

ETSI ES 202 781 V1.2.1 (2013-06)

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;

TTCN-3 Language Extensions:
Configuration and Deployment Support

ETSI Standard

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 2

Reference
RES/MTS-112ed121 T3Ext_Conf

Keywords
conformance, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definitions and abbreviations ... 7

3.1 Definitions .. 7

3.2 Abbreviations ... 7

4 Package conformance and compatibility .. 7

5 Package Concepts for the Core Language .. 8

5.1 The special configuration type: configuration .. 9

5.2 The configuration function ... 9

5.3 Starting a static test configuration .. 10

5.4 Destruction of static test configurations ... 11

5.5 Creation of static test components .. 11

5.6 Establishment of static connections and static mappings ... 12

5.7 Test case definitions for static test configuration ... 13

5.8 Executing test cases on static test configurations ... 14

5.9 Further restrictions ... 15

5.10 Ports with translation capability ... 15

5.10.1 Translation capability in port type declaration.. 17

5.10.2 Mapping and connecting ports .. 18

5.10.3 Translation functions .. 18

5.10.4 Translation state .. 19

5.10.5 Sending ... 21

5.10.6 Receiving .. 21

5.10.7 Address ... 23

5.10.8 Clear, start, stop and halt operation .. 23

6 Package Semantics ... 24

6.1 Replacement of short forms.. 25

6.2 Order of replacement steps ... 26

6.3 Flow graph representation of TTCN-3 behaviour .. 27

6.4 Flow graph construction procedure .. 27

6.5 Flow graph representation of configuration functions .. 28

6.6 Retrieval of start nodes of flow graphs ... 28

6.7 Module state ... 29

6.8 Accessing the module state .. 29

6.9 Configuration state ... 29

6.10 Accessing the configuration state ... 29

6.11 Entity states .. 30

6.12 Accessing entity states .. 32

6.13 Handling of connections among ports .. 33

6.14 Handling of port states ... 34

6.15 The evaluation procedure for a TTCN-3 module ... 35

6.16 Evaluation phases ... 35

6.17 Phase I: Initialization .. 35

6.18 Phase II: Update ... 36

6.19 Phase III: Selection ... 36

6.20 Phase IV: Execution ... 37

6.21 Global functions ... 37

6.22 Clear port operation .. 38

6.23 Configuration function call... 38

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 4

6.24 Connect operation... 39

6.25 Create operation ... 40

6.26 Flow graph segment <disconnect-all> .. 42

6.27 Flow graph segment <disconnect-comp> ... 43

6.28 Flow graph segment <disconnect-port> ... 44

6.29 Flow graph segment <disconnect-two-par-pairs> .. 44

6.30 Execute statement ... 45

6.31 Flow graph segment <execute-without-config> ... 46

6.32 Flow graph segment <execute-on-config> ... 46

6.33 Flow graph segment <execute-on-config-without-timeout> .. 46

6.34 Flow graph segment <execute-on-config-timeout>.. 48

6.35 Flow graph segment <statement-block> .. 50

6.36 Halt port operation.. 51

6.37 Kill component operation ... 52

6.38 Flow graph segment <kill-mtc> ... 54

6.39 Flow graph segment <kill-all-comp> ... 54

6.40 Kill execution statement ... 56

6.41 Kill configuration operation ... 57

6.42 Map operation .. 57

6.43 Start port operation ... 58

6.44 Stop component operation .. 59

6.45 Flow graph segment <stop-mtc> .. 61

6.46 Flow graph segment <stop-config> .. 61

6.47 Flow graph segment <stop-tc-config> .. 62

6.48 Stop port operation ... 63

6.49 Flow graph segment <unmap-all> .. 65

6.50 Flow graph segment <unmap-comp> ... 66

6.51 Flow graph segment <unmap-port> ... 67

7 TRI Extensions for the Package ... 67

7.1 Changes and extensions to clause 5.5.2 of ES 201 873-5 [3] Connection handling operations 67

7.2 Extensions to clause 6 of ES 201 873-5 [3] Java language mapping ... 69

7.3 Extensions to clause 7 of ES 201 873-5 [3] ANSI C language mapping.. 69

7.4 Extensions to clause 8 of ES 201 873-5 [3] C++ language mapping ... 69

8 TCI Extensions for the Package ... 70

8.1 Extensions to clause 7.2.1.1 of ES 201 873-6 [4] Management ... 70

8.2 Extensions to clause 7.3.1.1 of ES 201 873-6 [4] TCI TM required .. 70

8.3 Extensions to clause 7.3.1.2 of ES 201 873-6 [4] TCI TM provided ... 70

8.4 Extensions to clause 7.3.3.1 of ES 201 873-6 [4] TCI CH required ... 71

8.5 Extensions to clause 7.3.3.2 of ES 201 873-6 [4] TCI CH provided .. 72

8.6 Extensions to clause 7.3.4 of ES 201 873-6 [4] TCI-TL provided ... 72

8.7 Extensions to clause 8 of ES 201 873-6 [4] Java language mapping ... 74

8.8 Extensions to clause 9 of ES 201 873-6 [4] ANSI C language mapping.. 76

8.9 Extensions to clause 10 of ES 201 873-6 [4] C++ language mapping ... 77

8.10 Extensions to clause 11 of ES 201 873-6 [4] W3C XML mapping.. 78

Annex A (normative): BNF and static semantics .. 79

A.1 Additional TTCN-3 terminals .. 79

A.2 Modified TTCN-3 syntax BNF productions .. 79

A.3 Additional TTCN-3 syntax BNF productions .. 80

Annex B (informative): Library of useful types .. 82

B.1 Limitations ... 82

B.2 Useful TTCN-3 types ... 82

B.2.1 Status values for port states .. 82

History .. 83

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document relates to the multi-part standard covering the Testing and Test Control Notation version 3, as
identified below:

ES 201 873-1: "TTCN-3 Core Language";

ES 201 873-2: "TTCN-3 Tabular presentation Format (TFT)";

ES 201 873-3: "TTCN-3 Graphical presentation Format (GFT)";

ES 201 873-4: "TTCN-3 Operational Semantics";

ES 201 873-5: "TTCN-3 Runtime Interface (TRI)";

ES 201 873-6: "TTCN-3 Control Interface (TCI)";

ES 201 873-7: "Using ASN.1 with TTCN-3";

ES 201 873-8: "The IDL to TTCN-3 Mapping";

ES 201 873-9: "Using XML schema with TTCN-3";

ES 201 873-10: "TTCN-3 Documentation Comment Specification".

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 6

1 Scope
The present document defines the Configuration and Deployment Supportpackage of TTCN-3. TTCN-3 can be used for
the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application
are protocol testing (including mobile and Internet protocols), service testing (including supplementary services),
module testing, testing of CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can
be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing.
The specification of test suites for physical layer protocols is outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines the TTCN-3 support for static test configurations.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

[2] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics".

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] ISO/IEC 9646-1: "Information technology - Open Systems Interconnection -Conformance testing
methodology and framework; Part 1: General concepts".

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

http://docbox.etsi.org/Reference

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 7

[i.2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[i.3] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.4] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.5] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML with TTCN-3".

[i.6] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5 [3], ES 201 873-6 [4] and ISO/IEC 9646-1 [5] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5 [3], ES 201 873-6 [4], ISO/IEC 9646-1 [5] and the following apply:

MTC Main Test Component
PTC Parallel Test Component

4 Package conformance and compatibility
The package presented in the present document is identified by the package tag:

 "TTCN-3:2009 Static Test Configurations" - to be used with modules complying with the present
document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ES 201 873-1 [1] and
ES 201 873-4 [2].

The package presented in the present document is compatible to:

• ES 201 873-1 [1] version 4.2.1;

• ES 201 873-2 [i.1] version 3.2.1;

• ES 201 873-3 [i.2] version 3.2.1;

• ES 201 873-4 [2] version 4.2.1;

• ES 201 873-5 [3] version 4.2.1;

• ES 201 873-6 [4] version 4.2.1;

• ES 201 873-7 [i.3] version 4.2.1;

• ES 201 873-8 [i.4] version 4.2.1;

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 8

• ES 201 873-9 [i.5] version 4.2.1;

• ES 201 873-10 [i.6] version 4.2.1.

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5 Package Concepts for the Core Language
This package defines the TTCN-3 means to define static test configurations. A static test configuration is a test
configuration with a lifetime that is not bound to a single test case. The test components of a static test configuration
may be used by several test cases. This package realizes the following concepts:

• A special configuration function is introduced which can only be called in the control part of a TTCN-3
module to create static test configurations. The configuration function returns a handle of the predefined type
configuration to access an existing static test configuration.

• A static test configuration consists of static test components, a test system interface, static connections and
static mappings. These constituents have the following semantics:

- A static test component is a special kind of test component that can only be created during the creation of
a static test configuration and can only be destroyed during the destruction of a static test configuration.
By definition, the MTC of a static test configuration is a static test component.

- The test system interface of a static test configuration plays the same role as the test system interface of a
test configuration created by a test case.

- A static connection is a connection between static test components. It can only be established during the
creation of a static test configuration and only be destroyed during the destruction of a static test
configuration.

- A static mapping is a mapping of a port of a static test component to a port of the test system interface of
a static test configuration. Such a mapping can only be established during the creation of a static test
configuration and only be destroyed during the destruction of a static test configuration.

• A static test configuration can be used by several test cases. For this the test case is started on a previously
created static test configuration. This means:

- The body of the test case is executed on the MTC of the static test configuration.

- The MTC may start behaviour on other static test components of the static test configuration.

- Static test components may create, start, stop and kill normal and alive test components. The lifetime of
these components is bound to the actual test case that is executed on the static test configuration. In case
that a normal and alive test component is not destroyed explicitly by another test component, it is
implicitly destroyed when the test case ends.

- During test case execution non-static connections and non-static mappings may be established. The
lifetime of non-static connections and non-static mappings is bound to the actual test case that is
executed on the static test configuration. In case that a non-static connection or a non-static mapping is
not destroyed explicitly by another test component, it is implicitly destroyed when the test case ends.

• Component timers and variables of static test components are not reset or reininitialized when a test case is
started on a static test configuration. They remain in the same state as when they were left after the creation of
the static test configuration or after the termination of a previous test case. This allows to transfer information
from one test case to another.

• Ports of static test components are not emptied or restarted when a test case is started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign. In addition, all port operations (i.e. clear, start, stop and halt) are
disallowed for ports of static test components. All ports of a static test component remain started during the
whole lifetime of a static test configuration.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 9

• In contrast to component timers, variables and ports, the verdict and the default handling is reset. This means
all activated defaults are deactiviated, all local verdicts and the global verdict are set to none.

5.1 The special configuration type: configuration
The special configuration type configuration is a handle for static test configurations. The special value null is
available to indicate an undefined configuration reference, e.g. for the initialization of variables to handle a static test
configuration.

Values of type configuration shall be the result of configuration functions, they can be checked for equality,
e.g. to check if two variables store the same value, and they can be used in execute statements for starting a test case
on an existing static test configuration and in kill configuration statements to destroy an existing static test
configuration.

EXAMPLES:

 var configuration myStaticConfig := null; // Declaration and initialization of a
 // configuration variable.

 myStaticConfig := aStaticConfig(); // Assigns a value to the previously declared
 // configuration variable. It is assumed that
 //aStaticConfig() is a configuration function.

 myStaticConfig.kill // Kills the static test configuration stored in
 // variable myStaticConfig.

5.2 The configuration function
A configuration function allows the start of a static test configuration.

Syntactical Structure

configuration ConfigurationIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
runs on ComponentType
[system ComponentType]
StatementBlock

Semantic Description
A configuration function allows the start of a static test configuration. A configuration function has to be defined in the
definitions part of a TTCN-3 module and shall only be invoked in the control part of a TTCN-3 module. By definition, a
configuration function returns a value of type configuration if the start of the configuration was successful, or
null if the start of the configuration was not successful.

The invocation of a configuration function causes the creation of the MTC and the test system interface of the static test
configuration. The types of MTC and test system interface shall be referenced in a runs on and a system clause.
The system clause is optional and can be omitted, if the test system has exactly the same ports as the MTC and these
ports are mapped one to one to each other.

The behaviour in the body of a configuration function shall be executed on the newly created MTC. During the start of
a test configuration only behaviour on the MTC shall be executed and only static test components, static connections
and static mappings shall be created or established. Communication with the SUT or with static PTCs is not allowed.

NOTE: The configuration function only returns a reference to a test configuration and no verdict. However,
communication with the SUT might have to be checked. For this purpose, intial communication, e.g. for
registration or coordination purposes, could be defined in form of a test case.

A static test configuration is successfully started if the behaviour of the corresponding configuration function has been
executed till its end or if a return statement in the corresponding configuration function is reached. In case of a
successful start, a reference to the newly created configuration is returned. The usage of a stop or a kill statement
allows to specify an unsuccessful start of a static test configuration. In case of an unsuccessful start, the value null is
returned.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 10

Restrictions
a) The rules for formal parameter lists for the configuration function shall be followed as defined in clause 5.4 of

ES 201 873-4 [2].

b) Configuration functions shall only be invoked in the module control part.

c) For the behaviour definition in the body of the configuration function the following restrictions shall hold:

- Only static test components, static connections and static mappings shall be created or established.

- Once created or established static test components, static connections and static mappings shall not be
destroyed.

- It is not allowed to create and establish non-static test components, connections and mappings.

- It is not allowed to start behaviour on newly created static test components.

- Communication, timer and port operations are not allowed.

EXAMPLES:

// The following configuration function can be used to start a simple static test configuration
// which only consists of one MTC.

 configuration simpleStaticConfig () runs on MyMTCtype{}

// The following configuration function starts a more complex static configuration.
// Configuration information is stored in MTC component variables. Further non-static
// connections and mappings may be established by the test cases that are executed
// on this configuration.

 configuration aComplexStaticConfig (in integer NoOfPTCs) runs on MyMTCtype system MySystemType {
 var integer i;

 if (NoOfPTCs < 0) {
 log ("Negative number of PTCs");
 kill; // unsuccessful termination
 }
 else if (NoOfPTCs > MaxNoOfPTCs) { // MaxNoOfPTCs is a constant
 log ("Number of PTCs is too high");
 kill; // unsuccessful termination
 }
 else {
 for (i := 1, i <= NoOfPTCs, i := i + 1) {
 PTC[i] := PtcType.create static; // creation of static PTCs,
 // Array PTC[] is a component variable
 connect (mtc:SyncPort, PTC[i]:SyncPort) static; // static connection
 }
 map(mtc:PCO, system:PCO1) static; // static mapping of MTC.
 map(PTC[1]:PCO, system:PCO2); // some static mappings of PTCs,
 map(PTC[2]:PCO, system:PCO3); // further non-static mappings may be
 // established during test runs
 }
 return; // successful termination
 }

5.3 Starting a static test configuration
A static test configuration is started by calling a configuration function in the control part of a TTCN-3 module. In case
of a successful start, a reference to the newly created static test configuration is returned. In case of an unsuccessful
start, the special value null is returned.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 11

EXAMPLES:

control {
 var configuration myStaticConfig := null; // Declaration and initialization of a
 // configuration variable.

 myStaticConfig := aStaticConfig(); // Assigns a value to the previously declared
 // configuration variable. It is assumed that
 // aStaticConfig() is a configuration function.

 if (myStaticConfig == null) {
 stop; // Stop test campaign due to an unsuccessful start
 }
 else {
 execute(MyTestCase(),myStaticConfig) // Successful start, continuation of test campaign
 ...
 }
}

5.4 Destruction of static test configurations
A static test configuration can be destroyed by executing a kill configuration operation.

Syntactical Structure
ConfigurationReference.kill

Semantic Description
The execution of a kill configuration operation causes the destruction of a static test configuration. The destruction is
similar to stopping a test case by killing the MTC. This means, resources of all static PTCs shall be released and the
PTCs shall be removed. The only difference is that no test verdict is calculated and returned. After executing the kill
configuration operation, it is not possible to execute a test case on the killed static test configuration.

Executing the kill configuration operation with the special value null shall have no effect, executing a kill
configuration operation with a reference to a non existing static test configuration shall cause a runtime error.

Restrictions
a) The kill configuration operation shall only be executed in the control part of a TTCN-3 module.

EXAMPLES:

control {
 var configuration myStaticConfig := null; // Declaration and initialization of a
 // configuration variable.

 myStaticConfig := aStaticConfig(); // Assigns a value to the previously declared
 // configuration variable. It is assumed that
 // aStaticConfig() is a configuration function.

 myStaticConfig.kill // Destruction of the previously started static
 // test configuration.

5.5 Creation of static test components
The creation of static test components shall be indicated by the additional keyword static in the create operation.
The extension of the create operation in clause 21.2.1 of ES 201 873-4 [2] required for the creation of static test
components is described in the following sections.

Syntactical Structure
ComponentType "." create ["(" Expression ")"] [alive | static]

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 12

Semantic Description
The create operation in combination with the keyword static shall only be used to create static test components.
Static test components can only be created by executing a configuration function and by functions directly or indirectly
invoked by configuration functions. The keyword static in a create operation shall not be used in combination
with the keyword alive.

NOTE 1: During the lifetime of a static test configuration, a static component behaves like an alive component.

Static test components are created in the same manner as normal test components that are not declared as alive
components. Further details on this can be found in clause 21.2.1 of ES 201 873-4 [2].

NOTE 2: Static test components can only be created directly or indirectly by a configuration function. This may be
checkable at runtime and therefore the keyword static may not be required, but for having an explicit
specification of static test configurations and for keeping the feature of static test configurations
extendible, the keyword static has been introduced.

Restrictions
a) The create operation in combination with the keyword static shall only be invoked in configuration

functions and in function that may be directly or indirectly called by such a configuration function.

b) The keyword static in a create operation shall not be used in combination with the keyword alive.

