

ETSI ES 202 553 V1.1.1 (2008-02)

ETSI Standard

Methods for Testing and Specification (MTS);
TPLan: A notation for expressing Test Purposes

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 2

Reference
DES/MTS-00100-TPLAN

Keywords
methodology, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.

3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 3

Contents

Intellectual Property Rights ..5

Foreword...5

1 Scope ..6

2 References ..6
2.1 Normative references ...6

3 Definitions and abbreviations...7
3.1 Definitions..7
3.2 Abbreviations ...7

4 Introduction ..7
4.1 TPLan: A formal notation for expressing test purposes ...7
4.2 Extensibility of TPLan ...8
4.3 The Test Suite Structure ...8
4.4 Areas of application..8
4.5 Limitations of TPLan ...8

5 TPLan keywords, comments and identifiers ..9
5.1 TPLan keywords ..9
5.2 Comments...10
5.3 TPLan identifiers..10
5.4 Uniqueness of identifiers..10
5.5 Including files...11

6 TSS Header ..11
6.1 Standard TSS header entries...11
6.2 User defined TSS Header entries ...12

7 External references...12

8 User definitions ..12
8.1 User defined words...12
8.2 User-defined headers..13
8.3 User-defined test entities ..13
8.4 User-defined events and parameters...13
8.5 User defined values ..14
8.6 User defined units...14
8.7 User defined conditions..15
8.8 Constraining keywords to specific contexts ...15

9 Groups ..16

10 TP Header...17
10.1 Standard TP Header entries ..17
10.2 User defined TP Header entries..18

11 TP body ..18
11.1 TP body structure ...18
11.2 TP pre-conditions ...18
11.3 TP stimuli ...19
11.4 TP responses...19
11.5 Precedence of TPLan statements..20
11.6 Temporal ordering of TPLan statements ..20
11.7 Using user defined test entities, conditions and words...21
11.8 Glue words and readability...21

Annex A (normative): The TPLan Grammar ...22

A.1 Syntactic Rules...22

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 4

A.2 TPLan EBNF Productions..22

Annex B (informative): Use of the IPT Testing Framework ..27

B.1 IPT naming conventions...27
B.1.1 IPT identifiers...27
B.1.2 The Requirements Identifier...27
B.1.3 The Configuration Identifier...27
B.1.4 The Test Purpose Identifier ..27
B.1.5 The Test Case Identifier ...27
B.1.6 The Test Description Identifier ..28

B.2 IPT cross references ...28
B.2.1 References to the Requirements Catalogue ..28
B.2.2 References to test configurations..28

Annex C (informative): A guide to using TPLan in a communications testing environment..........29

C.1 General considerations ...29
C.1.1 Introduction ..29
C.1.2 Structure of a TPLan specification ...29
C.1.3 Choosing a suitable text editor ...30

C.2 The TPLan header ..31
C.2.1 TSS Header ..31
C.2.2 Cross-references ...31
C.2.2.1 Requirement sources...31
C.2.2.2 Configurations ..31
C.2.3 User-defined extensions to TPLan ...32
C.2.3.1 General layout of user definitions...32
C.2.3.2 Header fields...33
C.2.3.3 Entities ..33
C.2.3.4 Events ...34
C.2.3.5 Conditions...34
C.2.3.6 Values ...35
C.2.3.7 Units..35
C.2.3.8 Keywords..35
C.2.3.9 Syntactical context ..36

C.3 Test Purposes..36
C.3.1 Grouping TPs ...36
C.3.1.1 TP header ..37
C.3.1.2 TP Body..38
C.3.1.2.1 Preconditions...38
C.3.1.2.2 Stimulus and response...38
C.3.1.2.2.1 The with and then construct ...38
C.3.1.2.2.2 Identifying the contents of message events ...39
C.3.1.2.2.3 Interactions with the user...40
C.3.1.2.2.4 Establishing the order of a sequence of events ..40
C.3.1.2.2.5 The "do nothing" response ..41

Annex D (informative): Some communications testing examples ..42

D.1 IPv6 Interoperability Test Purposes ...42

D.2 QSIG Interoperability Test Purposes ...46

D.3 ISDN Conformance Test Purposes...48

Annex E (informative): Bibliography...51

History ..52

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 6

1 Scope
The present document specifies the syntax and use of a notation for the definition of Test Purposes, TPLan. This
notation provides a structure and a common set of English keywords for the specification of Test Purposes. The basic
notation is oriented towards testing of reactive, black-box communication systems and uses terminology derived from
ISO/IEC 9646-1 [3]. However, facilities are also included to allow users to extend the notation with application-specific
keywords of their own.

The use of TPLan as the means of specifying Test Purposes is optional but, if it is used, the requirements specified in
the present document shall be met.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• Non-specific reference may be made only to a complete document or a part thereof and only in the following
cases:

- if it is accepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

For online referenced documents, information sufficient to identify and locate the source shall be provided. Preferably,
the primary source of the referenced document should be cited, in order to ensure traceability. Furthermore, the
reference should, as far as possible, remain valid for the expected life of the document. The reference shall include the
method of access to the referenced document and the full network address, with the same punctuation and use of upper
case and lower case letters.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are indispensable for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

[2] ETSI EG 202 568 (V1.1.3): "Methods for Testing and Specification (MTS); Internet Protocol
Testing (IPT); Testing: Methodology and Framework".

[3] ISO/IEC 9646-1: "Information Technology - Open Systems Interconnection - Conformance
Testing Methodology and Framework - Part 1: General concepts".

[4] ISO/IEC 9646-2: "Information Technology - Open Systems Interconnection - Conformance
Testing Methodology and Framework - Part 2: Abstract Test Suite specification".

http://docbox.etsi.org/Reference

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 7

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

event: something observable (measurable) at a given place and time

NOTE: The cause of a stimulus or the result of a response.

notation: textual means of representing ideas

programming language: artificial language that can be used to control the behaviour of a machine

test case: specification of the actions required to achieve a specific test purpose, starting in a stable testing state, ending
in a stable testing state and defined in either natural language for manual operation or in a machine-readable language
(such as TTCN-3) for automatic execution

test description: systematic specification of the test steps (generally in tabulated text) that must be taken to reach a
specific test verdict

test purpose: description of a well-defined objective of testing, focussing on a single interoperability requirement or a
set of related interoperability requirements

test suite structure: logical grouping of test purposes or test cases which should be both relevant and convenient

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

EBNF Extended Backus-Nauer Form
EUT Equipment Under Test
ICS Implementation Conformance Statement
IP Internet Protocol
IPT Internet Protocol Testing
IUT Implementation Under Test
PICS Protocol Implementation Conformance Statement
QE Qualified Equipment
RFC Request For Comments (IETF terminology for a draft standard)
RQ ReQuirement
TC Test Case
TD Test Description
TP Test Purpose
TSS Test Suite Structure
TTCN-3 Testing and Test Control Notation edition 3

4 Introduction

4.1 TPLan: A formal notation for expressing test purposes
ISO/IEC 9646 [3] and [4] recommends that test specifications include a concise and unambiguous description of each
test which focuses on its purpose. These Test Purposes, or TPs, define what is to be tested rather than how the testing is
performed. The TPs are based on the requirements identified in the relevant standard (or standards) from which the test
specification is derived. The detailed coding of each Test Purpose is specified in a Test Case. Often Test Cases, or TCs,
are written in a test specification language such as TTCN-3 [1]. The specification of Test Cases is outside the scope of
the present document.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 8

Generally, Test Purposes are written in prose (possibly displayed in a tabular format). There is considerable benefit to
be gained by having all TPs written in a similar and consistent way. With this in mind, a simple, structured notation
called TPLan has been developed for the expression of TPs. TPLan is defined with a minimal set of test-oriented
keywords but with the capability that permits users to define extensions to the notation. is an example of how TPLan
can be extended into a specific application area; in this case, telecommunications.

The benefits of using TPLan are:

• consistency in test purpose descriptions - less room for misinterpretation;

• clear identification of the TP pre-conditions, test body, and verdict criteria;

• automatic syntax checking and syntax highlighting in text editors;

• a basis for a TP transfer format and representation in tools.

4.2 Extensibility of TPLan
TPLan provides a framework for a consistent representation (format, layout, structure and logical ordering) and a
consistent use of words and patterns of words for expressing TPs. This is achieved without unnecessarily restricting the
expressive power of pure prose.

TPLan allows the use of keywords in combination with free-text strings (enclosed by single quotes). Thus, the TP writer
has considerable freedom of expression in the use of unstructured text between the keywords.

The basic set of pre-defined TPLan keywords has been kept to a minimum. These keywords are mainly concerned with
providing structure to the TPs. The intention is that this set of keywords is extended by the user for specific testing
applications through the use of user-defined keywords (see clause 8) which can be checked by automatic tools for
consistency and, to some extent, correctness.

4.3 The Test Suite Structure
Test Purposes should be grouped in a tree-like structure. This structure is known as the Test Suite Structure, or TSS.
The combination of structure and Test Purposes is known as the TSS&TP [3].

The general composition of a TPLan TSS&TP is as follows:

 TSS Header -- title, author, version etc.
 Cross References -- references to base standards, configuration descriptions etc.
 Definitions -- user-defined words, events, test entities, conditions, headers etc.
 TSS Groups -- if any and possibly nested
 Test Purposes -- contained in the groups (if any)

4.4 Areas of application
TPLan is not specific to a particular type or area of testing. The fundamental set of predefined TPLan keywords is
oriented towards conformance and interoperability testing (keywords such as IUT, TESTER and TD) but the
extensibility of the language means that the user can adapt TPLan to a wide range of testing contexts.

4.5 Limitations of TPLan
The TPLan grammar provides limited syntax checking and an enhanced visual representation of the TP in, for example,
a syntax sensitive text editor. However, in order to retain expressive power, TPLan is only loosely defined in that no
strict relation between certain words (especially the user-defined words) is specified. Thus, it is possible to write
nonsensical constructions if care is not taken. Of course, appropriate tools may be able to identify such constructions
but there are no constructs for doing this explicitly in the notation.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 9

5 TPLan keywords, comments and identifiers

5.1 TPLan keywords
Only those words listed in table 1 shall be considered to be valid TPLan keywords.

Table 1: TPLan keywords

TSS header keywords
author Author
date Date
title Title
TSS tss
version Version

Cross-references keywords
xref Xref

Definitions keywords
condition Condition
context Context
def Def
entity Entity
event Event
value Value
unit Unit
word Word

TP grouping keywords
end End
group Group
objective Objective

TP header keywords
config Config
id Id
ref Ref
role Role
RQ rq
summary Summary
TC tc
TD td
TP tp

TP body keywords
ensure Ensure
that That
with With
when When
then Then

Test entity keywords
IUT iut
TESTER tester

TPLan glue words
a A
an An
as As
in In
is Is
no No
of Of
the The

Logical words
and And
not Not
or Or

Stimulus and Response words
receives Receives
sends Sends

Data-related words
containing Containing
indicating Indicating

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 10

Direction-related words
from From
to To

Time- and order-related words
after After
before Before
unordered Unordered
within Within

5.2 Comments
Comments shall be introduced by the string "--" and terminated at the end of the same line.

5.3 TPLan identifiers
Letters, numbers and special characters may be used in a TPLan identifier, as follows:

• alphabetic

- a..z;

- A..Z;

• numeric

- 0..9;

• special characters

- |._-&%$*@?!></\#.

