Final draft ETS| ES 202 781 V1.3.1 (2014-04)

< >

ETSI Standard_

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions:
Configuration and Deployment Support

2 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Reference
RES/MTS-202781ConfDepl ed131

Keywords
protocol, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Contents

INtellectual Property RIGNES. ..ottt st e e e st e eaeese e tesreeneesresneenresneenes 5
01 Yo (o ST 5
1 o0 0L SR 6
2 REFEIBINCES ...ttt a b bt e et et e b et et e Rt e be e b e nE e et e e et e e e neenenrenbeneen 6
21 NOIMBLTVE FEFEIEICESeeetieeiertie ettt bRt r e et r e et renn s 6
22 INFOIMELIVE FEFEIENCES.ttt e e et r et renn s 6
3 Definitions and aDbreVIBLIONS..........eieereieeese et te et sre e tesneeneentesneeneeseeenes 7
31 DT T LA Lo] PSPPSR 7
3.2 ABDIEVIBLIONS ...ttt Rt R et e s 7
4 Package conformance and COMPELTDIHITYooiiiriiireree e 7
5 Package Concepts for the COre LanQUETE.ccceiveiieiieiieeie e eeeste et e et sre e sae st s neene e ens 8
51 ez oot g 10 U= 11 o 1T 9
511 The specia configuration type: CONfIGUIBLTIONcouiirieiiiirieenere et 9
512 The configuration FUNCLIONcoiiiiiee bbbt 9
513 Starting a Static teSt CONFIGUIALTON.eieeuiitiieteiteet ettt bbb b b sreneenea 11
514 Destruction of statiC teSt CONFIGUIBLIONS...........coiiirieirii et s 11
515 Creation Of Static tESt COMPONENESc.tiirieiiitereeieete ettt b et b e et e b b se b e b nnenen 12
516 Establishment of static connections and Static MapPINGS.........cvrereerireiereree et 13
5.1.7 Test case definitions for static test CONfIQUIaLION.............cooveiieeiiieie e 13
5.1.8 Executing test cases on static test CONfIQUIaLIONScccueieeieeieere et 14
519 FUPNEN TESITTCHIONS. ... vttt ettt r e et r e n et r e r e r e r e 16
5.1.10 Logging the status Of StatiC CONFIQUIELIONSc.ccuiiiereesee et e snee e 16
52 Ports with translation Capabi ityc.eccueiieiiesee et ae e e seesreesneenreeneens 16
521 Tranglation capability in Port type deClaration.............courerireirireree e 18
522 MappiNg and CONNECLING POITS......c.ciuerieuirierieeete ettt sttt ettt b et b et b bt b e bt b et st see e ebenne e 19
523 TrangatioN FUNCHIONS ..ot sttt a e et e s e e e e e tesbesaeeneenee e eneenes 19
524 L= S = 0o I = (= TSRS 20
525 S 116 [0 OO TSP PSP PO ST PPTPSURTPTON 21
526 RECEIVING ...ttt bbb bbbt bt e e ae e bt e e e st e b e e e Rt b e s e et e b e ne et b et eb e r e 22
5.2.7 AAAANESS ...t E R R R R R R R R e R Rt R R e r et n e 23
5.2.8 Clear, start, Stop and halt OPEIalioNc.eecueiie it e st re e teeneeneeenes 24
6 PACKBOE SEMBINTICS ...ttt b bbbt b b e et e e e e e bt bt nb e ne e s e 24
6.1 Replacement Of SNOI FOMMS.........oiiiii bbbt st b e ens 26
6.2 Order Of rEPIACEMENE SIEDS......eieeeeteieeeet ettt b et b et b e b et b et bese et b e s b e e b b e 27
6.3 Flow graph representation of TTCN-3 BENAVIOUNcccveiiiiic e 27
6.4 Flow graph CONSLIUCEON PrOCEAUIE..........cccueieeieeceeeste ettt ste st te st e s saeesreeste et e esaesseasseesseesseeseensennennnns 28
6.5 Flow graph representation of configuration fUNCLIONS............cccoieciieicieseseec e 28
6.6 Retrieval of start NOAES Of FIOW Qraphs.........ccve ittt re e e e e 29
6.7 IMOTUIE SEBLE ...ttt e e r e Rt e e e Rt ne e e et et s et n e e n e r e nnenr e nns 29
6.8 ACCESSING the MOAUIE SEALE ..ot e e st et e e e e e e e e saeesaeesaeeseenteenseeneesseesnnas 29
6.9 CONFIGUIBLTION SEBLEecveteeete sttt sttt et b e et b e e st b e s e et bt s e e h e e b e se e bt e b e s e e st e b e se e st eb e s e et eb e b e e ee 30
6.10 Accessing the CONfiGUIALioN SLALE...........couciiirieiii et se s 30
6.11 ENEITY SEAEES ...ttt bbbt e b £ bR R R R R bt bbb n e 31
6.12 ACCESSING ENEITY SEBLES. ... ettt sttt eb e b e st b e s e bt e e b e e bt e et b e s e bt bt s e s e b e s b e e enenn e e ens 33
6.13 Handling of CONNECLIONS AMONQ POITS........coutiuiirtirieirieri ettt bbbt b et b et sbe e 34
6.14 HEaNAITNG OF POMT SLAEES ...ttt bbbttt b et b bt nb e n et 34
6.15 The evaluation procedure for a TTCN-3 MOUUIEccueeue e 35
6.16 LY LU e I 0] 7= 1S -SSR 35
6.17 Phase 12 TNITBIIZBIION...........ooeeiriecre e e e sn et e n et nr e r s 36
6.18 PESE 112 UPOBLE ...ttt bbbt e bt b et nn et n b n s 37
6.19 Phase [T1: SEIECHION........coveeirireeeere et ettt e se et e e nr e n s 37
6.20 PhESE [V 1 EXECULION ...ttt ettt sttt e e s te s ee st e se et emeese e teseeebeeaeeneeneeneensenseasesbesaeeseeneensensens 37
6.21 (€1 o] o 7= I 11T 1o LSRR 38
6.22 ClEAI POt OPEIBEIION. ...ttt sttt sttt sttt sttt e et b e s et b e a e e e bt s e et e bt s b e e e bt e b e ne e bt e b ene e b e s e e st ebese e st eb e s e et ebenneneee 38
6.23 Configuration FUNCEION Call.........coueiiiiieee bbb et b et eb e e 39

ETSI

4 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.24 (01011 o100 0= = 11 o o TSRS 40
6.25 L@ = (Yo 0= = 1] SRS 41
6.26 Flow graph segment <AiSCONNECE-lI>...........cuiiiiiiece et e e e e sne e reereens 43
6.27 Flow graph segment <diSCONNECE-COMS..........cccuiiieiieieeeeite e seeseesteesteeeeesaesreesrae e e steensesneesneesreesseenseensenns 44
6.28 Flow graph segment <diSCONNECE-POMc.ociuiiieiieseeieeie e see s e steeste et esree e e eesteenseseesreesreesseenseenseans 45
6.29 Flow graph segment <di SCONNECE-IWO-PaIr-PaITS>ccueiiiieiieiieeseeseese e e e e e este e seeseesreesaeenseenneens 45
6.30 EXECULE SLALEIMENT ...ttt ettt ettt ettt e et e s bt e e bt e e sh e e e be e e eae e e abe e e s e e enn e e sabeeeaneesabeesnneesneesnreean 46
6.31 Flow graph segment <exeCute-WithOUL-CONFIGSoiiiiiirieirie e 47
6.32 Flow graph segment <eXECULE-0N-CONTIG™c.ciiriiiriiieirieieese et sb e e 47
6.33 Flow graph segment <execute-on-config-WithOUE-tiMEOUL ..o 47
6.34 Flow graph segment <execute-on-Config-tiMEOULS ..ot e 48
6.35 Flow graph segment <statement-BIOCK>cco i 50
6.36 L L 00 0] 7= o) o SR 51
6.37 Kill COMPONENE OPEIBLIONeeiieii ettt e e e s te e ste s e s e e saeesaeesteenteeaaessaesseesseesseensesneesneesseesseansennsenns 52
6.38 Flow graph segment SKilI-MIECSociicec e te e tessaesreesreesne e seenseens 54
6.39 Flow graph segment <Kill-all-COmP>ccooiiiice et e e e e e e sne e seenneens 54
6.40 KTl EXECULION SEBEEIMIEINTeeteeteeeeiieee ettt ettt se b bbbt e e e e seesb e eb e s bt ebe et ess e e e ebenbesbeeneeneennennen 56
6.41 Kill CONFIQUIELiON OPEIBLIONccvivieeeeitieet ettt bttt b et b bbb 57
6.42 = o X oo = = (o OSSOSO U TSR P TSR PRR 57
6.43 SEAMT POIT OPEFELION ...ttt ettt sttt ettt ettt b e b e bt b e bt b et b e b e e b e e b e se e bt e b e st e b e s e e st ebese e st ebe s e et nbenre e e 58
6.44 SLOP COMPONENTE OPEIEEION......eeeierte ettt sttt sttt sttt st b e et be et ebe b et bt b e e eb e s b et e bt se e st et e ne et eb e st et nbenbeneees 59
6.45 FIOW graph SEOMENT SSEOP-MIECS ..ottt ettt et e st e st ese e e e eeseeseesbesaesneeneaneeneens 61
6.46 Flow graph SegmeNt <SEOP-CONFIGSoiuiiieeii ettt sttt e e e seesbesaesreeneeneennens 61
6.47 Flow graph segment <StOP-tC-CONTITS.......iiiiiiiiiece et e e te e teeaesreesreesneeseenseens 62
6.48 RS 0] o) oo 0] 0= = 1 oo SRS 64
6.49 Flow graph segment SUNMEP-all>.........oouiiiieece et sre e sre e saeesne e seenreens 65
6.50 Flow graph Segment <UNMED-COMcuiiiriiesieeseesieesessteseeseesseesseesseeseessesssesssesseesseesseessessessssesseensesssenns 66
6.51 Flow graph Segment SUNMED-POMTScccviiieieesieeieeieseseeseeseeseeesseeeeeseesaeessaessaesseesseenseansesseesseesseenseensenns 67
7 TRI EXtENSIiONS fOr the PACKAOEcoeeeeieeee et 67
7.1 Changes and extensions to clause 5.5.2 of ES 201 873-5 Connection handling operations.............cccccevvvenen. 67
7.2 Extensions to clause 6 of ES 201 873-5 Java™ 1anguage Mappingcc.eeweeeeeeeseesresressssessssessessessessessens 69
7.3 Extensionsto clause 7 of ES 201 873-5 ANSI C language MapPinNgc.ccceereereereeesreeerseeseeseeseessesssesessses 69
7.4 Extensions to clause 8 of ES 201 873-5 C++ [anguage MapPinNgcceereerueereeeeeseeseeseeseesseessessssssssssssseesees 70
75 Extensionsto clause 9 of ES 201 873-5 C# language MapPinNgc.ccceeeeieereereereeesreseesseesseesesssesssesssssessens 70
8 TCl EXtensionS for the PaCKagEcooviiuiiee ettt st s ne s 70
8.1 Extensionsto clause 7.2.1.1 of ES 201 873-6 MaNagemMENt...........ccoveierieiieeiieeseesteesteeeesreeseesee e e ssesneesnessnes 70
8.2 Extensionsto clause 7.3.1.1 of ES201 873-6 TCI-TM reqUIredcccccceveeieereerie e e e se e 70
8.3 Extensionsto clause 7.3.1.2 of ES 201 873-6 TCI-TM Provided........cccccoeioeieeveerecre e 72
84 Extensionsto clause 7.3.3.1 of ES 201 873-6 TCI-CH reqUIred..........cccccvvoeiieereenieece e e 73
85 Extensionsto clause 7.3.3.2 of ES 201 873-6 TCl CH providedcccoeviieirinicenineeseeeseseeese e 73
8.6 Extensionsto clause 7.3.4 of ES 201 873-6 TCI-TL ProVided.........cccoviiririieiniieeneeeesee e 74
8.7 Extensions to clause 8 of ES 201 873-6 Java™ language Mappingceweeeeeeveeeereeesseseeesessseesssssssessneeas 76
8.8 Extensionsto clause 9 of ES 201 873-6 ANSI C language MapPingcoeeeereeneeeriereeessesseesseseeessessenesnes 78
8.9 Extensionsto clause 10 of ES 201 873-6 C++ [anguage MapPiNg.........cceeereereeerierieerienieesieseeesseseeesseseeesnes 80
8.10 Extensionsto clause 11 of ES 201 873-6 W3C XML MEPPING -...vcuervervieeririiieiiriineeesiesieesie e seeeeseseeesees 82
8.11 Extensionsto clause 12 of ES 201 873-6 C# language MapPingccceeeeieeereereeseeesieeeesseeseeseesseessessssssessees 84
Annex A (normative): BNF and statiC SEMantiCS.......coovvererierieeeeieesie st 87
A1 Additional TTCN-3LEIMINGIS.......ciiiirieiiieirtetiee ettt n e nn e nes 87
A.2 Modified TTCN-3 syntaX BNF ProAUCTIONSccueoveiririniiniesiesiesie et 87
A.3 Additional TTCN-3 syntax BNF pProduCioNS..........cccccieiiiieiieie et sne e 88
Annex B (informative): Library of USEfUl tYPES ...ccueiiiieeceeee e 90
2 0 O I 0 = 1o USSR 90
2 I U = | I O Ve B Y o= RSP 90
B.2.1 SALUS VAl UES FOF POI SLALES......cuvieeieeeiecie sttt ettt e st et e st e e teetesaaesaeesaeesseenseenseenseeneesneesseesnens 90
[1S 0] Y PSSP 91

ETSI

5 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

Thisfinal draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The use of underline (additional text) and strike through (deleted text) highlights the differ ences between base
document and extended documents.

The present document relates to the multi-part standard ES 201 873 covering the Testing and Test Control Notation
version 3, asidentified below:

ES201873-1: "TTCN-3 Core Language";

ES201873-2: "TTCN-3 Tabular presentation Format (TFT)";
ES201873-3: "TTCN-3 Graphica presentation Format (GFT)";
ES 201 873-4: "TTCN-3 Operational Semantics';

ES 201 873-5: "TTCN-3 Runtime Interface (TRI)";

ES201873-6: "TTCN-3 Control Interface (TCI)";

ES201873-7: "Using ASN.1 with TTCN-3";

ES201873-8: "ThelDL to TTCN-3 Mapping";

ES201873-9: "Using XML schemawith TTCN-3";

ES 201 873-10: "TTCN-3 Documentation Comment Specification”.

ETSI

http://webapp.etsi.org/IPR/home.asp

6 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

1 Scope

The present document defines the Configuration and Deployment Supportpackage of TTCN-3. TTCN-3 can be used for
the specification of all types of reactive system tests over avariety of communication ports. Typical areas of application
are protocol testing (including mobile and Internet protocols), service testing (including supplementary services),
module testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing
and can be used for many other kinds of testing including interoperability, robustness, regression, system and
integration testing. The specification of test suites for physical layer protocols is outside the scope of the present
document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as conceptsin the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines the TTCN-3 support for static test configurations.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

2] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics®.

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] I SO/IEC 9646-1: "Information technology - Open Systems I nterconnection -Conformance testing
methodology and framework; Part 1. General concepts'.

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI

http://docbox.etsi.org/Reference

7 Final draft ETSI ES 202 781 V1.3.1 (2014-04)
[i.2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[i.3] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.4] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.5] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML with TTCN-3".

[i.6] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions givenin ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5[3], ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5[3], ES 201 873-6 [4], ISO/IEC 9646-1 [5] and the following apply:

MTC Main Test Component
PTC Parallel Test Component
4 Package conformance and compatibility

The package presented in the present document isidentified by the package tag:

"TTCN-3:2009 Static Test Configurations" - to be used with modules complying with the present
document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ES 201 873-1 [1] and
ES201873-4[2].

The package presented in the present document is compatibl e to:
. ES 201 873-1[1] version 4.6.1;
. ES 201 873-2[i.1] version 3.2.1;
. ES 201 873-3[i.2] version 3.2.1;
. ES 201 873-4 [2] version 4.4.1;
. ES 201 873-5[3] version 4.6.1;
. ES 201 873-6 [4] version 4.6.1;
. ES 201 873-7 [i.3] version 4.5.1;

. ES 201 873-8[i.4] version 4.5.1;

ETSI

8 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

ES 201 873-9[i.5] version 4.5.1,

ES 201 873-10[i.6] version 4.5.1.

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5

Package Concepts for the Core Language

This package defines the TTCN-3 means to define static test configurations. A static test configuration is atest
configuration with alifetime that is not bound to a single test case. The test components of a static test configuration
may be used by several test cases. This package realizes the following concepts:

A specia configuration function is introduced which can only be called in the control part of a TTCN-3
module to create static test configurations. The configuration function returns a handle of the predefined type
configuration to access an existing static test configuration.

A static test configuration consists of static test components, atest system interface, static connections and
static mappings. These constituents have the following semantics:

- A static test component is a specia kind of test component that can only be created during the creation of
a static test configuration and can only be destroyed during the destruction of a static test configuration.
By definition, the MTC of a static test configuration is a static test component.

- The test system interface of a static test configuration plays the same role as the test system interface of a
test configuration created by atest case.

- A static connection is a connection between static test components. It can only be established during the
creation of a static test configuration and only be destroyed during the destruction of a static test
configuration.

- A static mapping is a mapping of a port of a static test component to a port of the test system interface of
a static test configuration. Such a mapping can only be established during the creation of a static test
configuration and only be destroyed during the destruction of a static test configuration.

A static test configuration can be used by severa test cases. For thisthe test caseis started on a previously
created static test configuration. This means:

- The body of the test case is executed on the MTC of the static test configuration.
- The MTC may start behaviour on other static test components of the static test configuration.

- Static test components may create, start, stop and kill normal and alive test components. The lifetime of
these components is bound to the actual test case that is executed on the static test configuration. In case
that anormal and alive test component is not destroyed explicitly by another test component, it is
implicitly destroyed when the test case ends.

- During test case execution non-static connections and non-static mappings may be established. The
lifetime of non-static connections and non-static mappingsis bound to the actual test case that is
executed on the static test configuration. In case that a non-static connection or a non-static mapping is
not destroyed explicitly by another test component, it isimplicitly destroyed when the test case ends.

Component timers and variables of static test components are not reset or reininitialized when atest caseis
started on a static test configuration. They remain in the same state as when they were left after the creation of
the static test configuration or after the termination of a previous test case. This allows to transfer information
from one test case to another.

Ports of static test components are not emptied or restarted when atest case is started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign. In addition, all port operations (i.e. clear, start, stop and halt) are
disallowed for ports of static test components. All ports of a static test component remain started during the
whole lifetime of a static test configuration.

ETSI

9 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

. In contrast to component timers, variables and ports, the verdict and the default handling is reset. This means
al activated defaults are deactiviated, al local verdicts and the global verdict are set to none.

5.1 Static configurations

5.1.1 The special configuration type: configuration

The specia configuration type configuration isahandle for static test configurations. The special valuenull is
available to indicate an undefined configuration reference, e.g. for the initialization of variables to handle a static test
configuration.

Values of type configuration shall be theresult of configuration functions, they can be checked for equality,

e.g. to check if two variables store the same value, and they can be used in execute statements for starting atest case
on an existing static test configuration and in ki1l configuration statements to destroy an existing static test
configuration.

Each successful execution of a configuration function results in a different configuration value which is only equal to
itself.

Restrictions
The following restrictions apply to usages of the configuration type:

a) Theconfiguration type cannot be subtyped or constrained.

b) Theconfiguration typeis not a datatype, therefore, the anytype does not include the configuration type.
¢) Module parameters shall not be of type configuration.

d) Signature parameters shall not be of type configuration.

€) Templates shall not be of type configuration.

f) Templates shall not be of a structured type that contains fields or elements of type configuration on any level
of nesting.

g) Externa functions are not allowed to contain parameters or return values of type configuration.

EXAMPLES:
var configuration myStaticConfig := null; // Declaration and initialization of a
// configuration variable.
myStaticConfig := aStaticConfig() ; // Assigns a value to the previously declared
// configuration variable. It is assumed that
//aStaticConfig() is a configuration function.
myStaticConfig.kill // Kills the static test configuration stored in

// variable myStaticConfig.

5.1.2 The configuration function

A configuration function allows the start of a static test configuration.

Syntactical Structure

configuration ConfigurationIdentifier

"(" [{ (FormalValuePar | FormalTemplatePar) [","] } 1 ")"
runs on ComponentType

[system ComponentType]

StatementBlock

ETSI

10 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Semantic Description

A configuration function allows the start of a static test configuration. A configuration function has to be defined in the
definitions part of a TTCN-3 module and shall only be invoked in the control part of a TTCN-3 module. By definition, a
configuration function returns a value of type configuration if the start of the configuration was successful, or
null if the start of the configuration was not successful.

The invocation of a configuration function causes the creation of the MTC and the test system interface of the static test
configuration. The types of MTC and test system interface shall be referenced in aruns on and a system clause.
The system clauseis optional and can be omitted, if the test system has exactly the same ports asthe MTC and these
ports are mapped one to one to each other.

The behaviour in the body of a configuration function shall be executed on the newly created MTC. During the start of
atest configuration only behaviour on the MTC shall be executed and only static test components, static connections
and static mappings shall be created or established. Communication with the SUT or with static PTCsis hot allowed.

NOTE: The configuration function only returns a reference to atest configuration and no verdict. However,
communication with the SUT might have to be checked. For this purpose, initial communication, e.g. for
registration or coordination purposes, could be defined in form of atest case.

A static test configuration is successfully started if the behaviour of the corresponding configuration function has been
executed till itsend or if areturn statement in the corresponding configuration function is reached. In case of a
successful start, areference to the newly created configuration is returned. The usage of astop or akill statement
allows to specify an unsuccessful start of a static test configuration. In case of an unsuccessful start, the valuenull is
returned.

