Final draft ETS| ES 202 781 V1.2.1 (2013-04)

< >

ETSI Standard_

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions:
Configuration and Deployment Support

2 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Reference
RES/MTS-112ed121 T3Ext_Conf

Keywords
conformance, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Contents

Intellectual Property RIGNES.... ..ottt e b e s 5
01 Yo (o ST 5
1 o0 0 SR 6
2 REFEIBINCES ...ttt s bt b e s e et e s £ e e et et e st e be e bt s b et e b et et e neenenrenbeneens 6
21 NOIMBLIVE FEFEIENCESeeeeeeeieite ettt ettt et e et e e e st e s tesaeebesaeeseeae e e enteseeebesaeeseeneensenseseesbesaeesesneeneensens 6
22 INfOrMELIVE FEFEIENCES. ... ettt ettt ettt s et e e e e st e e be s et eae et enseneeseesbesaeeresneeneentens 6
3 Definitions and aDbrEVIBLIONS...........oieeereeese et te e steereentesneeneeseesneeneeseeenes 7
31 D= T a1] (0] PP TP PRTUPTPPUSRSII 7
3.2 ADDIEVIBLIONS ...ttt bbbt a et e s e b e sh e e b e e R e e he e s e e ee e b e sheeb e e Rt e R e et e R e bt sheebeeneeneennen 7
4 Package conformance and COMPELDIITYcceeiiririneieee e 7
5 Package Concepts for the Core LangUage.............ccccuiiriiiiiiiciiinc s 8
51 The special configuration type: CONFIGUIaLION.........c.ciuirieiriiieirieieere et 9
5.2 The coNfigUIation FUNCLIONciiie ettt e aa e e reeste e be e teeneesnaesneesreesneenseenneans 9
53 Starting a static teSt CONFIGUIBLIONeeiieieeieee ettt ste e e e e s e s reeaeenseenteesaeenaesseesreas 10
54 Destruction of statiC test CONfIQUIALIONS...........eeiieieiie e st s e st e et etesee e e sreesnnenseenneens 11
55 Creation Of StatiC tESt COMPONENTS.........iciieie e cee e s ste et e e e e e st e e steeseeeeeeseesseaseenseenseeseesneesseesrens 11
5.6 Establishment of static connections and Static MaPPIiNGS.......ceiveiiereieiereese e ee e eee e see e eeesreesnes 12
5.7 Test case definitions for static test CONFIGUIALIONcocueiieieeciee e 13
5.8 Executing test cases on statiC teSt CONFIQUIBLIONS.ceiviieiriiieiereeeet et 14
5.9 1S (= Tox o] RS 15
5.10 Ports with translation Capability ..o e 15
5.10.1 Tranglation capability in POrt type deClaration..............ciriirirerirereee e 17
5.10.2 MappiNg and CONNECEING POITS.c.ciuerieuirierieieete ettt sttt r et sb ettt bbbt b e et be b et b e b 18
5.10.3 Translation FUNCLIONS ..ottt bt bt e e et b bt b neene e e enre e 18
5104 THANSIATON SEALE......eeeeeeee et bbb h et s e bbbt b et e h e e e e e e b e sbeebesreene e e nne s 19
5.10.5 S 1o [0 SO P SRS 21
5.10.6 =01 AV oo S 21
5.10.7 N (0| =SS TSRS 23
5.10.8 Clear, start, Stop and halt OPEIralioNceecie et e st e s re e teeneeeneeenes 23
6 PACKBOE SEMBINTICS.......ccveetieteie ettt e bt b bbb s b e n e e st b n s 24
6.1 Replacement OF SO FOMMS.......c.oiii ettt bbbt 25
6.2 Order Of rEPIACEMENE SIEPS......eiviiete ettt ettt ettt b e et b e et b e b st b e et eb e e et e b e bt eb e b 26
6.3 Flow graph representation of TTCN-3 BENAVIOUNcccviiiiieic e 27
6.4 Flow graph CONSLrUCEON PrOCEAUIE.........cccui e e ceeeste ettt et et e st te e sreesreeee et e ssaesseesseesseesseeseensennennnns 27
6.5 Flow graph representation of configuration fUNCLIONS............cccci i iiiiiecece e 28
6.6 Retrieval of start NOAeS Of fIOW Qraphs.........ccve i et snee s 28
6.7 Y Toe (B L= = = TSP P PP TS OSPP 29
6.8 ACCESSING the MOAUIE SLBLE ..ottt et e st et e et e e eesaeesaeesseeseenteenseeneenseesneas 29
6.9 CONFIGUIBLTION SEBEE ...ttt ettt ettt b e et b e s e bt b s e e bt b e s e e bt s b et e bt e b e s e et ebenb et e b e s e et ebenn e e 29
6.10 Accessing the CONfiGUIALioN SLALE...........couciiiieiii ettt e 29
6.11 ENEITY SEAEES ...ttt bbb £ R R R R R R R b et bt r e et 30
6.12 ACCESSING ENEITY STBLES.eeueeteeeieetirt ettt ettt b et b et b e st b e s e bt s e e s e e bt e e st b e e e bt b e s e s e b et e e nn e b e nnis 32
6.13 Handling of CONNECLIONS AMONQ POITS........couiiuiiriirieieiert ettt bbbttt sbesn e 33
6.14 HEANAITNG OF POMT SLAEES ...ttt e b bbbt b et b et 34
6.15 The evaluation procedure for a TTCN-3 MOTUIEcceiiueiceeieece e 35
6.16 LY LU o 0] 7= 1S -SSR 35
6.17 Phase |2 INITTAIIZAETON.........couiieeeee et e bbbt e b et e e e b e sbesbeebe e e ennennen 35
6.18 Phase [1: UPAEEEcouieeeiitiieieiesie sttt ettt et se st et se st e e st et et e st s bentenenbenbeneees 36
6.19 PRESE TTT: SEIECTION. ...ttt e b bbb et b se e eb e bt e heeb e et e e e e e ebeebesbeebe e e ennennens 36
6.20 PhESE [V 1 EXECULION ...ttt sttt ettt ee s e te et et e s e e emeese e besaeebesaeeneeneeneenseseaseasesaeeneeneanseneens 37
6.21 (€1 o] o 7= I 11T 1 LSRR 37
6.22 ClEAI POt OPEIBEION. ...ttt ettt sttt sttt sttt e et b e e et bt b e e eb e s e et eb e s b et e bt e b e e eb e b e bt e b e s e e st ebene e st eb e s b et ebenneneeee 38
6.23 Configuration FUNCEION Call.........coooiiiiiee bbb et b et eb e e 38

ETSI

4 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.24 (01011 o100 0= = 11 o S 39
6.25 L@ = (ST o o< = 1] SRS 40
6.26 Flow graph segment <AiSCONNECE-AlI>..........ccuiiiiiiececee et e e e e sne e reereens 42
6.27 Flow graph segment <diSCONNECE-COMS..........ccouiiieiierieieee e seeseesteeste e eaessaesree e e teensesneesreesseesseenseensenns 43
6.28 Flow graph segment <AiSCONNECE-POMc.ociuiiieiiesiereere et eseese e te e e sraesae e e teesseeneesreesseesseeseensenns 44
6.29 Flow graph segment <di SCONNECE-IWO-PaIr-PaITS>ccieiiiieiieieeseeseeste e see e e e e e esesaeseesreesaeeseenneens 44
6.30 EXECULE SLALEIMENT ...ttt ettt ettt ettt ettt e e e bt e e s he e e bt e e sh e e e be e e saeeebe e e ebeeenn e e sabeeenneesabeeenneesnneesnneean 45
6.31 Flow graph segment <exeCute-WithOUL-CONFIG™oiriiiririeirie e 46
6.32 Flow graph segment <eXeCULE-0N-CONTIG™c.ciirieiriiieiiiie st 46
6.33 Flow graph segment <execute-on-config-WithOUE-timMEOUL> ..o e 46
6.34 Flow graph segment <execute-on-Config-tiMEOUES ..o e 48
6.35 Flow graph segment <statement-BIOCK>cco i 50
6.36 L L 00 0] o7 o) o SRR 51
6.37 Kill COMPONENT OPEIBLIONeeiteeeiceeceeeete et ee e e s e et eeste et e s e e saeesse e teenteeaeesseesseeseesseensesneesneesseesseanseensenns 52
6.38 Flow graph segment SKIlI-MIECSocii e e e teentesseesneesaeesneeseenneens 54
6.39 Flow graph segment <Kill-all-COmP>ccooiiiiiece et e e e e e sne e reereens 54
6.40 Kl EXECULION SEBEEIMIENT ... ettt sttt ettt et bbbttt e e e e s e e sb e e bt s aeebe et e e e e e ebenbesreeneeneennennens 56
6.41 Kill CONFIQUIELiON OPEIBLIONccvitiietiteeei ettt bbbt b et b bbb 57
6.42 = o X o o = = (o OSSOSO PSR PRR 57
6.43 SEAMT POIT OPEFELION........ecveteeete ettt h et h b e b e b e bt b e e be b e e e bt e b e s e e bt e b e st e b e s e e st ebese et eb e s b et ebesne e e 58
6.44 SLOP COMPONENTE OPEIBELION.......eeeeeete et sttt sttt sttt b et e et b e s b et b b e st e bt s b e st ehe b e e e bt ee e st ebesb et eb e s b et ebenbe e e 59
6.45 FIOW graph SEgMENT SSLOP-MIECSottt se et et esbeeaeese e e eneeseeseesbesaeereeneaneeneens 61
6.46 Flow graph SegmeNnt <SEOP-CONFIGSoouiiieiere ettt sttt e e seestesaeseeeneeneenaens 61
6.47 Flow graph segment <StOP-tC-CONTITS.......iiiiiiiiiiece st te e reeaesreesreesne e seenseens 62
6.48 RS 0] o) o0 0] 0= 7= 1 oo S 63
6.49 Flow graph segment SUNMEP-all>.........ocuv oo sre e e e sreesne e reenneens 65
6.50 Flow graph segment <UNMED-COMIP™Sciueieeieerieeieeteeseesseesseeseesteesseesssseesseesseasseesseessessesnsessesssesssesnessnes 66
6.51 Flow graph Segment SUNMED-POMTSc.occveiieieeseeseeseeeseesaeseeseeesseeteetesseesseessaesseesseesseesessessseesseenseensenns 67
7 TRI EXteNSionS fOr the PaCKagEccoviiiiie ettt s e ne s 67
7.1 Changes and extensionsto clause 5.5.2 of ES 201 873-5 [3] Connection handling operations....................... 67
7.2 Extensionsto clause 6 of ES 201 873-5 [3] Javalanguage Mappingcceerereeerierieerenseesesseesseseeseesennes 69
7.3 Extensionsto clause 7 of ES 201 873-5[3] ANSI C language Mapping.........coeeeeereereeererseesenseesessenessenees 69
7.4 Extensionsto clause 8 of ES 201 873-5[3] C++ language MapPingccceeeerreerieeieeseeseesieesiesseeseesessseesees 69
8 TCl EXtensionS for the PaCKagEccoviiviie ettt st ne e 70
8.1 Extensionsto clause 7.2.1.1 of ES 201 873-6 [4] ManNaQEmMENLccccveieeveeieesienteenieeie e seeseesree e eseesnee e 70
8.2 Extensionsto clause 7.3.1.1 of ES201 873-6 [4] TCl TM reqUIredccoerueirireeneneeneseeesieseeeeeeseeeees 70
8.3 Extensionsto clause 7.3.1.2 of ES 201 873-6 [4] TCl TM Providedcccooeerineenineinineeneseeesieseeees 70
8.4 Extensionsto clause 7.3.3.1 of ES 201 873-6 [4] TCl CH reqUITed..........ccoruieeirinieiriieeseseeesieseeesee s 71
85 Extensionsto clause 7.3.3.2 of ES 201 873-6 [4] TCl CH provided...........cceoueirineeenineinineeseseeesieseeees 72
8.6 Extensionsto clause 7.3.4 of ES 201 873-6 [4] TCI-TL Provided.........cccocoviieirineienieirenieeseseeesieseeeees 72
8.7 Extensionsto clause 8 of ES 201 873-6 [4] Javalanguage MapPingcceerereeeruenmeerenseesesseesseseeseesesnes 74
8.8 Extensionsto clause 9 of ES 201 873-6 [4] ANSI C language Mapping........cccccuereereereerreereeeseessesseeseeseesees 76
8.9 Extensionsto clause 10 of ES 201 873-6 [4] C++ [anguage MapPingcceeveereereeeieeeeeseeseeseesieesseeseeseesnes 77
8.10 Extensionsto clause 11 of ES 201 873-6 [4] W3C XML MaPPIiNg.......ccccvreurieereerieenieeieeieseeseeseeeseeesseeeesnes 78
Annex A (nor mative): BNF and StatiC SEMaNTICS.......coeieeieeeerieeesies et 79
A.1l Additional TTCN-3LEMUNGIS.....ccoiiiririiiresere ettt st b et et e s see e e 79
A.2 Modified TTCN-3 syntaX BNF produCiONS..........cccoiiiiiieiieiiese ettt sttt sre e sre e sresne e 79
A.3 Additional TTCN-3 syntax BNF produCTiONS..........cccoeiriiirinesiesieeeeeesesiese s 80
Annex B (informative): Library of USEfUl tYPESc.eciecece et 82
2 0 O I 0 = o USSR 82
B.2 USEfUI TTCON-BIYPES ... oiitieiiitiiie it cteete st e tee e st e e e s te s e s tesae e besaeeaeesbeeaeeseesaeensesbeeasestesaseneessesneensesresneens 82
B.2.1 SALUS VAl UES FOF POI SLALES......cuveeeieeeie ettt ettt et e e et e e teestessaesaeesaeesseeseenteenseeneesneenseensens 82
[1S 0] Y PSSP 83

ETSI

5 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

Thisfinal draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document relates to the multi-part standard covering the Testing and Test Control Notation version 3, as
identified below:

ES201873-1[1]: "TTCN-3 Core Language';
ES201873-2[i.1]: "TTCN-3 Tabular presentation Format (TFT)";

ES 201 873-3[i.2]: "TTCN-3 Graphical presentation Format (GFT)";
ES201873-4[2]: "TTCN-3 Operational Semantics';
ES201873-5[3]: "TTCN-3 Runtime Interface (TRI)";
ES201873-6[4]: "TTCN-3 Control Interface (TCI)";

ES 201 873-7i.3]: "Using ASN.1 with TTCN-3";

ES201873-8[i.4]: "ThelDL to TTCN-3 Mapping";

ES 201 873-9[i.5]: "Using XML schemawith TTCN-3";

ES 201 873-10 [i.6]: "TTCN-3 Documentation Comment Specification"”.

ETSI

http://webapp.etsi.org/IPR/home.asp

6 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

1 Scope

The present document defines the Configuration and Deployment Supportpackage of TTCN-3. TTCN-3 can be used for
the specification of all types of reactive system tests over avariety of communication ports. Typical areas of application
are protocol testing (including mobile and Internet protocols), service testing (including supplementary services),
modul e testing, testing of CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can
be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing.
The specification of test suites for physical layer protocolsis outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as conceptsin the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines the TTCN-3 support for static test configurations.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

2] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] I SO/IEC 9646-1: "Information technology - Open Systems | nterconnection -Conformance testing
methodology and framework; Part 1. General concepts’.

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI

http://docbox.etsi.org/Reference

7 Final draft ETSI ES 202 781 V1.2.1 (2013-04)
[i.2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[1.3] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.4] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.5] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML with TTCN-3".

[i.6] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions givenin ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5[3], ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5[3], ES 201 873-6 [4], ISO/IEC 9646-1 [5] and the following apply:

MTC Main Test Component
PTC Parallel Test Component
4 Package conformance and compatibility

The package presented in the present document isidentified by the package tag:

"TTCN- 3: 2009 Static Test Configurations" -to be used with modules complying with the present
document.

For an implementation claiming to conform to this package version, al features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ES 201 873-1 [1] and
ES201873-4[2].

The package presented in the present document is compatible to:
. ES 201 873-1[1] version 4.2.1;
. ES 201 873-2[i.1] version 3.2.1;
. ES 201 873-3[i.2] version 3.2.1;
. ES 201 873-4 [2] version 4.2.1;
. ES 201 873-5[3] version 4.2.1;
. ES 201 873-6 [4] version 4.2.1;
. ES 201 873-7 [i.3] version 4.2.1;

. ES 201 873-8[i.4] version 4.2.1;

ETSI

8 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

ES 201 873-9[i.5] version 4.2.1;

ES 201 873-10[i.6] version 4.2.1.

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5

Package Concepts for the Core Language

This package defines the TTCN-3 means to define static test configurations. A static test configuration is a test
configuration with alifetime that is not bound to a single test case. The test components of a static test configuration
may be used by several test cases. This package realizes the following concepts:

A specia configuration function is introduced which can only be called in the control part of a TTCN-3
module to create static test configurations. The configuration function returns a handle of the predefined type
confi gurati on to access an existing static test configuration.

A static test configuration consists of static test components, atest system interface, static connections and
static mappings. These constituents have the following semantics:

- A static test component is a special kind of test component that can only be created during the creation of
a static test configuration and can only be destroyed during the destruction of a static test configuration.
By definition, the MTC of a static test configuration is a static test component.

- The test system interface of a static test configuration plays the same role as the test system interface of a
test configuration created by atest case.

- A static connection is a connection between static test components. It can only be established during the
creation of a static test configuration and only be destroyed during the destruction of a static test
configuration.

- A static mapping is a mapping of a port of a static test component to a port of the test system interface of
a static test configuration. Such a mapping can only be established during the creation of a static test
configuration and only be destroyed during the destruction of a static test configuration.

A static test configuration can be used by several test cases. For thisthe test caseis started on a previoudy
created static test configuration. This means:

- The body of the test case is executed on the MTC of the static test configuration.
- The MTC may start behaviour on other static test components of the static test configuration.

- Static test components may create, start, stop and kill normal and alive test components. The lifetime of
these componentsis bound to the actual test case that is executed on the static test configuration. In case
that a normal and alive test component is not destroyed explicitly by another test component, it is
implicitly destroyed when the test case ends.

- During test case execution non-static connections and non-static mappings may be established. The
lifetime of non-static connections and non-static mappings is bound to the actual test case that is
executed on the static test configuration. In case that a non-static connection or a non-static mapping is
not destroyed explicitly by another test component, it isimplicitly destroyed when the test case ends.

Component timers and variables of static test components are not reset or reininitialized when atest caseis
started on a static test configuration. They remain in the same state as when they were left after the creation of
the static test configuration or after the termination of a previoustest case. This allowsto transfer information
from one test case to another.

Ports of static test components are not emptied or restarted when atest case is started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign. In addition, all port operations(i.e. cl ear,start,stop and hal t) are
disallowed for ports of static test components. All ports of a static test component remain started during the
whole lifetime of a static test configuration.

ETSI

9 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

. In contrast to component timers, variables and ports, the verdict and the default handling is reset. This means
al activated defaults are deactiviated, al local verdicts and the global verdict are set to none.

5.1 The special configuration type: configuration

The specia configuration type conf i gur at i on isahandle for static test configurations. The special valuenul | is
available to indicate an undefined configuration reference, e.g. for the initialization of variables to handle a static test
configuration.

Values of typeconf i gur at i on shall be the result of configuration functions, they can be checked for equality,

e.g. to check if two variables store the same value, and they can be used in execut e statements for starting atest case
on an existing static test configuration and inki | | configuration statements to destroy an existing static test
configuration.

EXAMPLES:
var configuration nyStaticConfig := null; /1 Declaration and initialization of a
/1 configuration variable.
nyStaticConfig := aStaticConfig(); /'l Assigns a value to the previously declared
// configuration variable. It is assunmed that
/laStaticConfig() is a configuration function.
myStaticConfig.kill /Il Kills the static test configuration stored in

/1 variable nyStaticConfig.

5.2 The configuration function

A configuration function allows the start of a static test configuration.

Syntactical Structure

configuration Configurationldentifier

"(" [{ (Formal Val uePar | Fornal TenplatePar) [","] }] ")"
runs on Component Type

[system Conponent Type]

St at ement Bl ock

Semantic Description

A configuration function allows the start of a static test configuration. A configuration function has to be defined in the
definitions part of a TTCN-3 module and shall only be invoked in the control part of a TTCN-3 module. By definition, a
configuration function returns avalue of type conf i gur at i on if the start of the configuration was successful, or

nul | if the start of the configuration was not successful.

The invocation of a configuration function causes the creation of the MTC and the test system interface of the static test
configuration. The types of MTC and test system interface shall bereferenced inar uns on and asyst emclause.
Thesyst emclauseis optional and can be omitted, if the test system has exactly the same ports as the MTC and these
ports are mapped one to one to each other.

