates of TC-VERDICT isidentical to the number of test components that have
terminated.

NOTE 2: An dive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it iskilled.

NOTE 3: Port states may be considered to be part of the entity states. By connect and nap ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES [TC-VERDICT | DONE | KILLED
| mtCc [ESq].|ESp[| [Pi| -] Pn |

Figure 23a of ETSI ES 201 873-4 [2]: Structure of a configuration state

6.10 Accessing the configuration state

The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED can be accessed like
variables by their name and the dot notation, e.g. CONFIG.TC-VERDICT for accessing the test verdict of configuration
CONFIG.

For the creation of a new configuration state the function NEW-CONFIGURATION is assumed to be available:

. NEW-CONFIGURATION();

creates a new configuration state and returnsits reference. The components of the new configuration state have the
following values:

. ALL-ENTITY-STATESis an empty list;

e ALL-PORT-STATESisan empty list;

° TC-VERDICT is set to none;
. DONE isan empty list;

. KILLED isan empty list.

For the handling of lists, e.g. ALL-ENTITY-STATES ALL-PORT-STATES, DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

. myList.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e. add can be used to add single elements or liststo lists;

. myL.ist.append(item) appends item as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e. append can be used to append single elements or liststo lists;

. myList.delete(item) deletes item from the list myList;

ETSI

32 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

e myList.member(item) returnst r ue if itemis an element of thelist myList, otherwisef al se;

. myL.ist.first() returns the first element of myList;

. myList.last() returns the last element of myList;

. myList.length() returns the length of myList;

. myList.next(item) returns the element that followsitemin myList, or NULL if itemisthe last element in myList;

e myList.random(<condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

. myL ist.change(<operation>) allows to apply <operation> on al elements of myL.ist.

NOTE: The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywordsal | and any in TTCN-3 operations.

Additionally, ageneral copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

. copy(item) returns a copy of item.

6.11 Entity states

Entity states are used to describe the actual states of module control and test components. In the modul e state,
CONTROL isan entity state and in the configuration state, the test component states are handled in the list
ALL-ENTITY-STATES. The structure of an entity state is shown in figure 24.

STATUS
CONTROL-STACK

DEFAULT-LIST

DEFAULT-POINTER

VALUE-STACK

E-VERDICT

TIMER-GUARD

DATA-STATE

TIMER-STATE

PORT-REF

SNAP-ALIVE

SNAP-DONE

SNAP-KILLED

KEEP-ALIVE
STATIC

Figure 24 of ETSI ES 201 873-4 [2]: Structure of an entity state

The STATUS describes whether the module control or atest component is ACTI VE, BREAK, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of atest case. Test components are blocked during the
creation of other test components, i.e. when they call acr eat e operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the evaluation phase of a snapshot. The status REPEAT
denotes that the component isactiveand inan al t statement that should be re-evaluated dueto ar epeat statement.
The BREAK statusis set when abr eak statement is executed for leaving altstep. In this case, theal t statement in
which the altstep was directly or indirectly (i.e. by means of the default mechanism) called isimmediately left.

The CONTROL-STACK isa stack of flow graph node references. The top element in CONTROL-STACK isthe flow

ETSI

33 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

graph node that hasto be interpreted next. The stack is required to model function calls in an adequate manner.

The DEFAULT-LIST isalist of activated defaults, i.e. it isalist of pointers that refer to the start nodes of activated
defaults. Thelist isin the reverse order of activation, i.e. the default that has been activated first is the last element in
thelist.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that has to be
evaluated if the actual default terminates unsuccessfully.

The VALUE-STACK isastack of values of al possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the eval uation of an expression or the result of
thent ¢ operation will be pushed onto the VALUE-STACK. In addition to the values of all datatypes knownin a
module, the specia value MARK to be part of the stack alphabet has been defined. When leaving a scope unit, the MARK
isused to clean VALUE-STACK.

The E-VERDICT stores the actual local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.

The TIMER-GUARD represents the specia timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as atimer binding (see ETSI ES 201 873-4 [2],
clause 8.3.2.4 and figure 28).

The DATA-STATE is considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and atstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting alist
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
ETSI ES 201 873-4[2], clause 8.3.2.2.

The TIMER-STATE is considered to be alist of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of timer bindings describes the known timers
and their statusin a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in

ETSI ES 201 873-4[2], clause 8.3.2.4.

The PORT-REF is considered to be alist of lists of port bindings. The list of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parameters in functions and
atsteps. Each list inthelist of lists of port bindings identifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting alist of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in ETSI ES 201 873-4 [2], clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
ALL-ENTITY-STATES|ist of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes al entities
(test components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE is alist of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE is alist of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after itstermination or not. It is set to trueif the
entity can be restarted. Otherwise it is set to false.

The STATIC field indicates whether atest component is part of a static test configuration or not. It is set to trueif the
test component is created during the execution of configuration function. During the execution of a configuration
function the STATIC field of the entity representing test control isaso set to true. In al other cases, the STATIC field is
set to false.

ETSI

34 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.12 Accessing entity states

The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variablesthat are globally visible, i.e. the values of STATUS, DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity. STATUS, myEntity. DEFAULT-POINTER and myEntity.E-VERDICT,
where myEntity refers to an entity state.

NOTE: Inthefollowing, it isassumed that the "dot" notation by using references and unique identifiers can be
used. For example, in myEntity. STATUS, myEntityState may be pointer to an entity state or be the value of
the <identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
"dot" notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and myEntity. VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or NULL if myStack is empty;

. myStack.clear() clears myStack, i.e. pops al items from myStack;

. myStack.clear-until (item) pops items from myStack until itemis found or myStack is empty.
DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,

length, next, random and change. The meaning of these list operationsis defined in ETSI ES 201 873-4 [2],
clause 8.3.1.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
. NEW-ENTITY (flow-graph-node-reference, keep-alive, static);
creates a new entity state and returnsits reference. The components of the new entity state have the following values:

. STATUSis set to ACTI VE;

. flow-graph-node-reference is the only (top) element in CONTROL-STACK;

. DEFAULT-LIST isan empty list;

° DEFAULT-POINTER has the value NULL;

e VALUE-STACK isan empty stack;

J E-VERDICT is set to none,;

. TIMER-GUARD is anew timer binding with name GUARD, status | DL E and no default duration;
. DATA-STATE isan empty list;

e TIMER-STATE isan empty list;

. PORT-REF isan empty list;

e SNAP-ALIVE isan empty list;

. SNAP-DONE is an empty list;

. SNAP-KILLED isan empty list;

. KEEP-ALIVE is set to the value of the keep-alive parameter;

. STATIC is set to the value of the static parameter.

ETSI

35 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

During the traversal of aflow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

myEnt i ty. NEXT- CONTROL(nyBool) {
successor Node : = nyEntity. CONTROL- STACK. NEXT(nyBool). top();
nyEnti ty. CONTROL- STACK. pop();
nyEnti ty. CONTROL- STACK. push(successor Node) ;

6.13 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of aconnect
operation. Thus, a component can afterwards use itslocal port name to address the remote queue. As shown in
figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. STATIC isaBoolean which istrue if connectionisastatic
connection of a static test configuration. TTCN-3 supports one-to-many connections of ports and therefore all
connections of aport are organized in alist.

NOTE 1: Connections made by nap operations are also handled in the list of connections. The map operation:
map(PTC1:MyPort, syst emPCOL1) leadsto a new (non static) connection (syst em PCOL, false) in
the port state of MyPort owned by PTC1. The remote side to which PCOL1 is connected to, resides inside
the SUT. Its behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword sy st emas a symbolic address. A connection
(syst em myPort, false) in the list of connections of a port it indicates that the port is mapped onto the
port myPort in the test system interface. Thef al se indicates that the mapping is not static.

REMOTE-ENTITY REMOTE-PORT-NAME STATIC

Figure 30 of ETSI ES 201 873-4 [2]: Structure of a connection

6.14 Handling of port states

The gqueue of valuesin a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and_clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1: The queue operations enqueue, degqueue, first and clear have the following meaning:
L] myQueue.engqueue(item) putsitem as last item into myQueue;
" myQueue.dequeue() deletes the first item from myQueue;
L] myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;
" myQueue.clear() removes all elements from myQueue.
The handling of port statesis supported by the following functions:
ad) TheNEW-PORT function: NEW-PORT (myEntity, myPort)

creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and
COMP-PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST
and the VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port
is empty).

b) TheGET-PORT function: GET-PORT (myEntity, myPort)

returns a reference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

ETSI

36 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SYSTEMis returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified

d)

€)

f)

9)

h)

uniquely. The specia value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exists only a one-to-one connection for this port.

The STATUS of aport is handled like avariable. It can be addressed by qualifying STATUS with a GET-PORT
call:

GET-PORT(myEntity, myPort).STATUS
The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort, myStatic)

adds a connection (myRemoteEntity, myRemotePort, myStatic) to the list of connections of the port identified
by OWNER myEntity and COMP-PORT-NAME myPort.

The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

removes a connection (myRemoteEntity, myRemotePort, ?) with any STATIC value from the list of connections
of the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

The GET-CON function: GET-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

retrieves a connection (myRemoteEntity, myRemotePort, ?) with any STATIC value from the list of connections
of the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

The SNAP-PORT S function: SNAP-PORTS (myEntity)

updates SNAP-VALUE for all ports owned by myEntity, i.e.

SNAP- PORTS (nyEntity) {
for all ports p /* in the nodule state */ {
if (p. ONER == nyEntity) {
i f (p. STATUS == STOPPED) {
p. SNAP- VALUE : = NULL;

el se {
if (p. STATUS == HALTED && p.first() == HALT- MARKER) {
// Port is halted and halt narker is reached
p. SNAP- VALUE : = NULL;
p. dequeue(); /'l Rermoval of halt marker
p. STATUS : = STOPPED,

el se {
p. SNAP-VALUE : = p.first()
}

}

NOTE 3: The SNAP-PORTS function handles the HAL T- MARKER that may be put by ahal t port operation into

6.15

6.16

the port queue. If such a marker isfound, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

The evaluation procedure for a TTCN-3 module

Evaluation phases

The evaluation procedure for a TTCN-3 module is structured into:

1)

initialization phase;

ETSI

37 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

2) update phase;
3) selection phase; and
4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text and pseudo-code.

6.17 Phase I: Initialization
The initialization phase includes the following actions:
a) Declaration and initialization of global variables:

- INIT-FLOW-GRAPHY)); // Initialization of flow graph handling. INIT-FLOW-GRAPHSIs
Il explained in ETS| ES 201 873-4 [2], clause 8.6.2.

- Entity := NULL; /I Entity will be used to refer to an entity state. An entity state either
/I represents module control or atest component.

- MTC :=NULL; /I MTC will be used to refer to the entity state of the main test component of
Il atest case during test case execution.

NOTE 1: The global variable CONTROL form the control state of a module state during the interpretation of a
TTCN-3 module (see ETSI ES 201 873-4 [2], clause 8.3.1).

- CONTROL :=NULL; /I CONTROL will be used to refer to the entity state of module control &;

NOTE 2: The global variable CONFIGURATION is used to store the reference to a configuration state in the
Module state, i.e. amember of ALL-CONFIGURATIONS (see ETS| ES 201 873-4 [2], clause 8.3.1).

- CONFIGURATION := NULL;

NOTE 3: Thefollowing global variables ALL-ENTITY-STATES ALL-PORT-STATES TC-VERDICT, DONE, and
KILLED are used to store references to atest configuration state of a module state during the
interpretation of a TTCN-3 module (see ETSI ES 201 873-4[2], clause 8.3.1).

- ALL-ENTITY-STATES:= NULL;

- ALL-PORT-STATES:= NULL;

- TC-VERDICT :=none;
- DONE := NULL;
- KILLED := NULL.
b) Creation and initialization of module control:

- CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<modulel d>), false, false);
Il A new entity state is created and initialized with the start node of
/1 the flow graph representing the behaviour of the control of the
/I module with the name <modulel d>. The Boolean parameters
/ indicate that_module control cannot be restarted after it is
/I stopped and that it is hot a static component in atest configuration.

- CONTROL.INIT-VAR-SCOPE(); /I New variable scope.

- CONTROL.VALUE-STACK.push(MARK); /I A mark is pushed onto the value stack.

ETSI

38 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.18 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a Timeprogress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update atimer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT is set to 0.0 and STATUS s set to TI MEQUT.

NOTE 1. The update of timersincludes the update of al running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

6.19 Phase llI: Selection

The selection phase consists of the following two actions:

a) Selection: Select anon-blocked entity, i.e. an entity that has not the STATUS value BLOCKED. The entity may
be CONTROL, i.e. module control, or atest component in atest configuration that is executing atest case.

b) Storage:
- Store the identifier of the selected entity in the global variable Entity.
- If Entiy is CONTROL, set CONFIGURATION to NULL.

- If Entiy isnot CONTROL, store the identifier of the configuration of which Entity is part of in the global
variable CONFIGURATION and do the following assignments:

= ALL-ENTITY-STATES := CONFIGURATION.ALL-ENTITY-STATES,
" MTC := CONFIGURATION.ALL-ENTITY-STATESfirst();

" ALL-PORT-STATES := CONFIGURATION.ALL-PORT-STATES,

= TC-VERDICT := CONFIGURATION.TC-VERDICT;

" DONE := CONFIGURATION. DONE;

= KILLED := CONFIGURATION.KILLED.

6.20 Phase IV: Execution

The execution phase consists of the following three actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity.

b) Update of the module state: Thisincludes an update of the configuration state of the executed Entity.

c¢) Check termination criterion: Stop execution if module control has terminated, i.e. CONTROL isNULL.
Otherwise continue with Phase |1.

ETSI

39 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.21 Global functions

The evauation procedure uses the global function INIT-FLOW-GRAPHS

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, * ** DYNAM C- ERROR* * * :

b) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

¢) RETURN returnsthe control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the "execution step of the selected entity" of the execution phase.

d ***DYNAM C- ERROR* ** refersto the occurrence of adynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If adynamic error occurs all following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. Thisis modelled by the flow graph segment <dynamic-error> (see
ETSI ES 201 873-4 [2], clause 9.18.5).

NOTE: The occurrence of adynamic error isrelated to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

€) APPLY- OPERATOR used as generic function for describing the evaluation of operators (e.g. +, *,/ or -) in
expressions (see ETSI ES 201 873-4 [2], clause 9.18.4).

6.22 Clear port operation

The syntactical structure of thecl ear port operation is:

<portld>. clear

The flow graph segment <clear-port-op> in figure 59 defines the execution of the cl ear port operation.