Restrictions
a) Therulesfor formal parameter lists for the configuration function shall be followed as defined in clause 5.4 of
ES 201 873-4[2].

b) Configuration functions shall only be invoked in the module control part.

c¢) For the behaviour definition in the body of the configuration function and all functions directly or indirectly
from the configuration function, the following restrictions shall hold:

- Only static test components, static connections and static mappings shall be created or established. All
created test components, connections and mappings during the execution of a configuration function are
static.

- Once created or established static test components, static connections and static mappings shall not be
destroyed.

- Itis not allowed to start behaviour on newly created static test components.
- Communication, timer and port operations are not allowed.

EXAMPLES:

// The following configuration function can be used to start a simple static test configuration
// which only consists of one MTC.

configuration simpleStaticConfig () runs on MyMTCtype({}

// The following configuration function starts a more complex static configuration.
// Configuration information is stored in MTC component variables. Further non-static
// connections and mappings may be established by the test cases that are executed

// on this configuration.

configuration aComplexStaticConfig (in integer NoOfPTCs) runs on MyMTCtype system MySystemType {
var integer i;

if (NoOfPTCs < 0) {

log ("Negative number of PTCs");
kill; // unsuccessful termination

ETSI

11 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

else if (NoOfPTCs > MaxNoOfPTCs) // MaxNoOfPTCs is a constant
log ("Number of PTCs is too high") ;
kill; // unsuccessful termination
1
else
for (i := 1, i <= NoOfPTCs, i := i + 1) {
PTC[i] := PtcType.create static; // creation of static PTCs,

// Array PTC[] is a component variable
connect (mtc:SyncPort, PTC[i]:SyncPort) static; // static connection

}

map (mtc:PCO, system:PCOl) static; // static mapping of MTC.
map (PTC[1] : PCO, system:PCO2) ; // some static mappings of PTCs,
map (PTC[2] : PCO, system:PCO3) ; // further non-static mappings may be

// established during test runs

}

return; // successful termination

5.1.3 Starting a static test configuration

A static test configuration is started by calling a configuration function in the control part of a TTCN-3 module. In case
of asuccessful start, areference to the newly created static test configuration is returned. In case of an unsuccessful
start, the special value null is returned.

EXAMPLES:

control ({
var configuration myStaticConfig := null; // Declaration and initialization of a
// configuration variable.

myStaticConfig := aStaticConfig() ; // Assigns a value to the previously declared
// configuration variable. It is assumed that
// aStaticConfig() is a configuration function.

if (myStaticConfig == null)

stop; // Stop test campaign due to an unsuccessful start
else

execute (MyTestCase () ,myStaticConfig) // Successful start, continuation of test campaign

514 Destruction of static test configurations

A static test configuration can be destroyed by executing a kill configuration operation.

Syntactical Structure

ConfigurationReference.kill

Semantic Description

The execution of akill configuration operation causes the destruction of a static test configuration. The destruction is
similar to stopping atest case by killing the MTC. This means, resources of all static PTCs shall be released and the
PTCs shall be removed. The only differenceisthat no test verdict is calculated and returned. After executing the kill
configuration operation, it is not possible to execute atest case on the killed static test configuration.

Executing the kill configuration operation with the special valuenull shall have no effect, executing akill
configuration operation with areference to a non existing static test configuration shall cause a runtime error.

Restrictions
a) Thekill configuration operation shall only be executed in the control part of a TTCN-3 module.

ETSI

12 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

EXAMPLES:

control {
var configuration myStaticConfig := null; // Declaration and initialization of a
// configuration variable.

myStaticConfig := aStaticConfig() ; // Assigns a value to the previously declared
// configuration variable. It is assumed that
// aStaticConfig() is a configuration function.

myStaticConfig.kill // Destruction of the previously started static
// test configuration.

5.1.5 Creation of static test components

The creation of static test components shall be indicated by the additional keyword static inthe create operation.
The extension of the create operation in clause 21.2.1 of ES 201 873-4 [2] required for the creation of static test
components is described in the following sections.

Syntactical Structure

ComponentType "." create [" (" (Name | "-") ["," HostId] ")"] [alive | static]

Semantic Description

The create operation in combination with the keyword static shall only be used to create static test components.
Static test components can only be created by executing a configuration function and by functions directly or indirectly
invoked by configuration functions. The keyword static inacreate operation shall not be used in combination
with the keyword alive.

NOTE 1. During the lifetime of a static test configuration, a static component behaves like an alive component.

Static test components are created in the same manner as hormal test components that are not declared as alive
components. Further details on this can be found in clause 21.2.1 of ES 201 873-4 [2].

NOTE 2: Static test components can only be created directly or indirectly by a configuration function. This may be
checkable at runtime and therefore the keyword static may not be required, but for having an explicit
specification of static test configurations and for keeping the feature of static test configurations
extendible, the keyword static has been introduced.

Restrictions

a) Thecreate operation in combination with the keyword static shall only be invoked in configuration
functions and in function that may be directly or indirectly called by such a configuration function.

b) Thekeyword static inacreate operation shal not be used in combination with the keyword alive.

EXAMPLES:

// This example declares variables of type MyComponentType, which are used to store the
// references of newly created static component instances of type MyComponentType.
// An associated name is allocated to some of the created component instances.

var MyComponentType MyNewComponent;
var MyComponentType MyNewestComponent;

MyNewComponent := MyComponentType.create static;
MyNewestComponent := MyComponentType.create ("Newest") static;

ETSI

13 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

5.1.6 Establishment of static connections and static mappings

The establishment of static connections and static mappings shall be indicated by the additional keyword static in
connect and themap operations. The extension of the connect and map operation in clause 21.1.1 of

ES 201 873-4 [2] required for the establishment of static connections and mapping is described in the following
sections.

Syntactical Structure

connect " (" ComponentRef ":" Port "," ComponentRef ":" Port ")" [static]
map " (" ComponentRef ":" Port "," ComponentRef ":" Port ")"
[param " (" [{ ActualPar [","] }+ 1 ")"] [static]

Semantic Description

The connect and map the operation in combination with the keyword static shall only be used to establish static
connections and static mappings. Static connections and static mappings can only be established by executing the
creator function of a configuration type and by functions directly or indirectly invoked by the creator functions of
configuration type.

Static connections and static mappings are established in the same manner as normal connections and mappings. Further
details on this can be found in clause 21.1.1 of ES 201 873-4 [2].

NOTE: Static connections and mappings can only be established directly or indirectly by a creator function of a
configuration type. This may be checkable at runtime and therefore the keyword static may not be
required, but for having an explicit specification of static test configurations and for keeping the feature of
static test configurations extendible, the keyword static has been introduced.

Restrictions

d) Theconnect and map operation in combination with the keyword static shall only beused in
configuration functions and in functions that may be directly or indirectly called by a configuration function.

b) Static connections and static mappings shall only be established to connect ports of static test components and
to map ports of a static component to the ports of the test system interface of a configuration type.

EXAMPLES:

// The following code fragment may be part of a creator function of a configuration type.
// It is assumed that the ports Portl, Port2, Port3 and PCOl are properly defined and declared
// in the corresponding port type and component type definitions

var MyComponentType MyNewPTC;
MyNewPTC := MyComponentType.create static;

connect (MyNewPTC:Portl, mtc:Port3) static;
map (MyNewPTC:Port2, system:PCOl) static;

5.1.7 Test case definitions for static test configuration

Test cases that are executed on a static test configuration have to be defined in a special manner. Such test cases shall
reference the configuration function that starts a static configuration on which the test case can be executed. The type of
the MTC and the type of the test system interface are referenced in the configuration function and shall therefore not be
specified in the test case header. The extension of the test case definition in clause 16.3 of ES 201 873-4 [2] required for
the execution of atest case on a static test configuration is described in the following sections.

Syntactical Structure

testcase TestcaseIdentifier

"(" [{ (FormalValuePar | FormalTemplatePar) [","] } 1 ")"
(runs on ComponentType [system ComponentType] | execute on ConfigurationType)
StatementBlock

ETSI

14 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Semantic Description

A test case definition that includes an execute on clause will be executed on previoudly created static test
configuration of the given configuration type. The type of the MTC and the type of the test system interface is defined
in the referenced configuration type. A test case definition that includes an execute on clause shall not have aruns
on Or asystem clause.

Apart from the execute on clause, the definition of test cases to be executed on a static test configuration follows the
same rules as described in clause 16.3 of ES 201 873-4 [2].

Restrictions
a) A test case definition that includes an execute on clause shall not have aruns on or asystem clause.

EXAMPLES:
configuration aConfiguration () runs on MyMTCtype system MySystemType {

// creation of a static PTC
// PeerComponent is a component variable

PeerComponent := MyPTCType.create static;

connect (mtec:syncPort, PeerComponent:syncPort) ; // static connection

map (mtc:PCOl, system:PCO1) // static mapping ot MTC
map (PeerComponent:PCO2, system:PCO2); // static mapping of Peer Component
return // successful start of test configuration

1

testcase MyTestCase () execute on aConfiguration {
default := activate (UnexpectedReceptions()); // activate a default
PeerComponent .start (PTCbehaviour()) ; // starting PTC behaviour
SyncPort.send (Ready) ; // synchronization with PTC
SyncPort .receive (Ready) ; // PTC ready
PCOl.send (stimulus) ; // test starts

// test behaviour

5.1.8

This clause only describes the syntax extensions of the execute statement to allow the execution of test cases with an
execute on clauseon static test configurations and the semantics for executing such test cases. The semantics of the
execute statement for test cases without execute on clause remains unchanged.

Executing test cases on static test configurations

Syntactical Structure

execute " (" TestcaseRef " (" [{ TemplateInstance [","]
["," (TimervValue | "-")
[non (HOStId / n_n)
["," ConfigurationRef] 1 1]

n) "

Semantic Description

A test case definition that includes an execute on clause shall be executed on previoudly started static test
configuration of a given configuration function. The reference of the previously started static test configuration shall be
referenced in the execute statement.

Trying to execute atest case on a hon-existing or unfitting static test configuration shall cause arun time error.
Unfitting test configuration means that the referenced static test configuration has not been created by the configuration
function referenced in the test case header.

ETSI

15 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

If the execution of atest case on astatic test configuration causes an error verdict, all following usages of this static
test configuration in execute statements shall cause a runtime error.

NOTE: Itisallowed to kill the possibly erroneous static test configuration and to start a new one by invoking the
configuration function again.

A test case that shall be started on afitting static test configuration can rely on the following things:

e All static test components, static connections and static mappings created or established by the referenced
configuration function shall exist.

J No static test component is running.
. No non-static test components, non-static connections and non-static mappings shall exist.

. Component timers and variables of static test components shall not be reset or reininitialized when atest case
is started on a static test configuration. They remain in the same state as when they were | eft after the creation
of the static test configuration or after the termination of a previous test case, except for running timers which
can change their state to timed out. This allows to transfer information from one test case to another. If atimer
of a static component is running when atest case terminates, it can still time out even before the next test case
starts. However, this can only be observed during the execution of atestcase.

. Ports of static test components shall not emptied or restarted when atest case is started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign. Messages, calls, replies, exceptions and call-timeouts can still be
enqueued at ports of static test components after the termination of atestcase, but they can only be observed
and processed during a following testcase.

. In contrast to component timers, variables and ports, the verdict and the default handling shall be reset. This
means all activated defaults are deactiviated, al local verdicts and the global verdict are set to none.

Executing atest case on a static test configuration means that the body of the test case is executed on the MTC of the
static test configuration. During test execution, all static PTCs behave like alive test components. This means, static
PTCs may be stopped and started several times. During test case execution, non-static normal and alive components
may be created, started, killed and stopped. In addition, non-static connections and mappings may be established and
destroyed.

A test case that is executed on a static test configuration shall end when the behaviour of the MTC ends. In this case, the

final test case verdict is returned. The final test case verdict shall be calculated based on the local verdicts of all static
and non static test components. Furthermore, all test components (static and non-static) shall be stopped, all non-static
test components, non-static connections and all non static mappings shall be discarded.

Restrictions

All restrictions mentioned in clause 26.1 of the core language document [1] apply.

EXAMPLES:

var verdict MyVerdict // local variable

var configuration MyConfiguration := aConfiguration(); // starting a static test configuration
MyVerdict := execute (MyTestCase (),MyConfiguration) ; // execution of a test case on a static

// test configuration

if (MyVerdict :

= pass)
MyVerdict : X

execute MyTestCase (), 10.0, MyConfiguration); // executing the same test case
// with time guard

.. // further test behaviour
stop;

ETSI

16 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

519 Further restrictions

Static test components, static connections and static mappings have a special semantics. Therefore, situations shall
cause aruntime error:

. Applying akill test component operation to a static test component.
. Applying port operations (clear, start, stop and halt) to aport owned by a static test component.
. Applying a disconnect operation to a static connection.

e Applying unmap operation to a static mapping.

5.1.10 Logging the status of static configurations

The 1og statement can be used to log the status of static configurations. Table 17 "TTCN 3 language elements that can
be logged" of ES 201 873-1 [1] isto be extended as follows:

Table 1: TTCN-3 language elements that can be logged

Used in a log statement What is logged Comment
configuration reference actual state Configurations states shall be logged
according to note 9.

NOTE ..: ...
NOTE 9: Configuration states that can be logged are: Started and Killed.

5.2 Ports with translation capability

This clause describes an extension of a message port type definition adding trandlation capability into it.

Trandation feature is a set of rules that allows to convert messages and/or addresses of one type into messages and/or
addresses of different type during sending or receiving.

It can be used e.g. in situations where the test behaviour is defined on one set of data types but the system under test (or
connected component) actually communicates using a different set of datatypes, i.e. if the test system works on a
different layer of the protocol stack than the system under test.

To alow flexible adaptation to the system under test, the user shall have the meansto control this trandation in the
abstract test suite.

Syntactical Structure

type port PortTypeIdmessage

[map to{OuterPortTypel","]}+]
[connect to {OuterPortTypel","]1}+1"{"
{

(in{InnerInType [from {OuterInType with InFunction" ("")"[","]}+]1[","]}+]|
out{ InnerOutType[to {OuterOutType with OutFunction" ("")"[","]}+ 1[","]1}+ |
inout{InOutTypel[","]}+ |

address AddrType [to {OuterAddrTypewith AddrOutFunction" ("")"[","]}+]
[from { OuterAddrTypewith AddrInFunction" ("")"[","]1}+ 1 |

map param " ("{FormalValuePar [","] }+ ")"]|

unmap param " ("{ FormalValuePar [","] }+ ")" |

VarInstance) ";"

n}n

NOTE: Please note that the same OuterInType may appear in more than one in message specifications for
different InnerlnType-s. In each such clause the InFunction is different.

ETSI

17 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Semantic Description
PortTypeld is name of the type being defined.

/ Port in trand ation mode \

Standard port
behaviour

Trandation behaviour

OutFunction is
implicitly invoked

ouT

i Inner out message (of .
: type InnerOutType)

\ 4

InFunction is
Inner queue [[[Dﬂ; implicitly invoked
L IN Inner in message (of
" ’,’ type InnerinType) A
_ ------------------- Outer queue /
Outer out message
Outer in message (of (of type
type Outer InType) N ouT | CuteroutType)

Figure 1: lllustration of ports with translation capability

. OuterPortType references the outer message port type this port is mapped to. If the referenced port isa
mapped port, it shall not contain direct or indirect reference to the PortTypeld in the list of its OuterPortTypes.

. InnerInType references a type that can be received over such a port.

. OuterInType references atype that is actually received and which shall be trandated to InnerlnType.

. InFunction references a function which shall be used to trandate OuterInType to InnerinType.

. InnerOutType references a type that can be sent over such a port.

. OuterOutType references a type that is actually sent which has been transated from InnerOutType.

e OutFunction references a function which shall be used to translate InnerOutType to Outer OutType.

. InOutType references atype that can be sent and received by the port.

e AddrTypeisthe address type bound to the port type being defined.

. Outer Addr Type is the address type into which the Addr Type is translated.

. AddrOutFunction references a function which shall be used to trandate the Addr Type to theOuter Addr Type.
e AddrinFunction references afunction which shall be used to trandate the Outer Addr Type to theAddr Type.

. Varlnstance is a declaration of a port variable.

ETSI

18 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

5.2.1 Translation capability in port type declaration

If aport type declaration includes trand ation capability, it shall always contain at least one map or connect clause.
These clauses define one or more port types for which trangation mechanism is defined.

If aport typeis referenced in the map clause, the following applies:

e All typesfrom the in message list of the OuterPortType shall be referenced either as InnerInType,
OuterInType or InOutType in the port type with translation capability.

e All InOutTypes shall be present either in thein and out lists (at the same time) or in the inout message list of
the OuterPortType.

e All InnerOutTypes shall be referenced in the out message list of the OuterPortType or if such areference does
not exist, the Outer PortType shall contain at least one reference to any of the Outer OutTypes associated with
the InnerOutType in its out message list.

NOTE 1: If these conditions are met, it is always safe to map TSI ports of Outer OutType to instances of the port
type with trandation capability.

If aport typeisreferenced in the connect clause, the following applies:

e All typesfrom the out message list of the OuterPortType shall be referenced either as InnerInType,
OuterInType or INOutType in the port type with translation capability.

. All InOutTypes shall be present either in thein and out lists (at the sametime) or in the inout message list of
the OuterPortType.

e All InnerOutTypes shall be referenced in the in message list of the OuterPortType or if such areference
doesn't exigt, the OuterPortType shall contain at least one reference to any of the Outer OutTypes associated
with the InnerOutTypeinitsin message list.

NOTE 2: If these conditions are met, it is always safe to connect ports with translation capability to ports of
OuterOutType.

Port types with translation capability can contain variable declarations. These variables are created and initialized when
aport instance is created and have the same lifetime as the port instance itself. Every port instance hasits own copy of
these variables. Port variables can be accessed only from InFunctions and OutFunctions. They are not visible outside of
the trandation procedure. The variables can be used e.g. for buffering data between individual calls of InFunctions and
OutFunctions(e.g. in case of fragmented messages).

Restrictions

In addition to the general static rules of TTCN-3 restrictions specified in clause 6.2.9 of ES 201 873-1 [1], the following
restrictions apply:

a) If the OuterPortTypeis aport type with translation capability, it shall neither directly nor indirectly reference
PortTypeld in its map or connect clause (i.e. port types with translation capability cannot reference each
other).

b) All OuterAddrTypes shall be used as an address type at least in one of the Outer PortTypes.
¢) All InFunction, OutFunction and AddrFunction identifiers shall be referencesto a trandation function.

EXAMPLE:

typeport TransportPort

{
}

type port DataPort map to TransportPort

{

inoutTransportMessage;

inDataMessage fromTransportMessage withtransportToDatal() ;
outDataMessage toTransportMessage withdataToTransport () ;

ETSI

19 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

5.2.2 Mapping and connecting ports

Ports with translation capability can work in two different modes. normal and translation mode. In normal mode, the
port behaves as a standard message port according to the rules specified in ES 201 873-1 [1]. In trandation mode, the
port uses rules described in the following clauses of the present document to convert messages and addresses when
communicating with linked ports.

The trand ation mode is activated in these cases:

e A map operation is applied to a component port and TSI port and the component port type contains a reference
to the TSI port typein its map clause.

e A port type of one operands of a connect operation contains a reference to the port type of the other operand in
its connect clause.

In all other cases, normal mode is activated.

EXAMPLE:
typeport TransportPort {

}

type portDataPort map to TransportPort {

}

typecomponent SystemComponent{
portDataPort dataPort;
portTransportPort transportPort;

}

type component TestComponent {
port DataPort dataPort;
1

testcase TC runson TestComponent system SystemComponent

{

if (PX_TRANSPORT USED) {
// activate translation mode (TransportPort is implicitly referenced via transportPort
// in the map operation)
map (mtc:dataPort, system:transportPort) ;

}

else{
// activate normal mode (TransportPort is not referenced in the map operation)
map (mtc:dataPort, system:dataPort) ;

523 Translation functions

Tranglation functions are used by ports working in translation mode for converting incoming and outgoing messages
and addresses from one type to another.

Syntactical Structure

function FunctionIdentifier" ("inFormalValuePar ", "out FormalValuePar ")"
[port PortTypeId]
StatementBlock

Semantic Description

Trandation functions have always two parameters. Thefirst one is always an in parameter and it isused to passin a
value that shall be tranglated by the function. The second one is always an out parameter and it shall be used to pass
the result of the tranglation to the translation procedure (see clauses 5.2.5, 5.2.6 and 5.2.7) in case of successful
trangdation.

Unlike standard functions described in clause 16.1 of ES 201 873-1 [1], trandation functions can contain aport
clause. If the port clauseis present, all variables defined in the referenced port type become visible in the function body.

ETSI

20 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Restrictions

a)

Trandation functions shall never return avalue.

NOTE: Thesetstate operation isused to inform the test system about the success of trandation.

b) Trandation functions shall not contain aruns on clause.

¢) Trandation function containing aport clause can be referenced only in the port type referenced in this port
clause.

d) Thetype of the in parameter of atrandation function referenced as an InFunction in an in clause shall be the
OuterInType immediately preceding the InFunction reference and the type of its out parameter shall be the
InnerinType.

€) Thetype of the in parameter of atrandation function referenced as an OutFunction in an out clause shall be
the InnerOutType and the type of its out parameter shall be the OuterOutType immediately preceding the
OutFunction reference.

f) Thetype of the in parameter of atrangation function referenced as an AddrOutFunction in aport address
declaration shall be the Addr Type and the type of its out parameter shall be the Outer Addr Type that
immediately precedes the AddrFunction reference.

g) Thetypeof the in parameter of atrandation function referenced as an AddrInFunctionin aport address
declaration shall be the Outer Addr Type that immediately precedes the AddrFunction reference and the type of
itsout parameter shall be the AddrType.

h)y Trandation functions shall not contain any blocking operations.

i) Invoking afunction with aport clause explicitly shall cause an error.