The behaviour in the body of a configuration function shall be executed on the newly created MTC. During the start of
atest configuration only behaviour on the MTC shall be executed and only static test components, static connections
and static mappings shall be created or established. Communication with the SUT or with static PTCsis not allowed.

NOTE: The configuration function only returns a reference to atest configuration and no verdict. However,
communication with the SUT might have to be checked. For this purpose, intial communication, e.g. for
registration or coordination purposes, could be defined in form of atest case.

A static test configuration is successfully started if the behaviour of the corresponding configuration function has been
executed till itsend or if ar et ur n statement in the corresponding configuration function is reached. In case of a
successful start, areference to the newly created configuration is returned. The usage of ast op or aki | | statement
allows to specify an unsuccessful start of a static test configuration. In case of an unsuccessful start, thevaluenul | is
returned.

ETSI

10 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Restrictions
a) Therulesfor formal parameter lists for the configuration function shall be followed as defined in clause 5.4 of
ES 201 873-4[2].

b) Configuration functions shall only be invoked in the module control part.
¢) For the behaviour definition in the body of the configuration function the following restrictions shall hold:
- Only static test components, static connections and static mappings shall be created or established.

- Once created or established static test components, static connections and static mappings shall not be
destroyed.

- It is not allowed to create and establish non-static test components, connections and mappings.
- It isnot alowed to start behaviour on newly created static test components.
- Communication, timer and port operations are not allowed.

EXAMPLES:

/1 The followi ng configuration function can be used to start a sinple static test configuration
/1 which only consists of one MIC

configuration sinpleStaticConfig () runs on MyMICtype{}

/1 The followi ng configuration function starts a nore conplex static configuration.

/1 Configuration information is stored in MIC conponent variables. Further non-static
/1 connections and nappi ngs nay be established by the test cases that are executed

/1 on this configuration.

configuration aConpl exStaticConfig (in integer NoO'PTCs) runs on MYMICtype system MySystenilype {
var integer i;

if (NoOFPTCs < 0) {
I og ("Negative number of PTCs");

kill; /'l unsuccessful termnation
}
else if (NoOFPTCs > MaxNoOf PTCs) { /1 MaxNoOF PTCs is a constant
log ("Nunber of PTCs is too high");
kill; /1 unsuccessful term nation
}
el se {
for (i :=1, i <= NOOPTGCs, i :=1i + 1) {
PTC[i] := PtcType.create static; Il creation of static PTGCs,
/1 Array PTC[] is a conponent variable
connect (ntc:SyncPort, PTCi]:SyncPort) static; // static connection
}
map(ntc: PCO, system PCOL) static; /] static mapping of MIC.
map(PTC[1] : PCO, system PCO2); /] sone static nappings of PTCs,
map(PTC[2] : PCO, system PCXB) ; /1 further non-static mappings nmay be
/'l established during test runs
}
return; /'l successful term nation

5.3 Starting a static test configuration

A static test configuration is started by calling a configuration function in the control part of a TTCN-3 module. In case
of asuccessful start, areference to the newly created static test configuration is returned. In case of an unsuccessful
start, the special value null is returned.

ETSI

11 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

EXAMPLES:
control {
var configuration nyStaticConfig := null; /1 Declaration and initialization of a
/1 configuration variable.
nyStaticConfig := aStaticConfig(); /1 Assigns a value to the previously declared

/1 configuration variable. It is assumed that
/'l aStaticConfig() is a configuration function.

if (nyStaticConfig == null) {

st op; /1 Stop test canpai gn due to an unsuccessful start
}el se {
execut e(MyTest Case(), nyStati cConfi g) /'l Successful start, continuation of test canpaign
}
}
54 Destruction of static test configurations

A static test configuration can be destroyed by executing a kill configuration operation.

Syntactical Structure

Confi gurationReference. kil |

Semantic Description

The execution of akill configuration operation causes the destruction of a static test configuration. The destructionis
similar to stopping atest case by killing the MTC. This means, resources of all static PTCs shall be released and the
PTCsshall be removed. The only differenceisthat no test verdict is calculated and returned. After executing theki | |
configuration operation, it is not possible to execute a test case on the killed static test configuration.

Executing the kill configuration operation with the special value nul | shall have no effect, executing akill
configuration operation with a reference to a non existing static test configuration shall cause a runtime error.

Restrictions
a) Thekill configuration operation shall only be executed in the control part of a TTCN-3 module.
EXAMPLES:
control {
var configuration nyStaticConfig := null; /1 Declaration and initialization of a
/1 configuration variable.
nyStaticConfig := aStaticConfig(); /1 Assigns a value to the previously declared
/1 configuration variable. It is assumed that
/1 aStaticConfig() is a configuration function.
nyStaticConfig.kill /'l Destruction of the previously started static
/1 test configuration.
5.5 Creation of static test components

The creation of static test components shall be indicated by the additional keyword st at i ¢ inthecr eat e operation.
The extension of the cr eat e operation in clause 21.2.1 of ES 201 873-4 [2] required for the creation of static test
components is described in the following sections.

Syntactical Structure

Conmponent Type "." create ["(" Expression ")"] [alive | static]

ETSI

12 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Semantic Description

Thecr eat e operation in combination with the keyword st at i ¢ shall only be used to create static test components.
Static test components can only be created by executing a configuration function and by functions directly or indirectly
invoked by configuration functions. The keyword st at i ¢c inacr eat e operation shall not be used in combination
with the keyword al i ve.

NOTE 1: During thelifetime of a static test configuration, a static component behaves like an alive component.

Static test components are created in the same manner as normal test components that are not declared as alive
components. Further details on this can be found in clause 21.2.1 of ES 201 873-4 [2].

NOTE 2: Static test components can only be created directly or indirectly by a configuration function. This may be
checkable at runtime and therefore the keyword static may not be required, but for having an explicit
specification of static test configurations and for keeping the feature of static test configurations
extendible, the keyword st at i ¢ has been introduced.

Restrictions

a) Thecr eat e operation in combination with the keyword st at i ¢ shall only be invoked in configuration
functions and in function that may be directly or indirectly called by such a configuration function.

b) Thekeywordst ati c inacr eat e operation shall not be used in combination with the keyword al i ve.
EXAMPLES:

/1 This exanple declares variables of type MyConponent Type, which are used to store the
Il references of newy created static conponent instances of type MyConponent Type.
/1 An associated nane is allocated to sone of the created conponent instances.

vér MyConponent Type MyNewConponent ;
var MyConponent Type MyNewest Conponent ;

M/NewOorrponent : = MyConponent Type. create static;
M/Newest Conponent : = MyConponent Type. creat e("Newest") static;

5.6 Establishment of static connections and static mappings

The establishment of static connections and static mappings shall be indicated by the additional keyword st ati c in
connect andthe map operations. The extension of the connect and map operation in clause 21.1.1 of

ES 201 873-4 [2] required for the establishment of static connections and mapping is described in the following
sections.

Syntactical Structure

connect "(" ConponentRef ":" Port "," ComponentRef ":" Port ")" [static]
map " (" ConponentRef ":" Port "," ConmponentRef ":" Port ")" [static]

Semantic Description

Theconnect and map the operation in combination with the keyword st at i ¢ shall only be used to establish static
connections and static mappings. Static connections and static mappings can only be established by executing the
creator function of a configuration type and by functions directly or indirectly invoked by the creator functions of
configuration type.

Static connections and static mappings are established in the same manner as normal connections and mappings. Further
details on this can be found in clause 21.1.1 of ES 201 873-4 [2].

NOTE: Static connections and mappings can only be established directly or indirectly by a creator function of a
configuration type. This may be checkable at runtime and therefore the keyword st at i ¢ may not be
required, but for having an explicit specification of static test configurations and for keeping the feature of
static test configurations extendible, the keyword st at i ¢ has been introduced.

ETSI

13 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Restrictions
a Theconnect and nap operationin combination with the keyword st at i ¢ shall only be used in
configuration functions and in functions that may be directly or indirectly called by a configuration function.

b) Static connections and static mappings shall only be established to connect ports of static test components and
to map ports of a static component to the ports of the test system interface of a configuration type.

EXAMPLES:

/1 The following code fragnent may be part of a creator function of a configuration type.
/1 It is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

v;ar My Conponent Type M/NewPTC;
M/NewPTC : = MyConponent Type. create static;

cbnnect (MyNewPTC: Port1, ntc:Port3) static;
map(MyNewPTC: Port 2, system PCOL) static;

5.7 Test case definitions for static test configuration

Test cases that are executed on a static test configuration have to defined in a special manner. Such test cases shall
reference the configuration function that starts a static configuration on which the test case can be executed. The type of
the MTC and the type of the test system interface are referenced in the configuration function and shall therefore not be
specified in the test case header. The extension of the test case definition in clause 16.3 of ES 201 873-4 [2] required for
the execution of atest case on a static test configuration is described in the following sections.

Syntactical Structure

testcase Testcaseldentifier

"(" [{ (Formal Val uePar | Fornmal TenplatePar) [","] }] ")"

(runs on Conponent Type [system Conponent Type] | execute on ConfigurationType)
St at ement Bl ock

Semantic Description

A test case definition that includes an execut e on clause will be executed on previoudy created static test
configuration of the given configuration type. The type of the MTC and the type of the test system interface is defined
in the referenced configuration type. A test case definition that includes an execut e on clause shall not havear uns
on or asyst emclause.

Apart from the execute on clause, the definition of test cases to be executed on a static test configuration follows the
same rules as described in clause 16.3 of ES 201 873-4 [2].

Restrictions
a) A test case definition that includes an execut e on clause shall not havear uns on or asyst emclause.
EXAMPLES:
configuration aConfiguration () runs on MYMICtype system MySystenilype {

Peer Conponent := MyPTCType.create static; /Il creation of a static PTC
/| Peer Conponent is a conponent variable

connect (ntc: syncPort, Peer Conponent:syncPort); /] static connection

map (ntc: PCOL, system PCOL) /] static mapping ot MIC
map (Peer Conponent: PCO2, system PCO2); // static mapping of Peer Conponent

return /'l successful start of test configuration

}

testcase MyTestCase () execute on aConfiguration {

default := activate(UnexpectedReceptions()); // activate a default

ETSI

14 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Peer Conponent . start (PTCbehaviour()); /'l starting PTC behavi our
SyncPort.send (Ready); /1 synchronization with PTC
SyncPort.recei ve(Ready); /1 PTC ready

PCOL. send (stinulus); /] test starts

/1 test behaviour

5.8 Executing test cases on static test configurations

This clause only describes the syntax extensions of the execut e statement to allow the execution of test cases with an
execut e on clauseon static test configurations and the semantics for executing such test cases. The semantics of the
execut e statement for test cases without execut e on clause remains unchanged.

Syntactical Structure

execute "(" TestcaseRef "(" [{ Tenplatelnstance [","] }] ")"
["," TimerValue]
["," ConfigurationRef] ")"

Semantic Description
A test case definition that includes an execut e on clause shall be executed on previoudly started static test

configuration of a given configuration function. The reference of the previoudly started static test configuration shall be
referenced in the execut e statement.

Trying to execute atest case on a non-existing or unfitting static test configuration shall cause arun time error.
Unfitting test configuration means that the referenced static test configuration has not been created by the configuration
function referenced in the test case header.

If the execution of atest case on a static test configuration causesan er r or verdict, all following usages of this static
test configuration in execut e statements shall cause aruntime error.

NOTE: Itisalowed tokill the possibly erroneous static test configuration and to start a new one by invoking the
configuration function again.

A test case that shall be started on afitting static test configuration can rely on the following things:

. All static test components, static connections and static mappings created or established by the referenced
configuration function shall exist.

. No non-static test components, non-static connections and non-static mappings shall exist.

. Component timers and variables of static test components shall not be reset or reininitialized when atest case
is started on a static test configuration. They remain in the same state as when they were |eft after the creation
of the static test configuration or after the termination of a previous test case. This allows to transfer
information from one test case to another.

. Ports of static test components shall not emptied or restarted when atest case is started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign.

. In contrast to component timers, variables and ports, the verdict and the default handling shall be reset. This
means all activated defaults are deactiviated, al local verdicts and the global verdict are set to none.

ETSI

15 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Executing atest case on a static test configuration means that the body of the test case is executed on the MTC of the
static test configuration. During test execution, all static PTCs behave like alive test components. This means, static
PTCs may be stopped and started several times. During test case execution, non-static normal and alive components
may be created, started, killed and stopped. In addition, non-static connections and mappings may be established and
destroyed.

A test case that is executed on a static test configuration shall end when the behaviour of the MTC ends. In this case, the
final test case verdict is returned. The final test case verdict shall be calculated based on the local verdicts of all static
and non static test components. Furthermore, all non-static test components, non-static connections and al non static
mappings shall be discarded.

Restrictions

All restrictions mentioned in clause 26.1 of the core language document [1] apply.

EXAMPLES:
var verdict MyVerdict /1 local variable
var configuration MyConfiguration := aConfiguration(); // starting a static test configuration
MyVerdi ct : = execut e(MyTest Case (), MyConfiguration); /] execution of a test case on a static
/'l test configuration
if (MyVerdict :== pass) {
MyVerdict := execute MyTestCase (), 10.0, MyConfiguration); // executing the sanme test case

/1 with tine guard

/1 further test behaviour
st op;

5.9 Further restrictions

Static test components, static connections and static mappings have a special semantics. Therefore, situations shall
cause aruntime error:

e Applyingaki | | test component operation to a static test component.
e Applying port operations (cl ear , st art, st op and hal t) to aport owned by a static test component.
. Applying a disconnect operation to a static connection.

e Applying unmap operation to a static mapping.

5.10 Ports with translation capability

This clause describes an extension of a message port type definition adding translation capability into it.

Trangdlation feature is a set of rules that allows to convert messages and/or addresses of one type into messages and/or
addresses of different type during sending or receiving.

It can be used e.g. in situations where the test behaviour is defined on one set of data types but the system under test (or
connected component) actually communicates using a different set of datatypes, i.e. if the test system workson a
different layer of the protocol stack than the system under test.

To alow flexible adaptation to the system under test, the user shall have the means to control thistrandation in the
abstract test suite.

Syntactical Structure

type port PortTypel dnessage
[map to{CQuterPortType[","]}+]
[connect to {QuterPortType[","]}+]"{"

ETSI

1+

"y

16 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

(in{InnerinType [from {QuterlnType withlnFunction"("")"[","]1}+][","]1}+
out{lnnerQut Type[to {QuterQut Type with QutFunction"("")"[","]1}+ 1[","1}+ |
i nout {1 nQut Type[","]}+ |

addr essAddr Type[t o{ Qut er Addr Typewi t h Addr Qut Function"("")"[","]1}+]

[from{ QuterAddrTypewi th AddrlnFunction"("")"[","]}+] |

map paran' ("{Formal Val uePar [","] }+ ")"|

unmap param " ("{ Formal Val uePar [","] }+ ")" |

Var | nstance) ";"

NOTE: Please note that the same OuterInType may appear in more than onei n message specifications for

different InnerinType-s. In each such clause the InFunction is different.

Semantic Description

PortTypeld is name of the type being defined.

/ Port in trand ation mode \

\ __________________ Outer queue /

Standard port
behaviour

Trandation behaviour

OutFunction is
implicitly invoked

\ 4

\
|
! Inner out message (of
1
|
]

]

|

|

type InnerOutType)

]

rosae [T] [T i

i IN Inner in message (of
, type InnerinType)

InFunction is
implicitly invoked

Outer out message
Outer in message (of (of type
type OuterInType) OuterOutType)

Figure 1: lllustration of ports with translation capability

Outer PortType references the outer message port type this port is mapped to. If the referenced port isa
mapped port, it shall not contain direct or indirect reference to the PortTypeld in the list of its OuterPortTypes.

InnerInType references a type that can be received over such a port.

OuterInType references atype that is actually received and which shall be trandlated to InnerlnType.
InFunction references a function which shall be used to trandate OuterInType to InnerinType.
InnerOutType references atype that can be sent over such a port.

OuterOutType references atype that is actually sent which has been translated from InnerOutType.
OutFunction references a function which shall be used to translate InnerOutType to Outer OutType.
InOutType references atype that can be sent and received by the port.

AddrType is the address type bound to the port type being defined.

ETSI

17 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

. Outer Addr Type is the address type into which the Addr Type is translated.
e AddrOutFunction references a function which shall be used to trandlate the Addr Type to theOuter Addr Type.
. AddrInFunction references a function which shall be used to trandlate the Outer Addr Type to theAddr Type.

e Varlnstanceisadeclaration of aport variable.

5.10.1 Translation capability in port type declaration

If a port type declaration includes trand ation capability, it shall aways contain at least one map or connect clause.
These clauses define one or more port types for which translation mechanism is defined.

If aport type is referenced in the map clause, the following applies:

. All types fromthei n message list of the OuterPortType shall be referenced either as InnerinType,
OuterInType or InOutType in the port type with tranglation capability.

. All InOutTypes shall be present either in the in and out lists (at the sametime) or in the inout message list of
the OuterPortType.

e All InnerOutTypes shall be referenced in the out message list of the OuterPortType or if such areference does
not exist, the OuterPortType shall contain at |east one reference to any of the Outer OutTypes associated with
the InnerOutType in its out message list.

NOTE 1: If these conditions are met, it is aways safe to map TS| ports of Outer OutType to instances of the port
type with translation capability.

If aport typeisreferenced in the connect clause, the following applies:

. All types from the out message list of the OuterPortType shall be referenced either as InnerinType,
OuterInType or InOutType in the port type with tranglation capability.

e All InOutTypes shall be present either in thein and out lists (at the same time) or in the inout message list of
the OuterPortType.

e All InnerOutTypes shall be referenced in the in message list of the OuterPortType or if such areference
doesn’t exist, the OuterPortType shall contain at least one reference to any of the Outer OutTypes associated
with the InnerOutType initsin message list.

NOTE 2: If these conditions are met, it is always safe to connect ports with translation capability to ports of
OuterOutType.

Port types with translation capability can contain variable declarations. These variables are created and initialized when
aport instance is created and have the same lifetime as the port instance itself. Every port instance hasits own copy of
these variables. Port variables can be accessed only from InFunctions and OutFunctions. They are not visible outside of
the trandlation procedure. The variables can be used e.g. for buffering data between individual calls of InFunctions and
OutFunctions(e.g. in case of fragmented messages).

Restrictions

In addition to the general static rules of TTCN-3 restrictions specified in clause 6.2.9 of ES 201 873-1[1], the following
restrictions apply:

a) If the OuterPortTypeis aport type with translation capability, it shall neither directly nor indirectly reference
PortTypeld in its map or connect clause (i.e. port types with translation capability cannot reference each
other).

b) All OuterAddrTypes shall be used as an address type at least in one of the OuterPortTypes.

c) All InFunction, OutFunction and AddrFunction identifiers shall be references to a trand ation function.

ETSI

18 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

EXAMPLE:
typeport TransportPort

i nout Tr ansport Message;

}
type port DataPort map to Transport Port

i nDat aMessage fronilransport Message withtransport ToData();
out Dat aMessage toTransport Message wit hdat aToTransport();

5.10.2 Mapping and connecting ports

Ports with trandation capability can work in two different modes: normal and translation mode. In normal mode, the
port behaves as a standard message port according to the rules specified in ES 201 873-1 [1]. In trandation mode, the
port uses rules described in the following clauses of the present document to convert messages and addresses when
communicating with linked ports.

The trand ation mode is activated in these cases:

. A map operation is applied to a component port and TSI port and the component port type contains a reference
to the TSI port type in its map clause.

e A port type of one operands of a connect operation contains a reference to the port type of the other operand in
its connect clause.

In all other cases, normal mode is activated.

EXAMPLE:
typeport TransportPort {

}

type portDataPort map to TransportPort {

}

t ypeconponent Syst enConponent {
portDat aPort dataPort;
portTransportPort transportPort;

}

type conponent Test Conponent {
port DataPort dataPort;

}
testcase TC runson Test Conponent system Syst enConponent
{
i f (PX_TRANSPORT_USED) {
/'l activate translation node (TransportPort is inplicitly referenced via transportPort
/1 in the map operation)
map(ntc: dataPort, systemtransportPort);
}
el sef
/] activate normal node (TransportPort is not referenced in the map operation)
map(ntc: dataPort, system dataPort);
}

5.10.3 Translation functions

Trandlation functions are used by ports working in translation mode for converting incoming and outgoing messages
and addresses from one type to another.

