
Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);

Part 10: Connectivity Manager SCF

�

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)2

Reference
RES/SPAN-120076-10

Keywords
API, IDL, UML, OSA

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.
© The Parlay Group 2002.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)3

Contents

Intellectual Property Rights ..5

Foreword...5

1 Scope ..6

2 References ..6

3 Definitions and abbreviations...6
3.1 Definitions..6
3.2 Abbreviations ...7

4 Connectivity Manager SCF..8

5 Sequence Diagrams ..11
5.1 Operator Selects Service Components and creates a new VPrP...11
5.2 Operator Browses Virtual Provisioned Pipe...12
5.3 Operator Browses SAPs and Sites..13

6 Class Diagrams...14

7 The Service Interface Specifications..20
7.1 Interface Specification Format ...20
7.1.1 Interface Class ..20
7.1.2 Method descriptions..21
7.1.3 Parameter descriptions ..21
7.1.4 State Model...21
7.2 Base Interface ...21
7.2.1 Interface Class IpInterface ..21
7.3 Service Interfaces ...21
7.3.1 Overview ..21
7.4 Generic Service Interface ...22
7.4.1 Interface Class IpService ..22

8 Connectivity Manager Interface Classes ..23
8.1 Interface Class IpConnectivityManager ...23
8.2 Interface Class IpEnterpriseNetwork..24
8.3 Interface Class IpEnterpriseNetworkSite ...26
8.4 Interface Class IpQoSMenu ...29
8.5 Interface Class IpQoSTemplate..30
8.6 Interface Class IpVPrN ..36
8.7 Interface Class IpVPrP ...39

9 State Transition Diagrams ..43

10 Data Definitions ...43
10.1 Connectivity Manager Data Types ...43
10.1.1 TpStringList ..43
10.1.2 TpIPSubnet ...44
10.1.3 TpIPv4AddType ...44
10.1.4 TpIPVersion..44
10.1.5 TpVprpStatus..44
10.1.6 TpDsCodepoint...45
10.1.7 TpProvisionedQoSInfo ...45
10.1.8 TpDelayDescriptor..45
10.1.9 TpLossDescriptor ...45
10.1.10 TpJitterDescriptor ...46
10.1.11 TpNameDescrpTagInt ..46
10.1.12 TpNameDescrpTagString ...46
10.1.13 TpTagValue ..46
10.1.14 TpNameDescrpTagExcessLoadAction...46

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)4

10.1.15 TpAction...47
10.1.16 TpPipeQoSInfo ...47
10.1.17 TpNameDescrpTagDir..47
10.1.18 TpTrafficDirection..47
10.1.19 TpEndpoint ...47
10.1.20 TpSiteOrSap ...48
10.1.21 TpLoadDescriptor...48
10.1.22 TpValidityInfo ..48
10.1.23 TpNameDescrpTagDateTime ...48
10.1.24 TpNameDescrpTagTimePeriod ..48
10.1.25 TpNameDescrpTagTimeOfDay..49
10.1.26 TpNameDescrpTagDayOfWeek...49
10.1.27 TpNameDescrpTagMonth ..50

11 Exception Classes...51

Annex A (normative): OMG IDL Description of Connectivity Manager SCF...............................52

Annex B (informative): Summary of differences between V1.1.1 (Parlay 3.0) and V1.2.1
(Parlay 3.1) ...53

B.1 IpService...53

B.2 Data Types..53

B.3 IDL ...53

History ..54

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 10 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), as identified below. The API specification (ES 201 915) is structured in the following
parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF".

The present document has been defined jointly between ETSI, The Parlay Group [24] of ES 201 915-1 and the 3GPP, in
co-operation with a number of JAIN™ Community [25] of ES 201 915-1 member companies.

The present document forms part of the Parlay 3.1 set of specifications.

http://webapp.etsi.org/IPR/home.asp

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)6

1 Scope
The present document is part 10 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Connectivity Manager Service Capability Feature (SCF) aspects of the interface. All
aspects of the Connectivity Manager SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data Definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References
The references listed in clause 2 of ES 201 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 201 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1: Overview".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ES 201 915-1 and the following apply:

best effort traffic: traffic that is not carried by a VPrN established for the enterprise network by the provider

differentiated services: effort in the Internet Engineering Task Force (IETF) to provide quality of service in networks
employing small well defined building blocks from which variety of service may be built

DS Codepoint: marking associated with a specific VPrP

enterprise operator: administrator of the enterprise network/user of APIs also referred to as operator

operator: enterprise operator

provider network: provides a VPN and VPrP service to the enterprise network, and offers APIs for connectivity
manager to the enterprise operator also referred to as network service provider

provider: entity that offers the VPN and VPrP services, and implements the APIs in the provider network

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)7

Quality of Service (QoS): collection of service levels delivered by a provider network to an enterprise network

NOTE: QoS can be characterised by various performance attributes such as: packet loss, packet delay; traffic
policing measures such as maximum bandwidth and burst rate for traffic entering the providers network.

Service Access Point (SAP): enterprise network is connected to the provider network through the enterprise network
service access points

NOTE: A SAP is typically the egress router from the enterprise network that connects to the provider network.

TOS bits: value held in the TOS field

NOTE: IETF defined the use the TOS field in the IPv4 packet header as a signalling mechanism aimed at
providing definitions of aggregation of flows, where each aggregate is supported by the same level of
QoS.

Virtual Private Network (VPN): network that uses a provider network infrastructure to connect geographically
separated sites of an enterprise

NOTE: Such a network looks like a private network to the enterprise as the sites are connected using tunnelling
and security technologies. With no QoS measures, VPN passes all packets among the sites with a best
effort approach.

Virtual Leased Line (VLL): network that uses a provider network infrastructure to connect two geographically
separated sites of an enterprise

Virtual Provisioned Network (VPrN): collection of VPrP delivered as a service to a single enterprise network

Virtual Provisioned Pipe (VPrP): service provided by the provider network to the enterprise network, which is a type
of virtual leased line (VLL) provisioned with QoS levels

NOTE: VPrP carries enterprise network traffic whose packets are marked with the specific DS Codepoint that is
associated with this VPrP. The enterprise operator using APIs can create on-line a VPrP.

3.2 Abbreviations
For the purposes of the present document, the abbreviations defined in ES 201 915-1 and the following apply:

CIM Common Information Model
CM Connectivity Manager
DiffServ Differentiated Services
DMTF Distributed Management Task Force
DS Differentiated Services
QoS Quality of Service
SAP Service Access Point
SLA Service Level Agreement terms
TOS Type Of Service
VLL Virtual Leased Line
VPN Virtual Private Network
VPrN Virtual Provisioned Network
VPrP Virtual Provisioned Pipe

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)8

4 Connectivity Manager SCF
Connectivity Manager includes the APIs between the enterprise operator and the provider network for the two parties to
establish QoS parameters for enterprise network packets travelling through the provider network.

The Connectivity Manager service provides tools for the enterprise operator to set up a Provisioned QoS service in the
provider network. The QoS measures used in the enterprise network are outside the scope of the service. The API does
not require any specific QoS method to be used in the enterprise network, nor in the provider network. However, in
order for Provisioned QoS service to be applied to packets arriving from the enterprise network into the provider
network, the packet have be to marked using DS Codepoint marking. Once the packets are so marked, they can enjoy
the QoS service provisioned in the provider network.

APIs provide the enterprise network operator on-line access to provision quality of service measures that control the
enterprise's own traffic passing through the provider network. Using APIs the operator can create virtual provisioned
pipes (VPrPs) in the provider network to carry the enterprise traffic and support it with pre-specified quality of service
attributes. A VPrP can be thought of as a Virtual Leased Line (VLL) provisioned to deliver pre-specified QoS. The
provider may offer to the enterprise operator a set of templates that are used by the operator to specify a VPrP. For
instance, the provider may offer templates for video conferencing, audio conferencing, Gold Service, Silver Service,
etc. Using these templates the operator can select and provision a VPrP that specifies the quality of service attributes for
this VPrP.

Elements that can be specified for a VPrP include attributes such as packet delay and packet loss. Characteristics of
traffic that enters the VPrP at its access point to the provider network can be also specified with attributes such as
maximum rate and burst rate.

The following is an example of a possible scenario:

• The provider prepares a template with operator-specified attributes, provider-specified attributes, and
unspecified attributes, one for each QoS level.

• The provider generates for the enterprise network a list of all the current sites and their access points to the
provider network.

• Enterprise operator logs into connectivity manager after being authenticated and authorised by the Framework
service.

• Operator gets the list of the sites and service access points of the enterprise virtual private network (VPN)
already provided to the enterprise by the provider.

• Enterprise operator retrieves the set of templates available to the enterprise (as supported by the SLA), selects
one, and requests a template for constructing a new VPrP based upon the selected QoS.

• Enterprise operator completes the VPrP template: i.e. selects a value for delay, loss, jitter and excess traffic
treatment action, enters the SLA ID against which the template could be validated, selects endpoints, load
parameters and traffic flow direction, and selects the time requirements desired. The enterprise operator can
choose or modify those attributes that are operator-specified attributes in the template. Provider-specified
attributes cannot be modified and are inherently part of the service.

• Enterprise operator submits the completed VPrP template for validation by the CM service. Operator creates a
new VPrP with pending-status that holds these selections.

• The provider responds after validating the requests, which may be an approval or a denial (e.g. the requested
service is not available at this access point, or at the specified time).

• If the provider approves service, the operator may send packets marked with the templates DiffServ Codepoint,
which identifies together with the endpoints the VPrP that carries these packets.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)9

Some additional clarification points:

• A VPrN is associated with a single network provider.

• A VPrP defines QoS parameters for traffic flowing through this provider network, between two specified
enterprise endpoints, optionally during specified date/time period(s).

• The enterprise operator may be (provider's choice) constrained to selecting QoS parameter values from a pre-
defined set of values, and selecting endpoints from a predefined set of enterprise sites; where these sets were
negotiated off-line between the enterprise and the network provider and possibly documented in a Service Level
Agreement (SLA).