ETSI

40

Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segment <cl ear-port-op>

A 4

RETURN,

let { // Begin of |ocal scope

var portRef := NULL
var portState := NULL;
clear-port-op ...
(portid) if (Entity.STATIC == true) {

DYNAM C- ERROR [/ port operation on a

}
else if (portld == “all port”) {
portState : = ALL- PORT- STATES.first();
while (portState != NULL) ({
if (portState. OONER == Entity) {
port St at e. VALUE- QUEUE. cl ear () ;
portState :=
ALL- PORT- STATES. next (port St ate);
}
el se {
portRef := Entity.portld. COWP- PORT- NAME;

GET-PORT(Entity, portRef).clear();
} /1 End of socpe

Entity. NEXT- CONTROL(true);

[/ static test conponent

v

Figure 59 of ETSI ES 201 873-4 [2]: Flow graph segment <clear-port-op>

6.23 Configuration function call

The invocation of a configuration function starts with the creation of the MTC. In a static test configuration the MTC is
modelled as a static alive component. Then the MTC is started with the behaviour defined in the configuration function.
Afterwards, the module control waits until the configuration function terminates. The creation and the start of the MTC

can be described by using cr eat e and st ar t statements:

var ntcType M/MIC : = ntcType.create alive static;

M/MTC. st art (Conf i gur ati onFuncti onNane(P1..Pn));

The flow graph segment <conf i g- f unc- cal | > in figure 59a defines the execution of a configuration function by

using the flow graph segments of the operationscr eat e andthest art .

ETSI

41 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segnment <config-func-call >

A /] Creation of the MIC

<cr eat e- op>

MTC : = Entity. VALUE- STACK. top();
TC-VERD CT := none;

DONE : = NULL;

KI'LLED : = NUWL;

init-test-config-state Y..] // Creation and initalization of a new
/'l configuration state

CONFI GURATI ON : = NEW CONFI GURATI ON() ;
CONFI GLRATI ON. MTC : = MIC;

CONET GURATT ON. TC-VERDICT : = TC- VERDI CT;
CONET GURATI ON. DORE : = DONE;

CONET GURATT ON. KT LLED : = KI LLED;

ALL- CONFI GURATI ONS. append(CONFI GURATI ON)

/1 CONFl GURATION is the result of the
/1 configuration function
CONTROL. VALLE- STACK. push(CONFI GURATI ON) ;

/'l Indicating the execution of a
/1l configuration function
CONTROL. STATI C : = true;

Enti ty. NEXT-CONTROL(t rue);
RETURN;

A

<st art - conponent - op> /l Start of MIC

Entity.STATUS : = BLOXKED;

A I/ MICwill set status to ACTIVE
/'l before it term nates
wai t-for-termnation -« Entity.NEXT-CONTROL(true);
RETURN;
v

Figure 59a of ETSI ES 201 873-4 [2]: Flow graph segment <config-func-call>

6.24 Connect operation

The syntactical structure of theconnect operationis:

connect (<component - expr essi on,>: <port|dl>, <conponent -expression,> <portld2>) [static]

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<conponent - expr essi on;> and <conponent - expr essi on,>. The references may be stored in variables or

isreturned by afunction, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

A present st at i ¢ clause indicates that the new connection is static, i.e. established during the execution of a
configuration function. Presence and absence of the st at i ¢ clause is handled as a Boolean flag in the operational
semantics (see st at i ¢ parameter of the basic flow graph node connect - op in figure 60).

The execution of theconnect operation is defined by the flow graph segment <connect - op> shown in figure 60.
In the flow graph description the first expression to be evaluated refersto <conponent - expr essi on,> and the

second expressionto <comnponent - expr essi on,>, i.e. the<conponent - expr essi on,> isontop of the
value stack when the connect - op node is executed.

ETSI

42 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segment <connect - op> let { /1 begin of a local scope

A 4 var portOne, portTwo; // voriables for ports

<expr essi on> var conp2 := Ent ity. VALUE- STACK. top();
Entity. VALUE- STACK. pop() ;

var conmpl := Entity. VALUE- STACK. t op();

Entity. VALUE- STACK. pop();

A 4

) if (static == true & & CONTROL. STATIC != true) {
<expr essi on> *** DYNAM G- ERROR* * *

/1 Static connections have to be established
/1 within a configuration function

}
\ 4 else if (static !'=true &% CONTROL. STATIC == true) {
Connect_op *** DYNAM C- ERROR* * *
(portldi, portld2, /1 Non-static connections cannot be established
/1 within a configuration function

static)

el se {
portOne : = conpl. portl dl. COVP- PORT- NANE;
port Two : = conp2. port| d2. COVP- PORT- NAMNE;
ADD- CON(conpl, portOne, conp2, portTwo, static);
ADD- CO\(conp2, portTwo, conpl, portOne, static);

} /1 end of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN;

Figure 60 of ETSI ES 201 873-4 [2]: Flow graph segment <connect-op>

6.25 Create operation
The syntactical structure of thecr eat e operationis:

<conponent Typel d>. create [alive] [static]

A present al i ve clause indicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (seeal i ve parameter of the basic
flow graph node cr eat e- op in figure 62).

A present st at i ¢ clause indicates that the new component is static, i.e. part of a static test configuration and created
during the execution of a configuration function. Presence and absence of the st at i ¢ clauseis handled as a Boolean
flag in the operational semantics (seest at i ¢ parameter of the basic flow graph node cr eat e- op infigure 62).

The flow graph segment <cr eat e- op> in figure 62 defines the execution of the cr eat e operation.

ETSI

43 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segnent <creat e- op>

create-op
(conponent Typel d, alive,)-------- |
static) :

let { /'l Loca scope

var newentity; /1 for storing the newy created entity
/] creation of the entity state for the new conmponent
if (static == true) { /'l creation of a static conponent
if (CONTROL.STATIC ! = true) {
***DYNAM C- ERROR** * /] creation of a static conponent is only
/1 alowed ina configuration function
else {
newEntity : = NEWENTI TY(conponent Typel D, true, true);
/1 the alive flag is set because static
/'l conponents behave like alive conponents
el se {

newentity := NEWENTI TY(conponent Typel D, static, false);
}

I/l The reference to the new entity is pushed onto the val ue stack of the
/] ‘father' entity.

Entity. VALUE- STACK. push(newEnti ty);
/I The identifier of the 'father' entity is pushed onto the val ue stack of the
/I newentity. The identifier is needed to restore the status of the 'father’
/] entity after conpletion of the entity creation. The 'father' entity is
I/ blocked until all ports, variables, timers specified in the conmponent type
I/ definition are instantiated. This instantiation is done by executing the
Il flow graph that represents 'conponentTypelD by the newentity.
newEnti ty. VALUE- STAXK. push(Enti ty);
I/l The newentity is put into the nodul e state
ALL- ENTI TY-STATES. append(newEntity);

} // End local scope

/1 The actual status of the 'father' entity is saved and the 'father' entity goes

/1 into a blocking state. Note the restoration of the status of the father entity
/1 is described in fl owgraph segnent <finalize-conponent-init>.

Entity. VALUE- STACK. push(Entity. STATUS); // Saving the actual status
Entity. STATUS := BLQCKED

Entity. NEXT- CONTROL(true); // Return of control
RETURN,

Figure 62 of ETSI ES 201 873-4 [2]: Flow graph segment <create-op>

ETSI

6.26

44 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Flow graph segment <disconnect-all>

The flow graph segment <di sconnect - al | > defines the disconnection of all components at all connected ports.
Static connections will not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

segnent

<di sconnect-al | >

di sconnect-all Y-

let { // local scope

var port := ALL- PCRT- STATES.first();
var connecti on;

while (port != NULL) {
connection : = port.CONNECTIONS. first();
whi le (connection != NULL) {
if (connection.STATIC == true) { // static connection or napping
connection : = port. GONNECTI ONS next(connection);

}
el se {
if (connecti on. REMOTE- ENTI TY = system {
connecti on := NUWL; /1 mapped port
}
el se {
por t . CONNECTI ONS. del et e(connecti on) ;
connection := port. CONNECTI ONS.first();
}
}

}
port := ALL- PCRT- STATES. next(port);

} // End of I ocal scope

Enti ty. NEXT-CONTROL(true);
RETURN;

Figure 64b of ETSI ES 201 873-4 [2]: Flow graph segment <disconnect-all>

ETSI

45 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.27 Flow graph segment <disconnect-comp>

The flow graph segment <di sconnect - conp> defines the disconnection of al ports of a specified component.
Static connections will not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

segnent <di sconnect-conp>

disconnect -conp

let { // local scope
var conp : = Entity. VALUE- STACK. top();
var connecti on; -
var port := ALL-PCRT- STATES.first();

while (port != NULL) ({
connection : = port.CONNECTI ONS. first();
while (connection !'= NULL) {
if (connection.STATIC ==true) { // static connection or nappi ng
connection : = port. GONNECTI ONS next(connection);

el se {
if (connection. REMOTE- ENTI TY = system) {
connecti on := NUL; /1 mapped port

}
el se if (connecti on. REMOTE- ENTI TY = conp
or (port. OANER == conp) {

port. CONNECTI ONS del et e(connecti on) ;
connection := port. CONNECTI ONS.first();

el se {
connecti on := port. CONNECTI ONS. next (connecti on);
}

}
}
port := ALL- PCRT- STATES. next(port);

}
Enti t y. VALUE- STACK pop(); /'l clear val ue stack
} /1 End of |ocal scope

Enti ty. NEXT-CONTROL(true);
RETURN,;

v

Figure 64c of ETSI ES 201 873-4 [2]: Flow graph segment <disconnect-comp>

ETSI

46

6.28

Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Flow graph segment <disconnect-port>

The flow graph segment <di sconnect - por t > defines the disconnection of a specified port. Static connections will
not be disconnected. Their lifetimeis bound to the lifetime of the static test configuration.

segnent <di sconnect - port>

di sconnect - port

let { // local scope
var portld, rPortld,
var conp, rConp;
var port;

Entity. VALUE- STACK. pop();

Entity. VALUE- STACK. pop();
port

var connection

portld := Entity. VALUE- STACK. top();
conp : = Entity.VALUE- STACK. top();
:= GET- PORT(conp, portld);

;= port. CONNECTIONS. first();

while (connection != NULL) {

*** DYNAM C- ERROR* * *

connection

i f (connection. REMOTE- ENTITY == SYSTEM ({

el se if (connection.STATIC == true) { // static connection
1= port. CONNECTI ONS. next (connecti on);

// port is not a connected port

}

el se {

DEL- CON(comnp, portld,
DEL- CON(r Conp,
connection

rConmp : = connection. REMOTE- ENTI TY;

rPortld : = connection. REMOTE- PORT- NAME;
r Conp,
rPortld,
:= port. CONNECTI ONS. first();

rPortld);
conp, portld);

}
} // End of local scope

Entity. NEXT- CONTROL(true);
RETURN,

Figure 64d of ETSI ES 201 873-4 [2]: Flow graph segment <disconnect-port>

6.29

Flow graph segment <disconnect-two-par-pairs>

The flow graph segment <disconnect-two-par-pairs> shown in figure 64e defines the execution of the di sconnect
operation with two parameter pairs which disconnects specific connections. In the flow graph segment the first
expression to be evaluated refersto <conponent - expr essi on;> (see syntactical structure of the

di sconnect operationin ETS|I ES 201 873-4 [2], clause 9.14) and the second expression to

<component - expr essi on,>, i.e. the <conponent - expr essi on,> ison top of the value stack when the

di sconnect -t wo node is executed. Applying the di sconnect operation to a static connection leads to a dynamic

error.

ETSI

a7 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segnent
<d?sconnect-two-par-pairs> let { /'l begin of alocal scope
var portOne, portTwo; // voriables for ports
Y var connection; // variable for a connection
- var conp2 : = Entity. VALUE- STACK.top();
<expression> Enti ty. VALUE- STACK pop() ;

var conpl : = Entity. VALUE- STACK.t op();
Enti ty. VALUE- STACK pop() ;

b if (compl == SYSTEM {
*** DYNAM C- ERROR* * * /'l mapped port
<expressi on> }
el se {

portOne := conpl. port | dl. COMP- PORT- NAME;

}
if (comp2 == SYSTEM {
*** DYNAM C- ERROR* * * /'l mapped port

di sconnect - t wo }
(portldl, portld2)y—1 el se {

portTwo := conp2. port | d2. COMP- PORT- NAME;
}

connection : = GET-CON(conpl, portOne, conp2, portTwo);
if (connection. STATIC := true) {

*** DYNAM C- ERROR* * * /'l static connection
}
el se {
DEL-CON(conpl, portOne, conp2, portTwo);
DEL-CON(conp2, portTwo, conpl, portOne);
}

} /1 end of |ocal scope

v

Figure 64e of ETSI ES 201 873-4 [2]: Flow graph segment <disconnect-two-par-pairs>

6.30 Execute statement

The syntactical structure of the execut e statement is:

execut e(<t est Casel d>([<act-par,> .., <act-par_>)]) [, <float-expression>] [, <config-expression>])

Theexecut e statement describes the execution of atest case <t est Casel d> with the (optional) actual parameters
<act-par >, ..., <act-par ,>. Optionally the execute statement may be guarded by aduration provided in form

of an expression that evaluatesto af | oat . If within the specified duration the test case does not return averdict, a
timeout exception occurs, the test configuration is destroyed and an er r or verdict is returned.

If atest case is executed on an existing static test configuration, the configuration shall be provided in form on an
expression that evaluates to a configuration reference.

If no timeout exception occurs, the MTC is created or started, the control instance (representing the control part of the
TTCN-3 module) is blocked until the test case terminates, and for the further test case execution the flow of control is
given to the MTC. The flow of control is given back to the control instance when the MTC stops its execution.

The flow graph segment <execut e- st nt > in figure 67 defines the execution of an execut e statement. The
operational semantics distinguishes the cases where atest case is executed on an existing static test configuration and
where not.

ETSI

48 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segment <execute-stn >

A

<execut e-wi t hout -config>
OR /1 Atest case is or is not executed
<execut e-on-config> [""] /1l on a static test configuration

v

Figure 67 of ETSI ES 201 873-4 [2]: Flow graph segment <execute-stmt>

6.31 Flow graph segment <execute-without-config>

The flow graph segment <execut e- wi t hout - conf i g> in figure 67a distinguishes between the case where the
execution is guarded by atimeout and the case where the statement is not guarded.

segment <execute-wi thout-config>

A

<execut e-wit hout-tineout >
OR /1 An execute statement may or nay
<execute-ti neout> | // not be guarded by a ti meout

v

Figure 67a of ETSI ES 201 873-4 [2]: Flow graph segment <execute-stmt>

6.32 Flow graph segment <execute-on-config>

The flow graph segment <execut e- on- conf i g> in figure 69a distinguishes between the case where the execution
of atest case on a configuration is guarded by atimeout and the case where the execution is not guarded.

segment <execute-on-config>

y

<execut e-on-confi g-wi t hout -timeout >
OR /'l An execute statement may or nmay
<execut e-on-confi g-ti meout > ™| // not be guarded by a tineout

v

Figure 69a of ETSI ES 201 873-4 [2]: Flow graph segment <execute-on-config>

6.33 Flow graph segment <execute-on-config-without-timeout>

Executing atest case on a static configuration means to start the behaviour of the test case on the MTC of the test
configuration,i.,e. MyMIC. start (Test CaseNane(P1..Pn)).

o In addition the following parts of the configuration state have to be reset to the following values:
- the global test case verdict and all local component verdicts are set to none;

- the local default lists of all components of the test configuration are emptied;

ETSI

49 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

- the global lists DONE and KILLED are emptied. These lists are used for storing the test components that
stopped their execution or have been killed during test execution.