EXAMPLE:

type port DataPort map to TransportPort

}

in DataMessage from TransportMessage with transportToData() ;
out DataMessage to TransportMessage with dataToTransport () ;
var octetstring vp_ remainings

function transportToData (inTransportMessage p_msg, outDataMessage p_res) port DataPort {

}

port.setstate ("Translated") ;

function dataToTransport (inDataMessage p msg, outTransportMessage p_res) port DataPort {

5.2.4

port.setstate ("Translated") ;

Translation state

In addition to port state dimensions defined ES 201 873-1 [1], al ports working in translation mode have an additional
port state dimension called trandation state. The trand ation state always contains the result of the last executed
trand ation function performed by the port.

There are five possible trandation states:

unset isthe default state before invoking atrandation error. If atrandation function ends with this state, an
error is generated;

not trandated means that the trand ation function has not been successful;

fragmented indicates the trandation function didn't finish trandation, because the input data didn't contain a
complete message (i.e. more fragments are needed to finish tranglation);

ETSI

21 Final draft ETSI ES 202 781 V1.3.1 (2014-04)
. trandated means that the trand ation function successfully performed translation and there are no
non-trand ated data | eft;

. partially translated is used when the trandation function successfully performed trandation, but there are
additional data which hasn't been translated yet (i.e. the input data contained more than one message).

Trandlation state is set implicitly to unset whenever atrandation function is called to trandate a sent or received
message. The translation state can be changed by a setstate operation.

Syntactical Structure
port.setstate" ("SingleExpression { "," (FreeText | TemplateInstance) } ")"
Semantic Description

The setstate operation can be used only inside afunction that is called during a trandation procedure to trandate a
sent or received a message. It changes the trandlation state of the related port.

The optional parameters alow to provide information that explains the reasons for setting a port translation state. This
information is composed to a string and might be used for logging purposes.

Restrictions

a) Thevauepassed to the setstate operation in the first parameter shall be of the integer type and shall
have one of the following values:

- 0 (meaning trand ated)
- 1 (meaning not translated)
- 2 (meaning fragmented)
- 3 (meaning partially trand ated)
NOTE 1: Numeric parameter values 0, 1 and 2 are the same as results of the predefined decvalue function.

NOTE 2: Clause B.2.1 of the present document includes the type definition tranglation state and the constant
definitions TRANSLATED, NOT_TRANSLATED, FRAGMENTED, PARTIALLY_TRANSLATED.

b) Cadlingthe setstate operation withan integer not listed in d) in the first parameter shall lead to an
error.

c¢) Cdlingthe setstate operation outside of atransation function or in atrandation function trandating an
address shall cause aruntime error.

d) For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of the log
statement. See clause 19.11 of ES 201 873-1 [1] for more details.

NOTE 3: The unset state cannot be set by the set state operation, it isreserved for TE interna use only.

5.2.5 Sending

When a message is to be sent over a port, working in translation mode, the following shall apply:
. If no OutFunction is specified for the given InnerOutType, it is simply sent over the port transparently.

. If an OutFunction is specified for the InnerOutType, the trand ation procedure first sets the trandation state to
Unset. Then the OutFunction is automatically invoked to trand ate the InnerOutType to the Outer OutType.
When the function execution is finished, then depending on the current trand ation state one of the following
actionsis taken:

- The unset state shall cause an error (i.e. if thereisno setstate operation isinvoked in the translation
function).

ETSI

NOTE:

5.2.6

22 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

If the state is not trandated, the tranglation procedure tries to trandate the message using the next
OutFunction specified for the given InnerOutType. OutFunction-s are tried according to their textual
order in the port type definition. If there is no such a function, an error is generated.

If the state is fragmented, the trand ation procedure ends but no datais sent to the connected or mapped
port (the port will wait for the next fragment to complete translation). The to clause of the following
send operation shall be the same as the to clause of the current send operation or missing if the current
send operation doesn't contain any to clause.

If the state istranslated, the trandation procedure sends the translated message (retrieved from the out
parameter of the OutFunction) to the port it is mapped or connected to.

If the state is partially trandated, the sent message of thel nner OutType contains several messages (or
message fragments) of theOuter OutType. In this case, the trandation procedure sends the translated
message to the mapped or connected port. The trangd ation function is then called again, with the same in
parameter value, to enable sending of the remaining messages.

In the fragmented case the non-translated part of InnerOutType has to be explicitly assigned to port
variables.

Receiving

Unlike a port working in standard mode, ports working in translation mode maintain two different queues. The outer
gueue is used to keep not translated messages that are either enqueued or sent to the port working in translation mode.
The inner message queue contains aready translated messages. Receiving operations access this inner queue. In case of
successful receiving (see clause 22.2.2 of ES 201 873-1 [1]), the successfully received message is removed from the
inner queue. Messages stored in the outer queue can be removed from it only by the trand ation procedure as described

below.

The TTCN-3 Executable (TE, see[4]) shall control the tranglation process and the normal decoding algorithm
(see note 1) in co-operation, as specified below. But yet, the norma decoding a gorithm itself is not changed.

~

\

p.receive(A:?)

: 2

Port in translation mode

Outer queue TRIm e
InFunction < : System
(in B,out A J

Inner queue

~
S oA
S
-
-
_______ -

~

j S~
~
~
~
~
~
~
~
S

decoded value ecode (TRI message, decoding hypothesis? B)

Figure 2: Illustration of the interworking of decoding and translation procedure during receiving

NOTE 1: Inthis clause the "normal decoding algorithm" refers to the process that the TE invokes decoding the

received bitstring as specified in clauses 7.3.2 and C.5.4 of ES 201 873-6 [4].

ETSI

23 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

The translation procedure for receiving operations is invoked by the snapshot mechanism. This procedure iterates
through all in clauses (InnerinType -s) defined in the port type definition. The in clauses are iterated according to their
textual order. During this iteration, the following shall apply:

If no InFunction is specified for the given InnerlnType, the trandation procedure checks, if the top item of the
outer queue is of InnerInType (i.e. invokes the normal decoding algorithm, and the check is successful if the
decoding is successful). If the result of the check is positive, the message is moved from the outer queue into
the inner queue (i.e. the port will relay the message from the outer port to the inner port transparently) and
iteration ends.

Otherwise (if the InFunction is present for the InnerinType), then the tranglation procedure checks if the top
item of the outer queue is of the OuterInType, by invoking the normal decoding a gorithm, as described above.
If the check is successful, the trandation procedure automatically executes the InFunction: first setsthe
trandation state to Unset and passes the message of the OuterInType to it, in the first parameter. When the
function execution is finished, the translation procedure checks the trand ation state of the port:

- The unset state shall cause an error (i.e. if thereisno setstate operation isinvoked in the trandation
function).

- If the state is not trandated, the iteration shall continue with the next InFunction for the same
OuterInType. If there is no more such InFunction, the trandation procedure shall continue with the next
OuterInType. If there is no more OuterInType -s for the given InnerInType, the iteration process shall
continue with the next InnerinType. The order is determined by the textual order in the port type
definition.

- If the state is fragmented, the top item of the outer queue is removed and the iteration shall be restarted to
process the next message in the outer queue. The next message shall have the same address as the current
one (including a missing address). If there is no such message, the iteration shall continue with the next
InnerinType.

- If the state istrandlated, the top item of the outer queue is removed and the translated message (retrieved
from the out parameter of the InFunction) is inserted into the inner queue. This ends the whole iteration.

- If the state is partially trandated, the received message of the OuterInType contains several messages (or
message fragments) of the InnerinType. In this case, the translated message (retrieved from the out
parameter of the InFunction) isinserted into the inner queue. Unlike in the translated case, the top
message is not removed from the outer queue. Instead, it is kept in its decoded form in the queue to
enable tranglation of the remaining messages embedded in the outer message in subsequent receive calls.

NOTE 2: Inthe fragmented case the non-translated part of OuterInTypehas to be explicitly assigned to port

5.2.7

variables.

If theiteration has processed all in clauses without any success (no transparently relayed message was
successfully moved from the outer to inner queue and all InFunction calls ended with the not trandated state),
the iteration process returns.

In case the iteration produces a successful result, the trandation procedure might restart the iteration in order to
trand ate the remaining messages in the outer queue (if there are any), or it might for performance
consideration postpone this trand ation to the moment when the next snapshot is taken. For the same
performance reasons, the snapshot mechanism is not required to start the translation procedure in case the
inner queue already contains some messages.

Address

When an address type associated with a mapped port working in the trandlation mode containsa to or £rom clause and
one of the Outer Addr Type-s is the same as the address type of the mapped TSI port, the trandation procedure is applied
to all addresses used by sending or receiving calls of the port.

ETSI

24 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

In case of sending a message, the trand ation procedure automatically invokes the AddrOutFunction passing the address
value defined in the to clauseto it, initsfirst parameter. In case of receiving a message, the translation procedure
automatically invokes the AddrInFunction passing the received address value to it, initsfirst parameter. When the
function execution is over, the trandation procedure retrieves the trandated address from the out parameter of the
trandation function and the control is returned to the calling sending or receiving procedure to finish the operation using
the trandlated address value.

NOTE: Unlike trandation functions used for tranglating sent or received messages, the translation functions for
addresses do not use translation states.

EXAMPLE:

typeportTransportPort

addressTransportAddress;

}

typeportDataPort mapto TransportPort

{

addressDataAddresstoTransportAddress withtoTransportAddress ()
from TransportAddress with fromTransportAddress;

}

function toTransportAddress (DataAddress p_addr, out TransportAddress p_translated) { ...}
function fromTransportAddress (TransportAddress p_addr, out DataAddress p translated) { ... }

5.2.8 Clear, start, stop and halt operation

The clear and start operations clean messages both from inner and outer message queues. In addition to that, all
port variables are reset in the following way: if avariable declaration contains an assignment, the assignment operation
will be performed as a part of the clear or start operation restoring the initial value of the variable. Otherwise (if the
variable declaration does not contain an assignment part), the value of the variable will be uninitialized after the clear or
start operation.

The halt operation affects the outer queue only. The tranglation procedure can still insert translated messages into the
inner queue of a halted port, provided that there are available messages in the outer queue.

Since the stop port operation requires all communication operations to cease before the port is stopped, al unfinished
tranglation operations shall be completely performed before the working of the port is suspended.

6 Package Semantics

The complete semantics of the using the package in TTCN-3 is defined by copying the following clausesin the
following manner into of ES 201 873-4 [2]: TTCN-3 Operational Semantics.

e Clause 6.1 replaces clause 7in ES 201 873-4 [2].

. Clause 6.2 replaces clause 7.1 in ES 201 873-4 [2].

e Clause 6.3 replaces clause 8.2 in ES 201 873-4 [2].

. Clause 6.4 replaces clause 8.2.1in ES 201 873-4 [2].

e Clause 6.5isanew clause. It would become clause 8.2.6ain ES 201 873-4 [2].
e Clause 6.6 replaces clause 8.2.7 in ES 201 873-4 [2].

. Clause 6.7 replaces clause 8.3.1in ES 201 873-4 [2].

e Clause 6.8 replaces clause 8.3.1.1ain ES 201 873-4 [2].

. Clause 6.9 replaces clause 8.3.1ain ES 201 873-4 [2].

ETSI

25 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Clause 6.10 replaces clause 8.3.1.1ain ES 201 873-4 [2].

Clause 6.11 replaces clause 8.3.2 in ES 201 873-4 [2].

Clause 6.12 replaces clause 8.3.2.1in ES 201 873-4 [2].

Clause 6.13 replaces clause 8.3.3.1in ES 201 873-4 [2].

Clause 6.14 replaces clause 8.3.3.2in ES 201 873-4 [2].

Clause 6.15 replaces clause 8.6 in ES 201 873-4 [2].

Clause 6.16 replaces clause 8.6.1 in ES 201 873-4 [2].

Clause 6.17 replaces clause 8.6.1.1 in ES 201 873-4 [2].

Clause 6.18 replaces clause 8.6.1.2 in ES 201 873-4 [2].

Clause 6.19 replaces clause 8.6.1.3 in ES 201 873-4 [2].

Clause 6.20 replaces clause 8.6.1.4 in ES 201 873-4 [2].

Clause 6.21 replaces clause 8.6.2 in ES 201 873-4 [2].

Clause 6.22 replaces clause 9.9 in ES 201 873-4 [2].

Clause 6.23 isanew clause. It would become clause 9.9ain ES 201 873-4 [2].
Clause 6.24 replaces clause 9.10 in ES 201 873-4 [2].

Clause 6.25 replaces clause 9.12 in ES 201 873-4 [2].

Clause 6.26 replaces clause 9.14.2 in ES 201 873-4 [2].

Clause 6.27 replaces clause 9.14.3 in ES 201 873-4 [2].

Clause 6.28 replaces clause 9.14.4 in ES 201 873-4 [2].

Clause 6.29 replaces clause 9.14.5in ES 201 873-4 [2].

Clause 6.30 replaces clause 9.17 in ES 201 873-4 [2].

Clause 6.31 isanew clause. It would become clause 9.17.0 in ES 201 873-4[2].
Clause 6.32 isanew clause. It would become clause 9.17.3 in ES 201 873-4 [2].
Clause 6.33 isanew clause. It would become clause 9.17.4 in ES 201 873-4[2].
Clause 6.34 isanew clause. It would become clause 9.17.5 in ES 201 873-4 [2].
Clause 6.35 replaces clause 9.22 in ES 201 873-4 [2].

Clause 6.36 replaces clause 9.28ain ES 201 873-4 [2].

Clause 6.37 replaces clause 9.29ain ES 201 873-4 [2].

Clause 6.38 replaces clause 9.29a.1 in ES 201 873-4[2].

Clause 6.39 replaces clause 9.29a.3 in ES 201 873-4 [2].

Clause 6.40 replaces clause 9.29b in ES 201 873-4 [2].

Clause 6.41 isanew clause. It would become clause 9.29c in ES 201 873-4 [2].
Clause 6.42 replaces clause 9.32 in ES 201 873-4 [2].

Clause 6.43 replaces clause 9.47 in ES 201 873-4 [2].

ETSI

6.1

26 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Clause 6.44 replaces clause 9.49 in ES 201 873-4 [2].

Clause 6.45 replaces clause 9.49.1 in ES 201 873-4 [2].

Clause 6.46 is anew clause. It would become clause 9.49.4 in ES 201 873-4 [2].
Clause 6.47 isanew clause. It would become clause 9.49.5 in ES 201 873-4[2].
Clause 6.48 replaces clause 9.51 in ES 201 873-4 [2].

Clause 6.49 replaces clause 9.56.1 in ES 201 873-4 [2].

Clause 6.50 replaces clause 9.56.2 in ES 201 873-4 [2].

Clause 6.51 replaces clause 9.56.3 in ES 201 873-4 [2].

Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on atextual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;
stand-alone receiving operations;

stand-alone altsteps calls,

trigger operations

missing return and stop statements at the end of function, configuration function and test case definitions;
missing stop execution statements;

interleave statements,

select-case Statements,

break and continue Statements,

disconnect and unmap operationswithout parameters; and

default values of missing actual parameters.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters,
global constants, i.e. constants that are defined in the module definitions part, and pre-processing macros. All references
to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it
is assumed that the value of module parameters, global constants and pre-processing macros can be determined before
the operationa semantics becomes relevant.

NOTE 1. The handling of module parameters and global constants in the operational semantics will be different

from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,

functions and module control like variables. The wrong usage of local constantsor in, out and inout
parameters has to be checked statically.

ETSI

27 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.2 Order of replacement steps

The textua replacements of short forms, global constants and modul e parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete values;

3) replacement of all select-case statements by equivalent nested i f -else statements;

4) embedding stand-alone receiving operationsinto alt statements;

5) embedding stand-alone altstep callsinto alt statements;

6) expansion of interleave Statements,

7) replacement of all trigger operations by equivalent receive operations and repeat statements;

8) adding return at the end of function and configuration function definitions without return statement,
adding sel f.stop operations at the end of test case definitions without a stop statement;

9) adding stop at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parametersto disconnect and unmap operations without parameters; and
13) adding default values of parameters.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

6.3 Flow graph representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:
a) module control;
b) test case definitions;
c) function definitions;
d) atstep definitions;
€) component type definitions;
f) configuration functions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in afunction-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type. Configuration functions specify the creation of static test configurations.

ETSI

28 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.4 Flow graph construction procedure

The flow graphs presented in the figures 18 to 22 of ES 201 873-4 [2] and the flow graph segments presented in
clause 8 [2] are only templates. They include placeholders for information that hasto be provided in order to produce a
concrete flow graph or flow graph segment. The placeholders are marked with "<" and ">" parenthesis.

The construction of aflow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, altstep, function, component type and configuration function
definition a concrete flow graph (with reference nodes) is constructed.

3) Inastepwise procedure al reference nodesin the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in aflow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of aflow graph isaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
aso has to be taken into consideration. However, the goal of the present document isto provide a correct
and complete semantics, not an optimal flow graph representation.

6.5 Flow graph representation of configuration functions

Schematically, the syntactical structure of a TTCN-3 test case definitioniis:

configuration <identifier> (<parameter>) <testcase-interface> <statement-blocks>

The <testcase-interfaces> aboverefersto the (mandatory) runs on and the (optional) system clausesin the
configuration function definition. The flow graph description of a configuration function describes the behaviour of the
MTC when establishing a new static configuration. Variables, timers and constants defined and declared in the
component type definition are made visible to the MTC behaviour by the runs on clausein the
<testcase-interface>. The system clauseisnot relevant for the MTC and is therefore not represented in the
flow graph representation of a configuration function.

The scheme of the flow graph representation of a configuration function is shown in figure 22a. The flow graph name
<identifiers refersto the name of the represented configuration function. The nodes of the flow graph have
associated comments describing the meaning of the different nodes. The reference node <return-with-value>
covers the case where no explicit return operation for the MTC is specified, i.e. the operational semantics assumes
that areturn operation isimplicitly added. After a successful termination, a configuration function always returns a
handle to the newly created static test configuration.

ETSI

29 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

flow graph <identifiers>

T // Considers scope information provided
// by the runs-on clause in the
<init-scope-with-runs-on> // interface of the configuration

// function.

¥ // - Actual parameter values are
// assumed to be in the value stack
<parameter-handling> //
// - Formal parameters are handled
// like local variables and local
// timers

\ 4

// The body of the test case specifies
<statement-block> // the configuration statements to be
// executed by the MTC.

* (1) // For the case that an explicit
""""""""""" // return statement is missing. The
//

configuration function returns a
<return-with-value> // handle to the newly created

// configuration.

Figure 22a of ES 201 873-4 [2]: Flow graph representation of configuration functions

6.6 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of aflow graph the following function is required:

The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (flow-graph-identifier)

The function returns a reference to the start node of aflow graph with the name flow-graph-identifier. The

flow-graph-identifier refers to the module name for the control, to test case names, to function names, to altstep names
to component type names and configuration function names.

6.7 Module state

As shown in figure 23 amodule state is structured into a CONTROL state and an ALL-CONFIGURATIONS state. The
CONTROL state describes the state of the module control. Module control is handled like a test component,

i.e. CONTROL isan entity state as defined in ES 201 873-4 [2], clause 8.3.2. ALL-CONFIGURATIONS is alist of
configuration states representing test configurations that are instantiated during the execution of module control.

CONTROL ALL-CONFIGURATIONS
[CONFIG; [- [CONFIG, |

Figure 23 of ES 201 873-4 [2]: Structure of a module state

6.8 Accessing the module state

The CONTROL state and the ALL-CONFIGURATIONS state of the module state can be addressed by using their names,
i.e. CONTROL and ALL-CONFIGURATIONS. Configurations can be accessed by using the dot notation,
e.g. ALL-CONFIGURATIONSCONFIG;, or by using the list operations defined in clause 8.3.1.1a of ES 201 873-4 [2].

ETSI

30 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.9 Configuration state

Asshown in figure 23a the configuration state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES
TC-VERDICT, DONE and KILLED. ALL-ENTITY-STATES represents the states of all instantiated test components
during the execution of atest case. Thefirst element of ALL-ENTITY-STATES s the reference to the MTC of the
configuration. ALL-PORT-STATES describes the states of the different ports. TC-VERDICT stores the actual global test
verdict of atest case, DONE isalist of al currently stopped test components during test case execution and KILLED is
alist of all terminated test components during test case execution.

NOTE 1: The number of updates of TC-VERDICT isidentical to the number of test components that have
terminated.

NOTE 2: Andive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it iskilled.

NOTE 3: Port states may be considered to be part of the entity states. By connect and map ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES [TC-VERDICT | DONE | KILLED
| MTC [ESy|..[ESp| | [Pi]]Pn]

Figure 23a of ES 201 873-4 [2]: Structure of a configuration state

6.10 Accessing the configuration state

The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED can be accessed like
variables by their name and the dot notation, e.g. CONFIG.TC-VERDICT for accessing the test verdict of configuration
CONFIG.

For the creation of a new configuration state the function NEW-CONFIGURATION is assumed to be available:

. NEW-CONFIGURATION();

creates a new configuration state and returnsits reference. The components of the new configuration state have the
following values:

. ALL-ENTITY-STATESis an empty list;

e ALL-PORT-STATESisan empty list;

. TC-VERDICT is set to none;
. DONE isan empty list;
. KILLED isan empty list.

For the handling of lists, e.g. ALL-ENTITY-STATES ALL-PORT-STATES, DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

. myList.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e. add can be used to add single elements or liststo lists;

. myList.append(item) appendsitem as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e. append can be used to append single elements or liststo lists;

. myList.delete(item) deletes item from the list myList;
e myList.member(item) returns true if itemisan element of thelist myList, otherwise false;

e myListfirst() returnsthe first element of myList;

ETSI

31 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

. myList.last() returns the last element of myList;
. myList.length() returns the length of myList;
. myList.next(item) returns the element that followsitemin myList, or NULL if itemisthe last element in myList;

. myList.random(< condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

. myL ist.change(<operation>) allows to apply <operation> on al elements of myL.ist.

