ETSIES 201 915-4 vi.1.1 200202

ETSI Standard

Open Service Access (OSA);
Application Programming Interface (API);
Part 4: Call Control SCF

5 N

D

2 ETSI ES 201 915-4 V1.1.1 (2002-02)

Reference
DES/SPAN-120070-4

Keywords
API, OSA, IDL, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.

© The Parlay Group 2001.
All rights reserved.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

3 ETSI ES 201 915-4 V1.1.1 (2002-02)

Contents

Intellectual Property RIGNES.........oo et 6
0 L= V1T (o S 6
1 o010 SRS 7
2 L= = 10 S 7
3 Definitions and abbreViatiONs............ccoe ittt e e s ae e re e re e re e s aeesneeenne s 7
31 D= T aT] (0] PO P TP PR UPTPRUSUSII 7
3.2 ADDIEVIBLIONS ...ttt et b b h ekt e e e e se e e bt e bt eh e eh e et e e e bt e b e e Rt e Re e e e e e besheebenneeneennen 7
4 (0= I 00 1o S 7
5 The Service INterface SPECITICALIONS..........ciiiiririrererer e 8
51 Interface SPECIfiCatiON FOIMELc..oiiieiiie bbbttt b et e e 8
511 INEEITACE CIBSS ... ittt ettt e st e e st e et e s ae s aeesaeeebeeteeateeaeeebeaabeesteesbesnsesaeesaeesaeeaseenseanseans 8
512 L= (T Te o L= o 1T oL (o g PSSP PSP PTOTSTPRTPRPSTPRPRORTPN 8
5.1.3 L e 1= (= 0 (=S o 1 0] 0] PSSR 8
514 1Sz (= 1Y T L= TSRS 8
52 BaSE INEEITACE. ...ttt bt e b et bbb e it e R e b e Rt b et e s e R eR e benae b et neennen 9
521 e oL O E= S T o] [11= o = o= SRS 9
53 SEIVICE NI TACES ...ttt b bbbt h e e et e s b e bt e bt heeb e e st e e e b e se e e b e sbeeb e e e e e s 9
531 OVEBIVIBI ..ttt et b bt h et s e e bt bt eh e e h e e ae e R e e aE £ b e SE e Sh e eh e ea e em e e ne e b e ARt eb e e st en s e e e sb e besaeebeeneennenes 9
54 GENENIC SEIVICE INLEITACE ...t sttt e et e s e s ae e saeebe et e eaeeeaeesbe e beesteensesneesanesns 9
54.1 INEEITACE CIBSS ... ittt ettt e st e e st e et e s ae s aeesaeeebeeteeateeaeeebeaabeesteesbesnsesaeesaeesaeeaseenseanseans 9
6 GENENC Call CONIOl SEIVICE ...c.eiieee ettt sttt e st sae e e seeeneeseesneenteseesneeneeseeenes 10
6.1 S o 1= Torc T D TT=o = 1SS 10
6.1.1 AditioNal CATDACKS........eteieeieeeteeeee et bbb e bbbt e bt e e e b e sb e nbesaeene e e enne e 10
6.1.2 F N = 14 02 1 SO 12
6.1.3 APPLCaioN TNITIALEA Call.......oceeceeeeeeee et s ae e e sae e s teeaeeneeenaeeraesneesnens 14
6.1.4 L@ I =T o I 16
6.1.5 NUMDEr TFANSIBHION L ...ttt ettt b ettt s e bbb et e ae e e e ne e besbesb e e e enneneen 18
6.1.6 Number Tranglation 1 (With CAlIDACKS).........coueiiiiii e 20
6.1.7 NUMDEY TIAaNSIAtiON 2.....c.eecieciece ettt ettt e et e s e st sae e saeesbeeaseeaseeaeeebaeste e beeseenseennesnrenans 22
6.1.8 NUMDBEY TraNSIation 3ooiuiieie ettt et e e s e s e s ae e sae e beeaseeaseeaeesbaesbeebeeteeaseenresnneenns 24
6.1.9 NUMBEY TraNSIAtioN 4ooviiieee ettt e b s e s e s ae e sae e beeareeaeeeaeaebaeste e beebeeaseennesnrenans 26
6.1.10 NUMDEY TraNSIation 5oeiiieeee ettt s s s esae et e et e eaeeeaeesbeesbeesbe e beenbeennesnneeans 28
6.1.11 = o T o SO STRSRPS 29
6.1.12 Pre-Paid with Advice Of Charge (AOC)ecei ittt ettt ae e s reeteeneesneennes 31
6.2 L= S D= =0 1SS 34
6.3 Generic Call Control Service INtErfate ClaSSES..........coiiiriie et 35
6.3.1 Interface Class |PCall CONFOIM@NAGEcccuieiieiicieeees et et e e teeteeeesneeenes 37
6.3.2 Interface Class IPAPPCAICONtTOIM@NAGEScc.eeuiiieriesieseerese e sre e e e st e e e e eeeaeseesneeenes 41
6.3.3 INEEITACE ClASS IPCAlL......coviieeeiite ettt bbbt s b e et b e n et b e 43
6.34 Interface Class IPAPPCELL ..o bbbttt st 48
6.4 Generic Call Control Service State TranSition DiagramsS.........coceiererereenenese e 52
6.4.1 State Transition Diagrams for I|pCallControlMaNagerooeeiireerereerereee e 52
6.4.11 ACHIVE SEBLE......c.eeeeeeeee ettt st e st e e te et e s ae e e ae e be e beeabeeateeaeesbeesbeebeentesaeesaeeeaeeateenteentaans 52
6.4.1.2 Notification terMiNAtEd SEALEccvi i et be e e e e aaeereesreesaees 53
6.4.2 State Transition Diagrams fOr IPCallooveeeei et 53
6.4.2.1 NEIWOrK REIEASEA SEALEovieeceeeeeee et ettt e e b sa e sb e ne e 55
6.4.2.2 FINISNE SEALE.....ccve ettt st sttt s e bt e e b e et e se e b e e beseebesbe e et e sbe e ebesbeneebenbeneenens 55
6.4.2.3 ApPPlication REIEASEA SLALEocieiieiec ettt e te s aesneesreesneenreenneens 55
6.4.24 NO PAITIES SEBEE......ceueeeeie sttt ettt b e bt bt s e e e e e e e besaeebesheeae e e e e e besbeebe e e enneneen 55
6.4.2.5 ACHIVE SEBLE......c.eeeeeeeee ettt e et e e te et e s ae e e ae e be e beeabeeateeteesbeesbeeteentesaeesaeeeaeeateeteentaans 55
6.4.2.6 L PAY 1N CAll SEALE.....cve ettt ettt b et b e e b e b e s b e et e s b e b e sbeneenea 55
6.4.2.7 2 PartiESIN Call SEALE......ei ettt ettt st et et e et e s ae e sae e sae e beenreeareeaaeeraenreas 56
6.4.2.8 RoULtiNG 10 DESHINALTON(S) SLALEccueiteeetiiteiete sttt sttt eb bbb b e et sae e b b neenen 56