The flow graph segment <execut e- on- confi g-w t hout - t i meout > in figure 69b specifies the execution of a
test case on a static configuration where the execution is not guarded by atimer. It makes use of thest art component
operation.

segment <execute-on-config-without-timeout >

/| The Expression shall eval uate to a

/ configuration reference. The reference
/ identifies the configuration on which
/ the test case is executed.

<expressi on>

/
/
/
/

let { // loca scope
var nmyEntity; // for storing an entity reference

CONFl GURATI ON : = Entity. VALUE- STACK. t op() ;

‘L\ Entity. VALUE- STACK pop();
init-test-config-state i f (ALL-CONFI GURATI ON. menber (CONFI GURATI ON

DYNAM C- ERROR // no confi guration

I=true) {

else { // valid configuration
/'l reset of configuration state
CONFl GURATI ON. TC- VERDI CT : = none;
CONH GURATIT ON. DONE : = NUJLL;
CONH GURATI ON. KI LLED : = NULL;
nyEntity : = CONFI GJRATION. ALL- ENTI TY- STATES. first();
while (nyEntity !'= NULL) {
nmyEntity. DEFAWT- LIST : = NULL;
myEnti ty. E VERDI CT : = none;

}
/'l pdate of gl oba variables
MTIC : = CONFI GLRATION. ALL- ENTI TY- STATES first();
TC- VERDI CT : = none;
DONE : = NULL;
KI'LLED : = NULL;
}

Enti ty. NEXT- CONTRQ.(t rue);
RETURN;

A

<start-component -op> /| Start of MIC

Entity. STATUS : = BLOCKED;

A /1 MC will set status to ACTI VE
/] before it termnates
wait-for-term nation Y- Entity. NEXT- CONTRQL(t rue);
RETLRN,;
v

Figure 69b of ETSI ES 201 873-4 [2]: Flow graph segment <execute-on-config-without-timeout>

6.34 Flow graph segment <execute-on-config-timeout>

The flow graph segment <execut e- on- confi g-ti meout > in figure 69c defines the execution of atest case on a
configuration that is guarded by atimeout value. The flow graph segment also models the execution of the test case by
starting the behaviour of the test case on the MTC on an existing static test configuration. In addition, TIMER-GUARD
guards the termination.

ETSI

50 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segnent <execut e-on-config-ti neout >
/'l The Expression shal |l evaluate to a a fl oat

‘‘‘‘‘ /1 value. This val ue defines the duration of
l o /'l Tl MR- GUARD

<expr essi on> Enti ty.TI MER GUARD. STATUS := | OLE;

Entity. Tl MER GUARD. ACT- DURATI ON : = Entity. VALLE- STACK. top();
Enti ty. VALUE STACK. pop();

Entity. NEXT-CONTROL(true);

set-tiner-guard | RETURN:

/1 The Expression shall evaluate to a configuration
/'l reference. The reference identifies the configuration
-1 // on vhich the test case is executed.

<expr essi on>

let { // local scope
var nykntity; // for storing an entity reference

init-test-config-state Y. CONFI GURATI ON : = Enti ty. VALUE- STACK. top() ;

Enti ty. VALUE- STACK pop() ;

i f (ALL- CONH GURATI ON. menber (CONFI GURATIQN) ! = true) {
DYNAM C- ERROR [/ no configuration

else { // vaid configuration
/'l reset of configuration state
CONFI GURATI ON TC- VERDI CT : = none;
CONFI GURATI ON DONE : = NJLL;
CON-I GURATI ON KI'LLED : = NULL;
nyEntity : = CGONFI GJRATION. ALL- ENTI TY-STATES. first();
while (nyEntity !'= NULL) {
nyEntity. DEFAWT- LIST := NULL;
nmyEntity.E- VERDI CT : = none;

}

/'l Update of gl obal variables

MTIC : = QONFI GJRATION. ALL- ENTI TY-STATES. first();
TC-VERDICT : = none;

DONE : = NULL;

KI'LLED := NULL;

}
3 Enti ty. NEXT- CONTROL(t rue) ;
<start-conponent -op> RETURN;
e
1 /1 Start of MC

prepare-wai t

“| Entity.STATWS : = SNAPSHOT; // MIC wll set status to ACTIVE
" /'l before term nation

Enti ty. TI MER GUARD. STATUS := RWUNNI NG

Enti ty. NEXT-CONTROL(t rue);

RETURN;

if(Entity. STATUS == SNAPSHOT and
Entity. TIMER- GJARD. STATUS ! = TIMEQUT) { // Control waits

active-wai ting - Entity. NEXT- CONTRQ.(t r ue) ;

else { // Test case term nated or timer guard tined out
Enti ty. NEXT- CONTRQ.(t r ue) ;

}
RETURN;

stop-or-timeout
if (Entity.STATUS ! = SNAPSHOT) { /1 normal termination
Enti ty. T MER-GUARD STATUS := | DLE;
Enti ty. NEXT- CONTRQ_(t r ue) ;

else { // guarding timer tined out
Enti ty. NEXT- CONTRQA_(f al se) ;

A

<dynamic-error> }
/* Stop test case */

RETURN;

;

Figure 69c of ETSI ES 201 873-4 [2]: Flow graph segment <execute-on-config-timeout>

ETSI

51 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.35 Flow graph segment <statement-block>

The syntactical structure of a statement block is:

{ <statement > ..; <statement >}

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When leaving a scope unit, al variables, timers and stack values of this scope have to be destroyed.

NOTE 1: A Statement block can be embedded in another statement blocks or can occur as body of functions,
atsteps, test cases and module control, and within compound statements, e.g.al t ,i f- el se or
do-whi | e.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in al t
statementsor cal | operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. syst emor sel f, are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <st at enent - bl ock> in figure 78 defines the execution of a statement block.

ETSI

52 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segment <statenent-bl ock>

let { /'l local scope
var act Var Scope : = copy(Entity. DATA- STATE.first());
var actTi mer Scope : = copy(Entity. TI MER- STATE. first());
Entity. INl T- VAR- SCOPE();
Enti ty. DATA- STATE.fi rst(). add(act Var Scope);
Entity. INl T- Tl MER-SCOPH) ;
Entity. DATA-TI MER.fi rst(). add(act Ti mer Scope) ;
Entity. VALUE- STACK push(MARK) ;

ent er-scope-unit }

Entity.NEXT-CONTROL(true);

RETURN,;
A
<constant - definiti on> OR /1 List of flowgraph segnents
<ti mer - decl arati on> OR /'l representing defintions
<variabl e-decl ar ati on> /1 and declarations.

L]

<action-stnt> OR <activate-stnt> OR <alt-stnt>
OR <assignnent -stnt > R <cal | -op> OR
<cl ear - port-op> OR <config-func-ca |l > OR

<connect -op> (R <create-op> (R /'l List of flowgraph segnents
<deactivate-stnt> OR <di sconnect - op> OR /'l representing all possible
<do- whi | e-stnt > OR <execut e-stnt > R <for-stnt> /'l statements and operations
OR <function-call > OR <getverdi ct-op> OR

<goto-stnt> OR<if-el se-stnmt > OR

<ki | I -conmponent-op> OR <kil | -config-op> OR
<kill -exec-stm > OR <label -stnt > OR < og-stnt>
OR <nap-op> OR <raise-op> OR <repeat-stnt> OR

<repl y-op> OR <return-stnt> OR <send-op> (R

<setverdi ct-op> OR <start-conponent-op> OR

<start-port-op> OR<start-timer-op> (R
<st op-conponent- op> OR <st op- exec-stnt > OR

<st op-port-op> OR <stop-ti mer-op> (R <unmap-op> Enti ty. DEL-VAR- SCOPE() ;
OR <whi | e- st > Enti ty.DEL-TT VER SCOPE() ;
Entity.VALUE- STACK. clear-until (MARK);
A4 Entity. NEXT- CONTROL(true);
RETURN,;

exi t - scope-unit

v

Figure 78 of ETSI ES 201 873-4 [2]: Flow graph segment <statement-block>

6.36 Halt port operation

The syntactical structure of the hal t port operationis:

<portld>. halt

The flow graph segment <hal t - por t - op> in figure 89a defines the execution of the hal t port operation.

ETSI

53 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segnment <hal t-port-op>

let { // Begin of local scope
var portRef := NULL
var portState := NULL;

A 4
if (Entity.STATIC == true) {

hal t-port-op)........ ***DYNAM C- ERROR*** // port operation on a
(portld) /l static test conponent
else if (portld == “all port”) {

portState : = ALL- PORT- STATES.first();
while (portState !'= NULL) ({
if (portState. OABNER == Entity) {
port State. STATUS : = HALTED,
port St at e. enqueue(HALT- MARKER) ;

}
portState : =
ALL- PORT- STATES. next (port State);

}
}
el se {
portRef := Entity. portld. COWP- PORT- NAME;
CET- PORT(Entity, portRef).STATUS : = HALTED;
GET- PORT(Entity, portRef).enqueue(HALT- MARKER) ;

}
} /1 End of socpe

Entity. NEXT- CONTROL(true);
RETURN,

\ 4

Figure 89a of ETSI ES 201 873-4 [2]: Flow graph segment <halt-port-op>

NOTE: TheHALT- MARKERthat is put by ahal t operation into the port queue is removed by the SNAP-PORTS
function (see ETSI ES 201 873-4 [2], clause 8.3.3.2) when the marker is reached, i.e. all messages
preceding the marker have been processed. The SNAP-PORTSfunction is called when taking a snapshot.

6.37 Kill component operation

The syntactical structure of theki | | component statement is:

<conponent - expressi on>. ki | |

Theki Il component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC iskilled
(eg.mtc.kill)orkillsitself (e.g.sel f. kill). TheMTC may kill al parallel test components by using the al |
keyword, i.e. al | conponent kil l.

Specia rules apply for using the ki | | component operation in static test configurations: Applying theki | |

component operation to a static component leads to adynamic error. The lifetime of al static components (including the
MTC) is bound to the lifetime of the test configuration. However, the MTC may kill al non-static parallel test
components by usingtheal | keyword, i.e.al | conponent kil l.

A component to be killed isidentified by a component reference provided as expression, e.g. avalue or value returning
function. For simplicity, thekeyword "al | conponent " isconsidered to be special values of

<conponent - expr essi on>. The operationsnt ¢ and sel f are evaluated according to ETS| ES 201 873-4 [2],
clauses 9.33 and 9.43.

The flow graph segment <ki | | - conmponent - op> in figure 90a defines the execution of the ki | | component
operation.

ETSI

54 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segment <Kil | - conponent - op>

/1 The Expression shall evaluate
v /] to a component reference. The
/1 result is pushed onto VALUE- STACK

<expr essi on>

if (Entity.VALUE-STACK. top() == "all conponent') {
Entity. VALUE- STACK. pop(); // clean val ue stack

if (Entity I'= MO {

v ***DYNAM C-ERROR*** // "all' not allowed
decision) el se {
Entity. NEXT- CONTROL(true);
true {
fal se
el se {
Entity. NEXT- CONTROL(f al se);
<kill-all-conp> }
RETURN,
\ 4 if (Entity.VALUE- STACK.top().STATIC == true) {
DYNAM C- ERROR // kill is applied to a
decision) // static conponent
}
true else if (Entity.VALUE-STACK top() == MIQ) {

Entity. VALUE- STACK. pop(); // clean val ue stack
Entity. NEXT- CONTROL(true);

<kill-mtc> el se {

Entity. NEXT- CONTROL(f al se);
}

RETURN,

i f (ALL- ENTI TY- STATES. menber (Enti ty. VALUE- STACK. top())) {
..... Entity. NEXT- CONTROL(true);
}
el se {

i f (KILLED. nermber (Entity. VALUE- STACK. top())){

/1 NULL operation, conmponent already term nated

<ki Il - conponent > Entity. VALUE- STACK pop(); // clean val ue stack
Entity. NEXT- CONTRO.(f al se);

prepare-kill

fal se

true

}
el se {
/1 conponent id has not been all ocated
*** DYNAM C- ERROR* * *
> {
}
RETURN,

;

Figure 90a of ETSI ES 201 873-4 [2]: Flow graph segment <kill-component-op>

ETSI

55 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.38 Flow graph segment <kill-mtc>

The<ki | | - mt ¢> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the final verdict is calculated and pushed onto the value stack of module control. The release of all
resources are released is modelled by deleting the test configuration from the ALL-CONFIGURATIONS list.

segnment <kill-nic> !

kill-mtc Y}

let { // local scope for variables

var myEntity := ALL- ENTI TY- STATES. first();

/] Update test case verdict and del eti on of conponents
while (nyEntity != NULL) {
if (nyEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC- VERDI CT : = fail;

el se {

if (nyEntity. E-VERDICT = inconc or TC-VERDICT = inconc) {
TC- VERDI CT : = i ncong;

}

el se {
if (nyEntity.E-VERDICT == pass or TC- VERDI CT == pass) {

TG VERD CT := pass;
}

}
nyEntity : = ALL- ENTI TY- STATES. next (nmyEntity);
}

/'l TC-VERDICT is the result of the execute operation
CONTROL. VALUE- STACK. push(TC-VERDO CT) ;

/1 Update of test case reference paraneters
UPDATE- REMOTE LOCATI ONS(MTC, CONTROL);

/1 Deletion of test configuration

ALL- CONFl GURATI ONS. del et e(CONFI GJRATI ON)
/'l Resetting of global variables

ALL- ENTI TY- STATES: = NULL;

ALL- PORT- STATES : = NULL;

DONE : = NULL;

KI'LLED := NULL;

TC-VERDICT : = none;

MIC : = NJLL;

CONTROL. STATWS : = ACTIVE; // Control continues
} /1 End of |ocal scope
RETURN;

Figure 90b of ETSI ES 201 873-4 [2]: Flow graph segment <kill-mtc-op>

6.39 Flow graph segment <Kkill-all-comp>

The<ki Il | -al | - conp> flow graph segment in figure 90d describes the termination of all parallel test components of
atest case.