NOTE: The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywords all and any in TTCN-3 operations.

Additionally, a general copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

. copy(item) returns a copy of item.

6.11 Entity states

Entity states are used to describe the actual states of module control and test components. In the module state,
CONTROL isan entity state and in the configuration state, the test component states are handled in the list
ALL-ENTITY-STATES. The structure of an entity state is shown in figure 24.

STATUS
CONTROL-STACK
DEFAULT-LIST
DEFAULT-POINTER
VALUE-STACK

E-VERDICT

TIMER-GUARD

DATA-STATE

TIMER-STATE

PORT-REF

SNAP-ALIVE
SNAP-DONE
SNAP-KILLED
KEEP-ALIVE
STATIC

Figure 24 of ES 201 873-4 [2]: Structure of an entity state

The STATUS describes whether the module control or atest component iSACTIVE, BREAK, SNAPSHOT, REPEAT Of
BLOCKED. Module control is blocked during the execution of atest case. Test components are blocked during the
creation of other test components, i.e. when they call acreate operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the evaluation phase of a snapshot. The status REPEAT
denotes that the component is active and in an alt statement that should be re-evaluated due to a repeat statement.
The BREAK dtatusis set when abreak statement is executed for leaving altstep. In this case, the alt statement in
which the altstep was directly or indirectly (i.e. by means of the default mechanism) called isimmediately left.

The CONTROL-STACK isastack of flow graph node references. The top element in CONTROL-STACK isthe flow
graph node that hasto be interpreted next. The stack is required to model function callsin an adequate manner.

ETSI

32 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

The DEFAULT-LIST isalist of activated defaults, i.e. it isalist of pointers that refer to the start nodes of activated
defaults. Thelist isin the reverse order of activation, i.e. the default that has been activated first is the last element in
thelist.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that has to be
evaluated if the actual default terminates unsuccessfully.

The VALUE-STACK isastack of values of al possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
themtc operation will be pushed onto the VALUE-STACK. In addition to the values of all datatypesknownin a
module we define the specia value MARK to be part of the stack alphabet. When |eaving a scope unit, the MARK is used
to clean VALUE-STACK.

The E-VERDICT stores the actual local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.

The TIMER-GUARD represents the specia timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as atimer binding (see ES 201 873-4 [2], clause 8.3.2.4
and figure 28).

The DATA-STATE is considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting alist
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
ES 201 873-4[2], clause 8.3.2.2.

The TIMER-STATE is considered to be alist of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of timer bindings describes the known timers
and their status in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in

ES 201 873-4[2], clause 8.3.2.4.

The PORT-REF is considered to be alist of lists of port bindings. The list of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parameters in functions and
altsteps. Each list in the list of lists of port bindingsidentifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting alist of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in ES 201 873-4 [2], clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
ALL-ENTITY-STATES|ist of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes al entities
(test components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE isalist of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE is alist of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is set to trueif the
entity can be restarted. Otherwise it is set to false.

The STATIC field indicates whether atest component is part of a static test configuration or not. It is set to trueif the
test component is created during the execution of configuration function. During the execution of a configuration
function the STATIC field of the entity representing test control isaso set to true. In al other cases, the STATIC field is
set to false.

ETSI

33 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.12 Accessing entity states

The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variablesthat are globally visible, i.e. the values of STATUS, DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity. STATUS, myEntity. DEFAULT-POINTER and myEntity.E-VERDICT,
where myEntity refers to an entity state.

NOTE: Inthefollowing, we assume that we can use the "dot" notation by using references and unique identifiers.
For example, in myEntity. STATUS, myEntityState may be pointer to an entity state or be the value of the
<identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
"dot" notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and myEntity. VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or NULL if myStack is empty;

. myStack.clear() clears myStack, i.e. pops al items from myStack;

e myStack.clear-until(item) pops items from myStack until item is found or myStack is empty.

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operationsis defined in ES 201 873-4 [2], clause 8.3.1.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
o NEW-ENTITY (flow-graph-node-reference, keep-alive, static);

creates a new entity state and returns its reference. The components of the new entity state have the following values:
. STATUS s set to ACTIVE;

o flow-graph-node-reference isthe only (top) element in CONTROL-STACK;

. DEFAULT-LIST isan empty list;

. DEFAULT-POINTER has the value NULL;

. VALUE-STACK isan empty stack;

. E-VERDICT is set to none,;

e TIMER-GUARD isanew timer binding with name GUARD, status | DL E and no default duration;
. DATA-STATE isan empty list;

. TIMER-STATE isan empty list;

. PORT-REF isan empty list;

. SNAP-ALIVE isan empty list;

. SNAP-DONE is an empty list;

. SNAP-KILLED isan empty list;

. KEEP-ALIVE is set to the value of the keep-alive parameter;

. STATIC is set to the value of the static parameter.

ETSI

34 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

During the traversal of aflow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

myEntity.NEXT-CONTROL (myBool) {
successorNode := myEntity.CONTROL-STACK.NEXT (myBool) .top() ;
myEntity.CONTROL-STACK.pop () ;
myEntity.CONTROL-STACK.push (successorNode) ;

6.13 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of a connect
operation. Thus, a component can afterwards use itslocal port name to address the remote queue. As shown in
figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. STATIC is aBoolean which istrue if connectionisastatic
connection of a static test configuration. TTCN-3 supports one-to-many connections of ports and therefore all
connections of aport are organized in alist.

NOTE 1. Connections made by map operations are also handled in the list of connections. Themap operation:
map(PTC1:MyPort, system.PCO1) leads to a new (non static) connection (system, PCO1, false) in
the port state of MyPort owned by PTC1. The remote side to which PCOL1 is connected to, resides inside
the SUT. Its behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword system as a symbolic address. A connection
(system, myPort, false) inthe list of connections of a port it indicates that the port is mapped onto the
port myPort in the test system interface. The £alse indicates that the mapping is not static.

REMOTE-ENTITY REMOTE-PORT-NAME STATIC

Figure 30 of ES 201 873-4 [2]: Structure of a connection

6.14 Handling of port states

The queue of valuesin a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1. The queue operations enqueue, dequeue, first and_clear have the following meaning:

" myQueue.enqueue(item) putsitem as last item into myQueue;
L] myQueue.dequeue() deletes the first item from myQueue;
" myQueue first() returns the first item in myQueue or NULL if myQueue is empty;
L] myQueue.clear () removes all elements from myQueue.
The handling of port statesis supported by the following functions:
a The NEW-PORT function: NEW-PORT (myEntity, myPort)

creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and
COMP-PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST
and the VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port
isempty).

b) The GET-PORT function: GET-PORT (myEntity, myPort)

returns areference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

ETSI

©)

35 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SYSTEM is returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified

d)

€)

f)

9)

h)

uniquely. The specia value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exists only a one-to-one connection for this port.

The STATUS of aport ishandled like a variable. It can be addressed by qualifying STATUS with a GET-PORT
call:

GET-PORT(myEntity, myPort).STATUS
The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort, myStatic)

adds a connection (myRemoteEntity, myRemotePort, myStatic) to the list of connections of the port identified
by OWNER myEntity and COMP-PORT-NAME myPort.

The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

removes a connection (myRemoteEntity, myRemotePort, ?) with any STATIC value from the list of connections
of the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

The GET-CON function: GET-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

retrieves a connection (myRemoteEntity, myRemotePort, ?) with any STATIC value from the list of connections
of the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

The SNAP-PORTS function: NAP-PORTS (myEntity)

updates SNAP-VALUE for al ports owned by myEntity, i.e.

SNAP-PORTS (myEntity) {
for all ports p /* in the module state */ {
if (p.OWNER == myEntity) {
if (p.STATUS == STOPPED)
p.SNAP-VALUE := NULL;
1

else {
if (p.STATUS == HALTED && p.first() == HALT-MARKER) {
// Port is halted and halt marker is reached
p.SNAP-VALUE := NULL;
p.dequeue() ; // Removal of halt marker
p.STATUS := STOPPED;

}

else
p.SNAP-VALUE := p.first()
}

}

NOTE 3: The SNAP-PORTS function handles the HALT -MARKER that may be put by ahalt port operation into

6.15

6.16

the port queue. If such a marker isfound, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

The evaluation procedure for a TTCN-3 module

Evaluation phases

The evauation procedure for a TTCN-3 module is structured into:

@

initialization phase;

ETSI

36 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

(2) update phase;

(3) selection phase; and

(4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

6.17

Phase I: Initialization

The initialization phase includes the following actions:

a) Declaration and initialization of global variables:

NOTE 1

NOTE 2:

NOTE 3:

INIT-FLOW-GRAPHY); // Initialization of flow graph handling. INIT-FLOW-GRAPHS s
/I explained in ES 201 873-4 [2], clause 8.6.2.

Entity := NULL; /I Entity will be used to refer to an entity state. An entity state either
/I represents module control or atest component.

MTC := NULL; /I MTC will be used to refer to the entity state of the main test component of
/I atest case during test case execution.

The global variable CONTROL form the control state of a module state during the interpretation of a
TTCN-3 module (see ES 201 873-4 [2], clause 8.3.1).

CONTROL :=NULL; // CONTROL will be used to refer to the entity state of module control a

The global variable CONFIGURATION is used to store the reference to a configuration state in the
Module state, i.e. amember of ALL-CONFIGURATIONS (see ES 201 873-4 [2], clause 8.3.1).

CONFIGURATION := NULL;

The following global variables ALL-ENTITY-STATES ALL-PORT-STATES, TC-VERDICT, DONE, and
KILLED are used to store references to atest configuration state of a module state during the
interpretation of a TTCN-3 module (see ES 201 873-4 [2], clause 8.3.1).

ALL-ENTITY-STATES:= NULL;

ALL-PORT-STATES:= NULL;

TC-VERDICT :=none;
DONE := NULL;

KILLED :=NULL.

b) Creation and initialization of module control:

CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<moduleld>), false, false);
Il A new entity state is created and initialized with the start node of
/I the flow graph representing the behaviour of the control of the
/I module with the name <moduleld>. The Boolean parameters
// indicate that_ module control cannot be restarted after it is
/I stopped and that it is not a static component in atest configuration.

CONTROL.INIT-VAR-SCOPE(); /I New variable scope.

CONTROL.VALUE-STACK.push(M ARK); /I A mark is pushed onto the value stack.

ETSI

37 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.18 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Timeprogress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT isset to 0.0 and STATUS s set to TIMEOUT.

NOTE 1: The update of timers includes the update of al running TIMER-GUARD timersin module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

6.19 Phase llI: Selection

The selection phase consists of the following two actions:

a) Selection: Select anon-blocked entity, i.e. an entity that has not the STATUS value BLOCKED. The entity may
be CONTROL, i.e. module control, or atest component in atest configuration that is executing atest case.

b) Storage:
- Store the identifier of the selected entity in the global variable Entity.
- If Entiy is CONTROL, set CONFIGURATION to NULL.

- If Entiy isnot CONTROL, store the identifier of the configuration of which Entity is part of in the global
variable CONFIGURATION and do the following assignments:

= ALL-ENTITY-STATES := CONFIGURATION.ALL-ENTITY-STATES,
" MTC := CONFIGURATION.ALL-ENTITY-STATESfirst();

= ALL-PORT-STATES := CONFIGURATION.ALL-PORT-STATES;

" TC-VERDICT := CONFIGURATION.TC-VERDICT;

" DONE := CONFIGURATION. DONE;

= KILLED := CONFIGURATION.KILLED;

6.20 Phase |V: Execution

The execution phase consists of the following three actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity.

b) Updateof the module state: Thisincludes an update of the configuration state of the executed Entity.

c) Check termination criterion: Stop execution if module control has terminated, i.e. CONTROL isNULL.
Otherwise continue with Phase |1.

ETSI

38 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.21 Global functions

The evaluation procedure uses the global function INIT-FLOW-GRAPHS,

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, ***DYNAMIC-ERROR***:

b) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

¢) RETURN returnsthe control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the "execution step of the selected entity” of the execution phase.

d) ***DYNAMIC-ERROR*** refersto the occurrence of adynamic error. The error handling procedureitself is
outside the scope of the operational semantics. If adynamic error occurs al following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. Thisis modelled by the flow graph segment <dynamic-error> (see
ES 201 873-4 [2], clause 9.18.5).

NOTE: The occurrence of adynamic error isrelated to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

€) APPLY-OPERATOR used as generic function for describing the eval uation of operators (e.g. +, *,/or -) in
expressions (see ES 201 873-4 [2], clause 9.18.4).

6.22 Clear port operation

The syntactical structure of the clear port operationis:

<portId>.clear

The flow graph segment <clear-port-op> in figure 59 defines the execution of the clear port operation.

ETSI

39 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <clear-port-op>

i let { // Begin of local scope
var portRef := NULL

var portState := NULL;

clear-port-op Yuwsew
(portId) if (Entity.STATIC == true) {
DYNAMIC-ERROR // port operation on a
// static test component

elseif (portId == “all port”) {
portState := ALL-PORT-STATES.first() ;
while (portState != NULL) {

if (portState.OWNER == Entity) {
portState.VALUE-QUEUE.clear();

portState :=
ALL-PORT-STATES .next (portState) ;

}

else
portRef := Entity.portId.COMP-PORT-NAME;

GET-PORT (Entity, portRef) .clear();
} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

\ 4

Figure 59 of ES 201 873-4 [2]: Flow graph segment <clear-port-op>

6.23 Configuration function call

The invocation of a configuration function starts with the creation of the MTC. In a static test configurationthe MTC is
modelled as a static alive component. Then the MTC is started with the behaviour defined in the configuration function.
Afterwards, the module control waits until the configuration function terminates. The creation and the start of the MTC

can be described by using create and start statements:

var mtcType MyMTC := mtcType.create alive static;
MyMTC.start (ConfigurationFunctionName (P1..Pn)) ;

The flow graph segment <config-func-calls infigure 59a defines the execution of a configuration function by
using the flow graph segments of the operations create andthe start.

ETSI

40

Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <config-func-calls>

<create-op>

init-test-config-state

A

// Creation of the MTC

MTC := Entity.VALUE—STACK.tO_p();
TC-VERDICT := none;

DONE := NULL;

KILLED := NULL;

// Creation and initalization of a new
// configuration state

CONFIGURATION := NEW-CONFIGURATION();
CONFIGURATION.MTC := MIC;
CONFIGURATION.TC-VERDICT := TC-VERDICT;
CONFIGURATION.DONE := DONE;
CONFIGURATION.KILLED := KILLED;

ALL- CONFIGURATIONS . append (CONFIGURATION)

// CONFIGURATION is the result of the
// configuration function
CONTROL. VALUE - STACK . push (CONFIGURATION) ;

// Indicating the execution of a
// configuration function
CONTROL. STATIC := true;

Entity .NEXT-CONTROL (true) ;
RETURN ;

<start-component -op>

wait-for-termination

// Start of MTC

Entity.STATUS := BLOCKED;

// MTC will set status to ACTIVE
// before it terminates

Entity .NEXT-CONTROL (true) ;
RETURN;

v

Figure 59a of ES 201 873-4 [2]: Flow graph segment <config-func-call>

6.24 Connect operation

The syntactical structure of the connect operationis:

connect (<component -expression,>:<portIdl>, <component-expression,>:<portId2>) [static]

Theidentifiers <portIdi1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component -expression, > and <component -expression,>. The references may be stored in variables or

isreturned by a function, i.e. they are expressions, which evaluate to component references. The value stack is used for

storing the component references.

A present static clause indicates that the new connection is static, i.e. established during the execution of a
configuration function. Presence and absence of the static clauseis handled as a Boolean flag in the operational
semantics (see static parameter of the basic flow graph node connect -op in figure 60).

The execution of the connect operation is defined by the flow graph segment <connect - op> shown in figure 60.
In the flow graph description the first expression to be evaluated refers to <component -expression, > andthe

second expressionto <component -expression,s, i.e. the <component -expression,> isontop of the

value stack when the connect -op nodeis executed.

ETSI

41 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <comnect-op> A
let { // begin of a local scope

A var portOne, portIwo; // voriables for ports

<expressions var comp2 := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop () ;
var compl := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop () ;

Y

if (static == true && CONTROL.STATIC != true) {

<expression> ***DYNAMIC-ERROR***

// Static connections have to be established
// within a configuration function

elseif (static != true && CONTROL.STATIC == true) {
***DYNAMIC-ERROR* **
// Non-static connections cannot be established
// within a configuration function

connect-op
(portIdl, portlId2, static)

else
portOne := compl.portIdl.COMP-PORT-NAME;
portTwo := comp2.portId2.COMP-PORT-NAME;

ADD-CON (compl, portOne, comp2, portTwo, static);
ADD-CON (comp2, portTwo, compl, portOne, static);

} // end of local scope

Entity .NEXT-CONTROL (true) ;
RETURN;

Figure 60 of ES 201 873-4 [2]: Flow graph segment <connect-op>

6.25 Create operation

The syntactical structure of the create operationis:

<componentTypeId>.create [alive] [static]

A present alive clauseindicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (see alive parameter of the basic
flow graph node create-op in figure 62).

A present static clauseindicatesthat the new component is static, i.e. part of a static test configuration and created
during the execution of a configuration function. Presence and absence of the static clauseishandled as a Boolean
flag in the operational semantics (see static parameter of the basic flow graph node create-op infigure 62).

The flow graph segment <create-op> infigure 62 defines the execution of the create operation.

ETSI

42 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <create-op>

create-op
(componentTypeId, alive,)-------- :
static)

let { // Local scope
var newEntity; // for storing the newly created entity

// creation of the entity state for the new component

if (static == true) { // creation of a static component
if (CONTROL.STATIC != true)
** *DYNAMI C - ERROR** * // creation of a static component is only

// allowed in a configuration function

}

else
newEntity := NEW-ENTITY (componentTypelD, true, true);
// the alive flag is set because static
// components behave like alive components
1
else {
newEntity := NEW-ENTITY (componentTypelID, static, false);

}

// The reference to the new entity is pushed onto the value stack of the
// ‘father' entity.

Entity. VALUE-STACK.push (newEntity) ;
// The identifier of the 'father' entity is pushed onto the value stack of the
// new entity. The identifier is needed to restore the status of the 'father'
// entity after completion of the entity creation. The 'father' entity is
// blocked until all ports, variables, timers specified in the component type
// definition are instantiated. This instantiation is done by executing the
// flow graph that represents 'componentTypeID' by the new entity.
newEntity.VALUE-STACK.push (Entity) ;
// The new entity is put into the module state
ALL-ENTITY-STATES . append (newEntity) ;

} // End local scope

// The actual status of the 'father' entity is saved and the 'father' entity goes

// into a blocking state. Note the restoration of the status of the father entity
// is described in flow graph segment <finalize-component-inits

Entity.VALUE-STACK.push(Entity.STATUS); // Saving the actual status
Entity.STATUS := BLOCKED;

Entity.NEXT-CONTROL (true) ; // Return of control
RETURN;

Figure 62 of ES 201 873-4 [2]: Flow graph segment <create-op>

ETSI

43 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.26 Flow graph segment <disconnect-all>

The flow graph segment <disconnect-alls> definesthe disconnection of al components at al connected ports
Static connections will not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

segment <discomnect-alls

disconnect-all

let { // local scope

var port := ALL-PORT-STATES.first();

var connection;

while (port != NULL) {
connection := port.CONNECTIONS.first();

while (connection != NULL)
if (connection.STATIC == true) { // static connection or mapping
connection := port.CONNECTIONS.next(connection) ;
else {

if (connection.REMOTE-ENTITY == system) {
connection := NULL; // mapped port

1
else
port.CONNECTIONS. delete (connection) ;

connection := port.CONNECTIONS.first();

1
}
port := ALL-PORT-STATES.next(port) ;
} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 64b of ES 201 873-4 [2]: Flow graph segment <disconnect-all>

ETSI

6.27

44

Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Flow graph segment <disconnect-comp>

The flow graph segment <di sconnect - comp> defines the disconnection of all ports of a specified component.
Static connections will not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

segment <discomnect-comp>

disconmnect-comp

let { // local scope

var comp := Entity.VALUE-STACK.top() ;
var connection; -
var port := ALL-PORT-STATES.first();
while (port != NULL) ({
connection := port.CONNECTIONS.first();
while (connection != NULL) {
if (connection.STATIC == true) { // static connection or mapping
connection := port.CONNECTIONS.next(connection) ;
1
else {
if (connection.REMOTE-ENTITY == system) {
connection := NULL; // mapped port
ilse if (connection.REMOTE-ENTITY == conp
or (port.OWNER == comp)

port.CONNECTIONS. delete (connection) ;
connection := port.CONNECTIONS.first() ;

}

else
connection := port.CONNECTIONS.next (connection) ;
port := ALL-PORT-STATES.next(port) ;

}

Entity.VALUE-STACK.pop () ;
} // End of local scope

// clear value stack

Entity .NEXT-CONTROL (true) ;
RETURN;

Figure 64c of ES 201 873-4 [2]: Flow graph segment <disconnect-comp>

ETSI

6.28

The flow graph segment <disconnect -port > defines the disconnection of a specified port. Static connections will

45 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Flow graph segment <disconnect-port>

not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

segment <discomect-ports>

discomnect-port

let { // local scope

var portId, rPortlId;
var comp, rcComp;
var port;

portId := Entity.VALUE-STACK. top() ;
Entity.VALUE-STACK.pop () ;

comp := Entity.VALUE-STACK. top();
Entity.VALUE-STACK.pop () ;

port := GET-PORT(comp, portlId) ;

var connection := port.CONNECTIONS.first();
while (connection != NULL) {
if (connection.REMOTE-ENTITY == SYSTEM) {
** *DYNAMIC-ERROR* * *

elseif (connection.STATIC == true)
connection := port.CONNECTIONS.next (connection) ;

else {
rComp := connection.REMOTE-ENTITY;
rPortId := connection.REMOTE-PORT-NAME;

// port is not a commected port

{ // static connection

DEL-CON (rComp, rPortId,

DEL-CON (comp, portId, rComp, rPortId) ;

connection := port.CONNECTIONS.first() ;

comp, portId) ;

}

} // End of local scope

Entity .NEXT-CONTROL (true) ;
RETURN;

Figure 64d of ES 201 873-4 [2]: Flow graph segment <disconnect-port>

6.29

Flow graph segment <disconnect-two-par-pairs>

The flow graph segment <disconnect-two-par-pairs> shown in figure 64e defines the execution of the disconnect
operation with two parameter pairs which disconnects specific connections. In the flow graph segment the first
expression to be evaluated refersto <component -expression,> (see syntactical structure of the
disconnect operationin ES 201 873-4[2], clause 9.14) and the second expressionto <component -
expression,>,i.e the <component -expression,> isontop of the value stack whenthe disconnect -two

node is executed. Applying the disconnect operation to a static connection leads to a dynamic error.