Typical TPlan identifiers are TP identifier, event names, cross reference identifiers and requirements identifiers. For
example:

 MyTSS&TP
 TP_UMTS_0789_01
 RQ_001_789
 REQ3952.Arev2
 CONF/HOST/INVALID/#75
 CF_MOB_02
 PICS_c.2

A TPLan identifier shall not contain any white space (e.g. tabs or spaces).

NOTE: In certain contexts it can be desirable to overlay TPLan with an additional level of checking related to a
particular methodology or naming convention. Generally, such overlays are outside the scope of this
present document. However, the ETSI IPT Testing Framework [2] includes naming rules for TPs and
other identifiers. These conventions are summarized in Annex B.

5.4 Uniqueness of identifiers
All user-defined words, headers, entities, conditions and events shall be unique in the scope of one TSS&TP. Parameter
names of events shall be unique in the scope of the list in which they are declared.

No user-defined name shall be the same as any pre-defined TPLan keyword.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 11

5.5 Including files
TPLan supports a limited form of file inclusion. This shall be indicated by the pre-processing directive, #include,
followed by the location of the included file enclosed in quotes. TPLan does not define the form of this location
reference. Typical locations may be a file path, reference to an ETSI standard, an object identifier or a URL. For
example:

 #include 'root/MyTPLan/MyDefs.txt'
 #include 'root/MyTPLan/MyTPs.txt'

The include statement shall only be used to include definitions (see clause 8) or complete test purposes comprising the
test purpose header and body (see clauses 10 and 11). Thus, the included file shall follow the syntax for definitions and
test purposes as defined in annex A.

6 TSS Header

6.1 Standard TSS header entries
A TPLan specification (i.e. a TSS&TP) shall begin with the following headers (though not all entries are mandatory, see
Annex A):

• TSS identifier (mandatory)

- the keyword TSS followed by the formal identifier of the TSS&TP;

• Title (optional)

- the keyword title followed by the name of the TSS&TP as quoted free text;

• Version (optional)

- the keyword version followed by the version number as any number of numeric values separated by
dots (".");

• Date (optional)

- the keyword date followed by three numeric values separated by dots ("."), forward slash ("/") or dash
("-"). The following examples are all valid date entries:

� 01-12-2007;

� 1.12.07;

� 31/5/2007;

� 05-31-07.

• Author (optional)

- the keyword author followed by the document author(s) as quoted free text.

Each TSS header keyword shall be followed by a colon (":").

A complete TSS&TP header:

 TSS : UMTS_TSS
 title : 'My TSS&TP as an example'
 version : 1.0 -- other examples may be 1.0.0 or 11.01
 date : 29.11.2004 -- could also be written as 29/11/2004 or 29-11-2004
 author : 'ETSI PTCC'

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 12

6.2 User defined TSS Header entries
Additional user-defined TSS&TP headers may be included with the standard headers. A user-defined TSS header may
comprise one or more defined header words, followed by a list of one or more identifiers separated by commas, or a
quoted string separated by a colon (see clause 8.2). For example:

 TSS : UMTS_TSS
 title : 'My TSS&TP as an example'
 version : 1.0
 date : 29.11.2004
 author : 'ETSI PTCC'
 status : 'Public' -- user-defined TSS header

A user-defined header may also use the predefined keyword ref. For example:

 PICS ref : 'Release 7'

A header (either predefined or user-defined) shall not appear more than once in a TSS.

7 External references
References to external sources of information shall be made using the xref keyword followed by an identifier and a
list of the external sources. Examples of the use of the xref keyword are as follows:

• References to base standards or other sources from which the TPs have been derived. For example:

 xref BaseStandards {TS123456-1, TS789345}

In the case where a PICS [3] is used the reference might be:

 xref PICS {TS123456-1, TS123456-2}

The TPLan syntax allows reference to be made in any appropriate form such as Object identifiers or URLs. For
example:

 xref MyWebDocs {www.tplan.info}

• References to explicit test configurations. For example:

 xref TestConfig1 {3GPPSpecXYZ_AnnexA_page10_fig1}

• The list of configuration sources may include references to file names as well as or instead of document
information, thus:

 xref TestConfig2 {OurProjectConfigs.pdf}

NOTE: The identifiers associated with xref statements could be used by software tools to check for consistency
within the specifications of test purposes. For example, a tool could check that TPs refer only to
configurations that have been previously declared in xref statements.

8 User definitions

8.1 User defined words
TPLan may be extended by the user with the def word keywords followed by one or more identifiers separated by
commas:

 def word tunnels, forwards

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 13

For information to the reader, each word definition may be followed by a description of that word as a quoted string.
For example:

 def word forwards ' receive a packet on one interface and transmit
 that packet unchanged on another interface'

These words may be used in the with, when and then statements of the TP body (see clause 11).

Although the addition of new keywords can make a TPLan specification considerably easier to understand, care should
be taken to avoid adding multiple words with almost identical meaning. Also, the def context construct
(see clause 8.8) should be used wherever possible to limit the use of newly-defined keywords.

8.2 User-defined headers
The TSS and TP headers may be extended using the def header keywords followed by one or more identifiers
separated by commas.

 def header status

For information to the reader, each header definition may be followed by a description of the meaning of that header as
a quoted string.

8.3 User-defined test entities
Explicit test entity names may be defined using the def entity keywords followed by one or more identifiers
separated by commas.

 def entity EUT, QE

For information to the reader, each entity definition may be followed by a description of the meaning of that entity as a
quoted string.

These test entity names may be used in the with, when and then statements of the TP body (see clause 11).

8.4 User-defined events and parameters
Explicit event names may be defined using the def event keywords followed by one or more identifiers separated by
commas. There is no strong definition of what an event is in TPLan, but, typically, these would be messages, timers or
something else that is observable or, at least, measurable. In the present document the term "message" is generally used
as an example of an event and, for clarity, event parameters are referred to as message fields, or fields for short. For
example:

 def event ICMP_Packet, SETUP

Optionally, the event name may be followed by a list of one or more parameter identifiers or user-defined values
separated by commas. For example:

 def event SETUP {f1, f2}
 -- or
 def event T1 {30sec}

For information to the reader, each event definition may be followed by a description of the meaning of that event as a
quoted string.

These event and parameter names may be used in the when and then statements of the TP body (see clause 11).

NOTE: These are abstract definitions of events and are not intended to be, for example, records or similar
constructs found in common programming languages.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 14

8.5 User defined values
Values may be defined using the def value keywords followed by one or more identifiers or literal values separated
by commas.

 def value T1, 3sec, FFFF, A76.4FF.321.255, ERRCODE, 200OK

For information to the reader, each value definition may be followed by a description of the meaning of that value as a
quoted string. For example, it can be useful to define an error code as a literal value and identify its actual value in the
quoted string, thus:

 def value AUTHENTICATION_FAILED '24'

These values may be used in the with, when and then statements of the TP body (see clause 11).

Integer values (e.g. 1, -653, 001, 0), real values of the form number dot number (e.g. 37.12, -1.5, 0.002) and
exponentiated values of the form real value e integer value (e.g. 3.2e5, 0.65e3, 2.0e-3) are built-in and need not be
explicitly defined.

Optionally, a value name may be followed by a list of one or more additional value names separated by commas. For
example:

 def value package1 {a, b, c}
 -- or
 def value area {length, width}

NOTE: The optional additional value names are used only to identify elements that should be included in the
substructure of the defined value. They should not be interpreted as a specification of array parameters or
possible enumerated values. As an example, in the definition of area above:

� area can be considered to be comprised of the values length and width;

� area cannot be considered to be:

- a 2-dimensional array of size length × width;

- an enumerated type which can only take the values length and width.

8.6 User defined units
Units may be defined using the def unit keywords followed by one or more identifiers or literal values separated by
commas.

 def unit seconds, metres, volts, newtons, henrys

For information to the reader, each unit definition may be followed by a description of the units as a quoted string.

Care should be taken to ensure that, if required, both the singular and the plural version of each unit is defined. For
example, using only the definition above, the expression 1 second would be considered to be syntactically incorrect.
If singular units are required within a TPLan specification, it is necessary that they be defined explicitly. The above
example would then be extended as follows:

 def unit second, seconds, meter, metres, volt, volts, newton, newtons, henry, henrys

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 15

Alternatively, units can be defined using their generally accepted abbreviations which are normally considered to be
both singular and plural. To make such definitions clearer to the reader, the optional descriptive string should be used to
provide the expanded unit description, thus:

 def unit s 'seconds'

 def unit m 'metres'

 def unit V 'volts'

 def unit N 'newtons'

 def unit H 'henrys'

However, the TPLan syntax does not permit the use of symbolic unit abbreviations such as "ohm" (Ω) and "degree" (º)
or prefixes such as "micro" (μ) or indices such as "squared" (2). These abbreviations should be defined using plain
textual constructs, such as:

 def unit ohm

 def unit degC 'degrees Celsius'

 def unit micro_s 'micro-seconds'

 def unit m2 'square meters'

8.7 User defined conditions
Conditions or states may be defined using the def condition keywords followed by one or more identifiers or
literal values separated by commas:

 def condition Idle, Ready, SESSION_ESTABLISHED

For information to the reader each condition definition may be followed by a description of the meaning of that
condition as a quoted string.

These conditions may be used in the with, when and then statements of the TP body (see clause 11).

8.8 Constraining keywords to specific contexts
If required, the use of certain keywords may be constrained to appear only in combination with other keywords. For
example, a user may wish to define the word requested and restrict its use so that it can appear only in the context of
is requested to.

Such restrictions shall be expressed by using the def context keywords followed by one or more predefined or
user-defined keywords.

 def context {is ~requested to}

The tilde(~) character shall be used to indicate that a particular user-defined word shall only be used in that context
(constrained). Words not preceded by tilde may appear in any context (unconstrained). In a single TPLan specification,
a TPLan word shall not be constrained by one def context statement and unconstrained by another def
context statement. A tilde character shall not be considered to constrain the use of any predefined keyword
immediately following it.

Keywords that are optional within the defined context shall be expressed by enclosing them in square brackets, for
example:

 def context {is [not] ~requested to}
 -- which means that the word requested can only be used in the following contexts:
 -- is requested to
 -- is not requested to

NOTE: Although the def context construct is of benefit to human readers, it can also be used by tools to
automatically include additional checking.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 16

A def context construct may include predefined TPLan keywords and user-defined notation extensions (e.g. words
and entities) but should only be used to define the syntactical context associated with particular user-defined words. It
should not be used to construct entity, event, condition or value identifiers which contain white space; i.e. in the
following example, the definition of the away_from_home condition is semantically different from the result of the
context definition which permits the use of the construct, away from home:

 def condition away_from_home

 def context {~away from ~home }

The inclusion of a user-defined TPLan word in more than one def context construct shall be interpreted as the
specification of alternative constraints on the use of a word rather than combined constraints. The following example
shows how two different contexts could be specified for the word "established":

 def word established
 def word having

 def context {having ~established}
 def context {~established as}

With the above context definitions, it is possible to use the word "established" either immediately after the word
"having" or immediately before the word "as", for example:

 IUT having established a connection
 IUT established as default_router).