ETSI

56 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segnment <kill-all-conp>

kill-all-conp

let { // local scope for variable myEntity
var myEntity : = ALL- ENTI TY- STATES next (MIQ ;
var port; -
var connecti on;

/'l Wdate test case verdict
while (nyEntity != NULL) {
if (nyEntity.STATIC!= true) { // not a static test conponent
if (nyEntitiy. EVERDCT = fail or TC-VERDICI == fail) {
TC-VERDICT : = fail;

el se {
if (nyEntity. E-VERDICI == inconc or TC-VERDI CI == inconc) {
TG VERD CT := inconc;
el se {
if (nyEntity. E-VERDI CT == pass or TG VERD CT == pass) {
TC-VERDICT : = pass;
}
}
}

}
nyEntity : = ALL- ENTI TY- STATES next (nmyEntity);
}

/1 Deletion of test conponents
myEntity := ALL- ENTI TY-STATES. next (MIC) ;
while (nyEntity = NULL) { -
if (nyEntity. STATIC == true) { // a static test conponent

nmyEntity := ALL- ENTITY- STATES next(nyEntity);

else { // not a static test conponent
/1 disconnect and unmap conponent
port := ALL- PORT- STATES. first();
while (port !'= NULL) {
connection := port. CONNECTI ONS first();
whil e (connection != NULL) {
i f (connection. REMOTE ENTITY == conp
or (port.OANNER == conp) {
port . CONNECTI ONS. del ete(connection);
connection : = port. CONECTIONS. first();

else {
connection := port. CONECTIONS. next (connecti on);
}
}
port := ALL- PORT- STATES. next (port);
}
DONE. append(myEnti ty); /1 Update of DONE
Kl LLED. append(nyEntity); /'l Update of KILLED
DEL- ENTI TY(nmyEntity); /'l Del etion of entity

nyEntity := ALL- ENTITY- STATES next(MIC); // Next conponent to delete
}

}
} /1 End of |ocal scope

Enti ty. NEXT-CONTROL(t rue) ;
RETURN;

Figure 90d of ETSI ES 201 873-4 [2]: Flow graph segment <stop-all-comp>

ETSI

57 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.40 Kill execution statement

The syntactical structure of theki | | execution statement is:
Kill
The effect of theki | | execution statement depends on the entity that executesthe ki | | execution statement:

a Ifkill isperformed by the module control, the test campaign ends, i.e. al test components and the module
control disappear from the module state.

b) Iftheki |l isexecuted by the MTC, al parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the value stack of the module control. Finally, control is given back to
the module control and the MTC terminates.

c) Ifthekill isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

The execution of theki | | execution statement by any static test component (including the MTC of a static test
configuration) is not alowed. It leads to a dynamic error.

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

segment <kill -exec-stnt>
A if (Entity == CONTROL {
Entity.NEXT-CONTROL(true);
decision Y. -
el se {
true Entity.NEXT-CONTROL(fal se);
fal se }
RETURN
<kill-control>

if (Entity.STATIC ==true) {
*** DYNAM C- ERROR*** [/ static Entity
}

el se {
if (Entity == MIQ {
Enti ty. NEXT- CONTROL(t rue) ;

decision }........_. else {
Enti ty. VALUE- STAXK. push(Entity);
Enti ty. NEXT- CONTROL(f al se) ;

}
RETURN
true fal se
<kil'l-mc> <ki |l - conponent >

Figure 90e of ETSI ES 201 873-4 [2]: Flow graph segment <kill-exec-stmt>

ETSI

58 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.41 Kill configuration operation

The syntactical structure of theki | | configuration operationis:

<configuration-expression> kill

Theki I | configuration operation destructs the specified test configuration and removesit from the test system. The
kill configuration operation shall only be executed by module control. The configuration to be killed isidentified by
means of a<confi gurati on- expressi on>., i.e. an expression that evaluatesto areference to a configuration.

The flow graph segment <ki | | - conf i g- op> in figure 90f defines the execution of the ki | | configuration
operation.

segnent <kill-config-op>

let { /1 begin of aloca scope
var config := Entity. VALUE-STACK top();
Enti ty. VALUE STAXK. pop() ;

<expr ession>

if (Entity !'= CONTROL) {
DYNAM C- ERROR [/ kill config operation is not
/1 invoked by npdul e control

A

}
nap- op el se if (ALL- CONH GURATI ONS nenber (config) !=true) {
(port 1 dl,port|d2) jum *** DYNAM C- ERROR* ** // configuration to be killed
/'l does not exist
}

el se {
ALL- CONF GURATI ONS del et e(confi g)

} /1 end of |ocal scope

Entity. NEXT-CONTROL(true);
RETURN;

v

Figure 90f of ETSI ES 201 873-4 [2]: Flow graph segment <kill-config-op>

6.42 Map operation

The syntactical structure of the nap operationiis:

map(<conponent - expressi on>: <portldl>, system <portld2>) [static]

The identifiers<port | d1> and <por t | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portld1> belongsis referenced by means of the component
reference <conponent - expr essi on>. The reference may be stored in variables or isreturned by a function, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component

reference.

A present st at i ¢ clauseindicates that the new mapping is static, i.e. established during the execution of a
configuration function. Presence and absence of the st at i ¢ clause is handled as a Boolean flag in the operational
semantics (see st at i ¢ parameter of the basic flow graph node map- op in figure 93).

NOTE: Thenap operation does not care whether the sy st em<portld> statement appears asfirst or as second
parameter. For simplicity, it is assumed that it is aways the second parameter.

The execution of the map operation is defined by the flow graph segment <nap- op> shown in figure 93.

ETSI

59 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segment <nmap- op>

let { /'l begin of a local scope

v var portRef;

var conmpl := Entity. VALUE- STACK. top();
Entity. VALUE- STACK. pop() ;

<expr essi on>

if (static == true && CONTRCL. STATIC != true) {
**%* DYNAM C- ERROR* * *
/1 Static connections have to be established
/1 within a configuration function

A 4

p-op
(portldl, portld2,static)

}

else if (static !=true &% CONTROL. STATIC == true) {
*** DYNAM C- ERROR* * *
/1 Non-static connections cannot be established
/1 within a configuration function

el se {
portRef := Entity.portldl. COWP- PORT- NAVE;
ADD- CON(conpl, portRef, system portld2);
} /1 end of |ocal scope

Entity. NEXT- CONTROL(true);
RETURN,

v

Figure 93 of ETSI ES 201 873-4 [2]: Flow graph segment <map-op>

6.43 Start port operation

The syntactical structure of thest ar t port operation is:

<portld>. start

The flow graph segment <start-port-op> in figure 121 defines the execution of the st ar t port operation.

ETSI

60 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segnent <start-port-op>

let { // Begin of local scope
\ 4 var portRef := NULL
var portState := NULL;

start-port-op ...

(portid) if (Entity.STATIC == true) {
*** DYNAM C- ERROR*** [/ port operation on a
[/ static test conponent

else if (portld == “all port”) {
portState : = ALL- PORT- STATES.first();
while (portState !'= NULL) {
if (portState. ONNER == Entity) {
port State. VALUE- QUEUE. cl ear () ;
port State. STATUS : = STARTED

portState : =
ALL- PORT- STATES. next (port State);

}

el se {
portRef := Entity.portl|d. COWP- PORT- NAME;
GET- PORT(Entity, portRef).clear();
CET- PORT(Entity, portRef).STATUS := STARTED;
} /1 End of socpe

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 121 of ETSI ES 201 873-4 [2]: Flow graph segment <start-port-op>

6.44 Stop component operation

The syntactical structure of the st op component statement is:

<conponent - expr essi on>. st op

The st op component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. nt c. st op) or stopsitself (e.g. sel f. st op). The MTC may stop al parallel
test components by using theal | keyword, i.e.al | conponent .st op.

Stopped components created with an al i ve clausein the cr eat e operation are not removed from the test system.
They can berestarted by using ast ar t statement. Variables, ports, constants and timers owned by such a component,
i.e. declared and defined in the corresponding component type definition, keep their status. A st op operation for a
component created without an al i ve clause is semantically equivalentto aki | | operation. The component is
removed from the test system.

A component to be stopped isidentified by a component reference provided as expression, e.g. avalue or value
returning function. For simplicity, the keyword "al | conponent " isconsidered to be specia val ues of
<conponent - expr essi on>. Theoperationsnt ¢ and sel f are evaluated according to ETS| ES 201 873-4 [2],
clauses 9.33 and 9.43.

The flow graph segment <st op- conponent - op> in figure 125 defines the execution of the st op component
operation.

ETSI

61 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

segment

<st op- conponent -op>

/| The Expression shal | eval uate

/ to a conponent reference. The
/1 result is pushed onto VALUE-STAXK

A

<expr essi on>

if (Entity.VALUE STAXK.top() == "all conponent') {
Entity. VALUE STAK. pop(); // clean val ue stack
if (Entity !'= MIQ {
DYNAM C- ERROR [/ "all' not all owed