EXAMPLES:

 // This example declares variables of type MyComponentType, which are used to store the
 // references of newly created static component instances of type MyComponentType.
 // An associated name is allocated to some of the created component instances.
 :
 var MyComponentType MyNewComponent;
 var MyComponentType MyNewestComponent;
 :
 MyNewComponent := MyComponentType.create static;
 MyNewestComponent := MyComponentType.create("Newest") static;

5.6 Establishment of static connections and static mappings
The establishment of static connections and static mappings shall be indicated by the additional keyword static in
connect and the map operations. The extension of the connect and map operation in clause 21.1.1 of
ES 201 873-4 [2] required for the establishment of static connections and mapping is described in the following
sections.

Syntactical Structure
connect "(" ComponentRef ":" Port "," ComponentRef ":" Port ")" [static]
map "(" ComponentRef ":" Port "," ComponentRef ":" Port ")" [static]

Semantic Description
The connect and map the operation in combination with the keyword static shall only be used to establish static
connections and static mappings. Static connections and static mappings can only be established by executing the
creator function of a configuration type and by functions directly or indirectly invoked by the creator functions of
configuration type.

Static connections and static mappings are established in the same manner as normal connections and mappings. Further
details on this can be found in clause 21.1.1 of ES 201 873-4 [2].

NOTE: Static connections and mappings can only be established directly or indirectly by a creator function of a
configuration type. This may be checkable at runtime and therefore the keyword static may not be
required, but for having an explicit specification of static test configurations and for keeping the feature of
static test configurations extendible, the keyword static has been introduced.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 13

Restrictions
a) The connect and map operation in combination with the keyword static shall only be used in

configuration functions and in functions that may be directly or indirectly called by a configuration function.

b) Static connections and static mappings shall only be established to connect ports of static test components and
to map ports of a static component to the ports of the test system interface of a configuration type.

EXAMPLES:

 // The following code fragment may be part of a creator function of a configuration type.
 // It is assumed that the ports Port1, Port2, Port3 and PCO1 are properly defined and declared
 // in the corresponding port type and component type definitions
 :
 var MyComponentType MyNewPTC;
 MyNewPTC := MyComponentType.create static;
 :
 connect(MyNewPTC:Port1, mtc:Port3) static;
 map(MyNewPTC:Port2, system:PCO1) static;
 :

5.7 Test case definitions for static test configuration
Test cases that are executed on a static test configuration have to defined in a special manner. Such test cases shall
reference the configuration function that starts a static configuration on which the test case can be executed. The type of
the MTC and the type of the test system interface are referenced in the configuration function and shall therefore not be
specified in the test case header. The extension of the test case definition in clause 16.3 of ES 201 873-4 [2] required for
the execution of a test case on a static test configuration is described in the following sections.

Syntactical Structure
testcase TestcaseIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
(runs on ComponentType [system ComponentType] | execute on ConfigurationType)
StatementBlock

Semantic Description
A test case definition that includes an execute on clause will be executed on previously created static test
configuration of the given configuration type. The type of the MTC and the type of the test system interface is defined
in the referenced configuration type. A test case definition that includes an execute on clause shall not have a runs
on or a system clause.

Apart from the execute on clause, the definition of test cases to be executed on a static test configuration follows the
same rules as described in clause 16.3 of ES 201 873-4 [2].

Restrictions
a) A test case definition that includes an execute on clause shall not have a runs on or a system clause.

EXAMPLES:

 configuration aConfiguration () runs on MyMTCtype system MySystemType {

 PeerComponent := MyPTCType.create static; // creation of a static PTC
 // PeerComponent is a component variable

 connect(mtc:syncPort, PeerComponent:syncPort); // static connection

 map (mtc:PCO1, system:PCO1) // static mapping ot MTC
 map (PeerComponent:PCO2, system:PCO2); // static mapping of Peer Component

 return // successful start of test configuration
 }

 testcase MyTestCase () execute on aConfiguration {

 default := activate(UnexpectedReceptions()); // activate a default

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 14

 PeerComponent.start (PTCbehaviour()); // starting PTC behaviour
 SyncPort.send (Ready); // synchronization with PTC
 SyncPort.receive(Ready); // PTC ready

 PCO1.send (stimulus); // test starts

 ... // test behaviour

 }

5.8 Executing test cases on static test configurations
This clause only describes the syntax extensions of the execute statement to allow the execution of test cases with an
execute on clause on static test configurations and the semantics for executing such test cases. The semantics of the
execute statement for test cases without execute on clause remains unchanged.

Syntactical Structure
execute "(" TestcaseRef "(" [{ TemplateInstance [","] }] ")"
 ["," TimerValue]
 ["," ConfigurationRef] ")"

Semantic Description
A test case definition that includes an execute on clause shall be executed on previously started static test
configuration of a given configuration function. The reference of the previously started static test configuration shall be
referenced in the execute statement.

Trying to execute a test case on a non-existing or unfitting static test configuration shall cause a run time error.
Unfitting test configuration means that the referenced static test configuration has not been created by the configuration
function referenced in the test case header.

If the execution of a test case on a static test configuration causes an error verdict, all following usages of this static
test configuration in execute statements shall cause a runtime error.

NOTE: It is allowed to kill the possibly erroneous static test configuration and to start a new one by invoking the
configuration function again.

A test case that shall be started on a fitting static test configuration can rely on the following things:

• All static test components, static connections and static mappings created or established by the referenced
configuration function shall exist.

• No non-static test components, non-static connections and non-static mappings shall exist.

• Component timers and variables of static test components shall not be reset or reininitialized when a test case
is started on a static test configuration. They remain in the same state as when they were left after the creation
of the static test configuration or after the termination of a previous test case. This allows to transfer
information from one test case to another.

• Ports of static test components shall not emptied or restarted when a test case is started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign.

• In contrast to component timers, variables and ports, the verdict and the default handling shall be reset. This
means all activated defaults are deactiviated, all local verdicts and the global verdict are set to none.

Executing a test case on a static test configuration means that the body of the test case is executed on the MTC of the
static test configuration. During test execution, all static PTCs behave like alive test components. This means, static
PTCs may be stopped and started several times. During test case execution, non-static normal and alive components
may be created, started, killed and stopped. In addition, non-static connections and mappings may be established and
destroyed.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 15

A test case that is executed on a static test configuration shall end when the behaviour of the MTC ends. In this case, the
final test case verdict is returned. The final test case verdict shall be calculated based on the local verdicts of all static
and non static test components. Furthermore, all non-static test components, non-static connections and all non static
mappings shall be discarded.

Restrictions

All restrictions mentioned in clause 26.1 of the core language document [1] apply.

EXAMPLES:

 var verdict MyVerdict // local variable

 var configuration MyConfiguration := aConfiguration(); // starting a static test configuration

 MyVerdict := execute(MyTestCase (),MyConfiguration); // execution of a test case on a static
 // test configuration

 if (MyVerdict :== pass) {
 MyVerdict := execute MyTestCase (), 10.0, MyConfiguration); // executing the same test case
 // with time guard
 }

 ... // further test behaviour
 stop;

5.9 Further restrictions
Static test components, static connections and static mappings have a special semantics. Therefore, situations shall
cause a runtime error:

• Applying a kill test component operation to a static test component.

• Applying port operations (clear, start, stop and halt) to a port owned by a static test component.

• Applying a disconnect operation to a static connection.

• Applying unmap operation to a static mapping.

5.10 Ports with translation capability
This clause describes an extension of a message port type definition adding translation capability into it.

Translation feature is a set of rules that allows to convert messages and/or addresses of one type into messages and/or
addresses of different type during sending or receiving.

It can be used e.g. in situations where the test behaviour is defined on one set of data types but the system under test (or
connected component) actually communicates using a different set of data types, i.e. if the test system works on a
different layer of the protocol stack than the system under test.

To allow flexible adaptation to the system under test, the user shall have the means to control this translation in the
abstract test suite.

Syntactical Structure

 type port PortTypeIdmessage
 [map to{OuterPortType[","]}+]
 [connect to {OuterPortType[","]}+]"{"
 {
 (in{InnerInType [from {OuterInType withInFunction"("")"[","]}+][","]}+|
 out{InnerOutType[to {OuterOutType with OutFunction"("")"[","]}+][","]}+ |
 inout{InOutType[","]}+ |
 addressAddrType[to{OuterAddrTypewith AddrOutFunction"("")"[","]}+]
 [from { OuterAddrTypewith AddrInFunction"("")"[","]}+] |
 map param"("{FormalValuePar [","] }+ ")"|
 unmap param "("{ FormalValuePar [","] }+ ")" |

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 16

 VarInstance) ";"
 }+
 "}"

NOTE: Please note that the same OuterInType may appear in more than one in message specifications for
different InnerInType-s. In each such clause the InFunction is different.

Semantic Description

PortTypeId is name of the type being defined.

Figure 1: Illustration of ports with translation capability

• OuterPortType references the outer message port type this port is mapped to. If the referenced port is a
mapped port, it shall not contain direct or indirect reference to the PortTypeId in the list of its OuterPortTypes.

• InnerInType references a type that can be received over such a port.

• OuterInType references a type that is actually received and which shall be translated to InnerInType.

• InFunction references a function which shall be used to translate OuterInType to InnerInType.

• InnerOutType references a type that can be sent over such a port.

• OuterOutType references a type that is actually sent which has been translated from InnerOutType.

• OutFunction references a function which shall be used to translate InnerOutType to OuterOutType.

• InOutType references a type that can be sent and received by the port.

• AddrType is the address type bound to the port type being defined.

• OuterAddrType is the address type into which the AddrType is translated.

• AddrOutFunction references a function which shall be used to translate the AddrType to theOuterAddrType.

• AddrInFunction references a function which shall be used to translate the OuterAddrType to theAddrType.

Port in translation mode

Translation behaviour

Test System Interface

Standard port
behaviour OutFunction is

implicitly invoked

Outer in message (of
type OuterInType)

SUT

InFunction is
implicitly invoked

Inner out message (of
type InnerOutType)

Inner in message (of
type InnerInType)

IN

IN

OUT

OUT

Outer out message
(of type

OuterOutType)

Inner queue

Outer queue

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 17

• VarInstance is a declaration of a port variable.

5.10.1 Translation capability in port type declaration

If a port type declaration includes translation capability, it shall always contain at least one map or connect clause.
These clauses define one or more port types for which translation mechanism is defined.

If a port type is referenced in the map clause, the following applies:

• All types from the in message list of the OuterPortType shall be referenced either as InnerInType,
OuterInType or InOutType in the port type with translation capability.

• All InOutTypes shall be present either in the in and out lists (at the same time) or in the inout message list of
the OuterPortType.

• All InnerOutTypes shall be referenced in the out message list of the OuterPortType or if such a reference does
not exist, the OuterPortType shall contain at least one reference to any of the OuterOutTypes associated with
the InnerOutType in its out message list.

NOTE 1: If these conditions are met, it is always safe to map TSI ports of OuterOutType to instances of the port
type with translation capability.

If a port type is referenced in the connect clause, the following applies:

• All types from the out message list of the OuterPortType shall be referenced either as InnerInType,
OuterInType or InOutType in the port type with translation capability.

• All InOutTypes shall be present either in the in and out lists (at the same time) or in the inout message list of
the OuterPortType.

• All InnerOutTypes shall be referenced in the in message list of the OuterPortType or if such a reference
doesn’t exist, the OuterPortType shall contain at least one reference to any of the OuterOutTypes associated
with the InnerOutType in its in message list.

NOTE 2: If these conditions are met, it is always safe to connect ports with translation capability to ports of
OuterOutType.

Port types with translation capability can contain variable declarations. These variables are created and initialized when
a port instance is created and have the same lifetime as the port instance itself. Every port instance has its own copy of
these variables. Port variables can be accessed only from InFunctions and OutFunctions. They are not visible outside of
the translation procedure. The variables can be used e.g. for buffering data between individual calls of InFunctions and
OutFunctions(e.g. in case of fragmented messages).

Restrictions

In addition to the general static rules of TTCN-3 restrictions specified in clause 6.2.9 of ES 201 873-1 [1], the following
restrictions apply:

a) If the OuterPortType is a port type with translation capability, it shall neither directly nor indirectly reference
PortTypeId in its map or connect clause (i.e. port types with translation capability cannot reference each
other).

b) All OuterAddrTypes shall be used as an address type at least in one of the OuterPortTypes.

c) All InFunction, OutFunction and AddrFunction identifiers shall be references to a translation function.

EXAMPLE:

 typeport TransportPort
 {
 inoutTransportMessage;
 }

 type port DataPort map to TransportPort
 {
 inDataMessage fromTransportMessage withtransportToData();

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 18

 outDataMessage toTransportMessage withdataToTransport();
 }

5.10.2 Mapping and connecting ports

Ports with translation capability can work in two different modes: normal and translation mode. In normal mode, the
port behaves as a standard message port according to the rules specified in ES 201 873-1 [1]. In translation mode, the
port uses rules described in the following clauses of the present document to convert messages and addresses when
communicating with linked ports.

The translation mode is activated in these cases:

• A map operation is applied to a component port and TSI port and the component port type contains a reference
to the TSI port type in its map clause.

• A port type of one operands of a connect operation contains a reference to the port type of the other operand in
its connect clause.

In all other cases, normal mode is activated.

EXAMPLE:

 typeport TransportPort {
 ...
 }

 type portDataPort map to TransportPort {
 ...
 }

 typecomponent SystemComponent{
 portDataPort dataPort;
 portTransportPort transportPort;
 }

 type component TestComponent{
 port DataPort dataPort;
 }

 testcase TC runson TestComponent system SystemComponent
 {
 if (PX_TRANSPORT_USED){
 // activate translation mode (TransportPort is implicitly referenced via transportPort
 // in the map operation)
 map(mtc:dataPort, system:transportPort);
 }
 else{
 // activate normal mode (TransportPort is not referenced in the map operation)
 map(mtc:dataPort, system:dataPort);
 }
 }

5.10.3 Translation functions

Translation functions are used by ports working in translation mode for converting incoming and outgoing messages
and addresses from one type to another.

Syntactical Structure

 function FunctionIdentifier"("inFormalValuePar ","out FormalValuePar ")"
 [port PortTypeId]
 StatementBlock

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 19

Semantic Description

Translation functions have always two parameters. The first one is always an in parameter and it is used to pass in a
value that shall be translated by the function. The second one is always an out parameter and it shall be used to pass
the result of the translation to the translation procedure (see clauses 5.10.5 Sending, 5.10.6 Receiving and
5.10.7 Address) in case of successful translation.

Unlike standard functions described in clause 16.1 of ES 201 873-1 [1], translation functions can contain a port
clause. If the port clause is present, all variables defined in the referenced port type become visible in the function body.

Restrictions

a) Translation functions shall never return a value.

NOTE: The setstate operation is used to inform the test system about the success of translation.

b) Translation functions shall not contain a runs on clause.

c) Translation function containing a port clause can be referenced only in the port type referenced in this port
clause.

d) The type of the in parameter of a translation function referenced as an InFunction in an in clause shall be the
OuterInType immediately preceding the InFunction reference and the type of its out parameter shall be the
InnerInType.

e) The type of the in parameter of a translation function referenced as an OutFunction in an out clause shall be
the InnerOutType andthe type of its out parameter shall be the OuterOutType immediately preceding the
OutFunction reference.

f) The type of the in parameter of a translation function referenced as an AddrOutFunction in a port address
declaration shall be the AddrType and the type of its out parameter shall be the OuterAddrType that
immediately precedes the AddrFunction reference.

g) The type of the in parameter of a translation function referenced as an AddrInFunction in a port address
declaration shall be the OuterAddrType that immediately precedes the AddrFunction reference and the type of
its out parameter shall be the AddrType.

h) Translation functions shall not contain any blocking operations.

i) Invoking a function with a port clause explicitly shall cause an error.

EXAMPLE:

 type port DataPort map to TransportPort
 {
 in DataMessage from TransportMessage with transportToData();
 out DataMessage to TransportMessage with dataToTransport();
 var octetstring vp_remainings
 }

 function transportToData(inTransportMessage p_msg, outDataMessage p_res) port DataPort {
 ...
 port.setstate("Translated");
 }

 function dataToTransport(inDataMessage p_msg, outTransportMessage p_res) port DataPort {
 ...
 port.setstate("Translated");
 }

5.10.4 Translation state

In addition to port state dimensions defined ES 201 873-1 [1], all ports working in translation mode have an additional
port state dimension called translation state. The translation state always contains the result of the last executed
translation function performed by the port.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 20

There are five possible translation states:

• unset is the default state before invoking a translation error. If a translation function ends with this state, an
error is generated;

• not translated means that the translation function has not been successful;

• fragmented indicates the translation function didn’t finish translation, because the input data didn’t contain a
complete message (i.e. more fragments are needed to finish translation);

• translated means that the translation function successfully performed translation and there are no
non-translated data left;

• partially translated is used when the translation function successfully performed translation, but there are
additional data which hasn’t been translated yet (i.e. the input data contained more than one message).

Translation state is set implicitly to unset whenever a translation function is called to translate a sent or received
message. The translation state can be changed by a setstate operation.

Syntactical Structure

 port.setstate"("SingleExpression { "," (FreeText | TemplateInstance) } ")"

Semantic Description

The setstate operation can be used only inside a function that is called during a translation procedure to translate a
sent or received a message. It changes the translation state of the related port.

The optional parameters allow to provide information that explain the reasons for setting a port translation state. This
information is composed to a string and might be used for logging purposes.

Restrictions

a) The value passed to the setstate operation in the first parameter shall be of the integer type and shall
have one of the following values:

1) 0 (meaning translated)

2) 1 (meaning not translated)

3) 2 (meaning fragmented)

4) 3 (meaning partially translated)

NOTE 1: Numeric parameter values 0, 1 and 2 are the same as results of the predefined decvalue function.