In this example, the word "established" cannot be used in any other immediate arrangement of predefined or
user-defined words.

9 Groups
The TSS (Test Suite Structure) shall be expressed using the group keyword. Groups may be nested to provide
sub-grouping. The contents of a group may be other groups (sub-groups) or TPs or both sub-groups and TPs. A
TSS&TP does not have to be structured but, if it is, each group in that structure shall have the following group header:

• Begin group

- The keyword group denotes the start of a new group. This keyword shall be followed by at least one of
the following:

� the group number;

� a string of free text.

- The group number is any number of digits separated appropriately by dots ('.') e.g. 1 or 1.9 or 1.12.3.

• Group objective

- The keyword objective followed by a quoted free text description of the objective of the test group.
This entry is optional.

• End group

- The keywords end group denote the end of a group. These keywords shall be followed by at least one
of the following:

� the group number which should be the same as the group number used at the start of the group;

� a string of free text.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 17

An example of one group and a sub group:

 group 1 'Router(RT)' -- group number with optional free text
 objective 'Test Purposes for Router'
 group 1.1 ' Router(RT)/Provide IPv6 Services(PS)' -- a sub-group
 objective 'Test Purposes for IPv6 Services'
 -- TPs and/or more subgroups can go here
 end group 1.1 'RT/PS'
 -- TPs and/or more subgroups can go here
 end group 1 'RT'

10 TP Header

10.1 Standard TP Header entries
Each TP shall begin with a header construct as follows:

• TP id (mandatory)

- the keywords TP id followed by the TP Identifier;

• TP summary (optional)

- the keyword summary followed by a free text high-level description (overview) of the TP in quotes;

• Requirements reference (optional)

- the keywords RQ ref followed by the reference identifier;

• Role (optional)

- the keyword role followed by a list of one or more identifiers indication the role or roles of the object
being tested by the TP (e.g. router or host);

• Configuration reference (optional)

- the keyword config followed by a reference to the relevant testing configuration;

• The Test Case or Test Description reference (optional)

- the keywords TC ref or TD ref followed by a reference to the corresponding Test Case or Test
Description.

Header keywords may be followed by a colon (":").

For example:

 TP id : TP_COR_0001
 summary : 'Test for determining the correct use of the Pad1 option'
 RQ ref : RQ_COR_0001
 role : host
 config : CF_001_C
 TC Ref : TC_COR_0001

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 18

10.2 User defined TP Header entries
Additional user-defined TP headers may follow the standard headers (see clause 8.2). A user-defined TP header may
comprise one or more defined header words and the predefined keyword ref followed by a list of one or more
identifiers separated by commas, or a quoted string (optionally separated by a colon). For example:

 TP id : TP_COR_0001
 summary : 'Test for determining the correct use of the Pad1 option'
 RQ ref : RQ_COR_0001
 role : host
 config : CF_001_C
 TC ref : TC_COR_0001
 select : 'Profile A'
 PICS ref : PICS_001, PICS_345 -- where PICS has previously been defined as a header and
 the identifiers as xrefs
 web ref : 'www.tplan.org/profileA.htm' -- where 'web' has previously been defined as a header

11 TP body

11.1 TP body structure
The body of the TP follows the header and it is here that the Test Purpose is described in detail. The TP is generally
written from the viewpoint of the Implementation Under Test (IUT).

The general structure of a TP is:

 Pre-conditions -- optional initial conditions
 TP behaviour description -- comprising sequences of:
 Stimuli and Responses

Each TP behaviour description shall begin with the keywords ensure that followed by the remainder of the
description enclosed in curly braces ('{' and '}').

For example:

 ensure that {

 -- TP behaviour description goes here
 }

The when and then statements describe stimuli and responses (interactions) as seen from the point of view of the IUT.
Generally these are of the form:

 ensure that {
 when { ... } -- stimuli described from the viewpoint of the IUT.
 then { ... } -- IUT responses and other behaviour
 }

This pair of statements may be repeated any number of times to define a sequence of stimulus/response pairs, for
example:

 ensure that {
 when { ... }
 then { ... }
 when { ... }
 then { ... }
 }

11.2 TP pre-conditions
The with statement may be used to express the initial state or condition of the IUT from which the TP description
begins. If used, the with statement shall precede the ensure that statement. The with statement does not define
the steps or actions needed to reach the starting condition, only the condition itself. The conditions shall be expressed as
free text. Multiple conditions shall be logically concatenated using the Boolean operators and, or, not. The general
format of the with statement is:

 with { IUT 'condition 1' and 'condition 2' and not ...etc...}

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 19

For example:

 with { IUT 'in idle state' and 'port80 open' }
 ensure that {
 when { ... }
 then { ... }
 }

Conditions may be defined as described in clause 8.7. In which case the condition above might be:

 with { IUT in Idle_state and 'port80 open' }

11.3 TP stimuli
The when statement shall express some form of stimulus. In most cases such stimuli are caused by the tester and
experienced by the IUT. Typically this will be a receives statement (i.e. the IUT has received a stimulus) with the
name or description of the received event.

 IUT receives 'a message'

In cases where there is more than one possible source of event (e.g. an incoming message) in the test configuration the
keyword from may be added to the receives in order to identify that source.

 IUT receives 'a message' from 'some interface'

A receive statement may include the keyword containing which shall be followed by either a valid event parameter
name or a free text quoted string. This may, itself, be followed by the keyword indicating which shall be followed
by a numeric value, a defined value name or a free text quoted string.

 IUT receives 'a message' containing 'description of a field'
 indicating 'expected value of a field'

Using defined message names rather than strings allows for consistency checking of message names throughout the
TSS&TP. For example:

 def event AMessage {f1}
 . . .
 . . .
 when { IUT receives AMessage containing f1
 indicating 'expected value of a field' }

Further consistency checking can be achieved by defining the source of an event as an entity, thus:

 def entity Router1
 . . .
 . . .
 when { IUT receives MyMessage from Router1 }

The keywords and, or and not may be used to concatenate and qualify actions and conditions within the when
statement. For example:

 when { IUT receives 'a message' from 'node 1'
 containing 'field 1' indicating 'any valid value'
 and containing 'field 2' indicating 'a know source node'
 and not containing 'field 3' indicating 'an error in transmission'
 }

11.4 TP responses
The then statement shall express the expected response to the previous when statement. In most cases the response is
performed by the IUT and observed by the tester. Typically this will be a sends statement followed by the name or
description (expressed as free text) of the sent message.

 IUT sends 'a message'

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 20

In cases where there is more than one possible message destination in the test configuration the keyword to may be
added to the sends in order to identify that destination. For example:

 IUT sends 'a message' to 'some interface'

The syntax of the contents of sent messages is the same as that for the received messages. For example:

 IUT sends 'a message' containing 'description of a field' indicating 'expected value of a field'

The keywords and, or and not may be used to concatenate and qualify responses and conditions within the then
statement. For example:

 then { IUT sends 'another message' to 'node 1'
 containing 'field 3' indicating 'any valid value'
 and containing 'field 4' indicating 'any valid value'
 and IUT sends 'yet another message'
 }

As with the receives statement, user-defined messages and field names may be used in place of quoted strings.

11.5 Precedence of TPLan statements
In cases where successive logical operations are used in the TP body, it may not be clear what the intended order of
evaluation may be. Parentheses shall be used to resolve such ambiguities. For example:

 with { IUT ('condition 1' and 'condition 2') or 'condition 3'} -- is not the same as:
 with { IUT 'condition 1' and ('condition 2' or 'condition 3')}

The assumed order of precedence is governed by the following rules:

• the basic order of precedence is from left to right;

• logical words within brackets before those that are not;

• where nested brackets are used, logical words within the innermost brackets are evaluated before those in outer
brackets,

11.6 Temporal ordering of TPLan statements
If the strict sequence of TPLan behavioural statements is important, this shall be expressed using the pre-defined words
before and after. For example,

 when {IUT receives message1
 before IUT receives message2 }
 then {}

Statements may also be enclosed by parentheses to make the intended sub-ordering clear. For example,

 when {IUT receives message1
 (before IUT receives message2
 before IUT receives message3)}
 then {}

By default, sequential TPLan statements shall be evaluated in the order that they appear. For example, the following
TPLan:

 when { IUT receives A
 and IUT receives B }

means that the IUT shall respond to the receipt of message A followed by message B.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 21

The keyword unordered shall be used if it is required to express that a set of events may not evaluate in a sequential
manner.

 when { unordered (IUT receives A
 and IUT receives B)}

means that the IUT shall respond to the receipt of either message A followed by message B or message B followed by
message A. Again, parentheses may be used to clearly show what the scope of the ordering should be.

The keywords before, within and after may also be used to express ordering, especially in the context of timers.

For example:

 before 'timer T1 expires'
 -- or
 within 'two minutes'
 -- or
 after '15 seconds'

In the following example, note also the use of the defined value 15s in place of the string "15 seconds"):

 then { IUT sends 'a message' to 'Node 1' within 15s
 }

11.7 Using user defined test entities, conditions and words
In some cases the pre-defined TPLan keywords may not be adequate. In such cases users may define additional
keywords suited to particular needs (see clause 8.3). For example, it would be beneficial to define the entities EUT
(Equipment Under test) and QE (Qualified Equipment) and the word forwards in order to make an interoperability
TP clearer, thus:

 then { EUT accepts 'an incoming IPv6 Packet'
 and EUT forwards 'the packet' to 'Node 1' within 15s
 }

A timer may be defined as a test entity (see clause 8.3), for example:

 when { T1 expires ... } -- this example assumes the defined word 'expires'

Defined conditions (see clause 8.7) may be used to express states instead of quoted strings, for example:

 IUT changes from IDLE to ACTIVE -- assumes the defined word 'changes' as
 -- well as the definition of the ACTIVE
 -- and IDLE conditions

11.8 Glue words and readability
To aid readability, TPLan allows the use of "glue" words such as a, an and the. For example

 then { the EUT accepts an 'incoming IPv6 Packet'
 and the EUT forwards a 'message' to 'Node 1' within '15 seconds'
 }

Syntax highlighting (i.e. use of multiple colours) can also aid readability:

 then { the EUT accepts an IPv6_Packet
 and the EUT forwards an ICMP_Packet to RouterA within '15 seconds'
 }

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 22

Annex A (normative):
The TPLan Grammar

A.1 Syntactic Rules
This annex defines the TPLan grammar in Extended Backus-Nauer Form (EBNF). This can be used either as a
reference or as input to parser generator tools. Table A.1 defines the syntactic conventions that should be used when
reading the TPLan EBNF.