decision }.____ else {
Enti ty. NEXT- GCONTRQ.(t rue) ;
true {

else {

<stop-al | - conp>

Entity.NEXT-CONTROL(f al se);
}

RETURN

if (Entity.VALUE STAXK. top() == MIQ {
Entity.VALUE STAXK. pop(); // clean val ue stack

~~~~~~ Entity. NEXT-CONTROL(true);

}

true else {

Entity.NEXT-CONTROL(f al se);

}
RETURN

<st op- nmi c>

i f (ALL- ENTITY- STATES member (Entity. VALUE- STACK. top())) {

f

Entity. NEXT-CONTROL(true) ;
}

else {

if (DONE menber (Entity. VALUE- STACK. top())){
prepare-stop - /1 NJLL operation, conponent already stopped
al se /1 or Kkilled.
Entity. VALUE-STACK pop(); // clean val ue stack
true Entity. NEXT- CONTRQL(f al se);

el se {

/'l conponent id has not been al located
*** DYNAM C- ERROR* **

}
RETURN,

if (Entity.VALUE STAKXK. top(). KEEP- ALI VE == true)) {
Entity. NEXT-CONTROL(true); // Conponent is not
/'l removed fromthe
/'l test system
}
else {
Entity. NEXT-CONTROL(fal se); // Qonponent is killed

P

}
deci si on -«] RETURN;

true fal se

A
<stop- ali ve-conponent >

\

<kil I - component >

!

Figure 125 of ETSI ES 201 873-4 [2]: Flow graph segment <stop-component-op>

ETSI



62 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.45 Flow graph segment <stop-mtc>

The flow graph segment <st op- it ¢> in figure 125a describes the stopping of an MTC. The effect of stopping an

MTC isthat atest case or a configuration function terminates. Depending on where and how an MTC has been
executed, three cases have to be distinguished:

1) TheMTC stopsthe behaviour of atest case that has not been executed on a static test configuration.

2) TheMTC stopsthe behaviour of atest case that has been executed on a static test configuration.

3) TheMTC stops the execution of a configuration function.

segnment <stop-ntc>

A

deci si on
fal se
true
<kill-nmc>
A
deci si on
true
fal se
<st op-config>
A

if (MIC. STATIC = false) {
/1 stopping a test case that is not executed

/] on static test configuration
Entity. NEXT-CONTROL(f al se);

else {
/]l stopping either a test case that has been
/'l executed on a static test configuration or
/1 a configuration function tern nates

Enti ty. NEXT- GCONTRQL(t rue);

}
RETURN

i f (CONFI GURATI ON. STATIC = true) {
/1l termnation of a configuration function
Entity.NEXT-CONTROL(true);

else { // stopping a test case executed
//on a static configuration
Entity.NEXT-CONTROL(f al se);

<stop-tc-config>

!

Figure 125a of ETSI ES 201 873-4 [2]: Flow graph segment <stop-mtc>

ETSI




63 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.46  Flow graph segment <stop-config>

The<st op- conf i g> flow graph segment in figure 127a describes the stopping of an MTC that has executed a
configuration function.

Segnent <st op- config>

stop-config

let { // local scope
var conpVar Scope := copy(MIC DATA- STATE. first());
var conpTi merScope : = copy(MC. Tl MER-STATE first());

var conpPort Scope : = copy(MIC. PCRT-REF. first());

/1 Wdate of conponent state. This is necessary, if the behavi our of the
/1 configuration function is structured into further function.
MIC. STATUS : = BLOCKED;

MI'C. CONTROL- STACK : = NUL;

MIC. DEFAULT- LI ST := NULL;

MIC. VALLE- STACK : = NULL;

MTC. VALLE- STACK. push( MARK) ; // for conmponent scope

MIC. TI MER- GUARD. STATUS : = | OLE;

MTC. DATA STATE : = NULL

MIC. DATA STATE. add( conpVar Scope);

MIC. TTMER- STATE : = NULL;

MTC. TI MER- STATE. add( conpTi mer Scope) ;

MIC. PORT- REF : = NUWL

MTC. PORT- REF. add( conpPor t Scope) ;

MI'C. SNAP- ALI VE : = NULL;

MTC. SNAP- DONE : = NUJLL;

MI'C. SNAP- KI LLED : = NULL;

/1 Wdate of test case reference paraneters
UPDATE- REMOTE- LOCATI ONS MTC, CONTROL);

CONTROL. STATIC :
CONTROL. STATLS

fal se; /'l Reset of STATIC flag in modul e control
ACTI \E; // Qontrol continues execution

} // End of local scope
RETURN,;

v

Figure 127a of ETSI ES 201 873-4 [2]: Flow graph segment <stop-config>

ETSI



64 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.47  Flow graph segment <stop-tc-config>

The<st op-t c- confi g> flow graph segment in figure 127b describes the termination of atest case that is executed
on a static test configuration.

Segnment <st op-tc-config>

/1 Al'l non static conponents are killed. All

<kill-al-comp> |- /1 static test components are stopped.
/1 The Test verdict is updated.

<di sconnect-al 1> | -] | /1 Al'l non static connections are destroyed.
<unmap-al > ] | /1 Al'l non static mappi ngs are destroyed.

let { // local scope

var conpVar Scope : = copy(MIC. DATA- STATE. first());
v var conpTi merScope : = copy(MIC. 1 MER-STATE. first());
var conpPort Scope : = copy(MC. PORT-RE-. first());

stop-tc-config ]

/1 Update test case verdict

if (MIC.E-VERDI CT == fail or TC-VERDICT = fail) {
TC-VERDICT : = fail;

}
el se {
if (MIC. EVERDICT == inconc or TG VERDI CT == inconc) {
TC- VERDI CT : = inconc;
}
el se {
if (MC EVERDCT = pass or TC-VERDI CT == pass) {
TC- VERDI CT : = pass;
}
}

// TC-VERDICT is the result of the execute operation
CONTROL. VALUE- STACK. push( TG VERD CT) ;

/] Update of test case reference paraneters
UPDATE- REMOTE- LOCATI ONS( MTG CONTROL) ;

/] Update of conponent state, if the behaviour of the
/1 configuration function is structured into functions.
MIC STATUS : = BLQCKED;

MIC. CONTROL- STACK : = NJLL;

MIC DEFADLT-LTST : = NUL;

MIC VALUE- STACK := NULL;

MIC VALUE- STACK. push(MARK) ; // for conmponent scope
MIC TI MER- GUARD. STATUS : = IDLE;

MIC DATA STATE : = NULL

MTC DATA:- STATE. add( conpVar Sope);

MIC TI MER- STATE := NULL;

MTC Tl MER- STATE. add( conpTi ner Scope) ;

MIC PORT- REF : = NJULL

MIC PORT- REF. add(conpPort Scope) ;

MIC SNAP- ALTVE : = NULL;

MTC SNAP- DONE : = NULL;

MIC SNAP-KILLED := NULL;

CONTROL. STATUS : = ACTI VE; // Qntrol continues execution

} /1 End of |ocal scope
RETURN,;

v

Figure 127b of ETSI ES 201 873-4 [2]: Flow graph segment <stop-tc-config>

ETSI



65 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.48  Stop port operation

The syntactical structure of the st op port operationis:

<portl|d>.stop

The flow graph segment <st op- por t - op> in figure 129 defines the execution of the st op port operation.

segnment <stop-port-op>

let { // Begin of local scope
var portRef := NULL
var portState := NULL;

A 4

stop-port-op Ve

(portid) if (Entity.STATIC == true) {
***DYNAM C- ERROR*** [/ port operation on a
[/ static test conponent

}
else if (portld == “all port”) {
portState : = ALL- PORT- STATES.first();
while (portState != NULL) ({
if (portState. OANER == Entity) {
port State. STATUS : = STOPPED

portState : =
ALL- PORT- STATES. next (port State);

}

el se {
portRef := Entity. portl|d. COWP- PORT- NAME;
GET- PORT(Entity, portRef).STATUS : = STOPPED,
} /1 End of socpe

Entity. NEXT- CONTROL(true);
RETURN;

v

Figure 129 of ETSI ES 201 873-4 [2]: Flow graph segment <stop-port-op>

ETSI



66 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.49  Flow graph segment <unmap-all>

The flow graph segment <unnmap- al | > defines the unmapping of all components at all mapped ports. Static mappings
will not be unmapped. Their lifetime is bound to the lifetime of the static test configuration.

segment <unnmap-all >

let { // local scope

var port := ALL-PCRT- STATES.first();
var connecti on;

while (port != NULL) {
connection : = port.CONNECTIONS. first();
while (connection != NULL) {
i f (connection.REMOTE- ENTI TY == system) { // mapped port
if (connection. STATIC == true) { // static nmappi ng

connecti on := port. CONNECTI ONS. next (connecti on);
}
el se {
port. CONNECTI ONS del et e( connecti on) ;
connection := port. CONNECTI ONS.first();
}
}
el se {
connection := NUL; /1l connected port
}

}
port := ALL- PCRT- STATES. next( port)

} // End of | ocal scope

Enti ty. NEXT- CONTROL( t rue) ;
RETURN;

Figure 136a of ETSI ES 201 873-4 [2]: Flow graph segment <unmap-all>

ETSI



67 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.50 Flow graph segment <unmap-comp>

The flow graph segment <unnap- conp> defines the unmapping of all mapped ports of a specified component. Static
mappings will not be unmapped. Their lifetime is bound to the lifetime of the static test configuration.

segment <unmap-conp>

unmap-conp Y-

let { // local scope
var conp := Entity. VALUE- STACK. top();
var connecti on; -
var port := ALL- PCRT- STATES.first();

while (port != NULL) {
if (port.OWNER == conp) { /1 port of conp
connection := port. GONNECTI ONS. first();
if (connection.REMOTE-ENTI TY == system) { // mapped port of conp
if (conntection.STATIC !=true) { // not a static mapping
port. CONNECTI ONS del et e( connecti on);
}

}
}
port := ALL- PCRT- STATES. next(port);

}
Enti ty. VALUE- STACK pop(); /1 clear value stack
} // End of | ocal scope

Entity. NEXT-CONTROL(true);
RETURN,

Figure 136b of ETSI ES 201 873-4 [2]: Flow graph segment <unmap-comp>

ETSI



68 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

6.51  Flow graph segment <unmap-port>

The flow segment <unmap- por t > defines the unnap operation for a specific mapped port.

segment <unmap-port>

\

unnep-port Y-

let { // local scope
var portld;
var conp;
var port;
var connecti on;

portld := Entity. VALUE-STACK top();
Enti ty. VALUE- STACK pop();

conp : = Entity. VALUE- STACK. top();
Enti ty. VALUE- STACK pop() ;

port := GET- PORT(conp, portld);

connection : = port. CONNECTI ONS. first();
i f (connection. REMOTE- ENTI TY ! = SYSTEV) {
*** DYNAM C- ERROR* * * /1 port is not a mapped port

}
else if (connection !'= NULL){ // mapped port
if (connection STATIC ==true { // static mapping
*** DYNAM C- ERROR*** [/ static mappi ngs cannot be unmapped

}
el se {

port . CONNECTI ONS. del et e(connecti on) ;
}

else { ) // do nothing, port is neither connected nor nepped
} /1 End of |ocal scope

Enti ty. NEXT-CONTROL(true);
RETURN;

Figure 136¢c of ETSI ES 201 873-4 [2]: Flow graph segment <unmap-port>

7 TRI Extensions for the Package

7.1 Changes and extensions to clause 5.5.2 of
ETSI ES 201 873-5 [3] Connection handling operations

If this package is being used, the Tr i Execut eTest Case operation shall be used only for initialization purposes of the
SA, but not for the establishment of static connections. In order to establish static connections, the Tri St ati cMap
operation shall be used instead. The Tri Unmap can be used for closing dynamic and static connections.

ETSI



69 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause5.5.2.1 triExecuteTestCase (TE — SA)

This clause is changed as follows.

Signature Tri StatusType tri Execut eTest Case(
in TriTest Casel dType test Caseld,
in TriPortldListType tsiPortlList)

In Parameters t est Casel d identifier of the test case that is going to be executed
tsi PortList alist of test system interface ports defined for the test system
Out Parameters |n.a.

Return Value The return status of the t ri Execut eTest Case operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE immediately before the execution of any test case. The test case

that is going to be executed is indicated by the t est Casel d. t si Port Li st contains all ports that
have been declared in the definition of the system component for the test case, i.e. the TSI ports. If
a system component has not been explicitly defined for the test case in the TTCN-3 ATS then the
tsi PortLi st contains all communication ports of the MTC test component. The ports in

tsi PortLi st are ordered as they appear in the respective TTCN-3 component declaration.

Effect The SA ean-setup-any-staticconnectionsto-the- SUT-and can initialize any communication means
for TSI ports.

The tri Execut eTest Case operation returns TRI_OK in case the operation has been successfully
performed, TRI_Error otherwise.

Clause 5.5.2.3 triUnmap (TE — SA)

This clause is changed as follows.

Signature Tri StatusType tri Unmap(in TriPortldType conpPortld,
in TriPortldType tsiPortld)

In Parameters |conpPort!d identifier of the test component port to be unmapped
tsiPortld identifier of the test system interface port to be unmapped
Out n.a.

Parameters
Return Value The return status of the t ri Unmap operation. The return status indicates the local success (TRI_OK)
or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes any TTCN-3 unmap operation.

Effect The SA shall close a dynamic or static connection to the SUT for the referenced TSI port.

The tri Unmap operation returns TRI_Error in case a connection could not be closed successfully or
no such connection has been established previously, TRI_OK otherwise. The operation should
return TRI_OK in case no connections have to be closed by the test system.

Clause5.5.2.3 triStaticM apParam (TE — SA)

Signature Tri StatusType tri Stati cMapParan(in TriPortldType conpPortld,
in TriPortldType tsiPortld,

in TriParaneterlistType paraniist)

In Parameters conpPort1d identifier of the test component port to be mapped
tsiPortid identifier of the test system interface port to be mapped
paranii st  configuration parameter list

Out Parameters  |n.a.

Return Value The return status of the t ri St ati cMapPar amoperation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 map operation including parameters.

Effect The SA can establish a static connection to the SUT for the referenced TSI port.

The tri Stati cMapPar amoperation returns TRI_Error in case a connection could not be
established successfully, TRI_OK otherwise. The operation should return TRI_OK in case no static
connection needs to be established by the test system. The configuration parameter par anii st
can be used for setting connection establishment specific parameters.

ETSI



70 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause5.5.2.5 triStaticMap (TE — SA)

Thisclause isto be added.

Signature TriStatusType triStaticMap(in TriPortldType conpPortld,
in TriPortldType tsiPortld)
In Parameters conpPort1d identifier of the test component port to be mapped in a static connection

tsi Portld identifier of the test system interface port to be mapped in a static connection
Out Parameters |n.a.

Return Value The return status of the t ri St at i cMap operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints This operation is called by the TE when it executes a TTCN-3 static map operation.

Effect The SA can establish a static connection to the SUT for the referenced TSI port.

The tri Stati cMap operation returns TRI_Error in case a connection could not be established
successfully, TRI_OK otherwise. The operation should return TRI_OK in case no static connection
needs to be established by the test system.

7.2 Extensions to clause 6 of ETSI ES 201 873-5 [3] Java™
language mapping

Clause 6.5.2.1 triCommunicationSA

Thetri Conmuni cat i onSA interface mapping is to be extended with the definition for Tri St at i cMap:

/1 Tri Communi cation

/1l TE -> SA

package org.etsi.ttcn.tri;

public interface Tri Conmuni cati onSA {

)/ Connection handl i ng operations

/I Ref: TRI-Definition 5.5.2.5
public TriStatus triStati cMap(Tri Portld conpPortld, TriPortld tsiPortld);

7.3 Extensions to clause 7 of ETSI ES 201 873-5 [3] ANSI C
language mapping
Clause7.24 TRI operation mapping

The table isto be extended with the definition for Tri St ati cMap:

IDL Representation ANSI C Representation
Tri StatusType tri Stati cMap TriStatus triStatic Map
(in TriPortldType conpPortld, (const TriPortld* conpPortld,
in TriPortldType tsiPortld) const TriPortld* tsiPortld)

7.4 Extensions to clause 8 of ETSI ES 201 873-5 [3] C++
language mapping
Clause 8.6.1 TriCommunicationSA

Thetri Conmuni cat i onSA interface mapping is to be extended with the definition for Tri St at i cMap. In addition, the
description of Tri Unmap hasto be changed to handle also the closing of static connections:

class Tri Comruni cati onSA {
public:

//To establish a static connection between two ports.
virtual TriStatus triStaticMap (const TriPortld *conPortld, const TriPortld *tsiPortld)=0;

ETSI



71 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

//To close a dynamic or static connection to the SUT for the referenced TSI port.
virtual TriStatus triUnmap (const TriPortld *conPortld, const TriPortld *tsiPortld)=0;

7.5 Extensions to clause 9 of ETSI ES 201 873-5 [3] C#
language mapping
Clause9.5.2.1 ITriCommunicationSA

The Tri Comuni cat i onSA interface isto be extended with the definition for Tri St at i cMap. In addition, the
description of Tri Unmap hasto be changed to handle also the closing of static connections:

public interface |Tri Conmuni cati onSA {

//To establish a static connection between two ports.
TriStatus TriStaticMap (I TriPortld conPortld, ITriPortld tsiPortld);

8 TCI Extensions for the Package

8.1 Extensions to clause 7.2.1.1 of ETSI ES 201 873-6 [4]
Management

The management type Tci Test Conponent Ki ndType has to be extended with constants for static test components:

Tci Test Conponent Ki ndType A value of type Tci Test Conponent Ki ndType isalitera of the set of kinds of
TTCN-3 test components, i.e. CONTROL, MTC, PTC, SYSTEM PTC_ALI VE,
MIC_STATI C, PTC_STATI C,and SYSTEM STATI C. This abstract typeis used
for component handling.

8.2 Extensions to clause 7.3.1.1 of ETSI ES 201 873-6 [4] TCI-
TM required

In order to handle static configurations via TCI-TM, the operationst ci St art Confi gandtci Ki | | Confi g are
defined as follows.

Clause 7.3.1.1.7 tciStartTestCase

This clause isto be extended.

Signature void tci Start Test Case(in Tci Test Casel dType testCaseld,

in Tci ParaneterlistType paraneterlist,

in Tci ConfigurationldType ref)

In Parameters |t est Caseld A test case identifier as defined in the TTCN-3 module.

paranet er Li st |A list of Val ues where each value defines a parameter from the parameter list
as defined in the TTCN-3 test case definition. The parameters in

par anet er Li st are ordered as they appear in the TTCN-3 signature of the
test case. If no parameters have to be passed either the nul | value or an
empty par anet er Li st , i.e. a list of length zero shall be passed.

ref An optional reference to a static configuration for the test case, which is to be
used if a static configuration has been defined for the test case.

Return Value |void

ETSI



72 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Constraint

Shall be called only if a module has been selected before. Only t est Casel ds for test cases that
are declared in the currently selected TTCN-3 module shall be passed. Only if the test case
requires a static configuration, a r ef to a started static configuration that is of the configuration type
in the test case definition shall be given. If no static configuration has been defined for the test case
in the TTCN-3 ATS, the distinct value nul | shall be passed in for r ef .

Test cases that are imported in a referenced module cannot be started. To start imported test cases
the referenced (imported) module shall be selected first using the t ci Root Mbdul e operation.

Effect

tci Start Test Case starts a test case in the currently selected module with the given
parameters. At ci Er r or will be issued by the TE if no such test case exists or if the static
configuration has not been started or has been killed but is required by the test case.

All in and inout test case parameters in par anet er Li st contain Val ue. All out test case
parameters in par anet er Li st shall contain the distinct value of nul |  since they are only of
relevance when the test case terminates.

Clause 7.3.1.1.11

tciStartConfig

This clause isto be added.

Signature

Tci Configurationl dType tci StartConfig (in Tci Behavi ourl dType configld,
in Tci ParaneterLi st Type paraneterList)

In Parameters

configld A configuration function identifier as defined in the TTCN-3 module.

par anet er Li st A list of Val ues where each value defines a parameter from the parameter list

as defined in the TTCN-3 configuration function definition. The parameters in
par anet er Li st are ordered as they appear in the TTCN-3 signature of the
configuration function. If no parameters have to be passed either the nul |

value or an empty par anet er Li st , i.e. a list of length zero shall be passed.

Return Value

Tci Configurationl dType

Constraint Shall be called only if a module has been selected before. Only confi gl d for test cases with
static configurations that are declared in the currently selected TTCN-3 module shall be passed -
seetci Start Test Case.

Effect Starts a static configuration of the selected module as described in the TTCN-3 configuration

function and returns an identifier to this configuration. A static configuration started from TCI-TM will
be used by test cases that reference the static configuration and are executed from TCI-TM.

Clause 7.3.1.1.12

tciKillConfig

This clause isto be added.

Signature void tciKill Config(in Tci ConfigurationldType ref)
In Parameters |ref [The reference to the static configuration.
Return Value [void

Constraint

Shall be called only if a module has been selected before.

Effect

tci Ki |l Config causes the destruction of the static test configuration r ef . If r ef is currently not
started, the operation will be ignored.

Clause 7.3.3.1.18

tciExecuteT estCase

This clause isto be extended.

Signature

voi d tci ExecuteTest Case (in Tci Test Casel dType test Caseld,
in TriPortldListType tsiPortlList,
in Tci ConfigurationldType ref)

In Parameters

t est Casel d A test case identifier as defined in the TTCN-3 module.

tsiPortList Contains all ports that have been declared in the definition of the system

component for the test case or in the configuration type of the test case, i.e. the TSI
ports. If a system component has not been explicitly defined for the test case, then
the tsi Port Li st contains all communication ports of the MTC. The ports in

tsi PortLi st are ordered as they appear in the TTCN-3 component type
declaration or in the configuration type declaration respectively. If no ports have to
be passed either the nul | value or an empty t si Port Li st, i.e. a list of length
zero shall be passed.

ref An optional reference to a static configuration for the test case, which is to be used

if a static configuration has been defined for the test case.

ETSI




73 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Return Value

voi d

Constraint

This operation shall be called by the CH at the appropriate local TE when at a remote TE a provided
t ci Execut eTest CaseReq has been called.

Only if the test case requires a static configuration, a r ef to a started static configuration that is of
the configuration type in the test case definition shall be given. If no static configuration has been
defined for the test case in the TTCN-3 ATS, the distinct value nul | shall be passed in for r ef .

Effect

The local TE determines whether static connections to the SUT and the initialization of
communication means for TSI ports should be done. This is for example not the case if the static

configuration has been started already.

8.3

Extensions to clause 7.3.1.2 of ETSI ES 201 873-6 [4] TCI-

TM provided

In order to enable the indication of static configuration start and destruction at TCI-TM, the operations
tci ConfigStartedandtci ConfigkKill ed are defined as follows.

Clause 7.3.1.2.7

tciConfigStarted

This clause is to be added.

Signature

voi d tci ConfigStarted(in Tci ConfigurationldType ref)

In Parameters

ref [The reference to the static configuration.

Return Value

Tci Configurationl dType

Constraint Shall only be called after the static configuration has been started either using the required
operations t ci St art Confi g orinternally by the TE.

Effect tci ConfigStarted indicates to the TM that static configuration r ef has been started. It will not
be distinguished whether the static configuration has been started explicitly using the required
operationt ci St art Confi g or implicitly while executing the control part.

Clause7.3.1.28  tciConfigKilled

This clause isto be added.

Signature

void tci ConfigKilled(in Tci ConfigurationldType ref)

In Parameters

ref [The reference to the static configuration.

Return Value

Tci Confi gurationl dType

Constraint

Shall only be called after the static configuration has been killed either using the required
operations t ci Ki | | Confi g orinternally by the TE.

Effect

tci ConfigStarted indicates to the TM that static configuration r ef has been destructed. It will
not be distinguished whether the static configuration has been started explicitly using the required
operationt ci Ki | | Confi g orimplicitly while executing the control part.

8.4

Extensions to clause 7.3.3.1 of ETSI ES 201 873-6 [4] TCI-

CH required

In order to establish static connections, thet ci St ati cConnect andt ci St ati cMap operations shall be used at

TCI-CH. Thetci

Di sconnect and Tci Unnap can be used for closing static connections.

ETSI




74 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause 7.3.3.1.21 tciStaticConnect

This clause isto be added.

Signature voi d tci StaticConnect(in TriPortldType fronPort,
in TriPortldType toPort)
In Parameters fronPort Identifier of the test component port to be connected from.
toPort Identifier of the test component port to be connected to.
Return Value voi d
Constraint This operation shall be called by the CH at the local TE when at a remote TE a provided
tci Stati cConnect Req has been called.
Effect The TE shall statically connect the indicated ports to one another.

Clause 7.3.3.1.21 tciStaticMap

This clause isto be added.

Signature void tciStaticMap(in TriPortldType fronPort,
in TriPortldType toPort)
In Parameters fronPort Identifier of the test component port to be mapped from.
t oPort Identifier of the test component port to be mapped to.
Return Value voi d
Constraint This operation shall be called by the CH at the local TE when at a remote TE a provided
tci Stati cMapReq has been called.
Effect The TE shall statically map the indicated ports to one another.

8.5 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6 [4] TCI
CH provided

In order to establish static connections, thet ci St ati cConnect Req andt ci St at i cMapReq operations shall be used
at TCI-CH. Thet ci Di sconnect Req and Tci UnmapReq can be used for closing static connections.

Clause 7.3.3.2.26  tciExecuteTestCaseReq

This clause is to be extended.

Signature

voi d tci Execut eTest CaseReq (in Tci Test Casel dType test Casel d,
in TriPortldListType tsiPortlList,
in Tci ConfigurationldType ref)

In Parameters

t est Casel d A test case identifier as defined in the TTCN-3 module.

tsiPortList |[tsiPortList contains all ports that have been declared in the definition of the
system component for the test case or in the configuration type of the test case, i.e.
the TSI ports. If a system component has not been explicitly defined for the test
case, then the t si Port Li st contains all communication ports of the MTC. The
portsintsi Port Li st are ordered as they appear in the TTCN-3 component type
declaration or in the configuration type declaration respectively.

If no ports have to be passed either the nul | value or an empty t si Port Li st
i.e. a list of length zero shall be passed.

ref An optional reference to a static configuration for the test case, which is to be used
if a static configuration has been defined for the test case.

Return Value

voi d

Constraint

This operation can be called by the TE immediately before it starts the test case behaviour on the
MTC (in course of a TTCN-3 execute operation).

Only if the test case requires a static configuration, a r ef to a started static configuration that is of
the configuration type in the test case definition shall be given. If no static configuration has been
defined for the test case in the TTCN-3 ATS, the distinct value nul | shall be passed in for r ef .

Effect

CH transmits the execute test case request to the remote TEs having system ports of the indicated
test case. Static connections to the SUT and the initialization of communication means for TSI ports

can be set up if needed. This is for example not the case if the static configuration has been started.

ETSI



Clause 7.3.3.2.29

75 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

tciStaticConnectReq

This clause isto be added.

Signature voi d tci StaticConnectReq(in TriPortldType fronPort,
in TriPortldType toPort)
In Parameters fronPort Identifier of the test component port to be connected from.
toPort Identifier of the test component port to be connected to.
Return Value voi d

Constraint

This operation shall be called by the TE when it executes a TTCN-3 static connect operation.

Effect

CH transmits the static connection request to the remote TE where it calls the

tci Stati cConnect operation to establish a logical static connection between the two
indicated ports. Note that both ports can be on remote TEs. In this case, the operation returns
only after calling the t ci St ati cConnect operation on both remote TEs.

Clause 7.3.3.1.30

tciStaticM apReq

Thisclause isto be added.

Signature void tci StaticMapReq(in TriPortldType fronPort,
in TriPortldType toPort)
In Parameters fronPort Identifier of the test component port to be mapped from.
t oPort Identifier of the test component port to be mapped to.
Return Value voi d
Constraint This operation shall be called by the TE when it executes a TTCN-3 static map operation.
Effect CH transmits the static map request to the remote TE where it calls the t ci St at i cMap

operation to establish a logical static connection between the two indicated ports.

8.6 Extensions to clause 7.3.4 of ETSI ES 201 873-6 [4] TCI-TL
provided

In order to log the handling of static connections and of static components, the operationsaret | i CSt ati cCr eat e,
t1i PStaticConnect,andt!i PStaticMap are defined. For the logging of the starting and destruction of static
configurations, the operationst | i Confi gStarted andt!i Confi gKil | ed are defined.

Clause 7.3.4.1.106 tliCStaticCreate

Thisclause isto be added.

Signature

void tliCStaticCreate(in TString am in Tinteger ts, in TString src,
in TInteger line, in TriConponentldType c,
in Tri Conponent | dType conp, in TString nane)

In Parameters |am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
l'ine The line number where the request is performed.
c The component which produces this event.
conp The component which is created.
name The name of the component which is created.
Return Value |void

Constraint Shall be called by TE to log the create component operation. This event occurs after component
creation.
Effect The TL presents all the information provided in the parameters of this operation to the user. The

kind of the created component (see TciTestComponentKindType) can be logged in am How this
is done is not within the scope of the present document.

ETSI



76

Clause 7.3.4.1.107 tliPStaticConnect

This clause isto be added.

Signature

void tliPStaticConnect(in TString am in TInteger ts, in TString src,
in TInteger line, in TriConponentl|dType c,
in TriPortldType portl, in TriPortldType port2)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

l'ine The line number where the request is performed.

c The component which produces this event.

portl The first port to be connected.
port2 The second port to be connected.
Return Value |void

Constraint Shall be called by CH or TE to log the connect operation. This event occurs after the connect
operation.
Effect The TL presents all the information provided in the parameters of this operation to the user. The

kind of the connection (i.e. dynamic or static) can be logged in am How this is done is not within the
scope of the present document.

Clause 7.3.4.1.108 tliPStaticM ap

This clause isto be added.

Signature

void tliPStaticMap(in TString am in Tinteger ts, in TString src,
in TInteger line, in TriConponentl!dType c,
in TriPortldType portl, in TriPortldType port?2)

In Parameters

Final draft ETSI ES 202 781 V1.6.1 (2018-03)

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

I'ine The line number where the request is performed.

c The component which produces this event.

portl The first port to be mapped.
port?2 The second port to be mapped.
Return Value |void
Constraint Shall be called by SA or TE to log the map operation. This event occurs after the map operation.
Effect The TL presents all the information provided in the parameters of this operation to the user. The

kind of the connection (i.e. dynamic or static) can be logged in am How this is done is not within
the scope of the present document.

Clause 7.3.4.1.109 tliConfigStarted

This clause isto be added.

Signature

void tliConfigStarted (in TString am in TInteger ts, in TString src,
in TInteger line, in TriConponentldType c,
i n Tci Behavi our | dType configld, in TciParaneterListType tciPars,
in Tci ConfigurationldType ref)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

l'ine The line number where the request is performed.

c The component which produces this event.

configld The static configuration function being started.
tciPars The parameters of the started configuration function.
ref The resulting static configuration reference.

Return Value |void

Constraint Shall be called by TE to log the starting of a static test configuration. This event occurs after static
configuration start.
Effect The TL presents all the information provided in the parameters of this operation to the user, how

this is done is not within the scope of the present document.

ETSI




77 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause 7.3.4.1.110 tliConfigKilled

This clause isto be added.

Signature

void tliConfigKilled (in TString am in Tinteger ts, in TString src,