ETSI

46 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment
<disconnect-two-par-pairs>

<expression>

<expression>

disconnect-two
(portIdl, portId2)f

let { // begin of a local scope

var portOne, portIwo; // voriables for ports
var connection; // variable for a comnection

var comp2 := Entity.VALUE-STACK.top();
Entity.VALUE-STACK. pop () ;
var compl := Entity.VALUE-STACK.top();
Entity.VALUE-STACK. pop () ;
if (compl == SYSTEM) ({

*% *DYNAMIC-ERROR* * * // wapped port
else

portOne := compl.portIdl.COMP-PORT-NAVME;
}
if (comp2 == SYSTEM) ({

*% *DYNAMIC-ERROR* * * // wapped port
else

portTwo := comp2.portId2.COMP-PORT-NAVME;
}
conmnection := GET-CON(compl, portOne, comp2, portTwo) ;
if (connection.STATIC := true) {

** *DYNAMIC-ERROR* * * // static connection

}

else {
DEL-CON (compl, portOne, comp2, portTwo)
DEL-CON (comp2, portTwo, compl, portOne)

} ;

// end of local scope

v

Figure 64e of ES 201 873-4 [2]: Flow graph segment <disconnect-two-par-pairs>

6.30 Execute statement

The syntactical structure of the execute statement is:

execute (<testCaseId> ([<act—parl>,

, <act—parn>) 1)

L

<float-expression>] [, <config-expressions>])

The execute statement describes the execution of atest case <testCaseIds> withthe (optional) actual parameters

<act-par,;>,

, <act-par,>. Optionaly the execute statement may be guarded by a duration provided in form

of an expression that evaluatesto a £1loat. If within the specified duration the test case does not return averdict, a
timeout exception occurs, the test configuration is destroyed and an error verdict is returned.

If atest case is executed on an existing static test configuration, the configuration shall be provided in form on an

expression that evaluates to a configuration reference.

If no timeout exception occurs, the MTC is created or started, the control instance (representing the control part of the
TTCN-3 module) is blocked until the test case terminates, and for the further test case execution the flow of control is
given to the MTC. The flow of control is given back to the control instance when the MTC stops its execution.

The flow graph segment <execute-stmt> infigure 67 defines the execution of an execute statement. The
operational semantics distinguishes the cases where atest case is executed on an existing static test configuration and

where not.

ETSI

a7 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <execute-stmt>

\

<execute-without-config>
OR // A test case is or is not executed
<execute-on-config> [// on a static test configuration

v

Figure 67 of ES 201 873-4 [2]: Flow graph segment <execute-stmt>

6.31 Flow graph segment <execute-without-config>

The flow graph segment <execute-without -configs infigure 67a distinguishes between the case where the
execution is guarded by atimeout and the case where the statement is not guarded.

segment <execute-without-config>

A

<execute-without-timeout>
OR] // An execute statement may or may
<execute-timeout> // not be guarded by a timeout

v

Figure 67a of ES 201 873-4 [2]: Flow graph segment <execute-stmt>

6.32 Flow graph segment <execute-on-config>

The flow graph segment <execute-on-configs infigure 69a distinguishes between the case where the execution
of atest case on a configuration is guarded by atimeout and the case where the execution is not guarded.

segment <execute-on-configs

y

<execute-on-config-without -timeout >
OR // An execute statement may or may
<execute-on-config-timeout> [// not be guarded by a timeout

v

Figure 69a of ES 201 873-4 [2]: Flow graph segment <execute-on-config>

6.33 Flow graph segment <execute-on-config-without-timeout>

Executing atest case on a static configuration means to start the behaviour of the test case on the MTC of the test
configuration, i.e. MyMTC.start (TestCaseName (P1..Pn)).

o In addition the following parts of the configuration state have to be reset to the following values:

- the global test case verdict and all local component verdicts are set to none;

ETSI

48 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

- the local default lists of al components of the test configuration are emptied;

- the global lists DONE and KILLED are emptied. These lists are used for storing the test components that
stopped their execution or have been killed during test execution.

The flow graph segment <execute-on-config-without-timeout> infigure 69b specifiesthe execution of a
test case on a static configuration where the execution is not guarded by atimer. It makes use of the start component

operation.

segment <execute-on-config-without-timeout>

<expression>

// The Expression shall evaluate to a

// configuration reference. The reference
// identifies the configuration on which
// the test case is executed.

init-test-config-state Yemmnmn]

A

let { // local scope
var myEntity; // for storing an entity reference

CONFIGURATION := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;

if (ALL-CONFIGURATION.member (CONFIGURATION) != true) {
DYNAMIC-ERROR // no configuration
1

else { // valid configuration

// reset of configuration state

CONFIGURATION.TC-VERDICT := none;

CONFIGURATION.DONE := NULL;

CONFIGURATION.KILLED := NULL;

myEntity := CONFIGURATION.ALL-ENTITY-STATES.first() ;

while (myEntity != NULL) {
myEntity.DEFAULT-LIST := NULL;
myEntity.E-VERDICT := none;

// Update of global variables

MTC := CONFIGURATION.ALL-ENTITY-STATES.first() ;
TC-VERDICT := none;

DONE := NULL;

KILILED := NULL;

}

Entity.NEXT-CONTROL (true) ;
RETURN;

<start-component-op>

// Start of MTC

wait-for-termination)--—-|

Entity.STATUS := BLOCKED;
// MIC will set status to ACTIVE

// before it terminates
Entity.NEXT-CONTROL (true) ;

RETURN;

v

Figure 69b of ES 201 873-4 [2]:

Flow graph segment <execute-on-config-without-timeout>

6.34 Flow graph segment <execute-on-config-timeout>

The flow graph segment <execute-on-config-timeouts infigure 69c defines the execution of atest case on a
configuration that is guarded by atimeout value. The flow graph segment also model s the execution of the test case by
starting the behaviour of the test case on the MTC on an existing static test configuration. In addition, TIMER-GUARD

guards the termination.

ETSI

49 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <execute-on-config-timeouts>

// The Expression shall evaluate to a a float

|

<expression>

set-timer-guard

<expression>

// value. This value defines the duration of
// TIMER-GUARD

Entity.TIMER-GUARD.STATUS := IDLE;
Entity.TIMER-GUARD.ACT-DURATION := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop() ;

Entity.NEXT-CONTROL (true) ;
RETURN;

// The Expression shall evaluate to a configuration
// reference. The reference identifies the configuration
// on which the test case is executed.

init-test-config-state

<start-component-op>

let { // local scope
var myEntity; // for storing an entity reference

CONFIGURATION := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop() ;

if (ALL-CONFIGURATION.member (CONFIGURATION) != true) {
DYNAMIC-ERROR // no configuration

else { // valid configuration
// reset of configuration state
CONFIGURATION.TC-VERDICT := none;

CONFIGURATION.DONE := NULL;
CONFIGURATION. KILLED := NULL;
myEntity := CONFIGURATION.ALL-ENTITY-STATES.first();

while (myEntity != NULL) {
myEntity.DEFAULT-LIST := NULL;
myEntity.E-VERDICT := none;

1

// Update of global variables

MTC := CONFIGURATION.ALL-ENTITY-STATES.first() ;

TC-VERDICT := none;

DONE := NULL;

KILLED := NULL;

}

Entity .NEXT-CONTROL (true) ;
RETURN;

¢

prepare-wait

active-waiting

stop-or-timeout

A

<dynamic-errors>
/* Stop test case */

»i // Start of MIC

Entity.STATUS := SNAPSHOT; // MTC will set status to ACTIVE
// before termination

Entity.TIMER-GUARD.STATUS := RUNNING;

Entity .NEXT-CONTROL (true) ;

RETURN;

if (Entity.STATUS == SNAPSHOT and
Entity.TIMER-GUARD.STATUS != TIMEOUT) { // Control waits
Entity.NEXT-CONTROL (true) ;

else { // Test case terminated or timer guard timed out
Entity.NEXT-CONTROL (true) ;
}

RETURN;
if (Entity.STATUS != SNAPSHOT) { // normal termination
Entity.TIMER-GUARD. STATUS := IDLE;

Entity.NEXT-CONTROL (true) ;

else { // guarding timer timed out
Entity.NEXT-CONTROL (false) ;
}

RETURN;

!

Figure 69 of ES 201 873-4 [2]: Flow graph segment <execute-timeout>

ETSI

50 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.35 Flow graph segment <statement-block>

The syntactical structure of a statement block is:

{ <statement,>; .. ; <statement > }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1: A Statement block can be embedded in another statement blocks or can occur as body of functions,
altsteps, test cases and module control, and within compound statements, e.g. alt, if-else or
do-while.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in alt
statements or call operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. system or sel£, are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <statement -block> in figure 78 defines the execution of a statement block.

ETSI

51

Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <statement-blocks>

enter-scope-unit }

RETURN;

let { // local scope

var actVarScope := copy(Entity.DATA-STATE.first()) ;

var actTimerScope := copy(Entity.TIMER-STATE.first()) ;
Entity.INIT-VAR-SCOPE();
Entity.DATA-STATE.first(
Entity.INIT-TIMER-SCOPE(
Entity.DATA-TIMER.first(
Entity.VALUE-STACK. push(MARK) ;

Entity .NEXT-CONTROL (true) ;

) .add (actVarScope) ;
)i
) .add (actTimerScope) ;

| * |
<constant-definition> OR
<timer-declaration> OR

<variable-declaration>

// List of flow graph segments

-

<action-stmt> OR <activate-stmt> OR <alt-stmt>
OR <assignment-stmt> OR <call-op> OR
<clear-port-op> OR <config-func-call> OR
<connect-op> OR <create-op> OR
<deactivate-stmt> OR <disconnect-op> OR
<do-while-stmt> OR <execute-stmt> OR <for-stmt>
OR <function-call> OR <getverdict-op> OR
<goto-stmt> OR <if-else-stmt> OR
<kill-component-op> OR <kill-config-op> OR
<kill-exec-stmt> OR <label-stmt> OR <log-stmt>
OR <map-op> OR <raise-op> OR <repeat-stmt> OR
<reply-op> OR <return-stmt> OR <send-op> OR
<setverdict-op> OR <start-component-op> OR
<start-port-op> OR <start-timer-op> OR
<stop-component-op> OR <stop-exec-stmt> OR
<stop-port-op> OR <stop-timer-op> OR <ummap-op>
OR <while-stmt>

// representing defintions
// and declarations.

// List of flow graph segments
// representing all possible

// statements and operations

exit-scope-unit

Entity.DEL-VAR-SCOPE() ;
Entity.DEL-TIMER-SCOPE () ;
Entity.VALUE-STACK.clear-until (MARK) ;

Entity .NEXT-CONTROL (true) ;
RETURN;

v

Figure 78 of ES 201 873-4 [2]: Flow graph segment <statement-block>

6.36

The syntactical structure of thehalt port operation is:

Halt port operation

<portId>.halt

The flow graph segment <halt-port-op> infigure 89a defines the execution of the halt port operation.

ETSI

52 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <halt-port-op>

let { // Begin of local scope

var portRef := NULL
" var portState := NULL;
if (Entity.STATIC == true)
halt-port-op) _______ ***DYNAMIC-ERROR*** // port operation on a
(portId) // static test component
1
elseif (portId == “all port”)
portState := ALL-PORT-STATES.first();
while (portState != NULL) {
if (portState.OWNER == Entity) {
portState.STATUS := HALTED;

portState.enqueue (HALT-MARKER,) ;

}

portState :=
ALL-PORT-STATES .next (portState) ;

}

}

else
portRef := Entity.portId.COMP-PORT-NAME;
GET-PORT(Entity, portRef).STATUS := HALTED;
GET-PORT(Entity, portRef) .engueue(HALT-MARKER) ;

} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 89a of ES 201 873-4 [2]: Flow graph segment <halt-port-op>

NOTE: TheHALT-MARKER that isput by ahalt operation into the port queue is removed by the SNAP-PORTS
function (see ES 201 873-4 [2], clause 8.3.3.2) when the marker is reached, i.e. all messages preceding
the marker have been processed. The SNAP-PORTSfunction is called when taking a snapshot.

6.37 Kill component operation

The syntactical structure of thekill component statement is:

<component -expression>.kill

Thekill component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC iskilled

(eg. mtc.kill) or killsitself (e.g. sel£.kill). The MTC may kill al parallel test components by using the all
keyword, i.e. all component.kill.

Specia rules apply for using the kill component operation in static test configurations: Applyingthekill
component operation to a static component leads to a dynamic error. The lifetime of all static components (including the
MTC) is bound to the lifetime of the test configuration. However, the MTC may kill all non-static parallel test
components by using the all keyword, i.e. all component.kill.

A component to be killed isidentified by a component reference provided as expression, e.g. avalue or value returning
function. For simplicity, the keyword "all component" isconsidered to be special values of

<component -expressions. The operationsmtc and sel £ are evaluated according to ES 201 873-4 [2],

clauses 9.33 and 9.43.

The flow graph segment <ki11-component -op> in figure 90a defines the execution of the ki1l component
operation.

ETSI

53 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <kill-component-op>

// The Expression shall evaluate
// to a component reference. The

. .| // result is pushed onto VALUE-STACK
<expression>
if (Entity.VALUE-STACK.top() == 'all component') {
Entity.VALUE—STACK.p_op(); // clean value stack
if (Entity != MTC)
A * % *DYNAMI C - ERROR * ** // 'all' not allowed
decision Y} else {
Entity.NEXT-CONTROL (true) ;
true {
false
else
Entity.NEXT-CONTROL (false) ;
<kill-all-comp> }
RETURN;
if (Entity.VALUE-STACK.top() .STATIC == true) ({

DYNAMIC-ERROR // kill is applied to a
NNNNNN // static component

decision

elseif (Entity.VALUE-STACK.top() == MTC) {
Entity.VALUE-STACK.pop(); // clean value stack
Entity.NEXT-CONTROL (true) ;

<kill-mtcs> else {

Entity.NEXT-CONTROL (false) ;
}

RETURN;
if (ALL—ENTITY—STATES’.member(Entity.VAL[JE—STACK.t_(JE())) {
prepare-kill - Entity.NEXT-CONTROL (true) ;
false }
else
| if (KILLED.member(Entity.VALUE-STACK.top())) {
// NULL operation, component already terminated
<kill-component> Entity.VALUE-STACK.pop() ; // clean value stack
Entity.NEXT-CONTROL (false) ;
1
else
// component id has not been allocated
* % *DYNAMIC - ERROR* **
> {
}
RETURN;

!

Figure 90a of ES 201 873-4 [2]: Flow graph segment <kill-component-op>

ETSI

54 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.38 Flow graph segment <kill-mtc>

The <kill-mtc> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the final verdict is calculated and pushed onto the value stack of module control. The release of all
resources are released is modelled by deleting the test configuration from the ALL-CONFIGURATIONS list.

segment <kill-mtc>

kill-mte Y}~

let { // local scope for variables

var myEntity := ALL-ENTITY-STATES.first();

// Update test case verdict and deletion of components
while (myEntity != NULL) {

if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) ({
TC-VERDICT := fail;
}
else {
if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) ({
TC-VERDICT := inconc;
}
else {

if (myEntity.E-VERDICT == pass or TC-VERDICT == pass)
TC-VERDICT := pass;

}

myEntity := ALL-ENTITY-STATES.next (myEntity) ;

}

// TC-VERDICT is the result of the execute operation
CONTROL .VALUE-STACK . push (TC-VERDICT) ;

// Update of test case reference parameters
UPDATE-REMOTE-LOCATIONS(MTC, CONTROL);

// Deletion of test configuration
ALL-CONFIGURATIONS. delete (CONFIGURATION)
// Resetting of global variables
ALL-ENTITY-STATES:= NULL;
ALL-PORT-STATES := NULL;

DONE := NULL;

KILLED := NULL;

TC-VERDICT := none;

MTC := NULL;

CONTROL.STATUS := ACTIVE; // Control continues
} // End of local scope
RETURN;

Figure 90b of ES 201 873-4 [2]: Flow graph segment <kill-mtc-op>

6.39 Flow graph segment <kill-all-comp>

The <kill-all-comp> flow graph segment in figure 90d describes the termination of all parallel test components of
atest case.

ETSI

55 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <kill-all-comp>

kill-all-comp

let { // local scope for variable myEntity

var myEntity := ALL-ENTITY-STATES.next (MTC) ;
var port;

var connection;

// Update test case verdict
while (myEntity != NULL) {

if (myEntity.STATIC != true) { // not a static test component
if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail)
TC-VERDICT := fail;
}
else {

if (myEntity.E-VERDICT == inconc or TC-VERDICT == incomnc)
TC-VERDICT := inconc;

}

else
if (myEntity.E-VERDICT == pass or TC-VERDICT == pass)

TC-VERDICT := pass;

}
}

myEntity := ALL-ENTITY-STATES.next (myEntity) ;

// Deletion of test components
myEntity := ALL-ENTITY-STATES.next (MTC) ;
while (myEntify = NULL) | —

if (myEntity.STATIC == true) { // a static test component

myEntity := ALL-ENTITY-STATES.next(myEntity);

else { // not a static test component
// disconnect and ummap component

port := ALL-PORT-STATES.first() ;
while (port != NULL) ({
connection := port.CONNECTIONS.first() ;
while (connection != NULL) ({
if (comnection.REMOTE-ENTITY == comp
or (port.OWNER == comp)

port.CONNECTIONS.delete (comnection) ;
comnection := port.CONNECTIONS.first() ;

else
comnection := port.CONNECTIONS.next (connection) ;
}
1
port := ALL-PORT-STATES.next (port) ;

}

DONE .append (myEntity) ;
KILLED. append (myEntity) ; // Update of KILLED
DEL-ENTITY(myEntity); // Deletion of entity

myEntity := ALL-ENTITY-STATES.next(MTC); // Next component to delete

// Update of DONE

}

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN ;

Figure 90d of ES 201 873-4 [2]: Flow graph segment <stop-all-comp>

ETSI

56 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.40 Kill execution statement

The syntactical structure of thekill execution statement is:
kill
The effect of the ki1l execution statement depends on the entity that executesthe kill execution statement:

a) Ifkill isperformed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state.

b) Ifthekill isexecuted by the MTC, all parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the value stack of the module control. Finally, control is given back to
the module control and the MTC terminates.

c) Ifthekill isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

The execution of the ki1l execution statement by any static test component (including the MTC of a static test
configuration) is not allowed. It leads to a dynamic error.

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

segment <kill-exec-stmts>
A if (Entity == CONTROL {
Entity.NEXT-CONTROL (true) ;
decision Y} . } -

else

true Entity.NEXT-CONTROL (false);
false }

RETURN;

<kill-controls>

if (Entity.STATIC == true) ({
DYNAMIC-ERROR // static Entity
}

else {
if (Entity == MTQO) |
Entity.NEXT-CONTROL (true) ;

decision = Y- else
Entity.VALUE-STACK.push (Entity) ;
Entity.NEXT-CONTROL (false) ;

RETURN;
true false
<kill-mtc> <kill-component >

Figure 90e of ES 201 873-4 [2]: Flow graph segment <kill-exec-stmt>

ETSI

57 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.41 Kill configuration operation

The syntactical structure of thekil1l configuration operation is:

<configuration-expression>.kill

Thekill configuration operation destructs the specified test configuration and removesit from the test system. The
kill configuration operation shall only be executed by module control. The configuration to be killed isidentified by
means of a<configuration-expressions., i.e. anexpression that evaluatesto areference to a configuration.

The flow graph segment <kil1l-config-op> infigure 90f definesthe execution of the kill configuration
operation.

segment <kill-config-op>

let { // begin of a local scope
var config := Entity.VALUE-STACK.top() ;

<expressions Entity.VALUE-STACK.pop() ;
if (Entity != CONTROL) {
DYNAMIC-ERROR // kill config operation is not
{ // invoked by module control
map-op else if (ALL- CONFIGURATIONS.member (config) != true) ({
(portIdl,portId2) Juwum ***DYNAMIC-ERROR*** // configuration to be killed

// does not exist

}

else {
ALL-CONFIGURATIONS.delete (config)
} // end of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

v

Figure 90f of ES 201 873-4 [2]: Flow graph segment <kill-config-op>

6.42 Map operation

The syntactical structure of themap operationiis:

map (<component -expressions>:<portIdl>, system:<portId2>) [static]

Theidentifiers <portIdl> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portld1> belongsis referenced by means of the component
reference <component -expressions. The reference may be stored in variables or is returned by afunction, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

A present static clause indicates that the new mapping is static, i.e. established during the execution of a
configuration function. Presence and absence of the static clause is handled as a Boolean flag in the operational
semantics (see static parameter of the basic flow graph node map-op in figure 93).

NOTE: Themap operation does not care whether the sy stem:<portld> statement appears asfirst or as second
parameter. For simplicity, it is assumed that it is always the second parameter.

The execution of themap operation is defined by the flow graph segment <map - op> shown in figure 93.