• The CM service validates each VPrP request submitted by the enterprise operator. The validation process is not
specified here. Validation against the SLA is an example of such possible validation.

• If the CM service accepts the VPrP request, it adds it to the VPrN. The DiffServ Codepoint provided by the
enterprise operator is then used by the enterprise for marking all packets belonging to any traffic flow associated
with the VPrP.

The following is a summary of interfaces and methods supported by connectivity manager. The syntax method
(interface) is used for this description.

There are Passive CM interface functions (CM1, CM2, CM4) that are used to retrieve information (read) relative to
VPN, VPrN, and QoS templates provided by the service provider, and active (CM3) functions (read/write) used to
provision new services.

CM1: Retrieve information on a Virtual Private Network, its sites and their service access points:

getEnterpriseNetwork(IpConnectivityManager)
getSiteList(IpEterpriseNetwork)
getSite(IpEterpriseNetwork)
getSAPList(IpEnterpriseNetworkSite)
getSiteID(IpEnterpriseNetworkSite)
getSiteLocation(IpEnterpriseNetworkSite)
getSiteDescription(IpEnterpriseNetworkSite)
getSAPIPSubnet(IpEnterpriseNetworkSite)
getSiteIPSubnet(IpEnterpriseNetworkSite)

CM2: Retrieve QoS services offered by provider, stored in QoS templates:

getQoSMenu(IpConnectivityManager)
getTemplateList(IpQoSMenu)
getTemplate(IpQoSMenu)
getTemplateType(IpQoSTemplate)
getDescription(IpQoSTemplate)
getPipeQoSInfo(IpQoSTemplate)
getValidityInfo(IpQoSTemplate)
getProvisionedQoSInfo(IpQoSTemplate)
getDsCodepoint(IpQoSTemplate)

CM3: Set up a new Virtual Provisioned Pipe:

createVPrP(IpVPrN)
deleteVPrP(IpVPrN)
setSlaID(IpQoSTemplate)
setPipeQoSInfo(IpQoSTemplate)
setValidityInfo(IpQoSTemplate)
setProvisionedQoSInfo(IpQoSTemplate)

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)10

CM4: Retrieve information on a Virtual Provisioned Network and its Virtual Provisioned Pipes:

getVPrN(IpEterpriseNetwork)
getVPrPList(IpVPrN)
getVPrP(IpVPrN)
getVPrPID(IpVPrP)
getSlaID(IpVPrP)
getStatus(IpVPrP)
getProvisionedQoSInfo(IpVPrP)
getPipeQoSInfo(IpVPrP)
getDsCodepoint(IpVPrP)

Two typical scenarios:

1) To set up a new VPrP:

- The enterprise operator retrieves information regarding enterprise's existing VPN (sites and SAPs), using as
needed the methods listed in CM1 above.

- Enterprise operator retrieves information on provider's offered QoS services, using methods listed in CM2
above as needed.

- Enterprise operator submits a request to set up a new VPrP, using methods listed in CM3 above as needed.

- Enterprise operator checks the status of the request using the methods listed in CM4 above as needed.

- If the request was approved by the network provider, the VPrP is put in an active mode, and packets that are
marked in the enterprise network with appropriate marking in their packet header will travel the providers
network through the new Virtual Provisioned Pipe that supports the requested QoS levels.

2) Retrieve information on current enterprise network services delivered to the enterprise by the provider network

- Enterprise operator retrieves information on current QoS services delivered to the enterprise network using
CM4 methods listed above as needed.

- Enterprise operator checks if the provider offers new QoS services using CM2 listed above as needed.

The following clauses describe each aspect of the Connectivity Manager Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

• The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions
are well-defined; either methods specified in the Interface specification or events occurring in the underlying
networks cause state transitions.

• The Data Definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)11

5 Sequence Diagrams

5.1 Operator Selects Service Components and creates a new
VPrP

The following sequence diagram shows how an enterprise operator client collects the information required to select a
service, and then selects the service parameters, and finally submits it to the connectivity manager.

OperatorClient
:

IpConnectivi tyManager
: IpQoSMenu :

IpQoSTemplate
: IpVPrN

1: getQoSMenu()

2: getTemplateList ()

3: getTemplate()

4: getPipeQoSInfo()

5: setPipeQoSInfo()

6: getProvisionedQoSInfo()

7: setProvisionedQoSInfo()

8: getValidityInfo()

9: setValidityInfo()

10: createVPrP()

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)12

5.2 Operator Browses Virtual Provisioned Pipe
The following shows an enterprise operator client browses and collect information pertinent to an existing virtual
provisioned pipe, including all the QoS parameters that have been set for this pipe.

OperatorClient
:

IpConnectivityManager
:

IpEnterpriseNetwork
: IpVPrN : IpVPrP

2: getVPrN()

3: getVPrPList()

4: getVPrP()

1: getEnterpriseNetwork()

5: getVPrPID()

6: getSlaID()

7: getProvisionedQoSInfo()

8: getValidityInfo()

9: getPipeQoSInfo()

10: getDsCodepoint()

11: getStatus()

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)13

5.3 Operator Browses SAPs and Sites
The following sequence diagram shows how an enterprise operator browses service access points and sites to retrieve
information regarding a site and its SAP(s).

OperatorClient
:

IpConnectivityManager
:

IpEnterpriseNetwork
:

IpEnterpriseNetworkSite
1: getEnterpriseNetwork()

2: getSiteList()

3: getSite()

4: getSAPList()

5: getSiteID()

7: getSiteDescription()

8: getSAPIPSubnet()

9: getIPSubnet()

6: getSiteLocation()

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)14

6 Class Diagrams
The class diagram below shows the connectivity manager interfaces. The connectivity manager interface is the entry
point to this service. From this interface a reference to the enterprise network and to the Quality of Service (QoS) menu
interfaces can be retrieved. The QoS menu interface provides a list of templates, each of which specifies the QoS
service parameters that are offered by the service provider. The service is composed of components that are associated
with a Provisioned QoS. The template interface is used to specify the service parameters that are offered by the service
provider, and also, for temporary storage of parameters that the operator selects. The enterprise network interface is
associated with two components: enterprise network sites, and the Virtual Provisioned Network that has been already
provisioned in the provider network. The Virtual Provisioned Network interface contains references to all the Virtual
Provisioned Pipes (VPrPs) already established. The QoS Menu contains references to all the QoS templates offered by
the provider. Each template specifies the QoS parameters that can be set in order to create a new VPrP. Once the
operator selects the QoS parameters provided in the QoS template, and submits the request to create a new VPrP, the
provider validates the information submitted and if the request is approved, the new VPrP is set to an active mode.

IpQoSTemplate
(from cm)

<<Interface>>

IpQoSMenu
(from cm)

<<Interface>>

0..n

1

0..n

1

IpEnterpriseNetworkSite
(from cm)

<<Interface>>

IpConnectivityManager
(from cm)

<<Interface>>

1
1

1
1

IpEnterpriseNetwork
(from cm)

<<Interface>>

1..n

1

1..n

1

1

1

1

1

IpVPrP
(from cm)

<<Interface>>

IpVPrN
(from cm)

<<Interface>>

1

1

1

1

0..n

1

0..n

1

Figure 1: Connectivity Management High level class diagram

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)15

The connectivity manager class is associated with the QoS menu class and the enterprise network class as shown in the
figure below. From the CM class the QoS Menu and Enterprise Network reference can be retrieved. The QoS menu
provides a method (getTemplateList()), to get the list of all the QoS offered services, each of which is stored as a
template (e.g., Gold template, Silver template). The QoS menu provides a method (getTemplate()) that instantiates a
temporary template to retrieve the default parameters for a specific template, and store the parameters selected by the
operator for a new service (VPrP). The Enterprise Network class is used to retrieve the list of sites that the operator has
established for a Virtual Private Network (VPN) service with the service provider, and to get a reference to a specific
site. This class also provides a reference to the Virtual Provisioned Network class that holds the information regarding
the already established QoS network with the provider.

IpQoSMenu

getTemplate()
getTemplateList()

(from cm)

<<Interface>>

IpConnectivityManager

getQoSMenu()
getEnterpriseNetwork()

(from cm)

<<Interface>>

1

1

1

1

IpEnterpriseNetwork

getSiteList()
getVPrN()
getSite()

(from cm)

<<Interface>>

1

1

1

1

Figure 2: QoS Menu and Enterprise Network class diagram

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)16

The figure below shows QoS templates class that is used to retrieve the QoS parameters offered by the provider and
select the parameters for a new VPrP and store them in this template. Most of these parameters are tagged using the
TPNameDescrpTag class to indicate whether the parameter is set by the provider and cannot be changed by the
operator, or is a parameter that can be set by the operator. A third option associated with each QoS parameter is the
unspecified tag, that means that the operator does not offer this parameter as an option for this template. All the QoS
parameters that constitute a VPrP are stored in the template class, including the source and destination site/SAP, the
direction of the traffic, the provisioned QoS parameters, such as packet loss, delay, jitter, the Pipe QoS parameters, such
as load conditioning.

TpPipeQoSInf o
(from cm_data)

<<CORBAStruc...

IpQoSTemplate

getTemplateTy pe()
getDescription()
setSlaID()
getPipeQoSInf o()
setPipeQoSInf o()
getValidity Inf o()
setValidity Inf o()
setProv isionedQoSInf o()
getProv isionedQoSInf o()
getDsCodepoint()

(from cm)

<<Interf ace>>

IpQoSMenu

getTemplate()
getTemplateList()

(from cm)

<<Interf ace>>

0..n

1

0..n

1

TpDsCodepoint
(from cm_data)

<<CORBAStruc...

TpProv isionedQoSInf o
(from cm_data)

<<CORBAStruct>>

TpValidity Inf o
(from cm_data)

<<CORBAStruc...