ETSI

4 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.4.2.9 NEIWOIrK REIGASEH SEALEeveeeirereciiire ettt et s se e r e nn e eresre e ene 58
6.4.2.10 FINISNEA SEALE.......ceeveeeit ettt bR et b b e bt n b n e 58
6.4.2.11 ApPPlication REIEASEA SLALEoceeciecie e e sre e s reesaesaeesneesneeseennenns 58
6.4.2.12 NO PartiES SEALE........eceeerereeieerereeeere sttt st st r e et r e et r e se st r e se et e r e e er e sr e e erennennenenrennenens 58
6.4.2.13 AACHIVE SEALE ...ttt bbbt e R Rt R et n b nen s 58
6.4.2.14 L PAILY IN Call SEBLE......ccuiieeeiiisiet ettt b et b b et n b n s 58
6.4.2.15 2 PartieSiN Call SEALEceeieeeeee ittt ettt e e e et e b bt et et et e st e e e neeseeebeeneeneeneeneeneens 59
6.4.2.16 Routing t0 DeStiNAION(S) SLALEcueiteeetertereeiirte ettt b e st b e et sb e e eb e e ne b b neenen 59
6.5 Generic Call COoNtrol SErVICE PrOPEITIESoouceiirieierieeete ettt sttt st sb e e 60
6.5.1 LiSt Of SErVICE PrOPEITIES. ..ottt bbbt b et b e n et sb e b 60
6.5.2 Service Property values for the CAMEL Service ENVIrONMENL..........c..coevireirereeneneeeseseeeseeseeveseeneeeens 61
6.6 Generic Call Control Data DEfiNItiONS..........c.ccviireiiere e e 61
6.6.1 Generic Call Control Event Notification Data DefiNitioNnS...........ocoeviereereenieneeneese e 62
6.6.2 Generic Call Control Data DEfiNITIONS..........ccoeeiireirieecerreeee et snenen 63
7 MultiParty Call CONtIOl SEIVICE.cce ettt sttt s te e s ee e s besaeesresaeteenaebesreas 68
7.1 SEOUENCE DIBOIAITIS ...ttt sttt sttt sttt st et eb e s e et eb e se et b e se et e b e s e eheeb e s e e bt e b e s e e bt e b e e ebe e b e s e e neebeseene et e st et nbenneneees 68
711 Application INItIAE CAll SELUPc.eiuiieirtieee bbb 68
712 CAll BATING 2 ...ttt h et b et b e et b e e et b e sh e s e ekt sE e Rt e b e s e et eb e sh e e eb e sb e e ebenbe e ebenbennenea 70
7.13 Call forwarding 0N BUSY SEIVICE........c.iiiiieiiereeeet ettt sb bbb bbb snenea 72
714 Call INfOrmMation COlECE SEIVICEoiiieieeeeeee ettt ettt eae e e tesresaesneeneeeeneas 75
7.15 COMPIEX CANd SEIVICE. ...ttt ettt sttt ettt b et eb e bt eb e b e bt sb et b e s b et eb e sb e e ebesb e e ebe st e e ebesbennenen 79
7.1.6 HOUIINE SEIVICE ...ttt et ettt r et r e r e et e n et r e s r et r e r s 81
7.2 L= S D= =0 1SS 84
7.3 MultiParty Call Control Service INterface ClaSSES.......coiiiiriieiiese ettt 85
731 Interface Class |pM ultiPartyCall CONtrolManagerccvecueieeieeie e e e e 86
7.3.2 Interface Class [pAppMultiPartyCall COntroIManagercceeveeieeieeee et ee s 90
733 Interface Class IPMUILIParYCallcociiiiiee bbb 92
734 Interface Class IPAPPMUIIPAIYCall...........ooeiiiieiieee bbb 97
7.35 INtErfaCe Class IPCAIILEYoueueriiieeitieeer et bbbt bbb 100
7.3.6 Interface Class IPAPPCEAIILED. ..o bbb bbb 106
7.4 MultiParty Call Control Service State Transition Diagrams..........cccoereeereerereeneese e 109
741 State Transition Diagrams for IpMultiPartyCallControlManagerccovverereneieneneieseseseseesieseee 109
7411 AACHIVE SEALE ...ttt b et e b b e bt e Rt R e bRt n e nna 109
74.1.2 L0 001 0 S = (TSR 110
74.13 Overview Of allowed MELNOGS............coiiiir e e 110
74.2 State Transition Diagrams for IpMUltiPartyCallcceeeeeieesieese e 110
7421 IDLE SEAEE......eueiteetreseeteeste stttk b bbb bt e Rt e R e bR bR 111
7422 ACTIVE SEBLE.....ee ettt b e e b et b bt st e bt e bt sn bt nn b e e nnas 111
7423 RELEASED SEAEEc.eveuererteieeeteiesesteieaestesesesessesestesesesseseeseeseseseesenesseseeseebeneseesenessetanesseseneseesenssseseses 111
7424 Overview oOf alloWed MELNOUS.........c.ooi e 111
74.3 State Transition Diagrams fOr IPCAIILEQ.......cccerireiieieiereeee e 111
7431 OrigiNALiNG CaAll LEJ ...c.ecueiuiieeiiiteieeteete ettt sttt b e et b e et b e se et e s b e e ebesneneeneas 113
74311 INITIAETNG SEALE ...ttt b et bbbt bbbt b e bt bese et b e bbb 113
74312 ANAIYSING SEBLE. ... eeitieie ettt e et e s e s e s te e e et e e e e raeare e re e reeeesneeaneenneenreerean 115
74313 AACHVE SEALE ...ttt bbbt R n e 116
74314 REIEBSING SEBLEecveereieertet ettt bbbt b et e bbbt et ner e 118
74.3.15 Overview of allowed methods, Originating Call Leg STDccccovevieireceeeeee e 120
7432 TermMiNGNG Call LOJociiiieiieciee ettt ettt e te s e st e s teenaeeaesneesnteenaeeneennaesreesneas 121
74321 [dle (1ErMiNaLiNG) SEALE........cceeiierieeieeie et e et te e e ese e reeste e teeneeensesneesaeesneanseensenns 121
74322 ACHIVE (TErMINGLING) SEALEveeeieieeieieree ettt eb et b e et b e e 122
74323 Releasing (terminating) SEALEcccciiirieiieeeereeet ettt st b e e b e 125
74324 Overview of allowed methods and trigger events, Terminating Call Leg STD.......ccccvveivvrieene. 127
7.5 Multi-Party Call CONtrol SErviCe PrOPEITIEScoiiieirieieiereeeste ettt eb e s s se e ebe b seeneas 127
751 LiSt Of SErVICE PrOPEITIES.ottt bbbt bbbt b et b bbb 127
752 Service Property values for the CAMEL Service ENVIrONMENt..........cooivereenenenieneeseseese e 128
7.6 Multi-Party Call Control Data DEfiNITIONS.........ccccveiiieiecieseesiees e sre e sae e e ssaesraesraesaees 129
7.6.1 Event Notification Data DefiNitioNScccoviieeirienee e e 129
7.6.2 Multi-Party Call Control Data DEfiNItIONS.........cccueiiiiieiiereeie e sees e e s e e e reesaeenreeneens 129
8 MultiMedia Call CONIOl SENVICE........cuiiieiisiesiesie ettt e et ee s 139
8.1 SEOUENCE DIBOIAITIS ...ttt ettt ettt ettt e st b et b e e s bbb e £ e e bt b et bt b et e bt e b e b e st e b et et ebenbe s 139