NOTE 2: Clause B.2.1 of the present document includes the type definition translation state and the constant
definitions TRANSLATED, NOT_TRANSLATED, FRAGMENTED, PARTIALLY_TRANSLATED.

b) Calling the setstate operation with an integer not listed in d) in the first parameter shall lead to an
error.

c) Calling the setstate operation outside of a translation function or in a translation function translating an
address shall cause a runtime error.

d) For FreeText and TemplateInstance, the same rules and restrictions apply as for the parameters of the log
statement. See clause 19.11 of ES 201 873-1 [1] for more details.

NOTE 3: The unset state cannot be set by the setstate operation, it is reserved for TE internal use only.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 21

5.10.5 Sending

When a message is to be sent over a port, working in translation mode, the following shall apply:

• If no OutFunction is specified for the given InnerOutType, it is simply sent over the port transparently.

• If an OutFunction is specified for the InnerOutType, the translation procedure first sets the translation state to
Unset. Then the OutFunction is automatically invoked to translate the InnerOutType to the OuterOutType.
When the function execution is finished, then depending on the current translation state one of the following
actions is taken:

- The unset state shall cause an error (i.e. if there is no setstate operation is invoked in the translation
function).

- If the state is not translated, the translation procedure tries to translate the message using the next
OutFunction specified for the given InnerOutType. OutFunction-s are tried according to their textual
order in the port type definition. If there is no such a function, an error is generated.

- If the state is fragmented, the translation procedure ends but no data is sent to the connected or mapped
port (the port will wait for the next fragment to complete translation). The to clause of the following
send operation shall be the same as the to clause of the current send operation or missing if the current
send operation doesn’t contain any to clause.

- If the state is translated, the translation procedure sends the translated message (retrieved from the out
parameter of the OutFunction) to the port it is mapped or connected to.

- If the state is partially translated, the sent message of theInnerOutType contains several messages (or
message fragments) of theOuterOutType. In this case, the translation procedure sends the translated
message to the mapped or connected port. The translation function is then called again, with the same in
parameter value, to enable sending of the remaining messages.

NOTE: In the fragmented case the non-translated part of InnerOutType has to be explicitly assigned to port
variables.

5.10.6 Receiving

Unlike a port working in standard mode, ports working in translation mode maintain two different queues. The outer
queue is used to keep not translated messages that are either enqueued or sent to the port working in translation mode.
The inner message queue contains already translated messages. Receiving operations access this inner queue. In case of
successful receiving (see clause 22.2.2 of ES 201 873-1 [1]), the successfully received message is removed from the
inner queue. Messages stored in the outer queue can be removed from it only by the translation procedure as described
below.

The TTCN-3 Executable (TE, see [4]) shall control the translation process and the normal decoding algorithm
(see note 1) in co-operation, as specified below. But yet, the normal decoding algorithm itself is not changed.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 22

Figure 2: Illustration of the interworking of decoding and translation procedure during receiving

NOTE 1: In this clause the "normal decoding algorithm" refers to the process that the TE invokes decoding the
received bitstring as specified in clauses 7.3.2 and C.5.4 of ES 201 873-6 [4].

The translation procedure for receiving operations is invoked by the snapshot mechanism. This procedure iterates
through all in clauses (InnerInType -s) defined in the port type definition. The in clauses are iterated according to their
textual order. During this iteration, the following shall apply:

• If no InFunction is specified for the given InnerInType, the translation procedure checks, if the top item of the
outer queue is of InnerInType (i.e. invokes the normal decoding algorithm, and the check is successful if the
decoding is successful). If the result of the check is positive, the message is moved from the outer queue into
the inner queue (i.e. the port will relay the message from the outer port to the inner port transparently) and
iteration ends.

• Otherwise (if the InFunction is present for the InnerInType), then the translation procedure checks if the top
item of the outer queue is of the OuterInType, by invoking the normal decoding algorithm, as described above.
If the check is successful, the translation procedure automatically executes the InFunction: first sets the
translation state to Unset and passes the message of the OuterInType to it, in the first parameter. When the
function execution is finished, the translation procedure checks the translation state of the port:

- The unset state shall cause an error (i.e. if there is no setstate operation is invoked in the translation
function).

- If the state is not translated, the iteration shall continue with the next InFunction for the same
OuterInType. If there is no more such InFunction, the translation procedure shall continue with the next
OuterInType. If there is no more OuterInType -s for the given InnerInType, the iteration process shall
continue with the next InnerInType. The order is determined by the textual order in the port type
definition.

- If the state is fragmented, the top item of the outer queue is removed and the iteration shall be restarted to
process the next message in the outer queue. The next message shall have the same address as the current
one (including a missing address). If there is no such message, the iteration shall continue with the next
InnerInType.

- If the state is translated, the top item of the outer queue is removed and the translated message (retrieved
from the out parameter of the InFunction) is inserted into the inner queue. This ends the whole iteration.

TE

Port in translation mode

System

adaptor

TRI message
p.receive(A:?)

Codec

decoded value

Outer queue Inner queue

InFunction
 (in B, out A)

decode (TRI message, decoding hypothesis: B)

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 23

- If the state is partially translated, the received message of the OuterInType contains several messages (or
message fragments) of the InnerInType. In this case, the translated message (retrieved from the out
parameter of the InFunction) is inserted into the inner queue. Unlike in the translated case, the top
message is not removed from the outer queue. Instead, it is kept in its decoded form in the queue to
enable translation of the remaining messages embedded in the outer message in subsequent receive calls.

NOTE 2: In the fragmented case the non-translated part of OuterInTypehas to be explicitly assigned to port
variables.

• If the iteration has processed all in clauses without any success (no transparently relayed message was
successfully moved from the outer to inner queue and all InFunction calls ended with the not translated state),
the iteration process returns.

• In case the iteration produces a successful result, the translation procedure might restart the iteration in order to
translate the remaining messages in the outer queue (if there are any), or it might for performance
consideration postpone this translation to the moment when the next snapshot is taken. For the same
performance reasons, the snapshot mechanism is not required to start the translation procedure in case the
inner queue already contains some messages.

5.10.7 Address

When an address type associated with a mapped port working in the translation mode contains a to or from clause and
one of the OuterAddrType-s is the same as the address type of the mapped TSI port, the translation procedure is applied
to all addresses used by sending or receiving calls of the port.

In case of sending a message, the translation procedure automatically invokes the AddrOutFunction passing the address
value defined in the to clause to it, in its first parameter. In case of receiving a message, the translation procedure
automatically invokes the AddrInFunction passing the received address value to it, in its first parameter. When the
function execution is over, the translation procedure retrieves the translated address from the out parameter of the
translation function and the control is returned to the calling sending or receiving procedure to finish the operation using
the translated address value.

NOTE: Unlike translation functions used for translating sent or received messages, the translation functions for
addresses do not use translation states.

EXAMPLE:

 typeportTransportPort
 {
 ...
 addressTransportAddress;
 }

 typeportDataPort mapto TransportPort
 {
 ...
 addressDataAddresstoTransportAddress withtoTransportAddress()
 from TransportAddress with fromTransportAddress;
 }

 function toTransportAddress(DataAddress p_addr, out TransportAddress p_translated) { ...}
 function fromTransportAddress(TransportAddress p_addr, out DataAddress p_translated) { ... }

5.10.8 Clear, start, stop and halt operation

The clear and start operations clean messages both from inner and outer message queues. In addition to that, all
port variables are reset in the following way: if a variable declaration contains an assignment, the assignment operation
will be performed as a part of the clear or start operation restoring the initial value of the variable. Otherwise (if the
variable declaration does not contain an assignment part), the value of the variable will be uninitialized after the clear or
start operation.

The halt operation affects the outer queue only. The translation procedure can still insert translated messages into the
inner queue of a halted port, provided that there are available messages in the outer queue.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 24

Since the stop port operation requires all communication operations to cease before the port is stopped, all unfinished
translation operations shall be completely performed before the working of the port is suspended.

6 Package Semantics
The complete semantics of the using the package in TTCN-3 is defined by copying the following clauses in the
following manner into of ES 201 873-4 [2]: TTCN-3 Operational Semantics.

• Clause 6.1 replaces clause 7 in ES 201 873-4 [2].

• Clause 6.2 replaces clause 7.1 in ES 201 873-4 [2].

• Clause 6.3 replaces clause 8.2 in ES 201 873-4 [2].

• Clause 6.4 replaces clause 8.2.1 in ES 201 873-4 [2].

• Clause 6.5 is a new clause. It would become clause 8.2.6a in ES 201 873-4 [2].

• Clause 6.6 replaces clause 8.2.7 in ES 201 873-4 [2].

• Clause 6.7 replaces clause 8.3.1 in ES 201 873-4 [2].

• Clause 6.8 replaces clause 8.3.1.1a in ES 201 873-4 [2].

• Clause 6.9 replaces clause 8.3.1a in ES 201 873-4 [2].

• Clause 6.10 replaces clause 8.3.1.1a in ES 201 873-4 [2].

• Clause 6.11 replaces clause 8.3.2 in ES 201 873-4 [2].

• Clause 6.12 replaces clause 8.3.2.1 in ES 201 873-4 [2].

• Clause 6.13 replaces clause 8.3.3.1 in ES 201 873-4 [2].

• Clause 6.14 replaces clause 8.3.3.2 in ES 201 873-4 [2].

• Clause 6.15 replaces clause 8.6 in ES 201 873-4 [2].

• Clause 6.16 replaces clause 8.6.1 in ES 201 873-4 [2].

• Clause 6.17 replaces clause 8.6.1.1 in ES 201 873-4 [2].

• Clause 6.18 replaces clause 8.6.1.2 in ES 201 873-4 [2].

• Clause 6.19 replaces clause 8.6.1.3 in ES 201 873-4 [2].

• Clause 6.20 replaces clause 8.6.1.4 in ES 201 873-4 [2].

• Clause 6.21 replaces clause 8.6.2 in ES 201 873-4 [2].

• Clause 6.22 replaces clause 9.9 in ES 201 873-4 [2].

• Clause 6.23 is a new clause. It would become clause 9.9a in ES 201 873-4 [2].

• Clause 6.24 replaces clause 9.10 in ES 201 873-4 [2].

• Clause 6.25 replaces clause 9.12 in ES 201 873-4 [2].

• Clause 6.26 replaces clause 9.14.2 in ES 201 873-4 [2].

• Clause 6.27 replaces clause 9.14.3 in ES 201 873-4 [2].

• Clause 6.28 replaces clause 9.14.4 in ES 201 873-4 [2].

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 25

• Clause 6.29 replaces clause 9.14.5 in ES 201 873-4 [2].

• Clause 6.30 replaces clause 9.17 in ES 201 873-4 [2].

• Clause 6.31 is a new clause. It would become clause 9.17.0 in ES 201 873-4 [2].

• Clause 6.32 is a new clause. It would become clause 9.17.3 in ES 201 873-4 [2].

• Clause 6.33 is a new clause. It would become clause 9.17.4 in ES 201 873-4 [2].

• Clause 6.34 is a new clause. It would become clause 9.17.5 in ES 201 873-4 [2].

• Clause 6.35 replaces clause 9.22 in ES 201 873-4 [2].

• Clause 6.36 replaces clause 9.28a in ES 201 873-4 [2].

• Clause 6.37 replaces clause 9.29a in ES 201 873-4 [2].

• Clause 6.38 replaces clause 9.29a.1 in ES 201 873-4 [2].

• Clause 6.39 replaces clause 9.29a.3 in ES 201 873-4 [2].

• Clause 6.40 replaces clause 9.29b in ES 201 873-4 [2].

• Clause 6.41 is a new clause. It would become clause 9.29c in ES 201 873-4 [2].

• Clause 6.42 replaces clause 9.32 in ES 201 873-4 [2].

• Clause 6.43 replaces clause 9.47 in ES 201 873-4 [2].

• Clause 6.44 replaces clause 9.49 in ES 201 873-4 [2].

• Clause 6.45 replaces clause 9.49.1 in ES 201 873-4 [2].

• Clause 6.46 is a new clause. It would become clause 9.49.4 in ES 201 873-4 [2].

• Clause 6.47 is a new clause. It would become clause 9.49.5 in ES 201 873-4 [2].

• Clause 6.48 replaces clause 9.51 in ES 201 873-4 [2].

• Clause 6.49 replaces clause 9.56.1 in ES 201 873-4 [2].

• Clause 6.50 replaces clause 9.56.2 in ES 201 873-4 [2].

• Clause 6.51 replaces clause 9.56.3 in ES 201 873-4 [2].

6.1 Replacement of short forms
Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

• lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;

• stand-alone receiving operations;

• stand-alone altsteps calls;

• trigger operations;

• missing return and stop statements at the end of function, configuration function and test case definitions;

• missing stop execution statements;

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 26

• interleave statements;

• select-case statements;

• break and continue statements;

• disconnect and unmap operations without parameters; and

• default values of missing actual parameters.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters,
global constants, i.e. constants that are defined in the module definitions part, and pre-processing macros. All references
to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it
is assumed that the value of module parameters, global constants and pre-processing macros can be determined before
the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constants in the operational semantics will be different
from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,
functions and module control like variables. The wrong usage of local constants or in, out and inout
parameters has to be checked statically.

6.2 Order of replacement steps
The textual replacements of short forms, global constants and module parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete values;

3) replacement of all select-case statements by equivalent nested if-else statements;

4) embedding stand-alone receiving operations into alt statements;

5) embedding stand-alone altstep calls into alt statements;

6) expansion of interleave statements;

7) replacement of all trigger operations by equivalent receive operations and repeat statements;

8) adding return at the end of function and configuration function definitions without return statement,
adding self.stop operations at the end of test case definitions without a stop statement;

9) adding stop at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parameters to disconnect and unmap operations without parameters; and

13) adding default values of parameters.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 27

6.3 Flow graph representation of TTCN-3 behaviour
The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:

a) module control;

b) test case definitions;

c) function definitions;

d) altstep definitions;

e) component type definitions;

f) configuration functions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in a function-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type. Configuration functions specify the creation of static test configurations.

6.4 Flow graph construction procedure
The flow graphs presented in the figures 18 to 22 of ES 201 873-4 [2] and the flow graph segments presented in
clause 8 [2] are only templates. They include placeholders for information that has to be provided in order to produce a
concrete flow graph or flow graph segment. The placeholders are marked with "<" and ">" parenthesis.

The construction of a flow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, altstep, function, component type and configuration function
definition a concrete flow graph (with reference nodes) is constructed.

3) In a stepwise procedure all reference nodes in the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in a flow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of a flow graph is a result of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also has to be taken into consideration. However, the goal of the present document is to provide a correct
and complete semantics, not an optimal flow graph representation.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 28

6.5 Flow graph representation of configuration functions
Schematically, the syntactical structure of a TTCN-3 test case definition is:

 configuration <identifier> (<parameter>) <testcase-interface> <statement-block>

The <testcase-interface> above refers to the (mandatory) runs on and the (optional) system clauses in the
configuration function definition. The flow graph description of a configuration function describes the behaviour of the
MTC when establishing a new static configuration. Variables, timers and constants defined and declared in the
component type definition are made visible to the MTC behaviour by the runs on clause in the
<testcase-interface>. The system clause is not relevant for the MTC and is therefore not represented in the
flow graph representation of a configuration function.

The scheme of the flow graph representation of a configuration function is shown in figure 22a. The flow graph name
<identifier> refers to the name of the represented configuration function. The nodes of the flow graph have
associated comments describing the meaning of the different nodes. The reference node <return-with-value>
covers the case where no explicit return operation for the MTC is specified, i.e. the operational semantics assumes
that a return operation is implicitly added. After a successful termination, a configuration function always returns a
handle to the newly created static test configuration.

flow graph <identifier>

<parameter-handling>

// - Actual parameter values are
// assumed to be in the value stack
//
// - Formal parameters are handled
// like local variables and local
// timers

<statement-block>
// The body of the test case specifies
// the configuration statements to be
// executed by the MTC.

*(1)

<return-with-value>

// For the case that an explicit
// return statement is missing. The
// configuration function returns a
// handle to the newly created
// configuration.

<init-scope-with-runs-on>

// Considers scope information provided
// by the runs-on clause in the
// interface of the configuration
// function.

Figure 22a of ES 201 873-4 [2]: Flow graph representation of configuration functions

6.6 Retrieval of start nodes of flow graphs
For the retrieval of the start node reference of a flow graph the following function is required:

 The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (flow-graph-identifier)

The function returns a reference to the start node of a flow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names, to altstep names
to component type names and configuration function names.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 29

6.7 Module state
As shown in figure 23 a module state is structured into a CONTROL state and an ALL-CONFIGURATIONS state. The
CONTROL state describes the state of the module control. Module control is handled like a test component,
i.e. CONTROL is an entity state as defined in ES 201 873-4 [2], clause 8.3.2. ALL-CONFIGURATIONS is a list of
configuration states representing test configurations that are instantiated during the execution of module control.

CONTROL ALL-CONFIGURATIONS
 CONFIG1 … CONFIGn

Figure 23 of ES 201 873-4 [2]: Structure of a module state

6.8 Accessing the module state
The CONTROL state and the ALL-CONFIGURATIONS state of the module state can be addressed by using their names,
i.e. CONTROL and ALL-CONFIGURATIONS. Configurations can be accessed by using the dot notation,
e.g. ALL-CONFIGURATIONS.CONFIG1, or by using the list operations defined in clause 8.3.1.1a of ES 201 873-4 [2].

6.9 Configuration state
As shown in figure 23a the configuration state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES, TC-
VERDICT, DONE and KILLED. ALL-ENTITY-STATES represents the states of all instantiated test components during
the execution of a test case. The first element of ALL-ENTITY-STATES is the reference to the MTC of the configuration.
ALL-PORT-STATES describes the states of the different ports. TC-VERDICT stores the actual global test verdict of a
test case, DONE is a list of all currently stopped test components during test case execution and KILLED is a list of all
terminated test components during test case execution.