Figure 3: QoS Template class diagram

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)17

Figure 4 shows the data types that specify the Provisioned QoS information: as packet loss, packet delay, packet jitter.
All use the Name Description Tag class to indicate whether each parameter is specified by the provider, the operator, or
unspecified for this template. The value used for each of individual parameters is either an integer, or a string. For the
excess load condition, one of the four actions can be applied: drop, transmit, reshape, and remark. The DS Codepoint
used by this template is also shown in figure 6.

TpDelay Descriptor
(from cm_data)

<<CORBAStruct>>

TpLossDescriptor

(from cm_data)

<<CORBASt ruct>>

TpJitterDescriptor
(from cm_data)

<<CORBAStruct>>

TpNameDescrpTag M

TpNameDescrpTagInt
(from cm_data)

<<CORBAStruct>>

TpNameDes crpTagString
(from cm_data)

<<CORBAStruct>>

M M

TpProv isionedQoSInf o
(from cm_data)

<<CORBAStruct>>

TpTagValue

OPERATOR_SPECIFIED
PROVIDER_SPECIFIED
UNSPECIFIED

(from cm_data)

<<CORBAEnum>>

M

MM

M

M

TpAction

DROP
TRANSMIT
RESHAPE
REMARK

(from cm_data)

<<CORBAEnu.. .

TpNameDescrpTagEx cessLoadAction
(from cm_data)

<<CORBAStruct>>

M

+v alue

Figure 4: Provisioned QoS Data Types Classes

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)18

Figure 5 shows the Pipe QoS information data type classes. They include the load parameters, and the endpoint
termination of the pipe. The individual values are integer, and for the directional type, either uni-directional traffic or bi-
directional traffic is specified for the Pipe.

TpLoadDescriptor
(from cm_data)

<<CORBAStruct>>

TpNameDescrpTag M

TpNameDescrpTagInt
(from cm_data)

<<CORBAStruct>>

M

M

TpNameDescrpTagString
(from cm_data)

<<CORBAStruct>>

M

TpTagValue

OPERATOR_SPECIFIED
PROVIDER_SPECIFIED
UNSPECIFIED

(from cm_data)

<<CORBAEnum>>

M

T pPipeQoSInfo
(from cm_data)

<<CORBAStruc...

M

TpSiteOrSap

SITE
SAP

(from cm_data)

<<CORBAEnu...

TpEndpoint
(from cm_data)

<<CORBASt ruc...

+serviceOrigin

+serviceDest ination

+type

TpTrafficDirection

UNIDIRECTIONAL
BIDIRECTIONAL

(from cm_data)

<<CORBAEnum>>

TpNameDescrpTagDir
(from cm_data)

<<CORBAStruct>>

M

+value

Figure 5: Pipe QoS Data Types

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)19

Figure 6 shows the classes that store information regarding the existing services already established between the
provider and the enterprise. This includes the Virtual Private Network that is contained in the Enterprise Network Site
class, and the Virtual Provisioned Network Class, and the associated Virtual Provisioned Pipe class. Also shown here is
the information included for Pipe QoS, and the IP subnet information stored in these classes. However, the class that
shows the information collected for Provisioned QoS is not shown here but in figure 4.

IpVPrP

getVPrPID()
getSlaID()
getStatus()
getProvisionedQoSInfo()
getValidityInfo()
getPipeQoSInfo()
getDsCodepoint()

(f rom cm)

<<Interface>>

IpVPrN

getVPrPLi st()
getVPrP()
createVPrP()
delete VPrP()

(f rom cm)

<<Interface>>

0..n

1

0..n

1

IpEnterp ri seNetworkSite

getSAPList()
getSiteID()
getSiteLocation()
getSiteDescription()
getIPSubnet()
getSAPIPSubnet()

(f rom cm)

<<In terface>>

IpEnterpri seN
etwork

getSiteList()
getVPrN()
getSite()

(f rom cm)

<<Interface>>

1

1

1

1

1..n

1

1..n

1

TpPipeQoSInfo
<<CORBAStruc...

TpDsCodepoint
(f rom cm_data)

<<CORBAStruc...

TpStringList
<<CORBATypedef>>

TpValidityInfo
(f rom cm_data)

<<CORBAStruc...

TpVprpStatus

ACTIVE
PENDING
DISALLOWED

(f rom cm_data)

<<CORBAEnu...

TpProvisionedQoSInfo
(f rom cm_data)

<<CORBAStruct>>

TpIPv4AddType

IPV4_ADD_CLASS_A
IPV4_ADD_CLASS_B
IPV4_ADD_CLASS_C
IPV4_ADD_CLASS_D
IPV4_ADD_CLASS_E

(f rom c m_data)

<<CORBAEnum>>

TpIPVersion

VERSION_UNKNOWN
VERSION_IPV4
VERSION_IPV6

(f rom c m_data)

<<CORBAEnum>>

TpIPSubnet
(f rom cm_data)

<<CORBAStruc...

+addressType+IPVersionSuppo rt

Figure 6: Existing VPN and VPrN services class diagram

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)20

Figure 7 shows the validity data type classes. They specify a window between two points in time, and repetitions events
during a day, which days of the week, and which month of the year. They can be specified by the provider, to limit the
service to certain time periods, or by the operator. The individual values are shown as subclasses to the Name
Description Tag class.

TpNameDescrpTagM

TpValidityInfo
(f rom cm_data)

<<CORBAStruct>>TpNameDescrpTagDateTime
(from cm_data)

<<CORBAStruct>>

TpNameDescrpTagTimeOfDay
(from cm_data)

<<CORBAStruct>>

TpNameDescrpTagTimePeriod
(from cm_data)

<<CORBAStruct>>

TpNameDescrpTagMonth
(from cm_data)

<<CORBAStruct>>

TpNameDescrpTagDayOfWeek
(from cm_data)

<<CORBAStruct>>

M

M

M

M

M

M

Figure 7: Validity Data Type Classes

7 The Service Interface Specifications

7.1 Interface Specification Format
This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described in clause 7.1.1 to 7.1.4.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)21

7.1.2 Method descriptions

Each method (API method "call") is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a "Req" suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a "Res" or "Err" suffix for method results and errors, respectively. To
handle responses and reports, the application or service developer must implement the relevant IpApp<name> or
IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as "in" represent those that must
have a value when the method is called. Those described as "out" are those that contain the return result of the method
when the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as "Service Interface". The corresponding interfaces
that must be implemented by the application (e.g. for API callbacks) are denoted as "Application Interface".

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)22

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface: in IpInterfaceRef): void

setCallbackWithSessionID (appInterface: in IpInterfaceRef, sessionID: in TpSessionID): void

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters

appInterface: in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs.

Parameters

appInterface: in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID: in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)23

8 Connectivity Manager Interface Classes

8.1 Interface Class IpConnectivityManager
Inherits from: IpService.

The service Connectivity Manager Interface is the entry point to the Connectivity Manager service. After the enterprise
operator client is authenticated and authorised, the client application discovers the Connectivity Manager interface, then
the operator can use this interface to step through the process of provisioning a new VPrP. This interface has two
methods, one to get the handle to the menu of QoS services offered by the provider, and the other one is a handle to the
enterprise network interface that holds information about current services that the provider network delivers to the
enterprise network.

<<Interface>>

IpConnectivityManager

getQoSMenu (): IpInterfaceRef

getEnterpriseNetwork (): IpInterfaceRef

Method
getQoSMenu()

A client uses this method to get a reference to the QoS menu interface.

Returns menuRef: This parameter is a reference to the QoS menu interface. If no menu is found,
P_UNKNOWN_MENU exception is raised.

Parameters
No Parameters were identified for this method.

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_UNKNOWN_MENU

Method
getEnterpriseNetwork()

This method is used to get a handle to the enterprise network interface, which holds information regarding network
services that are already provisioned for the enterprise network in the provider network.

Returns enterpriseNetworkRef: This parameter is a reference to the enterprise network interface. If enterprise network is
not found, P_UNKNOWN_ENTERPRISE_NETWORK exception is raised.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)24

Parameters
No Parameters were identified for this method.

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_UNKNOWN_ENTERPRISE_NETWORK

8.2 Interface Class IpEnterpriseNetwork
Inherits from: IpService.

This interface stores enterprise network information maintained by the provider as it relates to the virtual private
network service and the virtual provisioned network service that the enterprise had already established with the service
provider network. The enterprise operator can only retrieve but not change the information stored with this interface.
The methods of this interface enable the enterprise operator to obtain the handle to the interface that holds information
regarding an existing VPrN, to list the sites connected to the VPN, and get the handle to a specific site interface that
store information about the site.

<<Interface>>

IpEnterpriseNetwork

getSiteList (): TpStringList

getVPrN (): IpInterfaceRef

getSite (siteID: in TpString): IpInterfaceRef

Method
getSiteList()

This method is used to get the list of enterprise network site IDs. These IDs identify the sites that are inter-connected
through the provider network. These IDs were set when the VPN was provisioned in the provider network in the
provider network.

Returns siteList: This parameter lists the site IDs (e.g., research, marketing, Middletown Building D5, London) of the
enterprise network that are serviced by the provider network. If no site is found, then a P_UNKNOWN_SITES
exception is raised.

Parameters
No Parameters were identified for this method.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)25

Returns

TpStringList

Raises

TpCommonExceptions, P_UNKNOWN_SITES

Method
getVPrN()

This method is used to get a handle to the interface that holds information regarding a previously provisioned Virtual
Private Network (VPrN).

Returns vPrNRef: This parameter is a handle to the VPrN interface that holds information about previously provisioned
VPrN.

If no VPrN is found for this enterprise network, then a P_UNKNOWN_VPRN exception is raised.

Parameters
No Parameters were identified for this method.

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_UNKNOWN_VPRN

Method
getSite()

This method is used to get a handle to an interface that holds information about a specific site.

Returns siteRef: This parameter is a reference to the site interface.