ETSI

5 ETSI ES 201 915-4 V1.1.1 (2002-02)

8.1.1 Barring for media combined with call routing, alternalive 1ccccevveceeiesiesiese e 139
8.1.2 Barring for media combined with call routing, alterNaliVe 2ccvevveeeieciesieseee e 141
8.1.3 Barring for Media, SIMPIE.........eiiee e e e et e esaesaesrnesaeesaeenseenseens 143
8.14 Call Volume Charging SUPEIVISION......cc.ueueeieiieieesiee st esseeseeeseesseessees e estesssesseesseesseesseensesnsssssessssssenssenssees 144
8.2 (O =SS D= =0 1 145
8.3 MultiMedia Call Control Service INterface ClasseS. ..o 146
831 Interface Class IpMultiMediaCall CONrOIM@NAJEScoiieririerieirieerese e 147
832 Interface Class IpAppMultiM ediaCall CONtrOIM@NaGETcoeereirieieriiieereree et 149
833 Interface Class IPMUIIMEJIACEIL............coueiiirieee b 151
834 Interface Class IPAPPMUIIMEIACEL ..o e 151
8.35 Interface Class IPMUIIMEJIACEITLEQGcviuirieiriiecrieee e 153
8.3.6 Interface Class IPAPPMUItIMEAIACAIILED........ccciiee e sae e eneens 154
8.3.7 Interface Class IPMUItIMEAIASIIEAIM.........ccueieeiiee et e e e e e e e sreenreeneens 155
84 MultiMedia Call Control Service State Transition DIiagramsSccccveeereeieeeeseese e eee e e eeeneees 155
8.5 Multi-Media Call Control Data DefiNitioNScooiiiiiiiiiieeeeee e 156
851 Event Notification Data DEfiNItIONScoeiiieriiieie et s 156
852 Multi-Media Call Control Data DefiNitioNS...........cceieiireriiinieeee e e 158
9 Conference Call CONLIOl SENVICE........oiiiieiiiere ettt ee e e st s estesreeeesbeeneeseesseeneensensens 161
9.1 SEOUENCE DIBOIAITIS ...tttk ettt ettt ettt b et b b se b e s b e b e b e £ ae e bt b e e bt et e bt e b e s e st e b et et eb e b 161
911 Meet-me conference without SUBCONTFEIENCINGoviiiieiiiee e 161
912 Non-add hoc add-on With SUDCONFEIENCINGcoveueriiriiiiiriee e 163
9.1.3 Non-addhoc add-0n MUITIMEAIAcoiiiree e e bbb 166
9.14 RESOUICE RESEIVELION ...ttt ettt st b et b et e e se e b e sb e bt e et e st e e e sneebesbeene e e et nes 168
9.2 (0= LSS D= =0 1 169
9.3 Conference Call Control Service INErface ClaSSES..........coiiiiirirereeieiee et s 170
931 Interface Class |pConfCall CONtrOIMaNAJEYcoveiiieieeie e see s eseete e e e srae e sre e s e e naeenseenneens 171
932 Interface Class IpAPPCoNfCall CONtrOIMENAGEYcouririeieirieiee s 174
9.33 Interface Class [PCONFCAlL..........oiiiii bbb e 175
9.34 Interface Class IPAPPCONTCAIL ..o bbb e 177
9.35 Interface Class [PSUDCONTCEILcoiiiiiiee bbb 178
9.3.6 Interface Class IPAPPSUDCONTCELL..........coiiiiiiieee e 182
9.4 Conference Call Control Service State Transition Diagrams..........ccoveeeririeireninenesesese e 183
9.5 Conference Call Control Data DefiNItIONScceriieiiieree et s sb e e 183
951 Event Notification Data DEfiNItIONScoeiireriiieie e 183
952 Conference Call Control Data DefiNitioNS...........couiieriiieiiese e e 184
10 CommON Call CONLIOl DAA TYPES. ...ccveruereeeeeerieierieesesiesiestestesseseesee et sessessestessesseseesseneesessessessessensns 187
Annex A (normative): OMG IDL Description of Call Control SCFcccoovvvevieveciececeecienn, 197
Annex B (informative): Contents of 3GPP OSA R4 Call Controlcooveveveneieieeeeneseneeens 198
[1S 0] YOS 199

ETSI

6 ETSI ES 201 915-4 V1.1.1 (2002-02)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN).

The present document is part 4 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 201 915) is structured in the following
parts:

Part1: "Overview";

Part 2. "Common Data Definitions";
Part 3: "Framework";

Part 4: " Call Control SCF";

Part5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF".

The present document has been defined jointly between ETSI, The Parlay Group [24] and the 3GPP, in co-operation
with anumber of JAIN™ Community [25] member companies.

The present document forms part of the Parlay 3.0 set of specifications.

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI ES 201 915-4 V1.1.1 (2002-02)

1 Scope

The present document is part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Call Control SCF are defined here, these being:

¢ Sequence Diagrams

¢ ClassDiagrams

* Interface specification plus detailed method descriptions
e State Transition diagrams

o DataDefinitions

e |IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

The referenceslisted in clause 2 of ES 201 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 201 915-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 201 915-1 apply.

4 Call Control SCF

Two flavours of call control APIs have been included in Rel.4. These are the generic call control and the multi-party
call control. The generic call control isthe same API aswas already present in the previous specification for Rel.99
(TS129198 V3.2.0) and isin principle able to satisfy the requirements on Call Control APIsfor Rel.4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay Call Control Working group with
collaboration from JAIN has been focussed on the Multi-party call control API. A number of improvements on call
control functionality have been made and are reflected in this API. For this it was necessary to break the inheritance that
previously existed between Generic and Multi-party call control.

ETSI

8 ETSI ES 201 915-4 V1.1.1 (2002-02)

Thejoint call control group has furthermore decided that the multi-party call control isto be considered as the future
base call control family and the technical work will not be continued on Generic Call control. Errors or technical flaws
will of course be corrected.

The following clauses describe each aspect of the Call Control Service Capability Feature (SCF).
The order is asfollows:

e The Sequence diagrams give the reader a practical idea of how each of the SCF isimplemented.

The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.
* The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

e The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions
are well-defined; either methods specified in the Interface specification or events occurring in the underlying
networks cause state transitions.

¢ The Data Definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

5 The Service Interface Specifications

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name | p<name>. The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
|pSvc<name>, while the Framework interfaces are denoted by classes with name |pFw<name>

5.1.2 Method descriptions

Each method (API method "call") is described. All methodsin the API return avalue of type TpResul t , indicating,
amongst other things, if the method invocation was successfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a'Req’
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a'Res' or 'Er r '
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant | pApp<nane> or | pSvc<namne> interfaces to provide the callback mechanism.
5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, astate model is shown to illustrate the states of the objects that implement the described interface.

ETSI

9 ETSI ES 201 915-4 V1.1.1 (2002-02)

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

53.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface’. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

54 Generic Service Interface

541 Interface Class
Inherits from: Iplinterface

All serviceinterfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void
setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

ETSI

10 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
set Cal | back()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionlDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

Raises
TpComonExcept i ons

Method
set Cal | backWt hSessi onl IX)

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or cal leg. It is not allowed to invoke this method on an
interface that does not uses SessionlDs.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks.

sessionlD : in TpSessionlD

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

6 Generic Call Control Service

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g. because the application crashed, the other call back interfaceis used
instead.

ETSI

11 ETSI ES 201 915-4 V1.1.1 (2002-02)

5: callEventNotify(|)

first ingance : (Logical : IpAppCallControlManager second instance : : IpApp Call ControlMan ager : IpCallControlManager
View::lp App Logic) (Logical View::IpA...
| | | | |
! 1: new() | | | |
/U | | |
| | |
| | 2: enableCallNotification() |
T T T
| | | /U
		.	
	3: new()		
	/U		
	4: enableCallNotification()		
	t		
	/U		

6: ‘forward event' ‘

7: "call Notify result: failure”
|

8: callEventNotify()

9: "forward event"

|

!

1: Thefirst instance of the application is started on node 1. The application creates a new |pAppCall ControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotfication is associated with an applicationl D. The call control manager uses the applicationl D to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4. The same enableCallNotfication request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g. awaysfirst try the first registered or use some kind of round robin
scheme.

6: Theevent isforwarded to the first instance of the logic.

7: When thefirst instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: Theevent isforwarded to the second instance of the logic.

ETSI

12 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.2 Alarm Call

The following sequence diagram shows a 'reminder message, in the form of an alarm, being delivered to a customer as
aresult of atrigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

: (Logical : IpAppCall o o IpCall o :IpUlICall
View::| L ogic IpAppUICall | |IpCallControlManager IpAppUIManager
| |
: 1: new() :

2: createCall()

P

|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: 5: routeRes()

6: 'forward event'

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4: routeReq()
|
|
|
|
|
|
|
T
|
|
|
|
|

]
|
|
|
|
|
|
|
| 9: sendinfoReq()
|
|
|
|
|
|
|

11: ‘forward event'

|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
| |
: createUlCall() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1 12: rélease()

|
13:release()
Il

1: Thismessage isused to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the I pCall ControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) ismet it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'.

5: This message passes the result of the call being answered to its callback object.

6: This messageis used to forward the previous message to the IpAppLogic.

ETSI

13 ETSI ES 201 915-4 V1.1.1 (2002-02)

7: The application requests a new Ul Call object that is associated with the call object.

8: Assuming al criteriaare met, anew UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.
10: When the announcement ends thisis reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the Ul Call object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendinfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

ETSI

14 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and sel ected a name on the page of a person or organisation to talk
to.

: (Logical . IpAppCall o : IpCall
View::IpApplLogic) IpCallControlManager
0 1:new() |

T

2: icreateCaII()

3: new()

4:routeReq()

|

6: 'forward event'

7:routeReq()

5: route:eRes()

U i 8: routéRes() i

9: forward event'

10: deassignCall() |

ETSI

15 ETSI ES 201 915-4 V1.1.1 (2002-02)

1. Thismessageis used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the I pCall ControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

4: This messageis used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.
6: This message forwards the previous message to the application logic.