Syntactical Structure

function Functionldentifier"("inFormal Val uePar ", "out Formal Val uePar ")"
[port Port Typel d]

ETSI

19 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

St at ement Bl ock
Semantic Description

Trandation functions have always two parameters. Thefirst oneisalwaysani n parameter and it isused to passin a
value that shall be trandated by the function. The second one is always an out parameter and it shall be used to pass
the result of the trandlation to the translation procedure (see clauses 5.10.5 Sending, 5.10.6 Receiving and

5.10.7 Address) in case of successful trandation.

Unlike standard functions described in clause 16.1 of ES 201 873-1 [1], trandation functions can contain apor t
clause. If the port clause is present, all variables defined in the referenced port type become visible in the function body.

Restrictions
a) Trandation functions shall never return avalue.
NOTE: Theset st at e operation is used to inform the test system about the success of trandation.
b) Trandation functions shall not contain aruns on clause.

c) Trandation function containing apor t clause can be referenced only in the port type referenced in this port
clause.

d) Thetypeof thei n parameter of atrandation function referenced asan InFunctionin ani n clause shall be the
OuterInType immediately preceding the InFunction reference and the type of itsout parameter shall be the
InnerinType.

€) Thetypeof thei n parameter of atrandation function referenced as an OutFunction in an out clause shall be
the InnerOutType andthe type of itsout parameter shall be the Outer OutType immediately preceding the
OutFunction reference.

f) Thetypeof thei n parameter of atrangation function referenced as an AddrOutFunction in aport addr ess
declaration shall be the Addr Type and the type of itsout parameter shall be the Outer Addr Type that
immediately precedes the AddrFunction reference.

g) Thetypeof thei n parameter of atrandation function referenced as an AddrinFunction in aport addr ess
declaration shall be the Outer Addr Type that immediately precedes the AddrFunction reference and the type of
itsout parameter shall be the AddrType.

h) Trandation functions shall not contain any blocking operations.
i) Invoking afunction withaport clause explicitly shall cause an error.

EXAMPLE:
type port DataPort map to Transport Port
i n Dat aMessage from Transport Message with transport ToData();

out DataMessage to TransportMessage with dataToTransport();
var octetstring vp_renginings

}
function transportToData(i nTransport Message p_nsg, out DataMessage p_res) port DataPort {

port.setstate("Transl ated");

}
function dataToTransport (i nDat aMessage p_nsg, outTransportMessage p_res) port DataPort {

port.setstate("Transl ated");

5.10.4 Translation state
In addition to port state dimensions defined ES 201 873-1 [1], al ports working in trandation mode have an additional

port state dimension called translation state. The trandlation state always contains the result of the last executed
trandation function performed by the port.

ETSI

20 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

There are five possible trandlation states:

unset isthe default state before invoking atrandation error. If atrandation function ends with this state, an
error is generated;

not trandated means that the trand ation function has not been successful;

fragmented indicates the trandation function didn’t finish translation, because the input data didn’t contain a
complete message (i.e. more fragments are needed to finish trangdation);

translated means that the trang ation function successfully performed translation and there are no
non-trandated data | eft;

partially trandated is used when the trandlation function successfully performed trandation, but there are
additional data which hasn’t been translated yet (i.e. the input data contained more than one message).

Trandation state is set implicitly to unset whenever atranslation function is called to translate a sent or received
message. The translation state can be changed by aset st at e operation.

Syntactical Structure

port.setstate"("Singl eExpression { "," (FreeText | Tenplatelnstance) } ")"

Semantic Description

Theset st at e operation can be used only inside a function that is called during a trandation procedure to trandate a
sent or received a message. It changes the trandation state of the related port.

The optional parameters allow to provide information that explain the reasons for setting a port translation state. This
information is composed to a string and might be used for logging purposes.

Restrictions

a)

The value passed to the set st at e operation in the first parameter shall be of thei nt eger type and shall
have one of the following values:

1) 0 (meaning trandated)
2) 1 (meaning not translated)
3) 2 (meaning fragmented)

4) 3 (meaning partially translated)

NOTE 1: Numeric parameter values 0, 1 and 2 are the same as results of the predefined decval ue function.

NOTE 2: Clause B.2.1 of the present document includes the type definition translation state and the constant

b)

©)

d)

definitions TRANSLATED, NOT_TRANSLATED, FRAGMENTED, PARTIALLY_TRANSLATED.

Callingtheset st at e operation withani nt eger not listed in d) in the first parameter shall lead to an
error.

Calling the set st at e operation outside of a tranglation function or in atrandation function translating an
address shall cause a runtime error.

For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of the log
statement. See clause 19.11 of ES 201 873-1 [1] for more details.

NOTE 3: The unset state cannot be set by the set st at e operation, it is reserved for TE interna use only.

ETSI

5.10.5

21 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Sending

When a message is to be sent over a port, working in translation mode, the following shall apply:

. If no OutFunction is specified for the given InnerOutType, it is simply sent over the port transparently.

. If an OutFunction is specified for the InnerOutType, the trand ation procedure first sets the trandation state to
Unset. Then the OutFunction is automatically invoked to trang ate the InnerOutType to the Outer OutType.
When the function execution is finished, then depending on the current trand ation state one of the following
actionsistaken:

NOTE:

5.10.6

The unset state shall cause an error (i.e. if thereisno set st at e operation isinvoked in the transation
function).

If the state is not trandated, the translation procedure tries to translate the message using the next
OutFunction specified for the given InnerOutType. OutFunction-s are tried according to their textual
order in the port type definition. If there is no such a function, an error is generated.

If the state is fragmented, the translation procedure ends but no datais sent to the connected or mapped
port (the port will wait for the next fragment to complete translation). Thet o clause of the following
send operation shall be the same asthet o clause of the current send operation or missing if the current
send operation doesn’t contain any to clause.

If the state istrandated, the translation procedure sends the translated message (retrieved from the out
parameter of the OutFunction) to the port it is mapped or connected to.

If the state is partially trandated, the sent message of thel nner OutType contains several messages (or
message fragments) of theOuter OutType. In this case, the trandation procedure sends the translated
message to the mapped or connected port. The trandation function isthen called again, with the samei n
parameter value, to enable sending of the remaining messages.

In the fragmented case the non-translated part of InnerOutType has to be explicitly assigned to port
variables.

Receiving

Unlike a port working in standard mode, ports working in translation mode maintain two different queues. The outer
gueue is used to keep not translated messages that are either enqueued or sent to the port working in translation mode.
The inner message queue contains aready translated messages. Receiving operations access this inner queue. In case of
successful receiving (see clause 22.2.2 of ES 201 873-1 [1]), the successfully received message is removed from the
inner gqueue. Messages stored in the outer queue can be removed from it only by the trand ation procedure as described

below.

The TTCN-3 Executable (TE, see [4]) shal control the trandation process and the normal decoding algorithm
(see note 1) in co-operation, as specified below. But yet, the normal decoding algorithm itself is not changed.

ETSI

22 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

a - D

Port in translation mode

Outer queue TRI m e
InFunction System
(in B out J

N =

Inner queue

p.receive(A:?)

~

~~.
~
~
~
~
~
~
\\

decode (TRI message, decoding hypoth@& B)

decoded value

Codec

Figure 2: lllustration of the interworking of decoding and translation procedure during receiving

NOTE 1: Inthis clause the "normal decoding algorithm™ refers to the process that the TE invokes decoding the
received bitstring as specified in clauses 7.3.2 and C.5.4 of ES 201 873-6 [4].

The translation procedure for receiving operations isinvoked by the snapshot mechanism. This procedure iterates
through all i n clauses (InnerinType -s) defined in the port type definition. Thei n clauses are iterated according to their
textual order. During this iteration, the following shall apply:

. If no InFunction is specified for the given InnerlnType, the trandation procedure checks, if the top item of the
outer queue is of InnerInType (i.e. invokes the normal decoding algorithm, and the check is successful if the
decoding is successful). If the result of the check is positive, the message is moved from the outer queue into
the inner queue (i.e. the port will relay the message from the outer port to the inner port transparently) and
iteration ends.

. Otherwise (if the InFunction is present for the InnerInType), then the tranglation procedure checks if the top
item of the outer queue is of the OuterInType, by invoking the normal decoding a gorithm, as described above.
If the check is successful, the trandation procedure automatically executes the InFunction: first setsthe
trandation state to Unset and passes the message of the OuterInTypetoit, in the first parameter. When the
function execution is finished, the translation procedure checks the translation state of the port:

- The unset state shall cause an error (i.e. if thereisno set st at e operation isinvoked in the translation
function).

- If the state is not trandated, the iteration shall continue with the next InFunction for the same
OuterInType. If there is no more such InFunction, the trandation procedure shall continue with the next
OuterInType. If there is no more OuterInType -s for the given InnerInType, the iteration process shall
continue with the next InnerInType. The order is determined by the textual order in the port type
definition.

- If the state is fragmented, the top item of the outer queue is removed and the iteration shall be restarted to
process the next message in the outer queue. The next message shall have the same address as the current
one (including a missing address). If there is no such message, the iteration shall continue with the next
InnerinType.

- If the state istranslated, the top item of the outer queue is removed and the translated message (retrieved
from the out parameter of the InFunction) isinserted into the inner queue. This ends the whole iteration.

ETSI

23 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

- If the state is partially trandated, the received message of the OuterInType contains several messages (or
message fragments) of the InnerInType. In this case, the translated message (retrieved from the out
parameter of the InFunction) isinserted into the inner queue. Unlike in the translated case, the top
message is not removed from the outer queue. Instead, it is kept in its decoded form in the queue to
enable tranglation of the remaining messages embedded in the outer message in subsequent receive calls.

NOTE 2: Inthe fragmented case the non-translated part of OuterInTypehas to be explicitly assigned to port
variables.

. If the iteration has processed al i n clauses without any success (no transparently relayed message was
successfully moved from the outer to inner queue and all InFunction calls ended with the not trandated state),
the iteration process returns.

. In case the iteration produces a successful result, the trandation procedure might restart the iteration in order to
trandate the remai ning messages in the outer queue (if there are any), or it might for performance
consideration postpone this transl ation to the moment when the next snapshot is taken. For the same
performance reasons, the snapshot mechanism is not required to start the translation procedure in case the
inner queue already contains some messages.

5.10.7 Address

When an address type associated with a mapped port working in the trandlation mode containsat o or f r omclause and
one of the Outer Addr Type-s is the same as the address type of the mapped TSI port, the trandation procedure is applied
to all addresses used by sending or receiving calls of the port.

In case of sending a message, the trandlation procedure automatically invokes the Addr OutFunction passing the address
value defined inthet o clauseto it, initsfirst parameter. In case of receiving a message, the translation procedure
automatically invokes the AddrInFunction passing the received address value to it, in itsfirst parameter. When the
function execution is over, the tranglation procedure retrieves the trandated address from the out parameter of the
trandation function and the control is returned to the calling sending or receiving procedure to finish the operation using
the trandlated address value.

NOTE: Unliketrandation functions used for trandating sent or received messages, the translation functions for
addresses do not use trandation states.

EXAMPLE:

typeport Transport Port

addr essTransport Addr ess;

}

typeport Dat aPort mapto Transport Port

éddr essDat aAddr esst oTransport Address w t ht oTr ansport Addr ess()
from Transport Address wi th froniransport Address;

}

function toTransport Addr ess(Dat aAddress p_addr, out TransportAddress p_translated) { ...}
function fronfransportAddress(Transport Address p_addr, out DataAddress p_translated) { ... }

5.10.8 Clear, start, stop and halt operation

Thecl ear and st art operations clean messages both from inner and outer message queues. In addition to that, all
port variables are reset in the following way: if a variable declaration contains an assignment, the assignment operation
will be performed as a part of the clear or start operation restoring the initial value of the variable. Otherwise (if the
variable declaration does not contain an assignment part), the value of the variable will be uninitialized after the clear or
start operation.

Thehal t operation affects the outer queue only. The trandation procedure can still insert translated messages into the
inner queue of a halted port, provided that there are available messagesin the outer queue.

ETSI

24 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Sincethe st op port operation requires all communication operations to cease before the port is stopped, al unfinished
translation operations shall be completely performed before the working of the port is suspended.

6 Package Semantics

The complete semantics of the using the package in TTCN-3 is defined by copying the following clauses in the
following manner into of ES 201 873-4 [2]: TTCN-3 Operational Semantics.

. Clause 6.1 replaces clause 7 in ES 201 873-4 [2].

e Clause 6.2 replacesclause 7.1in ES 201 873-4 [2].

e Clause 6.3 replaces clause 8.2 in ES 201 873-4 [2].

. Clause 6.4 replaces clause 8.2.1in ES 201 873-4 [2].

e Clause 6.5isanew clause. It would become clause 8.2.6ain ES 201 873-4 [2].
. Clause 6.6 replaces clause 8.2.7 in ES 201 873-4 [2].

e Clause 6.7 replaces clause 8.3.1in ES 201 873-4 [2].

e Clause 6.8 replaces clause 8.3.1.1ain ES 201 873-4 [2].
. Clause 6.9 replaces clause 8.3.1ain ES 201 873-4 [2].

e Clause 6.10 replaces clause 8.3.1.1ain ES 201 873-4[2].
. Clause 6.11 replaces clause 8.3.2 in ES 201 873-4 [2].

e Clause 6.12 replaces clause 8.3.2.1 in ES 201 873-4 [2].
e Clause 6.13 replaces clause 8.3.3.1in ES 201 873-4 [2].
. Clause 6.14 replaces clause 8.3.3.2 in ES 201 873-4 [2].
e Clause 6.15 replaces clause 8.6 in ES 201 873-4 [2].

. Clause 6.16 replaces clause 8.6.1 in ES 201 873-4 [2].

e Clause 6.17 replaces clause 8.6.1.1 in ES 201 873-4 [2].
e Clause 6.18 replaces clause 8.6.1.2 in ES 201 873-4 [2].
. Clause 6.19 replaces clause 8.6.1.3 in ES 201 873-4 [2].
e Clause 6.20 replaces clause 8.6.1.4 in ES 201 873-4 [2].
. Clause 6.21 replaces clause 8.6.2 in ES 201 873-4 [2].

. Clause 6.22 replaces clause 9.9 in ES 201 873-4 [2].

e Clause 6.23 isanew clause. It would become clause 9.9ain ES 201 873-4 [2].
. Clause 6.24 replaces clause 9.10 in ES 201 873-4 [2].

. Clause 6.25 replaces clause 9.12 in ES 201 873-4 [2].

. Clause 6.26 replaces clause 9.14.2 in ES 201 873-4 [2].

. Clause 6.27 replaces clause 9.14.3 in ES 201 873-4 [2].

. Clause 6.28 replaces clause 9.14.4 in ES 201 873-4 [2].

ETSI

25 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

. Clause 6.29 replaces clause 9.14.5in ES 201 873-4 [2].

e Clause 6.30 replaces clause 9.17 in ES 201 873-4 [2].

. Clause 6.31 isanew clause. It would become clause 9.17.0 in ES 201 873-4 [2].
e Clause 6.32isanew clause. It would become clause 9.17.3in ES 201 873-4 [2].
. Clause 6.33 isanew clause. It would become clause 9.17.4 in ES 201 873-4 [2].
. Clause 6.34 isanew clause. It would become clause 9.17.5 in ES 201 873-4 [2].
e Clause 6.35 replaces clause 9.22 in ES 201 873-4 [2].

. Clause 6.36 replaces clause 9.28ain ES 201 873-4 [2].

e Clause 6.37 replaces clause 9.29ain ES 201 873-4 [2].

. Clause 6.38 replaces clause 9.29a.1 in ES 201 873-4 [2].

. Clause 6.39 replaces clause 9.29a.3 in ES 201 873-4 [2].

e Clause 6.40 replaces clause 9.29b in ES 201 873-4 [2].

. Clause 6.41 isanew clause. It would become clause 9.29c in ES 201 873-4 [2].
e Clause 6.42 replaces clause 9.32 in ES 201 873-4 [2].

. Clause 6.43 replaces clause 9.47 in ES 201 873-4 [2].

e Clause 6.44 replaces clause 9.49 in ES 201 873-4 [2].

e Clause 6.45 replaces clause 9.49.1in ES 201 873-4 [2].

. Clause 6.46 isanew clause. It would become clause 9.49.4 in ES 201 873-4 [2].
e Clause 6.47 isanew clause. It would become clause 9.49.5 in ES 201 873-4 [2].
. Clause 6.48 replaces clause 9.51 in ES 201 873-4 [2].

e Clause 6.49 replaces clause 9.56.1 in ES 201 873-4 [2].

e Clause 6.50 replaces clause 9.56.2 in ES 201 873-4 [2].

. Clause 6.51 replaces clause 9.56.3 in ES 201 873-4 [2].

6.1 Replacement of short forms

Short forms have to be expanded by the corresponding complete definitions on atextual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:
. lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;
e stand-alone receiving operations;
. stand-alone altsteps calls,
. tri gger operations,
. missing r et ur n and st op statements at the end of function, configuration function and test case definitions;

. missing st op execution statements;

ETSI

26 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

. i nterl eave statements,

. sel ect - case statements,

. break and conti nue statements,

. di sconnect and unmap operations without parameters; and

. default values of missing actual parameters.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters,
global constants, i.e. constants that are defined in the modul e definitions part, and pre-processing macros. All references
to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it
is assumed that the value of module parameters, global constants and pre-processing macros can be determined before
the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constantsin the operational semantics will be different
from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,
functions and module control like variables. The wrong usage of local constantsor i n, out andi nout
parameters has to be checked statically.

6.2 Order of replacement steps

The textual replacements of short forms, global constants and modul e parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete values,

3) replacement of all sel ect - case statements by equivalent nested i f - el se statements;

4) embedding stand-alone receiving operationsinto al t statements;

5) embedding stand-alone altstep callsinto al t statements;

6) expansionofi nt erl eave statements;

7) replacement of all t ri gger operations by equivalent r ecei ve operationsand r epeat statements;

8) addingr et ur n at the end of function and configuration function definitions without r et ur n statement,
adding sel f .st op operations at the end of test case definitions without ast op statement;

9) adding st op at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parametersto di sconnect and unmap operations without parameters; and
13) adding default values of parameters.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

ETSI

27 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.3 Flow graph representation of TTCN-3 behaviour

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:

a module control;

b) test case definitions;

¢) function definitions;

d) atstep definitions;

€) component type definitions;
f) configuration functions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in afunction-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type. Configuration functions specify the creation of static test configurations.

6.4 Flow graph construction procedure

The flow graphs presented in the figures 18 to 22 of ES 201 873-4 [2] and the flow graph segments presented in
clause 8 [2] are only templates. They include placeholders for information that has to be provided in order to produce a
concrete flow graph or flow graph segment. The placeholders are marked with "<" and ">" parenthesis.

The construction of aflow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, atsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, atstep, function, component type and configuration function
definition a concrete flow graph (with reference nodes) is constructed.

3) Inastepwise procedure al reference nodes in the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semanticsfor TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
inaflow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of aflow graph isaresult of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also hasto be taken into consideration. However, the goal of the present document isto provide a correct
and complete semantics, not an optimal flow graph representation.

ETSI

28 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.5 Flow graph representation of configuration functions

Schematically, the syntactical structure of a TTCN-3 test case definition is:

configuration <identifier> (<parameter>) <testcase-interface> <statenent-bl ock>

The<t est case-i nt er f ace> above refersto the (mandatory) r uns on and the (optional) syst emclausesin the
configuration function definition. The flow graph description of a configuration function describes the behaviour of the
MTC when establishing a new static configuration. Variables, timers and constants defined and declared in the
component type definition are made visible to the MTC behaviour by ther uns on clausein the

<t estcase-interface> Thesyst emclauseisnot relevant for the MTC and is therefore not represented in the
flow graph representation of a configuration function.

The scheme of the flow graph representation of a configuration function is shown in figure 22a. The flow graph name
<i denti fi er > refersto the name of the represented configuration function. The nodes of the flow graph have
associated comments describing the meaning of the different nodes. The reference node <r et ur n- wi t h- val ue>
covers the case where no explicit r et ur n operation for the MTC is specified, i.e. the operational semantics assumes
that ar et ur n operation isimplicitly added. After a successful termination, a configuration function always returns a
handle to the newly created static test configuration.

flow graph <identifier>

I /'l Consi ders scope infornation provided
/! by the runs-on clause in the

<i nit-scope-w th-runs-on> /1 interface of the configuration
/1 function.

Y /1 - Actual parameter values are
11/ assuned to be in the val ue stack

<par anet er -handl i ng>

/1 - Formal paraneters are handl ed
/1 like local variabl es and | ocal
11 timers

\ 4

/'l The body of the test case specifies
<stat enment - bl ock> /1 the configuration statenents to be
/'l executed by the MIC.