Parameters

siteID: in TpString

This parameter is the ID given to a particular site. The ID is not assigned via OSA APIs, but previously when a new
VPN (or VLL) is established for the enterprise on the provider network. These ID are typically names that refer to
objects that are meaningful in the context of the enterprise network, such as: Marketing, New York, or Bulling 4. This
site ID can be used as an endpoint of a provisioned virtual provisioned pipe (VPrP).

- If the string representation of the siteID does not obey the rules for site identification, then a
P_ILLEGAL_SITE_ID exception is raised.
- If the site ID representation is legal but there is no site with this ID, then P_UNKNOWN_SITE_ID exception is

raised.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)26

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ILLEGAL_SITE_ID,P_UNKNOWN_SITE_ID

8.3 Interface Class IpEnterpriseNetworkSite
Inherits from: IpEnterpriseNetwork.

This interface stores enterprise network site information maintained by the provider.

<<Interface>>

IpEnterpriseNetworkSite

getSAPList (): TpStringList

getSiteID (): TpString

getSiteLocation (): TpString

getSiteDescription (): TpString

getIPSubnet (): TpIPSubnet

getSAPIPSubnet (sapID: in TpString): TpIPSubnet

Method
getSAPList()

This method is used to get the list of SAP IDs of the enterprise VPN (i.e., on the provider network) that have previously
been established for this site with the provider network.

Returns sapList: This parameter is a list of SAP IDs. This SAP ID can be used as an endpoint of a provisioned virtual
provisioned pipe (VPrP).

If no SAPs are found for this site, then P_UNKNOWN_SAPS exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpStringList

Raises

TpCommonExceptions, P_UNKNOWN_SAPS

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)27

Method
getSiteID()

This method is used to get the site ID for this site.

Returns siteID: This parameter holds the value for the site ID.

If no site ID is found for this site, then P_UNKNOWN_SITE_ID exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpString

Raises

TpCommonExceptions, P_UNKNOWN_SITE_ID

Method
getSiteLocation()

This method is used to get the site location.

Returns siteLocation: This parameter holds the value for the site location.

If no site location is found for this site, then P_UNKNOWN_SITE_LOCATION exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpString

Raises

TpCommonExceptions, P_UNKNOWN_SITE_LOCATION

Method
getSiteDescription()

This method is used to get the description associated with this site.

Returns siteDescription: This parameter is a string that holds the site description.

If no description is found for this site, then P_UNKNOWN_SITE_DESCRIPTION exception is raised.

Parameters
No Parameters were identified for this method.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)28

Returns

TpString

Raises

TpCommonExceptions, P_UNKNOWN_SITE_DESCRIPTION

Method
getIPSubnet()

This method is used to get IP subnet information for this site.

Returns ipSubnet: This parameter lists the subnet information.

If no IP Subnet information is found for this site, then a P_UNKNOWN_IPSUBNET exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpIPSubnet

Raises

TpCommonExceptions, P_UNKNOWN_IPSUBNET

Method
getSAPIPSubnet()

This method is used to get the IP address of the SAP on the enterprise network.

Returns ipSubnet: This parameter holds the IP address information for the SAP. This TpIPSubnet data type follows the
DMTF CIM specification for IP sub-net.

Parameters

sapID: in TpString

This parameter holds the IP address information for the SAP.
- If the string representation of the sapID does not obey the rules for site identification, then a

P_ILLEGAL_SITE_ID exception is raised.
- If the site ID representation is legal but there is no site with this ID, then P_UNKNOWN_SAP exception is raised.
- If no IP Subnet information is found for this SAP, then a P_UNKNOWN_IPSUBNET exception is raised.

Returns

TpIPSubnet

Raises

TpCommonExceptions, P_ILLEGAL_SITE_ID, P_UNKNOWN_SAP, P_UNKNOWN_IPSUBNET

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)29

8.4 Interface Class IpQoSMenu
Inherits from: IpService.

This interface holds the QoS menu offered by the provider. Each QoS service offered (e.g., Gold, Silver) is specified in
a separate template. The template specifies the parameters and their default values from which the operator may choose
to create a VPrP. When the operator asks for a specific template from the list of templates (getTemplate method), a
temporary template interface is created. This temporary template interface holds all the parameters (e.g., all the Gold
parameters) and their default values offered by the provider for this template.

<<Interface>>

IpQoSMenu

getTemplate (templateType: in TpString): IpInterfaceRef

getTemplateList (): TpStringList

Method
getTemplate()

This method is used to get an interface reference to a specific template. The provider creates a temporary copy of the
original template that contains all the QoS parameters for this template (e.g., Gold).

Returns templateRef: This parameter contains a reference to the template interface. Note that if the reference to this
temporary template is lost, there is no way to recall it. To create a new temporary template this method has to be applied
again, however, any values that were set in the old temporary template are lost.

Parameters

templateType: in TpString

This parameter contains template type.

Returns

IpInterfaceRef

Raises

TpCommonExceptions

Method
getTemplateList()

This method is used to get a list of templates, each of which specifies a QoS service, such as Gold or Silver.

Returns templateList: This parameter contains a list of QoS service templates IDs.

If no templates are found, then a P_UNKNOWN_TEMPLATES exception is raised.

Parameters
No Parameters were identified for this method.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)30

Returns

TpStringList

Raises

TpCommonExceptions, P_UNKNOWN_TEMPLATES

8.5 Interface Class IpQoSTemplate
Inherits from: IpService.

This interface provides access to a specific QoS template, such as Gold, offered by the provider. This interface provides
get methods to discover the QoS service details, and set methods to set the requested values for a new VPrP. The
template specifies the QoS parameters and their default values. Each service template parameter is tagged by the service
provider to indicate one of the following:

-· Provider specified: the value cannot be modified for this template.
-· Enterprise operator specified: operator may change the default value set by the provider. The default value can be

blank to indicate that there is no default value for this parameter, and the user can change it according to advice
typically given by the description parameters.

-· Unspecified: the parameter is not used for this template, and the Enterprise operator cannot change it. For
example, maximum delay for a Gold template may be provider specified, while maximum bandwidth may be Enterprise
operator specified, meaning that its values can be changed by the setProvisionedQoSInfo, or by setPipeQoSInfo
methods. Guidance how to change the default values may be provided by the template description parameter. The tag of
a parameter cannot be changed by any set method of this interface, i.e., if a parameter is tagged unspecified, or provider
specified, Enterprise operator cannot override the value of this tag to say operator specified. This template is a
temporary interface created as a copy of the original template that stores all the template parameters. The temporary
interface is created with the getTemplate method of IpQoSMenu interface. The values passed to this template interface
by the set methods replace (if permitted by the tags) the default values stored in this template interface, i.e. a get
following a set method to this template interface will fetch the new values set by the Enterprise operator. Once a new
VPrP is created by the create method in IpVPrN, the temporary interface might not be accessible anymore.

<<Interface>>

IpQoSTemplate

getTemplateType (): TpString

getDescription (): TpString

setSlaID (slaID: in TpString): void

getPipeQoSInfo (): TpPipeQoSInfo

setPipeQoSInfo (pipeQoSInfo: in TpPipeQoSInfo): void

getValidityInfo (): TpValidityInfo

setValidityInfo (validityInfo: in TpValidityInfo): void

setProvisionedQoSInfo (provisionedQoSInfo: in TpProvisionedQoSInfo): void

getProvisionedQoSInfo (): TpProvisionedQoSInfo

getDsCodepoint (): TpDsCodepoint

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)31

Method
getTemplateType()

This method is used to get the template type, e.g. Gold.

Returns templateType: This parameter contains the template type.

If template type is not found, then P_UNKNOWN_TEMPLATE_TYPE exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpString

Raises

TpCommonExceptions, P_UNKNOWN_TEMPLATE_TYPE

Method
getDescription()

This method is used to get a description of the QoS service stored in this template interface. Connectivity manager APIs
support default values set by the provider for each QoS parameter, i.e., a template (e.g., Gold template) may have a set
of default values (e.g. a default value for minimum delay, a default value for maximum delay, etc.). If the network
service provider allows (using the tags described above) the enterprise operator to change a specific default value, the
provider can use this description to advise the user the conditions under which they can be changed, and the alternate
values that can be used.

Returns description: This parameter contains a description of the service for this template and may also be used to
convey any advice to the user such as what values can be selected instead of default values.

If the description is not found, then P_UNKNOWN_DESCRIPTION exception is raised. Note that if the description is
found, but it contains no description, this should not raise the exception.

Parameters
No Parameters were identified for this method.

Returns

TpString

Raises

TpCommonExceptions, P_UNKNOWN_DESCRIPTION

Method
setSlaID()

This method is used to store an existing service level agreement (SLA) identifier associated it with a specific VPrP.
SLA ID is optional and is not required to be part of every VPrP. Each time this method is performed, the new value
replaces the old value in the template.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)32

Parameters

slaID: in TpString

This parameter contains the SLA ID. If the string representation of the SLA ID does not obey the rules for SLA
identification, then a P_ILLEGAL_SLA_ID exception is raised.

Raises

TpCommonExceptions, P_ILLEGAL_SLA_ID

Method
getPipeQoSInfo()

This method is used to get pipe QoS information consisting of load parameters, direction of the traffic, and the endpoint
(SAP or site) of a virtual provisioned pipe offered by this template.

Returns pipeQoSInfo: This parameter includes the pipe QoS default parameters for this template. The endpoints are not
specified in the getpipeQoS method. The directionality and load parameters are tagged, and can be set by the provider
or left for the operator to be set.

· If no pipe QoS information is found, then P_UNKNOWN_PIPEQOSINFO exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpPipeQoSInfo

Raises

TpCommonExceptions, P_UNKNOWN_PIPEQOSINFO

Method
setPipeQoSInfo()

This method is used to request pipe QoS parameters consisting of load parameters, direction of the traffic, and the
endpoint (SAP or site) of the virtual provisioned pipe, as selected by the operator from the set of values offered by the
provider. To modify any default value, the tag has to be set to OperatorSpecified. The parameters name, description,
and tag are ignored with this method.