7: Thismessage is used to route the call to the B-party. Also in this case aresponse is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call how has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

ETSI

16 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call isrouted to the destination number, the calling party is asked for aPIN code. The
code is accepted and the call is routed to the original called party.

_(Logical | CallControlManager 2l Call - = - IpCall = IpUiCall
View::l Logic IpAppUICall IpCallC ontrolManage IpUIManager

| | | | | | | |

| | | | | | | |

| | | | | | | |

| 1:new() | | | | | | |

/U | | | | | |

| 2:enabIeCaIINotification() : : : : :

| | | | | |

| | | /u | | |

| | | | | | |

| | | | | | | |

! ! 3: dallEventNotify()! ! ! ! !

| L | | 1 | | |

| 4:'forward event' | | | | |

| | | | |

| | | | |

| | | | |

5:new() | | | | |

| | | |

U | | | |

L | | | | |

| | | | | |

| T | | | | |

| | | | | | |

1 1 | 6:createUICall() 1 1 ' 7inew() :

| | | | |
| | | | |

| | | | | |

L | 18: sendinfoAndCollectReq() | | | |
| | | | | |

U | | | | | | /u

| ! ! 9: sendIinfoAndCollectRes() ! !

! 10: forward event' ! L ' ' ' L
L + + | | |
U\ | | | | |
| | | | | |
| | I 11:release() 1 | | |
U | | | | | |

| | 12:routeReq() | | | |

\ \ \ . | |

| | | | /U | |

| | | 13:routeRes() | | | |

14:'forward event' . + t . | |

L + | | | |

U\ | J | | | |

| | | | | |

| | | | | | |

| | | | | T | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

: l6:"forwar‘ﬂ event” ‘ ‘ 15: callEnded() ‘ : :

| | | | |

u | | | | |

| | | | | |

| 17:deassignCall() | | | |

T T T T | |

H | | | | |

| | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

S

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, it islikely that all new call events destined for a particular address or address range prompted for
apassword before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a message
(not shown) is directed to the object implementing the |pCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are
used to create the call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4. Thismessage is used to forward the previous message to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the I pCall ControlManager using the return parameter of the
callEventNotify.

ETSI

17 ETSI ES 201 915-4 V1.1.1 (2002-02)
6: Thismessage is used to create a new UICall object. The reference to the call object is given when creating the
UlCall.
7: Provided dl the criteria are fulfilled, anew UICall object is created.
8: Thecall barring service dialogue isinvoked.
9: Theresult of the dialogue, which in this caseisthe PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.
11: This message releases the Ul Call object.
12: Assuming the correct PIN is entered, the call is forward routed to the destination party.
13: This message passes the result of the call being answered to its callback object.
14: This message is used to forward the previous message to the IpAppLogic.

15: When the call isterminated in the network, the application will receive a notification. This notification will always
be received when the call isterminated by the network in anormal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resourcesin the gateway by calling deassignCall.

ETSI

18 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

: (Logical . IpAppCallControlManager : IpAppCall o . IpCall
View::IpApplogic) IpCallControlManager

! 1: new() i i

[/U ‘

|

|

|

|

|

|

|

3: callEventNotify()

4: ‘forward event'

|
|
|
|
|
|
:
|
2: enabIeCaIINotiﬁcationq)
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|

5: new()

1

6: 'translate number'

%l

7: routeReq()

8: routeRes()

|

T

|

|

|

|

|

:
| | |
10: deassignQaII() : :

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9: 'forwaré event'

|
|
|
|
|
|
|
|
|
| |
|

|

|

|

|

|

|

|

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteriafor creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the |pAppCall ControlManager interface.

ETSI

19 ETSI ES 201 915-4 V1.1.1 (2002-02)

4. Thismessage is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

This message invokes the number tranglation function.
The returned translated number is used in message 7 to route the call towards the destination.

This message passes the result of the call being answered to its callback object.

© © N o

This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

ETSI

20 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

For illustration, in this sequence the callback references are set explicitly. Thisisoptional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is aso the preferred method. The rest of the
sequences use that mechanism.

: (Logical . IpAppCallControlManager : IpAppCall o : IpCall
View::l Logic IpCallControlManager
: 1: new() |
M |

- - - -1

2: enableCallNotification()

3: setCallback()

Ll
1

4: callEventNotify()

5: ‘forward event'

> new()

e SRR

<l
J

7: setCallbackWithSessionID()
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

8: translate number'

< i

-

b

9: routeReq()

10: routéRes()

11: ‘forward event' J

12: deassignQaII()

e i SR SRR

ETSI

21 ETSI ES 201 915-4 V1.1.1 (2002-02)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber tranglation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteria for creating an object implementing the I pCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message sets the reference of the |pAppCall ControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have a
explicit IpAppCallControlManager reference specified in the enableCallNotification.

4. Thismessage is used to pass the new call event to the object implementing the |pAppCall Control M anager interface.
5: This message is used to forward message 4 to the IpAppLogic.

This message is used by the application to create an object implementing the IpAppCall interface.

This message is used to set the reference to the IpAppCall for this call.

This message invokes the number trandlation function.

© © N 9

The returned translated number is used in message 7 to route the call towards the destination.
10: This message passes the result of the call being answered to its callback object.
11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

ETSI

22 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the framework. If the trandated number being routed to does not answer or is busy then the call is
automatically released.

: (Logical : IpAppCallControlManager : IpAppCall : IpCallControlManager . IpCall
View::IpAppLogic)

! 1: new() ! ! | |

1-.-‘ | | |

| | |

\T | | | |

| : 2: enableCaIINotificatioﬁ() : :

1 1 [l

| | | |

| : 3: callEvent Notify (): : :

| t] |

| | |

! 4: ‘forward event' ! |

l l

| |

5: new() I |

L |

/u |

|

| |

| | |

l T l] l

} 6: 'translate number' : : : :

I — | | | |

| | | | |

| | | | |

| | | | |

s | | | |

| | | |

! 7: routeReq(), ! |

: : : I

| | | |

T | I 8: routeRes() I

! 9: forward event' J ; ‘
U\ T |
| |
l l l l		
I 10: release() I		
	L	
U ‘ ‘		

R)

1. Thismessageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber tranglation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4. Thismessage is used to forward the previous message to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trandation function.

ETSI

23 ETSI ES 201 915-4 V1.1.1 (2002-02)

7. Thereturned translated number is used to route the call towards the destination.

8: Assuming the called party isbusy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

ETSI

24 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the framework. If the trandated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

: (Logical : IpAppCallControlManager : IpAppCall : IpCallControlManager :IpCall
View::IpAppLogic)
| | | |
: 1:new() : : :
u | |
| 2: enabIeCa‘IINotification() :
T T
‘ ‘ U
I I : calIEventN otify() I		
4: forward event :		
5: new() |

6: 'translate number'

p—

- == -

7: royteReq()
|

=
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|

J

8:routeRes()

i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9: Torward ewent'

e =

10: ‘translate number'

|
|
' |
| |
| |
| |
| | |

| 1 1 |

: : : :

| | | |

I : : : :

: ! 11:routeReq() | |

| 1 1 L

| | | |

:T i i 12: routel%?es() i
| 13: ‘forward event' |
I | |

| | 4 deassignGall() | |

| i ‘ 0

| |

ETSI

25 ETSI ES 201 915-4 V1.1.1 (2002-02)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. As this sequence diagram depicts
anumber trangdlation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4. Thismessage is used to forward the previous message to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The referenceto
this object is passed back to the object implementing the I pCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trandation function.
7. Thereturned translated number is used to route the call towards the destination.

8: Assuming the called party isbusy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.
12: This message passes the result of the call being answered to its callback object.
13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

ETSI

26 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as aresult of a prearranged event being
received by the framework. Before the call is routed to the translated number, the application requests for al call related
information to be delivered back to the application on completion of the call.