Table A.1: The syntactic metanotation

::= is defined to be
abc the non-terminal symbol abc
abc xyz abc followed by xyz
abc | xyz alternative (abc or xyz)
[abc] 0 or 1 instances of abc
{abc} 1 or more instances of abc
[{abc}] 0 or more instances of abc
 a - z all characters from a to z
'...' denotes a regular expression
(...) denotes a textual grouping
"abc" the terminal symbol abc
; production terminator
\ the escape character

A.2 TPLan EBNF Productions

// BNF grammar for TSS & TP language (TPLan)
// Version: 2.6
// Date: 08.10.2007
// Author: ETSI CTI

// TSS header
tss_header ::= KWD_tss DELIM ext_tss_id
 [tss_title]
 [tss_version]
 [tss_date]
 [tss_author]
 [{user_tss_header}]
 tss_body;

tss_title ::= KWD_title DELIM
 qstring;

tss_version ::= KWD_version DELIM
 numeric [{DOT numeric}];

tss_date ::= KWD_date DELIM
 '[0-9][0-9]' DOT '[0-9][0-9]' DOT '[0-9][0-9][0-9][0-9]'
 | '[0-9][0-9]' F_SLASH '[0-9][0-9]' F_SLASH '[0-9][0-9][0-9][0-9]'
 | '[0-9][0-9]' DASH '[0-9][0-9]' DASH '[0-9][0-9][0-9][0-9]';

tss_author ::= KWD_author DELIM
 qstring;

user_tss_header ::= {header_id | TSS_header_KWDS} DELIM
 (user_header_list | qstring);

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 23

user_header_list ::= extended_id [{SEPARATOR extended_id}];

// TSS body
tss_body ::= [{xrefs}]
 [{definitions}]
 {group | tp};

// References and definitions
xrefs ::= KWD_xref
 xref_id
 L_BRACE extended_id [{SEPARATOR extended_id}]R_BRACE;

definitions ::= KWD_def
 (define_word
 | define_header
 | define_event
 | define_entity
 | define_unit
 | define_value
 | define_condition
 | define_context) [qstring]
 | includes;

includes ::= "#include" qstring;

define_word ::= KWD_word
 word_id [{SEPARATOR word_id}];

define_header ::= KWD_header
 header_id [{SEPARATOR header_id}];

define_event ::= KWD_event
 event_id [field_list] [{SEPARATOR event_id [field_list]}];

field_list ::= L_BRACE field_id | value_id [{SEPARATOR field_id | value_id}] R_BRACE;
// STATIC SEMANTICS 1: field_id shall be unique in the field list

define_entity ::= KWD_entity entity_id [{SEPARATOR entity_id}];

define_unit ::= KWD_unit unit_id [{SEPARATOR unit_id}];

define_value ::= KWD_value value_id [field_list] [{SEPARATOR value_id [field_list]}];

define_condition ::= KWD_condition condition_id [{SEPARATOR condition_id}];

define_context ::= KWD_context L_BRACE {context} R_BRACE;

context ::= [L_BRACKET] context_id [R_BRACKET];

// STATIC SEMANTICS 2: If used, each and every L_BRACKET shall be paired with a corresponding
R_BRACKET

// Grouping
group ::= group_header
 [group_objective]
 [{group | tp}]
 [group_num][qstring]

group_header ::= KWD_group
 [group_num]
 [qstring];

group_objective ::= KWD_objective DELIM
 [qstring];

tp ::= (tp_header
 tp_body)
 | includes;

// TP Header
tp_header ::= tp_identifier
 [summary]
 [req_ref]
 [role]
 [config_ref]
 [tc_or_td_ref]

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 24

 [{user_tp_header}];

tp_identifier ::= KWD_tp KWD_id DELIM
 TP_id;

summary ::= KWD_tp_summary DELIM
 [qstring];

req_ref ::= KWD_req KWD_ref DELIM
 [cat_ref_list];

role ::= KWD_role DELIM
 [role_ref_list];

config_ref ::= KWD_config DELIM
 [CF_id];

tc_or_td_ref ::= tc_ref | td_ref;

tc_ref ::= KWD_tc KWD_ref DELIM
 TC_id;

td_ref ::= KWD_td KWD_ref DELIM
 TD_id;

cat_ref_list ::= RQ_id [{SEPARATOR RQ_id}];

role_ref_list ::= role_id [{SEPARATOR role_id}];

user_tp_header ::= {TPLan_Hid | TP_header_KWDS} DELIM
 (user_header_list | qstring);

// TP body
tp_body ::= [preconditions]
 KWD_ensure KWD_that
 begin_tp
 {[stimuli] responses}
 end_tp;

preconditions ::= KWD_precondition
 begin_conditions
 [precondition [{KWD_logical precondition}]]
 end_conditions;

precondition ::= [test_object] mixed_text;

stimuli ::= KWD_stimulus
 begin_stimuli
 [stimulus [{KWD_logical stimulus}]]
 end_stimuli;

stimulus ::= [test_object] mixed_text;

responses ::= KWD_response
 begin_responses
 [response [{KWD_logical response}]]
 end_responses;

response ::= [test_object] mixed_text;

TPLan_word ::= predefined_words
 | num_id
 | TPLan_id;

test_object ::= TPLan_Eid | KWD_IUT | KWD_TESTER;

mixed_text ::= TPLAN_word
 | qstring
 | (mixed_text mixed_text)
 |(L_PAREN mixed_text R_PAREN);

// TPLan identifiers
// STATIC SEMANTICS 2: no identifier of any kind shall be the same as any
// other predefined or user-defined TPLan keyword or identifier

// TSS and TP related identifiers

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 25

ext_tss_id ::= extended_id;
ext_xref_id ::= extended_id;
ext_RQ_id ::= extended_id;
ext_CF_id ::= extended_id;
ext_TC_id ::= extended_id;
ext_TD_id ::= extended_id;
ext_TP_id ::= extended_id;
role_id ::= extended_id;
// Header identifiers
header_id ::= extended_id;
TPLan_Hid ::= extended_id;
// Test entity identifiers
entity_id ::= extended_id;
TPLan_Eid ::= extended_id;
// Event (Message) and field identifiers)
field_id ::= extended_id;
event_id ::= extended_id;
// Unit identifiers
value_id ::= extended_id;
// Value identifiers
unit_id ::= extended_id;
// Word identifiers
word_id ::= extended_id;
TPLan_id ::= extended_id;
// Condition identifiers
condition_id ::= extended_id;

extended_id ::= '[a-zA-Z0-9|._&%$*@%?></\#!-]+';
context_id ::= ["~"]extended_id

// Numbering
group_num ::= numeric [{DOT numeric }];

numeric ::= '[0-9]+';

num_id ::= '[0-9.eE]+';

// STATIC SEMANTICS 3: Table 1 of this present document shows alternative forms of
// case sensitivity for the TPLan keywords.
// For simplicity the keywords shown in this BNF correspond to the
// left-hand column of Table 1. The alternatives in column 2 are assumed.

// TSS header keywords

TSS_header_KWDS ::= KWD_author | KWD_date | KWD_title | KWD_tss | KWD_version;
KWD_author ::= "author";
KWD_date ::= "date";
KWD_title ::= "title";
KWD_tss ::= "TSS";
KWD_version ::= "version";

// Reference and definition keywords
KWD_xref ::= "xref";

KWD_condition ::= "condition";
KWD_context ::= "context";
KWD_def ::= "def";
KWD_entity ::= "entity";
KWD_event ::= "event";
KWD_header ::= "header";
KWD_value ::= "value";
KWD_unit ::= "unit";
KWD_word ::= "word";

// Group keywords
KWD_end ::= "end";
KWD_group ::= "group";
KWD_objective ::= "objective";

//TP header keywords
TP_header_KWDS ::= KWD_config | KWD_id |KWD_ref |KWD_role |KWD_req
 |KWD_tp_summary |KWD_TC |KWD_TD |KWD_TP;

KWD_config ::= "config";
KWD_id ::= "id";
KWD_ref ::= "ref";
KWD_role ::= "role";

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 26

KWD_req ::= "RQ";
KWD_tp_summary ::= "summary";
KWD_TC ::= "TC";
KWD_TD ::= "TD";
KWD_TP ::= "TP";

//TP body (structure) keywords
KWD_ensure ::= "ensure";
KWD_that ::= "that";
KWD_response ::= "then";
KWD_stimulus ::= "when";
KWD_precondition ::= "with";
KWD_logical ::= "and"|"or"|"and not"|"or not";

//Test entity keywords
KWD_IUT ::= "IUT";
KWD_TESTER ::= "TESTER";

//Predefined words
predefined_words ::=
 // glue words
 "a"
 | "an"
 | "as"
 | "in"
 | "is"
 | "no"
 | "of"
 | "the"
 // logical words
 | "and"
 | "not"
 | "or"
 // stimulus and response words
 | "receives"
 | "sends"
 // data-related words
 | "containing"
 | "indicating"
 //direction words
 | "from"
 | "to"
 // time- or order-related words
 | "after"
 | "before"
 | "unorderd"
 | "within";

// Begin/End symbols
begin_stimuli ::= L_BRACE;
end_stimuli ::= R_BRACE;
begin_conditions ::= L_BRACE;
end_conditions ::= R_BRACE;
begin_responses ::= L_BRACE;
end_responses ::= R_BRACE;
begin_tp ::= L_BRACE;
end_tp ::= R_BRACE;

// Delimiters, separators etc.
DASH ::= "-";
DELIM ::= ":";
DOT ::= ".";
F_SLASH ::= "/";
L_BRACE ::= "{";
R_BRACE ::= "}";
L_BRACKET ::= "[";
R_BRACKET ::= "]";
L_PAREN ::= "(";
R_PAREN ::= ")";
LT ::= "<";
RT ::= ">";
SEPARATOR ::= ",";
U_SCORE ::= "_";

qstring ::= "'" *("'") "'";

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 27

Annex B (informative):
Use of the IPT Testing Framework

B.1 IPT naming conventions

B.1.1 IPT identifiers
The IP Testing Framework [2] naming conventions provide traceability to other components of a complete test
specification. For example, to the base standards, requirements catalogue or PICS, configuration descriptions or Test
Cases. These conventions are defined in EG 202 568 [2] but are repeated here for convenience.

If the TPLan user wishes to follow these conventions then the syntax defined in [2] shall be used.

B.1.2 The Requirements Identifier
The Requirements Identifier is of the form RQ_nnn_mmmm where "nnn" is a 3-digit number and "mmmm" is a 4-digit
number. The Requirements Identifier uniquely identifies a requirement in the corresponding Requirements Catalogue,
derived from the relevant base standards. For example:

 RQ_201_1001

In cases where a PICS (or profile PICS) is used rather than a Requirements Catalogue then the reference to the relevant
PICS entry will depend on the naming conventions followed by the relevant PICS. A typical example might be:

 PICS_101_Table1.item3

B.1.3 The Configuration Identifier
The Configuration Identifier is of the form CF_aa..a_nn where "aa..a" is an alphanumeric string of length 1to 8 and
"nn" is a 2-digit number (see also clause 7.2). The alphanumeric string may be the same as the TSS identifier in the TSS
header (often it will be the same, but not necessarily). The Configuration Identifier uniquely identifies a specific test
configuration (if any). For example:

 CF_MOBILITY_03

B.1.4 The Test Purpose Identifier
The Test Purpose Identifier is of the form TP_aa..a_nnnn_mm where "aa..a" is an alphanumeric string of length
1 to 8, "nnnn" is a 4-digit number and "mm" is a 2-digit number. The alphanumeric string shall be the same as the TSS
identifier in the TSS header. The Test Purpose Identifier uniquely identifies the TP.