Parameters

pipeQoSInfo: in TpPipeQoSInfo

This parameter includes the virtual provisioned pipe information regarding the flow direction, the load on the endpoint
of the pipe, and the load on the endpoints.

- If a parameter is tagged with providerSpecified, or unspecified, then the P_ILLEGAL_TAG exception is raised.
- If a value requested for a specific parameter by this method is not consistent with the advice given by the

provider for choosing parameter values, the P_ILLEGAL_VALUE is raised. This is an optional exception that would be
applied if the provider can verify consistency on the fly. Otherwise, the new VPrP request will be denied by setting its
status flag to disallowed.

- If a combination of requested parameters is illegal, then P_ILLEGAL_COMBINATION is raised.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)33

Raises

TpCommonExceptions, P_ILLEGAL_TAG, P_ILLEGAL_VALUE, P_ILLEGAL_COMBINATION

Method
getValidityInfo()

The operator uses this method to get the default time period set by the provider for the template. Applying a logical
AND operation of all the components of this parameter evaluates the valid period(s).

Returns validityInfo: This parameter provides the default validity information.

· If no validity information is found for this template, then P_UNKNOWN_VALIDITY_INFO exception is raised. Note
that if the validity information is found and validitySpecified, is FALSE this exception is not raised.

Parameters
No Parameters were identified for this method.

Returns

TpValidityInfo

Raises

TpCommonExceptions, P_UNKNOWN_VALIDITY_INFO

Method
setValidityInfo()

The operator uses this method to set the required time period for a new VPrP. The requested time and the default time
set by the provider are all ANDed together to determine the final valid time period for this VPrP. Note that only those
components that are tagged as operator specified can be set by the operator.

Parameters

validityInfo: in TpValidityInfo

This parameter provides the requested validity information for a new VPrP.
- If a parameter is tagged with providerSpecified, or unspecified, then the P_ILLEGAL_TAG exception is raised.

- If a value requested for a specific parameter by this method is not consistent with the advice given by the
provider for choosing parameter values, the P_ILLEGAL_VALUE is raised. This is an optional exception that would be
applied if the provider can verify consistency on the fly. Otherwise, the new VPrP request will be denied by setting its
status flag to disallowed.

- If a combination of requested parameters is illegal, then P_ILLEGAL_COMBINATION is raised. For example, if
the specified time duration is longer than 24 hours for a time-of-day parameter, or the integer value representing
day-of-week or month-of-year is outside the permitted range.

Raises

TpCommonExceptions, P_ILLEGAL_TAG, P_ILLEGAL_VALUE, P_ILLEGAL_COMBINATION

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)34

Method
setProvisionedQoSInfo()

The Enterprise operator uses this method to set the requested values for the QoS parameters. The values passed by this
method replace the default values in the temporary template interface. Tag values associated with each parameter can be
set only by the provider and cannot be changed by the operator. If tag values are included in this method, they should be
ignored. Only those parameters that are tagged with the value operator specified can be modified using this method.
With this method, the name and description parameters are ignored.

Parameters

provisionedQoSInfo: in TpProvisionedQoSInfo

This parameter consists of delay, loss, jitter, and exceed load action parameters.

· If a parameter from the delayParameters, lossParameters, jitterParameters, or excessLoadAction is tagged in the
template with the values provider specified, or unspecified, then the P_ILLEGAL_TAG exception is raised.

· If a value requested for a specific parameter by this method is not consistent with the advice given by the provider for
choosing parameter values, the P_ILLEGAL_VALUE is raised. This is an optional exception that would be applied if
the provider can verify consistency on the fly. Otherwise, the new VPrP request will be denied by setting its status flag
to disallowed.

· If a combination of requested parameters or parameter values is illegal, then P_ILLEGAL_COMBINATION is raised.
An example of an illegal combination is maximum delay parameter and delay priority, as only one of the two can be
used.

Raises

TpCommonExceptions, P_ILLEGAL_TAG, P_ILLEGAL_VALUE, P_ILLEGAL_COMBINATION

Method
getProvisionedQoSInfo()

This method is used to get the default values associated with this template (e.g., delay default value, loss default value).

Returns provisionedQoSInfo:

This parameter consists of delay, loss, jitter, and exceed load action parameters.
· If no QoS information is found, then P_UNKNOWN_QOS_INFO exception is raised.

The Provisioned QoS Information has the following information:
The Delay descriptor lists the delay default values, i.e., default values for mean delay, maximum delay, minimum

delay, and delay priority. A provider may choose to tag any number of delay parameters as provider specified,
Enterprise operator specified, or unspecified. For example, a Gold template may have a default value just for the mean
delay, leaving the other parameters either unspecified, or some set to enterprise operator specified.

The loss descriptor lists the packet loss default values, i.e., mean loss, maximum loss, minimum loss, and loss
priority. A provider may choose to tag any number of loss parameters as provider specified, Enterprise operator
specified, or unspecified. For example, a Gold template may have a default value just for the mean loss only, leaving
the other parameters either unspecified, or some be Enterprise operator specified.

The jitter descriptor lists the jitter default values (the delay measured between arriving packets), that is, mean jitter,
maximum jitter, minimum jitter, and jitter priority. A provider may choose to tag any number of jitter parameters as
provider specified Enterprise operator specified, or unspecified. For example, a Gold template may have a default value
just for the mean jitter only, leaving the other parameters either unspecified, or some may be Enterprise operator
specified.

The excess load action parameter specifies the policing treatment for traffic that exceeds the load parameters set for
the virtual provisioned pipe. This policing function can take the following actions when the provider network detects
that the traffic trying to enter the VPrP exceeds the load parameters specified in the pipe QoS loads parameters:

· Drop: drop packets (i.e., do not ever transmit them) that exceed the load traffic parameters that were set for the
VPrP

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)35

- Transmit: transmit packets even though transmitting them will create a load in excess of the load traffic
parameters that were set for the VPrP

- Reshape: reshape the entering traffic by trying to keep the packet (and not drop them yet) waiting for the
entering traffic load to come down below the load conditions set for the VPrP, and if it does, transmit the packets then.

- Remark: remark the packet for a lower QoS service, then transmit them (i.e., transfer the packet through some
other less demanding VPrP). This may result in increased packet loss (i.e., the excess packets may have now higher
probability of being dropped before reaching their SAP or Site destination), or increased packet delay and / or packet
jitter.

Parameters
No Parameters were identified for this method.

Returns

TpProvisionedQoSInfo

Raises

TpCommonExceptions, P_UNKNOWN_QOS_INFO

Method
getDsCodepoint()

This method is used to get the DiffServ Codepoint of QoS service offered by the template.

Returns dsCodepoint: This parameter holds the DS Codepoint for the VPrP. It has two parameters: match and mask to
enable the provider to locate the bit string in any location in the 6-bit long field. The actual Codepoint is a result of an
AND operation bit by bit of the two parameters.

· If no DS Codepoint is found, then P_UNKNOWN_DSCODEPOINT exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpDsCodepoint

Raises

TpCommonExceptions, P_UNKNOWN_DSCODEPOINT

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)36

8.6 Interface Class IpVPrN
Inherits from: IpService.

The enterprise operator can create a new virtual provisioned pipe (VPrP) in an existing virtual private network (VPN)
with this VPN interface. Such a pipe is extended between specific SAPs/sites. Each such pipe is associated with QoS
parameters identified by a specific DiffServ Codepoint. A packet that arrives at the SAP/site with a specific Codepoint,
is "directed" to the virtual provisioned pipe that supports the QoS parameters provisioned for this pipe. The collection of
all the virtual provisioned pipes (VPrPs), provisioned within the enterprise VPN, constitutes the virtual provisioned
network (VPrN). Enterprise operator can create new VPrPs and delete existing VPrP using this interface. This interface
provides also methods to get the list of already provisioned VPrPs, and a handle to a specific VPrP interface that holds
information for this VPrP.

<<Interface>>

IpVPrN

getVPrPList (): TpStringList

getVPrP (vPrPID: in TpString): IpInterfaceRef

createVPrP (templateRef: in IpInterfaceRef): IpInterfaceRef

deleteVPrP (vPrPID: in TpString): void

Method
getVPrPList()

This method is used to get the list of VPrP IDs for the already established virtual provisioned pipes for the enterprise
network. Each pipe is assigned an ID at the provisioning of the pipe.

Returns vPrPList: This parameter lists the IDs of all the virtual provisioned pipes established in the virtual provisioned
network.

· If no VPrP is found, then the P_UNKNOWN_VPRP exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpStringList

Raises

TpCommonExceptions, P_UNKNOWN_VPRP

Method
getVPrP()

This method is used to get a handle to the virtual provisioned pipe.

Returns vPrPRef: This parameter is the reference to a provision virtual provisioned pipe interface.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)37

Parameters

vPrPID: in TpString

This parameter is virtual provisioned pipe ID, a unique ID across all VPrNs (of different enterprises) in the provider
network. This ID is assigned by the provider when a new VPrP is created by the create method of this interface.

- If the string representation of the vPrPID does not obey the rules for site identification, then a
P_ILLEGAL_VPRP_ID exception is raised.
- If the VPrP ID representation is legal but there is no VPrP with this ID, then the P_UNKNOWN_VPRP_ID
exception is raised.

- Note that as soon a request to create a new VPrP (see IpVPrN interface) is submitted by the enterprise
client, a new VPrP interface should be created by the provider. However, the provider might be in a situation where the
evaluation of the request for a new VPrP has not been completed yet. In such a case, until the provider makes a
decision, the status of the new VPrP should be set to Pending. The P_UNKNOWN_VPRP_ID exception should not be
raised in this case.