ETSI

58 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <map-op>

let { // begin of a local scope
var portRef;
var compl := Entity.VALUE-STACK.top() ;
Entity.VALUE-STACK.pop () ;

A

<expression>

if (static == true & CONTROL.STATIC != true) |
***DYNAMIC-ERROR* **
// Static connections have to be established
4 // within a configuration function

map-op
(portIdl,portId2, static)

elseif (static != true && CONTROL.STATIC == true) {
** *DYNAMIC-ERROR¥* * *
// Non-static connections cannot be established
// within a configuration function

else
portRef := Entity.portIdl.COMP-PORT-NAME;
ADD-CON (compl, portRef, system, portId2);
1

} // end of local scope

Entity.NEXT-CONTROL(true) ;
RETURN;

v
Figure 93 of ES 201 873-4 [2]: Flow graph segment <map-op>

6.43 Start port operation

The syntactical structure of the start port operation is:

<portIds>.start

The flow graph segment <start-port-op> in figure 121 defines the execution of the start port operation.

ETSI

59 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <start-port-op>
let { // Begin of local scope
var portRef := NULL
var portState := NULL;

y

start-port-op Yewwww
(portId) if (Entity.STATIC == true) (
DYNAMIC-ERROR // port operation on a
// static test component

elseif (portId == “all port”) {
portState := ALL-PORT-STATES.first() ;
while (portState != NULL) {
if (portState.OWNER == Entity) {
portState.VALUE-QUEUE.clear () ;
portState.STATUS := STARTED
portState :=

ALL-PORT-STATES .next (portState) ;

}

else {
portRef := Entity.portId.COMP-PORT-NAME;
GET-PORT (Entity, portRef) .clear();
GET-PORT (Entity, portRef).STATUS := STARTED;

} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

\ 4

Figure 121 of ES 201 873-4 [2]: Flow graph segment <start-port-op>

6.44 Stop component operation

The syntactical structure of the stop component statement is:
<component -expressions.stop

The stop component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. mtc . stop) or stopsitself (e.g. self. stop). The MTC may stop al parallel
test components by using the all keyword, i.e. all component.stop.

Stopped components created with an alive clausein the create operation are not removed from the test system.
They can be restarted by using a start statement. Variables, ports, constants and timers owned by such a component,
i.e. declared and defined in the corresponding component type definition, keep their status. A stop operation for a
component created without an alive clauseis semantically equivalent to akill operation. The component is
removed from the test system.

A component to be stopped isidentified by a component reference provided as expression, e.g. avalue or value
returning function. For simplicity, the keyword "all component" isconsidered to be specia values of
<component -expressions. The operationsmtc and sel £ are evaluated according to ES 201 873-4 [2],
clauses 9.33 and 9.43.

The flow graph segment <stop-component -op> in figure 125 defines the execution of the stop component
operation.

ETSI

60 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

segment <stop-component-op>

// The Expression shall evaluate

// to a component reference. The

. .| // result is pushed onto VALUE-STACK
<expression>
if (Entity.VALUE-STACK.top() == 'all component')
Entity.VALUE-STACK.pop(); // clean value stack
if (Entity != MTO)
A ***DYNAMIC-ERROR*** // 'all' not allowed
}
decision = }--——— else {
Entity.NEXT-CONTROL (true) ;
true {
false

<stop-all-comp>

decision

<stop-mtc>

else {
Entity.NEXT-CONTROL (false) ;
}

RETURN;

if (Entity.VALUE-STACK.top() == MTQO) {
Entity.VALUE-STACK.pop(); // clean value stack
NNNNNN Entity.NEXT-CONTROL (true) ;

else {
Entity.NEXT-CONTROL (false) ;
}

RETURN;

prepare-stop

false

true

if (ALL-ENTITY-STATES.member (Entity.VALUE-STACK.top())) {
Entity.NEXT-CONTROL (true) ;
}

-

decision

else {
if (DONE.member (Entity.VALUE-STACK. top())) {
// NULL operation, component already stopped
// or killed.
Entity.VALUE-STACK.pop(); // clean value stack
Entity.NEXT-CONTROL (false) ;
else
// component id has not been allocated
* % *DYNAMILC - ERROR* **
{
}
RETURN;
if (Entity.VALUE-STACK.top() .KEEP-ALIVE == true)) ({
Entity.NEXT-CONTROL (true); // Component is not
// removed from the
// test system
}
else {

Entity.NEXT-CONTROL (false); // Component is killed

}

RETURN;

true

A

<stop-alive-component >

<kill-component>

\;A

v

Figure 125 of ES 201 873-4 [2]: Flow graph segment <stop-component-op>

ETSI

61 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.45 Flow graph segment <stop-mtc>

The flow graph segment <stop-mtc> in figure 125a describes the stopping of an MTC. The effect of stopping an

MTC isthat atest case or a configuration function terminates. Depending on where and how an MTC has been

executed, three cases have to

be distinguished:

1) TheMTC stopsthe behaviour of atest case that has not been executed on a static test configuration.

2) TheMTC stopsthe behaviour of atest case that has been executed on a static test configuration.

3) TheMTC stopsthe execution of a configuration function.

segment <stop-mtc>

\

decision
false
true
<kill-mtc>
A
decision
true
false
<stop-configs>
A

if (MIC.STATIC == false) {
// stopping a test case that is not executed
// on static test configuration
Entity.NEXT-CONTROL (false) ;
}
else
// stopping either a test case that has been
// executed on a static test configuration or
// a configuration function terminates

Entity.NEXT-CONTROL (true) ;

RETURN;

if (CONFIGURATION.STATIC == true) ({
// termination of a configuration function
Entity.NEXT-CONTROL (true) ;

else { // stopping a test case executed
//on a static configuration
Entity.NEXT-CONTROL (false) ;

<stop-tc-config>

v

Figure 125a of ES 201 873-4 [2]: Flow graph segment <stop-mtc>

6.46 Flow graph segment <stop-config>

The <stop-configs flow graph segment in figure 127a describes the stopping of an MTC that has executed a

configuration function.

ETSI

62 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Segment <stop-config>

stop-config -

let { // local scope

var compVarScope := copy(MTC.DATA-STATE.first()) ;
var compTimerScope := copy (MIC.TIMER-STATE.first());
var compPortScope := copy(MTC.PORT-REF.first());

// Update of component state. This is necessary, if the behaviour of the
// configuration function is structured into further function.
MTC.STATUS := BLOCKED;

MTC.CONTROL-STACK := NULL;

MTC.DEFAULT-LIST := NULL;

MTC.VALUE-STACK := NULL;

MTC.VALUE-STACK.push (MARK) ; // for component scope
MTC.TIMER-GUARD.STATUS := IDLE;

M.DATA—STATE := NULL

MTC.DATA-STATE. add(compVarScope) ;

M.TIMER—STATE := NULL;

MTC.TIMER-STATE. add (compTimerScope) ;

MTC.PORT-REF := NULL

MTC.PORT-REF.add (compPortScope) ;

MTC.SNAP-ALIVE := NULL;

MTC.SNAP-DONE := NULL;

MTC.SNAP-KILLED := NULL;

// Update of test case reference parameters
UPDATE - REMOTE-LOCATIONS(MTC, CONTROL);

CONTROL .STATIC := false; // Reset of STATIC flag in module control
CONTROL .STATUS ACTIVE; // Control continues execution

} // End of local scope
RETURN;

Figure 127a of ES 201 873-4 [2]: Flow graph segment <stop-config>

6.47 Flow graph segment <stop-tc-config>

The <stop-tc-configs> flow graph segment in figure 127b describes the termination of atest case that is executed
on a static test configuration.

ETSI

63

Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Segment <stop-tc-config>

// All non static components are killed. All

<kill-all-comp> |- // static test components are stopped.
// The Test verdict is updated.

'

<disconnect-all> |- | // All non static comnections are destroyed.

'

<unmap-all>

All non static mappings are destroyed.

let { // local scope

stop-tc-config N

TC-VERDICT

else {

}

else {

}

MTC. VALUE - STACK

MTC.DATA-STATE
MTC. TIMER - STATE

MTC. PORT-REF :=

MTC. SNAP-KILLED

CONTROL .STATUS

RETURN;

var compVarScope :

copy (MTC. DATA-STATE. first()) ;
v var compTimerScope

:= copy (MTC.TIMER-STATE.first());

var compPortScope := copy(MI'C.PORT-REF.first()) ;
// Update test case verdict

if (MTC.E-VERDICT == fail or TC-VERDICT == fail) {

if (MTC.E-VERDICT ==
TC-VERDICT

inconc or TC-VERDICT == inconc)
inconc;

if (MIC.E-VERDICT == pass or TC-VERDICT == pass) {
TC-VERDICT :

// TC-VERDICT is the result of the execute operation
CONTROL .VALUE-STACK. push (TC-VERDICT) ;

// Update of test case reference parameters
UPDATE-REMOTE-LOCATIONS (MTC, CONTROL);

// Update of component state, if the behaviour of the
// configuration function is structured into functions.
MTC.STATUS := BLOCKED;

MTC. CONTROL - STACK :
MTC. DEFAULT-LIST :

MTC. VALUE-STACK.push (MARK) ; // for component scope
MTC. TIMER-GUARD.STATUS :

MTC.DATA-STATE. add (conpVarScope) ;
MTC. TIMER-STATE . add (compTimerScope) ;
MTC. PORT-REF.add (compPortScope) ;

MTC.SNAP-ALIVE := NULL;
MTC. SNAP-DONE :=

} // End of local scope

pass;

IDLE;

// Control continues execution

v

Figure 127b of ES 201 873-4 [2]: Flow graph segment <stop-tc-config>

ETSI

6.48 Stop port operation

The syntactical structure of the stop port operation is:

<portId>.stop

64 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

The flow graph segment <stop-port-op> infigure 129 defines the execution of the stop port operation.

segment <stop-port-op>

stop-port-op
(portId)

let { // Begin of local scope
var portRef := NULL
var portState := NULL;

if (Entity.STATIC == true)
DYNAMIC-ERROR // port operation on a
// static test component

elseif (portId == “all port”) {
portState := ALL-PORT-STATES.first() ;
while (portState != NULL) {
if (portState.OWNER == Entity) {
portState.STATUS := STOPPED

}

portState :=
ALL-PORT-STATES .next (portState) ;

}

else
portRef := Entity.portId.COMP-PORT-NAME;

GET-PORT (Entity, portRef).STATUS := STOPPED;
} // End of socpe

Entity.NEXT-CONTROL (true) ;
RETURN;

A

y

Figure 129 of ES 201 873-4 [2]: Flow graph segment <stop-port-op>

ETSI

65 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.49 Flow graph segment <unmap-all>

The flow graph segment <unmap-all> definesthe unmapping of all components at all mapped ports. Static mappings
will not be unmapped. Their lifetime is bound to the lifetime of the static test configuration.

segment <unmap-all>

unmap-all }-———

let { // local scope

var port := ALL-PORT-STATES.first() ;

var connection;

while (port != NULL) {
connection := port.CONNECTIONS.first();

while (connection != NULL)

if (connection.REMOTE-ENTITY == system) { // mapped port
if (connection.STATIC == true) { // static mapping

port.CONNECTIONS .next (connection) ;

connection :=

}

else {
port.CONNECTIONS. delete (connection) ;

connection := port.CONNECTIONS.first() ;

}

else {
connection := NULL; // comnected port
port := ALL-PORT-STATES.next(port)

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 136a of ES 201 873-4 [2]: Flow graph segment <unmap-all>

ETSI

6.50

66 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Flow graph segment <unmap-comp>

The flow graph segment <unmap - comp> defines the unmapping of all mapped ports of a specified component. Static
mappings will not be unmapped. Their lifetime is bound to the lifetime of the static test configuration.

segment <unmap-comp>

unmap-comp = y------ev

let { // local scope
var comp := Entity.VALUE-STACK.top() ;

var connection;
= ALL-PORT-STATES.first () ;

var port :=
while (port != NULL) ({
if (port.OWNER == comp) { // port of comp
connection := port.CONNECTIONS.first() ;
if (connection.REMOTE-ENTITY == system) { // mapped port of comp
if (conntection.STATIC != true) { // not a static mapping
port.CONNECTIONS. delete (connection) ;
1
1
}
port := ALL-PORT-STATES.next(port) ;

}

Entity.VALUE-STACK.pop () ;
} // End of local scope

// clear value stack

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 136b of ES 201 873-4 [2]: Flow graph segment <unmap-comp>

ETSI

67 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

6.51 Flow graph segment <unmap-port>

The flow segment <unmap-port > definesthe unmap operation for a specific mapped port.

segment <unmap-ports

\

unmap-port =}

let { // local scope
var portId;
var comp;
var port;
var connection;

portId := Entity.VALUE-STACK. top() ;
Entity.VALUE-STACK.pop () ;
comp := Entity.VALUE-STACK. top();
Entity.VALUE-STACK.pop() ;
port := GET-PORT(comp, portlId) ;
comnection := port.CONNECTIONS.first() ;
if (connection.REMOTE-ENTITY != SYSTEM) (

* % *DYNAMIC-ERROR* * * // port is not a mapped port
else if (connection != NULL){ // mapped port

if (connection.STATIC == true { // static mapping

DYNAMIC-ERROR // static mappings cannot be unmapped
else {
port.CONNECTIONS.delete (connection) ;
}
else {) // do nothing, port is neither connected nor mapped

} // End of local scope

Entity.NEXT-CONTROL (true) ;
RETURN;

Figure 136¢ of ES 201 873-4 [2]: Flow graph segment <unmap-port>

7 TRI Extensions for the Package

7.1 Changes and extensions to clause 5.5.2 of
ES 201 873-5 Connection handling operations

If this package is being used, the TriExecuteTestCase operation shall be used only for initialization purposes of the
SA, but not for the establishment of static connections. In order to establish static connections, the TristaticMap
operation shall be used instead. The Triunmap can be used for closing dynamic and static connections.

ETSI

Clause5.5.2.1

68 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

triExecuteTestCase (TE — SA)

This clause is changed as follows.

Signature

TriStatusType triExecuteTestCase (
in TriTestCaseIdType testCaseld,
in TriPortIdListType tsiPortList)

In Parameters

testCaseId identifier of the test case that is going to be executed
tsiPortList a list of test system interface ports defined for the test system

Out Parameters

n.a.

Return Value

The return status of the triExecuteTestCase operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

This operation is called by the TE immediately before the execution of any test case. The test case
that is going to be executed is indicated by the testcaseId. tsiPortList contains all ports that
have been declared in the definition of the system component for the test case, i.e. the TSI ports. If a
system component has not been explicitly defined for the test case in the TTCN-3 ATS then the
tsiPortList contains all communication ports of the MTC test component. The ports in

tsiPortList are ordered as they appear in the respective TTCN-3 component declaration.

Effect The SA ean-setup-any-staticconnections-to-the- SUT and can initialize any communication means
for TSI ports.
The triExecuteTestCase operation returns TRI_OK in case the operation has been successfully
performed, TRI_Error otherwise.

Clause5.5.2.3 triUnmap (TE — SA)

This clause is changed as follows.

Signature

TriStatusType triUnmap (in TriPortIdType compPortId,
in TriPortIdType tsiPortId)

In Parameters |compprortid identifier of the test component port to be unmapped
tsiPortId identifier of the test system interface port to be unmapped
Out Parameters |n.a.

Return Value

The return status of the triunmap operation. The return status indicates the local success (TRI_OK)
or failure (TRI_Error) of the operation.

Constraints

This operation is called by the TE when it executes any TTCN-3 unmap operation.

Effect The SA shall close a dynamic or static connection to the SUT for the referenced TSI port.
The triunmap operation returns TRI_Error in case a connection could not be closed successfully or
no such connection has been established previously, TRI_OK otherwise. The operation should return
TRI_OK in case no connections have to be closed by the test system.

Clause5.5.2.3 triStaticMapParam (TE — SA)

Signature TriStatusType triStaticMapParam(in TriPortIdType compPortId,

in TriPortIdType tsiPortId,
in TriParameterListType paramList)

In Parameters compPortId identifier of the test component port to be mapped
tsiportId identifier of the test system interface port to be mapped
paramList configuration parameter list

Out Parameters

n.a.

Return Value

The return status of the tristaticMapParam operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints

This operation is called by the TE when it executes a TTCN-3 map operation including parameters.

Effect

The SA can establish a static connection to the SUT for the referenced TSI port.

The tristaticMapParam operation returns TRI_Error in case a connection could not be established
successfully, TRI_OK otherwise. The operation should return TRI_OK in case no static connection
needs to be established by the test system. The configuration parameter paramList can be used for
setting connection establishment specific parameters.

ETSI

Clause5.5.2.5

69 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

triStaticMap (TE — SA)

This clause isto be added.

Signature

TriStatusType triStaticMap (in TriPortIdType compPortId,
in TriPortIdType tsiPortId)

In Parameters

compportId identifier of the test component port to be mapped in a static connection
tsiportId identifier of the test system interface port to be mapped in a static connection

Out Parameters

n.a.

Return Value

The return status of the tristaticMap operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints

This operation is called by the TE when it executes a TTCN-3 static map operation.

Effect

The SA can establish a static connection to the SUT for the referenced TSI port.

The tristaticMap operation returns TRI_Error in case a connection could not be established
successfully, TRI_OK otherwise. The operation should return TRI_OK in case no static connection
needs to be established by the test system.

7.2 Extensions to clause 6 of ES 201 873-5 Java'" language
mapping

Clause 6.5.2.1

triCommunicationSA

The tricommunicationsa interface mapping isto be extended with the definition for TristaticMap:

// TriCommunication

// TE -> SA

package org.etsi.ttcn.tri;
public interface TriCommunicationSA {

// Connection handling operations

// Ref: TRI-Definition 5.5.2.5
public TriStatus triStaticMap (TriPortId compPortId, TriPortId tsiPortId) ;

7.3 Extensions to clause 7 of ES 201 873-5 ANSI C language
mapping

Clause 7.2.4 TRI operation mapping

The table isto be extended with the definition for TristaticMap:

IDL Representation ANSI C Representation
TriStatusType triStaticMap TriStatus triStatic Map
(in TriPortIdType compPortId, (const TriPortId* compPortId,
in TriPortIdType tsiPortId) const TriPortId* tsiPortId)

ETSI

70 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

7.4 Extensions to clause 8 of ES 201 873-5 C++ language
mapping
Clause 8.6.1 TriCommunicationSA

The tricommunicationsa interface mapping is to be extended with the definition for TristaticMap. In addition, the
description of Triunmap hasto be changed to handle also the closing of static connections:

class TriCommunicationSA {
public:

//To establish a static connection between two ports.
virtual TriStatus triStaticMap (const TriPortId *comPortId, const TriPortId *tsiPortId)=0;

//To close a dynamic or static connection to the SUT for the referenced TSI port.
virtual TriStatus triUnmap (const TriPortId *comPortId, const TriPortId *tsiPortId)=0;

7.5 Extensions to clause 9 of ES 201 873-5 C# language
mapping
Clause9.5.2.1 ITriCommunicationSA

The rTricommunicationsa interfaceisto be extended with the definition for TristaticMap. In addition, the
description of Triunmap hasto be changed to handle a so the closing of static connections:

public interface ITriCommunicationSA {

//To establish a static connection between two ports.
TriStatus TriStaticMap (ITriPortId comPortId, ITriPortId tsiPortId) ;

8 TCI Extensions for the Package

8.1 Extensions to clause 7.2.1.1 of ES 201 873-6 Management

The management type TciTestComponentKindType has to be extended with constants for static test components:

TciTestComponentKindType A value of type TciTestComponentKindType isalitera of the set of kinds of
TTCN-3 test components, i.e. CONTROL, MTC, PTC, SYSTEM, PTC_ALIVE,
MTC_ STATIC, PTC_STATIC,and SYSTEM STATIC. Thisabstract typeisused
for component handling.

8.2 Extensions to clause 7.3.1.1 of ES 201 873-6 TCI-TM
required

In order to handle static configurations via TCI-TM, the operations tciStartConfig and tcikillConfig are
defined as follows.

ETSI

71 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Clause 7.3.1.1.7 tciStartTestCase

This clause isto be extended.

Signature

void tciStartTestCase(in TciTestCaseIdType testCaseld,
in TciParameterListType parameterList,
in TciConfigurationIdType ref)

In Parameters [testCaseId A test case identifier as defined in the TTCN-3 module.
parameterList (A list of values where each value defines a parameter from the parameter list
as defined in the TTCN-3 test case definition. The parameters in
parameterList are ordered as they appear in the TTCN-3 signature of the
test case. If no parameters have to be passed either the null value or an
empty parameterList, i.e. a list of length zero shall be passed.
ref An optional reference to a static configuration for the test case, which is to be
used if a static configuration has been defined for the test case.
Return Value |void

Constraint

Shall be called only if a module has been selected before. Only testCaseIds for test cases that
are declared in the currently selected TTCN-3 module shall be passed. Only if the test case
requires a static configuration, a ref to a started static configuration that is of the configuration type
in the test case definition shall be given. If no static configuration has been defined for the test case
in the TTCN-3 ATS, the distinct value null shall be passed in for ref.

Test cases that are imported in a referenced module cannot be started. To start imported test cases
the referenced (imported) module shall be selected first using the tciRootModule operation.

Effect

tciStartTestCase starts atest case in the currently selected module with the given
parameters. A tciError will be issued by the TE if no such test case exists or if the static
configuration has not been started or has been killed but is required by the test case.

All in and inout test case parameters in parameterList contain Value. All out test case
parameters in parameterList shall contain the distinct value of null since they are only of
relevance when the test case terminates.

Clause 7.3.1.1.11

tciStartConfig

Thisclause isto be added.

Signature

TciConfigurationIdType tciStartConfig (in TciBehaviourIdType configId,
in TciParameterListType parameterList)

In Parameters

configld A configuration function identifier as defined in the TTCN-3 module.

parameterList |A list of values where each value defines a parameter from the parameter list

as defined in the TTCN-3 configuration function definition. The parameters in
parameterList are ordered as they appear in the TTCN-3 signature of the
configuration function. If no parameters have to be passed either the null

value or an empty parameterList, i.e. a list of length zero shall be passed.