NOTE 1: The number of updates of TC-VERDICT is identical to the number of test components that have
terminated.

NOTE 2: An alive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it is killed.

NOTE 3: Port states may be considered to be part of the entity states. By connect and map ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES TC-VERDICT DONE KILLED
 MTC ES1 … ESn P1 … Pn

Figure 23a of ES 201 873-4 [2]: Structure of a configuration state

6.10 Accessing the configuration state
The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED can be accessed like
variables by their name and the dot notation, e.g. CONFIG.TC-VERDICT for accessing the test verdict of configuration
CONFIG.

For the creation of a new configuration state the function NEW-CONFIGURATION is assumed to be available:

• NEW-CONFIGURATION();

creates a new configuration state and returns its reference. The components of the new configuration state have the
following values:

• ALL-ENTITY-STATES is an empty list;

• ALL-PORT-STATES is an empty list;

• TC-VERDICT is set to none;

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 30

• DONE is an empty list;

• KILLED is an empty list.

For the handling of lists, e.g. ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

• myList.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e. add can be used to add single elements or lists to lists;

• myList.append(item) appends item as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e. append can be used to append single elements or lists to lists;

• myList.delete(item) deletes item from the list myList;

• myList.member(item) returns true if item is an element of the list myList, otherwise false;

• myList.first() returns the first element of myList;

• myList.last() returns the last element of myList;

• myList.length() returns the length of myList;

• myList.next(item) returns the element that follows item in myList, or NULL if item is the last element in myList;

• myList.random(<condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

• myList.change(<operation>) allows to apply <operation> on all elements of myList.

NOTE: The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywords all and any in TTCN-3 operations.

Additionally, a general copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

• copy(item) returns a copy of item.

6.11 Entity states
Entity states are used to describe the actual states of module control and test components. In the module state,
CONTROL is an entity state and in the configuration state, the test component states are handled in the list
ALL-ENTITY-STATES. The structure of an entity state is shown in figure 24.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 31

STATUS

CONTROL-STACK

DEFAULT-LIST

DEFAULT-POINTER

VALUE-STACK

E-VERDICT

TIMER-GUARD

DATA-STATE

TIMER-STATE

PORT-REF

SNAP-ALIVE

SNAP-DONE

SNAP-KILLED

KEEP-ALIVE

STATIC

Figure 24 of ES 201 873-4 [2]: Structure of an entity state

The STATUS describes whether the module control or a test component is ACTIVE, BREAK, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of a test case. Test components are blocked during the
creation of other test components, i.e. when they call a create operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the evaluation phase of a snapshot. The status REPEAT
denotes that the component is active and in an alt statement that should be re-evaluated due to a repeat statement.
The BREAK status is set when a break statement is executed for leaving altstep. In this case, the alt statement in
which the altstep was directly or indirectly (i.e. by means of the default mechanism) called is immediately left.

The CONTROL-STACK is a stack of flow graph node references. The top element in CONTROL-STACK is the flow
graph node that has to be interpreted next. The stack is required to model function calls in an adequate manner.

The DEFAULT-LIST is a list of activated defaults, i.e. it is a list of pointers that refer to the start nodes of activated
defaults. The list is in the reverse order of activation, i.e. the default that has been activated first is the last element in
the list.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that has to be
evaluated if the actual default terminates unsuccessfully.

The VALUE-STACK is a stack of values of all possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
the mtc operation will be pushed onto the VALUE-STACK. In addition to the values of all data types known in a
module we define the special value MARK to be part of the stack alphabet. When leaving a scope unit, the MARK is used
to clean VALUE-STACK.

The E-VERDICT stores the actual local verdict of a test component. The E-VERDICT is ignored if an entity state
represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as a timer binding (see ES 201 873-4 [2], clause 8.3.2.4
and figure 28).

The DATA-STATE is considered to be a list of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting a list
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
ES 201 873-4 [2], clause 8.3.2.2.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 32

The TIMER-STATE is considered to be a list of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of timer bindings describes the known timers
and their status in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting a list of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in
ES 201 873-4 [2], clause 8.3.2.4.

The PORT-REF is considered to be a list of lists of port bindings. The list of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parameters in functions and
altsteps. Each list in the list of lists of port bindings identifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting a list of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in ES 201 873-4 [2], clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
ALL-ENTITY-STATES list of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes all entities
(test components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE is a list of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE is a list of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is set to true if the
entity can be restarted. Otherwise it is set to false.

The STATIC field indicates whether a test component is part of a static test configuration or not. It is set to true if the
test component is created during the execution of configuration function. During the execution of a configuration
function the STATIC field of the entity representing test control is also set to true. In all other cases, the STATIC field is
set to false.

6.12 Accessing entity states
The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variables that are globally visible, i.e. the values of STATUS, DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity.STATUS, myEntity.DEFAULT-POINTER and myEntity.E-VERDICT,
where myEntity refers to an entity state.

NOTE: In the following, we assume that we can use the "dot" notation by using references and unique identifiers.
For example, in myEntity.STATUS, myEntityState may be pointer to an entity state or be the value of the
<identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
"dot" notation myEntity.CONTROL-STACK, myEntity.DEFAULT-LIST and myEntity.VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

• myStack.push(item) pushes item onto myStack;

• myStack.pop() pops the top item from myStack;

• myStack.top() returns the top element of myStack or NULL if myStack is empty;

• myStack.clear() clears myStack, i.e. pops all items from myStack;

• myStack.clear-until(item) pops items from myStack until item is found or myStack is empty.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 33

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operations is defined in ES 201 873-4 [2], clause 8.3.1.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:

• NEW-ENTITY (flow-graph-node-reference, keep-alive, static);

creates a new entity state and returns its reference. The components of the new entity state have the following values:

• STATUS is set to ACTIVE;

• flow-graph-node-reference is the only (top) element in CONTROL-STACK;

• DEFAULT-LIST is an empty list;

• DEFAULT-POINTER has the value NULL;

• VALUE-STACK is an empty stack;

• E-VERDICT is set to none;

• TIMER-GUARD is a new timer binding (see clause 8.3.2.4) with name GUARD, status IDLE and no default
duration;

• DATA-STATE is an empty list;

• TIMER-STATE is an empty list;

• PORT-REF is an empty list;

• SNAP-ALIVE is an empty list;

• SNAP-DONE is an empty list;

• SNAP-KILLED is an empty list;

• KEEP-ALIVE is set to the value of the keep-alive parameter;

• STATIC is set to the value of the static parameter.

During the traversal of a flow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

myEntity.NEXT-CONTROL(myBool) {
 successorNode := myEntity.CONTROL-STACK.NEXT(myBool).top();
 myEntity.CONTROL-STACK.pop();
 myEntity.CONTROL-STACK.push(successorNode);
}

6.13 Handling of connections among ports
A connection between two test components is made by connecting two of their ports by means of a connect
operation. Thus, a component can afterwards use its local port name to address the remote queue. As shown in
figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. STATIC is a Boolean which is true if connection is a static
connection of a static test configuration. TTCN-3 supports one-to-many connections of ports and therefore all
connections of a port are organized in a list.

NOTE 1: Connections made by map operations are also handled in the list of connections. The map operation:
map(PTC1:MyPort, system.PCO1) leads to a new (non static) connection (system, PCO1, false) in
the port state of MyPort owned by PTC1. The remote side to which PCO1 is connected to, resides inside
the SUT. Its behaviour is outside the scope of this semantics.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 34

NOTE 2: The operational semantics handles the keyword system as a symbolic address. A connection
(system, myPort, false) in the list of connections of a port it indicates that the port is mapped onto the
port myPort in the test system interface. The false indicates that the mapping is not static.

REMOTE-ENTITY REMOTE-PORT-NAME STATIC

Figure 30 of ES 201 873-4 [2]: Structure of a connection

6.14 Handling of port states
The queue of values in a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1: The queue operations enqueue, dequeue, first and clear have the following meaning:

� myQueue.enqueue(item) puts item as last item into myQueue;

� myQueue.dequeue() deletes the first item from myQueue;

� myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;

� myQueue.clear() removes all elements from myQueue.

The handling of port states is supported by the following functions:

a) The NEW-PORT function: NEW-PORT (myEntity, myPort)

 creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and
COMP-PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST
and the VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port
is empty).

b) The GET-PORT function: GET-PORT (myEntity, myPort)

 returns a reference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

c) The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

 returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SYSTEM is returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exists only a one-to-one connection for this port.

d) The STATUS of a port is handled like a variable. It can be addressed by qualifying STATUS with a GET-PORT
call:

 GET-PORT(myEntity, myPort).STATUS

e) The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort, myStatic)

 adds a connection (myRemoteEntity, myRemotePort, myStatic) to the list of connections of the port identified
by OWNER myEntity and COMP-PORT-NAME myPort.

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

 removes a connection (myRemoteEntity, myRemotePort, ?) with any STATIC value from the list of connections
of the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 35

g) The GET-CON function: GET-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

 retrieves a connection (myRemoteEntity, myRemotePort, ?) with any STATIC value from the list of connections
of the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

h) The SNAP-PORTS function: SNAP-PORTS (myEntity)

 updates SNAP-VALUE for all ports owned by myEntity, i.e.

 SNAP-PORTS (myEntity) {
 for all ports p /* in the module state */ {
 if (p.OWNER == myEntity) {
 if (p.STATUS == STOPPED) {
 p.SNAP-VALUE := NULL;
 }
 else {
 if (p.STATUS == HALTED && p.first() == HALT-MARKER) {
 // Port is halted and halt marker is reached
 p.SNAP-VALUE := NULL;
 p.dequeue(); // Removal of halt marker
 p.STATUS := STOPPED;
 }
 else {
 p.SNAP-VALUE := p.first()
 }
 }
 }
 }
 }

NOTE 3: The SNAP-PORTS function handles the HALT-MARKER that may be put by a halt port operation into
the port queue. If such a marker is found, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

6.15 The evaluation procedure for a TTCN-3 module

6.16 Evaluation phases
The evaluation procedure for a TTCN-3 module is structured into:

(1) initialization phase;

(2) update phase;

(3) selection phase; and

(4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

6.17 Phase I: Initialization
The initialization phase includes the following actions:

a) Declaration and initialization of global variables:

- INIT-FLOW-GRAPHS(); // Initialization of flow graph handling. INIT-FLOW-GRAPHS is
 // explained in ES 201 873-4 [2], clause 8.6.2.

- Entity := NULL; // Entity will be used to refer to an entity state. An entity state either
 // represents module control or a test component.

- MTC := NULL; // MTC will be used to refer to the entity state of the main test component of
 // a test case during test case execution.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 36

NOTE 1: The global variable CONTROL form the control state of a module state during the interpretation of a
TTCN-3 module (see ES 201 873-4 [2], clause 8.3.1).

- CONTROL := NULL; // CONTROL will be used to refer to the entity state of module control a

NOTE 2: The global variable CONFIGURATION is used to store the reference to a configuration state in the
Module state, i.e. a member of ALL-CONFIGURATIONS (see ES 201 873-4 [2], clause 8.3.1).

- CONFIGURATION := NULL;

NOTE 3: The following global variables ALL-ENTITY-STATES, ALL-PORT-STATES, TC-VERDICT, DONE, and
KILLED are used to store references to a test configuration state of a module state during the
interpretation of a TTCN-3 module (see ES 201 873-4 [2], clause 8.3.1).

- ALL-ENTITY-STATES := NULL;

- ALL-PORT-STATES := NULL;

- TC-VERDICT := none;

- DONE := NULL;

- KILLED := NULL.

b) Creation and initialization of module control:

- CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<moduleId>), false, false);
 // A new entity state is created and initialized with the start node of
 // the flow graph representing the behaviour of the control of the
 // module with the name <moduleId>. The Boolean parameters
 // indicate that module control cannot be restarted after it is
 // stopped and that it is not a static component in a test configuration.

- CONTROL.INIT-VAR-SCOPE(); // New variable scope.

- CONTROL.VALUE-STACK.push(MARK); // A mark is pushed onto the value stack.

6.18 Phase II: Update
The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Time progress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT is set to 0.0 and STATUS is set to TIMEOUT.

NOTE 1: The update of timers includes the update of all running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

6.19 Phase III: Selection
The selection phase consists of the following two actions:

a) Selection: Select a non-blocked entity, i.e. an entity that has not the STATUS value BLOCKED. The entity may
be CONTROL, i.e. module control, or a test component in a test configuration that is executing a test case.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 37

b) Storage:

- Store the identifier of the selected entity in the global variable Entity.

- If Entiy is CONTROL, set CONFIGURATION to NULL.

- If Entiy is not CONTROL, store the identifier of the configuration of which Entity is part of in the global
variable CONFIGURATION and do the following assignments:

� ALL-ENTITY-STATES := CONFIGURATION.ALL-ENTITY-STATES;

� MTC := CONFIGURATION.ALL-ENTITY-STATES.first();

� ALL-PORT-STATES := CONFIGURATION.ALL-PORT-STATES;

� TC-VERDICT := CONFIGURATION.TC-VERDICT;

� DONE := CONFIGURATION. DONE;

� KILLED := CONFIGURATION.KILLED;

6.20 Phase IV: Execution
The execution phase consists of the following three actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity.

b) Update of the module state: This includes an update of the configuration state of the executed Entity.

c) Check termination criterion: Stop execution if module control has terminated, i.e. CONTROL is NULL.
Otherwise continue with Phase II.

6.21 Global functions
The evaluation procedure uses the global function INIT-FLOW-GRAPHS:

a) INIT-FLOW-GRAPHS is assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, ***DYNAMIC-ERROR***:

b) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

c) RETURN returns the control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the "execution step of the selected entity" of the execution phase.

d) ***DYNAMIC-ERROR*** refers to the occurrence of a dynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If a dynamic error occurs all following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. This is modelled by the flow graph segment <dynamic-error> (see
ES 201 873-4 [2], clause 9.18.5).

NOTE: The occurrence of a dynamic error is related to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

e) APPLY-OPERATOR used as generic function for describing the evaluation of operators (e.g. +, *, / or -) in
expressions (see ES 201 873-4 [2], clause 9.18.4).

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 38

6.22 Clear port operation
The syntactical structure of the clear port operation is:

 <portId>.clear

The flow graph segment <clear-port-op> in figure 59 defines the execution of the clear port operation.

clear-port-op
(portId)

segment <clear-port-op>
let { // Begin of local scope
 var portRef := NULL
 var portState := NULL;

 if (Entity.STATIC == true) {
 DYNAMIC-ERROR // port operation on a
 // static test component
 }
 elseif (portId == “all port”) {
 portState := ALL-PORT-STATES.first();
 while (portState != NULL) {
 if (portState.OWNER == Entity) {
 portState.VALUE-QUEUE.clear();
 }
 portState :=
 ALL-PORT-STATES.next(portState);
 }
 }
 else {
 portRef := Entity.portId.COMP-PORT-NAME;
 GET-PORT(Entity, portRef).clear();
} // End of socpe

Entity.NEXT-CONTROL(true);
RETURN;

Figure 59 of ES 201 873-4 [2]: Flow graph segment <clear-port-op>

6.23 Configuration function call
The invocation of a configuration function starts with the creation of the MTC. In a static test configuration the MTC is
modelled as a static alive component. Then the MTC is started with the behaviour defined in the configuration function.
Afterwards, the module control waits until the configuration function terminates. The creation and the start of the MTC
can be described by using create and start statements:

 var mtcType MyMTC := mtcType.create alive static;
 MyMTC.start(ConfigurationFunctionName(P1…Pn));

The flow graph segment <config-func-call> in figure 59a defines the execution of a configuration function by
using the flow graph segments of the operations create and the start.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 39

segment <config-func-call>

init-test-config-state

MTC := Entity.VALUE-STACK.top();
TC-VERDICT := none;
DONE := NULL;
KILLED := NULL;

// Creation and initalization of a new
// configuration state

CONFIGURATION := NEW-CONFIGURATION();
CONFIGURATION.MTC := MTC;
CONFIGURATION.TC-VERDICT := TC-VERDICT;
CONFIGURATION.DONE := DONE;
CONFIGURATION.KILLED := KILLED;
ALL-CONFIGURATIONS.append(CONFIGURATION)

// CONFIGURATION is the result of the
// configuration function
CONTROL.VALUE-STACK.push(CONFIGURATION);

// Indicating the execution of a
// configuration function
CONTROL.STATIC := true;

Entity.NEXT-CONTROL(true);
RETURN;

<create-op>

// Creation of the MTC

<start-component-op> // Start of MTC

wait-for-termination

Entity.STATUS := BLOCKED;
// MTC will set status to ACTIVE
// before it terminates
Entity.NEXT-CONTROL(true);
RETURN;

Figure 59a of ES 201 873-4 [2]: Flow graph segment <config-func-call>

6.24 Connect operation
The syntactical structure of the connect operation is:

 connect(<component-expression1>:<portId1>, <component-expression2>:<portId2>) [static]

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component-expression1> and <component-expression2>. The references may be stored in variables or

is returned by a function, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

A present static clause indicates that the new connection is static, i.e. established during the execution of a
configuration function. Presence and absence of the static clause is handled as a Boolean flag in the operational
semantics (see static parameter of the basic flow graph node connect-op in figure 60).