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ILLEGAL_VPRPID, P_UNKNOWN_VPRP_ID

Method
createVPrP()

This method is used to create a new virtual provisioned pipe, which includes the pipe QoS information, the provisioned
QoS information, the SLA ID, and the selected pairs of SAP/Sites. The method returns a reference to the new virtual
provisioned pipe interface that is added to an existing VPrN. This VPrP needs to be accessed in order to find the status
of the request to create a new VPrP. The status can have one of the following values: Pending, Active, or Disallowed.
The enterprise operator should delete disallowed VPrPs. The provider may remove VPrPs with a disallowed status, if it
stays in this status for some pre-agreed length of time.

Returns vPrPRef: This parameter is the handle to the new VPrP interface created as a response to the createVPrP
method. The new VPrP interface may not include yet the decision of the provider to the request to create a new VPrP.
However, if the request is granted, the status flag of the VPrP is set to Active. If the request is denied, the status flag is
set to DISALLOWED. The status of the new VPrP is held in the status parameter of the VPrP, which should be Pending
if the processing of the request has not been completed by the provider.

Parameters

templateRef: in IpInterfaceRef

This parameter is a reference to the template interface that holds all the requested QoS parameters for a new VPrP. The
requested QoS parameter values, stored in the template interface, are used by the provider to provision a new VPrP for
the enterprise network.

- If the reference representation of the templateRef does not obey the rules for reference values, then a
P_ILLEGAL_REF_VALUE exception is raised.

- If the reference representation is legal but there is no interface with this reference, then
P_UNKNOWN_INTERFACE exception is raised.
- If the one of the parameter values requested in the template is not consistent with default values set by the provider
or the advice given in one of its description parameters, this is considered to be an inconsistent VPrP. The provider
can deny a request for an inconsistent VPrP. The reason of the denial would be specified in the denial reason
parameter for that VPrP. Since it is not required that the provider renders a decision in real time, no exception
parameter is defined for this createVPrP method for requesting an inconsistent VPrP.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)38

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ILLEGAL_REF_VALUE, P_UNKNOWN_INTERFACE

Method
deleteVPrP()

This method is used to delete a virtual provisioned pipe. A VPrP may have one of the following status values: Active,
Pending, Disallowed. The reasons for deleting a VPrP may vary. Here are some examples. If a VPrP is active, the delete
method is used when the VPrP is not needed anymore. If the VPrP is pending approval, one can still delete the VPrP. If
the VPrP is disallowed, the VPrP should be deleted, as it does not serve any useful purpose anymore.

Parameters

vPrPID: in TpString

This parameter specifies the ID of the VPrP to be deleted. If the VPrP cannot be deleted, then
P_CANT_DELETE_VPRP exception is raised. If the VPrP ID is not found, then P_UNKNOWN_VPRP_ID exception
is raised.

Raises

TpCommonExceptions, P_CANT_DELETE_VPRP, P_UNKNOWN_VPRP_ID

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)39

8.7 Interface Class IpVPrP
Inherits from: IpService.

The virtual provisioned pipe interface provides information on a VPrP whose status can be in one of the following
states:

- Active: a previously established VPrP, which indicates that a previous request to create the VPrP was granted by
the provider. Packet that belong to this VPrP and meet the validity time requirements, are admitted to the enterprise
VPrN
- Pending: a request to create a new VPrP is still pending response from the provider, indicating that the provider is
still processing the request to create a new VPrP. Packet that belong to this VPrP are not admitted to the enterprise
VPrN
- Disallowed: a request to create a new VPrP was denied. A description parameter may include the reason for the
denial. This is a disallowed VPrP and packet that belong to this VPrP are not admitted to the enterprise VPrN.

A VPrP is composed of the following elements, each of which provides the following Provisioned QoS measures:
Element type Element QoS measure

--
Endpoint A SAP or a site Pipe QoS information based

on VPrP endpoints: load parameters,
policing action. Applied to traffic
entering the enterprise VPrN.

--
Packet header marking TOS bits marked Provisioned QoS information.

with DS Codepoint One of the QoS levels established
by the provider in its backbone
network to be applied to the
packets carrying this marking.

--
Time Validity A time requirement Packets are admitted to the VPrN

that is applied to only if they also meet validity
an active VPrP. time requirements.

<<Interface>>

IpVPrP

getVPrPID (): TpString

getSlaID (): TpString

getStatus (): TpVprpStatus

getProvisionedQoSInfo (): TpProvisionedQoSInfo

getValidityInfo (): TpValidityInfo

getPipeQoSInfo (): TpPipeQoSInfo

getDsCodepoint (): TpDsCodepoint

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)40

Method
getVPrPID()

This method is used to get the ID of the virtual provisioned pipe.

Returns vPrPID: This parameter is the ID of the virtual provisioned pipe.

· If no VPrP ID is found, then P_UNKNOWN_VPRP_ID exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpString

Raises

TpCommonExceptions, P_UNKNOWN_VPRP_ID

Method
getSlaID()

This method is used to get the ID of the service level agreement (SLA) if such was associated with the virtual
provisioned pipe at the provisioning of the VPrP.

Returns slaID: This parameter is the identifier for the service level description.

· If no SLA ID is found, then P_UNKNOWN_SLA_ID exception is raised.

· Note that SLA ID is optional. If no SLA ID was entered when this VPrP was created, this exception will be raised.

Parameters
No Parameters were identified for this method.

Returns

TpString

Raises

TpCommonExceptions, P_UNKNOWN_SLA_ID

Method
getStatus()

This method is used to get the status of the virtual provisioned pipe. It can be used to convey, for example, the status of
an outstanding previously submitted provisioning request (which the provider could not verify in real time).

Returns status: This parameter is used to convey status of the virtual provisioned pipe. The semantics of each of these
states is specified above.

· If status information is not found, Then P_UNKNOWN_STATUS exception is raised.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)41

Parameters
No Parameters were identified for this method.

Returns

TpVprpStatus

Raises

TpCommonExceptions, P_UNKNOWN_STATUS

Method
getProvisionedQoSInfo()

This method is used to get the provisioned QoS information set for this virtual provisioned pipe. This method is the
same method with the same parameters as in the QoS Template interface. The only difference is that the tag value is
meaningless here. The values for an Active VPrP are the values provisioned in the provider network, and the values for
a Pending VPrP are the requested values.

Returns provisionedQoSInfo: This parameter consists of delay, loss, jitter, and exceed load action parameters. The tag
value (provider specified, operator specified, or unspecified) is used only with the template interface, and is
meaningless for this VPrP interface. Delay priority, Loss priority, and Jitter priority are used to specify the priority of
this VPrP relative to other VPrPs, instead of specifying explicit values for these parameters.

· If no QoS information is found, then P_UNKNOWN_QOS_INFO exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpProvisionedQoSInfo

Raises

TpCommonExceptions, P_UNKNOWN_QOS_INFO

Method
getValidityInfo()

This method is used to get the time period for which the VPrP is valid. For the VPrP to be included in the VPrN, the
VPrP has to be in active status and valid.

Returns validityInfo: This parameter defines the time periods for which this VPrP is valid. The valid periods are
evaluated by applying a logical AND operation of all the components of this parameter, without regard who specified
the valid time (i.e., specified by operator, or provider).

· If no validity information is found for this VPrP, then P_UNKNOWN_VALIDITY_INFO exception is raised. Note
that if the validity information is found and validitySpecified is FALSE this exception is not raised.

Parameters
No Parameters were identified for this method.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)42

Returns

TpValidityInfo

Raises

TpCommonExceptions, P_UNKNOWN_VALIDITY_INFO

Method
getPipeQoSInfo()

This method is used to get and set the pipe QoS information for this VPrP. For an Active VPrP the values of these
parameters are provisioned in the provider network. For a Pending VPrP, the values are the requested values. The tag
value is meaningless for this interface.

Returns pipeQoSInfo: This parameter consists of load parameters, direction of the traffic, and the endpoints (SAP or
site) of the virtual provisioned pipe. These data types are defined in the QoS Template.

· If no pipe QoS information is found, then P_UNKNOWN_PIPEQOSINFO exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpPipeQoSInfo

Raises

TpCommonExceptions, P_UNKNOWN_PIPEQOSINFO

Method
getDsCodepoint()

This method is used to get the DiffServ Codepoint of the virtual provisioned pipe. This DS Codepoint is populated in
the TOS bits of the packet header to identify to the service provider network the specific VPrP to service this packet
entering the provider network.

Returns dsCodepoint: This parameter holds the DS Codepoint for the VPrP. It has two parameters: match and mask to
enable the provider to locate the bit string in any location in the 6-bit long field. The actual Codepoint is a result of an
AND operation bit by bit of the two parameters.

· If no DS Codepoint is found, then P_UNKNOWN_DSCODEPOINT exception is raised.

Parameters
No Parameters were identified for this method.

Returns

TpDsCodepoint

Raises

TpCommonExceptions, P_UNKNOWN_DSCODEPOINT

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)43

9 State Transition Diagrams
There are no State Transition Diagrams for the Connectivity Manager SCF.

10 Data Definitions
Data type specifications can be found below. There is an extensive use of a specific data type for connectivity manager.
This data type is discussed here to clarify how different interfaces and methods use it.

The data type TpNameDescrpTag is not explicitly specified (however, it is shown in the class diagrams document) as
it is inherited by various other data types, such as TpNameDescrpTagDateTime,
TpNameDescrpTagdayofWeek, TpNameDescrpTagint, TpNameDescrpTagString, and so forth. The
TpNameDescrpTag class includes three parameters that are inherited by all of its subclasses data types: The name
parameter, the description parameter, and the tag parameter. These parameters were defined for the get method
in the template interface, and were reused by other methods, with some semantic modifications. The three parameters
are:

• The name parameter which names the parameter in a template.

• The description parameter describes the parameter as it relates to the QoS service, and could add
explanations and restrictions regarding the use of a parameter, such as what values can be selected by the
operator for the parameter in a given template.

• The tag parameter has the following values and interpretation:

- Provider specified: the operator cannot modify the value of this parameter as set in the template
interface.

- Operator specified: enterprise operator may change the default value set by the provider in the
template. The default value can be blank to indicate that there is no default value for this parameter. The
operator may change it according to advice, if provided in the description parameters.