Return Value

TciConfigurationIdType

Constraint Shall be called only if a module has been selected before. Only configId for test cases with
static configurations that are declared in the currently selected TTCN-3 module shall be passed —
see tciStartTestCase.

Effect Starts a static configuration of the selected module as described in the TTCN-3 configuration

function and returns an identifier to this configuration. A static configuration started from TCI-TM will
be used by test cases that reference the static configuration and are executed from TCI-TM.

Clause 7.3.1.1.12

tciKillConfig

This clause isto be added.

Signature void tciKillConfig(in TciConfigurationIdType ref)
In Parameters |[ref [The reference to the static configuration.
Return Value |void

Constraint

Shall be called only if a module has been selected before.

Effect

tcikKillConfig causes the destruction of the static test configuration ref. If ref is currently not

started, the operation will be ignored.

ETSI

Clause 7.3.3.1.18

72 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

tciExecuteTestCase

This clause isto be extended.

Signature

void tciExecuteTestCase (in TciTestCaseIdType testCaseld,
in TriPortIdListType tsiPortlList,

in TciConfigurationIdType ref)

In Parameters

testCaseld A test case identifier as defined in the TTCN-3 module.

tsiPortList Contains all ports that have been declared in the definition of the system

component for the test case or in the configuration type of the test case, i.e. the TSI
ports. If a system component has not been explicitly defined for the test case, then
the tsiPortList contains all communication ports of the MTC. The ports in
tsiPortList are ordered as they appear in the TTCN-3 component type
declaration or in the configuration type declaration respectively. If no ports have to
be passed either the null value or an empty tsiPortList, i.e. a list of length
zero shall be passed.

ref An optional reference to a static configuration for the test case, which is to be used

if a static configuration has been defined for the test case.

Return Value

void

Constraint

This operation shall be called by the CH at the appropriate local TE when at a remote TE a provided
tciExecuteTestCaseReq has been called.

Only if the test case requires a static configuration, a ref to a started static configuration that is of
the configuration type in the test case definition shall be given. If no static configuration has been
defined for the test case in the TTCN-3 ATS, the distinct value null shall be passed in for ref.

Effect

The local TE determines whether static connections to the SUT and the initialization of
communication means for TSI ports should be done. This is for example not the case if the static
configuration has been started already.

8.3

Extensions to clause 7.3.1.2 of ES 201 873-6 TCI-TM

provided

In order to enable

the indication of static configuration start and destruction at TCI-TM, the operations

tciConfigStarted and tciConfigKilled are defined asfollows.

Clause 7.3.1.2.7

tciConfigStarted

This clause isto be added.

Signature

void tciConfigStarted(in TciConfigurationIdType ref)

In Parameters

ref [The reference to the static configuration.

Return Value

TciConfigurationIdType

Constraint Shall only be called after the static configuration has been started either using the required
operations tciStartConfig or internally by the TE.
Effect tciConfigStarted indicates to the TM that static configuration ref has been started. It will not

be distinguished whether the static configuration has been started explicitly using the required
operation tciStartConfig or implicitly while executing the control part.

Clause 7.3.1.2.8 tciConfigKilled

Thisclauseisto b

e added.

Signature

void tciConfigKilled(in TciConfigurationIdType ref)

In Parameters

ref [The reference to the static configuration.

Return Value

TciConfigurationIdType

Constraint Shall only be called after the static configuration has been killed either using the required
operations tcikillConfig orinternally by the TE.
Effect tciConfigStarted indicates to the TM that static configuration ref has been destructed. It will

not be distinguished whether the static configuration has been started explicitly using the required
operation tcikillConfig orimplicitly while executing the control part.

ETSI

73 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

8.4 Extensions to clause 7.3.3.1 of ES 201 873-6 TCI-CH
required

In order to establish static connections, the tcistaticConnect and tciStaticMap operations shall be used at
TCI-CH. The tcibisconnect and TciUnmap can be used for closing static connections.

Clause 7.3.3.1.21 tciStaticConnect
Thisclause isto be added.

Signature void tciStaticConnect (in TriPortIdType fromPort,
in TriPortIdType toPort)
In Parameters fromPort Identifier of the test component port to be connected from.
toPort Identifier of the test component port to be connected to.
Return Value void
Constraint This operation shall be called by the CH at the local TE when at a remote TE a provided
tciStaticConnectReqg has been called.
Effect The TE shall statically connect the indicated ports to one another.

Clause 7.3.3.1.21 tciStaticMap
This clause isto be added.

Signature void tciStaticMap (in TriPortIdType fromPort,
in TriPortIdType toPort)
In Parameters fromPort Identifier of the test component port to be mapped from.
toPort Identifier of the test component port to be mapped to.
Return Value void
Constraint This operation shall be called by the CH at the local TE when at a remote TE a provided
tciStaticMapReq has been called.
Effect The TE shall statically map the indicated ports to one another.

8.5 Extensions to clause 7.3.3.2 of ES 201 873-6 TCI CH
provided

In order to establish static connections, the tciStaticConnectReq and tciStaticMapReq operations shall be used
at TCI-CH. The tcibisconnectReq and TciUnmapReq can be used for closing static connections.

Clause 7.3.3.2.26 tciExecuteTestCaseReq

This clause is to be extended.

Signature void tciExecuteTestCaseReqg (in TciTestCaseIdType testCaseld,

in TriPortIdListType tsiPortList,

in TciConfigurationIdType ref)

In Parameters [testCaseId |A test case identifier as defined in the TTCN-3 module.

tsiPortList [tsiPortList contains all ports that have been declared in the definition of the
system component for the test case or in the configuration type of the test case, i.e.
the TSI ports. If a system component has not been explicitly defined for the test
case, then the tsiPortList contains all communication ports of the MTC. The
portsin tsiPortList are ordered as they appear in the TTCN-3 component type
declaration or in the configuration type declaration respectively.

If no ports have to be passed either the nul1l value or an empty tsiPortList,
i.e. alist of length zero shall be passed.

ref An optional reference to a static configuration for the test case, which is to be used
if a static configuration has been defined for the test case.

Return Value [void

ETSI

74 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Constraint |This operation can be called by the TE immediately before it starts the test case behaviour on the
MTC (in course of a TTCN-3 execute operation).

Only if the test case requires a static configuration, a ref to a started static configuration that is of
the configuration type in the test case definition shall be given. If no static configuration has been
defined for the test case in the TTCN-3 ATS, the distinct value null shall be passed in for ref.
Effect CH transmits the execute test case request to the remote TEs having system ports of the indicated
test case. Static connections to the SUT and the initialization of communication means for TSI ports
can be set up if needed. This is for example not the case if the static configuration has been started.

Clause 7.3.3.2.29 tciStaticConnectReq

This clause isto be added.

Signature void tciStaticConnectReq(in TriPortIdType fromPort,
in TriPortIdType toPort)
In Parameters fromPort Identifier of the test component port to be connected from.
toPort Identifier of the test component port to be connected to.
Return Value void
Constraint This operation shall be called by the TE when it executes a TTCN-3 static connect operation.
Effect CH transmits the static connection request to the remote TE where it calls the
tciStaticConnect operation to establish a logical static connection between the two
indicated ports. Note that both ports can be on remote TEs. In this case, the operation returns
only after calling the tciStaticConnect operation on both remote TEs.

Clause 7.3.3.1.30 tciStaticMapReq
This clause is to be added.

Signature void tciStaticMapReq(in TriPortIdType fromPort,
in TriPortIdType toPort)
In Parameters fromPort Identifier of the test component port to be mapped from.
toPort Identifier of the test component port to be mapped to.
Return Value void
Constraint This operation shall be called by the TE when it executes a TTCN-3 static map operation.
Effect CH transmits the static map request to the remote TE where it calls the tciStaticMap
operation to establish a logical static connection between the two indicated ports.

8.6 Extensions to clause 7.3.4 of ES 201 873-6 TCI-TL
provided

In order to log the handling of static connections and of static components, the operations are t1iCStaticCreate,
tliPStaticConnect, and t1iPStaticMap are defined. For the logging of the starting and destruction of static
configurations, the operations t1iConfigStarted and t1iConfigKilled are defined.

Clause 7.3.4.1.106 tliCStaticCreate
This clause isto be added.

Signature void tliCStaticCreate(in TString am, in TInteger ts, in TString src,
in TInteger line, in TriComponentIdType c,
in TriComponentIdType comp, in TString name)
In Parameters |am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
line The line number where the request is performed.
c The component which produces this event.
comp The component which is created.
name The name of the component which is created.
Return Value void
Constraint Shall be called by TE to log the create component operation. This event occurs after component
creation.

ETSI

75 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Effect

The TL presents all the information provided in the parameters of this operation to the user. The
kind of the created component (see TciTestComponentKindType) can be logged in am. How this
is done is not within the scope of the present document.

Clause 7.3.4.1.107 tliPStaticConnect

This clause isto be added.

Signature

void tliPStaticConnect (in TString am, in TInteger ts, in TString src,
in TInteger line, in TriComponentIdType c,
in TriPortIdType portl, in TriPortIdType port2)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

portl The first port to be connected.
port2 The second port to be connected.
Return Value [void

Constraint Shall be called by CH or TE to log the connect operation. This event occurs after the connect
operation.
Effect The TL presents all the information provided in the parameters of this operation to the user. The

kind of the connection (i.e. dynamic or static) can be logged in am. How this is done is not within the
scope of the present document.

Clause 7.3.4.1.108 tliPStaticM ap

This clause isto be added.

Signature

void tliPStaticMap (in TString am, in TInteger ts, in TString src,
in TInteger line, in TriComponentIdType c,
in TriPortIdType portl, in TriPortIdType port2)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

portl The first port to be mapped.
port2 The second port to be mapped.
Return Value |void

Constraint

Shall be called by SA or TE to log the map operation. This event occurs after the map operation.

Effect

The TL presents all the information provided in the parameters of this operation to the user. The
kind of the connection (i.e. dynamic or static) can be logged in am. How this is done is not within
the scope of the present document.

Clause 7.3.4.1.109 tliConfigStarted

Thisclause isto be added.

Signature

void tliConfigStarted (in TString am, in TInteger ts, in TString src,
in TInteger line, in TriComponentIdType c,
in TciBehaviourIdType configId, in TciParameterListType tciPars,
in TciConfigurationIdType ref)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

configId The static configuration function being started.
tciPars The parameters of the started configuration function.
ref The resulting static configuration reference.

Return Value |void

Constraint

Shall be called by TE to log the starting of a static test configuration. This event occurs after static
configuration start.

ETSI

76

Effect

The TL presents all the information provided in the parameters of this operation to the user, how
this is done is not within the scope of the present document.

Clause 7.3.4.1.110 tliConfigKilled

Thisclause isto be added.

Signature

void tliConfigKilled (in TString am, in TInteger ts, in TString src,
in TInteger line, in TriComponentIdType c,
in TciConfigurationIdType ref)

In Parameters

Final draft ETSI ES 202 781 V1.3.1 (2014-04)

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

ref The static configuration reference that has been destructed.

Return Value

void

Constraint

Shall be called by TE to log the kill configuration operation. This event occurs after configuration kill.

Effect

The TL presents all the information provided in the parameters of this operation to the user, how this
is done is not within the scope of the present document.

Clause 7.3.4.1.111 tliPSetState
Thisclause isto be added.

Signature

void tliPSetState

in TInteger line,
in TInteger state,

(in TString am,

in TInteger ts, in TString src,
in TriComponentIdType c,
in TString reason)

In Parameters |am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

state The new translation state

reason The optional reason of the port.setstate statement.
Return Value |void

Constraint

Shall be called by TE to log the port.setstate operation. This event occurs after the port state is set.

Effect

The TL presents all the information provided in the parameters of this operation to the user, how this

is done is not within the scope of the present document.

8.7
mapping
Clause8.2.25 TciTestComponentKindType

This clause is to be extended.

// TCI IDL TciTestComponentKindType
public interface TciTestComponentKind {

ul

public final
public final
public final

static int TCI_MTC_STATIC_COMP
static int TCI_PTC_STATIC_COMP
static int TCI_SYSTEM_ STATIC_COMP

~

o on
(o))

Extensions to clause 8 of ES 201 873-6 Java'" language

Clause8.3.2.4

TciTypeClassType

This clause isto be extended.

public interface TciTypeClass {

public final static int CONFIGURATION

}

25;

ETSI

77 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Clause 8.3.2.16 TciConfigurationldType
This clause isto be added.

TciConfigurationIdType iSmapped to the following interface:

// TCI IDL TciConfigurationIdType
package org.etsi.ttcn.tci;
public interface TciConfigurationId ({
public String getConfigurationId() ;
public String getConfigurationName () ;
public String getConfigurationTypeName () ;
public boolean equals(TciConfigurationId conf) ;

}
Methods

L] getConfigurationId
Returns a representation of this unique configuration identifier.

. getConfigurationName
Returns the configuration name as defined in the TTCN-3 specification. If no name is provided, an empty
string is returned.

. getConfigurationTypeName

Returns the configuration type name as defined in the TTCN-3 specification.

o equals
Compares conf withthisTciConfigurationId for equality. Returns true if and only if both
configurations have the same representation of this unique configuration identifier, false otherwise.

Clause8.5.1.1 TCI TM provided

Thisclause isto be extended.

// TCI-TM

// TE -> TM

package org.etsi.ttcn.tci;
public interface TciTMProvided {

public void tciConfigStarted(TciConfigurationId ref) ;
public void tciConfigKilled(TciConfigurationId ref) ;

1
Clause8.5.1.2 TCI TM required

This clause isto be extended.

// TCI-TM

// T™M -> TE

package org.etsi.ttcn.tci;
public interface TciTMRequired

public void tciStartTestCase
(String testCaseId, TciParameterList parameterList, TciConfigurationId ref);

public TciConfigurationId tciStartConfig

(TciBehaviourId configId, TciParameterList parameterList) ;
public void tciKillConfig(TciConfigurationId ref) ;

Clause 8.5.3.1 TCI CH provided

This clause is to be extended.

// TciCHProvided

// TE -> CH

package org.etsi.ttcn.tci;
public interface TciCHProvided (

public void tciStaticConnectReq(TriPortId fromPort, TriPortId toPort) ;
public void tciStaticMapReq (TriPortId fromPort, TriPortId toPort) ;

ETSI

78 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Clause8.5.3.2 TCI CH required

This clause isto be extended.

// TciCHRequired

// CH -> TE

package org.etsi.ttcn.tci;

public interface TciCHRequired extends TciCDRequired {

public void tciStaticConnect (TriPortId fromPort, TriPortId toPort) ;
public void tciStaticMap (TriPortId fromPort, TriPortId toPort) ;

1
Clause8.5.4.1 TCI TL provided

Thisclause isto be extended.

// TCI-TL

// TE, TM,CH,CD, SA,PA -> TL
package org.etsi.ttcn.tci;
public interface TciTLProvided

public void tliCStaticCreate(String am, int ts, String src, int line, TriComponentId c,
TriComponentId comp, String name) ;
public void tliPStaticConnect (String am, int ts, String src, int line, TriComponentId c,
TriPortId portl, TriPortId port2) ;
public void tliPStaticMap (String am, int ts, String src, int line, TriComponentId c,
TriPortId portl, TriPortId port2);
public void tliConfigStarted (String am, int ts, String src, int line, TriComponentId c,
TciBehaviourId configId, TciParameterList tciPars, TciConfigurationId ref) ;
public void tliConfigKilled (String am, int ts, String src, int line, TriComponentId c,
TciConfigurationId ref) ;
public void tliPSetState (String am, int ts, String src, int line, TriComponentId c,
int state, String reason) ;

8.8 Extensions to clause 9 of ES 201 873-6 ANSI C language
mapping
Clause9.5 Data

The table is to be extended.

TCIIDL ADT ANSI C representation (Type definition) Notes and comments

TciTypeClassType typedef enum

{

TCI_CONFIGURATION_TYPE = 25
} TciTypeClassType;

TciTestComponentKindType typedef enum

{

TCI_MTC_STATIC_COMP,
TCI_PTC_STATIC_COMP,
TCI_SYSTEM STATIC_COMP

} TciTestComponentKindType;

TciConfigurationldType typedef struct TciConfigurationIdType

BinaryString conflInst;
String confName;
QualifiedName confType;
} TciConfigurationIdType;

ETSI

79 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Clause9.4.1.1 TCI TM provided

This clause isto be extended.

void tciConfigStarted(TciConfigurationId ref) ;
void tciConfigKilled(TciConfigurationId ref)

Clause9.4.1.2 TCI TM required

This clause isto be extended.

void tciStartTestCase
(TciTestCaseIdType testCaseId, TciParameterListType parameterlist,
TciConfigurationIdType ref)

TciConfigurationId tciStartConfig
(TciBehaviourIdType configId, TciParameterListType parameterList)
void tciKillConfig(TciConfigurationId ref)

Clause9.4.3.1 TCI CH provided

This clause is to be extended.

void tciExecuteTestCaseReq
(TciTestCaseIdType testCaseld, TriPortIdList tsiPortlList,
TciConfigurationIdType ref)

void tciStaticConnectReq (TriPortId fromPort, TriPortId toPort) ;
void tciStaticMapReq (TriPortId fromPort, TriPortId toPort) ;

Clause 9.4.3.2 TCI CH required

This clause is to be extended.

void tciExecuteTestCase
(TciTestCaseIdType testCaseld, TriPortIdList tsiPortlList,
TciConfigurationIdType ref)

void tciStaticConnect (TriPortId fromPort, TriPortId toPort)
void tciStaticMap (TriPortId fromPort, TriPortId toPort)

Clause9.44.1 TCI TL provided

This clause is to be extended.

void tliCStaticCreate (String am, int ts, String src, int line, TriComponentId c,
TriComponentId comp, String name)

void tliPStaticConnect (String am, int ts, String src, int line, TriComponentId c,
TriPortId portl, TriPortId port2)

void tliPStaticMap (String am, int ts, String src, int line, TriComponentId c,
TriPortId portl, TriPortId port2)

void tliConfigStarted (String am, int ts, String src, int line, TriComponentId c,
TciBehaviourIdType configId, TciParameterListType tciPars, Value ref)

void tliConfigKilled (String am, int ts, String src, int line, TriComponentId c,
Value ref)

void tliPSetState (String am, int ts, String src, int line, TriComponentId c,
int state, String reason)

ETSI

80 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

8.9 Extensions to clause 10 of ES 201 873-6 C++ language
mapping
Clause 10.5.2.13 TciTestComponentKind

Thisclause isto be extended.

class TciTestComponentKind {
public:

static const TciTestComponentKind MTC_STATIC_COMP;
static const TciTestComponentKind PTC_STATIC_COMP;
static const TciTestComponentKind SYSTEM_ STATIC_COMP;

1
Clause 10.5.2.14 TciTypeClassType

This clause is to be extended.

typedef enum

{

TCI_CONFIGURATION = 25
} TciTypeClass;

Clause 10.5.2.16 TciConfigurationld
This clause isto be added.

Identifies a static configuration. It is mapped to the pure virtual class:

class TciConfigurationId {
public:
virtual ~TciConfigurationId () ;
virtual const QualifiedName & getConfigurationTypeName () const =0;
virtual void setConfigurationTypeName (const QualifiedName &tName)=0;
virtual const Tstring & getConfigurationName () const =0;
virtual void setConfigurationName (const Tstring &sName)=0;
virtual const Tinteger & getConfigurationId () const =0;
virtual void setConfigurationId (const Tinteger &id)=0;
virtual Tboolean operator== (const TciConfigurationId &cmp) const =0;
virtual TciComponentId * cloneConfigurationId () const =0;
virtual Tboolean operator< (const TciConfigurationId &cmp) const =0;

}

M ethods
. ~TciConfigurationId
Destructor.
] getConfigurationTypeName
Returns a const reference to the configuration type name.
] setConfigurationTypeName
Set the configuration type name.
. getConfigurationName
Gets the configuration name.
. setConfigurationName
Set the configuration name.
. getConfigurationId
Returns the configuration identifier.
. setConfigurationId
Set the configuration identifier.
. operator==

Returnstrue if both TciConfigurationld objects are equal .

ETSI

81 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

. cloneConfigurationId

Returns a copy of the TciConfigurationld.

. operator<
Operator < overload.

Clause 10.6.1.1 TciTmRequired

Thisclause isto be extended.

virtual void tciStartTestCase
(const TciTestCaseId *testCaseId, const TciParameterList *parameterList,
const TciConfigurationId *ref)=0;

virtual const TciConfigurationId *tciStartConfig

(const TciBehaviourId *configId, TciParameterList *parameterList)=0;
virtual void tciKillConfig(const TciConfigurationId *ref)=0;

Clause 10.6.1.2 TciTmProvided

This clause is to be extended.