 TP_MOBILITY_0001_99

B.1.5 The Test Case Identifier
The Test Case Identifier is of the form TC_aa..a_nnnn_mm where "aa..a" is an alphanumeric string of length 1to 8,
"nnnn" is a 4-digit number and "mm" is a 2-digit number. The alphanumeric string shall be the same as the TSS
identifier in the TSS header. The Test Case Identifier uniquely identifies a corresponding (TTCN-3) test case (if any).

 TC_MOBILITY_0001_99

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 28

B.1.6 The Test Description Identifier
The Test description Identifier is of the form TC_aa..a_nnnn_mm where "aa..a" is an alphanumeric string of length
1 to 8, "nnnn" is a 4-digit number and "mm" is a 2-digit number. The alphanumeric string shall be the same as the TSS
identifier in the TSS header. The Test Description Identifier uniquely identifies a test description (if any).

 TD_MOBILITY_0001_99

B.2 IPT cross references

B.2.1 References to the Requirements Catalogue
When the IPT Testing Framework [2] is used each TP shall refer to one or more requirements defined in the relevant
Requirements Catalogue. Each requirement is uniquely identified as described in clause B.1. The first three digits in the
requirement reference identify the source documents from which a particular set of requirements are derived. This is
specified using the xref keyword, followed by a list of one or more references to base standards and/or profiles and
relevant requirements catalogue.

 xref RQ_001 {TS123456-1, RFC1234}
 .
 .
 RQ ref: RQ_001_0728

 --In this example the requirement RQ_001_0728 identifies requirement 0728
 -- extracted from the base standards TS123 456-1 and RFC 1234.

B.2.2 References to test configurations
References to explicit IPT test configurations are made using the keyword xref followed by a configuration identifier
as defined in clause B.1 followed by a list of one or more references to where the description (e.g. prose and/or
drawing) can be found. For example:

xref CF_UMTS_007 {3GPPSpecXYZ_AnnexA_page10_fig1}

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 29

Annex C (informative):
A guide to using TPLan in a communications testing
environment

C.1 General considerations

C.1.1 Introduction
TPLan is specified in the present document as a generic notation which has only a limited semantic model and has a
number of powerful capabilities which make it adaptable to most testing environments. However, this power and its
flexibility, if misused, can result in unreadable and meaningless TP specifications. Consequently, it is important to
follow some practical guidelines when writing TPLan. This annex offers some guidelines on using TPLan in the
production of communications test specifications.

C.1.2 Structure of a TPLan specification
A complete TPLan specification comprises a Header section followed by the Test Purposes (TPs) themselves.

The TPLan Header section contains the following items:

• the TSS Header

- TSS Identifier;

- TSS Title;

- version number;

- date;

- author.

• cross-references:

- to requirements sources;

- to configuration (abstract architectures) information.

• user-defined extensions to TPLan:

- header fields;

- entities;

- events;

- values;

- units;

- keywords;

- conditions

- syntactical context.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 30

Test Purposes can be grouped together to reflect the Test Suite Structure (TSS) and each TP is specified using the
following elements:

• TP Header:

- TP identifier;

- a summary of the test;

- references to the requirements covered by the TP;

- the role of test subject (IUT or EUT);

- an identification of the abstract architecture upon which the TP is based;

- a reference to the Test Case (TC) or Test Description (TD) derived from the TP.

• TP Body:

- test preconditions;

- stimulus;

- response

C.1.3 Choosing a suitable text editor
TPLan depends quite heavily on the use of colour to distinguish between different types of keyword. Consequently, if
TPs are being developed outside a specific TPLan tool, it is important to choose a text editor that can support
user-defined context-sensitive highlighting. Many such editors exist and the one that is best suited to the particular
project should be selected. Apart from the ability to use colour highlighting, other selection criteria may include current
availability as an installed product, price, support and additional functionality.

Whichever text editor is chosen, it should be configured to provide the colour scheme shown in Table C.1 for TPLan
specifications, if possible:

Table C.1: TPLan colour highlighting conventions

TPLan element Font colour Font weight Example
TSS Header keywords purple bold Date

Definition keywords purple bold def entity

Grouping keywords purple bold Group End Group

TP Header keywords blue bold RQ ref

TP Body keywords blue bold when

Entities dark red normal IUT
Events dark red normal Call_Proceeding
Event parameters dark red normal source_address
Values dark red normal prefix_lifetime
Units dark red normal 300 msec
Conditions dark red normal away_from_home
Numbers dark red normal 1234
Strings dark grey normal 'this is a string'
Comments dark green normal -- this is a comment
All other text black normal TP_SEC_2345_04

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 31

C.2 The TPLan header

C.2.1 TSS Header
Most of the information specified in the TSS Header is included for the management and control of the TPLan
specification and should be maintained conscientiously. This means that:

a) the title field should accurately reflect the contents of the specification;

b) the date and version fields should, together, identify the revision status of the specification; and

c) the author field should identify the group or individual responsible for writing the specification.

However, the purpose of the TSS field is to declare the short string (3 to 8 characters) that should be used in the
construction of each TP identifier. For example, if the TSS field is declared as "ABCDE" then all TP identifiers should
be of the form "TP_ABCDE_nnnn_mm".

The following example shows a valid TSS Header:

TSS : SEC
Title : 'IPv6 Security TSS and TP'
Version : 1.1.6
Date : 25.10.2006
Author : 'STF276-II'

C.2.2 Cross-references

C.2.2.1 Requirement sources

Cross references to requirements sources are included in a TPLan specification purely for information and have no
semantic meaning within the notation. They provide an opportunity to identify the sources of specific groups of
requirements referenced within the TPs. Thus, in the following example, all requirements with identifiers of the form
RQ_040_nnnn are derived from the source documents, RFC 1234 and RFC 4567:

xref RQ_040 { RFC1234, RFC4567 }

The list of sources should be as complete as possible and should not be limited to publicly-available documents. Any
that are relevant and from which requirements have been extracted should be included.

C.2.2.2 Configurations

As with the cross-references to requirements sources, the configuration cross-references are for information only. They
provide convenient pointers to files or documents that specify the various abstract architectures upon which the TPs are
based. The following example identifies that the configurations CF_SEC_01, CF_SEC_02 and CF_SEC_03 can all be
found in the document, Config_IOP_SEC.pdf:

xref CF_MOB_02 {Configs_IOP_SEC.pdf}
xref CF_MOB_03 {Configs_IOP_SEC.pdf}
xref CF_MOB_04 {Configs_IOP_SEC.pdf}

Again, the list of configurations should be as complete as possible, particularly for interoperability TPs where the
abstract architectures are an integral part of the specification.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 32

C.2.3 User-defined extensions to TPLan

C.2.3.1 General layout of user definitions

The TPLan notation requires that all user-defined extensions are specified as part of the TPLan Header, i.e. before any
TPs are specified, but, within this part of the Header, there is no strict order specified. However, the use of TPLan
comments to group similar types of definition together can make the specification easier to read. The structure of the
user-defined extension is likely to be dependent upon the project to which the TPLan is related but, as an example, the
following list shows how the extensions could be organized:

1. Cross references:

- Requirements.

- Configurations.

2. Entities:

- Test entities (e.g. EUT, QE).

- Network entities (e.g. destination_node, connection).

- Addressing entities (e.g. multicast_group, port_21).

3. Events:

- Messages (e.g. SETUP, IPv6Packet).

- Timeouts (e.g. max_response_time).

- User-interface stimuli (e.g. escape_key, Go_command).

- Procedural events (e.g. transport_mode, connection_establishment).

- Generic events (e.g. request, response).

4. Conditions:

- Pre-conditions (e.g. powered-up).

- States (e.g. idle, away_from_home).

5. Values:

- Event-related values (e.g. packet headers, payload contents).

- Literal constants (e.g. status codes, error codes, message types).

- Counters and timers.

6. Units

- Simple measurement (e.g. metres, mille-seconds).

- Quantitative (e.g. octets, errors).

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 33

7. Keywords:

- Comparators (e.g. equal, more).

- Qualifiers (e.g. acceptable, modified).

- Functions (e.g. plus, times).

- General "glue" words (e.g. at, this).

- Keywords related to the "with" statement (e.g. having, established).

- Keywords related to the "when" statement (e.g. requested, expires).

- Keywords related to the "then" statement (e.g. accepts, resends).

C.2.3.2 Header fields

TPlan permits the definition of new fields to be used in the TSS Header and the TP Headers. This facility should be
used sparingly to add fields that are of particular relevance to a project. In the TSS Header it could be used to add, for
example, a status field or a Work Item reference as shown below:

TSS : SEC
Title : 'IPv6 Security TSS and TP'
WI ref : 'DTS/MTS-IPT-010-IPv6-SecTCSS'
Version : 1.1.6
Status : 'Draft'
Date : 25.10.2006
Author : 'STF276-II'
. . . .
. . . .
def header WI
def header Status

In those projects that use an Implementation Conformance Statement (ICS) as a reference document for the
requirements rather than or as well as a requirements catalogue, it is convenient to define a new field for the TP Header,
PICS, for example. This can then be used in place of the RQ ref field, thus:

def header PICS
. . . .
. . . .
TP id : TP_SEC_2009_01
summary : 'Test reaction on multicast IPv6 packets for unknown
 multicast_group SA'
PICS ref: B.5, D.23
role : Ipsec_host
config : CF_SEC_01
TC ref : TC_SEC_2009_01

C.2.3.3 Entities

Although the primary purpose of the def entity construct is enable the identification of test entities such as the
EUT and QEs, it is also useful for defining other architectural and addressing items. Examples of possible entities of
this type are shown in the following list:

1. Architectural:

- destination_node

- B_Channel

2. Addressing:

- multicast_group

- UDP_port_500

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 34

C.2.3.4 Events

The concept of an event within TPLan is not restricted. It could, for example, be a protocol message, a timeout or a
procedure invocation. Generally, they can be considered to be associated with stimuli and responses and usually require
the presence of additional keywords to describe a complete action. For example, tests often involve message events
which need to be associated with a send or receive keyword. The following examples show the different ways in
which events can be used:

 when { IUT receives SETUP }
 then { IUT sends CALL_PROCEEDING }

 when { sanity_timer expires in the IUT. . . }

 when { EUT is requested to establish a call to QE1 . . . }

TPLan events may have parameters associated with them. The purpose of this is to make it possible to identify fields
within messages and other events. The use of such parameters can improve the readability of a TPLan specification
quite considerably, as the following example shows:

def event SETUP
 { source_address,
 destination_address,
 A_flag }

 when { IUT receives SETUP
 containing source_address indicating an external_user
 and containing A_flag set to 1 }
 then { }

In those cases where a parameter, itself, contains additional fields (for example, a packet header), these fields should be
identified in a def value statement (see clause C.2.3.6), as follows:

def event IPv6Packet
 { IPv6_Header,
 Routing_header,
 payload }

def value IPv6_header
 { Version,
 Traffic_Class,
 Payload_Length,
 source_address,
 destination_address }

 when { IUT receives an IPv6Packet
 containing an IPv6_header
 containing source_address indicating a link_local_address
 then { }

The parameter field can also be useful in identifying the length of a timeout event, as follows:

def event response_time {100mSec}

C.2.3.5 Conditions

The def condition statement in TPLan makes it possible to identify the various states that a test entity can reach.
A condition identifier can either be used within the TP Body in conjunction with a user-defined state keyword or in
the preconditions (with statement) without the state keyword, as follows:

def condition away_from_home
def condition idle
def word state

 with { EUT away_from_home }
 ensure that
 { when {. }
 then { EUT
 and EUT enters the idle state }
 }

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 35

C.2.3.6 Values

Within TPLan, a value can be a literal, a constant (e.g. Invalid_Format, Avogadros_Number), a value identifier
(e.g. repeat_count, message_ID) or any other value-related item.