in TInteger line, in TriConponentldType c,
in Tci ConfigurationldType ref)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

l'ine The line number where the request is performed.

c The component which produces this event.

r ef The static configuration reference that has been destructed.

Return Value

voi d

Constraint

Shall be called by TE to log the kill configuration operation. This event occurs after configuration kill.

Effect

The TL presents all the information provided in the parameters of this operation to the user, how this
is done is not within the scope of the present document.

Clause 7.3.4.1.111 tliPSetState

This clause isto be added.

Signature

void tliPSetState (in TString am in Tinteger ts, in TString src,
in TInteger line, in TriConponentl!dType c,
in TInteger state, in TString reason)

In Parameters |am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

I'ine The line number where the request is performed.

c The component which produces this event.

state The new translation state

reason The optional reason of the port.setstate statement.
Return Value |void

Constraint

Shall be called by TE to log the port.setstate operation. This event occurs after the port state is set.

Effect

The TL presents all the information provided in the parameters of this operation to the user, how this
is done is not within the scope of the present document.

8.7

Extensions to clause 8 of ETSI ES 201 873-6 [4] Java™

language mapping

Clause8.2.25

TciTestComponentKindType

This clause isto be extended.

/1 Td

I DL Tci Test Conponent Ki ndType

public interface Tci Test Conponent Ki nd {

bubl ic final static int TClI _MIC_STATI C_COWP = 5;
public final static int TCl _PTC STATI C_COW = 6;
public final static int TCl _SYSTEM STATIC COW = 7,
}
Clause 8.3.2.4 TciTypeClassType
This clause isto be extended.
public interface Tci Typed ass {
bubl ic final static int CONFl GURATI ON = 25;

ETSI




78 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause 8.3.2.16 TciConfigurationldType
This clause isto be added.

Tci Confi gurationl dType ismapped to the following interface:

/1 TC 1DL Tci ConfigurationldType
package org.etsi.ttcn.tci;
public interface Tci Configurationld {
public String getConfigurationld();
public String getConfigurati onNanme();
public String getConfigurati onTypeNane();
publ i c bool ean equal s(Tci Configurationld conf);

}
M ethods

(] get Configurationld
Returns a representation of this unique configuration identifier.

. get Confi gurati onNane
Returns the configuration name as defined in the TTCN-3 specification. If no name is provided, an empty
string is returned.

. get Confi gurati onTypeNane
Returns the configuration type name as defined in the TTCN-3 specification.

. equal s
Comparesconf withthisTci Confi gur ati onl d for equality. Returnst r ue if and only if both
configurations have the same representation of this unique configuration identifier, f al se otherwise.

Clause85.1.1 TCI TM provided

This clause is to be extended.

/1 TC-T™M

/1 TE -> T™M

package org.etsi.ttcn.tci;
public interface Tci TMProvi ded {

bublic void tci ConfigStarted(Tci Configurationld ref);
public void tci ConfigKilled(TciConfigurationld ref);

}
Clause 8.5.1.2 TCI TM required

Thisclause isto be extended.

/1 TC-T™M

/1 TM-> TE

package org.etsi.ttcn.tci;
public interface Tci TMRequired {

public void tci Start Test Case
(String testCaseld, TciParaneterlist paraneterlist, TciConfigurationld ref);

bublic Tci Configurationld tci StartConfig

(Tci Behavi ourld configld, TciParaneterlList paraneterlList);
public void tciKill Config(TciConfigurationld ref);

ETSI



79 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause85.3.1 TCI CH provided

This clause isto be extended.

/1 Tci CHProvi ded

/1 TE -> CH

package org.etsi.ttcn.tci;
public interface Tci CHProvi ded {

bublic void tciStaticConnectReq(TriPortld fronPort, TriPortld toPort);
public void tci Stati cMapReq(Tri Portld fronmPort, TriPortld toPort);
}

Clause 8.5.3.2 TCI CH required

This clause is to be extended.

/1 Tci CHRequi r ed

/1 CH->TE

package org.etsi.ttcn.tci;

public interface Tci CHRequired extends Tci CDRequired {

public void tci StaticConnect (TriPortld fronPort, TriPortld toPort);
public void tci StaticMap(TriPortld fronmPort, TriPortld toPort);
}

Clause 8.5.4.1 TCI TL provided

This clause isto be extended.

/1 TC-TL

/[l TE, TMCH CD, SA PA -> TL
package org.etsi.ttcn.tci;
public interface Tci TLProvi ded {

public void tliCStaticCreate(String am int ts, String src, int line, TriConponentld c,
Tri Conponent | d conp, String name);
public void tliPStaticConnect(String am int ts, String src, int line, TriConponentld c,
TriPortld portl, TriPortld port2);
public void tliPStaticMap(String am int ts, String src, int line, TriConponentld c,
TriPortld portl, TriPortld port2);
public void tliConfigStarted (String am int ts, String src, int line, TriConponentld c,
Tci Behavi ourl d configld, TciParaneterlList tciPars, TciConfigurationld ref);
public void tliConfigKilled (String am int ts, String src, int line, TriConponentld c,
Tci Configurationld ref);
public void tliPSetState (String am int ts, String src, int line, TriConponentld c,
int state, String reason);

8.8 Extensions to clause 9 of ETSI ES 201 873-6 [4] ANSI C
language mapping
Clause 9.5 Data

The table is to be extended.

TCIIDL ADT ANSI C representation (Type definition) Notes and comments

TciTypeClassType E ypedef enum

TG _CONFI GURATI ON_TYPE = 25
} Tci Typed assType;

ETSI



80 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

TCIIDL ADT ANSI C representation (Type definition) Notes and comments

TciTestComponentKindType Eypedef enum

TCl _MIC_STATI C_CQOWP,
TCl _PTC_STATI C_CQOWP,
TCl _SYSTEM STATI C_COW
} Tci Test Conponent Ki ndType;

TciConfigurationidType typedef struct Tci ConfigurationldType

Bi naryString conflnst;

String conf Nane;

Qual i fi edName conf Type;
} Tci Configurationl dType;

Clause94.1.1 TCI TM provided

This clause isto be extended.

;/oid tci ConfigStarted(Tci Configurationld ref);
voi d tci ConfigKilled(Tci Configurationld ref)

Clause9.4.1.2 TCI TM required

This clause isto be extended.

void tci Start Test Case
(Tci Test Casel dType test Caseld, Tci ParaneterlListType paraneterlist,
Tci Configurationl dType ref)

;I'ci Configurationld tciStartConfig

(Tci Behavi our | dType configld, TciParaneterlListType paraneterlList)
void tciKill Config(TciConfigurationld ref)

Clause9.4.3.1 TCI CH provided

This clause isto be extended.

;/oi d tci Execut eTest CaseReq
(Tci Test Casel dType testCaseld, TriPortldList tsiPortlList,
Tci Configurationl dType ref)

void tciStaticConnectReq(TriPortld fronPort, TriPortld toPort);
void tciStaticMapReq(TriPortld fronPort, TriPortld toPort);

Clause9.4.3.2 TCI CH required

This clause isto be extended.

voi d tci Execut eTest Case
(Tci Test Casel dType testCaseld, TriPortldList tsiPortlList,
Tci Configurationl dType ref)

void tciStaticConnect(TriPortld fronmPort, TriPortld toPort)
void tciStaticMap(TriPortld fronPort, TriPortld toPort)

Clause9.4.4.1 TCI TL provided

This clause isto be extended.

void tliCStaticCreate (String am int ts, String src, int line, TriConponentld c,
Tri Conponent|d conp, String nane)

void tliPStaticConnect (String am int ts, String src, int line, TriConponentld c,
TriPortld portl, TriPortld port?2)

void tliPStaticMap (String am int ts, String src, int line, TriConponentld c,
TriPortld portl, TriPortld port?2)

ETSI



81 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

void tliConfigStarted (String am int ts, String src, int line, TriConponentld c,
Tci Behavi our | dType configld, TciParaneterlListType tciPars, Value ref)

void tliConfigKilled (String am int ts, String src, int line, TriConponentld c,
Val ue ref)

void tliPSetState (String am int ts, String src, int line, TriConponentld c,
int state, String reason)

8.9 Extensions to clause 10 of ETSI ES 201 873-6 [4] C++
language mapping
Clause 10.5.2.13  TciTestComponentKind

This clause isto be extended.

cl ass Tci Test Conponent Ki nd {
public:

ét atic const Tci Test Conponent Ki nd MIC_STATI C_COWP;
static const Tci Test Conponent Ki nd PTC_STATI C_COWP;
static const Tci Test Conponent Ki nd SYSTEM STATI C_COWP;

}
Clause 10.5.2.14  TciTypeClassType

This clause isto be extended.

typedef enum

Tl _CONFI GURATI ON = 25
} Tci Typed ass;

Clause10.5.2.16  TciConfigurationld
This clause isto be added.

Identifies a static configuration. It is mapped to the pure virtual class:

class Tci Configurationld {
public:
virtual ~Tci Configurationld ();
virtual const QualifiedName & getConfigurati onTypeNane () const =0;
virtual void setConfigurationTypeName (const Qualifi edNanme &t Nane) =0;
virtual const Tstring & getConfigurationNane () const =0;
virtual void setConfigurationNane (const Tstring &sNane)=0;
virtual const Tinteger & getConfigurationld () const =0;
virtual void setConfigurationld (const Tinteger & d)=0;
virtual Tbool ean operator== (const Tci Configurationld &np) const =0;
virtual Tci Conponentld * cloneConfigurationld () const =0;
virtual Tbool ean operator< (const Tci Configurationld &np) const =0;

}
M ethods

. ~Tci Configurationld
Destructor.

. get Confi gurati onTypeNane
Returns a const reference to the configuration type name.

. set Confi gurati onTypeNane
Set the configuration type name.

. get Confi gur ati onNane
Gets the configuration name.

. set Confi gur ati onNane
Set the configuration name.

ETSI



82 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

. get Configurationld
Returns the configuration identifier.

. set Configurationld
Set the configuration identifier.

. oper ator==
Returns true if both TciConfigurationld objects are equal.

. cl oneConfigurationld
Returns a copy of the TciConfigurationld.

. oper ator<
Operator < overload.

Clause 10.6.1.1 TciTmRequired

This clause is to be extended.

virtual void tciStartTest Case
(const Tci Test Caseld *testCaseld, const Tci Paraneterlist *paraneterlList,
const Tci Configurationld *ref)=0;
virtual const Tci Configurationld *tciStartConfig

(const Tci Behaviourld *configld, TciParaneterlList *paraneterlList)=0;
virtual void tciKillConfig(const TciConfigurationld *ref)=0;

Clause 10.6.1.2 TciTmProvided

This clause isto be extended.

)/Indi cates the start of a static configuration
virtual void tciConfigStarted(const Tci Configurationld *ref) =0;
virtual void tciConfigKilled(const TciConfigurationld *ref)=0;

Clause 10.6.3.1 TciChRequired

This clause is to be extended.

virtual void tci ExecuteTest Case
(const Tci Test Caseld *testCaseld, const TriPortldList *tsiPortlList,
const Tci Configurationld *ref)=0;

virtual void tciStaticConnect(const TriPortld *fronPort, const TriPortld *toPort)=0;
virtual void tciStaticMap(const TriPortld *fronPort, const TriPortld *toPort)=0;

Clause 10.6.3.2 TciChProvided

This clause is to be extended.

virtual void tci ExecuteTest CaseReq
(const Tci Test Caseld *testCaseld, const TriPortldList *tsiPortlList,
const Tci Configurationld *ref)=0;

virtual void tciStaticConnectReq(const TriPortld *fronPort, const TriPortld *toPort)=0;
virtual void tciStaticMapReq(const TriPortld *fronPort, const TriPortld *toPort)=0;

Clause 10.6.4.1 TciTIProvided

This clause isto be extended.

virtual void tliCStaticCreate (const Tstring &m const tineval ts, const Tstring src,
const Tinteger line, const TriConponentld *c, const Tri Conponentld *conp,
const Tstring &ane)=0;

virtual void tliPStaticConnect (const Tstring &m const tineval ts, const Tstring src,
const Tinteger line, const TriConponentld *c, const TriPortld *portl, const TriPortld *port2)=0;

virtual void tliPStaticMap (const Tstring &m const tineval ts, const Tstring src,

ETSI



const Tinteger |ine,
vi rtual
const Tinteger line,
const Tci Paranet erLi st

virtua
const Tinteger line,

Vi rtual
const Tinteger line,

8.10

const Tri Conponentld *c

void tliConfigStarted (const Tstring &m const tinmeval
const Tri Conponentld *c
*tci Pars,

void tliConfigKilled (const Tstring &m const tinmeval
const Tri Conponentld *c

void tliPSetState (const Tstring &m const tinmeval
const Tri Conponentld *c

83 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

const TriPortld *portl, const TriPortld *port2)=0

ts, const Tstring src
const Tci Behaviourld *configld
const Tci Val ue *ref)=0

ts, const Tstring src
const Tci Val ue *ref)=0

const Tstring src
const TString & eason)=0

ts,
const Tinteger status

Extensions to clause 11 of ETSI ES 201 873-6 [4] W3C

XML mapping

Clause 11.3.2.21

Thisclause isto be added.

TciConfigurationldType

Tci Confi gurati onl dType ismapped to the following complex type:

<xsd: conpl exType name="Tci Confi gurati onl dType">

<xsd: sequence>
<xsd: choi ce>

<xsd: el ement name="nul | " type="Tenpl ates: null"/>
<xsd: el ement name="id" type="Types:|d"/>

</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>

Elements:
e id
. nul |
Attributes:
e  none
Clause11.4.2.1

This clause isto be extended.

The identifier of the static configuration.

Thenul | identifier. To be used if thereis no static configuration identifier.

TCI TL provided

<xsd: conpl exType name="t|i TcExecute">
<xsd: conpl exCont ent m xed="true">

<xsd: ext ensi on base="

<xsd: sequence>
<xsd: el ement
<xsd: el ement
<xsd: el enent
<xsd: el enent
</ xsd: sequence>

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Events: Event " >

name="t cl d" type="Types: Tci Test Casel dType"/>
name="tci Pars" type="Types: Tci Paranet er Li st Type" m nCccurs="0"/>
name="dur" type="Si nmpl eTypes: Tri Ti mer Dur ati onType" mi nQccurs="0"/>
nane="ref" type="Types: Tci Confi gurationl dType" m nCccurs="0"/>

<xsd: conpl exType name="tli TcStart">
<xsd: conpl exCont ent m xed="true">

<xsd: ext ensi on base="

<xsd: sequence>
<xsd: el ement
<xsd: el ement
<xsd: el enent
<xsd: el enent
</ xsd: sequence>

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Events: Event ">

name="tcl d" type="Types: Tci Test Casel dType"/>
name="tci Pars" type="Types: Tci Paranet er Li st Type" m nCccurs="0"/>
name="dur" type="Si nmpl eTypes: Tri Ti mer Dur ati onType" mi nCQccurs="0"/>
nane="ref" type="Types: Tci Confi gurationl dType" m nCccurs="0"/>

<xsd: conpl exType name="tli TcStarted">

ETSI



84 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">
<xsd: sequence>
<xsd: el ement nanme="tcld" type="Types: Tci Test Casel dType"/>
<xsd: el enent nane="tci Pars" type="Types: Tci Paranet er Li st Type" m nCccurs="0"/>
<xsd: el enent nane="dur" type="Si npl eTypes: Tri Ti mer Dur ati onType" m nCccurs="0"/>
<xsd: el ement name="ref" type="Types: Tci Confi gurati onl dType" m nCccurs="0"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="tli CStati cCreate">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">
<xsd: sequence>
<xsd: el enent nane="conp" type="Types: Tri Conponent | dType"/>
<xsd: el ement nanme="nane" type="Si npl eTypes: TString"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="t|i PStati cConnect">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Port Confi guration"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nanme="tl|i PStati cMap">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Port Confi guration"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="t|i Confi gStarted">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">
<xsd: sequence>
<xsd: el ement name="configld" type="Types: Tci Behavi our| dType"/>
<xsd: el ement nanme="tci Pars" type="Types: Tci Paranet er Li st Type" m nCccurs="0"/>
<xsd: el enent nane="ref" type="Types: Tci Confi gurationl dType"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="t!li ConfigKill ed">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">
<xsd: sequence>
<xsd: el enent nane="ref" type="Types: Tci Confi gurationl dType"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="t|i PSet St ate" >
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">
<xsd: sequence>
<xsd: el ement nanme="state" type="Si npl eTypes: TInteger"/>
<xsd: el enent nane="reason" type="Si npl eTypes: TString" m nCccurs="0"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Clause B.5 TCI TL XML Schema for Events
The five additional events defined for clause "11.4.2.1 TCI TL provided" have to be added to the events schema

definition given in clause B.5.

<xsd: conpl exType name="tli CStati cCreate">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">
<xsd: sequence>

ETSI



85 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

<xsd: el enent nane="conp" type="Types: Tri Conponent | dType"/>
<xsd: el ement nanme="nane" type="Si npl eTypes: TStri ng"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nanme="t|i PSt ati cConnect ">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Port Confi guration"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nanme="tl|i PStati cMap">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Port Confi guration"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="t|i Confi gStarted">