The execution of the connect operation is defined by the flow graph segment <connect-op> shown in figure 60.
In the flow graph description the first expression to be evaluated refers to <component-expression1> and the

second expression to <component-expression2>, i.e. the <component-expression2> is on top of the

value stack when the connect-op node is executed.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 40

<expression>

segment <connect-op>

<expression>

connect-op
(portId1, portId2, static)

let { // begin of a local scope
 var portOne, portTwo; // voriables for ports
 var comp2 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 var comp1 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();

 if (static == true && CONTROL.STATIC != true) {
 DYNAMIC-ERROR
 // Static connections have to be established
 // within a configuration function
 }
 elseif (static != true && CONTROL.STATIC == true) {
 DYNAMIC-ERROR
 // Non-static connections cannot be established
 // within a configuration function
 }
 else {
 portOne := comp1.portId1.COMP-PORT-NAME;
 portTwo := comp2.portId2.COMP-PORT-NAME;
 ADD-CON(comp1, portOne, comp2, portTwo, static);
 ADD-CON(comp2, portTwo, comp1, portOne, static);
 }
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 60 of ES 201 873-4 [2]: Flow graph segment <connect-op>

6.25 Create operation
The syntactical structure of the create operation is:

 <componentTypeId>.create [alive] [static]

A present alive clause indicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (see alive parameter of the basic
flow graph node create-op in figure 62).

A present static clause indicates that the new component is static, i.e. part of a static test configuration and created
during the execution of a configuration function. Presence and absence of the static clause is handled as a Boolean
flag in the operational semantics (see static parameter of the basic flow graph node create-op in figure 62).

The flow graph segment <create-op> in figure 62 defines the execution of the create operation.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 41

segment <create-op>

let { // Local scope
 var newEntity; // for storing the newly created entity

 // creation of the entity state for the new component
 if (static == true) { // creation of a static component
 if (CONTROL.STATIC != true) {
 DYNAMIC-ERROR // creation of a static component is only
 // allowed in a configuration function
 }
 else {
 newEntity := NEW-ENTITY(componentTypeID, true, true);
 // the alive flag is set because static
 // components behave like alive components
 }
 else {
 newEntity := NEW-ENTITY(componentTypeID, static, false);
 }

 // The reference to the new entity is pushed onto the value stack of the
 // ‘father' entity.

 Entity.VALUE-STACK.push(newEntity);

 // The identifier of the 'father' entity is pushed onto the value stack of the
 // new entity. The identifier is needed to restore the status of the 'father'
 // entity after completion of the entity creation. The 'father' entity is
 // blocked until all ports, variables, timers specified in the component type
 // definition are instantiated. This instantiation is done by executing the
 // flow graph that represents 'componentTypeID' by the new entity.

 newEntity.VALUE-STACK.push(Entity);

 // The new entity is put into the module state

 ALL-ENTITY-STATES.append(newEntity);

} // End local scope

// The actual status of the 'father' entity is saved and the 'father' entity goes
// into a blocking state. Note the restoration of the status of the father entity
// is described in flow graph segment <finalize-component-init>.

Entity.VALUE-STACK.push(Entity.STATUS); // Saving the actual status
Entity.STATUS := BLOCKED;

Entity.NEXT-CONTROL(true); // Return of control
RETURN;

create-op
(componentTypeId, alive,

static)

Figure 62 of ES 201 873-4 [2]: Flow graph segment <create-op>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 42

6.26 Flow graph segment <disconnect-all>
The flow graph segment <disconnect-all> defines the disconnection of all components at all connected ports.
Static connections will not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

disconnect-all

segment <disconnect-all>

let { // local scope

 var port := ALL-PORT-STATES.first();
 var connection;

 while (port != NULL) {
 connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.STATIC == true) { // static connection or mapping
 connection := port.CONNECTIONS.next(connection);
 }
 else {
 if (connection.REMOTE-ENTITY == system) {
 connection := NULL; // mapped port
 }
 else {
 port.CONNECTIONS.delete(connection);
 connection := port.CONNECTIONS.first();
 }
 }
 }
 port := ALL-PORT-STATES.next(port);
 }
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 64b of ES 201 873-4 [2]: Flow graph segment <disconnect-all>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 43

6.27 Flow graph segment <disconnect-comp>
The flow graph segment <disconnect-comp> defines the disconnection of all ports of a specified component.
Static connections will not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

disconnect-comp

segment <disconnect-comp>

let { // local scope
 var comp := Entity.VALUE-STACK.top();
 var connection;
 var port := ALL-PORT-STATES.first();

 while (port != NULL) {
 connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.STATIC == true) { // static connection or mapping
 connection := port.CONNECTIONS.next(connection);
 }
 else {
 if (connection.REMOTE-ENTITY == system) {
 connection := NULL; // mapped port
 }
 else if (connection.REMOTE-ENTITY == comp
 or (port.OWNER == comp) {
 port.CONNECTIONS.delete(connection);
 connection := port.CONNECTIONS.first();
 }
 else {
 connection := port.CONNECTIONS.next(connection);
 }
 }
 }
 port := ALL-PORT-STATES.next(port);
 }
 Entity.VALUE-STACK.pop(); // clear value stack
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 64c of ES 201 873-4 [2]: Flow graph segment <disconnect-comp>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 44

6.28 Flow graph segment <disconnect-port>
The flow graph segment <disconnect-port> defines the disconnection of a specified port. Static connections will
not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

disconnect-port

segment <disconnect-port>

let { // local scope

 var portId, rPortId;
 var comp, rComp;
 var port;

 portId := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 comp := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 port := GET-PORT(comp, portId);

 var connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.REMOTE-ENTITY == SYSTEM) {
 DYNAMIC-ERROR // port is not a connected port
 }
 elseif (connection.STATIC == true) { // static connection
 connection := port.CONNECTIONS.next(connection);
 }
 else {
 rComp := connection.REMOTE-ENTITY;
 rPortId := connection.REMOTE-PORT-NAME;
 DEL-CON(comp, portId, rComp, rPortId);
 DEL-CON(rComp, rPortId, comp, portId);
 connection := port.CONNECTIONS.first();
 }
 }

} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 64d of ES 201 873-4 [2]: Flow graph segment <disconnect-port>

6.29 Flow graph segment <disconnect-two-par-pairs>
The flow graph segment <disconnect-two-par-pairs> shown in figure 64e defines the execution of the disconnect
operation with two parameter pairs which disconnects specific connections. In the flow graph segment the first
expression to be evaluated refers to <component-expression1> (see syntactical structure of the

disconnect operation in ES 201 873-4 [2], clause 9.14) and the second expression to <component-
expression2>, i.e. the <component-expression2> is on top of the value stack when the disconnect-two

node is executed. Applying the disconnect operation to a static connection leads to a dynamic error.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 45

<expression>

segment
<disconnect-two-par-pairs>

<expression>

disconnect-two
(portId1,portId2)

let { // begin of a local scope
 var portOne, portTwo; // voriables for ports
 var connection; // variable for a connection
 var comp2 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 var comp1 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 if (comp1 == SYSTEM) {
 DYNAMIC-ERROR // mapped port
 }
 else {
 portOne := comp1.portId1.COMP-PORT-NAME;
 }
 if (comp2 == SYSTEM) {
 DYNAMIC-ERROR // mapped port
 }
 else {
 portTwo := comp2.portId2.COMP-PORT-NAME;
 }

 connection := GET-CON(comp1, portOne, comp2, portTwo);
 if (connection.STATIC := true) {
 DYNAMIC-ERROR // static connection
 }
 else {
 DEL-CON(comp1, portOne, comp2, portTwo);
 DEL-CON(comp2, portTwo, comp1, portOne);
 }

} // end of local scope

Figure 64e of ES 201 873-4 [2]: Flow graph segment <disconnect-two-par-pairs>

6.30 Execute statement
The syntactical structure of the execute statement is:

execute(<testCaseId>([<act-par1>, … , <act-parn>)]) [, <float-expression>] [, <config-expression>])

The execute statement describes the execution of a test case <testCaseId> with the (optional) actual parameters
<act-par1>, … , <act-parn>. Optionally the execute statement may be guarded by a duration provided in form

of an expression that evaluates to a float. If within the specified duration the test case does not return a verdict, a
timeout exception occurs, the test configuration is destroyed and an error verdict is returned.

If a test case is executed on an existing static test configuration, the configuration shall be provided in form on an
expression that evaluates to a configuration reference.

If no timeout exception occurs, the MTC is created or started, the control instance (representing the control part of the
TTCN-3 module) is blocked until the test case terminates, and for the further test case execution the flow of control is
given to the MTC. The flow of control is given back to the control instance when the MTC stops its execution.

The flow graph segment <execute-stmt> in figure 67 defines the execution of an execute statement. The
operational semantics distinguishes the cases where a test case is executed on an existing static test configuration and
where not.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 46

<execute-without-config>
OR

<execute-on-config>

segment <execute-stmt>

// A test case is or is not executed
// on a static test configuration

Figure 67 of ES 201 873-4 [2]: Flow graph segment <execute-stmt>

6.31 Flow graph segment <execute-without-config>
The flow graph segment <execute-without-config> in figure 67a distinguishes between the case where the
execution is guarded by a timeout and the case where the statement is not guarded.

<execute-without-timeout>
OR

<execute-timeout>

segment <execute-without-config>

// An execute statement may or may
// not be guarded by a timeout

Figure 67a of ES 201 873-4 [2]: Flow graph segment <execute-stmt>

6.32 Flow graph segment <execute-on-config>
The flow graph segment <execute-on-config> in figure 69a distinguishes between the case where the execution
of a test case on a configuration is guarded by a timeout and the case where the execution is not guarded.

<execute-on-config-without-timeout>
OR

<execute-on-config-timeout>

segment <execute-on-config>

// An execute statement may or may
// not be guarded by a timeout

Figure 69a of ES 201 873-4 [2]: Flow graph segment <execute-on-config>

6.33 Flow graph segment <execute-on-config-without-timeout>
Executing a test case on a static configuration means to start the behaviour of the test case on the MTC of the test
configuration, i.e. MyMTC.start(TestCaseName(P1…Pn)).

• In addition the following parts of the configuration state have to be reset to the following values:

- the global test case verdict and all local component verdicts are set to none;

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 47

- the local default lists of all components of the test configuration are emptied;

- the global lists DONE and KILLED are emptied. These lists are used for storing the test components that
stopped their execution or have been killed during test execution.

The flow graph segment <execute-on-config-without-timeout> in figure 69b specifies the execution of a
test case on a static configuration where the execution is not guarded by a timer. It makes use of the start component
operation.

segment <execute-on-config-without-timeout>

init-test-config-state

let { // local scope
var myEntity; // for storing an entity reference

 CONFIGURATION := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();

if (ALL-CONFIGURATION.member(CONFIGURATION) != true) {
 DYNAMIC-ERROR // no configuration
}
else { // valid configuration
 // reset of configuration state
 CONFIGURATION.TC-VERDICT := none;
 CONFIGURATION.DONE := NULL;
 CONFIGURATION.KILLED := NULL;
 myEntity := CONFIGURATION.ALL-ENTITY-STATES.first();
 while (myEntity != NULL) {
 myEntity.DEFAULT-LIST := NULL;
 myEntity.E-VERDICT := none;
 }
 // Update of global variables
 MTC := CONFIGURATION.ALL-ENTITY-STATES.first();
 TC-VERDICT := none;
 DONE := NULL;
 KILLED := NULL;
}

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The Expression shall evaluate to a
// configuration reference. The reference
// identifies the configuration on which
// the test case is executed.

<start-component-op> // Start of MTC

wait-for-termination

Entity.STATUS := BLOCKED;
// MTC will set status to ACTIVE
// before it terminates
Entity.NEXT-CONTROL(true);
RETURN;

Figure 69b of ES 201 873-4 [2]: Flow graph segment <execute-on-config-without-timeout>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 48

6.34 Flow graph segment <execute-on-config-timeout>
The flow graph segment <execute-on-config-timeout> in figure 69c defines the execution of a test case on a
configuration that is guarded by a timeout value. The flow graph segment also models the execution of the test case by
starting the behaviour of the test case on the MTC on an existing static test configuration. In addition, TIMER-GUARD
guards the termination.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 49

false true

segment <execute-on-config-timeout>

init-test-config-state

let { // local scope
var myEntity; // for storing an entity reference

 CONFIGURATION := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();

if (ALL-CONFIGURATION.member(CONFIGURATION) != true) {
 DYNAMIC-ERROR // no configuration
}
else { // valid configuration
 // reset of configuration state
 CONFIGURATION.TC-VERDICT := none;
 CONFIGURATION.DONE := NULL;
 CONFIGURATION.KILLED := NULL;
 myEntity := CONFIGURATION.ALL-ENTITY-STATES.first();
 while (myEntity != NULL) {
 myEntity.DEFAULT-LIST := NULL;
 myEntity.E-VERDICT := none;
 }
 // Update of global variables
 MTC := CONFIGURATION.ALL-ENTITY-STATES.first();
 TC-VERDICT := none;
 DONE := NULL;
 KILLED := NULL;
}

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The Expression shall evaluate to a configuration
// reference. The reference identifies the configuration
// on which the test case is executed.

<start-component-op>

// Start of MTC

prepare-wait
Entity.STATUS := SNAPSHOT; // MTC will set status to ACTIVE
 // before termination
Entity.TIMER-GUARD.STATUS := RUNNING;
Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The Expression shall evaluate to a a float
// value. This value defines the duration of
// TIMER-GUARD

set-timer-guard

Entity.TIMER-GUARD.STATUS := IDLE;
Entity.TIMER-GUARD.ACT-DURATION := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

active-waiting

if (Entity.STATUS == SNAPSHOT and
 Entity.TIMER-GUARD.STATUS != TIMEOUT) { // Control waits
 Entity.NEXT-CONTROL(true);
}
else { // Test case terminated or timer guard timed out
 Entity.NEXT-CONTROL(true);
}
RETURN;

stop-or-timeout
if (Entity.STATUS != SNAPSHOT) { // normal termination
 Entity.TIMER-GUARD.STATUS := IDLE;
 Entity.NEXT-CONTROL(true);
}
else { // guarding timer timed out
 Entity.NEXT-CONTROL(false);
}

RETURN;

false true

<dynamic-error>
/* Stop test case */

Figure 69 of ES 201 873-4 [2]: Flow graph segment <execute-timeout>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 50

6.35 Flow graph segment <statement-block>
The syntactical structure of a statement block is:

 { <statement1>; … ; <statementn> }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to be initialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1: A Statement block can be embedded in another statement blocks or can occur as body of functions,
altsteps, test cases and module control, and within compound statements, e.g. alt, if-else or
do-while.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in alt
statements or call operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. system or self, are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <statement-block> in figure 78 defines the execution of a statement block.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 51

// List of flow graph segments
// representing all possible
// statements and operations

exit-scope-unit

segment <statement-block>

Entity.DEL-VAR-SCOPE();
Entity.DEL-TIMER-SCOPE();
Entity.VALUE-STACK.clear-until(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

enter-scope-unit

let { // local scope
 var actVarScope := copy(Entity.DATA-STATE.first());
 var actTimerScope := copy(Entity.TIMER-STATE.first());
 Entity.INIT-VAR-SCOPE();
 Entity.DATA-STATE.first().add(actVarScope);
 Entity.INIT-TIMER-SCOPE();
 Entity.DATA-TIMER.first().add(actTimerScope);
 Entity.VALUE-STACK.push(MARK);
}

Entity.NEXT-CONTROL(true);
RETURN;

*

<action-stmt> OR <activate-stmt> OR <alt-stmt>
OR <assignment-stmt> OR <call-op> OR

<clear-port-op> OR <config-func-call> OR
<connect-op> OR <create-op> OR

<deactivate-stmt> OR <disconnect-op> OR
<do-while-stmt> OR <execute-stmt> OR <for-stmt>

OR <function-call> OR <getverdict-op> OR
<goto-stmt> OR <if-else-stmt> OR

<kill-component-op> OR <kill-config-op> OR
<kill-exec-stmt> OR <label-stmt> OR <log-stmt>
OR <map-op> OR <raise-op> OR <repeat-stmt> OR
<reply-op> OR <return-stmt> OR <send-op> OR
<setverdict-op> OR <start-component-op> OR
<start-port-op> OR <start-timer-op> OR

<stop-component-op> OR <stop-exec-stmt> OR
<stop-port-op> OR <stop-timer-op> OR <unmap-op>

OR <while-stmt>

// List of flow graph segments
// representing defintions
// and declarations.

* <constant-definition> OR
<timer-declaration> OR
<variable-declaration>

Figure 78 of ES 201 873-4 [2]: Flow graph segment <statement-block>

6.36 Halt port operation
The syntactical structure of the halt port operation is:

 <portId>.halt

The flow graph segment <halt-port-op> in figure 89a defines the execution of the halt port operation.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 52

halt-port-op
(portId)

segment <halt-port-op>
let { // Begin of local scope
 var portRef := NULL
 var portState := NULL;

 if (Entity.STATIC == true) {
 DYNAMIC-ERROR // port operation on a
 // static test component
 }
 elseif (portId == “all port”) {
 portState := ALL-PORT-STATES.first();
 while (portState != NULL) {
 if (portState.OWNER == Entity) {
 portState.STATUS := HALTED;
 portState.enqueue(HALT-MARKER);
 }
 portState :=
 ALL-PORT-STATES.next(portState);
 }
 }
 else {
 portRef := Entity.portId.COMP-PORT-NAME;
 GET-PORT(Entity, portRef).STATUS := HALTED;
 GET-PORT(Entity, portRef).enqueue(HALT-MARKER);
 }
} // End of socpe

Entity.NEXT-CONTROL(true);
RETURN;

Figure 89a of ES 201 873-4 [2]: Flow graph segment <halt-port-op>

NOTE: The HALT-MARKER that is put by a halt operation into the port queue is removed by the SNAP-PORTS
function (see ES 201 873-4 [2], clause 8.3.3.2) when the marker is reached, i.e. all messages preceding
the marker have been processed. The SNAP-PORTS function is called when taking a snapshot.

6.37 Kill component operation
The syntactical structure of the kill component statement is:

 <component-expression>.kill

The kill component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC is killed
(e.g. mtc.kill) or kills itself (e.g. self.kill). The MTC may kill all parallel test components by using the all
keyword, i.e. all component.kill.