When defining the literal constants which are often associated with protocol status or error codes, for example, it is
useful to include the numerical value of the constant as a comment, thus:

--** Configuration Types
def value CFG_REQUEST -- 1
def value CFG_REPLY -- 2

--** Notify Message Types
def value UNSUPPORTED_CRITICAL_PAYLOAD -- 1
def value INVALID_IKE_SPI -- 4
def value INVALID_MAJOR_VERSION -- 5
def value INVALID_SYNTAX -- 7
def value INVALID_MESSAGE_ID -- 9

def value ADDITIONAL_TS_POSSIBLE -- 16386
def value IPCOMP_SUPPORTED -- 16387

def value generic_payload_header
 { next_payload,
 Critical_flag,
 payload_length }

C.2.3.7 Units

Although TPLan allows specific combinations of numbers and units to be defined as values (e.g. 30sec) this
approach is not convenient in all cases. In those instances where a TPLan specification includes many different numeric
values associated with the same units then these units should be defined using the def unit construct as follows:

def unit msec 'mille-seconds'
.
 then { IUT sends CALL_PROCEEDING after 100 msec }

C.2.3.8 Keywords

Although the TPLan notation standard includes a base set of useful keywords, it is quite likely that each TP
specification will require the definition extra keywords. There are generally two reasons for adding new TPLan
keywords:

1. to extend the functional capabilities of TPLan, for example:

- starts;

- established;

- registered.

2. to add words that improve readability, for example:

- at;

- for;

- this.

Although the addition of new keywords can make the TPLan specification considerably easier to understand, care
should be taken to avoid adding multiple words with almost identical meaning. Also, the def context construct
(see clause 8.8) should be used wherever possible to limit the use of newly-defined keywords.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 36

C.2.3.9 Syntactical context

In order to avoid the use of newly-defined keywords in meaningless combinations, TPLan has a facility for defining the
specific syntactical context(s) in which a keyword may be used. This capability should be used extensively to avoid the
misuse of user-defined extensions. Within a def context statement, square brackets around a word indicates that it
is optional within the defined context, a preceding tilde (~) character indicates that the word may only be used in this
context (it is, however, possible to include the same word in more than one context). The following example shows how
def context statements can be constructed:

def word established
 . . .
def context {~established as }
def context {[not]~having ~established }

The result of these statements is that the keyword established can only be used in the following constructs:

 established as
 not having established
 having established

NOTE: The def context construct should only be used to define the syntactical context associated with
particular user-defined words. It should not be used to construct entity, event, condition or value
identifiers which contain white space; i.e. in the following example, the definition of the
away_from_home condition is semantically different from the result of the context definition which
permits the use of the construct, away from home:

 def condition away_from_home

 def context {~away from ~home }

C.3 Test Purposes

C.3.1 Grouping TPs
Each TP in a test specification is usually allocated to one or other of the groups in the Test Suite Structure (TSS).
TPLan allows this grouping to be expressed using its group and end group statements.

Each group of TPs should be given a unique number and a title which accurately reflects the nature of the grouping.
group numbers should be in the "legal" form (i.e. 1, 1.1, 1.1.1 etc.) as shown in the following example:

Group 2 'Basic communications functions'

Group 2.1 'Sending SETUP'

End Group 2.1
Group 2.2 'Receiving SETUP'

Group 2.2.1 'Sending CALL_PROCEEDING'

End Group 2.2.1
End Group 2.2
End Group 2

If the more traditional approach to naming TSS groups is taken (i.e. the group title is based upon the test path) [2] where
there is less functional information in the group title, the optional objective statement should be used to add a more
meaningful title, as follows:

Group 2 'Basic Call (BC)
Objective 'Basic communications functions'

Group 2.1 'Basic Call (BC) / Originating Exchange (OE)
Objective 'Sending SETUP'

End Group 2.1
Group 2.2 'Basic Call (BC) / Terminating Exchange (TC)
Objective 'Receiving SETUP'

Group 2.2.1 'Basic Call (BC) / Terminating Exchange (TC) / Response to SETUP (RS)

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 37

Objective 'Sending CALL_PROCEEDING'

End Group 2.2.1
End Group 2.2
End Group 2

C.3.1.1 TP header

Each TPLan Test Purpose begins with a header which should contain all of the following information:

• TP Identifier:

 The TP identifier should conform to the guidelines specified in EG 202 568 [2] and should include the
TSS identifier as shown in the following example:

 TSS : DEMO

 TP id : TP_DEMO_1234_03

• Summary of the TP:

 The TP summary is a string which should briefly describe the basis for the test. The summary in each TP
should be unique within the TSS so that even in those cases where a number of TPs are derived from a
single set of requirements, the summaries help to highlight the differences between each TP. For
example:

 TP id : TP_DEMO_1234_03
 Summary : 'Test the response of a host device to something (unicast address)'

 TP id : TP_DEMO_1234_04
 Summary : 'Test the response of a host device to something (multicast address)'

• Identification of the requirement source:

 It is important to know which base requirements each TP aims to test so it is essential that all relevant
requirements are listed, as shown in the following example:

 TP id : TP_DEMO_1234_03
 Summary : 'Test the response of a host device to something (unicast address)'
 RQ ref : RQ_204_3001, RQ_204_3002, RQ_316_0593, RQ_316_0619, RQ_316_0620,
 RQ_450_5261, RQ_450_6372

• The role of the IUT or EUT:

 As TPs are generally expressed in terms of the IUT or EUT, this field is necessary in order to identify
what functional role the IUT or EUT is expected to play in the test. If the test applies to more than one
role, then all applicable roles should be listed, as shown in the following example:

 TP id : TP_DEMO_1234_03
 Summary : 'Test the response of a host device to something (unicast address)'
 RQ ref : RQ_204_3001, RQ_204_3002, RQ_316_0593, RQ_316_0619, RQ_316_0620,
 RQ_450_5261, RQ_450_6372
 Role : Host, Router

 The role should not be confused with the physical entity playing the role. In the example above, a
personal computer (physical entity) could be configured to operate as either a Host or a Router
(functional role).

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 38

• The abstract architecture associated with the TP:

 The relevant configuration from those specified in the cross-reference statements in the TPLan Header
(clause C.2.2.2) should be identified here, as follows:

 TP id : TP_DEMO_1234_03
 Summary : 'Test the response of a host device to something (unicast address)'
 RQ ref : RQ_204_3001, RQ_204_3002, RQ_316_0593, RQ_316_0619, RQ_316_0620,
 RQ_450_5261, RQ_450_6372
 Role : Host, Router
 Config : CF_DEMO_17

• The identifier of the Test Case or Test Description which implements the TP:

 Each TP is likely to have a Test Case and/or a Test Description derived from it. The TC or TD identifier,
if it exists, should be identified here. If both a TD and a TC exist for a particular TP then only the TD
reference should be included:

 TP id : TP_DEMO_1234_03
 Summary : 'Test the response of a host device to something (unicast address)'
 RQ ref : RQ_204_3001, RQ_204_3002, RQ_316_0593, RQ_316_0619, RQ_316_0620,
 RQ_450_5261, RQ_450_6372
 Role : Host, Router
 Config : CF_DEMO_17
 TD ref : TD_DEMO_1234_03

C.3.1.2 TP Body

C.3.1.2.1 Preconditions

In most TPs there will be conditions that need to be defined before the test itself is specified. These preconditions are
specified in the TPLan with statement and should, in general, be status-related rather than dynamic, as shown in the
following examples:

 with { EUT away_from_home }

 with { IUT having sent SETUP }

 with { EUT configured 'to perform route optimization' }

It is possible to express multiple and complex conditions by using the logical and, not and or functions, thus:

 with { EUT away_from_home
 and EUT registered to QE4 }

 with { IUT having sent SETUP
 and IUT not having received CALL_PROCEEDING }

User-defined keywords and text within string-quotes should be chosen to fit grammatically in the with statement so
that it is easy to read as a correct English phrase. As an example, the following statement is not acceptable:

 with { IUT establishes a Security_Association }

However, the following similar statement is acceptable:

 with { IUT established in a Security_Association }

C.3.1.2.2 Stimulus and response

C.3.1.2.2.1 The with and then construct

Tests are usually specified as a combination of a stimulus followed by an expected response. In a TPLan specification,
these are represented by the when and the then statements, respectively. Consequently, although it is possible to have
more than one when and/or then, it is not possible to have a when statement without a corresponding then
statement.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 39

TPLan specifications can be written with only a few user-defined extensions (see clause C.2.3) by making extensive use
of quoted strings. Such specifications are generally not difficult to read but the opportunities for automatically checking
the specification and, possibly, for transposing it into a test case specification language such as TTCN-3, are limited. It
is, therefore, beneficial to define sufficient notation extensions to make the use of quoted strings the exception rather
than the rule.

All TPs should be written in terms of the IUT or EUT and the other test entities (i.e. the TESTER or the QEs). The
following example shows the specification of a simple stimulus and response:

 ensure that {
 when { IUT receives SETUP }
 then { IUT sends CALL_PROCEEDING }
 }

C.3.1.2.2.2 Identifying the contents of message events

In most instance, test stimuli (and, to a lesser extent, responses) are based on the status of the parameters of an event
rather than the event alone. The containing and indicating keywords are used for this purpose, as follows:

 when { IUT receives SETUP
 containing source_address
 indicating external_caller }

If it is necessary to be more specific about the contents of an event parameter, the readability of the specification can be
improved by substituting the indicating keyword with a set to construct which is defined and used thus:

 def word set
 def context { ~set to }

 when { IUT receives an IPv6packet
 containing Hop_Limit set to 0 }

A similar approach can be used in a response:

 then { IUT sends an ICMPv6packet
 containing an Error_Message
 set to PACKET_TOO_BIG }

Logical operators can be used to build stimuli and responses from multiple parameters values as the following example
shows:

 when { IUT receives SETUP
 containing source_address
 indicating external_caller
 and containing destination_address
 not indicating the address of the IUT }

It is possible that message event parameters may, themselves, contain parameters (see clause C.2.3.4). This is
particularly true in packet-based protocols such IPv6 where, in addition to a number of simple parameters, a packet may
contain:

• headers;

• payloads; and/or

• encapsulated (tunnelled) packets.