: (Logical : IpAppCallControlManager : IpAppCall : IpCallControlManager :IpCall
View::| Logic
1:new()			
/U | | |
‘ l l l
- | | | |
I 21enableCallNotification() 1 I I
N L 1 1 |
| - U |
L] | 3: callEventNotify() I I
| . | . |
I 4: ‘forward event' I I
| | |
| |
5:/new() : :
|
1 ‘
| |
- | |
l T l l
: 6: translate number' : : ‘ :
1 | | | |
< l l l l
L] | | | |
| | | | |
™ | 7: getCallinfoReq() | |
1 1 1 /u
| 8:routeReq() | ‘
| | | 1]
L l l l l
| | | Q |
:routeRes()
: 10: ‘forwar:d event' ‘ | ‘
L + |
U\ | J |
| | |
| | |
l l l l L
| | | | |
| | | | i
| | | |
: 12: "forwar‘p event" ‘ - caIIE:nded()
T |
i | J |
| | | |
| | |
| | | |
| | | |
l l l l
| | | |
I I I 13: getCallinfoRes()
: 14: ‘forwaltd event' ! ;
u\ | J |
| |
| | |
l l l i
| | | |
: 15: deassignQaIl() : :
l ‘ l 1
| |
| |
| |
| |
| |
| |

1. This messageis used by the application to create an object implementing the |pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteriafor creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

ETSI

27 ETSI ES 201 915-4 V1.1.1 (2002-02)

3: Thismessage is used to pass the new call event to the object implementing the |pAppCall ControlManager interface.
4: This messageis used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCall ControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number trang ation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: Thereturned translated number is used to route the call towards the destination.
9: This message passes the result of the call being answered to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic.

15: After the last information is received, the application deassigns the call. Thiswill free the resources related to this
call in the gateway.

ETSI

28 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.10 Number Translation 5

The following sequence diagram shows a simple number transation service which contains a status check function,
initiated as aresult of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

IpAppLogic . IpAppCallControl Manager : IpAppCall . IpCallControlManager . IpCall

|
! 1: new() !

U

2: enableCallNoatification()

]

:

| |
3: callEventNotify() l

0
| t
| 4: forward ewent’ | H
| |
i *
|
| |
] |
|
|

5: new
1

6: 'check status'

-

I
I
I
I
I
I
I
I
I
I
I

7: appropriate release cause
I
I
I
I
I
I
I
I
I
I
I

1: Thismessage is used by the application to create an object implementing the IpAppCall ControlManager interface.

2: Thismessage is sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
anumber trandation service, it islikely that only new call events within a certain address range will be enabled.

When anew call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCall ControlManager. Assuming that the criteriafor creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the IpAppCall ControlManager interface.
4. Thismessage is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

ETSI

29 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will received an announcement before hisfinal timedlice.

20: rélease()
| |
21: supervisé CallReq()

B

22 s‘,uperviseCaIIRes()

Prepaid : (Logical : IpApp Call : IpAppCallControlManager : IpAppUICall : IpCall : IpCallControlManager : IpUIManager : IpuiCall
View:IpAppLogic]
| 1:inew() | | | | | |
t | | | | |
| U 2: enableCalINotification() | | | |
T T T T u | |
			.			
: 4:"f0r\)‘vard event” | 3: callEventNotify() : :
T T

U\ ! 5: new() ! ! ! !
T < ¢ @ | | | | |
D				
! ! 6: supenvseCallReq() I I				
L L L L				
7:routeReq()	/	T‘		
T T T				
		/U		
T				
	8:supernviseCallRes()			
1 9: "forward event" t t				
]				
	10: supeniseCallReq()			
T T T				
		/U		
! 11:superviseCallRes()				
112: "forward event' I I I				
			.	
	. P			
	13 supemseﬁallReq()			
U		i	/U	
14: supeniseCallRes()	M			
115: "forward eventf				
! ! ! 16: createUlICall() ! ! !				
L Il Il Il Il L				
			u	
	17:sendInfoReq(1)	1		
U : : : 18: sendl‘nfoRes() : /U				
19: "forward event"	J T T H			

t |

N | |

| | |

| | |

| | |

| | |

U |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

e s

|

|

|

|

|

|

T T
| |
| |
| |
24: releasé‘() :
| |
| |
| |
| |
| |
| |
| |

ETSI

30 ETSI ES 201 915-4 V1.1.1 (2002-02)
1. This messageis used by the application to create an object implementing the | pA ppGenericCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
apre-paid service, it islikely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Theincoming call triggers the Pre-Paid Application (PPA).
4. The message is forwarded to the application.
5: A new object on the application side for the Generic Call object is created.

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period isrelated to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application isinformed and a new period is started.
9: The messageis forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application isinformed and a new period is started.
12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is amost out of credit an announcement is played to inform about this. The announcement is played
only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.
16: A new UICall object is created and associated with the controlling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.
22: The supervision period ends.

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userlnteractionFaultDetected is sent to the application.

ETSI

31 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the

application.

ETSI

- IpUICall

ETSI ES 201 915-4 V1.1.1 (2002-02)
‘ ‘ - IpUIManager

:IpCaIIControIManaqerH : IpCall

32

‘ . IpAppCallControlManager H : IpAppCall H : IpAppUICall

Logical
Logic

Prepaid :
View:|

\\ B o T e S e [
=
=
9]
c
s
N
g N —————"YM—_"_—"—“———H
-
kel
2
(3]
1]
5]
Q
=
=}
\\\\\\\\\\\\\\\\\\ R —— b- - SR R b e R B
i
c
i<
]
o
5]
o
~ —~ ~ -~ 2
~ e
I bt @ — o 5
P
4 —~ 4 -) —_ _ & o
4 = o4 kot = x - - <3 = =
\\\\\\\\\\\\\\ = ______9°ol.__ =1l_&sS|--_____°9__=|_-__________J_._-__|_ FlL_-.-_.___ Q|- _md |
ﬂ_ < o] T (=4] | 0
8] x 18] @ 14 O = mmw ox 3 N
—) = 1) o = [} — [] [%
- » < 7] Q S 2 - I3 L2 O 2 —~
= 'S O = = (@] > =) c) = ~
o c > <4 (o]) [2 b= 3 @ >
= [» [} [} n 8 (@) c 2 . o "
3 £} 2 s S S E; 3 5 @ 2 B @
= 7 @ 7] g g Z] 5 @ 2 b S
= . s M4
=} o W N =] © o 0 q =] 9 s
z I — % 7] — o o o ~
= e . (3] < ~
e B e~ L~ L [R R T 1 N T Jo N [N S L A WT \\\\\
9 ~| = - S - w 5 I—
2 = | o =
= £ o o w
< S 5| 4
= N = 5
[} [24
o < Q Ql g
N > (e} =]
i 8| 2 o
\\\\\\\\ Ry =i il Il el d e e e S] S s B B
@ % o
IS
=4 ©
=
o
=
W W W T
c c c c
g g g E» ¢
o o 4] c o
N RN S U R R ol L ol ol [P I = 1 I
- B B B o 5
" : : S e :
€ £ £ £ = z 2
. 2 2 3
< % © 3] ~ c o @
2 o © ...
<]
2 5 - ™
5 2
2
<
- S N - - - T S M

ETSI

33 ETSI ES 201 915-4 V1.1.1 (2002-02)

1. This messageis used by the application to create an object implementing the I|pAppCall ControlManager interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
apre-paid service, it islikely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: Theincoming call triggers the Pre-Paid Application (PPA).
4. The message is forwarded to the application.
5: A new object on the application side for the Call object is created.

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time
(e.g. 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period isrelated to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application isinformed and a new period is started.
10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) regquests to supervise the call for another call duration.

12: At the end of each supervision period the application isinformed and a new period is started.
13: The message is forwarded to the application.

14: Before the next tariff switch (e.g. 19:00 hours) the application sends a new AOC with the tarif switch time. Again, at
the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is amost out of credit an announcement is played to inform about this (19-21). The announcement is
played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new Ul Call object that will handle playing of the announcement needs to be created.
20: The Gateway creates anew Ul call object that will handle playing of the announcement.
21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.
25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

ETSI

34 ETSI ES 201 915-4 V1.1.1 (2002-02)

28: Terminating the call which has still a Ul Call object associated will result in a userlnteractionFaultDetected. The
UlICall object isterminated in the gateway and no further communication is possible between the Ul Call and the
application.