*x (1) /1 For the case that an explicit
~~~~~~~~~~~~~~~~~~~~~~ /1 return statenent is mssing. The
I

configuration function returns a
<return-w th-val ue> /1 handle to the newy created

/1 configuration.

Figure 22a of ES 201 873-4 [2]: Flow graph representation of configuration functions

6.6 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of aflow graph the following function is required:
The GET- FLOM GRAPH functi on: GET- FLOM GRAPH (f 1 ow graph-identifier)

The function returns a reference to the start node of aflow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names, to altstep names
to component type names and configuration function names.

ETSI



29 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.7 Module state

As shown in figure 23 amodule state is structured into a CONTROL state and an ALL-CONFIGURATIONS state. The
CONTROL state describes the state of the module control. Module control is handled like a test component,

i.e. CONTROL isan entity state as defined in ES 201 873-4 [2], clause 8.3.2. ALL-CONFIGURATIONS s alist of
configuration states representing test configurations that are instantiated during the execution of module control.

CONTROL ALL-CONFIGURATIONS
| CONFIG; | .. [ CONFIG, |

Figure 23 of ES 201 873-4 [2]: Structure of a module state

6.8 Accessing the module state

The CONTROL state and the ALL-CONFIGURATIONS state of the module state can be addressed by using their names,
i.e. CONTROL and ALL-CONFIGURATIONS. Configurations can be accessed by using the dot notation,
e.g. ALL-CONFIGURATIONS CONFIG;, or by using the list operations defined in clause 8.3.1.1a of ES 201 873-4[2].

6.9 Configuration state

As shown in figure 23athe configuration state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES, TC-
VERDICT, DONE and KILLED. ALL-ENTITY-STATES represents the states of al instantiated test components during
the execution of atest case. Thefirst element of ALL-ENTITY-STATES s the reference to the MTC of the configuration.
ALL-PORT-STATES describes the states of the different ports. TC-VERDICT stores the actual global test verdict of a
test case, DONE isalist of al currently stopped test components during test case execution and KILLED isalist of al
terminated test components during test case execution.

NOTE 1: The number of updates of TC-VERDICT isidentical to the number of test components that have
terminated.

NOTE 2: An dive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it iskilled.

NOTE 3: Port states may be considered to be part of the entity states. By connect and nap ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES | TC-VERDICT | DONE [ KILLED
| MTC  [ESy|..[ESp[ | [Pi ] ]Pn]

Figure 23a of ES 201 873-4 [2]: Structure of a configuration state

6.10  Accessing the configuration state

The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED can be accessed like
variables by their name and the dot notation, e.g. CONFIG.TC-VERDICT for accessing the test verdict of configuration
CONFIG.

For the creation of a new configuration state the function NEW-CONFIGURATION is assumed to be available:

. NEW-CONFIGURATION();

creates a new configuration state and returns its reference. The components of the new configuration state have the
following values:

. ALL-ENTITY-STATESis an empty list;

e  ALL-PORT-STATESisan empty list;

. TC-VERDICT is set to none;

ETSI



30 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

DONE isan empty list;

KILLED isan empty list.

For the handling of lists, e.g. ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

myList.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e. add can be used to add single elements or liststo lists;

myL.ist.append(item) appends item as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e. append can be used to append single elements or liststo lists;

myList.delete(item) deletes item from the list myList;

myList.member (item) returnst r ue if itemis an element of the list myList, otherwisef al se;

myList.first() returnsthe first element of myList;

myList.last() returns the last element of myList;

myList.length() returns the length of myList;

myList.next(item) returns the element that followsitemin myList, or NULL if itemisthe last element in myList;

myList.random(< condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

myL ist.change(<operation>) allows to apply <operation> on all elements of myList.

NOTE: The operations random and change are not common list operations. They are introduced to explain the

meaning of the keywordsal | and any in TTCN-3 operations.

Additionally, ageneral copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

6.11

copy(item) returns a copy of item.

Entity states

Entity states are used to describe the actual states of module control and test components. In the module state,
CONTROL isan entity state and in the configuration state, the test component states are handled in the list
ALL-ENTITY-STATES The structure of an entity state is shown in figure 24.

ETSI



31 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

STATUS
CONTROL-STACK

DEFAULT-LIST

DEFAULT-POINTER

VALUE-STACK

E-VERDICT

TIMER-GUARD

DATA-STATE

TIMER-STATE

PORT-REF

SNAP-ALIVE

SNAP-DONE

SNAP-KILLED

KEEP-ALIVE

STATIC

Figure 24 of ES 201 873-4 [2]: Structure of an entity state

The STATUS describes whether the module control or atest component is ACTI VE, BREAK, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of atest case. Test components are blocked during the
creation of other test components, i.e. when they call acr eat e operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the evaluation phase of a snapshot. The status REPEAT
denotes that the component isactiveand inan al t statement that should be re-evaluated dueto ar epeat statement.
The BREAK statusis set when abr eak statement is executed for leaving altstep. In this case, theal t statement in
which the altstep was directly or indirectly (i.e. by means of the default mechanism) called isimmediately left.

The CONTROL-STACK isastack of flow graph node references. The top element in CONTROL-STACK isthe flow
graph node that has to be interpreted next. The stack is required to model function callsin an adequate manner.

The DEFAULT-LIST isalist of activated defaults, i.e. it isalist of pointersthat refer to the start nodes of activated
defaults. Thelist isin the reverse order of activation, i.e. the default that has been activated first is the last element in
thelist.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that hasto be
evauated if the actual default terminates unsuccessfully.

The VALUE-STACK isastack of values of al possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
the nt ¢ operation will be pushed onto the VALUE-STACK. In addition to the values of all datatypes knownina
module we define the special value MARK to be part of the stack alphabet. When leaving a scope unit, the MARK is used
to clean VALUE-STACK.

The E-VERDICT stores the actual local verdict of atest component. The E-VERDICT isignored if an entity state
represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as atimer binding (see ES 201 873-4 [2], clause 8.3.2.4
and figure 28).

The DATA-STATE is considered to be alist of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and atstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting alist
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
ES 201 873-4[2], clause 8.3.2.2.

ETSI



32 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

The TIMER-STATE is considered to be alist of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of timer bindings describes the known timers
and their statusin a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting alist of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in

ES 201 873-4[2], clause 8.3.2.4.

The PORT-REF is considered to be alist of lists of port bindings. Thelist of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parametersin functions and
atsteps. Each list inthelist of lists of port bindings identifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting alist of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in ES 201 873-4 [2], clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
ALL-ENTITY-STATES|ist of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes al entities
(test components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE is alist of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE is alist of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is set to trueif the
entity can be restarted. Otherwiseit is set to false.

The STATIC field indicates whether atest component is part of a static test configuration or not. It is set to trueif the
test component is created during the execution of configuration function. During the execution of a configuration
function the STATIC field of the entity representing test control isaso set to true. In al other cases, the STATIC field is
set to false.

6.12  Accessing entity states

The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variablesthat are globally visible, i.e. the values of STATUS, DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity. STATUS, myEntity. DEFAULT-POINTER and myEntity.E-VERDICT,
where myEntity refersto an entity state.

NOTE: Inthefollowing, we assume that we can use the "dot" notation by using references and unique identifiers.
For example, in myEntity. STATUS, myEntityState may be pointer to an entity state or be the value of the
<identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
"dot" notation myEntity. CONTROL-STACK, myEntity. DEFAULT-LIST and myEntity. VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

. myStack.push(item) pushes item onto myStack;

. myStack.pop() pops the top item from myStack;

. myStack.top() returns the top element of myStack or NULL if myStack is empty;
. myStack.clear() clears myStack, i.e. pops al items from myStack;

e myStack.clear-until(item) pops items from myStack until item is found or myStack is empty.

ETSI



33 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operationsis defined in ES 201 873-4 [2], clause 8.3.1.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:
. NEW-ENTITY (flow-graph-node-reference, keep-alive, static);

creates a new entity state and returnsits reference. The components of the new entity state have the following values:
. STATUS s set to ACTI VE;

o flow-graph-node-reference isthe only (top) element in CONTROL-STACK;

. DEFAULT-LIST isan empty list;

. DEFAULT-POINTER has the value NULL;

e  VALUE-STACK isan empty stack;
. E-VERDICT isset to none;

e TIMER-GUARD isanew timer binding (see clause 8.3.2.4) with name GUARD, status | DL E and no default
duration;

. DATA-STATE isan empty list;

e  TIMER-STATE isan empty list;

. PORT-REF isan empty list;

. SNAP-ALIVE isan empty list;

e  SNAP-DONE isan empty list;

. SNAP-KILLED isan empty list;

. KEEP-ALIVE is set to the value of the keep-alive parameter;
) STATIC is set to the value of the static parameter.

During the traversal of aflow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

myEntity. NEXT- CONTROL( nyBool ) {
successor Node : = nyEntity. CONTROL- STACK. NEXT( nmyBool ). top();
nyEnti ty. CONTROL- STACK. pop();
myEnt i ty. CONTROL- STACK. push(successor Node) ;

6.13 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of aconnect
operation. Thus, acomponent can afterwards use itslocal port name to address the remote queue. As shownin
figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. STATIC isaBoolean which istrue if connectionisastatic
connection of a static test configuration. TTCN-3 supports one-to-many connections of ports and therefore all
connections of aport are organized in alist.

NOTE 1: Connections made by map operations are also handled in the list of connections. The map operation:
map (PTC1:MyPort, syst emPCO1) leads to anew (non static) connection (syst em PCOL, false) in
the port state of MyPort owned by PTC1. The remote side to which PCOL1 is connected to, resides inside
the SUT. Its behaviour is outside the scope of this semantics.

ETSI



34 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

NOTE 2: The operational semantics handles the keyword syst emas a symbolic address. A connection

6.14

(syst em myPort, false) in the list of connections of a port it indicates that the port is mapped onto the
port myPort in the test system interface. The f al se indicates that the mapping is not static.

REMOTE-ENTITY REMOTE-PORT-NAME STATIC

Figure 30 of ES 201 873-4 [2]: Structure of a connection

Handling of port states

The queue of valuesin a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and_clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1: The queue operations enqueue, dequeue, first and_clear have the following meaning:

" myQueue.enqueue(item) putsitem as last item into myQueue;
L] myQueue.dequeue() deletes the first item from myQueue;
" myQueue first() returns the first item in myQueue or NULL if myQueue is empty;

" myQueue.clear() removes all elements from myQueue.

The handling of port statesis supported by the following functions:

a)

b)

The NEW-PORT function:; NEW-PORT (myEntity, myPort)

creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and
COMP-PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST
and the VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port
is empty).

The GET-PORT function: GET-PORT (myEntity, myPort)

returns areference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

The GET-REMOTE-PORT function: ~ GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SYSTEMis returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified

d)

€)

f)

uniquely. The specia value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exists only a one-to-one connection for this port.

The STATUS of aport is handled like avariable. It can be addressed by qualifying STATUS with a GET-PORT
cal:

GET-PORT(myEntity, myPort).STATUS
The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort, myStatic)

adds a connection (myRemoteEntity, myRemotePort, myStatic) to the list of connections of the port identified
by OWNER myEntity and COMP-PORT-NAME myPort.

The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

removes a connection (myRemoteEntity, myRemotePort, ?) with any STATIC value from the list of connections
of the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

ETSI



35 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

g) The GET-CON function: GET-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

retrieves a connection (myRemoteEntity, myRemotePort, ?) with any STATIC value from the list of connections
of the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

h)  The SNAP-PORTSfunction: SNAP-PORTS (myEntity)
updates SNAP-VALUE for all ports owned by myEntity, i.e.

SNAP- PORTS (nyEntity) {
for all ports p /* in the nodule state */ {
if (p. O\NER == nyEntity) ({
if (p.STATUS == STOPPED) {
p. SNAP- VALUE : = NULL;
}

el se {
if (p.STATUS == HALTED && p.first() == HALT- MARKER) {
/1 Port is halted and halt narker is reached
p. SNAP- VALUE : = NULL;
p. dequeue(); /'l Rernoval of halt marker
p. STATUS : = STOPPED,

el se {
p. SNAP- VALUE : = p.first()
}

}

NOTE 3: The SNAP-PORTS function handles the HAL T- MARKER that may be put by ahal t port operation into
the port queue. If such a marker isfound, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

6.15  The evaluation procedure for a TTCN-3 module

6.16  Evaluation phases

The evaluation procedure for a TTCN-3 module is structured into:
(1) initialization phase;
(2) update phase;
(3) selection phase; and
(4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

6.17 Phase I: Initialization

The initialization phase includes the following actions:
a) Declaration and initialization of global variables:

- INIT-FLOW-GRAPHY); // Initialization of flow graph handling. INIT-FLOW-GRAPHS is
/I explained in ES 201 873-4 [2], clause 8.6.2.

- Entity := NULL; /I Entity will be used to refer to an entity state. An entity state either
/I represents module control or atest component.

- MTC := NULL; /I MTC will be used to refer to the entity state of the main test component of
/Il atest case during test case execution.

ETSI



36 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

NOTE 1. The global variable CONTROL form the control state of a module state during the interpretation of a
TTCN-3 module (see ES 201 873-4 [2], clause 8.3.1).

- CONTROL :=NULL; // CONTROL will be used to refer to the entity state of module control a

NOTE 2: The global variable CONFIGURATION is used to store the reference to a configuration state in the
Module state, i.e. amember of ALL-CONFIGURATIONS (see ES 201 873-4 [2], clause 8.3.1).

- CONFIGURATION := NULL;

NOTE 3: Thefollowing global variables ALL-ENTITY-STATES, ALL-PORT-STATES, TC-VERDICT, DONE, and
KILLED are used to store references to atest configuration state of a module state during the
interpretation of a TTCN-3 module (see ES 201 873-4 [2], clause 8.3.1).

- ALL-ENTITY-STATES:= NULL;

- ALL-PORT-STATES:= NULL;
- TC-VERDICT :=none;
- DONE := NULL;
- KILLED :=NULL.
b) Creation and initialization of module control:

- CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<moduleld>), false, false);
Il A new entity state is created and initialized with the start node of
/I the flow graph representing the behaviour of the control of the
/I module with the name <moduleld>. The Boolean parameters
[/ indicate that_ module control cannot be restarted after it is
/I stopped and that it is not a static component in atest configuration.

- CONTROL.INIT-VAR-SCOPE(); /I New variable scope.

- CONTROL.VALUE-STACK.push(M ARK); /I A mark is pushed onto the value stack.

6.18 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a Timeprogress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update atimer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT is set to 0.0 and STATUSis set to TI MEQOUT.

NOTE 1. The update of timersincludes the update of all running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: Thisoperational semantics makes no assumptions about time progress and the behaviour of the SUT.

6.19 Phase lll: Selection

The selection phase consists of the following two actions:

a) Selection: Select anon-blocked entity, i.e. an entity that has not the STATUS value BLOCKED. The entity may
be CONTROL, i.e. module control, or atest component in atest configuration that is executing atest case.

ETSI



37 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

b) Storage:
- Store the identifier of the selected entity in the global variable Entity.
- If Entiy is CONTROL, set CONFIGURATION to NULL.

- If Entiy is not CONTROL, store the identifier of the configuration of which Entity is part of in the global
variable CONFIGURATION and do the following assignments:

" ALL-ENTITY-STATES := CONFIGURATION.ALL-ENTITY-STATES,
" MTC := CONFIGURATION.ALL-ENTITY-STATESfirst();

" ALL-PORT-STATES := CONFIGURATION.ALL-PORT-STATES,

" TC-VERDICT := CONFIGURATION.TC-VERDICT;

. DONE := CONFIGURATION. DONE;

" KILLED := CONFIGURATION.KILLED;

6.20 Phase |V: Execution

The execution phase consists of the following three actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity.

b) Update of the module state: Thisincludes an update of the configuration state of the executed Entity.

¢) Check termination criterion: Stop execution if module control has terminated, i.e. CONTROL isNULL.
Otherwise continue with Phase |1.

6.21 Global functions

The evauation procedure uses the global function INIT-FLOW-GRAPHS

a) INIT-FLOW-GRAPHS s assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, * ** DYNAM C- ERROR* * * :

b) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

¢) RETURN returns the control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the "execution step of the selected entity" of the execution phase.

d ***DYNAM C- ERROR* ** refersto the occurrence of adynamic error. The error handling procedure itself is
outside the scope of the operationa semantics. If adynamic error occurs all following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. Thisis modelled by the flow graph segment <dynamic-error> (see
ES 201 873-4 [2], clause 9.18.5).

NOTE: The occurrence of adynamic error isrelated to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

€) APPLY- OPERATOR used as generic function for describing the evaluation of operators (e.g. +, *,/or -) in
expressions (see ES 201 873-4[2], clause 9.18.4).

ETSI



38

6.22  Clear port operation

The syntactical structure of thecl ear port operation is:

<portld>. clear

Final draft ETSI ES 202 781 V1.2.1 (2013-04)

The flow graph segment <clear-port-op> in figure 59 defines the execution of the cl ear port operation.

segment <cl ear -port-op>

y

}

RETURN,

let { // Begin of |ocal scope

var portRef := NUL