Special rules apply for using the kill component operation in static test configurations: Applying the kill
component operation to a static component leads to a dynamic error. The lifetime of all static components (including the
MTC) is bound to the lifetime of the test configuration. However, the MTC may kill all non-static parallel test
components by using the all keyword, i.e. all component.kill.

A component to be killed is identified by a component reference provided as expression, e.g. a value or value returning
function. For simplicity, the keyword "all component" is considered to be special values of
<component-expression>. The operations mtc and self are evaluated according to ES 201 873-4 [2],
clauses 9.33 and 9.43.

The flow graph segment <kill-component-op> in figure 90a defines the execution of the kill component
operation.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 53

decision

segment <kill-component-op>

if (Entity.VALUE-STACK.top().STATIC == true) {
 DYNAMIC-ERROR // kill is applied to a
 // static component
}
elseif (Entity.VALUE-STACK.top() == MTC) {
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<kill-mtc>

true
false

prepare-kill
if (ALL-ENTITY-STATES.member(Entity.VALUE-STACK.top())) {
 Entity.NEXT-CONTROL(true);
}
else {
 if (KILLED.member(Entity.VALUE-STACK.top())){
 // NULL operation, component already terminated
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(false);
 }
 else {
 // component id has not been allocated
 DYNAMIC-ERROR
 {
}
RETURN;

<kill-component>

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

decision

if (Entity.VALUE-STACK.top() == 'all component') {
 Entity.VALUE-STACK.pop(); // clean value stack
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all' not allowed
 }
 else {
 Entity.NEXT-CONTROL(true);
 {
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<kill-all-comp>

true
false

true

false

Figure 90a of ES 201 873-4 [2]: Flow graph segment <kill-component-op>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 54

6.38 Flow graph segment <kill-mtc>
The <kill-mtc> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the final verdict is calculated and pushed onto the value stack of module control. The release of all
resources are released is modelled by deleting the test configuration from the ALL-CONFIGURATIONS list.

kill-mtc

segment <kill-mtc>

let { // local scope for variables

 var myEntity := ALL-ENTITY-STATES.first();

 // Update test case verdict and deletion of components
 while (myEntity != NULL) {
 if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }
 myEntity := ALL-ENTITY-STATES.next(myEntity);
 }

 // TC-VERDICT is the result of the execute operation
 CONTROL.VALUE-STACK.push(TC-VERDICT);

 // Update of test case reference parameters
 UPDATE-REMOTE-LOCATIONS(MTC, CONTROL);

 // Deletion of test configuration
 ALL-CONFIGURATIONS.delete(CONFIGURATION)
 // Resetting of global variables
 ALL-ENTITY-STATES:= NULL;
 ALL-PORT-STATES := NULL;
 DONE := NULL;
 KILLED := NULL;
 TC-VERDICT := none;
 MTC := NULL;

 CONTROL.STATUS := ACTIVE; // Control continues
} // End of local scope
RETURN;

Figure 90b of ES 201 873-4 [2]: Flow graph segment <kill-mtc-op>

6.39 Flow graph segment <kill-all-comp>
The <kill-all-comp> flow graph segment in figure 90d describes the termination of all parallel test components of
a test case.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 55

kill-all-comp

segment <kill-all-comp>

let { // local scope for variable myEntity
 var myEntity := ALL-ENTITY-STATES.next(MTC);
 var port;
 var connection;

 // Update test case verdict
 while (myEntity != NULL) {
 if (myEntity.STATIC != true) { // not a static test component
 if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }
 }
 }
 myEntity := ALL-ENTITY-STATES.next(myEntity);
 }

 // Deletion of test components
 myEntity := ALL-ENTITY-STATES.next(MTC);
 while (myEntity != NULL) {
 if (myEntity.STATIC == true) { // a static test component
 myEntity := ALL-ENTITY-STATES.next(myEntity);
 }
 else { // not a static test component
 // disconnect and unmap component
 port := ALL-PORT-STATES.first();
 while (port != NULL) {
 connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.REMOTE-ENTITY == comp
 or (port.OWNER == comp) {
 port.CONNECTIONS.delete(connection);
 connection := port.CONNECTIONS.first();
 }
 else {
 connection := port.CONNECTIONS.next(connection);
 }
 }
 port := ALL-PORT-STATES.next(port);
 }

 DONE.append(myEntity); // Update of DONE
 KILLED.append(myEntity); // Update of KILLED
 DEL-ENTITY(myEntity); // Deletion of entity
 myEntity := ALL-ENTITY-STATES.next(MTC); // Next component to delete
 }
 }
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 90d of ES 201 873-4 [2]: Flow graph segment <stop-all-comp>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 56

6.40 Kill execution statement
The syntactical structure of the kill execution statement is:

 kill

The effect of the kill execution statement depends on the entity that executes the kill execution statement:

a) If kill is performed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state.

b) If the kill is executed by the MTC, all parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the value stack of the module control. Finally, control is given back to
the module control and the MTC terminates.

c) If the kill is executed by a test component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

The execution of the kill execution statement by any static test component (including the MTC of a static test
configuration) is not allowed. It leads to a dynamic error.

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

decision

segment <kill-exec-stmt>
if (Entity == CONTROL {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<kill-control>

true
false

decision

if (Entity.STATIC == true) {
 DYNAMIC-ERROR // static Entity
}
else {
 if (Entity == MTC) {
 Entity.NEXT-CONTROL(true);
 }
 else {
 Entity.VALUE-STACK.push(Entity);
 Entity.NEXT-CONTROL(false);
 }
}
RETURN;

true false

<kill-mtc> <kill-component>

Figure 90e of ES 201 873-4 [2]: Flow graph segment <kill-exec-stmt>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 57

6.41 Kill configuration operation
The syntactical structure of the kill configuration operation is:

 <configuration-expression>.kill

The kill configuration operation destructs the specified test configuration and removes it from the test system. The
kill configuration operation shall only be executed by module control. The configuration to be killed is identified by
means of a <configuration-expression>., i.e. an expression that evaluates to a reference to a configuration.

The flow graph segment <kill-config-op> in figure 90f defines the execution of the kill configuration
operation.

segment <kill-config-op>

<expression>

map-op
(portId1,portId2)

let { // begin of a local scope
 var config := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();

 if (Entity != CONTROL) {
 DYNAMIC-ERROR // kill config operation is not
 // invoked by module control
 }
 else if (ALL-CONFIGURATIONS.member(config) != true) {
 DYNAMIC-ERROR // configuration to be killed
 // does not exist
 }
 else {
 ALL-CONFIGURATIONS.delete(config)
 }
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 90f of ES 201 873-4 [2]: Flow graph segment <kill-config-op>

6.42 Map operation
The syntactical structure of the map operation is:

 map(<component-expression>:<portId1>, system:<portId2>) [static]

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portId1> belongs is referenced by means of the component
reference <component-expression>. The reference may be stored in variables or is returned by a function, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

A present static clause indicates that the new mapping is static, i.e. established during the execution of a
configuration function. Presence and absence of the static clause is handled as a Boolean flag in the operational
semantics (see static parameter of the basic flow graph node map-op in figure 93).

NOTE: The map operation does not care whether the system:<portId> statement appears as first or as second
parameter. For simplicity, it is assumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <map-op> shown in figure 93.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 58

segment <map-op>

<expression>

map-op
(portId1,portId2,static)

let { // begin of a local scope
 var portRef;
 var comp1 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();

 if (static == true && CONTROL.STATIC != true) {
 DYNAMIC-ERROR
 // Static connections have to be established
 // within a configuration function
 }
 elseif (static != true && CONTROL.STATIC == true) {
 DYNAMIC-ERROR
 // Non-static connections cannot be established
 // within a configuration function
 }
 else {
 portRef := Entity.portId1.COMP-PORT-NAME;
 ADD-CON(comp1, portRef, system, portId2);
 }
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 93 of ES 201 873-4 [2]: Flow graph segment <map-op>

6.43 Start port operation
The syntactical structure of the start port operation is:

 <portId>.start

The flow graph segment <start-port-op> in figure 121 defines the execution of the start port operation.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 59

start-port-op
(portId)

segment <start-port-op>
let { // Begin of local scope
 var portRef := NULL
 var portState := NULL;

 if (Entity.STATIC == true) {
 DYNAMIC-ERROR // port operation on a
 // static test component
 }
 elseif (portId == “all port”) {
 portState := ALL-PORT-STATES.first();
 while (portState != NULL) {
 if (portState.OWNER == Entity) {
 portState.VALUE-QUEUE.clear();
 portState.STATUS := STARTED
 }
 portState :=
 ALL-PORT-STATES.next(portState);
 }
 }
 else {
 portRef := Entity.portId.COMP-PORT-NAME;
 GET-PORT(Entity, portRef).clear();
 GET-PORT(Entity, portRef).STATUS := STARTED;
} // End of socpe

Entity.NEXT-CONTROL(true);
RETURN;

Figure 121 of ES 201 873-4 [2]: Flow graph segment <start-port-op>

6.44 Stop component operation
The syntactical structure of the stop component statement is:

 <component-expression>.stop

The stop component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. mtc.stop) or stops itself (e.g. self.stop). The MTC may stop all parallel
test components by using the all keyword, i.e. all component.stop.

Stopped components created with an alive clause in the create operation are not removed from the test system.
They can be restarted by using a start statement. Variables, ports, constants and timers owned by such a component,
i.e. declared and defined in the corresponding component type definition, keep their status. A stop operation for a
component created without an alive clause is semantically equivalent to a kill operation. The component is
removed from the test system.

A component to be stopped is identified by a component reference provided as expression, e.g. a value or value
returning function. For simplicity, the keyword "all component" is considered to be special values of
<component-expression>. The operations mtc and self are evaluated according to ES 201 873-4 [2],
clauses 9.33 and 9.43.

The flow graph segment <stop-component-op> in figure 125 defines the execution of the stop component
operation.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 60

decision

segment <stop-component-op>

if (Entity.VALUE-STACK.top() == MTC) {
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<stop-mtc>

true
false

prepare-stop

if (ALL-ENTITY-STATES.member(Entity.VALUE-STACK.top())) {
 Entity.NEXT-CONTROL(true);
}
else {
 if (DONE.member(Entity.VALUE-STACK.top())){
 // NULL operation, component already stopped
 // or killed.
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(false);
 }
 else {
 // component id has not been allocated
 DYNAMIC-ERROR
 {
}
RETURN;

<stop-alive-component>

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

decision

if (Entity.VALUE-STACK.top() == 'all component') {
 Entity.VALUE-STACK.pop(); // clean value stack
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all' not allowed
 }
 else {
 Entity.NEXT-CONTROL(true);
 {
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<stop-all-comp>

true
false

true

false

decision

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true)) {
 Entity.NEXT-CONTROL(true); // Component is not
 // removed from the
 // test system
}
else {
 Entity.NEXT-CONTROL(false); // Component is killed
}
RETURN;

<kill-component>

true false

Figure 125 of ES 201 873-4 [2]: Flow graph segment <stop-component-op>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 61

6.45 Flow graph segment <stop-mtc>
The flow graph segment <stop-mtc> in figure 125a describes the stopping of an MTC. The effect of stopping an
MTC is that a test case or a configuration function terminates. Depending on where and how an MTC has been
executed, three cases have to be distinguished:

1) The MTC stops the behaviour of a test case that has not been executed on a static test configuration.

2) The MTC stops the behaviour of a test case that has been executed on a static test configuration.

3) The MTC stops the execution of a configuration function.

decision

segment <stop-mtc>

if (CONFIGURATION.STATIC == true) {
 // termination of a configuration function
 Entity.NEXT-CONTROL(true);
}
else { // stopping a test case executed
 //on a static configuration
 Entity.NEXT-CONTROL(false);
}

<stop-config>

true
false

<stop-tc-config>

decision

if (MTC.STATIC == false) {
 // stopping a test case that is not executed
 // on static test configuration
 Entity.NEXT-CONTROL(false);
 }
 else {
 // stopping either a test case that has been
 // executed on a static test configuration or
 // a configuration function terminates
 Entity.NEXT-CONTROL(true);
}
RETURN; <kill-mtc>

false
true

Figure 125a of ES 201 873-4 [2]: Flow graph segment <stop-mtc>

6.46 Flow graph segment <stop-config>
The <stop-config> flow graph segment in figure 127a describes the stopping of an MTC that has executed a
configuration function.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 62

stop-config

Segment <stop-config>

let { // local scope
 var compVarScope := copy(MTC.DATA-STATE.first());
 var compTimerScope := copy(MTC.TIMER-STATE.first());
 var compPortScope := copy(MTC.PORT-REF.first());

 // Update of component state. This is necessary, if the behaviour of the
 // configuration function is structured into further function.
 MTC.STATUS := BLOCKED;
 MTC.CONTROL-STACK := NULL;
 MTC.DEFAULT-LIST := NULL;
 MTC.VALUE-STACK := NULL;
 MTC.VALUE-STACK.push(MARK); // for component scope
 MTC.TIMER-GUARD.STATUS := IDLE;
 MTC.DATA-STATE := NULL
 MTC.DATA-STATE.add(compVarScope);
 MTC.TIMER-STATE := NULL;
 MTC.TIMER-STATE.add(compTimerScope);
 MTC.PORT-REF := NULL
 MTC.PORT-REF.add(compPortScope);
 MTC.SNAP-ALIVE := NULL;
 MTC.SNAP-DONE := NULL;
 MTC.SNAP-KILLED := NULL;

 // Update of test case reference parameters
 UPDATE-REMOTE-LOCATIONS(MTC, CONTROL);

 CONTROL.STATIC := false; // Reset of STATIC flag in module control
 CONTROL.STATUS := ACTIVE; // Control continues execution

} // End of local scope
RETURN;

Figure 127a of ES 201 873-4 [2]: Flow graph segment <stop-config>

6.47 Flow graph segment <stop-tc-config>
The <stop-tc-config> flow graph segment in figure 127b describes the termination of a test case that is executed
on a static test configuration.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 63

stop-tc-config

Segment <stop-tc-config>

let { // local scope
 var compVarScope := copy(MTC.DATA-STATE.first());
 var compTimerScope := copy(MTC.TIMER-STATE.first());
 var compPortScope := copy(MTC.PORT-REF.first());

 // Update test case verdict
 if (MTC.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (MTC.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (MTC.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }

 // TC-VERDICT is the result of the execute operation
 CONTROL.VALUE-STACK.push(TC-VERDICT);

 // Update of test case reference parameters
 UPDATE-REMOTE-LOCATIONS(MTC, CONTROL);

 // Update of component state, if the behaviour of the
 // configuration function is structured into functions.
 MTC.STATUS := BLOCKED;
 MTC.CONTROL-STACK := NULL;
 MTC.DEFAULT-LIST := NULL;
 MTC.VALUE-STACK := NULL;
 MTC.VALUE-STACK.push(MARK); // for component scope
 MTC.TIMER-GUARD.STATUS := IDLE;
 MTC.DATA-STATE := NULL
 MTC.DATA-STATE.add(compVarScope);
 MTC.TIMER-STATE := NULL;
 MTC.TIMER-STATE.add(compTimerScope);
 MTC.PORT-REF := NULL
 MTC.PORT-REF.add(compPortScope);
 MTC.SNAP-ALIVE := NULL;
 MTC.SNAP-DONE := NULL;
 MTC.SNAP-KILLED := NULL;

 CONTROL.STATUS := ACTIVE; // Control continues execution

} // End of local scope
RETURN;

<kill-all-comp>
// All non static components are killed. All
// static test components are stopped.
// The Test verdict is updated.

<disconnect-all> // All non static connections are destroyed.

<unmap-all> // All non static mappings are destroyed.

Figure 127b of ES 201 873-4 [2]: Flow graph segment <stop-tc-config>

6.48 Stop port operation
The syntactical structure of the stop port operation is:

 <portId>.stop

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 64

The flow graph segment <stop-port-op> in figure 129 defines the execution of the stop port operation.

stop-port-op
(portId)

segment <stop-port-op>
let { // Begin of local scope
 var portRef := NULL
 var portState := NULL;

 if (Entity.STATIC == true) {
 DYNAMIC-ERROR // port operation on a
 // static test component
 }
 elseif (portId == “all port”) {
 portState := ALL-PORT-STATES.first();
 while (portState != NULL) {
 if (portState.OWNER == Entity) {
 portState.STATUS := STOPPED
 }
 portState :=
 ALL-PORT-STATES.next(portState);
 }
 }
 else {
 portRef := Entity.portId.COMP-PORT-NAME;
 GET-PORT(Entity, portRef).STATUS := STOPPED;
} // End of socpe

Entity.NEXT-CONTROL(true);
RETURN;

Figure 129 of ES 201 873-4 [2]: Flow graph segment <stop-port-op>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 65

6.49 Flow graph segment <unmap-all>
The flow graph segment <unmap-all> defines the unmapping of all components at all mapped ports. Static mappings
will not be unmapped. Their lifetime is bound to the lifetime of the static test configuration.

unmap-all

segment <unmap-all>

let { // local scope

 var port := ALL-PORT-STATES.first();
 var connection;

 while (port != NULL) {
 connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.REMOTE-ENTITY == system) { // mapped port
 if (connection.STATIC == true) { // static mapping
 connection := port.CONNECTIONS.next(connection);
 }
 else {
 port.CONNECTIONS.delete(connection);
 connection := port.CONNECTIONS.first();
 }
 }
 else {
 connection := NULL; // connected port
 }
 }
 port := ALL-PORT-STATES.next(port)
 }
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 136a of ES 201 873-4 [2]: Flow graph segment <unmap-all>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 66

6.50 Flow graph segment <unmap-comp>
The flow graph segment <unmap-comp> defines the unmapping of all mapped ports of a specified component. Static
mappings will not be unmapped. Their lifetime is bound to the lifetime of the static test configuration.

unmap-comp

segment <unmap-comp>

let { // local scope
 var comp := Entity.VALUE-STACK.top();
 var connection;
 var port := ALL-PORT-STATES.first();

 while (port != NULL) {
 if (port.OWNER == comp) { // port of comp
 connection := port.CONNECTIONS.first();
 if (connection.REMOTE-ENTITY == system) { // mapped port of comp
 if (conntection.STATIC != true) { // not a static mapping
 port.CONNECTIONS.delete(connection);
 }
 }
 }
 port := ALL-PORT-STATES.next(port);
 }
 Entity.VALUE-STACK.pop(); // clear value stack
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 136b of ES 201 873-4 [2]: Flow graph segment <unmap-comp>

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 67

6.51 Flow graph segment <unmap-port>
The flow segment <unmap-port> defines the unmap operation for a specific mapped port.

unmap-port

segment <unmap-port>

let { // local scope
 var portId;
 var comp;
 var port;
 var connection;

 portId := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 comp := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 port := GET-PORT(comp, portId);

 connection := port.CONNECTIONS.first();
 if (connection.REMOTE-ENTITY != SYSTEM) {
 DYNAMIC-ERROR // port is not a mapped port
 }
 else if (connection != NULL){ // mapped port
 if (connection.STATIC == true { // static mapping
 DYNAMIC-ERROR // static mappings cannot be unmapped
 }
 else {
 port.CONNECTIONS.delete(connection);
 }
 }
 else {) // do nothing, port is neither connected nor mapped
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 136c of ES 201 873-4 [2]: Flow graph segment <unmap-port>

7 TRI Extensions for the Package

7.1 Changes and extensions to clause 5.5.2 of
ES 201 873-5 [3] Connection handling operations

If this package is being used, the TriExecuteTestCase operation shall be used only for initialization purposes of the
SA, but not for the establishment of static connections. In order to establish static connections, the TriStaticMap
operation shall be used instead. The TriUnmap can be used for closing dynamic and static connections.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 68

Clause 5.5.2.1 triExecuteTestCase (TE → SA)

This clause is changed as follows.