6.2 Class Diagrams

This class diagram shows the interfaces of the generic call control service package.

<<Interface>>
IpSenvice

setCallback()
setCallbackWithSessionID()

B

<<Interface>>
<<Interface>>

IpCallControlManager) IpCall
(from gccs) (from gcces)
SrouteReq()
SicreateCall() 1 0.1 F8raloace()
WenableCallNotification() - >

¥deassignCall()
®getCallinfoReq()
¥setCallChargePlan()
¥setAdviceOfCharge()
®getM ore Dial ledDigits Req|()
Fsupenis eCallReq()

disableCallNotification()
@setCallLoadControl()
®changeCallNotification()
$getCriteria()

Figure 1: Service Interfaces

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g. the IpCall ControlManager interface uses the | pAppGenericCall ControlManager , by means
of caling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

35 ETSI ES 201 915-4 V1.1.1 (2002-02)

<Interface>>
Ipinterface
/\
// \\
-
<<Interface>>
IpAppCall
<Interface>> (from gcces)
IpAppCallControlManager -
from gccs routeRes()
(gecs) SrouteErm()
Scall Aborted() 1 0..n - ¥getCallinfoRes ()
& : [SgetCallinfoErr()
SISk HNEY ¥supeniseCallRes()
%callNotificationintemupted() SsupeniseCallET()
% callNotificationContinued() “‘caIFI)FauItDetected()
:2::: g::g:gggggggz)ered() @getMoreDialledDigitsRes()
FgetMoreDialledDigitsErr()
A @callEnded()
<<uses>> |
| <<uses>> |
<<Interface>> <<Interlface>>
IpCallControl 1 o.n IpCall
Manager | ---- - _______________ s

~| (from gccs)

(from gccs)

Figure 2: Application Interfaces

6.3 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It isbased around athird
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to alow call routing and call management for today's Intelligent Network
(IN) servicesin the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

The adopted call model has the following objects. Note that not all of these concepts are used in the generic call.

ETSI

36 ETSI ES 201 915-4 V1.1.1 (2002-02)

* acall object. A call isarelation between a number of parties. The call object relates to the entire call view
from the application. E.g. the entire call will be released when areleaseis called on the call. Note that different
applications can have different views on the same physical cal, e.g. one application for the originating side and
another application for the terminating side. The applications will not be aware of each other, al
‘communication’ between the applications will be by means of network signalling. The API currently does not
specify any feature interaction mechanisms.

* acall leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made whenthelegis
routed. Before that the leg object is IDLE and not yet associated with the address.

* an address. The addresslogically represents a party in the call.

* aterminal. A terminal isthe end-point of the signalling and/or media for a party. This object typeis currently
not addressed.

The call object isused to establish arelation between a number of parties by creating aleg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g. in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channelsrelated to the legs are connected to the media or bearer channels of the other legs that are attached to the same
cal. l.e. only legs that are attached can 'speak’ to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually thereisalimit to the number of legs that
arein being routed (i.e. the connection is being established) or connected to the call (i.e. the connection is established).
Also, there usually is alimit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether aLeg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way isto create anew call from
the application.

For the generic call control service, only a subset of the model is used; the API for generic call control does not give
explicit access to the legs and the media channels. Thisis provided by the Multi-Party Call Control Service.
Furthermore, the generic call isrestricted to two party cals, i.e. only two legs are active at any giventime. Activeis
defined here as 'being routed' or connected.

The GCCS s represented by the IpCallManager and IpCall interfaces that interface to services provided by the network.
Some methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs. In this
way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the devel oper must implement |pAppCallManager and IpAppCall to provide the callback
mechanism.

ETSI

37 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.3.1 Interface Class IpCallControlManager
Inherits from: IpService

Thisinterface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
thisinterface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallldentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentlID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall ()

This method is used to create a new call object. An |pAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a call Aborted() to the application (the
application should invoke setCallback() if it wishes to ensure this).

Returns call Reference: Specifies the interface reference and sessionlD of the call created.

Parameters

appCall : in | pAppCall Ref
Specifies the application interface for callbacks from the call created.

Returns
TpCal |l I dentifier

Raises
TpComonExcepti ons, P_I NVALI D | NTERFACE TYPE

ETSI

38 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
enabl eCal | Notification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application hasto do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application isinterested in other events during the context
of aparticular call session it has to use the routeReq() method on the call object. The application will get accessto the
call object when it receives the callEventNotify(). (Note that the enableCalINoatification() is not applicableif the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the
application can indicate it wishesto be informed when acall is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA.The criteria are said to overlap if both originating and terminating ranges overlap
and the same number plan is used and the same CallNatificationTypeis used.

If anotification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteriafor overlapping with any existing request as the notify mode does not alow control on acall to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallBack().

Returns assignment| D: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCal | Control Manager : in | pAppCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D_CRI TERI A, P_I NVALI D_| NTERFACE_TYPE,
P_I NVALI D_EVENT_TYPE

Method
di sabl eCal | Notification()

This method is used by the application to disable call notifications.

ETSI

39 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignment 1D given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the framework will return the
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment 1D both of
them will be disabled.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT I D

Method
set Cal | LoadControl ()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentl D: Specifies the assignmentI D assigned by the gateway to this request. This assignementID can be
used to correlate the call OverlloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application).
A duration of -2 indicates the network default duration.

mechani sm: in TpCal | LoadControl Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnment : in TpCall Tr eat ment

Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns
TpAssi gnnment | D

Raises
TpComonExcepti ons, P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

ETSI

40 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
changeCal | Noti fication()

This method is used by the application to change the event criteriaintroduced with enableCallNotification. Any stored
criteria associated with the specified assignementI D will be replaced with the specified criteria.

Parameters

assignment|I D : in TpAssignnent| D

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment 1D both of them will be changed.

eventCriteria : in TpCall EventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P I NVALI D_EVENT_TYPE

Method
getCriterial()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNatification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method.

Returns
TpCal | Event Criteri aResul t Set

Raises
TpComonExcept i ons

ETSI

41 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.3.2 Interface Class IpAppCallControlManager
Inherits from: Iplnterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallldentifier, eventinfo : in TpCallEventinfo, assignmentID : in
TpAssignmentlD) : IpAppCallRef

callNotificationInterrupted () : void
callNotificationContinued () : void
callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
cal | Aborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

cal |l Reference : in TpSessionlD
Specifies the sessionl D of call that has aborted or terminated abnormally.

Method
cal | Event Noti fy()

This method notifies the application of the arrival of acall-related event.

If this method isinvoked with a monitor mode of P_ MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
of which forms a part of the service level agreement), then the call in the network shall be released and call Ended()
shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P MONITOR_MODE_INTERRUPT, the application writer
should ensure that no routeReq|() is performed until an IpAppCall has been passed to the gateway, either through an
explicit setCallback() invocation on the supplied IpCall, or viathe return of the callEventNotify() method.

Returns appCall: Specifies areference to the application interface which implements the callback interface for the new
call. This parameter will be null if the notification isin NOTIFY mode.

ETSI

42 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

call Reference : in TpCallldentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification isin NOTIFY mode.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

assignment|I D : in TpAssignnent| D

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns
| pAppCal | Ref

Method
cal | Notificationlnterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
cal I NotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method.

Method
cal | Over| oadEncount er ed()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

ETSI

43 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been encountered.

Method
cal | Over| oadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignment I D : in TpAssignnentl D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased.

6.3.3 Interface Class IpCall
Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call islimited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

<<Interface>>
IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applinfo : in TpCallApplInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

ETSI

44 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
rout eReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

The extra address information such as originatingAddress is optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

Returns callLegSessionI D: Specifies the sessionlD assigned by the gateway. Thisisthe sessionlD of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in paralel, e.g. in the multi-party call
control service.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

responseRequested : in TpCall Report Request Set

Specifies the set of observed events that will result in zero or more routeRes() being generated.
E.g. when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports.