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 40

In these instances, round braces and suitable indentation should be used to improve the clarity of the TPLan
specification. For example:

 ensure that
 { when { IUT receives CREATE_CHILD_SA_request
 containing (Traffic_Selector_payload
 containing more than 1 Traffic_Selector) }
 then { IUT sends CREATE_CHILD_SA_response
 containing (Notify_payload
 containing Notify_Message_Type
 set to SINGLE_PAIR_REQUIRED) }
 }

C.3.1.2.2.3 Interactions with the user

It is not unusual for an event to be stimulated by the notional user of the IUT or EUT or for a response to involve a
report to the user. These are highlighted in the following examples which both require the addition of some user-defined
extensions to TPLan:

• User-initiated stimulus:

 def word requested
 def word send
 def context { is ~requested to ~send }

 when { the EUT is requested to send Echo_Request }

• Report-to-user response:

 def word indicates
 def word receipt
 def context { ~indicates ~receipt of }

 then { the EUT indicates receipt of the packet }

C.3.1.2.2.4 Establishing the order of a sequence of events

Although logically associated multiple events are treated by TPLan as ordered by default, it is possible to emphasize a
strict sequence of events within a stimulus or response by using before and after, particularly if the
sequence comprises only a small number of message events (no more than 3), as follows:

 when { IUT receives message_1
 before IUT receives message_2 }

Using the after keyword to link a number of message events together in a sequence can be confusing (because the
messages appear in reverse order) but it is very useful for associating a message event with a timer event, thus:

 then { IUT sends message_1
 after timer_3 expires }

When there are a larger number of events in a sequence, these should be specified as a list of events which are, by
default, ordered. Although this results in poorer English phrasing, it is considerably less complex than a long series of
events linked together with either before or after:

 when { IUT receives message_1
 and IUT receives message_2
 and IUT receives message_3
 and IUT receives message_4
 and IUT receives message_5
 }

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 41

Round braces should always be used to indicate the extent of the ordered sequence. For example, the when statement
above specifies a stimulus which is not the same as the stimulus specified in the following TPLan:

 when { (IUT receives message_1
 and IUT receives message_2
 and IUT receives message_3
 and IUT receives message_4
)
 and IUT receives message_5
 }

C.3.1.2.2.5 The "do nothing" response

When the expected response to a particular stimulus is to do nothing, user-defined extensions should be specified so that
a clear statement can be made, thus:

 def event response
 def context { sends no ~response }

 then { IUT sends no response }

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 42

Annex D (informative):
Some communications testing examples

D.1 IPv6 Interoperability Test Purposes
TSS : COR
Title : 'RFC2460 IPv6 Core Specification'
Version : 1.0.1
Date : 05.10.2006
Author : 'Steve Randall (ETSI TC-MTS)'

-- Cross references
xref RQ_001 {RFC2460, RFC2461}
xref CF_COR_11 {ETSI_TS_102_517_Annex_B}
xref CF_COR_21 {ETSI_TS_102_517_Annex_B}
xref CF_COR_23 {ETSI_TS_102_517_Annex_B}

-- Definitions
-- Entities
def entity EUT
def entity QE1
def entity QE2

-- Messages
def event data{packet_length}
def event ICMP_error_message {parameter_problem}
def event packet
 { source_address,
 destination_address,
 routing_header,
 hop_by_hop_options,
 Hop_Limit,
 flow_label,
 Type_0_routing_header,
 EUT_address,
 request_for_response}

-- Values
def value Path_MTU
def value Type_0_routing_header
 { Next_Header,
 Header_Extension_Length,
 Routing_Type_0,
 Segments_Left,
 Addresses }

-- Units
def unit octets

-- Keywords - Pre-conditions
def word configured

-- Keywords - Stimuli
def word indicates
def word requested
def word requiring
def word send
def context {is ~requested to}

-- Keywords - Responses
def word decrements
def word discards
def word receipt
def word response
def word unchanged
def context {sends no ~response}
def context {sends a valid ~response}

-- Keywords - Glue
def word between
def word exactly

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 43

def word greater
def word less
def word same
def word than
def word valid

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

Group 1 'RFC2460'
Group 1.1 'Process IPv6 Packet'
Group 1.1.1 'Process IPv6 Header'

TP id : TP_COR_1097_01
Summary : 'EUT processes a packet with its size equals to its link MTU'
RQ ref : RQ_001_1097
Config : CF_COR_11
TD ref : TD_COR_1097_01

with { QE1 configured 'with a unique global unicast address '
 and EUT configured 'with a unique global unicast address'
 and EUT 'having a link MTU smaller than the link MTU of QE1'
 }
ensure that {
 when { EUT receives a packet 'with its size equal to link MTU of EUT'
 containing QE1 as the source_address
 and containing EUT as the destination_address
 and containing a request_for_response }
 then { EUT sends a valid response to QE1 }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : TP_COR_1097_02
Summary : 'EUT processes a traversed packet with its size equals to its
 incoming link MTU'
RQ ref : RQ_001_1097
Config : CF_COR_21
TD ref : TD_COR_1097_02

with { QE1 configured 'with a unique global unicast address '
 and QE2 configured 'with a unique global unicast address'
 and EUT configured 'with two unique global unicast addresses on the link
 connecting QE1 and EUT, and, the link connecting QE2
 and EUT, respectively'
 and QE1 'having larger link MTU than EUT'
 and EUT 'having larger or equivalent link MTU than QE2'
 }
ensure that {
 when { EUT receives a packet 'with its size equal to its
 incoming link MTU'
 containing QE1 as the source_address
 and containing QE2 as the destination_address }
 then { EUT sends the packet to QE2 }
 }

Group 1.1.1.1 'Process Hop Limit'

TP id : TP_COR_1002_01
Summary : 'EUT decreases the Hop Limit field of a traversed IPv6 packet and
 forwards it'
RQ ref : RQ_001_1002
Config : CF_COR_21
TD ref : TD_COR_1002_01

with { QE1 configured 'with a unique global unicast address '
 and QE2 configured 'with a unique global unicast address'
 and EUT configured 'with two unique global unicast addresses on the
 link connecting QE1 and EUT, and the link connecting
 QE2 and EUT, respectively'
 }
ensure that {
 when { EUT receives a packet
 containing QE1 as the source_address
 and containing QE2 as the destination_address
 and containing a Hop_Limit greater than 1 }
 then { EUT decrements the Hop_Limit
 and EUT sends the packet to QE2 }
 }

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 44

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : TP_COR_1002_02
Summary : 'EUT drops a traversed IPv6 packets with a zero Hop Limit and
 returns an ICMP error message to the source'
RQ ref : RQ_001_1002
Config : CF_COR_21
TD ref : TD_COR_1002_02

with { QE1 configured 'with a unique global unicast address '
 and QE2 configured 'with a unique global unicast address'
 and EUT configured 'with two unique global unicast addresses on the
 link connecting QE1 and EUT, and on the link connecting
 QE2 and EUT, respectively'
 }
ensure that {
 when { EUT receives a packet
 containing QE1 as the source_address
 and containing QE2 as the destination_address
 and containing a Hop_Limit of 0 }
 then { EUT discards the packet
 and EUT sends an ICMP_error_message to QE1 }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : TP_COR_1058_01
Summary : 'EUT drops a packet with a Type 0 routing header and Hop Limit<=1
 and returns an ICMP error message to the source'
RQ ref : RQ_001_1058
Config : CF_COR_21
TD ref : TD_COR_1058_01

with { QE1 configured 'with a unique global unicast address '
 and QE2 configured 'with a unique global unicast address'
 and EUT configured 'with two unique global unicast addresses on the
 link connecting QE1 and EUT, and on the link connecting
 QE2 and EUT, respectively'
 }
ensure that {
 when { EUT receives a packet
 containing QE1 as source_address
 and containing QE2 as destination_address
 and containing a Type_0_routing_header
 and containing a Hop_Limit less than 2 }
 then { EUT discards the packet
 and EUT sends an ICMP_error_message to QE1 }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : TP_COR_1059_01
Summary : 'EUT forwards a traversed packet with a Type 0 routing header
 and Hop Limit > 1'
RQ ref : RQ_001_1059
Config : CF_COR_21
TD ref : TD_COR_1059_01

with { QE1 configured 'with a unique global unicast address '
 and QE2 configured 'with a unique global unicast address'
 and EUT configured 'with two unique global unicast addresses on the
 link connecting QE1 and EUT, and on the link connecting
 QE2 and EUT, respectively'
 }
ensure that {
 when { EUT receives a packet
 containing QE1 as the source_address
 and containing QE2 as the destination_address
 and containing a Type_0_routing_header
 containing Addresses indicating the EUT_address
 and containing Hop_Limit greater than 1 }
 then { EUT decrements the Hop_Limit
 and EUT sends the packet to QE2 }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 45

End Group 1.1.1.1

Group 1.1.1.2 'Process Flow Label'

TP id : TP_COR_1130_01
Summary : 'EUT detects two packets with different hop-by-hop option contents
 but the same source and destination addresses in the flow label'
RQ ref : RQ_001_1130
Config : CF_COR_21
TD ref : TD_COR_1130_01

with { QE1 configured 'with a unique global unicast address '
 and QE2 configured 'with a unique global unicast address'
 and EUT configured 'with two unique global unicast addresses on the link
 connecting QE1 and EUT and, the link connecting QE2 and
 EUT, respectively'
 }
ensure that {
 when { EUT receives packet 1
 containing QE1 as the source_address in the flow_label
 and containing QE2 as the destination_address in the flow_label
 and EUT receives packet 2
 containing hop_by_hop_options not the same as in packet 1
 and containing QE1 as the source_address in the flow_label
 and containing QE2 as the destination_address in the flow_label }
 then { EUT sends an ICMP_error_message
 indicating a parameter_problem to QE1
 and EUT discards packet 1
 and EUT discards packet 2 }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : TP_COR_1130_02
Summary : 'EUT detects two packets with different routing header contents but
 the same source and destination addresses in the flow label'
RQ ref : RQ_001_1130
Config : CF_COR_21
TD ref : TD_COR_1130_02

with { QE1 configured 'with a unique global unicast address '
 and QE2 configured 'with a unique global unicast address'
 and EUT configured 'with two unique global unicast addresses on
 the link connecting QE1 and EUT and
 the link connecting QE2 and EUT, respectively'
 }
ensure that {
 when { EUT receives packet 1
 containing QE1 as the source_address in the flow_label
 and containing QE2 as the destination_address in the flow_label
 and EUT receives packet 2
 containing a routing_header not the same as in packet 1
 and containing QE1 as the source_address in the flow_label
 and containing QE2 as the destination_address in the flow_label }
 then { EUT sends an ICMP_error_message
 indicating a parameter_problem to QE1
 and EUT discards packet 1
 and EUT discards packet 2 }
 }

End Group 1.1.1.2
End Group 1.1.1
End Group 1.1

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

Group 1.2 'Generate Extension Headers'
Group 1.2.1 'Generate Fragmented Packets'

TP id : TP_COR_1064_01
Summary : 'EUT fragments a packet larger than the available Path MTU before
 sending it'
RQ ref : RQ_001_1064
Config : CF_COR_23
TD ref : TD_COR_1064_01

ensure that {
 when { EUT is requested to send data requiring a packet_length

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 46

 greater than the Path_MTU to QE1 }
 then { QE2 indicates receipt of the same data unchanged }
 }

End Group 1.2.1

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

Group 1.2.2 'Process Fragmented Packets'