Signature TriStatusType triExecuteTestCase(
in TriTestCaseIdType testCaseId,
in TriPortIdListType tsiPortList)

In Parameters testCaseId identifier of the test case that is going to be executed
tsiPortList a list of test system interface ports defined for the test system

Out Parameters n.a.
Return Value The return status of the triExecuteTestCase operation. The return status indicates the local

success (TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE immediately before the execution of any test case. The test case

that is going to be executed is indicated by the testCaseId. tsiPortList contains all ports that
have been declared in the definition of the system component for the test case, i.e. the TSI ports. If a
system component has not been explicitly defined for the test case in the TTCN-3 ATS then the
tsiPortList contains all communication ports of the MTC test component. The ports in
tsiPortList are ordered as they appear in the respective TTCN-3 component declaration.

Effect The SA can initialize any communication means for TSI ports.
The triExecuteTestCase operation returns TRI_OK in case the operation has been successfully
performed, TRI_Error otherwise.

Clause 5.5.2.3 triUnmap (TE → SA)

This clause is changed as follows.

Signature TriStatusType triUnmap(in TriPortIdType compPortId,
in TriPortIdType tsiPortId)

In Parameters compPortId identifier of the test component port to be unmapped
tsiPortId identifier of the test system interface port to be unmapped

Out Parameters n.a.
Return Value The return status of the triUnmap operation. The return status indicates the local success (TRI_OK)

or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes any TTCN-3 unmap operation.
Effect The SA shall close a dynamic or static connection to the SUT for the referenced TSI port.

The triUnmap operation returns TRI_Error in case a connection could not be closed successfully or
no such connection has been established previously, TRI_OK otherwise. The operation should return
TRI_OK in case no connections have to be closed by the test system.

Clause 5.5.2.5 triStaticMap (TE → SA)

This clause is to be added.

Signature TriStatusType triStaticMap(in TriPortIdType compPortId,
 in TriPortIdType tsiPortId)

In Parameters compPortId identifier of the test component port to be mapped in a static connection
tsiPortId identifier of the test system interface port to be mapped in a static connection

Out Parameters n.a.
Return Value The return status of the triStaticMap operation. The return status indicates the local success

(TRI_OK) or failure (TRI_Error) of the operation.
Constraints This operation is called by the TE when it executes a TTCN-3 static map operation.
Effect The SA can establish a static connection to the SUT for the referenced TSI port.

The triStaticMap operation returns TRI_Error in case a connection could not be established
successfully, TRI_OK otherwise. The operation should return TRI_OK in case no static connection
needs to be established by the test system.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 69

7.2 Extensions to clause 6 of ES 201 873-5 [3] Java language
mapping

Clause 6.5.2.1 triCommunicationSA

The triCommunicationSA interface mapping is to be extended with the definition for TriStaticMap:

// TriCommunication
// TE -> SA
package org.etsi.ttcn.tri;
public interface TriCommunicationSA {
 :
 // Connection handling operations
 :
 // Ref: TRI-Definition 5.5.2.5
 public TriStatus triStaticMap(TriPortId compPortId, TriPortId tsiPortId);
 :

7.3 Extensions to clause 7 of ES 201 873-5 [3] ANSI C
language mapping

Clause 7.2.4 TRI operation mapping

The table is to be extended with the definition for TriStaticMap:

IDL Representation ANSI C Representation
…
TriStatusType triStaticMap
 (in TriPortIdType compPortId,
 in TriPortIdType tsiPortId)

TriStatus triStatic Map
 (const TriPortId* compPortId,
 const TriPortId* tsiPortId)

…

7.4 Extensions to clause 8 of ES 201 873-5 [3] C++ language
mapping

Clause 8.6.1 TriCommunicationSA

The triCommunicationSA interface mapping is to be extended with the definition for TriStaticMap. In addition, the
description of TriUnmap has to be changed to handle also the closing of static connections:

class TriCommunicationSA {
public:

:
 //To establish a static connection between two ports.

virtual TriStatus triStaticMap (const TriPortId *comPortId, const TriPortId *tsiPortId)=0;

//To close a dynamic or static connection to the SUT for the referenced TSI port.
virtual TriStatus triUnmap (const TriPortId *comPortId, const TriPortId *tsiPortId)=0;
:

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 70

8 TCI Extensions for the Package

8.1 Extensions to clause 7.2.1.1 of ES 201 873-6 [4]
Management

The management type TciTestComponentKindType has to be extended with constants for static test components:

TciTestComponentKindType A value of type TciTestComponentKindType is a literal of the set of kinds of
TTCN-3 test components, i.e. CONTROL, MTC, PTC, SYSTEM, PTC_ALIVE,
MTC_STATIC, PTC_STATIC, and SYSTEM_STATIC. This abstract type is used
for component handling.

8.2 Extensions to clause 7.3.1.1 of ES 201 873-6 [4] TCI TM
required

In order to handle static configurations via TCI-TM, the operations tciStartConfig and tciKillConfig are
defined as follows.

Clause 7.3.1.1.11 tciStartConfig

This clause is to be added.

Signature void tciStartConfig (in TciBehaviourIdType configId,
 in TciParameterListType parameterList)

In Parameters configId A configuration function identifier as defined in the TTCN-3 module.
parameterList A list of Values where each value defines a parameter from the parameter list

as defined in the TTCN-3 configuration function definition. The parameters in
parameterList are ordered as they appear in the TTCN-3 signature of the
configuration function. If no parameters have to be passed either the null
value or an empty parameterList, i.e. a list of length zero shall be passed.

Return Value void

Constraint Shall be called only if a module has been selected before. Only configId for test cases with
static configurations that are declared in the currently selected TTCN-3 module shall be passed –
see tciStartTestCase.

Effect Starts a static configuration of the selected module as described in the TTCN-3 configuration
function. A static configuration started from TCI-TM will be used by test cases that reference the
static configuration and are executed from TCI-TM.

Clause 7.3.1.1.12 tciKillConfig

This clause is to be added.

Signature void tciKillConfig(in Value ref)

In Parameters ref The reference to the static configuration.
Return Value void

Constraint Shall be called only if a module has been selected before.
Effect tciKillConfig causes the destruction of the static test configuration ref. If ref is currently not

started, the operation will be ignored.

8.3 Extensions to clause 7.3.1.2 of ES 201 873-6 [4] TCI TM
provided

In order to enable the indication of static configuration start and destruction at TCI-TM, the operations
tciConfigStarted and tciConfigKilled are defined as follows.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 71

Clause 7.3.1.2.7 tciConfigStarted

This clause is to be added.

Signature void tciConfigStarted(in Value ref)

In Parameters ref The reference to the static configuration.
Return Value void

Constraint Shall only be called after the static configuration has been started either using the required
operations tciStartConfig or internally by the TE.

Effect tciConfigStarted indicates to the TM that static configuration ref has been started. It will not
be distinguished whether the static configuration has been started explicitly using the required
operation tciStartConfig or implicitly while executing the control part.

Clause 7.3.1.2.8 tciConfigKilled

This clause is to be added.

Signature void tciConfigKilled(in Value ref)

In Parameters ref The reference to the static configuration.
Return Value void

Constraint Shall only be called after the static configuration has been killed either using the required
operations tciKillConfig or internally by the TE.

Effect tciConfigStarted indicates to the TM that static configuration ref has been destructed. It will
not be distinguished whether the static configuration has been started explicitly using the required
operation tciKillConfig or implicitly while executing the control part.

8.4 Extensions to clause 7.3.3.1 of ES 201 873-6 [4] TCI CH
required

In order to establish static connections, the tciStaticConnect and tciStaticMap operations shall be used at
TCI-CH. The tciDisconnect and TciUnmap can be used for closing static connections.

Clause 7.3.3.1.21 tciStaticConnect

This clause is to be added.

Signature void tciStaticConnect(in TriPortIdType fromPort,
 in TriPortIdType toPort)

In Parameters fromPort Identifier of the test component port to be connected from.
toPort Identifier of the test component port to be connected to.

Return Value void
Constraint This operation shall be called by the CH at the local TE when at a remote TE a provided

tciStaticConnectReq has been called.
Effect The TE shall statically connect the indicated ports to one another.

Clause 7.3.3.1.21 tciStaticMap

This clause is to be added.

Signature void tciStaticMap(in TriPortIdType fromPort,
 in TriPortIdType toPort)

In Parameters fromPort Identifier of the test component port to be mapped from.
toPort Identifier of the test component port to be mapped to.

Return Value void
Constraint This operation shall be called by the CH at the local TE when at a remote TE a provided

tciStaticMapReq has been called.
Effect The TE shall statically map the indicated ports to one another.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 72

8.5 Extensions to clause 7.3.3.2 of ES 201 873-6 [4] TCI CH
provided

In order to establish static connections, the tciStaticConnectReq and tciStaticMapReq operations shall be used
at TCI-CH. The tciDisconnectReq and TciUnmapReq can be used for closing static connections.

Clause 7.3.3.2.29 tciStaticConnectReq

This clause is to be added.

Signature void tciStaticConnectReq(in TriPortIdType fromPort,
 in TriPortIdType toPort)

In Parameters fromPort Identifier of the test component port to be connected from.
toPort Identifier of the test component port to be connected to.

Return Value void
Constraint This operation shall be called by the TE when it executes a TTCN-3 static connect operation.

Effect CH transmits the static connection request to the remote TE where it calls the
tciStaticConnect operation to establish a logical static connection between the two
indicated ports. Note that both ports can be on remote TEs. In this case, the operation returns
only after calling the tciStaticConnect operation on both remote TEs.

Clause 7.3.3.1.30 tciStaticMapReq

This clause is to be added.

Signature void tciStaticMapReq(in TriPortIdType fromPort,
 in TriPortIdType toPort)

In Parameters fromPort Identifier of the test component port to be mapped from.
toPort Identifier of the test component port to be mapped to.

Return Value void
Constraint This operation shall be called by the TE when it executes a TTCN-3 static map operation.

Effect CH transmits the static map request to the remote TE where it calls the tciStaticMap
operation to establish a logical static connection between the two indicated ports.

8.6 Extensions to clause 7.3.4 of ES 201 873-6 [4] TCI-TL
provided

In order to log the handling of static connections and of static components, the operations are tliCStaticCreate,
tliPStaticConnect, and tliPStaticMap are defined. For the logging of the starting and destruction of static
configurations, the operations tliConfigStarted and tliConfigKilled are defined.

Clause 7.3.4.1.106 tliCStaticCreate

This clause is to be added.

Signature void tliCStaticCreate(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c,
 in TriComponentIdType comp, in TString name)

In Parameters am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
line The line number where the request is performed.
c The component which produces this event.
comp The component which is created.
name The name of the component which is created.

Return Value void
Constraint Shall be called by TE to log the create component operation. This event occurs after component

creation.
Effect The TL presents all the information provided in the parameters of this operation to the user. The

kind of the created component (see TciTestComponentKindType) can be logged in am. How this
is done is not within the scope of the present document.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 73

Clause 7.3.4.1.107 tliPStaticConnect

This clause is to be added.

Signature void tliPStaticConnect(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c,
 in TriPortIdType port1, in TriPortIdType port2)

In Parameters am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
line The line number where the request is performed.
c The component which produces this event.
port1 The first port to be connected.
port2 The second port to be connected.

Return Value void
Constraint Shall be called by CH or TE to log the connect operation. This event occurs after the connect

operation.
Effect The TL presents all the information provided in the parameters of this operation to the user. The

kind of the connection (i.e. dynamic or static) can be logged in am. How this is done is not within the
scope of the present document.

Clause 7.3.4.1.108 tliPStaticMap

This clause is to be added.

Signature void tliPStaticMap(in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c,
 in TriPortIdType port1, in TriPortIdType port2)

In Parameters am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
line The line number where the request is performed.
c The component which produces this event.
port1 The first port to be mapped.
port2 The second port to be mapped.

Return Value void
Constraint Shall be called by SA or TE to log the map operation. This event occurs after the map operation.

Effect The TL presents all the information provided in the parameters of this operation to the user. The
kind of the connection (i.e. dynamic or static) can be logged in am. How this is done is not within
the scope of the present document.

Clause 7.3.4.1.109 tliConfigStarted

This clause is to be added.

Signature void tliConfigStarted (in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c,
 in TciBehaviourIdType configId, in TciParameterListType tciPars,
 in Value ref)

In Parameters am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
line The line number where the request is performed.
c The component which produces this event.
configId The static configuration function being started.
tciPars The parameters of the started configuration function.
ref The resulting static configuration reference.

Return Value void
Constraint Shall be called by TE to log the starting of a static test configuration. This event occurs after static

configuration start.
Effect The TL presents all the information provided in the parameters of this operation to the user, how

this is done is not within the scope of the present document.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 74

Clause 7.3.4.1.110 tliConfigKilled

This clause is to be added.

Signature void tliConfigKilled (in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c,
 in Value ref)

In Parameters am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
line The line number where the request is performed.
c The component which produces this event.
ref The static configuration reference that has been destructed.

Return Value void
Constraint Shall be called by TE to log the kill configuration operation. This event occurs after configuration kill.

Effect The TL presents all the information provided in the parameters of this operation to the user, how this
is done is not within the scope of the present document.

Clause 7.3.4.1.111 tliPSetState

This clause is to be added.

Signature void tliPSetState (in TString am, in TInteger ts, in TString src,
 in TInteger line, in TriComponentIdType c,
 in TInteger state, in TString reason)

In Parameters am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
line The line number where the request is performed.
c The component which produces this event.
state The new translation state
reason The optional reason of the port.setstate statement.

Return Value void
Constraint Shall be called by TE to log the port.setstate operation. This event occurs after the port state is set.

Effect The TL presents all the information provided in the parameters of this operation to the user, how this
is done is not within the scope of the present document.

8.7 Extensions to clause 8 of ES 201 873-6 [4] Java language
mapping

Clause 8.2.2.5 TciTestComponentKindType

This clause is to be extended.

// TCI IDL TciTestComponentKindType
public interface TciTestComponentKind {
 :
 public final static int TCI_MTC_STATIC_COMP = 5;
 public final static int TCI_PTC_STATIC_COMP = 6;
 public final static int TCI_SYSTEM_STATIC_COMP = 7;
}

Clause 8.4.1.1 TCI TM provided

This clause is to be extended.

// TCI-TM
// TE -> TM
package org.etsi.ttcn.tci;
public interface TciTMProvided {
 :
 public void tciConfigStarted(Value ref);
 public void tciConfigKilled(Value ref)
}

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 75

Clause 8.4.1.2 TCI TM required

This clause is to be extended.

// TCI-TM
// TM -> TE
package org.etsi.ttcn.tci;
public interface TciTMRequired {
 :
 public void tciStartConfig
 (TciBehaviourId configId, TciParameterList parameterList)
 public void tciKillConfig(Value ref)
}

Clause 8.4.3.1 TCI CH provided

This clause is to be extended.

// TciCHProvided
// TE -> CH
package org.etsi.ttcn.tci;
public interface TciCHProvided {
 :
 public void tciStaticConnectReq(TriPortId fromPort, TriPortId toPort);
 public void tciStaticMapReq(TriPortId fromPort, TriPortId toPort);
}

Clause 8.4.3.2 TCI CH required

This clause is to be extended.

// TciCHRequired
// CH -> TE
package org.etsi.ttcn.tci;
public interface TciCHRequired extends TciCDRequired {
 :
 public void tciStaticConnect(TriPortId fromPort, TriPortId toPort);
 public void tciStaticMap(TriPortId fromPort, TriPortId toPort);
}

Clause 8.4.4.1 TCI TL provided

This clause is to be extended.