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed.

ori gi nati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

ori gi nal Desti nati onAddress : in TpAddress
Specifies the original destination address of the call.

redirecti ngAddress : in TpAddress
Specifies the address from which the call was last redirected.

applnfo : in TpCall Appl nf 0Set

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns
TpSessi onl D
Raises

TpComonExceptions, P_INVALID SESSION | D, P_I NVALI D _ADDRESS,
P_UNSUPPORTED_ADDRESS PLAN, P_I NVALI D NETWORK_STATE, P_I NVALI D CRI TERI A,
P_I NVALI D_EVENT_TYPE

ETSI

45 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cause : in TpCall Rel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALI D SESSION I D, P_I NVALI D NETWORK_ STATE

Method
deassi gnCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
get Cal | I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

ETSI

46 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoRequested : in TpCalllnfoType
Specifies the call information that is requested.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

Method
set Cal | Char gePl an()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to atarget address.
Depending on the operator the method can a so be used to change the charge plan for ongoing calls.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

call ChargePlan : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_I NVALI D_SESSI ON_I D

Method
set Advi ceOr Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

aCClnfo : in TpAoClinfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

ETSI

a7 ETSI ES 201 915-4 V1.1.1 (2002-02)

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
get MoreDi al | edDi gi t sReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only afew digits. The application then gets anew call event which contains no digits or only the few dialled
digitsin the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

length : in Tplnt32
Specifies the maximum number of digits to collect.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
supervi seCal | Req()

The application calls this method to supervise acall. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnment : in TpCall Supervi seTreat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

ETSI

48 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.3.4 Interface Class IpAppCall

Inherits from: Iplnterface

The generic call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionlD, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorindication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void
getCallinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void
getMoreDialledDigitsErr (callSessionID : in TpSessionlD, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

Method
rout eRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method isinvoked with a monitor mode of P MONITOR_MODE_INTERRUPTED,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving arelease cause of 102 (Recovery on timer expiry).

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

event Report : in TpCall Report

Specifies the result of the request to route the call to the destination party. It aso includes the network event, date and
time, monitoring mode and event specific information such as release cause.

ETSI

49 ETSI ES 201 915-4 V1.1.1 (2002-02)

cal |l LegSessionlD : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the session ID returned at the routeReq() and can
be used to correlate the response with the request.

Method
rout ekrr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

cal |l LegSessionlD : in TpSessionlD

Specifies the sessionl D of the associated call leg. This corresponds to the sessionl D returned at the routeReq() and can
be used to correlate the error with the request.

Method
get Cal | I nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCalllnfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeResin all cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

Method
getCal I I nfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

ETSI

50 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
supervi seCal | Res()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when atariff switch happensin the network during an active call.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTinme : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seCal | Err ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

51 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
cal | Faul t Det ect ed()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call in which the fault has been detected.

fault : in TpCall Fault
Specifies the fault that has been detected.

Method
get MoreDi al | edDi gi t sRes()

This asynchronous method returns the collected digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

digits : in TpString
Specifies the additional dialed digitsif the string length is greater than zero.

Method
get MoreDi al | edDi gi tsErr ()

This asynchronous method reports an error in collecting digits to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

52 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g. getCalllnfoRes) related to the call. The application is expected to deassign the call object after
having received the call Ended.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

call SessionlD : in TpSessionlD
Specifies the call sessionID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.
"a call object has terminated abnormally" ~lpAppCallControlManager.callAborted

create a Call object NpAppCallControlManager.callEventNotify
createCall / create a Call object

"new" Active ‘
T
I
® |

disableCallNotificatiol "arrival of call related event"[notification active for this call event] /
enableCall Notificat iom

- IpAccess.terminateSenviceAgreement
Creation of

CallControlManager
by Senice Factory

"notifications not possible”
IpAppGallControlManager.callNotificationInterrupted

()

"notifications possible again”
NpAppCallControlManager.callNotificationContinue:

) . . IpAccess.terminateSeniceAgreement
disableCallNotification

"a call object has terminated abnormally”
NpAppCallControlManager.callAborted

Notification terminated ‘

Figure 3: Application view on the Call Control Manager

6.4.1.1 Active State

In this state arelation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it isinterested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can aso indicate it is no longer interested in certain call related
events by calling disableCallNotification().

ETSI

53 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.4.1.2 Notification terminated State

When the Call Control Manager isin the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network due to e.g. alink failure. Inthis
state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object. This diagram shows only the part of the state
transition diagram valid for 3GPP (UMTS) release 99.

ETSI

IpAppCallControlManager.callEventNotify

setCallChargePlan
getCallinfoReq
routeReq

oy

54

setAdviceOfCharge
supeniseCallReq

Act

arty In

ive
"disconnect from called pdrty”[monitor mode =
interrupt] “routeRes,| getCallinfoRes,

Call F

"connection to called party

“routeRes
"routing aborted or invalid address" *yol

"answer"

unsuccessful”[monitor mode = interrupt]

supeniseCallRes

Parties in
Call

uteErr

“call ends : calljfg party disconnects" “callEnded

ing party abandoned" “callEnded
“"call ends : called party disconnects”[pionitor for this event] ~callEnded, routeRes(par]

“"call ends: calling party disconnects”[no monitor for this event] “callEnde:
"fault detected"[fault cannot be cgrimunicated with network event] ~callFaultDetected

“"call ends: ¢

Network Released

dea;
release

"call supenision event" supeniseCallRes

"network event received for which was monitored[routeRes]

disconnect)

ssignCall

Application

[no reports requestgd with getCallinfoReq
supgniseCallReq]

"rgquested information ready* "getCallinfoRes,
sypeniseCallR

in retrieal|of information" “getCallinfoErr, supeniseCal

Released

“requested information ready"
“getCallinfoRe§, supeniseCallRes

InfoErr, superviseCallTr

deassignCall
release

Finished

timeout “callFaultDetected("timeout on release")

Figure 4: 3GPP

ETSI

ETSI ES 201 915-4 V1.1.1 (2002-02)

In state No Parties and Finished, a timer N
should preent the object from occupuing
resources.

Upon expiry of this timer, callEnded() should
be invoked with a release cause of 102
(Recowery on timer expiry). In case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked

on the IpAppCallControlManager as this is

an abnormal termination

55 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to
state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information isto be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCalllnfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCall ChargePlan(). The application can request for charging related information by calling
getCalllnfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). Itis
also alowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

6.4.2.5 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOf Charge() as well asto define the charging by invoking setCall ChargePlan.

6.4.2.6 1 Partyin Call State
In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCalllnforeq(). The
setCall ChargePlan() and getCalllnforeq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digitsin case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application isinformed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issueing a routeReq() the application
can reguest a connection to a second call party by calling the operation routeReq() again.

Otherwisg, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
isended or atransition is made back to the Routing to Destinations substate. When the second party answers the call, a
transition will be made to the 2 Partiesin Call state.

In this state user interaction is possible.

ETSI

56 ETSI ES 201 915-4 V1.1.1 (2002-02)

For 3GPP, the following text applies:

When the Call isin this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallinfoReq(). The
setCallChargePlan() and getCalllnfoReq() should be issued before regquesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking call FaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, atransition will be made to the 2 Partiesin Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state.

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.7 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state, the
application isinformed with routeRes with indication that the called party has disconnected and all requested
reports are sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case atransition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and
callEnded().

3. the application is not monitoring for this event. In this case the application isinformed by the gateway invoking
the callEnded() operation and atransition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

6.4.2.8 Routing to Destination(s) State
In this state there is at least one outstanding routeReq.

The state transition diagram shows the application view on the Call object.