var portState : = NULL;
clear-port-op el
(portid) if (Entity.STATIC == true) {

*** DYNAM C- ERROR*** // port operation on a

el sei f (portld
portState : = ALL- PORT- STATES first();
while (portState != NULL) ({
if (portSate.ONNER == Entity) {

port S at e. VALUE QUELE. cl ear ();

portSate : =

el se {
portRef :
GET-PORT(Entity, portRef).clear();
} /1 End of socpe

Entity. NEXT-CONTROL(true);

/] static test component

== "all port”) {

ALL- PORT- STATES. next (portState);

Entity.portld. COMP- PORT- NAVE;

v

Figure 59 of ES 201 873-4 [2]: Flow graph segment <clear-port-op>

6.23  Configuration function call

The invocation of a configuration function starts with the creation of the MTC. In a static test configuration the MTC is
modelled as a static alive component. Then the MTC is started with the behaviour defined in the configuration function.
Afterwards, the module control waits until the configuration function terminates. The creation and the start of the MTC

can be described by using cr eat e and st art statements:

var ntcType M/MIC : = ntcType.create alive static;

M/MIC. st art (Confi gurati onFuncti onNane(P1..Pn));

The flow graph segment <conf i g- f unc- cal | > infigure 59a defines the execution of a configuration function by
using the flow graph segments of the operationscr eat e andthest art .

ETSI



39 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segment <config-func-call >

A /| Creation of the MIC

<cr eat e- op>

MIC : = Entity. VALUE- STACK. top();
TC-VERD CT := none;

DONE : = NULL;

KI'LLED : = NUWL;

init-test-config-state Y. /] Creation and initalization of a new
/1 configuration state

CONFI GLRATI ON : = NEW CONFI GURATI ON() ;
CONFI GLRATI ON. MTC : = MG;

CONET GLRATI ON. TC-VERDICT : = TC-VERDI CT;
CONET GURATT ON. DONE © = DONE;

CONFT GURATT ON. KTLLED := KI LLED;

ALL- CONFI GURATI ONS. append( GONFI GURATI ON)

/1 CONFl GURATION is the result of the
/1 configuration function
CONTROL. VAL UE- STACK. push( CONFI GURATION) ;

/1 Indicating the execution of a
/1 configuration function
CONTROL. STATIC : = true;

Enti ty. NEXT-CONTROL(t rue);
RETURN,

A

<start - conponent - op> /1l Start of MIC

Entity.STATUS : = BLOXKED;

A /] MICwill set status to ACTI\E
/'l before it term nates
wai t-for-termnation -« Entity.NEXT-CONTROL(true);
RETURN;
v

Figure 59a of ES 201 873-4 [2]: Flow graph segment <config-func-call>

6.24  Connect operation

The syntactical structure of theconnect operationis:

connect ( <conmponent - expr essi on,>: <portldl> <conponent -expression,> <portld2>) [static]

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component - expr essi on,> and <conponent - expr essi on,>. The references may be stored in variables or

isreturned by afunction, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

A present st at i ¢ clause indicates that the new connection is static, i.e. established during the execution of a
configuration function. Presence and absence of the st at i ¢ clause is handled as a Boolean flag in the operational
semantics (see st at i ¢ parameter of the basic flow graph node connect - op in figure 60).

The execution of theconnect operation is defined by the flow graph segment <connect - op> shown in figure 60.
In the flow graph description the first expression to be evaluated refersto <conponent - expr essi on,> and the

second expressionto <comnponent - expr essi on,>, i.e. the<conponent - expr essi on,> isontop of the
value stack when the connect - op node is executed.

ETSI



40 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segment <connect-op> -
9 P let { /'l begin of alocal scope

4 var portOne, portTwo; // voriables for ports
<expr essi on> var conp2 : = Entity. VALUE- STACK.t op();

Enti ty. VALUE- STACK pop();

var conpl : = Entity. VALUE- STACK.top():

Enti ty. VALUE- STACK pop();

A

if (static == true & & QONTROL. STATIC ! = true) {
<expr essi on> *** DYNAM C- ERROR* * *

/1l Satic connections have to be established
/1 wthina configuration function

}

elseif (static !=true &% CGONTRQ.. STATIC = true) {
*** DYNAM C- ERROR* * *
/1 Non-static connections cannot be established
/1 wthin a configuration function

connect- op
(portldl, portld2,

static)

el se {
portOne := conpl. portl dl. COMP- PORT- NAME;
portTwo := conp2. portl d2. COMP- PORT- NAME;
ADD- CON( conpl, portOne, conp2, portTwo, static);
ADD- CON( conp2, portTwo, conpl, portOne, static);

} /'l end of |ocal scope

Entity.NEXT-CONTROL(true);
RETURN;

v

Figure 60 of ES 201 873-4 [2]: Flow graph segment <connect-op>

6.25 Create operation

The syntactical structure of thecr eat e operationis:

<conponent Typel d>. create [alive] [static]

A present al i ve clause indicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (see al i ve parameter of the basic
flow graph node cr eat e- op in figure 62).

A present st at i ¢ clauseindicates that the new component is static, i.e. part of a static test configuration and created
during the execution of a configuration function. Presence and absence of the st at i ¢ clauseishandled as a Boolean
flag in the operational semantics (see st at i ¢ parameter of the basic flow graph node cr eat e- op infigure 62).

The flow graph segment <cr eat e- op> in figure 62 defines the execution of the cr eat e operation.

ETSI



41 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segnent <cr eat e- op>

create-op
(conponent Typeld, alive, )-------- |
static) ;

let { /'l Local scope
var newEntity; /1 for storing the newy created entity

I/ creation of the entity state for the new conponent

if (static == true) { /'l creation of a static conponent
if (CONTROL.STATIC !=true) {
***DYNAM C- ERROR** * /'l creation of a static conponent is only

/1 alowed in a configuration function

else {
neventity := NEWENTI TY(conponent Typel D, true, true);
/1 the alive flag is set because static
/'l conmponents behave like alive conmponents

el se {

}

/Il The reference to the new entity is pushed onto the val ue stack of the
/] ‘father' entity.

newEntity := NEWENTI TY(conponent Typel D, static, false);

Entity. VALUE- STACK. push( newEntity);

I/l The identifier of the 'father' entity is pushed onto the value stack of the
/Il newentity. The identifier is needed to restore the status of the 'father’

Il entity after conpletion of the entity creation. The 'father' entity is

/1 bl ocked until all ports, variables, tinmers specified in the conmponent type
// definition are instantiated. This instantiation is done by executing the

/1 flow graph that represents 'conponentTypelD by the newentity.

newenti ty. VALUE- STAKK. push( Entity);

/Il The newentity is put into the nodul e state

ALL- ENTI TY-STATES. append(newEntity);
} /1 End local scope
/'l The actual status of the 'father' entity is saved and the 'father' entity goes
/1l into a blocking state. Note the restoration of the status of the father entity

/1 is described in flowgraph segnent <finalize-conponent-init>.

Entity. VALUE- STACK. push(Entity. STATUS); // Saving the actual status
Entity. STATUS := BLQOCKED

Entity. NEXT- CONTROL(true); // Return of control
RETURN,

Figure 62 of ES 201 873-4 [2]: Flow graph segment <create-op>

ETSI



6.26

42

Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Flow graph segment <disconnect-all>

The flow graph segment <di sconnect - al | > defines the disconnection of all components at all connected ports.
Static connections will not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

Figure 64b of ES 201 873-4 [2]: Flow graph segment <disconnect-all>

ETSI

segnment <di sconnect-al |l >
di sconnect-all }-————-
let { // local scope
var port := ALL- PCRT- STATES.first();
var connecti on;
while (port != NULL) ({
connection : = port.CONNECTI ONS. first();
whi le (connection != NULL) ({
if (connection.STATIC ==true) { // static connection or nappi ng
connection : = port. GONNECTI ONS next(connection);
}
el se {
if (connecti on. REMOTE- ENTI TY = system) {
connecti on := NUL; /1 mapped port
el se {
port. CONNECTI ONS. del et e( connecti on);
connection := port.CONNECTI ONS.first();
}
}
}
port := ALL- PCRT- STATES. next( port);
} /1 End of local scope
Enti ty. NEXT-CONTROL(true);
RETURN,
v




43 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.27  Flow graph segment <disconnect-comp>

The flow graph segment <di sconnect - conp> defines the disconnection of all ports of a specified component.
Static connections will not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

segnent <di sconnect- conp>

disconnect-conp Y-

let { // local scope
var conp := Entity. VALUE- STACK. top();
var connecti on; —
var port := ALL- PORT- STATES.first();

while (port != NULL) {
connection : = port.CONNECTI ONS. first();
while (connection != NULL) {
if (connection.STATIC ==true) { // static connection or nappi ng
connection : = port. GONNECTI ONS next(connection);

el se {
if (connecti on. EMOTE- ENTI TY = system) {
connecti on := NUWL; /1 mapped port

}él se if (connecti on.REMOTE- ENTI TY = conp
or (port. OANER == conp) {
port . CONNECTI ONS. del et e( connecti on);
connection := port.CONNECTI ONS.first();

el se {
connecti on := port.CONNECTI ONS. next (connecti on) ;
}

}
}
port := ALL- PORT- STATES. next(port);

}
Enti ty. VALUE- STACK pop() ; /'l clear value stack
} // End of local scope

Entity. NEXT-CONTROL(t rue);
RETURN,

Figure 64c of ES 201 873-4 [2]: Flow graph segment <disconnect-comp>

ETSI



6.28

The flow graph segment <di sconnect - po

44 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Flow graph segment <disconnect-port>

r t > defines the disconnection of a specified port. Static connections will

not be disconnected. Their lifetime is bound to the lifetime of the static test configuration.

segment <di sconnect- port>

disconnect -port

| et

{ // local scope
var portld, rPortld;
var conp, r Conp;
var port;

portld := Entity. VALUE-STACK top();
Enti ty. VALUE- STACK pop() ;

conp : = Entity. VALUE- STACK. top();
Enti ty. VALUE- STACK pop() ;

port := CET- PORT(conp, portld);

var connection : = port.CONNECTI ONS. first();
whil e (connection != NUL) {
i f (connection. REMOTE- ENTI TY == SYSTEN {
*** DYNAM G ERRCR* * * /'l port is not a connected port

el seif (connection.STATIC ==true) { // static connection
connection : = port. GONNECTI ONS. next (connection);

el se {
rConp : = connecti on. REMOTE- ENTI TY;
rPortld : = connecti on. RBVOTE- PORT- NAME;
DEL- GON( conp, portld, rGnp, rPortld);
DEL- GON(r Gnp, rPortld, conp, portld);
connection := port. CONNECTI ONS. first();

}

} // End of local scope

Entity. NEXT-CONTROL(t rue);
RETURN,

Figure 64d of ES 201 873-4 [2]: Flow graph segment <disconnect-port>

6.29

Flow graph segment <disconnect-two-par-pairs>

The flow graph segment <disconnect-two-par-pairs> shown in figure 64e defines the execution of the di sconnect
operation with two parameter pairs which disconnects specific connections. In the flow graph segment the first

expression to be evaluated refersto <conponent - expr essi on;> (see syntactical structure of the
di sconnect operationin ES 201 873-4[2], clause 9.14) and the second expressionto <conponent -

expr essi on,>, i.e.the<conponent - expr essi on,> ison top of the value stack when the di sconnect -t wo

node is executed. Applying thedi sconnect operation to a static connection leads to a dynamic error.

ETSI




45 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segnent
<digsconnect-two- par - pair s> let { // begin of alocal scope
var portOne, portTwo; // voriables for ports
\ var connection; // variable for a connection
- var conp2 : = Entity. VALUE- STACK.top();
<expression> Enti ty. VALUE- STACK pop() ;

var conpl : = Entity. VALUE- STACK.t op();
Enti ty. VALUE- STACK pop();
if (compl == SYSTEM) {
*** DYNAM C- ERROR* * * /1 mapped port

<expressi on>

el se {
portOne := conpl. port | dl. COMP- PORT- NAME;

}
if (comp2 == SYSTEM) {
*** DYNAM C- ERROR* * * /1 mapped port

di sconnect -t wo }
(portldl, portld2))—] el se {

portTwo := conp2. port | d2. COMP- PORT- NAME;
}

connection : = GET-CON(conpl, portOne, conp2, portTwo);
if (connection.STATIC := true) {
*** DYNAM C- ERROR* * * /'l static connection

el se {
DEL-CON( conpl, portOne, conp2, portTwo);
DEL-CON( conp2, portTwo, conpl, portOne);
}

} /'l end of |ocal scope

v

Figure 64e of ES 201 873-4 [2]: Flow graph segment <disconnect-two-par-pairs>

6.30 Execute statement

The syntactical structure of the execut e statement is:

execut e( <t est Casel d>([ <act-par,> .., <act-par >)]) [, <float-expression>] [, <config-expression>])

The execut e statement describes the execution of atest case <t est Casel d> with the (optional) actual parameters
<act-par >, ..., <act-par ,>. Optionally the execute statement may be guarded by aduration provided in form

of an expression that evaluatesto af | oat . If within the specified duration the test case does not return averdict, a
timeout exception occurs, the test configuration is destroyed and an er r or verdict is returned.

If atest caseis executed on an existing static test configuration, the configuration shall be provided in form on an
expression that eval uates to a configuration reference.

If no timeout exception occurs, the MTC is created or started, the control instance (representing the control part of the
TTCN-3 module) is blocked until the test case terminates, and for the further test case execution the flow of control is
given to the MTC. The flow of control is given back to the control instance when the MTC stops its execution.

The flow graph segment <execut e- st nt > in figure 67 defines the execution of an execut e statement. The
operational semantics distinguishes the cases where a test case is executed on an existing static test configuration and
where not.

ETSI



46 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segnment <execute-stm>

\

<execut e-w t hout -config>
OR /1 Atest case is or is not executed
<execut e-on-config> [ /1 on a static test configuration

v

Figure 67 of ES 201 873-4 [2]: Flow graph segment <execute-stmt>

6.31  Flow graph segment <execute-without-config>

The flow graph segment <execut e- wi t hout - conf i g> infigure 67a distinguishes between the case where the
execution is guarded by atimeout and the case where the statement is not guarded.

segnent <execute-wi thout-config>

A

<execut e-wit hout-ti neout >
OR /1 A execute statement may or nay
<execute-ti neout> "1 /! not be guarded by a timeout
v

Figure 67a of ES 201 873-4 [2]: Flow graph segment <execute-stmt>

6.32  Flow graph segment <execute-on-config>

The flow graph segment <execut e- on- conf i g> in figure 69a distingui shes between the case where the execution
of atest case on a configuration is guarded by atimeout and the case where the execution is not guarded.

segnent <execute-on-config>

y

<execut e-on-config-w t hout -timeout >
OR /1 An execute statenent nmy or may
<execut e-on-confi g-ti meout> |7 /1 not be guarded by a tineout

v

Figure 69a of ES 201 873-4 [2]: Flow graph segment <execute-on-config>

6.33  Flow graph segment <execute-on-config-without-timeout>

Executing atest case on a static configuration means to start the behaviour of the test case on the MTC of the test
configuration,i.,e.  MyMIC. start ( Test CaseNane(P1..Pn)).

o In addition the following parts of the configuration state have to be reset to the following values:

- the global test case verdict and all local component verdicts are set to none;

ETSI



a7 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

- the local default lists of all components of the test configuration are emptied;

- the global lists DONE and KILLED are emptied. These lists are used for storing the test components that

stopped their execution or have been killed during test execution.

The flow graph segment <execut e- on- confi g-w t hout - t i meout > infigure 69b specifies the execution of a
test case on a static configuration where the execution is not guarded by atimer. It makes use of thest art component

operation.

segment <execute-on-config-without-ti meout>

<expr essi on>

/'l The Expression shall eval uate to a
/1 configuration reference. The reference

// identifies the configuration on which
/'l the test case i s executed.

init-test-config-state Yumann

A

let { // loca scope
var myEntity; // for storing an entity reference

CONFl GURATI ON : = Entity. VALUE- STACK. top();
Entity. VALUE- STACK pop();

i f (ALL- CONFI GURATI ON. merber ( CONFI GURATION ! = true) {
***DYNAM C- ERROR*** [/ no confi guration

else { // valid configuration
/] reset of configuration state
CONFl GURATI ON. TC- VERDI CT : = none;
CONFl GURATI ON. DONE : = NJLL;
CONF GURATI ON. KI LLED : = NULL;
nmyEntity : = CONFI GURATION. ALL- ENTI TY- STATES. first();
while (myEntity !'= NULL)
nyEnti ty. DEFAULT-LIST : = NULL;
myEntity. E VERDI CT : = none;

}
/'l Wdate of gl oba variables
MIC : = CONFI GURATION. ALL- ENTI TY- STATES. first();
TC- VERDI CT : = none;
DONE : = NJLL;
KITLED : = NULL,;
}

Enti ty. NEXT- CONTRA (t rue);
RETURN,;

<start-conponent -op>

/'l Start of MIC

wait-for-term nation Yy ]

Entity. STATUS : = BLOCKHED;

I/ MIC will set status to ACTIVE
/] before it termnates

Entity. NEXT- CONTRQ.(t r ue);
RETLRN;

v
Figure 69b of ES 201 873-4 [2]:

Flow graph segment <execute-on-config-without-timeout>

ETSI




48 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.34  Flow graph segment <execute-on-config-timeout>

The flow graph segment <execut e- on- confi g-t i neout > infigure 69c defines the execution of atest case on a
configuration that is guarded by atimeout value. The flow graph segment also models the execution of the test case by
starting the behaviour of the test case on the MTC on an existing static test configuration. In addition, TIMER-GUARD

guards the termination.

ETSI



49 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segnent <execute-on-config-ti meout >

/'l The Expression shal | evaluate to a a float
" Il value. This value defines the duration of
l T T VER GUARD
<expr essi on> Enti ty. TI MER GUARD. STATUS := | OLE;

Enti ty. TI MER GUARD. ACT- DURATI ON : = Entity. VALUE- STACK. t op() ;
Enti ty. VALUE STAXK. pop() ;

Entity. NEXT-CONTROL(true);

set-tiner-guard | RETURN;

/1 The Expression shall eval uate to a configuration
/'l reference. The reference identifies the configuration
-1 // on which the test case is executed.

<expr essi on>

let { // local scope
var mykntity; // for storing an entity reference

init-test-config-state %.] CONFI GURATI ON : = Enti ty. VALUE- STACK. top() ;

Enti ty. VALUE- STACK pop() ;

if (ALL- CONFI GURATI ON. nenber (CONFI GURATI ON) ! = true) {
***DYNAM C- ERROR*** // no confi guration

else { // vaid configuration
/1 reset of configuration state
CONFI GURATI ON TC- VERDI CT : = none;
CONFI' GURATT ON DONE : = NJLL;
CON=I GURATI ON KI LLED : = NULL;
nyEntity := CGONFI GURATION. ALL- ENTI TY-STATES. first();
while (nyEntity != NULL) {
nyEntity. DEFAULT- LIST := NULL;
nyEntity.E- VERDI CT : = none;

/'l Update of globa variables

MIC : = GONFI GURATION. ALL- ENTI TY-STATES. first();
TC-VERDICT : = none;

DONE : = NULL;

KI LLED := NULL;

}
A Enti ty. NEXT- CONTROL(t rue) ;
<start-conmponent -op> RETURN,
Y
1 /I start of MC

pr epar e-wai t

* | Entity.STATUS : = SNAPSHOT; // MIC will set status to ACTIVE
k /'l before term nation

Enti ty. TI MER GUARD. STATUS := RWNNI NG

Enti ty. NEXT-CONTROL(true);

RETURN;

if ( Entity. STATUS == SNAPSHOT and
Entity. TIMER- GJARD. STATUS ! = TIMEOUT) { // Control waits
active-waiting - Enti ty. NEXT- GONTRQ_(t r ue);
else { // Test case term nated or tinmer guard timed out
Enti ty. NEXT- GONTRQ_(t r ue);

}
RETURN;

stop-or-ti meout
if (Entity. STATUS ! = SNAPSHOT) { /1 normal termnation
Enti ty. Tl MER-GUARD STATUS := | DLE;
Enti ty. NEXT- CONTRQ.(t r ue);

else { // guarding timer timed out

A Enti ty. NEXT- CONTRQ ( f al se) ;

<dynamic-error> }
/* Stop test case */
RETURN;

!

Figure 69 of ES 201 873-4 [2]: Flow graph segment <execute-timeout>

ETSI



50 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.35 Flow graph segment <statement-block>

The syntactical structure of a statement block is:

{ <statenent > ..; <statenent >}

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to beinitialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1: A Statement block can be embedded in another statement blocks or can occur as body of functions,
altsteps, test cases and module control, and within compound statements, eg. al t ,i f - el se or
do-whi | e.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in al t
statementsor cal | operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. syst emor sel f , are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <st at enmrent - bl ock> in figure 78 defines the execution of a statement block.

ETSI



51 Final draft ETSI ES 202 781 V1.2.1 (2013-04)
segnent <st at enent -bl ock>
let { /'l local scope
var act Var Scope : = copy(Entity. DATA- STATE.first());