// TCI-TL
// TE, TM,CH,CD, SA,PA -> TL
package org.etsi.ttcn.tci;
public interface TciTLProvided {
 :
 public void tliCStaticCreate(String am, int ts, String src, int line, TriComponentId c,
 TriComponentId comp, String name);
 public void tliPStaticConnect(String am, int ts, String src, int line, TriComponentId c,
 TriPortId port1, TriPortId port2);
 public void tliPStaticMap(String am, int ts, String src, int line, TriComponentId c,
 TriPortId port1, TriPortId port2);
 public void tliConfigStarted (String am, int ts, String src, int line, TriComponentId c,
 TciBehaviourId configId, TciParameterList tciPars, Value ref);
 public void tliConfigKilled (String am, int ts, String src, int line, TriComponentId c,
 Value ref);
 public void tliPSetState (String am, int ts, String src, int line, TriComponentId c,
 int state, String reason);
}

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 76

8.8 Extensions to clause 9 of ES 201 873-6 [4] ANSI C
language mapping

Clause 9.5 Data

The table is to be extended.

TCI IDL ADT ANSI C representation (Type definition) Notes and comments
:

TciTestComponentKindType typedef enum
{
 :,
 TCI_MTC_STATIC_COMP,
 TCI_PTC_STATIC_COMP,
 TCI_SYSTEM_STATIC_COMP
} TciTestComponentKindType;

:

Clause 9.4.1.1 TCI TM provided

This clause is to be extended.

 :
 void tciConfigStarted(Value ref);
 void tciConfigKilled(Value ref)

Clause 9.4.1.2 TCI TM required

This clause is to be extended.

 :
 void tciStartConfig(TciBehaviourIdType configId, TciParameterListType parameterList)
 void tciKillConfig(Value ref)

Clause 9.4.3.1 TCI CH provided

This clause is to be extended.

 :
 void tciStaticConnectReq(TriPortId fromPort, TriPortId toPort);
 void tciStaticMapReq(TriPortId fromPort, TriPortId toPort);

Clause 9.4.3.2 TCI CH required

This clause is to be extended.

 :
 void tciStaticConnect(TriPortId fromPort, TriPortId toPort)
 void tciStaticMap(TriPortId fromPort, TriPortId toPort)

Clause 9.4.4.1 TCI TL provided

This clause is to be extended.

 :
 void tliCStaticCreate (String am, int ts, String src, int line, TriComponentId c,
 TriComponentId comp, String name)
 void tliPStaticConnect (String am, int ts, String src, int line, TriComponentId c,
 TriPortId port1, TriPortId port2)
 void tliPStaticMap (String am, int ts, String src, int line, TriComponentId c,
 TriPortId port1, TriPortId port2)
 void tliConfigStarted (String am, int ts, String src, int line, TriComponentId c,
 TciBehaviourIdType configId, TciParameterListType tciPars, Value ref)
 void tliConfigKilled (String am, int ts, String src, int line, TriComponentId c,
 Value ref)
 void tliPSetStateKilled (String am, int ts, String src, int line, TriComponentId c,
 int state, String reason)

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 77

8.9 Extensions to clause 10 of ES 201 873-6 [4] C++ language
mapping

Clause 10.5.2.13 TciTestComponentKind

This clause is to be extended.

class TciTestComponentKind {
public:
 :
 static const TciTestComponentKind MTC_STATIC_COMP;
 static const TciTestComponentKind PTC_STATIC_COMP;
 static const TciTestComponentKind SYSTEM_STATIC_COMP;
 :
}

Clause 10.6.1.1 TciTmRequired

This clause is to be extended.

 :
 virtual void tciStartConfig (const TciBehaviourId *configId, TciParameterList *parameterList)=0;
 virtual void tciKillConfig(const Value *ref)=0;

Clause 10.6.1.2 TciTmProvided

This clause is to be extended.

 :
• //Indicates the start of a static configuration
 virtual void tciConfigStarted(const TciValue *ref) =0;
 virtual void tciConfigKilled(const TciValue *ref)=0;

Clause 10.6.3.1 TciChRequired

This clause is to be extended.

 :
 virtual void tciStaticConnect(const TriPortId *fromPort, const TriPortId *toPort)=0;
 virtual void tciStaticMap(const TriPortId *fromPort, const TriPortId *toPort)=0;

Clause 10.6.3.2 TciChProvided

This clause is to be extended.

 :
 virtual void tciStaticConnectReq(const TriPortId *fromPort, const TriPortId *toPort)=0;
 virtual void tciStaticMapReq(const TriPortId *fromPort, const TriPortId *toPort)=0;

Clause 10.6.4.1 TciTlProvided

This clause is to be extended.

 :
 virtual void tliCStaticCreate (const Tstring &am, const timeval ts, const Tstring src,
 const Tinteger line, const TriComponentId *c, const TriComponentId *comp,
 const Tstring &name)=0;

 virtual void tliPStaticConnect (const Tstring &am, const timeval ts, const Tstring src,
 const Tinteger line, const TriComponentId *c, const TriPortId *port1, const TriPortId *port2)=0;

 virtual void tliPStaticMap (const Tstring &am, const timeval ts, const Tstring src,
 const Tinteger line, const TriComponentId *c, const TriPortId *port1, const TriPortId *port2)=0;

 virtual void tliConfigStarted (const Tstring &am, const timeval ts, const Tstring src,
 const Tinteger line, const TriComponentId *c, const TciBehaviourId *configId,
 const TciParameterList *tciPars, const TciValue *ref)=0;

 virtual void tliConfigKilled (const Tstring &am, const timeval ts, const Tstring src,
 const Tinteger line, const TriComponentId *c, const TciValue *ref)=0;

 virtual void tliPSetState (const Tstring &am, const timeval ts, const Tstring src,
 const Tinteger line, const TriComponentId *c, const Tinteger status, const TString &reason)=0;

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 78

8.10 Extensions to clause 11 of ES 201 873-6 [4] W3C XML
mapping

Clause 11.4.2.1 TCI TL provided

This clause is to be extended.

<xsd:complexType name="tliCStaticCreate">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event">
<xsd:sequence>
<xsd:element name="comp" type="Types:TriComponentIdType"/>
<xsd:element name="name" type="SimpleTypes:TString"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPStaticConnect">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:PortConfiguration"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPStaticMap">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:PortConfiguration"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliConfigStarted">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event">
<xsd:sequence>
<xsd:element name="configId" type="Types:TciBehaviourIdType"/>
<xsd:element name="tciPars" type="Types:TciParameterListType" minOccurs="0"/>
<xsd:element name="ref" type="Values:Value"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliConfigKilled">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event">
<xsd:sequence>
<xsd:element name="ref" type="Values:Value"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="tliPSetState">
<xsd:complexContent mixed="true">
<xsd:extension base="Events:Event">
<xsd:sequence>
<xsd:element name="state" type="SimpleTypes:TInteger"/>
<xsd:element name="reason" type="SimpleTypes:TString" minOccurs="0"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Clause B.5 TCI TL XML Schema for Events

The five additional events defined for clause "11.4.2.1 TCI TL provided" have to be added to the events schema
definition given in clause B.5.

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 79

Annex A (normative):
BNF and static semantics

A.1 Additional TTCN-3 terminals
Table A.1 presents all additional TTCN-3 terminals which are reserved words when using this package. Like the
reserved words defined in the TTCN-3 core language, the TTCN-3 terminals listed in table A.1 shall not be used as
identifiers in a TTCN-3 module. These terminals shall be written in all lowercase letters.

Table A.1: List of additional TTCN-3 terminals which are reserved words

configuration static setstate

A.2 Modified TTCN-3 syntax BNF productions
This clause includes all BNF productions that are modifications of BNF rules defined in the TTCN-3 core language
document [1]. When using this package the BNF rules below replace the corresponding BNF rules in the TTCN-3 core
language document. The rule numbers define the orespondence of BNF rules.

11. ModuleDefinition ::= [Visibility] (TypeDef |
 ConstDef |

TemplateDef |
 ModuleParDef |
 FunctionDef |
 SignatureDef |
 TestcaseDef |
 AltstepDef |
 ImportDef |
 GroupDef |
 ExtFunctionDef |
 ExtConstDef |
 FriendModuleDef |
 ConfigurationDef) [WithStatement]

49. PortDefAttribs ::= MessageAttribs |

ProcedureAttribs |
MixedAttribs|
TranslationPortAttribs

197. TestcaseDef ::= TestcaseKeyword TestcaseIdentifier
 "("[TestcaseFormalParList] ")" ConfigSpec | ExecuteOnSpec
 StatementBlock

205. TestcaseInstance ::= ExecuteKeyword "(" TestcaseRef "(" [TestcaseActualParList] ")"
 ["," TimerValue] ["," ConfigurationReference] ")"

294. ControlStatement ::= TimerStatements |
 BasicStatements |
 BehaviourStatements |
 SUTStatements |
 StopKeyword |
 KillConfigStatement

316. CreateOp ::= ComponentType Dot CreateKeyword ["(" SingleExpression ")"]
 [AliveKeyword | StaticKeyword]

330. ConnectStatement ::= ConnectKeyword SingleConnectionSpec [StaticKeyword]
342. MapStatement ::= MapKeyword SingleConnectionSpec [StaticKeyword]

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 80

452. PredefinedType ::= BitStringKeyword |
 BooleanKeyword |
 CharStringKeyword |
 UniversalCharString |
 IntegerKeyword |
 OctetStringKeyword |
 HexStringKeyword |
 VerdictTypeKeyword |
 FloatKeyword |
 AddressKeyword |
 DefaultKeyword |
 AnyTypeKeyword |
 ConfigurationKeyword

610. OpCall ::= ConfigurationOps |
 VerdictOps |
 TimerOps |
 TestcaseInstance |
 FunctionInstance [ExtendedFieldReference] |
 TemplateOps [ExtendedFieldReference] |
 ActivateOp |
 ConfigurationInstance

A.3 Additional TTCN-3 syntax BNF productions
This clause includes all additional BNF productions that needed to define the syntax introduced by this package.
Additional BNF rules that have a relation to modified BNF rules defined in clause A.2, will have the rule number of the
modified rule followed by a lower case letter, e.g. number of modified rule 316, number of related additional rule 316a.
The numbering of other new rules start with number 900.

197a. ExecuteOnSpec ::= ExecuteKeyword OnKeyword ConfigurationRef

316a. StaticKeyword ::= "static"

900. ConfigurationDef ::= ConfigurationKeyword ConfigurationIdentifier
 "("[TestcaseFormalParList] ")" ConfigSpec
 StatementBlock
901. ConfigurationKeyword ::= "configuration"
902. ConfigurationIdentifier ::= Identifier
903. ConfigurationInstance ::= ConfigurationRef "(" [TestcaseActualParList] ")"
904. ConfigurationRef ::= [GlobalModuleId Dot] ConfigurationIdentifier

905. KillConfigStatement ::= ConfigurationReference Dot KillKeyword
906. ConfigurationReference ::= VariableRef | FunctionInstance

907. TranslationPortAttribs ::= MessageKeywordOuterPortTypeSpec "{" {

(TranslationAddrDecl | TranslationMessageList | ConfigParamDef)
[SemiColon]}+
"}"

908. OuterPortTypeSpec ::= OuterPortTypeMapSpec | OuterPortTypeConnectSpec
909. OuterPortTypeMapSpec ::=MapKeyword ToKeyword Type { "," Type } [OuterPortTypeConnectSpec]
910. OuterPortTypeConnectSpec ::= ConnectKeyword ToKeyword Type { "," Type }

911. TranslationAddrDecl ::= AddressKeyword Type [TranslationAddrSpec{","TranslationAddrSpec }]
912. TranslationAddrSpec ::= (ToKeyword | FromKeyword) Type WithKeyword FunctionRef "(" ")"

913. TranslationMessageList ::= InParKeyword TranslationInTypeList|

OutKeyword TranslationOutTypeList|
InOutParKeywordTypeList

914. TranslationInTypeList ::=TranslationInType{"," TranslationInType}
915. TranslationInType ::= Type [TranslationInSpec{"," TranslationInSpec}]
916. TranslationInSpec ::= FromKeyword Type WithKeyword FunctionRef "(" ")"

917. TranslationOutTypeList ::= TranslationOutType{"," TranslationOutType}
918. TranslationOutType ::= Type [TranslationOutSpec{","TranslationOutSpec }]
919. TranslationOutSpec ::= ToKeyword Type WithKeyword FunctionRef "(" ")"

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 81

920. FuncPortSpec ::= PortKeywordIdentifier

921. SetPortState ::= PortKeyword"."SetStateKeyword"(" SingleExpression {"," LogItem}")"
922. SetVerdictKeyword ::= "setstate"

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 82

Annex B (informative):
Library of useful types

B.1 Limitations
The types and constants described in this annex use the same rule as specified in the clause E.1 of ES 201 873-1 [1].

B.2 Useful TTCN-3 types

B.2.1 Status values for port states
Type and constants defined in this clause support the secure usage of the setstate port operation defined in
clause 5.10.4.

The type definition for this type is:

 type integer translationState(0..3);

Useful constant definitions for working with object states are:

 const translationState TRANSLATED := 0;
 const translationState NOT_TRANSLATED := 1;
 const translationState FRAGMENTED := 2;
 const translationState PARTIALLY_TRANSLATED :=3;

ETSI

ETSI ES 202 781 V1.2.1 (2013-06) 83

History

Document history

V1.1.1 August 2010 Publication

V1.2.1 April 2013 Membership Approval Procedure MV 20130618: 2013-04-19 to 2013-06-18

V1.2.1 June 2013 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Package conformance and compatibility
	5 Package Concepts for the Core Language
	5.1 The special configuration type: configuration
	5.2 The configuration function
	5.3 Starting a static test configuration
	5.4 Destruction of static test configurations
	5.5 Creation of static test components
	5.6 Establishment of static connections and static mappings
	5.7 Test case definitions for static test configuration
	5.8 Executing test cases on static test configurations
	5.9 Further restrictions
	5.10 Ports with translation capability
	5.10.1 Translation capability in port type declaration
	5.10.2 Mapping and connecting ports
	5.10.3 Translation functions
	5.10.4 Translation state
	5.10.5 Sending
	5.10.6 Receiving
	5.10.7 Address
	5.10.8 Clear, start, stop and halt operation

	6 Package Semantics
	6.1 Replacement of short forms
	6.2 Order of replacement steps
	6.3 Flow graph representation of TTCN-3 behaviour
	6.4 Flow graph construction procedure
	6.5 Flow graph representation of configuration functions
	6.6 Retrieval of start nodes of flow graphs
	6.7 Module state
	6.8 Accessing the module state
	6.9 Configuration state
	6.10 Accessing the configuration state
	6.11 Entity states
	6.12 Accessing entity states
	6.13 Handling of connections among ports
	6.14 Handling of port states
	6.15 The evaluation procedure for a TTCN-3 module
	6.16 Evaluation phases
	6.17 Phase I: Initialization
	6.18 Phase II: Update
	6.19 Phase III: Selection
	6.20 Phase IV: Execution
	6.21 Global functions
	6.22 Clear port operation
	6.23 Configuration function call
	6.24 Connect operation
	6.25 Create operation
	6.26 Flow graph segment <disconnect-all>
	6.27 Flow graph segment <disconnect-comp>
	6.28 Flow graph segment <disconnect-port>
	6.29 Flow graph segment <disconnect-two-par-pairs>
	6.30 Execute statement
	6.31 Flow graph segment <execute-without-config>
	6.32 Flow graph segment <execute-on-config>
	6.33 Flow graph segment <execute-on-config-without-timeout>
	6.34 Flow graph segment <execute-on-config-timeout>
	6.35 Flow graph segment <statement-block>
	6.36 Halt port operation
	6.37 Kill component operation
	6.38 Flow graph segment <kill-mtc>
	6.39 Flow graph segment <kill-all-comp>
	6.40 Kill execution statement
	6.41 Kill configuration operation
	6.42 Map operation
	6.43 Start port operation
	6.44 Stop component operation
	6.45 Flow graph segment <stop-mtc>
	6.46 Flow graph segment <stop-config>
	6.47 Flow graph segment <stop-tc-config>
	6.48 Stop port operation
	6.49 Flow graph segment <unmap-all>
	6.50 Flow graph segment <unmap-comp>
	6.51 Flow graph segment <unmap-port>

	7 TRI Extensions for the Package
	7.1 Changes and extensions to clause 5.5.2 of ES 201 873-5 [3] Connection handling operations
	7.2 Extensions to clause 6 of ES 201 873-5 [3] Java language mapping
	7.3 Extensions to clause 7 of ES 201 873-5 [3] ANSI C language mapping
	7.4 Extensions to clause 8 of ES 201 873-5 [3] C++ language mapping

	8 TCI Extensions for the Package
	8.1 Extensions to clause 7.2.1.1 of ES 201 873-6 [4] Management
	8.2 Extensions to clause 7.3.1.1 of ES 201 873-6 [4] TCI TM required
	8.3 Extensions to clause 7.3.1.2 of ES 201 873-6 [4] TCI TM provided
	8.4 Extensions to clause 7.3.3.1 of ES 201 873-6 [4] TCI CH required
	8.5 Extensions to clause 7.3.3.2 of ES 201 873-6 [4] TCI CH provided
	8.6 Extensions to clause 7.3.4 of ES 201 873-6 [4] TCI-TL provided
	8.7 Extensions to clause 8 of ES 201 873-6 [4] Java language mapping
	8.8 Extensions to clause 9 of ES 201 873-6 [4] ANSI C language mapping
	8.9 Extensions to clause 10 of ES 201 873-6 [4] C++ language mapping
	8.10 Extensions to clause 11 of ES 201 873-6 [4] W3C XML mapping

	Annex A (normative): BNF and static semantics
	A.1 Additional TTCN-3 terminals
	A.2 Modified TTCN-3 syntax BNF productions
	A.3 Additional TTCN-3 syntax BNF productions

	Annex B (informative): Library of useful types
	B.1 Limitations
	B.2 Useful TTCN-3 types
	B.2.1 Status values for port states

	History