- Unspecified: the parameter is not used for this template, and the enterprise operator cannot change it.

Various interfaces and methods reuse these data types, since they require only a slight semantic modification while
reusing the entire structure. The following specifies the modified semantics as used by the various methods.

For the QoS template interface and all the set methods that use the TpNameDescrpTag data type, the tag values
should be ignored by the CM implementation, as only the provider sets the tag value in all cases, and the operator
cannot change it. For any parameter that is set to operator specified, the set method can modify the values set
in the template, but not the associated tag. If the tag is set to provider specified, or unspecified, and the
operator tries to modify it with a set method, the P_NOT_OPERATOR_SPECIFIED_VALUE exception is raised.
However, the description can be modified by the set method if the tag is operator specified. The
operator can use this feature to enter notes that would be later shown when retrieving VPrP information. However, the
name parameter cannot be changed as it might be unique in the providers network.

For the VPrP interface, the tag value is irrelevant for all the get methods and may be ignored by the operator client.

All data types referenced but not defined in this clause are common data definitions which may be found in
ES 201 915-2.

10.1 Connectivity Manager Data Types

10.1.1 TpStringList

Defines a Numbered Set of Data Elements of type TpString

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)44

10.1.2 TpIPSubnet

Defines a Sequence of Data Elements

Sequence Element Name Sequence Element Type Description
subnetNumber TpString IP address, IPv4 example 2.3.4.15

subnetMask TpString IPv4 mask example,255.255.255.0

addressType TpIPv4AddType Class for the Ipv4 address format

IPVersionSupport TpIPVersion Version supported

Note: The TpIPSubnet data type follows the DMTF CIM specification for IP sub-net.

10.1.3 TpIPv4AddType

Name Value Description
IPV4_ADD_CLASS_A 0 Address Class A

IPV4_ADD_CLASS_B 1 Address Class b

IPV4_ADD_CLASS_C 2 Address Class c

IPV4_ADD_CLASS_D 3 Address Class d

IPV4_ADD_CLASS_E 4 Address Class e

10.1.4 TpIPVersion

Name Value Description
VERSION_UNKNOWN 0 Unknown IP addressing format

VERSION_IPV4 1 IPv4 addressing format

VERSION_IPV6 2 IPv6 addressing format

10.1.5 TpVprpStatus

Name Value Description

ACTIVE 0 A VPrP status indicating that this VPrP is a previously
established VPrP. Also means that a previous request to
create the VPrP was granted by the provider. Packet that

belong to this VPrP and meet the validity time
requirements, are admitted to the enterprise VPrN

PENDING 1 A VPrP status indicating that this VPrP is a request to
create a new VPrP, and it is still pending a response

from the provider, i.e. the provider is still processing the
request to create a this new VPrP. Packet that belong to

this VPrP are not admitted to the enterprise VPrN

DISALLOWED 2 A VPrP status indicating that this VPrP is a request to
create a new VPrP, however, the request was denied. A

description parameter may include the reason for the
denial. This is an disallowed VPrP and packet that

belong to this VPrP are not admitted to the enterprise
VPrN.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)45

10.1.6 TpDsCodepoint

Sequence Element Name Sequence Element
Type

Description

match TpString Marking significant bits. 6-bit long. Valid characters are 0 and
1

mask TpString Identifies significant part (1s) of for marking Codepoint. 6-bit
long. Valid characters are 0 and 1.

10.1.7 TpProvisionedQoSInfo

Sequence Element Name Sequence Element Type Description
delayDescriptor TpDelayDescriptor Delay parameters

lossDescriptor TpLossDescriptor Loss parameters

jitterDescriptor TpJitterDescriptor Jitter parameters

excessLoadAction TpNameDescrpTagExcessLoadAction Excess load action parameters

description TpNameDescrpTagString Operator can add text using the Set
method, if tag is Operator Specified

10.1.8 TpDelayDescriptor

Sequence Element Name Sequence Element Type Description
meanDelay TpNameDescrpTagInt in milliseconds

measurementPeriod TpNameDescrpTagInt in milliseconds

maxDelay TpNameDescrpTagInt in milliseconds

minDelay TpNameDescrpTagInt in milliseconds

delayPriority TpNameDescrpTagInt higher value indicates higher priority

description TpNameDescrpTagString Operator can add text using the Set
method, if tag is Operator Specified

10.1.9 TpLossDescriptor

Sequence Element Name Sequence Element Type Description
meanLoss TpNameDescrpTagInt per this many packets, one packet is lost

measurementPeriod TpNameDescrpTagInt in milliseconds

maxLoss TpNameDescrpTagInt per this many packets, one packet is lost

minLoss TpNameDescrpTagInt per this many packets, one packet is lost

lossPriority TpNameDescrpTagInt higher value indicates higher priority

description TpNameDescrpTagString Operator can add text using the Set
method, if tag is Operator Specified

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)46

10.1.10 TpJitterDescriptor

Sequence Element Name Sequence Element Type Description
meanJitter TpNameDescrpTagInt in milliseconds

measurementPeriod TpNameDescrpTagInt in milliseconds

maxJitter TpNameDescrpTagSInt in milliseconds

minJitter TpNameDescrpTagInt in milliseconds

jitterPriority TpNameDescrpTagInt higher value indicates higher priority

description TpNameDescrpTagString Operator can add text using the Set
method, if tag is Operator Specified

10.1.11 TpNameDescrpTagInt

Sequence Element Name Sequence Element Type Description
name TpString Name set by provider

description TpString Description set by provider

tag TpTagValue Tag set by provider. Cannot be
overwritten by operator.

value TpInt32 Can be set by operator or provider,
depending on the tag value.

10.1.12 TpNameDescrpTagString

Sequence Element Name Sequence Element Type Description
name TpString Name set by provider

description TpString Description set by provider

tag TpTagValue Tag set by provider. Cannot be
overwritten by operator.

value TpString Can be set by operator or provider,
depending on the tag value.

10.1.13 TpTagValue

Name Value Description
PROVIDER_SPECIFIED 0 The operator cannot modify the value of this parameter as

set in the template interface.

OPERATOR_SPECIFIED 1 Enterprise operator may change the default value set by
the provider in the template. The default value can be
blank to indicate that there is no default value for this
parameter. The operator may change it according with

advice, if provided in the description parameters.

UNSPECIFIED 2 parameter is not used for this template, and the enterprise
operator cannot change it.

10.1.14 TpNameDescrpTagExcessLoadAction

Sequence Element Name Sequence Element Type Description
name TpString Name set by provider

description TpString Description set by provider

tag TpTagValue Tag set by provider. Cannot be overwritten by
operator.

value TpAction Can be set by operator or provider, depending on
the tag value.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)47

10.1.15 TpAction

Name Value Description
DROP 0 drop packets (i.e., do not ever transmit them) that exceed the load

traffic parameters that were set for the VPrP

TRANSMIT 1 transmit packets even though transmitting them will create a load in
excess of the load traffic parameters that were set for the VPrP

RESHAPE 2 reshape the entering traffic by trying to keep the packet (and not drop
them yet) waiting for the entering traffic load to come down below

the load conditions set for the VPrP, and if it does, transmit the
packets then.

REMARK 3 remark the packet for a lower QoS service, then transmit them (i.e.,
transfer the packet through some other less demanding VPrP). This

may result in increased packet loss (i.e., the excess packets may have
now higher probability of being dropped before reaching their SAP
or Site destination), or increased packet delay and / or packet jitter

10.1.16 TpPipeQoSInfo

Sequence Element Name Sequence Element Type Description
directionality TpNameDescrpTagDir Specifies whether traffic is uni- or bi-

directional.

serviceOrigin TpEndpoint

serviceDestination TpEndpoint

forwardLoad TpLoadDescriptor Traffic flowing from service origin to
service destination.

reverseLoad TpLoadDescriptor Traffic flowing from service destination
to service source.

description TpNameDescrpTagString

10.1.17 TpNameDescrpTagDir

Sequence Element Name Sequence Element Type Description
name TpString Name set by provider

description TpString Description set by provider

tag TpTagValue Tag set by provider. Cannot be
overwritten by operator.

value TpTrafficDirection Can be set by operator or provider,
depending on the tag value.

10.1.18 TpTrafficDirection

Name Value Description
UNIDIRECTIONAL 0 The traffic for this VPrP is unidirectional

BIDIRECTIONAL 1 The traffic for this VPrP is bi-directional

10.1.19 TpEndpoint

Sequence Element Name Sequence Element Type Description
type TpSiteOrSap Specifies whether the endpoint is a site

or a SAP

id TpString Endpoint name

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)48

10.1.20 TpSiteOrSap

Name Value Description
SITE 0 Endpoint is a site

SAP 1 Endpoint is a SAP

10.1.21 TpLoadDescriptor

Sequence Element Name Sequence Element Type Description
meanBandwidth TpNameDescrpTagInt Bytes per second

measurmentInterval TpNameDescrpTagInt milliseconds

maxBandwidth TpNameDescrpTagInt Bytes per second

minBandwidth TpNameDescrpTagInt Bytes per second

bandwidthShare TpNameDescrpTagInt 1/100 of a percent, e.g., 500 is 0,5%

bandwidthWeight TpNameDescrpTagInt

burstSize TpNameDescrpTagInt Bytes

description TpNameDescrpTagString

10.1.22 TpValidityInfo

Sequence Element Name Sequence Element Type Description
validFrom TpNameDescrpTagDateTime valid start time

validPeriod TpNameDescrpTagTimePeriod valid Duration

validDailyFrom TpNameDescrpTagTimeOfDay daily start time

validDailyPeriod TpNameDescrpTagTimePeriod Daily Duration

validDayOfWeek TpNameDescrpTagDayOfWeek days of the week

validMonth TpNameDescrpTagMonth months in a year

description TpNameDescrpTagString description

Specifies the validity period for a VPrP

10.1.23 TpNameDescrpTagDateTime

Sequence Element Name Sequence Element Type Description
name TpString Name set by provider

description TpString Description set by provider

tag TpTagValue Tag set by provider. Cannot be
overwritten by operator.

value TpDateAndTime Can be set by operator or provider,
depending on the tag value. The

TpDateAndTime data type is a common
data type in accordance with ISO 8601.