var act Ti mer Scope

ent er- scope- unit }

RETURN,

Enti ty. INI T- VAR- SCOPE();

Enti ty. DATA- STATE.first(). add(act Var Scope);
Entity. INI T- Tl MER- SCOPH() ;

Enti ty. DATA- TI MER.first(). add(act Ti mer Scope) ;
Enti ty. VALUE- STACK push( MARK) ;

Entity.NEXT-CONTROL(true);

= copy(Entity. TI MER- STATE. first());

<constant -definiti on> OR
<t i mer -decl arati on> OR
<variabl e-decl ar ati on>

L]

/1 List of flowgraph segnents

L]

<action-stm> OR <activate-stm> OR <alt-stnt>
OR <assignnent-stnmt > R <cal | -op> OR
<cl ear - port-op> OR <config-func-cal | > OR
<connect -op> (R <create-op> (R
<deactivat e-stnt> OR <di sconnect - op> OR
<do- whi | e-stmt > OR <execute-stnt> (R <for-stnt>
OR <function-cal |l > OR <getverdi ct-op> OR
<goto-stnt> OR <if-else-stnt> OR
<ki | I -component-op> OR <kill-config-op> OR
<kil |l -exec-stnt> OR <label -stm > OR < og-stnt>
OR <nap-op> OR <raise-op> OR <repeat-stnt> OR
<repl y-op> OR <return-stnm > OR <send-op> (R
<setverdi ct-op> OR <start-conponent-op> OR
<start-port-op> OR <start-timer-op> (R
<st op-conponent- op> OR <st op-exec-stnt> OR
<st op-port-op> OR <st op-ti mer-op> (R <unmap-op>
OR <whi |l e-stnt>

/'l representing defintions
/'l and declarations.

/1 List of flowgraph segnents
/'l representing all possible

\ 4

exi t - scope-unit

/1 statements and operations

Entity.DEL-VAR- SCOPE() ;
Entity.DEL-TI MER SCOPE() ;
Entity.VALUE- STACK. clear-until (MARK);

Entity.NEXT- CONTROL(true);
RETURN,

6.36

The syntactical structure of thehal t port operation is:

v

Figure 78 of ES 201 873-4 [2]: Flow graph segment <statement-block>

Halt port operation

<portld>. halt

ETSI

The flow graph segment <hal t - por t - op> in figure 89a defines the execution of the hal t port operation.



52 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segment <hal t - port-op>
let { // Begin of |ocal scope
var portRef := NUL
| var portState := NULL;
if (Entity. STATIC == true) {
halt-port-op } ***DYNAM C- ERROR*** [/ port operation on a
(portid) /] static test conponent
}
el seif (portld == *“all port”) {
portState : = ALL-PORT- STATES first();
while (portState != NULL) {
if (portSate.ONNER == Entity) {
port S ate.STATWS : = HALTHED;
port S at e.enqueue( HALT- MARKER ;
portState : =
ALL- PQRT- STATES. next (portSt at e) ;
}
el se {
portRef := Entity.portl|d. COMP- PORT- NAVE;
GET-PORT(Entity, portRef).STATUS : = HALTED
GET-PORT(Entity, portRef).enqueue( HALT- MARKER) ;
}
} /1 End of socpe
Entity.NEXT-CONTROL(true);
RETURN,;
v

Figure 89a of ES 201 873-4 [2]: Flow graph segment <halt-port-op>

NOTE: TheHALT- MARKERthat isput by ahal t operation into the port queue is removed by the SNAP-PORTS
function (see ES 201 873-4 [2], clause 8.3.3.2) when the marker is reached, i.e. all messages preceding
the marker have been processed. The SNAP-PORTSfunction is called when taking a snapshot.

6.37  Kill component operation

The syntactical structure of theki | | component statement is:
<conponent - expr essi on>. ki | |

Theki | | component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC iskilled
(eg.mc. kill)orkillsitself (e.g.sel f. kill). TheMTC may kill al parallel test components by using theal |
keyword, i.e.al | conponent kill.

Specia rules apply for using theki | I component operation in static test configurations: Applying the ki | |

component operation to a static component leads to adynamic error. The lifetime of al static components (including the
MTC) is bound to the lifetime of the test configuration. However, the MTC may kill all non-stetic parallel test
components by usingtheal | keyword, i.e.al | conponent kill.

A component to be killed is identified by a component reference provided as expression, e.g. avalue or value returning
function. For simplicity, the keyword "al | conponent " isconsidered to be special values of

<conponent - expr essi on>. The operationsnt ¢ and sel f are evaluated according to ES 201 873-4 [2],

clauses 9.33 and 9.43.

The flow graph segment <ki | | - component - op> in figure 90a defines the execution of the ki | | component
operation.

ETSI



53 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segment <ki | | - conponent -op>

/'l The Expression shal | eval uate
A // to a conponent reference. The
/1 result is pushed onto VALUE-STAKK

<expr essi on>

if (Entity.VALUE STAXK. top() == "all conponent') ({
Entity. VALUE STAXK. pop(); // clean val ue stack
if (Entity = MIQ {

A ***DYNAM C-ERROR*** [/ "all' not all owed
decision  }.____ else {
Entity. NEXT- CONTRQ.(tr ue) ;
true {
fal se
else {

Entity. NEXT-CONTROL(f al se);
<kill-all-conp>

}
RETURN

if (Entity.VALUE STACK. top().STATIC == true) {
*** DYNAM C- BERROR*** // kill 1s applied to a
NNNNNN /'l static conponent

deci si on

}
true elseif (Entity.VALUE-STACK top() == MIC) {
Entity.VALUE STAKXK. pop(); // clean val ue stack
Entity. NEXT-CONTROL(true);

<kill-ntc> else {

Entity. NEXT-CONTROL(fal se);

}
RETURN

if (ALL-ENTITY- STATES nenber (Entity.VALUE- STACK. top())) {
- Enti ty. NEXT- CONTROL(t rue);
}
else {

i f (KILLED. nrember(Entity. VALUE- STACK top())){

/1 NJLL operation, conponent already ternminated

<ki I'l- conponent > Entity. VALUE-STACK pop(); // clean val ue stack
Entity. NEXT- CONTRQ.(f al se);

prepare-kill
fal se

}
el se {
/'l conmponent id has not been allocated
*** DYNAM C- ERROR* **
»
» {
}
RETURN;

!

Figure 90a of ES 201 873-4 [2]: Flow graph segment <kill-component-op>

ETSI



54 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.38  Flow graph segment <kill-mtc>

The <ki I | - nt ¢c> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the final verdict is calculated and pushed onto the value stack of module control. The release of all
resources are released is modelled by deleting the test configuration from the ALL-CONFIGURATIONS ist.

segnent <kill-ntc>

kill-mtc  }

let { // local scope for variables

var myEntity : = ALL- ENTI TY- STATES. first();

/1 Update test case verdi ct and del etion of conponents
while (nyEntity != NULL) ({
if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
TC- VERDI CT : = fail;

el se {
if (nyEntity.E-VERDICT = inconc or TC-VERDICT = inconc) {
TC- VERDI CT : = i nconc;
el se {
if (nyEntity. E-VERDICT == pass or TC-VERDI CT == pass) {
TG VERD CT := pass;
}

}
nyEntity : = ALL- ENTI TY- STATES. next (nyEntity);
}

/1 TC-VERDICT is the result of the execute operation
CONTROL. VALUE STAXK. push( TC-VERD CT) ;

/'l Update of test case reference paraneters
UPDATE- REMOTE- LOCATI ONS( MTC, CONTRCL);

/'l Del etion of test configuration

ALL- CONFl GURATI ONS. del et e( CONFI GJRATI ON)
/'l Resetting of global variables

ALL- ENTI TY- STATES: = NULL;

ALL- PORT- STATES : = NULL;

DONE : = NULL;

KI LLED := NULL;

TC-VERDICT : = none;

MIC : = NJLL;

CONTROL. STATWS : = ACTIVE; // Control continues
} // End of local scope
RETURN,;

Figure 90b of ES 201 873-4 [2]: Flow graph segment <kill-mtc-op>

6.39 Flow graph segment <kill-all-comp>

The<ki | | -al | - conmp> flow graph segment in figure 90d describes the termination of all parallel test components of
atest case.

ETSI



55 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segment <kill-all-conp>

kill-all-conp

let { // local scope for variable nmyEntity
var nmyEntity : = ALL- ENTI TY- STATES next (MIQ;
var port; -
var connecti on;

/'l Wdate test case verdict
while (nyEntity != NULL) {
if (myEntity.STATIC!= true) { // not a static test component
if (nyEntitiy.EVERDOCT = fail or TC-MVERDICT == fail) {
TC-VERDICT : = fail;

}
el se {
if (nyEntity. E-VERDI CT == inconc or TC-\VERDICT == inconc) {
TG VERDO CT := inconc;
el se {
if (nyEntity. E-VERDI CT == pass or TG VERO CT == pass) {
TC-VERDICT : = pass; -
}
}
}

}
nyEntity := ALL- ENTI TY- STATES next (myEntity);

}

/] Deletion of test conponents
nyEntity := ALL- ENTl TY-STATES. next ( MIC) ;
while (nyEntity = NULL) { -
if (nyEntity.STATIC == true) { // a static test conponent
nmyEntity T= ALL- ENTITY- STATES next(nyEntity);

else { // not a static test conponent
/1 disconnect and unmap conponent
port := ALL- PORT- STATES. first();
while (port != NULL) {
connection := port. CONNECTI ONS first();
whi |l e (connection != NULL) {
if (connection. REMOTE ENTITY == conp
or (port.OWNER == conp) {
port . CONNECTIONS. del ete( connection);
connection : = port. CONNECTIONS. first();

}
else {
connection : = port. CONNECTI ONS. next (connecti on);
}
}
port := ALL- PORT- STATES. next (port);
}
DONE. append(myEntity); /'l Update of DONE
KI LLED. append( nyEntity); /'l Update of KILLED
DEL- ENTI TY(myEnti ty); /1 Deletion of entity

myEntity := ALL- ENTITY- STATES next(MIC); // Next conponent to del ete
}

} // End of local scope

Entity. NEXT-CONTROL(t rue);
RETURN;

Figure 90d of ES 201 873-4 [2]: Flow graph segment <stop-all-comp>

ETSI



56 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.40 Kill execution statement

The syntactical structure of theki | | execution statement is:
Kill
The effect of the ki | | execution statement depends on the entity that executesthe ki | | execution statement:

a) Ifkill isperformed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state.

b) Ifthekil |l isexecuted by the MTC, all parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the value stack of the module control. Finaly, control is given back to
the module control and the MTC terminates.

c) Ifthekill isexecuted by atest component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

The execution of theki | | execution statement by any static test component (including the MTC of a static test
configuration) is not allowed. It leads to a dynamic error.

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

segnent <kill-exec-stnt>
A if (Entity == CONTROL {
Entity.NEXT-CONTROL(true);
decision Y. -
el se {
true Entity.NEXT-CONTROL(fal se);
fal se }
RETURN
<kill-control>

if (Entity.STATIC == true) {
*** DYNAM C- ERROR*** [/ static Entity
}

el se {
if (Entity = MIQ ({
Enti ty. NEXT- CONTROL(t rue) ;

decision Y. else {
Enti ty. VALUE- STAXK. push( Enti ty);
Enti ty. NEXT- CONTROL( f al se) ;

RETURN
true fal se
<ki Il -mc> <ki Il - conponent >

Figure 90e of ES 201 873-4 [2]: Flow graph segment <kill-exec-stmt>

ETSI



57 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.41  Kill configuration operation

The syntactical structure of theki | | configuration operation is:

<configuration-expression>. kill

Theki | | configuration operation destructs the specified test configuration and removesiit from the test system. The
kill configuration operation shall only be executed by module control. The configuration to be killed isidentified by
means of a<conf i gur ati on- expr essi on>.,i.e. an expression that evaluates to a reference to a configuration.

The flow graph segment <ki | | - conf i g- op> in figure 90f defines the execution of the ki | | configuration
operation.

segment <kil | -config-op>

let { /1 begin of aloca scope
A var config := Entity. VALUE-STACK t op();
Enti ty. VALUE STAXK. pop() ;

<expr ession>

if (Entity !'= CONTROL) {
*** DYNAM C- ERROR*** [/ Kkill config operation is not
/'l invoked by nodul e control

A

}
nap- op el se i f (ALL- CONFH GURATI ONS nenber (config) != true) {
(port 1 dl,port1d2) yu *** DYNAM C- ERROR*** // configuration to be killed
/] does not exist

el se {
ALL-CONF GURATI ONS. del et e( confi g)

} /1 end of |ocal scope

Entity.NEXT-CONTROL(true);
RETURN;

v

Figure 90f of ES 201 873-4 [2]: Flow graph segment <kill-config-op>

6.42  Map operation

The syntactical structure of the nap operationiis:

map( <conponent - expr essi on>: <portldl> system <portld2>) [static]

Theidentifiers<port | d1> and <port | d2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portld1> belongsis referenced by means of the component
reference <conmponent - expr essi on>. The reference may be stored in variables or isreturned by a function, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component

reference.

A present st at i ¢ clauseindicates that the new mapping is static, i.e. established during the execution of a
configuration function. Presence and absence of the st at i ¢ clauseis handled as a Boolean flag in the operational
semantics (see st at i ¢ parameter of the basic flow graph node map- op in figure 93).

NOTE: Thenap operation does not care whether the sy st em<portld> statement appears asfirst or as second
parameter. For simplicity, it is assumed that it is aways the second parameter.

The execution of the map operation is defined by the flow graph segment <nap- op> shown in figure 93.

ETSI



58

segment <nap- op>

A

<expr ession>

p-op
(portldl,portld2,static)

let { /1 begin of a local scope
var port Ref;
var conpl := Entity.VALUE STAXK. top();

Enti ty. VALUE- STACK. pop() ;

if (static true & CONTROL.STATIC !=true) {
*** DYNAM C- ERROR* * *
/!l Static connections have to be established
/1 within a configuration function

}

el seif (static != true & & CONTROL.STATIC == true) {
*** DYNAM C- ERROR * *
/1 Non-static connecti ons cannot be establi shed
/1 within a configuration function

el se {
port Ref := Entity.portldl. COVP PORT- NAMVE
ADD- CON( conpl, portRef, system portld2);
} /! end of |ocal scope
Entity. NEXT- CONTROL(t r ue);
RETURN,

\

4

Figure 93 of ES 201 873-4 [2]: Flow graph segment <map-op>

6.43

Start port operation

The syntactical structure of thest ar t port operation is:

<portld>. start

The flow graph segment <start-port-op> in figure 121 defines the execution of the st ar t port operation.

ETSI

Final draft ETSI ES 202 781 V1.2.1 (2013-04)




59 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segment <start-port-op>

let { // Begin of |ocal scope
var portRef := NUL
var portState : = NULL;

y

start-port-op Yewuu

(portld) if (Entity.STATIC == true) {
*** DYNAM C- ERROR*** // port operation on a
/1 static test conponent

}
el seif (portld == *“all port”) {
portState : = ALL- PORT- STATES first();
while (portState !'= NULL) ({
if (portSate.ONNER == Entity) ({
port & ate. VALUE QUELE. cl ear ();
port S ate. STATU : = STARTED

}
portSate : =
ALL- PORT- STATES. next (portState);

}

el se {
portRef := Entity.portld. COMP- PORT- NAVE;
GET-PORT(Entity, portRef).clear();
GET-PORT(Entity, portRef).STATUS : = STARTHED;
} /1 End of socpe

Entity. NEXT-CONTROL(true);
RETURN,

\ 4

Figure 121 of ES 201 873-4 [2]: Flow graph segment <start-port-op>

6.44  Stop component operation

The syntactical structure of the st op component statement is:
<conponent - expr essi on>. st op

The st op component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. nt c. st op) or stopsitself (e.g. sel f. st op). The MTC may stop all parallel
test components by using theal | keyword, i.e.al | cormponent .st op.

Stopped components created with an al i ve clauseinthe cr eat e operation are not removed from the test system.
They can be restarted by using ast art statement. Variables, ports, constants and timers owned by such a component,
i.e. declared and defined in the corresponding component type definition, keep their status. A st op operation for a
component created without an al i ve clauseis semantically equivalent to aki | | operation. The component is
removed from the test system.

A component to be stopped isidentified by a component reference provided as expression, e.g. avaue or value
returning function. For simplicity, the keyword "al | conponent " is considered to be specia values of
<conponent - expr essi on>. The operationsnt ¢ and sel f are evaluated according to ES 201 873-4 [2],
clauses 9.33 and 9.43.

The flow graph segment <st op- conmponent - op> in figure 125 defines the execution of the st op component
operation.

ETSI



60 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

segnment <st op- conponent -op>

\

/ The Expression shal |l eval uate
/ to a conponent reference. The

<expr essi on>

/'l result is pushed onto VALUE-STAXK

true

deci si on

<st op-al | - conmp>

true

<st op- nt c>

fal se

true

pr epar e- st op

true

-

deci si on

A

deci si on

if (Entity.VALUE STAK. top() == "'all conponent') {
Entity. VALUE STACK. pop(); // clean val ue stack
if (Entity 1= MIQ
***DYNAM C- ERROR*** [/ "all' not all owed

————— else {
Entity. NEXT- CONTRQ.(t rue);
{

fal se }

else {
Entity. NEXT-CONTROL(f al se);

}
RETURN

if (Entity.VALUE STACK. top() == MIQ {
Entity.VALUE STAXK. pop(); // clean val ue stack

NNNNNN Entity. NEXT-CONTROL(true);

}

else {
Entity. NEXT-CONTROL(f al se);

}
RETURN

i f (ALL- ENTITY- STATES menber (Entity.VALUE- STACK. top())) {
Enti ty. NEXT- CONTROL(true);

}
else {
if (DONE menber (Entity. VALUE- STACK. top())){
/1 NJLL operation, conponent al ready stopped
/1 or killed.
Entity. VALUE-STACK pop(); // clean val ue stack
Entity. NEXT- CONTRQ.(f al se) ;
}
el se {
/1 conponent id has not been allocated
*** DYNAM C- ERROR* **
{
}
RETURN;

if (Entity.VALUE STAXK. top(). KEEP- ALI VE == true)) {
Entity. NEXT-CONTROL(true); // Qonponent is not
/'l renmoved fromthe

/| test system

else {
Entity. NEXT-CONTROL(fal se); // Conponent is killed

}
RETURN,

fal se

<stop-ali ve-conponent >

<kil I - component >

\;A

v

Figure 125 of ES 201 873-4 [2]: Flow graph segment <stop-component-op>

ETSI




61 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.45 Flow graph segment <stop-mtc>

The flow graph segment <st op- nt c¢> in figure 125a describes the stopping of an MTC. The effect of stopping an

MTC isthat atest case or a configuration function terminates. Depending on where and how an MTC has been
executed, three cases have to be distinguished:

1) TheMTC stopsthe behaviour of atest case that has not been executed on a static test configuration.

2) TheMTC stops the behaviour of atest case that has been executed on a static test configuration.

3) TheMTC stopsthe execution of a configuration function.

segment <stop-ntc>

\

deci si on
fal se
true
<kill-mc>
N
deci si on
true
fal se
<st op-config>
N

if (MIC. STATIC = false) {
/] stopping a test case that is not executed
/1 on static test configuration
Entity. NEXT-CONTROL(f al se);
}
else {
/1 stopping either a test case that has been
/'l executed on a static test configuration or
/1 a configuration function term nates

Entity. NEXT- GCONTRQL(t r ue) ;

}
RETURN

i f (CONFI GLRATI ON. STATIC = true) {
/1 termnation of a configuration function
Entity. NEXT-CONTROL(true);

else { // stopping a test case executed
/lon a static configuration
Entity. NEXT-CONTROL(f al se);

<stop-tc-config>

v

Figure 125a of ES 201 873-4 [2]: Flow graph segment <stop-mtc>

6.46  Flow graph segment <stop-config>

The<st op- conf i g> flow graph segment in figure 127a describes the stopping of an MTC that has executed a

configuration function.

ETSI




62 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Segment <st op- config>

stop-config

let { // local scope
var conpVar Scope := copy( MIC DATA- STATE. first());
var conpTi merScope : = copy(MC T MER-STATE first());
var conpPort Scope : = copy(MIC. PART-REF. first());

/1 Wdate of conponent state. This is necessary, if the behaviour of the
/1 configuration function is structured into further function.
MIC. STATUS : = BLOCKED;

MI'C. CONTROL- STACK : = NU.L;

MIC. DEFAULT- LI ST := NULL;

MIC. VALLE- STACK : = NULL;

MTC. VALLE- STACK. push( MARK) ; // for conponent scope

MIC. TI MER- GUARD. STATUS : = | OLE;

MTC. DATA STATE : = NULL

MIC. DATA STATE. add( conpVar Scope);

MTC. TI MER- STATE : = NULL,

MTC. TI MER- STATE. add( conpTi mer Scope) ;

MIC. PORT- REF : = NUL

MTC. PORT- REF. add( conpPor t Scope) ;

MIC. SNAR- ALI VE : = NULL;

MI'C. SNAP- DONE : = NJLL;

MTC. SNAP- KI LLED : = NULL;

/1 Wdate of test case reference paraneters
UPDATE- REMOTE- LOCATI ONS( MTC, CONTROL);

CONTROL. STATIC :

fal se; /1 Reset of STATIC flag in nodul e control
CONTROL. STATLS

ACTI VE; // Qontrol continues execution

} // End of local scope
RETURN;

Figure 127a of ES 201 873-4 [2]: Flow graph segment <stop-config>

6.47 Flow graph segment <stop-tc-config>

The<st op-t c- confi g> flow graph segment in figure 127b describes the termination of atest case that is executed
on a static test configuration.

ETSI



63 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Segment <stop-tc-config>

/1 Al non static conponents are killed. All

<kil'l-al-comp> || /] static test components are stopped.
/1 The Test verdict is updated.

<di sconnect-al >  [-__] | /1 Al'l non static connections are destroyed.
<unmep-al > | | /1 Al'l non static mappings are destroyed.

let { // |ocal scope

var conpVar Scope : = copy( MIC. DATA- STATE. first());
v var conpTi merScope : = copy(MIC. Tl MER-STATE. first());
var conpPort Scope : = copy(MC. PORT-REF. first());

stop-tc-config e

/'l Update test case verdict

if (MIC. E-VERDI CT == fail or TC-VERDICT = fail) {
TC-VERDICT := fail;

}
el se {
if (MIC. B VERDICT == inconc or TG VERDI CT == inconc) {
TC-VERDI CT : = inconc;
}
el se {
if (MC EVERDCT = pass or TC- VERDICT == pass) {
TC- VERDI CT : = pass;