TP id : TP_COR_1100_01
Summary : 'EUT reassembles a fragmented packet of an original length less
 than 1500 octets'
RQ ref : RQ_001_1100
Config : CF_COR_23
TD ref : TD_COR_1100_01

with { 'the MTU on the path from QE1 towards the EUT set at 1280 octets' }
ensure that {
 when { QE1 is requested to send data requiring a packet_length
 of between 1288 octets and 1492 octets to the EUT }
 then { EUT indicates receipt of the same data unchanged }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : TP_COR_1100_02
Summary : 'EUT reassembles a fragmented packet of an original length equal
 to 1500 octets'
RQ ref : RQ_001_1100
Config : CF_COR_11
TD ref : TD_COR_1100_02

with { 'the MTU on the path from QE1 towards the EUT set at 1280 octets' }
ensure that {
 when { QE1 is requested to send data requiring a packet_length
 of exactly 1500 octets to EUT }
 then { EUT indicates receipt of the same data unchanged }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : TP_COR_1101_01
Summary : 'EUT reassembles a fragmented packet of an original length
 greater than 1500 octets'
RQ ref : RQ_001_1101
Config : CF_COR_11
TD ref : TD_COR_1101_01

with { 'the MTU on the path from QE1 towards the EUT set at 1280 octets' }
ensure that {
 when { QE1 is requested to send data requiring a packet_length
 of greater than 1500 octets to EUT }
 then { EUT indicates receipt of same data unchanged }
 }
End Group 1.2.2
End Group 1.2
End Group 1

D.2 QSIG Interoperability Test Purposes
TSS : BS
Title : 'QSIG Interoperability: Basic Service with Call Forward,
 Call Transfer and Call Completion Supplementary Services'
Version : 1.2
Date : 15.08.2001
Author : 'Steve Randall'

-- Cross References

xref PICS_01 {ECMA_143}
xref CF_BS_01 {PQM_BS_IOTv1b}

-- Definitions
-- Header fields

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 47

def header PICS

-- Entities
def entity user_A -- Connected to PINX Equipment Under Test
def entity user_B -- Connected to Qualified Equipment PINX
def entity user_C

-- Values
def value Line_Identity

-- Keywords - Pre-conditions
def word configured

-- Keywords - Stimuli
def word call -- causing a call setup to be sent
def word requested
def context {is ~requested to}

-- Keywords - Responses
def word answers
def word communicate
def word presents

-- Keywords - Glue
def word can

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Group 1 'QSIG Interoperability Tests'
Group 1.1 'Basic Service'
Group 1.1.1 'Simple call set-up'

TP id : TP_BS_001
Summary : 'EUT PINX supports outgoing call establishment with en-bloc sending'
PICS ref : PICS_01.B6
Config : CF_BS_01
TD ref : TD_BS_001

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_A configured 'to send address information in en-bloc
 sending mode'
 and user_B configured 'to receive address information in en-bloc
 sending mode'
 }
ensure that {
 when { user_A is requested to call user_B
 and user_B answers }
 then { user_A and user_B can communicate }
 }

--xxxxxxxxxxxxxxxxxxxxxxx

TP id : TP_BS_002
Summary : 'EUT PINX supports incoming call establishment with en-bloc sending'
PICS ref : PICS_01.B6
Config : CF_BS_01
TD ref : TD_BS_001

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_B configured 'to send address information in en-bloc
 sending mode'
 and user_A configured 'to receive address information in en-bloc
 sending mode'
 }
ensure that {
 when { user_B is requested to call user_A
 and user_A answers }
 then { user_A and user_B can communicate }
 }

--xxxxxxxxxxxxxxxxxxxxxxx

TP id : TP_BS_003
Summary : 'EUT PINX supports outgoing call establishment with
 overlap sending'
PICS ref : PICS_01.B6
Config : CF_BS_01

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 48

TD ref : TD_BS_001

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_A configured 'to send address information in overlap
 sending mode'
 and user_B configured 'to receive address information in overlap
 sending mode'
 }
ensure that {
 when { user_A is requested to call user_B
 and user_B answers }
 then { user_A and user_B can communicate }
 }

--xxxxxxxxxxxxxxxxxxxxxxx

TP id : TP_BS_004
Summary : 'EUT PINX supports incoming call establishment with
 overlap sending'
PICS ref : PICS_01.B6
Config : CF_BS_01
TD ref : TD_BS_001

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_B configured 'to send address information in overlap
 sending mode'
 and user_A configured 'to receive address information in overlap
 sending mode'
 }
ensure that {
 when { user_B is requested to call user_A
 and user_A answers }
 then { user_A and user_B can communicate }
 }

End Group 1.1.1

--xxxxxxxxxxxxxxxxxxxxxxx

Group 1.1.2 'Call set-up with line identities'

TP id : TP_BS_005
Summary : 'EUT PINX supports incoming call establishment with
 Connected Line identity'
PICS ref : PICS_01.J8
Config : CF_BS_01
TD ref : TD_BS_005

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '
 and user_A configured 'to present the Connected Line Identity
 on connection'
 and user_B configured 'to allow the presentation of its Line Identity
 on connection'
 }
ensure that {
 when { user_A is requested to call user_B
 and user_B answers }
 then { user_A presents the Line_Identity from user_B }
 }

End Group 1.1.2
End Group 1.1
End Group 1

D.3 ISDN Conformance Test Purposes
TSS : CW
Title : 'ISDN DSS1 Call Waiting Supplementary Service'
Version : 1.1
Date : 05.10.2006
Author : 'ETSI STC-SPS5'

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 49

--***Cross references***
xref CW_U {ETS_300_058_1}

--***Definitions***

-- Messages
def event SETUP {Channel_identification_IE}
def event ALERTING
def event RELEASE_COMPLETE {Cause_IE}

-- Values
def value no_B_channel_available
def value no_circuit_or_channel_available

-- Conditions (ISDN states)
def condition Busy 'ISDN defined Busy state'
def condition Null 'ISDN defined NULL state'
def condition U00 'Sub-state of NULL'
def condition information_channel_control 'Any call establishment state'

-- Keywords

def word compatible
def word valid
def word state

--xxxxxxxxxxxxxxxxxxxxxxxxx--

Group 1 'User (S/T)'
Group 1.1 'Valid behaviour'

TP id : CW_U01_001
Summary : 'A busy IUT with an available B-Channel responds to an incoming SETUP'
RQ ref : 9.5.1
Role : user

with { IUT in the Busy state
 and 'at least one B-Channel free to the IUT'
 }
ensure that
 {
 when { the IUT receives a valid and compatible SETUP from the TESTER}
 then { the IUT sends ALERTING to the TESTER }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : CW_U01_002
Summary : 'A busy IUT with information channel control but no B-Channel responds
 to an incoming SETUP'
RQ ref : 9.5.1
Role : user

with { IUT in an information_channel_control state
 and 'no B-Channel free to the IUT'
 }
ensure that
 {
 when { the IUT receives a valid and compatible SETUP from the TESTER
 containing a Channel_identification_IE
 indicating no_B_channel_available }
 then { the IUT sends ALERTING to the TESTER }
 }

--xxxxxxxxxxxxxxxxxxxxxxxxx--

TP id : CW_U01_003
Summary : 'A free IUT with no resources available responds to an incoming SETUP'
RQ ref : 9.5.2
Role : user

with { the IUT in the Null state U00
 and the IUT 'having all resources in use'
 }
ensure that
 {
 when { the IUT receives a valid and compatible SETUP from the TESTER

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 50

 containing a Channel_identification_IE
 indicating no_B_channel_available }
 then { the IUT sends a RELEASE_COMPLETE to the TESTER
 containing a Cause_IE
 indicating no_circuit_or_channel_available }
 }
End Group 1.1
End Group 1

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 51

Annex E (informative):
Bibliography

• ETSI EG 202 237: "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); Generic
approach to interoperability testing".

ETSI

ETSI ES 202 553 V1.1.1 (2008-02) 52

History

Document history

V1.1.1 December 2007 Membership Approval Procedure MV 20080201: 2007-12-04 to 2008-02-01

V1.1.1 February 2008 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 TPLan: A formal notation for expressing test purposes
	4.2 Extensibility of TPLan
	4.3 The Test Suite Structure
	4.4 Areas of application
	4.5 Limitations of TPLan

	5 TPLan keywords, comments and identifiers
	5.1 TPLan keywords
	5.2 Comments
	5.3 TPLan identifiers
	5.4 Uniqueness of identifiers
	5.5 Including files

	6 TSS Header
	6.1 Standard TSS header entries
	6.2 User defined TSS Header entries

	7 External references
	8 User definitions
	8.1 User defined words
	8.2 User-defined headers
	8.3 User-defined test entities
	8.4 User-defined events and parameters
	8.5 User defined values
	8.6 User defined units
	8.7 User defined conditions
	8.8 Constraining keywords to specific contexts

	9 Groups
	10 TP Header
	10.1 Standard TP Header entries
	10.2 User defined TP Header entries

	11 TP body
	11.1 TP body structure
	11.2 TP pre-conditions
	11.3 TP stimuli
	11.4 TP responses
	11.5 Precedence of TPLan statements
	11.6 Temporal ordering of TPLan statements
	11.7 Using user defined test entities, conditions and words
	11.8 Glue words and readability

	Annex A (normative): The TPLan Grammar
	A.1 Syntactic Rules
	A.2 TPLan EBNF Productions

	Annex B (informative): Use of the IPT Testing Framework
	B.1 IPT naming conventions
	B.1.1 IPT identifiers
	B.1.2 The Requirements Identifier
	B.1.3 The Configuration Identifier
	B.1.4 The Test Purpose Identifier
	B.1.5 The Test Case Identifier
	B.1.6 The Test Description Identifier

	B.2 IPT cross references
	B.2.1 References to the Requirements Catalogue
	B.2.2 References to test configurations

	Annex C (informative): A guide to using TPLan in a communications testing environment
	C.1 General considerations
	C.1.1 Introduction
	C.1.2 Structure of a TPLan specification
	C.1.3 Choosing a suitable text editor

	C.2 The TPLan header
	C.2.1 TSS Header
	C.2.2 Cross-references
	C.2.2.1 Requirement sources
	C.2.2.2 Configurations

	C.2.3 User-defined extensions to TPLan
	C.2.3.1 General layout of user definitions
	C.2.3.2 Header fields
	C.2.3.3 Entities
	C.2.3.4 Events
	C.2.3.5 Conditions
	C.2.3.6 Values
	C.2.3.7 Units
	C.2.3.8 Keywords
	C.2.3.9 Syntactical context

	C.3 Test Purposes
	C.3.1 Grouping TPs
	C.3.1.1 TP header
	C.3.1.2 TP Body
	C.3.1.2.1 Preconditions
	C.3.1.2.2 Stimulus and response
	C.3.1.2.2.1 The with and then construct
	C.3.1.2.2.2 Identifying the contents of message events
	C.3.1.2.2.3 Interactions with the user
	C.3.1.2.2.4 Establishing the order of a sequence of events
	C.3.1.2.2.5 The "do nothing" response

	Annex D (informative): Some communications testing examples
	D.1 IPv6 Interoperability Test Purposes
	D.2 QSIG Interoperability Test Purposes
	D.3 ISDN Conformance Test Purposes

	Annex E (informative): Bibliography
	History