Specifies a date and the time on that day for a valid period to start.

10.1.24 TpNameDescrpTagTimePeriod

Sequence Element Name Sequence Element Type Description
duration TpInt32 Time measured from a start time

specified by another parameter for the
validity information. Measured in

Seconds.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)49

10.1.25 TpNameDescrpTagTimeOfDay

Sequence
Element Name

Sequence Element
Type

Description

name TpString Name set by provider

description TpString Description set by provider

tag TpTagValue Tag set by provider. Cannot be overwritten by operator.

value TpString String with the following format HH:MM. HH two digit hour, and
MM two digit minutes. Time of the day to be applied to validity

information provided by other validity parameters.

Specifies a time in a day, where the day is specified by another validity parameter. For example, if validity information
includes Mondays and Thursday of the week, this daily time applies to these two days. The valid time window will start
on Mondays and Thursday s at the time specified by this parameter.

10.1.26 TpNameDescrpTagDayOfWeek

Sequence Element Name Sequence Element Type Description
name TpString Name set by provider

description TpString Description set by provider

tag TpTagValue Tag set by provider. Cannot be overwritten by
operator.

value TpInt32 Day of the week to be applied to validity information
provided by other validity parameters. Next table

below shows the value assigned to each day. The value
for this parameter can be in the range of 1 – 127.

The value parameter specifies information regarding the days of the week for the validity time period. For multiple
days, this parameter holds the total value of the days, see examples below.

In the following table the value corresponding to the valid days is obtained by adding the values for each day. For
example:

1 = Mondays

2 = Tuesdays

3 = 2 + 1 = Mondays and Tuesdays

4 = Wednesdays

5 = 4 + 1 = Mondays and Wednesdays
96 = 32 + 64 = Saturday + Sunday = weekend.

Values for Days Of Week

Day Value
Monday 1

Tuesday 2

Wednesday 4

Thursday 8

Friday 16

Saturday 32

Sunday 64

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)50

10.1.27 TpNameDescrpTagMonth

Sequence Element Name Sequence Element Type Description
name TpString Name set by provider

description TpString Description set by provider

tag TpTagValue Tag set by provider. Cannot be overwritten by
operator.

value TpInt32 Months of the year to be applied to validity
information provided by other validity parameters.
Next table below shows the value assigned to each
Month. The value for this parameter must be in the

range of 1 – 4095.

In the following table the value corresponding to the valid month is obtained by adding the values for each valid month.
For example:

1=January

2=February

3=2+1=January and February

4=March

5=4+1= March and January

Values for Months of Year

Month Sequence Element Type
January 1

February 2

March 4

April 8

May 16

June 32

July 64

August 128

September 256

October 512

November 1024

December 2048

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)51

11 Exception Classes
The following are the list of exception classes which are used in this interface of the API.

Name Description
P_CANT_DELETE_VPRP Virtual Provisioned Pipe cannot be deleted

P_ILLEGAL_COMBINATION Illegal combination of requested parameters

P_ILLEGAL_REF_VALUE Illegal Reference Value

P_ILLEGAL_SITE_ID Illegal Enterprise Network Site ID

P_ILLEGAL_SLA_ID Illegal format for Service Level Agreement ID

P_ILLEGAL_TAG Illegal or unspecified Tag used

P_ILLEGAL_VALUE Value of parameter is illegal

P_ILLEGAL_VPRPID Attempt to lock an already locked mailbox

P_UNKNOWN_DESCRIPTION No description field found

P_UNKNOWN_DSCODEPOINT No DiffServ Codepoint found

P_UNKNOWN_ENTERPRISE_NETWORK No Enterprise Network found

P_UNKNOWN_INTERFACE A negative number of properties was requested

P_UNKNOWN_IPSUBNET No IP Subnet found for this site

P_UNKNOWN_MENU No menu found / unknown menu

P_UNKNOWN_PIPEQOSINFO No PIPE QoS information found

P_UNKNOWN_QOS_INFO No QoS information found

P_UNKNOWN_SAP No site found with the specified SAP ID

P_UNKNOWN_SAPS No Service Access Point found

P_UNKNOWN_SITE_DESCRIPTION No site description found for this site

P_UNKNOWN_SITE_ID No Enterprise Network Site with this ID found

P_UNKNOWN_SITE_LOCATION No site location found for this site

P_UNKNOWN_SITES No enterprise network site found

P_UNKNOWN_SLA_ID No SLA ID found

P_UNKNOWN_STATUS Status information not found

P_UNKNOWN_TEMPLATE_TYPE Template Type not found

P_UNKNOWN_TEMPLATES No Templates found

P_UNKNOWN_VALIDITY_INFO No Validity Information found

P_UNKNOWN_VPRN No Virtual Private Network found

P_UNKNOWN_VPRP No Virtual Provisioned Pipe found

P_UNKNOWN_VPRP_ID Illegal VPrP ID

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description
ExtraInformation TpString Carries extra information to help identify the source of the exception,

e.g. a parameter name

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)52

Annex A (normative):
OMG IDL Description of Connectivity Manager SCF
The OMG IDL representation of this interface specification is contained in a text file (cm.idl contained in archive
es_20191510v010201m0.ZIP) which accompanies the present document.

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)53

Annex B (informative):
Summary of differences between V1.1.1 (Parlay 3.0) and
V1.2.1 (Parlay 3.1)

B.1 IpService
setCallback() and setCallbackWithSessionID() now both raise P_INVALID_INTERFACE_TYPE.

B.2 Data Types
TpIPSubnet

Defines a Sequence of Data Elements

Sequence Element Name Sequence Element Type Description
subnetNumber TpString IP address, IPv4 example 2.3.4.15

subnetMask TpString IPv4 mask example,255.255.255.0

aAddressType TpIPv4AddType Class for the Ipv4 address format

IPpVversionSupport TpIPVersion Version supported

NOTE: The TpIPSubnet data type follows the DMTF CIM specification for IP sub-net.

TpNameDescrpTagDir

Sequence Element Name Sequence Element Type Description
nName TpString Name set by provider

destriptiondescription TpString Description set by provider

tag TpTagValue Tag set by provider. Can't be overwritten
by operator.

vValue TpTrafficDirection Can be set by operator or provider,
depending on the tag value.

B.3 IDL
struct TpNameDescrpTagTimePeriod {

TpInt32 duration;
};

struct TpValidityInfo {
TpNameDescrpTagDateTime validFrom;
TpNameDescrpTagTimePeriod validPeriod;
TpNameDescrpTagTimeOfDay validDailyFrom;
TpNameDescrpTagTimePeriod validDailyPeriod;
TpNameDescrpTagDayOfWeek validDayOfWeek;
TpNameDescrpTagMonth validMonth;
TpNameDescrpTagString description;

};

ETSI

Final draft ETSI ES 201 915-10 V1.2.1 (2002-05)54

History

Document history

V1.1.1 February 2002 Publication

V1.2.1 May 2002 Membership Approval Procedure MV 20020705: 2002-05-07 to 2002-07-05

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Connectivity Manager SCF
	5 Sequence Diagrams
	5.1 Operator Selects Service Components and creates a new VPrP
	5.2 Operator Browses Virtual Provisioned Pipe
	5.3 Operator Browses SAPs and Sites

	6 Class Diagrams
	7 The Service Interface Specifications
	7.1 Interface Specification Format
	7.1.1 Interface Class
	7.1.2 Method descriptions
	7.1.3 Parameter descriptions
	7.1.4 State Model

	7.2 Base Interface
	7.2.1 Interface Class IpInterface

	7.3 Service Interfaces
	7.3.1 Overview

	7.4 Generic Service Interface
	7.4.1 Interface Class IpService

	8 Connectivity Manager Interface Classes
	8.1 Interface Class IpConnectivityManager
	8.2 Interface Class IpEnterpriseNetwork
	8.3 Interface Class IpEnterpriseNetworkSite
	8.4 Interface Class IpQoSMenu
	8.5 Interface Class IpQoSTemplate
	8.6 Interface Class IpVPrN
	8.7 Interface Class IpVPrP

	9 State Transition Diagrams
	10 Data Definitions
	10.1 Connectivity Manager Data Types
	10.1.1 TpStringList
	10.1.2 TpIPSubnet
	10.1.3 TpIPv4AddType
	10.1.4 TpIPVersion
	10.1.5 TpVprpStatus
	10.1.6 TpDsCodepoint
	10.1.7 TpProvisionedQoSInfo
	10.1.8 TpDelayDescriptor
	10.1.9 TpLossDescriptor
	10.1.10 TpJitterDescriptor
	10.1.11 TpNameDescrpTagInt
	10.1.12 TpNameDescrpTagString
	10.1.13 TpTagValue
	10.1.14 TpNameDescrpTagExcessLoadAction
	10.1.15 TpAction
	10.1.16 TpPipeQoSInfo
	10.1.17 TpNameDescrpTagDir
	10.1.18 TpTrafficDirection
	10.1.19 TpEndpoint
	10.1.20 TpSiteOrSap
	10.1.21 TpLoadDescriptor
	10.1.22 TpValidityInfo
	10.1.23 TpNameDescrpTagDateTime
	10.1.24 TpNameDescrpTagTimePeriod
	10.1.25 TpNameDescrpTagTimeOfDay
	10.1.26 TpNameDescrpTagDayOfWeek
	10.1.27 TpNameDescrpTagMonth

	11 Exception Classes
	Annex A (normative): OMG IDL Description of Connectivity Manager SCF
	Annex B (informative): Summary of differences between V1.1.1 (Parlay 3.0) and V1.2.1 (Parlay 3.1)
	B.1 IpService
	B.2 Data Types
	B.3 IDL

	History