}
}

/1 TC-VERDICT is the result of the execute operation
CONTROL. VALUE- STACK. push( TG VERD CT) ;

/1 Update of test case reference paraneters
UPDATE- REMOTE- LOCATI ONS( MTG  CONTROL) ;

/'l Update of conponent state, if the behavi our of the
/'l configuration function is structured into functions.
MIC STATUS : = BLQOCKED;

MIC. CONTROL- STACK : = NULL;

EC DEFAULT- LI ST : = NUL;

MIC VALLE- STACK := NULL;

MIC VALUE- STACK. push( MARK) ; // for conponent scope
MIC Tl MER- GUARD. STATUS : = |IDLE;

MIC DATA STATE : = NULL

MTC DATA:- STATE. add( conpVar Scope);

MIC Tl MER- STATE := NULL;

MIC Tl MER- STATE. add( conpTi ner Scope) ;

MIC PORT- REF : = NJLL

MI'C PORT- REF. add(conpPor t Scope) ;

MIC SNAP-ALTVE : = NULL;

MIC SNAP- DONE : = NULL;

EC SNAP- KI LLED := NULL;

CONTROL. STATUS : = ACTIVE; // Qntrol continues execution

} /1 End of |ocal scope
RETURN;

v

Figure 127b of ES 201 873-4 [2]: Flow graph segment <stop-tc-config>

6.48  Stop port operation

The syntactical structure of the st op port operation is:

<portld>.stop

ETSI



64 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

The flow graph segment <st op- por t - op> in figure 129 defines the execution of the st op port operation.

segnment <st op-port-op>

y

st op-port-op
(portld)

let { // Begin of |ocal
var portRef := NUL
var portState : = NULL;

scope

if (Entity. STATIC == true) {
*** DYNAM C- ERROR*** // port operation on a
/] static test conponent

elseif (portld == *all port”) {
portState : = ALL- PORT- STATES first();
while (portState != NULL) {
if (portSate.OMNER == Entity) {
port S ate.STATWS : = STOPPED
}

portSate : =
ALL- PORT- STATES. next (portState);

}

el se {
portRef := Entity.portld. COMP- PORT- NAVE;
GET-PORT(Entity, portRef).STATUS : = STOPPED;
} // End of socpe

Entity. NEXT-CONTROL(true);
RETURN;

v

Figure 129 of ES 201 873-4 [2]: Flow graph segment <stop-port-op>

ETSI




65 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.49  Flow graph segment <unmap-all>

The flow graph segment <unnap- al | > defines the unmapping of all components at all mapped ports. Static mappings
will not be unmapped. Their lifetime is bound to the lifetime of the static test configuration.

segment <unnap-al | >

let { // local scope

var port := ALL- PORT- STATES.first();
var connecti on;

while (port != NULL) ({
connection : = port.CONNECTI ONS. first();
whi le (connection != NULL) ({
i f (connection.REMOTE- ENTI TY == system) { // mapped port
if (connection. STATIC == true) { // static mapping
connecti on := port. CONNECTI ONS. next (connecti on) ;

el se {
port. CONNECTI ONS. del et e( connecti on);
connection := port.CONNECTI ONS.first();

}
el se {
connection : = NUWL; /] connected port
}
}
port := ALL- PCRT- STATES. next( port)
/1 End of |ocal scope
} p

Enti ty. NEXT-CONTROL(t rue);
RETURN,

Figure 136a of ES 201 873-4 [2]: Flow graph segment <unmap-all>

ETSI



66 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.50 Flow graph segment <unmap-comp>

The flow graph segment <unnap- conp> defines the unmapping of all mapped ports of a specified component. Static
mappings will not be unmapped. Their lifetime is bound to the lifetime of the static test configuration.

segment <unmap-conp>

unmap-conp Y-

let { // local scope
var conp : = Entity. VALUE- STACK. top();
var connecti on; -
var port := ALL- PORT- STATES.first();

while (port != NULL) ({
if (port.OANER == conp) { /] port of comp
connection := port. CONNECTI ONS. first();
i f (connection.REMOTE- ENTI TY == system) { // mapped port of conp
if (conntection.STATIC !=true) { // not a static mappi ng
port . CONNECTI ONS. del et e( connecti on);
}

}
}
port := ALL- PCRT- STATES. next( port);

}
Entity. VALUE- STACK pop(); /'l clear value stack
} // End of local scope

Entity. NEXT-CONTROL(t rue);
RETURN,

Figure 136b of ES 201 873-4 [2]: Flow graph segment <unmap-comp>

ETSI



67 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

6.51  Flow graph segment <unmap-port>

The flow segment <unmap- por t > definesthe unnap operation for a specific mapped port.

segment <unmap-port>

\

unnep-port Y-

let { // local scope
var portld;
var conp;
var port;
var connecti on;

portld := Entity. VALUE-STACK top();
Enti ty. VALUE- STACK pop() ;

conp : = Entity. VALUE- STACK. top();
Enti ty. VALUE- STACK pop() ;

port := GET-PORT(conp, portld);

connection : = port. CONNECTI ONS. first();
i f (connection. REMOTE- ENTI TY I = SYSTEV) ({
*** DYNAM C- ERROR* * * /1 port is not a mapped port

}
else if (connection !'= NULL){ // nmapped port
if (connection STATIC ==true { // static napping
*** DYNAM C- ERROR*** // static mappi ngs cannot be unmapped

}
el se {

por t . CONNECTI ONS. del et e(connecti on);
}

else { ) // do nothing, port is neither connected nor mepped
} // End of |ocal scope

Enti t y. NEXT- CONTROL(t rue);
RETURN,

Figure 136¢ of ES 201 873-4 [2]: Flow graph segment <unmap-port>

7 TRI Extensions for the Package

7.1 Changes and extensions to clause 5.5.2 of
ES 201 873-5 [3] Connection handling operations

If this package is being used, the Tri Execut eTest Case operation shall be used only for initialization purposes of the
SA, but not for the establishment of static connections. In order to establish static connections, the Tri St at i cMap
operation shall be used instead. The Tr i Unmap can be used for closing dynamic and static connections.

ETSI



68 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Clause 5.5.2.1 triExecuteTestCase (TE — SA)

This clause is changed as follows.

Signature

Tri StatusType tri ExecuteTest Case(
in TriTest Casel dType test Casel d,
in TriPortldListType tsiPortlList)

In Parameters t est Casel d identifier of the test case that is going to be executed
tsi PortList alistof test system interface ports defined for the test system
Out Parameters  |n.a.

Return Value

The return status of the t ri Execut eTest Case operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

Constraints

This operation is called by the TE immediately before the execution of any test case. The test case
that is going to be executed is indicated by the t est Casel d. t si Port Li st contains all ports that
have been declared in the definition of the system component for the test case, i.e. the TSI ports. If a
system component has not been explicitly defined for the test case in the TTCN-3 ATS then the

tsi PortLi st contains all communication ports of the MTC test component. The ports in

tsi PortLi st are ordered as they appear in the respective TTCN-3 component declaration.

Effect The SA can initialize any communication means for TSI ports.
The tri Execut eTest Case operation returns TRI_OK in case the operation has been successfully
performed, TRI_Error otherwise.

Clause5.5.2.3 triUnmap (TE — SA)

This clause is changed as follows.

Signature

Tri StatusType tri Unmap(in TriPortldType conmpPortld,
in TriPortldType tsiPortld)

In Parameters |conpPort|d identifier of the test component port to be unmapped
tsiPortld identifier of the test system interface port to be unmapped
Out Parameters |n.a.

Return Value

The return status of the t ri Unmap operation. The return status indicates the local success (TRI_OK)
or failure (TRI_Error) of the operation.

Constraints

This operation is called by the TE when it executes any TTCN-3 unmap operation.

Effect The SA shall close a dynamic or static connection to the SUT for the referenced TSI port.
The tri Unmap operation returns TRI_Error in case a connection could not be closed successfully or
no such connection has been established previously, TRI_OK otherwise. The operation should return
TRI_OK in case no connections have to be closed by the test system.

Clause5.5.25 triStaticMap (TE — SA)

This clause isto be added.

Signature

Tri StatusType triStaticMap(in TriPortldType conpPortld,
in TriPortldType tsiPortld)

In Parameters conpPort | d identifier of the test component port to be mapped in a static connection
tsiPortld identifier of the test system interface port to be mapped in a static connection
Out Parameters  |n.a.

Return Value

The return status of the t ri St ati cMap operation. The return status indicates the local success
(TRI_OK) or failure (TRI_Error) of the operation.

Constraints

This operation is called by the TE when it executes a TTCN-3 static map operation.

Effect

The SA can establish a static connection to the SUT for the referenced TSI port.

The tri Stati cMap operation returns TRI_Error in case a connection could not be established
successfully, TRI_OK otherwise. The operation should return TRI_OK in case no static connection
needs to be established by the test system.

ETSI




69 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

7.2 Extensions to clause 6 of ES 201 873-5 [3] Java language
mapping
Clause 6.5.2.1 triCommunicationSA

Thetri Conmuni cat i onSA interface mapping is to be extended with the definition for Tri St at i cMap:
/1 Tri Comruni cation
/1l TE -> SA
package org.etsi.ttcn.tri;
public interface Tri Communi cati onSA {
)/ Connection handl i ng operations

/I Ref: TRI-Definition 5.5.2.5
public TriStatus triStati cMap(Tri Portld conpPortld, TriPortld tsiPortld);

7.3 Extensions to clause 7 of ES 201 873-5 [3] ANSI C
language mapping
Clause 7.2.4 TRI operation mapping

The table isto be extended with the definition for Tri St ati cMap:

IDL Representation ANSI C Representation
Tri StatusType tri Stati cMap Tri Status triStatic Map
(in TriPortldType conpPortld, (const TriPortld* conpPortld,
in TriPortldType tsiPortld) const TriPortld* tsiPortld)

7.4 Extensions to clause 8 of ES 201 873-5 [3] C++ language
mapping
Clause 8.6.1 TriCommunicationSA

Thetri Conmuni cat i onSA interface mapping is to be extended with the definition for Tri St at i cMap. In addition, the
description of Tri Unmap hasto be changed to handle also the closing of static connections:

class Tri Comruni cati onSA {
publi c:

//To establish a static connection between two ports.
virtual TriStatus triStaticMap (const TriPortld *conPortld, const TriPortld *tsiPortld)=0;

//To close a dynam c or static connection to the SUT for the referenced TSI port.
virtual TriStatus triUnmap (const TriPortld *conPortld, const TriPortld *tsiPortld)=0;

ETSI



70 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

8 TCI Extensions for the Package

8.1 Extensions to clause 7.2.1.1 of ES 201 873-6 [4]
Management

The management type Tci Test Conponent Ki ndType has to be extended with constants for static test components:

Tci Test Conponent Ki ndType A value of type Tci Test Conponent Ki ndType isalitera of the set of kinds of
TTCN-3 test components, i.e. CONTROL, MTC, PTC, SYSTEM PTC_ALI VE,
MIC_STATI C, PTC_STATI C,and SYSTEM STATI C. This abstract typeis used
for component handling.

8.2 Extensions to clause 7.3.1.1 of ES 201 873-6 [4] TCI TM
required

In order to handle static configurations via TCI-TM, the operationst ci St art Confi g andtci Ki | | Confi g are
defined as follows.

Clause 7.3.1.1.11 tciStartConfig

Thisclause isto be added.

Signature void tciStartConfig (in TciBehaviourldType configld,
in Tci ParaneterlListType paraneterlist)

In Parameters [configld A configuration function identifier as defined in the TTCN-3 module.

par anet er Li st A list of Val ues where each value defines a parameter from the parameter list
as defined in the TTCN-3 configuration function definition. The parameters in
par anet er Li st are ordered as they appear in the TTCN-3 signature of the
configuration function. If no parameters have to be passed either the nul |
value or an empty par amet er Li st , i.e. a list of length zero shall be passed.

Return Value |[void

Constraint Shall be called only if a module has been selected before. Only confi gl d for test cases with
static configurations that are declared in the currently selected TTCN-3 module shall be passed —
seetci Start Test Case.
Effect Starts a static configuration of the selected module as described in the TTCN-3 configuration
function. A static configuration started from TCI-TM will be used by test cases that reference the
static configuration and are executed from TCI-TM.

Clause 7.3.1.1.12 tciKillConfig

Thisclause isto be added.

Signature void tciKillConfig(in Value ref)
In Parameters | ef [The reference to the static configuration.
Return Value |[void
Constraint Shall be called only if a module has been selected before.
Effect tci Kill Config causes the destruction of the static test configuration r ef . If r ef is currently not
started, the operation will be ignored.

8.3 Extensions to clause 7.3.1.2 of ES 201 873-6 [4] TCI TM
provided

In order to enable the indication of static configuration start and destruction at TCI-TM, the operations
tci ConfigStartedandtci ConfigKill ed aredefined asfollows.

ETSI



71 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Clause 7.3.1.2.7 tciConfigStarted

Thisclause isto be added.

Signature

void tciConfigStarted(in Value ref)

In Parameters

ref [The reference to the static configuration.

Return Value

voi d

Constraint Shall only be called after the static configuration has been started either using the required
operations t ci St art Confi g orinternally by the TE.
Effect tci ConfigStarted indicates to the TM that static configuration r ef has been started. It will not

be distinguished whether the static configuration has been started explicitly using the required
operationt ci Start Confi g or implicitly while executing the control part.

Clause 7.3.1.2.8 tciConfigKilled

Thisclauseisto be

added.

Signature

void tciConfigKilled(in Value ref)

In Parameters

ref [The reference to the static configuration.

Return Value

voi d

Constraint Shall only be called after the static configuration has been killed either using the required
operations t ci Ki | | Confi g or internally by the TE.
Effect tci ConfigStarted indicates to the TM that static configuration r ef has been destructed. It will

not be distinguished whether the static configuration has been started explicitly using the required
operationt ci Ki | | Confi g or implicitly while executing the control part.

8.4 Extensions to clause 7.3.3.1 of ES 201 873-6 [4] TCI CH

required

In order to establish static connections, thet ci St ati cConnect andt ci St at i cMap operations shall be used at
TCI-CH. Thet ci Di sconnect and Tci Unnmap can be used for closing static connections.

Clause 7.3.3.1.21 tciStaticConnect

Thisclauseisto be

added.

Signature

void tci StaticConnect(in TriPortldType fronPort,
in TriPortldType toPort)

In Parameters fromPor t Identifier of the test component port to be connected from.
t oPor t Identifier of the test component port to be connected to.
Return Value voi d
Constraint This operation shall be called by the CH at the local TE when at a remote TE a provided
tci Stati cConnect Req has been called.
Effect The TE shall statically connect the indicated ports to one another.

Clause 7.3.3.1.21 tciStaticM ap

Thisclauseisto be

added.

Signature void tci StaticMap(in TriPortldType fronPort,
in TriPortldType toPort)
In Parameters fronPor t Identifier of the test component port to be mapped from.
toPort Identifier of the test component port to be mapped to.
Return Value voi d

Constraint This operation shall be called by the CH at the local TE when at a remote TE a provided
tci Stati cMapReq has been called.
Effect The TE shall statically map the indicated ports to one another.

ETSI




72 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

8.5 Extensions to clause 7.3.3.2 of ES 201 873-6 [4] TCI CH
provided

In order to establish static connections, thet ci St ati cConnect Req andt ci St at i cMapReq operations shall be used
a TCI-CH. Thet ci Di sconnect Req and Tci UnmapReq can be used for closing static connections.

Clause 7.3.3.2.29 tci StaticConnectReq

Thisclause isto be added.

Signature voi d tci StaticConnectReq(in TriPortldType fronPort,
in TriPortldType toPort)
In Parameters fronPor t Identifier of the test component port to be connected from.
toPort Identifier of the test component port to be connected to.
Return Value voi d
Constraint This operation shall be called by the TE when it executes a TTCN-3 static connect operation.
Effect CH transmits the static connection request to the remote TE where it calls the
tci Stati cConnect operation to establish a logical static connection between the two
indicated ports. Note that both ports can be on remote TEs. In this case, the operation returns
only after calling the t ci St ati cConnect operation on both remote TEs.

Clause 7.3.3.1.30 tciStaticM apReq

Thisclause isto be added.

Signature void tci StaticMapReq(in TriPortldType fronPort,
in TriPortldType toPort)
In Parameters fromPor t Identifier of the test component port to be mapped from.
t oPor t Identifier of the test component port to be mapped to.
Return Value voi d
Constraint This operation shall be called by the TE when it executes a TTCN-3 static map operation.
Effect CH transmits the static map request to the remote TE where it calls the t ci St ati cMap
operation to establish a logical static connection between the two indicated ports.

8.6 Extensions to clause 7.3.4 of ES 201 873-6 [4] TCI-TL
provided

In order to log the handling of static connections and of static components, the operationsaret | i CSt ati cCr eat e,
t1i PStaticConnect,andt!i PStaticMap are defined. For the logging of the starting and destruction of static
configurations, the operationst | i Confi gStarted andt!i Confi gKil | ed are defined.

Clause 7.3.4.1.106 tliCStaticCr eate

Thisclause isto be added.

Signature void tliCStaticCreate(in TString am in Tinteger ts, in TString src,
in TInteger line, in TriConponentldType c,
in Tri Conponent | dType conp, in TString nane)
In Parameters |am An additional message.
ts The time when the event is produced.
src The source file of the test specification.
l'i ne The line number where the request is performed.
c The component which produces this event.
conp The component which is created.
name The name of the component which is created.
Return Value |void
Constraint Shall be called by TE to log the create component operation. This event occurs after component
creation.
Effect The TL presents all the information provided in the parameters of this operation to the user. The
kind of the created component (see TciTestComponentKindType) can be logged in am How this
is done is not within the scope of the present document.

ETSI



73 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Clause 7.3.4.1.107 tliPStaticConnect

Thisclause isto be added.

Signature

void tliPStaticConnect(in TString am in Tlnteger ts, in TString src,
in TInteger line, in Tri ConponentldType c,
in TriPortldType portl, in TriPortldType port2)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

l'ine The line number where the request is performed.

C The component which produces this event.

portl The first port to be connected.
port2 The second port to be connected.
Return Value |void

Constraint Shall be called by CH or TE to log the connect operation. This event occurs after the connect
operation.
Effect The TL presents all the information provided in the parameters of this operation to the user. The

kind of the connection (i.e. dynamic or static) can be logged in am How this is done is not within the
scope of the present document.

Clause 7.3.4.1.108 tliPStaticM ap

Thisclause isto be added.

Signature

void tliPStaticMap(in TString am in Tinteger ts, in TString src,
in TInteger line, in TriConponentl!dType c,
in TriPortldType portl, in TriPortldType port?2)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

l'ine The line number where the request is performed.

c The component which produces this event.

portl The first port to be mapped.
port?2 The second port to be mapped.
Return Value |void

Constraint

Shall be called by SA or TE to log the map operation. This event occurs after the map operation.

Effect

The TL presents all the information provided in the parameters of this operation to the user. The
kind of the connection (i.e. dynamic or static) can be logged in am How this is done is not within
the scope of the present document.

Clause 7.3.4.1.109 tliConfigStarted

Thisclause isto be added.

Signature

void tliConfigStarted (in TString am in Tlnteger ts, in TString src,
in Tinteger line, in TriConponentldType c,
in Tci Behavi our| dType configld, in TciParaneterlListType tciPars,
in Value ref)

In Parameters

am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

line The line number where the request is performed.

[ The component which produces this event.

configld The static configuration function being started.
tciPars The parameters of the started configuration function.
r ef The resulting static configuration reference.

Return Value |void

Constraint Shall be called by TE to log the starting of a static test configuration. This event occurs after static
configuration start.