<xsd: conpl exCont ent m xed="true">
<xsd: extensi on base="Events: Event">
<xsd: sequence>
<xsd: el ement nanme="configld" type="Types: Tci Behavi our| dType"/>
<xsd: el ement nanme="tci Pars" type="Types: Tci Paranet erLi st Type" m nCccurs="0"/>
<xsd: el ement nanme="ref" type="Types: Tci Confi gurati onl dType"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="t!li ConfigKill ed">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">
<xsd: sequence>
<xsd: el ement name="ref" type="Types: Tci Confi gurati onl dType"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="t|i PSet St ate" >
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">
<xsd: sequence>
<xsd: el enent nane="state" type="Si npl eTypes: Tl nteger"/>
<xsd: el enent nane="reason" type="Si npl eTypes: TString" m nCccurs="0"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Clause B.6 TCI TL XML Schemafor aLog

<xsd: conpl exType nane="Body" >
<xsd: choi ce maxQccur s="unbounded" >

<!-- static configurations -->

<xsd: el ement nanme="tli CStati cCreate" type="Events:tliCStaticCreate"/>
<xsd: el ement name="t|i PStati cConnect" type="Events:tliPStaticConnect"/>
<xsd: el ement name="tli PStati cMap" type="Events:tliPStaticMap"/>
<xsd: el ement name="tli ConfigStarted" type="Events:tliConfigStarted"/>
<xsd: el ement name="tli ConfigKilled" type="Events:tliConfigKilled"/>
<xsd: el ement nanme="tli PSet State" type="Events:tli PSetState"/>

élxsd:choice>
</ xsd: conpl exType>

ETSI



86 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

8.11  Extensions to clause 12 of ETSI ES 201 873-6 [4] C#
language mapping
Clause 12.4.2.5 TciTestComponentKindType

This clause isto be extended.
publ i ¢ enum Tci Test Conponent Ki nd {

Tci M cStati cConp
Tci PtcStati cConp

5;
6;
Tci Syst enmConp 7;

}
Clause 12.4.2.4 TciTypeClassType

This clause isto be extended.
publ i c enum Tci Typed ass {

Confi guration = 25;
}

Clause12.4.2.16  TciConfigurationldType
This clause isto be added.

Tci Confi gurationl dType ismapped to the following interface:

public interface |Tci Configurationld {
string Configurationld { get; }
string Configurati onName { get; }
| Qual i fi edNane Confi gurationTypeNane { get; }
bool Equal s(I Tci Configurationld conf);
}

Methods

(] Configurationld
Returns a representation of this unique configuration identifier.

. Confi gurati onNane
Returns the configuration name as defined in the TTCN-3 specification. If no name is provided, an empty
string is returned.

. Confi gurati onTypeNane
Returns the configuration type name as defined in the TTCN-3 specification.

. Equal s
Comparesconf withthisTci Confi gur ati onl d for equality. Returnst r ue if and only if both
configurations have the same representation of this unique configuration identifier, f al se otherwise.

Clause 12.5.1.1 TCI-TM provided

This clause isto be extended.
public interface |Tci TMProvi ded {

;/oid tci ConfigStarted(l Tci Configurationld ref);
voi d tci ConfigKilled(lTciConfigurationld ref)

ETSI



87 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Clause12.5.1.2 TCI-TM required

This clause is to be extended.
public interface | Tci TMRequired {

void Tci Start Test Case(| Tci Test Casel d test Casel d,
| Tci Paranet erLi st paraneterList, |TciConfigurationld ref);

iTci Configurationld tci StartConfig
(1 Tci Behavi ourld configld, |TciParaneterlList paraneterlList)

void tciKill Config(lTciConfigurationld ref)
}

Clause 12.5.3.1 TCI-CH provided
This clause isto be extended.
public interface | Tci CHProvi ded {

voi d Tci Execut eTest CaseReq(| Tri Conponent|d conponent,
| Tri PortldList tsiPortList, |TciConfigurationld ref);

;/oid tci StaticConnectReq(l TriPortld fronPort, |TriPortld toPort);
void tciStati cMapReq(! TriPortld fronmPort, |TriPortld toPort);
}

Clause 12.5.3.2 TCI-CH required
This clause isto be extended.
public interface | Tci CHRequired {

voi d Tci Execut eTest Case (| Tci Test Casel d test Casel d,
| Tri PortldList tsiPortList, |TciConfigurationld ref);

void tciStaticConnect(lITriPortld fronPort, ITriPortld toPort);
void tciStaticMap(l TriPortld fronPort, ITriPortld toPort);
}

Clause12.5.4.1 TCI-TL provided

This clause isto be extended.
public interface |Tci TLProvi ded {

void tliCStaticCreate(string am SystemDateTine ts, string src, int line,
| Tri Conponent 1 d c,
| Tri Conponent I d conp, sString nane);
void tliPStaticConnect(string am SystemDateTine ts, string src, int line,
| Tri Conponent 1 d c,
ITriPortld portl, ITriPortld port2);
void tliPStaticMap(string am SystemDateTine ts, string src, int line,
| Tri Conponent 1 d c,
ITriPortld portl, ITriPortld port2);
void tliConfigStarted (string am System DateTine ts, string src, int line,
| Tri Conponent 1 d c,
| Tci Behavi ourld configld, |TciParaneterList tciPars, |TciValue ref);
void tliConfigKilled (string am SystemDateTine ts, string src, int line,
| Tri Conponent 1 d c,
| Tci Val ue ref);
void tliPSetState (string am SystemDateTine ts, string src, int line,
| Tri Conponent 1 d c,
int state, string reason);

ETSI



88 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Annex A (normative):
BNF and static semantics

Al Additional TTCN-3 terminals

Table A.1 presents al additional TTCN-3 terminals which are reserved words when using this package. Like the
reserved words defined in the TTCN-3 core language, the TTCN-3 terminalslisted in table A.1 shall not be used as
identifiersin a TTCN-3 module. These terminals shall be written in al lowercase | etters.

Table A.1: List of additional TTCN-3 terminals which are reserved words

[configuration [static [setstate |

A.2  Modified TTCN-3 syntax BNF productions

This clause includes all BNF productions that are modifications of BNF rules defined in the TTCN-3 core language
document ETSI ES 201 873-1 [1]. When using this package the BNF rules bel ow replace the corresponding BNF rules
in the TTCN-3 core language document. The rule numbers define the correspondence of BNF rules.

7. Modul eDefinition ::= (([Visibility] (TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al t st epDef |
| npor t Def |
Ext Functi onDef |
Ext Const Def |
Conf i gur at i onDef
)N
(["public"] G oupDef) |
(["private"] FriendMbdul eDef)
) [WthStatement]
51. PortDef Attribs ::= MessageAttribs |

ProcedureAttribs |

M xedAttri bs|

Transl ati onPort Attri bs

186. TestcaseDef ::= TestcaseKeyword Testcaseldentifier
"("[ TestcaseFornal ParList] ")" ConfigSpec | ExecuteOnSpec
St at ement Bl ock

192. Testcasel nstance ::= ExecuteKeyword "(" TestcaseRef "(" [Actual ParlList] ")"
["," (Expression | M nus)
["," (SingleExpression | M nus)
["," ConfigurationReference]]] ")"

205. Except El enent ::= Except G oupSpec |

Except TypeDef Spec |
Except Tenpl at eSpec |
Except Const Spec |

Except Test caseSpec |
Except Al t st epSpec |
Except Functi onSpec |
Except Si gnat ur eSpec |
Except Modul ePar Spec |
Except Confi gurati onSpec

217. |nportEl ement ::= | nport G oupSpec |

| npor t TypeDef Spec |
| npor t Tenpl at eSpec |

ETSI



89 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

| npor t Const Spec |

| npor t Test caseSpec |

| nport Al t st epSpec |

| npor t Funct i onSpec |

| npor t Si gnat ur eSpec |

| npor t Modul ePar Spec |

| npor t | npor t Spec |

| npor t Conf i gur at i onSpec

251. Control Statenent ::= TinerStatenents |

Basi cStatenents |
Behavi our St at enent s |
SUTSt at ement s |

St opKeyword |

Ki I I Confi gSt at enent

264. CreateQp :: = Conmponent Type Dot Creat eKeyword
["(" (SingleExpression | Mnus) ["," SingleExpression] ")"]
[AliveKeyword | StaticKeyword]
279. Connect Statenent ::= Connect Keyword Singl eConnecti onSpec [ Stati cKeyword]
289. MapStatenent ::= MapKeyword Singl eConnecti onSpec [ ParanC ause] [ StaticKeyword]
396. PredefinedType ::= BitStringKeyword |

Bool eankKeyword |
Char St ri ngkeyword |
Uni versal CharString |
| nt eger Keyword |

Cct et Stringkeyword |
HexStri ngkeyword |
Ver di ct TypeKeyword |
Fl oat Keyword |

Addr essKeyword |

Def aul t Keyword |
AnyTypeKeyword |

Conf i gurati onKeyword

540. OpCall ::= Configurati onOps |

Get Local Verdi ct |

Verdi ct Ops |

Ti mer Ops |

Test casel nstance |

Functionl nstance [ ExtendedFi el dReference ] |
Tenpl at eOps [ ExtendedFi el dRef erence ] |
ActivateQp |

Confi gurationl nstance

A.3

Additional TTCN-3 syntax BNF productions

This clause includes all additional BNF productions that needed to define the syntax introduced by this package. All
rules start with the digits"781". Additional BNF rules that have arelation to modified BNF rules defined in clause A.2,
will have the rule number of the modified rule followed by alower case letter, e.g. number of modified rule 316,
number of related additional rule 781316a. The numbering of other new rules start with number 781001.

781186a. ExecuteOnSpec ::= Execut eKeyword OnKeyword Confi gurati onRef

781264a. StaticKeyword ::= "static"

781001. ConfigurationDef ::= ConfigurationKeyword Configurationldentifier
"("[ Tenpl at eOr Val ueFor mal Par Li st] ")" Confi gSpec

St at erent Bl ock

781002. ConfigurationKeyword ::= "configuration"

781003. Configurationldentifier ::= ldentifier

781004. Configurationlnstance ::= ConfigurationRef "“(" [Actual ParList] ")"

781005. ConfigurationRef ::= [Mduleld Dot] Configurationldentifier

781006. Kill ConfigStatenent ::= Configurati onReference Dot Kill Keyword

781007. ConfigurationReference ::= Variabl eRef | Functionlnstance

ETSI



781008.

7810009.
781010.
781011.

781012.
781013.

781014.

781015.
781016.
781017.

781018.
781019.
781020.
781021.

781022.
781023.

781024.
781025.

90 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Transl ationPort Attribs ::= MessageKeyword QuterPort TypeSpec "{" {
(Transl ati onAddr Decl | Transl ati onMessageli st | Confi gParanDef)
[ Semi Col on] } +

}
CQut er Port TypeSpec ::= QuterPort TypeMapSpec | CQuterPort TypeConnect Spec
CQut er Port TypeMapSpec ::= MapKeyword ToKeyword Type { "," Type } [ CQuterPort TypeConnect Spec ]
Qut er Por t TypeConnect Spec :: = Connect Keyword ToKeyword Type { "," Type }

Transl ati onAddr Decl
Transl ati onAddr Spec ::

Addr essKeyword Type [ Transl ati onAddr Spec{", " Transl ati onAddr Spec }]
( ToKeyword | FronKeyword ) Type WthKeyword FunctionRef "(" ")"

Transl ati onMessagelLi st ::= | nPar Keyword Transl ati onl nTypelLi st |
Qut Par Keywor d Transl ati onQut Typeli st |
I nQut Par Keyword TypelLi st

Transl ati onl nTypeLi st ::=Transl ati onl nType{"," Transl ati onl nType}
Transl ati onl nType ::= Type [Transl ati onl nSpec{"," Transl ati onl nSpec}]
Transl ationl nSpec ::= FronKeyword Type WthKeyword FunctionRef "(" ")"
Transl ati onQut TypeLi st ::= Transl ati onQut Type{"," Transl ati onQut Type}
Transl ati onQut Type ::= Type [ Transl ati onQut Spec{", " Transl ati onQut Spec }]
Transl ati onQut Spec ::= ToKeyword Type WthKeyword FunctionRef "(" ")"

FuncPort Spec ::= PortKeyword Identifier
Set Port State ::= PortKeyword"."Set St at eKeyword" (" Singl eExpression {"," Loglten}")"
Set St at eKeyword ::= "setstate"

Except Conf i gur ati onSpec ::
I nport Confi gurati onSpec ::

Configurati onKeyword |dentifierListOAll
Confi gurati onKeyword Al | Keyword

ETSI



91 Final draft ETSI ES 202 781 V1.6.1 (2018-03)

Annex B (informative):
Library of useful types

B.1 Limitations

The types and constants described in this annex use the same rule as specified in the clause E.1 of ETS
ES201873-1[1].

B.2 Useful TTCN-3 types

B.2.1 Status values for port states

Type and constants defined in this clause support the secure usage of the set st at e port operation defined in
clause 5.10.4 of ETS| ES 201 873-1 [1].

The type definition for thistypeis:

type integer translationState(O..3);

Useful constant definitions for working with object states are:

const translationState TRANSLATED : = 0;

const translationState NOT_TRANSLATED : = 1;
const translati onState FRAGVENTED : = 2;

const translati onState PARTI ALLY_TRANSLATED : =3;

ETSI



92

Final draft ETSI ES 202 781 V1.6.1 (2018-03)

History
Document history

V111 August 2010 Publication

V121 June 2013 Publication

V131 June 2014 Publication

V14.1 June 2015 Publication

V15.1 May 2017 Publication

V1.6.1 March 2018 Membership Approval Procedure MV 20180504: 2018-03-05 to 2018-05-04

ETSI



	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Package conformance and compatibility
	5 Package Concepts for the Core Language
	5.0 General
	5.1 Static configurations
	5.1.1 The special configuration type: configuration
	5.1.2 The configuration function
	5.1.3 Starting a static test configuration
	5.1.4 Destruction of static test configurations
	5.1.5 Creation of static test components
	5.1.6 Establishment of static connections and static mappings
	5.1.7 Test case definitions for static test configuration
	5.1.8 Executing test cases on static test configurations
	5.1.9 Further restrictions
	5.1.10 Logging the status of static configurations

	5.2 Ports with translation capability
	5.2.0 General
	5.2.1 Translation capability in port type declaration
	5.2.2 Mapping and connecting ports
	5.2.3 Translation functions
	5.2.4 Translation state
	5.2.5 Sending
	5.2.6 Receiving
	5.2.7 Address
	5.2.8 Clear, start, stop and halt operation


	6 Package Semantics
	6.0 General
	6.1 Replacement of short forms
	6.2 Order of replacement steps
	6.3 Flow graph representation of TTCN-3 behaviour
	6.4 Flow graph construction procedure
	6.5 Flow graph representation of configuration functions
	6.6 Retrieval of start nodes of flow graphs
	6.7 Module state
	6.8 Accessing the module state
	6.9 Configuration state
	6.10 Accessing the configuration state
	6.11 Entity states
	6.12 Accessing entity states
	6.13 Handling of connections among ports
	6.14 Handling of port states
	6.15 The evaluation procedure for a TTCN-3 module
	6.16 Evaluation phases
	6.17 Phase I: Initialization
	6.18 Phase II: Update
	6.19 Phase III: Selection
	6.20 Phase IV: Execution
	6.21 Global functions
	6.22 Clear port operation
	6.23 Configuration function call
	6.24 Connect operation
	6.25 Create operation
	6.26 Flow graph segment <disconnect-all>
	6.27 Flow graph segment <disconnect-comp>
	6.28 Flow graph segment <disconnect-port>
	6.29 Flow graph segment <disconnect-two-par-pairs>
	6.30 Execute statement
	6.31 Flow graph segment <execute-without-config>
	6.32 Flow graph segment <execute-on-config>
	6.33 Flow graph segment <execute-on-config-without-timeout>
	6.34 Flow graph segment <execute-on-config-timeout>
	6.35 Flow graph segment <statement-block>
	6.36 Halt port operation
	6.37 Kill component operation
	6.38 Flow graph segment <kill-mtc>
	6.39 Flow graph segment <kill-all-comp>
	6.40 Kill execution statement
	6.41 Kill configuration operation
	6.42 Map operation
	6.43 Start port operation
	6.44 Stop component operation
	6.45 Flow graph segment <stop-mtc>
	6.46 Flow graph segment <stop-config>
	6.47 Flow graph segment <stop-tc-config>
	6.48 Stop port operation
	6.49 Flow graph segment <unmap-all>
	6.50 Flow graph segment <unmap-comp>
	6.51 Flow graph segment <unmap-port>

	7 TRI Extensions for the Package
	7.1 Changes and extensions to clause 5.5.2 of ETSI ES 201 873-5 [3] Connection handling operations
	7.2 Extensions to clause 6 of ETSI ES 201 873-5 [3] JavaTM language mapping
	7.3 Extensions to clause 7 of ETSI ES 201 873-5 [3] ANSI C language mapping
	7.4 Extensions to clause 8 of ETSI ES 201 873-5 [3] C++ language mapping
	7.5 Extensions to clause 9 of ETSI ES 201 873-5 [3] C# language mapping

	8 TCI Extensions for the Package
	8.1 Extensions to clause 7.2.1.1 of ETSI ES 201 873-6 [4] Management
	8.2 Extensions to clause 7.3.1.1 of ETSI ES 201 873-6 [4] TCI-TM required
	8.3 Extensions to clause 7.3.1.2 of ETSI ES 201 873-6 [4] TCI-TM provided
	8.4 Extensions to clause 7.3.3.1 of ETSI ES 201 873-6 [4] TCI-CH required
	8.5 Extensions to clause 7.3.3.2 of ETSI ES 201 873-6 [4] TCI CH provided
	8.6 Extensions to clause 7.3.4 of ETSI ES 201 873-6 [4] TCI-TL provided
	8.7 Extensions to clause 8 of ETSI ES 201 873-6 [4] JavaTM language mapping
	8.8 Extensions to clause 9 of ETSI ES 201 873-6 [4] ANSI C language mapping
	8.9 Extensions to clause 10 of ETSI ES 201 873-6 [4] C++ language mapping
	8.10 Extensions to clause 11 of ETSI ES 201 873-6 [4] W3C XML mapping
	8.11 Extensions to clause 12 of ETSI ES 201 873-6 [4] C# language mapping

	Annex A (normative): BNF and static semantics
	A.1 Additional TTCN-3 terminals
	A.2 Modified TTCN-3 syntax BNF productions
	A.3 Additional TTCN-3 syntax BNF productions

	Annex B (informative): Library of useful types
	B.1 Limitations
	B.2 Useful TTCN-3 types
	B.2.1 Status values for port states


	History