//Indicates the start of a static configuration
virtual void tciConfigStarted(const TciConfigurationId *ref) =0;
virtual void tciConfigKilled (const TciConfigurationId *ref)=0;

Clause 10.6.3.1 TciChRequired

This clause is to be extended.

virtual void tciExecuteTestCase
(const TciTestCaseId *testCaselId, const TriPortIdList *tsiPortList,
const TciConfigurationId *ref)=0;

virtual void tciStaticConnect (const TriPortId *fromPort, const TriPortId *toPort)=0;
virtual void tciStaticMap (const TriPortId *fromPort, const TriPortId *toPort)=0;

Clause 10.6.3.2 TciChProvided

Thisclause isto be extended.

virtual void tciExecuteTestCaseReq
(const TciTestCaseId *testCaselId, const TriPortIdList *tsiPortList,
const TciConfigurationId *ref)=0;

virtual void tciStaticConnectReq(const TriPortId *fromPort, const TriPortId *toPort)=0;
virtual void tciStaticMapReq(const TriPortId *fromPort, const TriPortId *toPort)=0;

Clause 10.6.4.1 TciTIProvided

This clause isto be extended.

virtual void tliCStaticCreate (const Tstring &am, const timeval ts, const Tstring src,
const Tinteger line, const TriComponentId *c, const TriComponentId *comp,
const Tstring &name)=0;

virtual void tliPStaticConnect (const Tstring &am, const timeval ts, const Tstring src,
const Tinteger line, const TriComponentId *c, const TriPortId *portl, const TriPortId *port2)=0;

virtual void tliPStaticMap (const Tstring &am, const timeval ts, const Tstring src,
const Tinteger line, const TriComponentId *c, const TriPortId *portl, const TriPortId *port2)=0;

virtual void tliConfigStarted (const Tstring &am, const timeval ts, const Tstring src,
const Tinteger line, const TriComponentId *c, const TciBehaviourId *configId,

const TciParameterList *tciPars, const TciValue *ref)=0;

virtual void tliConfigKilled (const Tstring &am, const timeval ts, const Tstring src,
const Tinteger line, const TriComponentId *c, const TciValue *ref)=0;

virtual void tliPSetState (const Tstring &am, const timeval ts, const Tstring src,

ETSI

const Tinteger line,

8.10

mapping
Clause 11.3.2.21
This clauseis to be added.

const TriComponentId *c,

82 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

const Tinteger status, const TString &reason)=0;

Extensions to clause 11 of ES 201 873-6 W3C XML

TciConfigurationldType

TciConfigurationIdType ismapped to the following complex type:

<xsd:complexType name="TciConfigurationIdType">

<xsd:sequence>
<xsd:choice>

<xsd:element name="null" type="Templates:null"/>
<xsd:element name="id" type="Types:Id"/>

</xsd:choice>
</xsd:sequence>
</xsd:complexType>

Elements:
e id
o null

Attributes:
e none

Clause 11.4.2.1

Thisclause isto be extended.

The identifier of the static configuration.

Thenull identifier. To be used if thereis no static configuration identifier.

TCI TL provided

<xsd:complexType name="tliTcExecute">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event"s>

<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element

</xsd:sequences>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

name="tcId" type="Types:TciTestCaseIdType"/>

name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
name="dur" type="SimpleTypes:TriTimerDurationType" minOccurs="0"/>
name="ref" type="Types:TciConfigurationIdType" minOccurs="0"/>

<xsd:complexType name="tliTcStart"s>
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event">

<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element

</xsd:sequences>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

name="tcId" type="Types:TciTestCaseIdType"/>

name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
name="dur" type="SimpleTypes:TriTimerDurationType" minOccurs="0"/>
name="ref" type="Types:TciConfigurationIdType" minOccurs="0"/>

<xsd:complexType name="tliTcStarted">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event">

<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element

</xsd:sequences>

</xsd:extension>
</xsd:complexContent>

name="tcId" type="Types:TciTestCaseIdType"/>

name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
name="dur" type="SimpleTypes:TriTimerDurationType" minOccurs="0"/>
name="ref" type="Types:TciConfigurationIdType" minOccurs="0"/>

ETSI

83 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

</xsd:complexType>

<xsd:complexType name="tliCStaticCreate">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event"s>
<xsd:sequence>
<xsd:element name="comp" type="Types:TriComponentIdType"/>
<xsd:element name="name" type="SimpleTypes:TString"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPStaticConnect">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:PortConfiguration"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPStaticMap">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:PortConfiguration"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliConfigStarted">
<xsd:complexContent mixed="true"s>
<xsd:extension base="Events:Event">
<xsd:sequence>
<xsd:element name="configId" type="Types:TciBehaviourIdType"/>
<xsd:element name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
<xsd:element name="ref" type="Types:TciConfigurationIdType"/>
</xsd:sequences>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliConfigKilled"s>
<xsd:complexContent mixed="true"s>
<xsd:extension base="Events:Event">
<xsd:sequence>
<xsd:element name="ref" type="Types:TciConfigurationIdType"/>
</xsd:sequences
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPSetState">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event"s>
<xsd:sequence>
<xsd:element name="state" type="SimpleTypes:TInteger"/>
<xsd:element name="reason" type="SimpleTypes:TString" minOccurs="0"/>
</xsd:sequences>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

ClauseB.5 TCI TL XML Schema for Events

The five additional events defined for clause"11.4.2.1 TCI TL provided" have to be added to the events schema
definition given in clause B.5.

<xsd:complexType name="tliCStaticCreate">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event"s>
<xsd:sequence>
<xsd:element name="comp" type="Types:TriComponentIdType"/>
<xsd:element name="name" type="SimpleTypes:TString"/>
</xsd:sequences
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPStaticConnect">

<xsd:complexContent mixed="true">
<xsd:extension base="Events:PortConfiguration"/>

ETSI

84 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPStaticMap">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:PortConfiguration"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliConfigStarted">
<xsd:complexContent mixed="true"s>
<xsd:extension base="Events:Event"s>
<xsd:sequence>
<xsd:element name="configId" type="Types:TciBehaviourIdType"/>
<xsd:element name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
<xsd:element name="ref" type="Types:TciConfigurationIdType"/>
</xsd:sequences>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliConfigKilled">
<xsd:complexContent mixed="true"s>
<xsd:extension base="Events:Event"s>
<xsd:sequence>
<xsd:element name="ref" type="Types:TciConfigurationIdType"/>
</xsd:sequences
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPSetState">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event"s>
<xsd:sequence>
<xsd:element name="state" type="SimpleTypes:TInteger"/>
<xsd:element name="reason" type="SimpleTypes:TString" minOccurs="0"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

ClauseB.6 TCI TL XML Schemafor aLog

<xsd:complexType name="Body">
<xsd:choice maxOccurs="unbounded">

<!-- static configurations -->

<xsd:element name="tliCStaticCreate" type="Events:tliCStaticCreate"/>
<xsd:element name="tliPStaticConnect" type="Events:tliPStaticConnect"/>
<xsd:element name="tliPStaticMap" type="Events:tliPStaticMap"/>
<xsd:element name="tliConfigStarted" type="Events:tliConfigStarted"/>
<xsd:element name="tliConfigKilled" type="Events:tliConfigKilled"/>
<xsd:element name="tliPSetState" type="Events:tliPSetState"/>

</xsd:choice>
</xsd:complexType>

8.11 Extensions to clause 12 of ES 201 873-6 C# language
mapping
Clause 12.4.2.5 TciTestComponentKindType
This clause isto be extended.
public enum TciTestComponentKind {
%cthcStaticComp = 5;

TciPtcStaticComp
TciSystemComp

nwon
< o

ETSI

85 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Clause 12.4.2.4 TciTypeClassType

This clause isto be extended.

public enum TciTypeClass {
éonfiguration = 25;

Clause 12.4.2.16 TciConfigurationldType

This clause is to be added.

TciConfigurationIdType iSmapped to the following interface:
public interface ITciConfigurationId {

string ConfigurationId { get; }

string ConfigurationName { get; }

IQualifiedName ConfigurationTypeName { get; }
bool Equals (ITciConfigurationId conf) ;

}
Methods

(] ConfigurationId
Returns a representation of this unique configuration identifier.

(] ConfigurationName
Returns the configuration name as defined in the TTCN-3 specification. If no name is provided, an empty
string is returned.

L] ConfigurationTypeName

Returns the configuration type name as defined in the TTCN-3 specification.

o Equals
Compares conf withthisTciConfigurationId for equality. Returns true if and only if both
configurations have the same representation of this unique configuration identifier, false otherwise.

Clause12.5.1.1 TCI-TM provided

This clause is to be extended.
public interface ITciTMProvided ({

void tciConfigStarted(ITciConfigurationId ref);
void tciConfigKilled (ITciConfigurationId ref)

}
Clause 12.5.1.2 TCI-TM required

This clause is to be extended.
public interface ITciTMRequired ({

void TciStartTestCase (ITciTestCaseId testCaseld,
ITciParameterList parameterList, ITciConfigurationId ref) ;

ITciConfigurationId tciStartConfig

(ITciBehaviourId configId, ITciParameterList parameterList)
void tciKillConfig(ITciConfigurationId ref)

}

Clause 12.5.3.1 TCI-CH provided
This clause isto be extended.

public interface ITciCHProvided ({

void TciExecuteTestCaseReq (ITriComponentId component,
ITriPortIdList tsiPortList, ITciConfigurationId ref) ;

void tciStaticConnectReq(ITriPortId fromPort, ITriPortId toPort) ;

ETSI

86 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

void tciStaticMapReq (ITriPortId fromPort, ITriPortId toPort) ;

1

Clause 12.5.3.2 TCI-CH required
This clause is to be extended.

public interface ITciCHRequired ({

void TciExecuteTestCase (ITciTestCaseId testCaseld,
ITriPortIdList tsiPortList, ITciConfigurationId ref) ;

void tciStaticConnect (ITriPortId fromPort, ITriPortId toPort) ;
void tciStaticMap (ITriPortId fromPort, ITriPortId toPort) ;

1
Clause 12.5.4.1 TCI-TL provided

This clause is to be extended.
public interface ITciTLProvided ({

void tliCStaticCreate(string am, System.DateTime ts, string src, int line,
ITriComponentId c,
ITriComponentId comp, sString name) ;

void tliPStaticConnect (string am, System.DateTime ts, string src, int line,
ITriComponentId c,
ITriPortId portl, ITriPortId port2);

void tliPStaticMap (string am, System.DateTime ts, string src, int line,
ITriComponentId c,
ITriPortId portl, ITriPortId port2);

void tliConfigStarted (string am, System.DateTime ts, string src, int line,
ITriComponentId c,
ITciBehaviourId configId, ITciParameterList tciPars, ITciValue ref);

void tliConfigKilled (string am, System.DateTime ts, string src, int line,
ITriComponentId c,
ITcivValue ref) ;

void tliPSetState (string am, System.DateTime ts, string src, int line,
ITriComponentId c,
int state, string reason) ;

ETSI

87 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Annex A (normative):
BNF and static semantics

Al Additional TTCN-3 terminals

Table A.1 presents all additional TTCN-3 terminals which are reserved words when using this package. Like the
reserved words defined in the TTCN-3 core language, the TTCN-3 terminals listed in table A.1 shall not be used as
identifiersin a TTCN-3 module. These terminals shall be written in al lowercase letters.

Table A.1: List of additional TTCN-3 terminals which are reserved words

configuration |static |setstate |

A.2 Modified TTCN-3 syntax BNF productions

This clause includes all BNF productions that are modifications of BNF rules defined in the TTCN-3 core language
document [1]. When using this package the BNF rules below replace the corresponding BNF rulesin the TTCN-3 core
language document. The rule numbers define the correspondence of BNF rules.

11. ModuleDefinition ::= (([Visibility] (TypeDef |
ConstDef |
TemplateDef |
ModuleParDef |
FunctionDef |
SignatureDef |
TestcaseDef |
AltstepDef |
ImportDef |
ExtFunctionDef |
ExtConstDef |
ConfigurationDef
)
(["public"] GroupDef) |
(["private"] FriendModuleDef)
) [WithStatement]
49. PortDefAttribs ::= MessageAttribs |
ProcedureAttribs |
MixedAttribs|
TranslationPortAttribs

197. TestcaseDef ::= TestcaseKeyword TestcaselIdentifier
" (" [TestcaseFormalParList] ")" ConfigSpec | ExecuteOnSpec
StatementBlock

201. ExceptElement ::= ExceptGroupSpec |
ExceptTypeDefSpec |
ExceptTemplateSpec |
ExceptConstSpec |
ExceptTestcaseSpec |
ExceptAltstepSpec |
ExceptFunctionSpec |
ExceptSignatureSpec |
ExceptModuleParSpec |
ExceptConfigurationSpec

205. TestcaselInstance ::= ExecuteKeyword " (" TestcaseRef " (" [TestcaseActualParList] ")"
["," (Expression | Minus)
["," (SingleExpression | Minus)
["," ConfigurationReference]]] ")"

213. ImportElement ::= ImportGroupSpec |
ImportTypeDefSpec |

ETSI

88 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

ImportTemplateSpec |
ImportConstSpec |
ImportTestcaseSpec |
ImportAltstepSpec |
ImportFunctionSpec |
ImportSignatureSpec |
ImportModuleParSpec |
ImportImportSpec |
ImportConfigurationSpec

294. ControlStatement ::= TimerStatements |
BasicStatements |
BehaviourStatements |
SUTStatements |
StopKeyword |
KillConfigStatement

316. CreateOp ::= ComponentType Dot CreateKeyword
["(" (SingleExpression | Minus) ["," SingleExpression] ")"]
[AliveKeyword | StaticKeyword]

330. ConnectStatement ::= ConnectKeyword SingleConnectionSpec [StaticKeyword]
342. MapStatement ::= MapKeyword SingleConnectionSpec [ParamClause] [StaticKeyword]

452. PredefinedType ::= BitStringKeyword |
BooleanKeyword |
CharStringKeyword |
UniversalCharString |
IntegerKeyword |
OctetStringKeyword |
HexStringKeyword |
VerdictTypeKeyword |
FloatKeyword |
AddressKeyword |
DefaultKeyword |
AnyTypeKeyword |
ConfigurationKeyword

610. OpCall ::= ConfigurationOps |
GetLocalVerdict |
VerdictOps |
TimerOps |
TestcaseInstance |
FunctionInstance [ExtendedFieldReference] |
TemplateOps [ExtendedFieldReference] |
ActivateOp |
ConfigurationInstance

A.3 Additional TTCN-3 syntax BNF productions

This clause includes al additional BNF productions that needed to define the syntax introduced by this package.
Additional BNF rules that have arelation to modified BNF rules defined in clause A.2, will have the rule number of the
modified rule followed by alower case |etter, e.g. number of modified rule 316, number of related additional rule 316a.
The numbering of other new rules start with number 900.

197a. ExecuteOnSpec ::= ExecuteKeyword OnKeyword ConfigurationRef

316a. StaticKeyword ::= "static"

900. ConfigurationDef ::= ConfigurationKeyword ConfigurationIdentifier
" (" [TestcaseFormalParList] ")" ConfigSpec
StatementBlock

901. ConfigurationKeyword ::= "configuration"

902. ConfigurationIdentifier ::= Identifier

903. ConfigurationInstance ::= ConfigurationRef " (" [TestcaseActualParList] ")"

904. ConfigurationRef ::= [GlobalModuleId Dot] ConfigurationIdentifier

ETSI

905.
906.

907.

908.
909.
910.

911.
912.

913.

914.
915.
916.

917.
918.
919.
920.

921.
922.

923.
924.

89 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

KillConfigStatement ::= ConfigurationReference Dot KillKeyword
ConfigurationReference ::= VariableRef | FunctionInstance
TranslationPortAttribs ::= MessageKeywordOuterPortTypeSpec "{"

(TranslationAddrDecl | TranslationMessageList | ConfigParamDef)
[SemiColon] }+

n}n

OuterPortTypeSpec ::= OuterPortTypeMapSpec | OuterPortTypeConnectSpec

OuterPortTypeMapSpec ::=MapKeyword ToKeyword Type { "," Type } [OuterPortTypeConnectSpec]
OuterPortTypeConnectSpec ::= ConnectKeyword ToKeyword Type { ", " Type

TranslationAddrDecl ::= AddressKeyword Type [TranslationAddrSpec{","TranslationAddrSpec }]
TranslationAddrSpec ::= (ToKeyword | FromKeyword) Type WithKeyword FunctionRef " (" ")"
TranslationMessageList ::= InParKeyword TranslationInTypeList |

OutKeyword TranslationOutTypeList|
InOutParKeywordTypeList

TranslationInTypeList ::=TranslationInType{"," TranslationInType}
TranslationInType ::= Type [TranslationInSpec{"," TranslationInSpec}]
TranslationInSpec ::= FromKeyword Type WithKeyword FunctionRef " (" m")n"

TranslationOutTypeList ::= TranslationOutType{"," TranslationOutType}
TranslationOutType ::= Type [TranslationOutSpec{","TranslationOutSpec }]
TranslationOutSpec ::= ToKeyword Type WithKeyword FunctionRef " (" ")"

FuncPortSpec ::= PortKeywordIdentifier

SetPortState ::= PortKeyword"."SetStateKeyword" (" SingleExpression {"," LogItem}")"
SetVerdictKeyword ::= "setstate"

ExceptConfigurationSpec ::= ConfigurationKeyword IdentifierListOrAll
ImportConfigurationSpec ::= ConfigurationKeyword AllKeyword

ETSI

90 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

Annex B (informative):
Library of useful types

B.1 Limitations

The types and constants described in this annex use the same rule as specified in the clause E.1 of ES 201 873-1 [1].

B.2 Useful TTCN-3 types

B.2.1 Status values for port states

Type and constants defined in this clause support the secure usage of the setstate port operation defined in
clause 5.10.4.

The type definition for thistypeis:

type integer translationState(0..3);

Useful constant definitions for working with object states are:

const translationState TRANSLATED := 0;
const translationState NOT_TRANSLATED := 1;
const translationState FRAGMENTED := 2;

const translationState PARTIALLY TRANSLATED :=3;

ETSI

91 Final draft ETSI ES 202 781 V1.3.1 (2014-04)

History
Document history
V111 August 2010 Publication
V121 June 2013 Publication
V1.3.1 April 2014 Membership Approval Procedure MV 20140614: 2014-04-15 to 2014-06-16

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Package conformance and compatibility
	5 Package Concepts for the Core Language
	5.1 Static configurations
	5.1.1 The special configuration type: configuration
	5.1.2 The configuration function
	5.1.3 Starting a static test configuration
	5.1.4 Destruction of static test configurations
	5.1.5 Creation of static test components
	5.1.6 Establishment of static connections and static mappings
	5.1.7 Test case definitions for static test configuration
	5.1.8 Executing test cases on static test configurations
	5.1.9 Further restrictions
	5.1.10 Logging the status of static configurations

	5.2 Ports with translation capability
	5.2.1 Translation capability in port type declaration
	5.2.2 Mapping and connecting ports
	5.2.3 Translation functions
	5.2.4 Translation state
	5.2.5 Sending
	5.2.6 Receiving
	5.2.7 Address
	5.2.8 Clear, start, stop and halt operation

	6 Package Semantics
	6.1 Replacement of short forms
	6.2 Order of replacement steps
	6.3 Flow graph representation of TTCN-3 behaviour
	6.4 Flow graph construction procedure
	6.5 Flow graph representation of configuration functions
	6.6 Retrieval of start nodes of flow graphs
	6.7 Module state
	6.8 Accessing the module state
	6.9 Configuration state
	6.10 Accessing the configuration state
	6.11 Entity states
	6.12 Accessing entity states
	6.13 Handling of connections among ports
	6.14 Handling of port states
	6.15 The evaluation procedure for a TTCN-3 module
	6.16 Evaluation phases
	6.17 Phase I: Initialization
	6.18 Phase II: Update
	6.19 Phase III: Selection
	6.20 Phase IV: Execution
	6.21 Global functions
	6.22 Clear port operation
	6.23 Configuration function call
	6.24 Connect operation
	6.25 Create operation
	6.26 Flow graph segment <disconnect-all>
	6.27 Flow graph segment <disconnect-comp>
	6.28 Flow graph segment <disconnect-port>
	6.29 Flow graph segment <disconnect-two-par-pairs>
	6.30 Execute statement
	6.31 Flow graph segment <execute-without-config>
	6.32 Flow graph segment <execute-on-config>
	6.33 Flow graph segment <execute-on-config-without-timeout>
	6.34 Flow graph segment <execute-on-config-timeout>
	6.35 Flow graph segment <statement-block>
	6.36 Halt port operation
	6.37 Kill component operation
	6.38 Flow graph segment <kill-mtc>
	6.39 Flow graph segment <kill-all-comp>
	6.40 Kill execution statement
	6.41 Kill configuration operation
	6.42 Map operation
	6.43 Start port operation
	6.44 Stop component operation
	6.45 Flow graph segment <stop-mtc>
	6.46 Flow graph segment <stop-config>
	6.47 Flow graph segment <stop-tc-config>
	6.48 Stop port operation
	6.49 Flow graph segment <unmap-all>
	6.50 Flow graph segment <unmap-comp>
	6.51 Flow graph segment <unmap-port>

	7 TRI Extensions for the Package
	7.1 Changes and extensions to clause 5.5.2 of ES 201 873-5 Connection handling operations
	7.2 Extensions to clause 6 of ES 201 873-5 JavaTM language mapping
	7.3 Extensions to clause 7 of ES 201 873-5 ANSI C language mapping
	7.4 Extensions to clause 8 of ES 201 873-5 C++ language mapping
	7.5 Extensions to clause 9 of ES 201 873-5 C# language mapping

	8 TCI Extensions for the Package
	8.1 Extensions to clause 7.2.1.1 of ES 201 873-6 Management
	8.2 Extensions to clause 7.3.1.1 of ES 201 873-6 TCI-TM required
	8.3 Extensions to clause 7.3.1.2 of ES 201 873-6 TCI-TM provided
	8.4 Extensions to clause 7.3.3.1 of ES 201 873-6 TCI-CH required
	8.5 Extensions to clause 7.3.3.2 of ES 201 873-6 TCI CH provided
	8.6 Extensions to clause 7.3.4 of ES 201 873-6 TCI-TL provided
	8.7 Extensions to clause 8 of ES 201 873-6 JavaTM language mapping
	8.8 Extensions to clause 9 of ES 201 873-6 ANSI C language mapping
	8.9 Extensions to clause 10 of ES 201 873-6 C++ language mapping
	8.10 Extensions to clause 11 of ES 201 873-6 W3C XML mapping
	8.11 Extensions to clause 12 of ES 201 873-6 C# language mapping

	Annex A (normative): BNF and static semantics
	A.1 Additional TTCN-3 terminals
	A.2 Modified TTCN-3 syntax BNF productions
	A.3 Additional TTCN-3 syntax BNF productions

	Annex B (informative): Library of useful types
	B.1 Limitations
	B.2 Useful TTCN-3 types
	B.2.1 Status values for port states

	History