Effect The TL presents all the information provided in the parameters of this operation to the user, how

this is done is not within the scope of the present document.

ETSI




74 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Clause 7.3.4.1.110 tliConfigKilled

Thisclause isto be added.

void tliConfigKilled (in TString am in Tinteger ts, in TString src,
in TInteger line, in TriConponentldType c,
in Value ref)

Signature

In Parameters |am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

l'ine The line number where the request is performed.

c The component which produces this event.

r ef The static configuration reference that has been destructed.
Return Value |void

Constraint

Shall be called by TE to log the kill configuration operation. This event occurs after configuration kill.

Effect

The TL presents all the information provided in the parameters of this operation to the user, how this
is done is not within the scope of the present document.

Clause 7.3.4.1.111 tliPSetState

Thisclause isto be added.

Signature

void tliPSetState (in TString am in Tinteger ts, in TString src,
in TInteger line, in TriConponentldType c,
in TInteger state, in TString reason)

In Parameters |am An additional message.

ts The time when the event is produced.

src The source file of the test specification.

l'ine The line number where the request is performed.

c The component which produces this event.

state The new translation state

reason The optional reason of the port.setstate statement.
Return Value |void

Constraint

Shall be called by TE to log the port.setstate operation. This event occurs after the port state is set.

Effect

The TL presents all the information provided in the parameters of this operation to the user, how this

is done is not within the scope of the present document.

8.7 Extensions to clause 8 of ES 201 873-6 [4] Java language
mapping
Clause 8.2.2.5 TciTestComponentKindType

This clause is to be extended.

/1 TCI 1DL Tci Test Conponent Ki ndType
public interface Tci Test Conponent Ki nd {

bubl ic final static int TClI _MIC_STATI C_COWP
public final static int TCl _PTC _STATI C_COW
public final static int TC _SYSTEM STATI C_COWP

o
Noa

}
Clause 8.4.1.1 TCI TM provided

This clause is to be extended.

/1 TC-T™M

/l TE -> T™M

package org.etsi.ttcn.tci;
public interface Tci TMProvi ded {

bublic void tci ConfigStarted(Value ref);
public void tci ConfigKilled(Value ref)

ETSI



75 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Clause8.4.1.2 TCIl TM required

Thisclause isto be extended.

/[l TC-TM

/[l TM-> TE

package org.etsi.ttcn.tci;
public interface Tci TMRequired {

public void tci StartConfig
(Tci Behavi ourld configld, TciParaneterlList parameterlList)
public void tciKill Config(Value ref)
}

Clause 8.4.3.1 TCI CH provided

This clause is to be extended.

/1 Tci CHProvi ded

/1l TE -> CH

package org.etsi.ttcn.tci;
public interface Tci CHProvi ded {

bublic voi d tci StaticConnectReq(TriPortld fronPort, TriPortld toPort);
public void tci Stati cMapReq(Tri Portld fronPort, TriPortld toPort);
}

Clause 8.4.3.2TCI CH required

Thisclause isto be extended.

/1 Tci CHRequi r ed

/Il CH->TE

package org.etsi.ttcn.tci;

public interface Tci CHRequired extends Tci CDRequired {

public void tci StaticConnect(TriPortld fronPort, TriPortld toPort);
public void tciStaticMap(TriPortld fromPort, TriPortld toPort);

}
Clause8.4.4.1TCI TL provided

This clause isto be extended.

/1 TC-TL

[/l TE, TMCH CD, SA PA -> TL
package org.etsi.ttcn.tci;
public interface Tci TLProvi ded {

public void tliCStaticCreate(String am int ts, String src, int line, TriConponentld c,
Tri Component | d conp, String nane);
public void tliPStaticConnect(String am int ts, String src, int line, TriConponentld c,
TriPortld portl, TriPortld port2);
public void tliPStaticMap(String am int ts, String src, int line, TriConmponentld c,
TriPortld portl, TriPortld port?2);
public void tliConfigStarted (String am int ts, String src, int line, TriConponentld c,
Tci Behavi ourld configld, TciParaneterlList tciPars, Value ref);
public void tliConfigKilled (String am int ts, String src, int line, TriConponentld c,
Val ue ref);
public void tliPSetState (String am int ts, String src, int line, TriConponentld c,
int state, String reason);

ETSI



76 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

8.8 Extensions to clause 9 of ES 201 873-6 [4] ANSI C
language mapping
Clause 9.5 Data

The table isto be extended.

TCIIDL ADT ANSI C representation (Type definition) Notes and comments

TciTestComponentKindType Eypedef enum

TCl _MIC_STATI C_COWP,
TCl _PTC_STATI C_COWP,
TCl _SYSTEM STATI C_COWP
} Tci Test Conponent Ki ndType;

Clause9.4.1.1 TCI TM provided

This clause isto be extended.

;/oid tci ConfigStarted(Val ue ref);
voi d tci ConfigKilled(Value ref)

Clause9.4.1.2TCIl TM required

This clause isto be extended.

;/oi d tci StartConfig(Tci Behavi ourl dType configld, TciParaneterlListType paraneterlList)
void tciKill Config(Value ref)

Clause 9.4.3.1 TCI CH provided

Thisclause isto be extended.

voi d tci StaticConnectReq(TriPortld fronPort, TriPortld toPort);
void tciStaticMapReq(TriPortld fronPort, TriPortld toPort);

Clause9.4.3.2TCI CH required

This clause is to be extended.

void tciStaticConnect(TriPortld fromPort, TriPortld toPort)
void tciStaticMap(TriPortld fronPort, TriPortld toPort)

Clause9.4.4.1 TCI TL provided

This clause is to be extended.

void tliCStaticCreate (String am int ts, String src, int line, TriConponentld c,
Tri Component|d conp, String nane)

void tliPStaticConnect (String am int ts, String src, int line, TriConponentld c,
TriPortld portl, TriPortld port?2)

void tliPStaticMap (String am int ts, String src, int line, TriConponentld c,
TriPortld portl, TriPortld port?2)

void tliConfigStarted (String am int ts, String src, int line, TriConmponentld c,
Tci Behavi our | dType configld, Tci ParaneterlListType tciPars, Value ref)

void tliConfigKilled (String am int ts, String src, int line, TriConmponentld c,
Val ue ref)

void tliPSetStateKilled (String am int ts, String src, int line, TriConponentld c,
int state, String reason)

ETSI



77 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

8.9 Extensions to clause 10 of ES 201 873-6 [4] C++ language
mapping
Clause 10.5.2.13 TciTestComponentKind

Thisclause isto be extended.

cl ass Tci Test Conponent Ki nd {
public:

ét atic const Tci Test Conponent Ki nd MIC_STATI C_COWP;

static const Tci Test Conponent Ki nd PTC_STATI C_COWP;
static const Tci Test Conponent Ki nd SYSTEM STATI C_COWP;

}
Clause 10.6.1.1 TciTmRequired

This clause is to be extended.

virtual void tciStartConfig (const TciBehaviourld *configld, TciParaneterlList *paraneterlList)=0;
virtual void tciKillConfig(const Value *ref)=0;

Clause 10.6.1.2 TciTmProvided

This clause isto be extended.

. //lndicates the start of a static configuration
virtual void tciConfigStarted(const TciValue *ref) =0;
virtual void tciConfigKilled(const TciValue *ref)=0;

Clause 10.6.3.1 TciChRequired

Thisclause isto be extended.

virtual void tciStaticConnect(const TriPortld *fronPort, const TriPortld *toPort)=0;
virtual void tciStaticMap(const TriPortld *fronPort, const TriPortld *toPort)=0;

Clause 10.6.3.2 TciChProvided

Thisclause isto be extended.

virtual void tciStaticConnectReq(const TriPortld *fronPort, const TriPortld *toPort)=0;
virtual void tciStaticMapReq(const TriPortld *fronPort, const TriPortld *toPort)=0;

Clause 10.6.4.1 TciTIProvided

Thisclause isto be extended.

virtual void tliCStaticCreate (const Tstring &m const tineval ts, const Tstring src,
const Tinteger line, const TriConponentld *c, const Tri Conponentld *conp,
const Tstring &nane)=0;

virtual void tliPStaticConnect (const Tstring &m const tineval ts, const Tstring src,
const Tinteger line, const TriConmponentld *c, const TriPortld *portl, const TriPortld *port2)=0;

virtual void tliPStaticMap (const Tstring &m const tineval ts, const Tstring src,
const Tinteger line, const TriConmponentld *c, const TriPortld *portl, const TriPortld *port2)=0;

virtual void tliConfigStarted (const Tstring &m const tineval ts, const Tstring src,
const Tinteger line, const TriConmponentld *c, const TciBehaviourld *configld,
const Tci ParanmeterList *tci Pars, const Tci Val ue *ref)=0;

virtual void tliConfigKilled (const Tstring &m const tineval ts, const Tstring src,
const Tinteger line, const TriConponentld *c, const Tci Val ue *ref)=0;

virtual void tliPSetState (const Tstring &m const tineval ts, const Tstring src,
const Tinteger line, const TriConponentld *c, const Tinteger status, const TString & eason)=0;

ETSI



78 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

8.10  Extensions to clause 11 of ES 201 873-6 [4] W3C XML
mapping
Clause 11.4.21TCI TL provided

Thisclause isto be extended.

<xsd: conpl exType name="tli CStati cCreate">

<xsd: conpl exCont ent m xed="true">

<xsd: ext ensi on base="Events: Event">

<xsd: sequence>

<xsd: el ement nanme="conp" type="Types: Tri Conponent | dType"/>
<xsd: el enent nane="nane" type="Si npl eTypes: TString"/>

</ xsd: sequence>

</ xsd: ext ensi on>

</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: conpl exType name="t|i PStati cConnect">

<xsd: conpl exCont ent m xed="true">

<xsd: ext ensi on base="Events: Port Confi guration"/>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: conpl exType nane="tli PStati cMap">

<xsd: conpl exCont ent mi xed="true">

<xsd: ext ensi on base="Events: Port Confi guration"/>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: conpl exType name="tli ConfigStarted">

<xsd: conpl exCont ent m xed="true">

<xsd: ext ensi on base="Events: Event">

<xsd: sequence>

<xsd: el ement nanme="configld" type="Types: Tci Behavi our| dType"/>
<xsd: el enent nane="tci Pars" type="Types: Tci Paranet er Li st Type" m nCccurs="0"/>
<xsd: el enent nane="ref" type="Val ues: Val ue"/>

</ xsd: sequence>

</ xsd: ext ensi on>

</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: conpl exType name="t!li ConfigKill ed">
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="Events: Event">

<xsd: sequence>

<xsd: el ement name="ref" type="Val ues: Val ue"/>
</ xsd: sequence>

</ xsd: ext ensi on>

</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: conpl exType name="t|i PSet St ate" >

<xsd: conpl exCont ent mi xed="true">

<xsd: ext ensi on base="Events: Event">

<xsd: sequence>

<xsd: el enent nane="state" type="Si npl eTypes: Tl nteger"/>

<xsd: el enent nane="reason" type="Si npl eTypes: TString" m nCccurs="0"/>
</ xsd: sequence>

</ xsd: ext ensi on>

</ xsd: conpl exCont ent >

</ xsd: conpl exType>

ClauseB.5TCI TL XML Schema for Events

The five additional events defined for clause"11.4.2.1 TCI TL provided" have to be added to the events schema
definition given in clause B.5.

ETSI



79 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Annex A (normative):
BNF and static semantics

Al Additional TTCN-3 terminals

Table A.1 presents all additional TTCN-3 terminals which are reserved words when using this package. Like the
reserved words defined in the TTCN-3 core language, the TTCN-3 terminals listed in table A.1 shall not be used as
identifiersin a TTCN-3 module. These terminals shall be written in al lowercase letters.

Table A.1: List of additional TTCN-3 terminals which are reserved words

[configuration [static [setstate |

A.2  Modified TTCN-3 syntax BNF productions

This clause includes all BNF productions that are modifications of BNF rules defined in the TTCN-3 core language
document [1]. When using this package the BNF rules below replace the corresponding BNF rulesin the TTCN-3 core
language document. The rule numbers define the orespondence of BNF rules.

11. Modul eDefinition ::= [Visibility] (TypeDef |
Const Def |
Tenpl at eDef |
Modul ePar Def |
Functi onDef |

Si gnat ur eDef |

Test caseDef |

Al t st epDef |

I mpor t Def |

G oupDef |

Ext Functi onDef |

Ext Const Def |

Fri endvbdul eDef |
ConfigurationDef) [WthStatenment]

49. PortDef Attribs ::= MessageAttribs |
ProcedureAttribs |
M xedAttri bs|
Transl ati onPort Attribs

197. TestcaseDef ::= TestcaseKeyword Testcasel dentifier
"("[ TestcaseFornal ParList] ")" ConfigSpec | ExecuteOnSpec
St at enent Bl ock

205. Testcaselnstance ::= ExecuteKeyword "(" TestcaseRef "(" [TestcaseActual ParlList] ")"
["," TimerValue] ["," ConfigurationReference] ")"
294. Control Statenent ::= TinerStatenents |

Basi cStatements |
Behavi our St at enent s |
SUTSt at enent s |

St opKeyword |

Ki I'l Confi gSt at ement

316. CreateQp ::=  Conponent Type Dot CreateKeyword ["(" SingleExpression ")"]
[AliveKeyword | StaticKeyword]

330. Connect Statenent ::= Connect Keyword Singl eConnectionSpec [ StaticKeyword]

342. MapStatenent ::= MapKeyword Singl eConnecti onSpec [ Stati cKeyword]

ETSI



80 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

452. PredefinedType ::= BitStri ngkeyword |
Bool eanKeyword |
Char St ri ngkeyword |
Uni versal CharString |
I nt eger Keyword |
Cctet StringKeyword |
HexStri ngKeyword |
Ver di ct TypeKeyword |
FI oat Keyword |
Addr essKeyword |
Def aul t Keyword |
AnyTypeKeyword |
Confi gur ati onKeyword

610. OpCall ::= ConfigurationQOps |
Verdi ct Ops |
Ti mer Qps |
Test casel nst ance |
Functionl nstance [ ExtendedFi el dReference ] |
Tenpl at eOps [ Ext endedFi el dReference ] |
ActivateQp |
Confi gurationl nstance

A.3  Additional TTCN-3 syntax BNF productions

This clause includes al additional BNF productions that needed to define the syntax introduced by this package.
Additional BNF rules that have arelation to modified BNF rules defined in clause A.2, will have the rule number of the
modified rule followed by alower case letter, e.g. number of modified rule 316, number of related additional rule 316a.
The numbering of other new rules start with number 900.

197a. ExecuteOnSpec ::= Execut eKeyword OnKeyword Confi gurati onRef
316a. StaticKeyword ::= "static"
900. ConfigurationDef ::= Configurati onKeyword Configurationldentifier

"("[ TestcaseFormal ParList] ")" ConfigSpec
St at ement Bl ock
901. ConfigurationKeyword ::= "configuration"
902. Configurationldentifier ::= ldentifier
903. Configurationlnstance ::= ConfigurationRef "(" [TestcaseActual ParList] ")"
904. ConfigurationRef ::= [d obal Mdul eld Dot] Configurationldentifier

905. Kill ConfigStatenent ::= Configurati onReference Dot Kill Keyword
906. ConfigurationReference ::= VariableRef | Functionlnstance

907. TranslationPortAttribs ::= MessageKeywordQut er Port TypeSpec "{" {
(Transl ati onAddrDecl | Transl ati onMessageli st | Confi gParanDef)
[ Semi Col on] } +

908. CQuterPortTypeSpec ::= QuterPortTypeMapSpec | CQuterPort TypeConnect Spec

909. CQuterPort TypeMapSpec ::=MapKeyword ToKeyword Type { "," Type } [ CQuterPortTypeConnect Spec ]
910. QuterPort TypeConnect Spec ::= Connect Keyword ToKeyword Type { "," Type }

911. Transl ati onAddr Decl = AddressKeyword Type [ Transl ati onAddr Spec{", " Transl| ati onAddr Spec }]
912. Transl ati onAddr Spec ::= ( ToKeyword | FronKeyword ) Type WthKeyword FunctionRef "(" ")"
913. Transl ati onMessagelLi st ::= I nParKeyword Transl ati onl nTypeli st |

Qut Keywor d Transl ati onQut Typeli st |
I nCut Par Keywor dTypelLi st

914. Transl ationl nTypelLi st ::=Transl ati onl nType{"," Transl ati onl nType}
915. Transl ationlnType ::= Type [Transl ati onl nSpec{"," Transl ati onl nSpec}]
916. Transl ationl nSpec ::= FronKeyword Type WthKeyword FunctionRef "(" ")"
917. Transl ati onQut TypelLi st ::= Transl ati onQut Type{"," Transl ati onQut Type}
918. Transl ati onQut Type ::= Type [Transl ati onQut Spec{", " Transl ati onQut Spec }]
919. Transl ati onQut Spec ::= ToKeyword Type WthKeyword FunctionRef "(" ")"

ETSI



81 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

920. FuncPort Spec ::= PortKeywordldentifier
921. SetPortState ::= PortKeyword"."Set StateKeyword" (" SingleExpression {"," Logltent")"
922. Set Verdi ct Keyword ::= "setstate"

ETSI



82 Final draft ETSI ES 202 781 V1.2.1 (2013-04)

Annex B (informative):
Library of useful types

B.1 Limitations

The types and constants described in this annex use the same rule as specified in the clause E.1 of ES 201 873-1 [1].

B.2 Useful TTCN-3 types

B.2.1 Status values for port states

Type and constants defined in this clause support the secure usage of the set st at e port operation defined in
clause 5.10.4.

The type definition for thistypeis:

type integer translationState(O..3);

Useful constant definitions for working with object states are:

const translationState TRANSLATED : = 0;

const transl ati onState NOT_TRANSLATED : = 1;
const translationState FRAGVENTED : = 2;

const translationState PARTI ALLY_TRANSLATED : =3;

ETSI



83

Final draft ETSI ES 202 781 V1.2.1 (2013-04)

History
Document history
V111 August 2010 Publication
Viz2.1 April 2013 Membership Approval Procedure MV 20130618: 2013-04-19 to 2013-06-18

ETSI



	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Package conformance and compatibility
	5 Package Concepts for the Core Language
	5.1 The special configuration type: configuration
	5.2 The configuration function
	5.3 Starting a static test configuration
	5.4 Destruction of static test configurations
	5.5 Creation of static test components
	5.6 Establishment of static connections and static mappings
	5.7 Test case definitions for static test configuration
	5.8 Executing test cases on static test configurations
	5.9 Further restrictions
	5.10 Ports with translation capability
	5.10.1 Translation capability in port type declaration
	5.10.2 Mapping and connecting ports
	5.10.3 Translation functions
	5.10.4 Translation state
	5.10.5 Sending
	5.10.6 Receiving
	5.10.7 Address
	5.10.8 Clear, start, stop and halt operation


	6 Package Semantics
	6.1 Replacement of short forms
	6.2 Order of replacement steps
	6.3 Flow graph representation of TTCN-3 behaviour
	6.4 Flow graph construction procedure
	6.5 Flow graph representation of configuration functions
	6.6 Retrieval of start nodes of flow graphs
	6.7 Module state
	6.8 Accessing the module state
	6.9 Configuration state
	6.10 Accessing the configuration state
	6.11 Entity states
	6.12 Accessing entity states
	6.13 Handling of connections among ports
	6.14 Handling of port states
	6.15 The evaluation procedure for a TTCN-3 module
	6.16 Evaluation phases
	6.17 Phase I: Initialization
	6.18 Phase II: Update
	6.19 Phase III: Selection
	6.20 Phase IV: Execution
	6.21 Global functions
	6.22 Clear port operation
	6.23 Configuration function call
	6.24 Connect operation
	6.25 Create operation
	6.26 Flow graph segment <disconnect-all>
	6.27 Flow graph segment <disconnect-comp>
	6.28 Flow graph segment <disconnect-port>
	6.29 Flow graph segment <disconnect-two-par-pairs>
	6.30 Execute statement
	6.31 Flow graph segment <execute-without-config>
	6.32 Flow graph segment <execute-on-config>
	6.33 Flow graph segment <execute-on-config-without-timeout>
	6.34 Flow graph segment <execute-on-config-timeout>
	6.35 Flow graph segment <statement-block>
	6.36 Halt port operation
	6.37 Kill component operation
	6.38 Flow graph segment <kill-mtc>
	6.39 Flow graph segment <kill-all-comp>
	6.40 Kill execution statement
	6.41 Kill configuration operation
	6.42 Map operation
	6.43 Start port operation
	6.44 Stop component operation
	6.45 Flow graph segment <stop-mtc>
	6.46 Flow graph segment <stop-config>
	6.47 Flow graph segment <stop-tc-config>
	6.48 Stop port operation
	6.49 Flow graph segment <unmap-all>
	6.50 Flow graph segment <unmap-comp>
	6.51 Flow graph segment <unmap-port>

	7 TRI Extensions for the Package
	7.1 Changes and extensions to clause 5.5.2 of ES 201 873-5 [3] Connection handling operations
	7.2 Extensions to clause 6 of ES 201 873-5 [3] Java language mapping
	7.3 Extensions to clause 7 of ES 201 873-5 [3] ANSI C language mapping
	7.4 Extensions to clause 8 of ES 201 873-5 [3] C++ language mapping

	8 TCI Extensions for the Package
	8.1 Extensions to clause 7.2.1.1 of ES 201 873-6 [4] Management
	8.2 Extensions to clause 7.3.1.1 of ES 201 873-6 [4] TCI TM required
	8.3 Extensions to clause 7.3.1.2 of ES 201 873-6 [4] TCI TM provided
	8.4 Extensions to clause 7.3.3.1 of ES 201 873-6 [4] TCI CH required
	8.5 Extensions to clause 7.3.3.2 of ES 201 873-6 [4] TCI CH provided
	8.6 Extensions to clause 7.3.4 of ES 201 873-6 [4] TCI-TL provided
	8.7 Extensions to clause 8 of ES 201 873-6 [4] Java language mapping
	8.8 Extensions to clause 9 of ES 201 873-6 [4] ANSI C language mapping
	8.9 Extensions to clause 10 of ES 201 873-6 [4] C++ language mapping
	8.10 Extensions to clause 11 of ES 201 873-6 [4] W3C XML mapping

	Annex A (normative): BNF and static semantics
	A.1 Additional TTCN-3 terminals
	A.2 Modified TTCN-3 syntax BNF productions
	A.3 Additional TTCN-3 syntax BNF productions

	Annex B (informative): Library of useful types
	B.1 Limitations
	B.2 Useful TTCN-3 types
	B.2.1 Status values for port states


	History