ETSI

57

createCall

superviseCallReq
getCallinfoReq

setAdviceOfCharge

setCallChargePlan

IpAppCallControlManager.call EvgntNotify

routeReq[number of routing requests < 2 |
getMoreDialledDigitsReq[no routeReq outstanding]/\ge“}"“"m"eq

setAdviceOfCharge
supervi seCallReq
setCallChargePlan routeRec[only 1 outstanding out

“disconnect from called party"[monitor mode
“routeRes, getCallinfoRes, supen seCallRe

Eingérmupt]

Active

a2

Routing to W

nswer from called party" (

No Parties

rel ease

to called party [no ore
outstanding muteReq opemtions] “YouteRes

“requests failed"[no more outstanding
routeReq operations] ~routeErr

party released”

"Digits collected” ~getMoreDiall edDigitsRes

“Error in collecting digits’ ~getMoreDialledDigitsErr
“routing aborted or invalid address’ ~routeErr

“connedtionto called pary unsuccessful [
monitor mode = interrupt] ~routeRes

2 Partiesin

IpAppCallControlManager.call EventNotify(Answer from call party)

Call

“call ends: calling party abadoned” AcallEnded

“call ends : calling party

“call ends : called party disconnects’{ mgfitor for this event |

“call ends: calling pary di

“fault detected"[fault cannotbe

Network Released

isconnects’ “callEnded

finects'] no monitor for this event] callEnded

mmunicated with netwok event] ~call Faul tDetected

deassignCall

"paty released’[no more outstanding
requesis]

lease

deassignCall
release

Finished

IlinfoErr, superviseCallEm

[no re potts requested wi

“fault in retrie

ih-get Call InfoReq AND supeniseCallReq |

Application
Released

"requested information ready’
"getCalllnfoRes, supervieCallRes

nformation” “getCallinfoErm, superviseCallEm

timeout "callFaultDetected("timeout on release”)

Figure 5: Application view on the IpCall object

ETSI

ETSI ES 201 915-4 V1.1.1 (2002-02)

In state Finshed and No Parties, a timer
mechanism should prevent the object from
occupying resources. Upon the expiry of
thistimer, callEnded() should be invoked
with a release cause of 102 (Recovery on
timer expiry). In the case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked
on the IpAppCallControlManager as thisis
an abnomal termination.

58 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.4.2.9 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCalllnfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately atransition is made to
state Finished.

6.4.2.10 Finished State

In this state the call has ended and no call related information isto be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.11 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCalllnfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.12 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCall ChargePlan(). The application can request for charging related information by calling
getCalllnfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). Itis
also alowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

6.4.2.13 Active State

In this state a call between two partiesis being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOf Charge() as well asto define the charging by invoking setCall ChargePlan.

6.4.2.14 1 Party in Call State
In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCalllnforeq(). The
setCall ChargePlan() and getCalllnforeq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digitsin case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application isinformed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issueing a routeReq() the application
can reguest a connection to a second call party by calling the operation routeReq() again.

Otherwisg, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
isended or atransition is made back to the Routing to Destinations substate. When the second party answers the call, a
transition will be made to the 2 Partiesin Call state.

In this state user interaction is possible.

ETSI

59 ETSI ES 201 915-4 V1.1.1 (2002-02)

For 3GPP, the following text applies:

When the Call isin this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallinfoReq(). The
setCallChargePlan() and getCalllnfoReq() should be issued before regquesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking call FaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, atransition will be made to the 2 Partiesin Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state.

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.15 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: atransition is made to the 1 Party in Call state, the
application isinformed with routeRes with indication that the called party has disconnected and all requested
reports are sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case atransition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and
callEnded().

3. the application is not monitoring for this event. In this case the application isinformed by the gateway invoking
the callEnded() operation and atransition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

6.4.2.16 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

ETSI

60 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.5 Generic Call Control Service Properties

6.5.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation

P_TRIGGERING_EVENT_TYPES |INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by
which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of acall.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS PLAN_E164, P ADDRESS PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET |Value= TRUE : User interaction can be performed on call level and areferenceto a Call

object can be used in the IpUIManager.createU|Call () operation.
Value = FALSE: No User interaction on call level is supported.

P _UL_AT _ALL_STAGES BOOLEAN_SET |Vaue= TRUE: User Interaction can be performed at any stage during acall .
Value = FALSE: User Interaction can be performed in case there is only one party in the
cal.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type

TpMediaType: P_AUDIO, P_VIDEO, P_DATA

The previoustable lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description

P_TRIGGERING_ADDRESSES ADDRESS RANGE_SET Indicates for which numbers the notification may be set. For terminating
notificationsit applies to the terminating number, for originating
notificationsit applies only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating and/or
terminating triggersin the ECN. Set is:

P_ORIGINATING
P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:
P_INTERRUPT
P_NOTIFY

P_NUMBERS TO BE CHANGED |INTEGER_SET Indicates which numbers the application is allowed to change or fill for legs

in an incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,

P_TARGET _NUMBER,
P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_CHARGE_PER TIME,
P_TRANSPARANT CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP |Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to alogical network chargeplan indicator. When the
chargeplan supportsindicates P CHARGE_PLAN then only chargeplansin
this mapping are allowed.

ETSI

61 ETSI ES 201 915-4 V1.1.1 (2002-02)

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE shall have the Service Properties outlined above
set to the indicated values:

P_OPERATI ON_SET = {

"| pCal | Control Manager. enabl eCal | Noti fi cati on",
"I pCal | Cont r ol Manager . di sabl eCal | Noti fi cation",
"I pCal | Cont rol Manager. changeCal | Noti fication",

"l pCal | Control Manager.getCriteria",
"| pCal | Control Manager . set Cal | LoadControl "
"I pCall.routeReq",
"I pCall.rel ease",
| . deassi gnCal | ",
| . getCalllnfoReq",
| . set Cal | Char gePl an",
| . set Advi ceOf Char ge",
I

"l
"l
"l
"l
"l supervi seCal | Req",

§7§§§§

}

P_TRI GGER NG_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GOCS_ADDRESS_ANALYSED EVENT,
P_EVENT_GOCS_CALLED PARTY_BUSY,
P_EVENT_GOCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO ANSVER FROM CALLED PARTY,
P_EVENT_GOCS_ROUTE_SELECT_FAI LURE,

}

P_DYNAM C_EVENT_TYPES = {
P_CALL_REPORT_ANSWER
P_CALL_REPORT_BUSY,
P_CALL_REPORT_NO ANSVER,
P_CALL_REPORT DI SCONNECT,
P_CALL_REPORT_ROUTI NG_FAI LURE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN E164
}

P_U _CALL_BASED = {
TRUE |

}

P_U _AT_ALL_STAGES = {

FALSE
}

P_MEDI A TYPE = {
P_AUDI O
}

6.6 Generic Call Control Data Definitions

The present document provides the GCC data definitions necessary to support the API specification.

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text
represents Hypertext links.

The general format of a Data Definition specification is described below.
e DataType
This shows the name of the data type.

e Description

ETSI

62 ETSI ES 201 915-4 V1.1.1 (2002-02)

This describes the data type.
e Tabular Specification

This specifies the data types and values of the data type.
* Example

If relevant, an example is shown to illustrate the data type.

6.6.1 Generic Call Control Event Notification Data Definitions
TpCal | Event Nane

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical "'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAVME_UNDEFI NED 0 Undefined
P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS - Offhook event

This can be used for hot-line features. In case thisevent isset in
the TpCallEventCriteria, only the originating address(es) may
be specified in the criteria.

P_EVENT_GCCS_ADDRESS COLLECTED EVENT 2 GCCS - Address information collected

The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be donein the
application (see also the getMoreDialledDigits method on the

call class).
P_EVENT_GCCS_ADDRESS ANALYSED EVENT 4 GCCS— Address information is analysed
The dialled number isavalid and complete number in the
network.
P_EVENT_GOCS_CALLED PARTY_ BUSY 8 GCCS- Called party is busy
P_EVENT_GCCS_CALLED PARTY_UNREACHABLE 16 GCCS - Called party is unreachable (e.g. the called party has a
mobile telephone that is currently switched off).
P_EVENT_GCCS_NO _ANSWER _FROM CALLED PARTY 32 GCCS - No answer from called party
P_EVENT_GCCS_ROUTE_SELECT_FAI LURE 64 GCCS - Failurein routing the call
P_EVENT_GCCS_ANSWER FROM CALL_PARTY 128 GCCS - Party answered call.

TpCal | Noti ficati onType
Defines the type of notification. Indicates whether it isrelated to the originating of the terminating user in the call.

Name Value Description
P_ORI G NATI NG 1 Indicates that the notification is related to the originating user in the call.
P_TERM NATI NG 2 Indicates that the notification is related to the terminating user in the call.

ETSI

TpCal |l EventCriteria

Definesthe Sequence of Data El enent s that specify the criteriafor a event notification.

63 ETSI ES 201 915-4 V1.1.1 (2002-02)

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.

Sequence Element

Sequence Element

Description

Name Type
Desti nati onAddr ess TpAddr essRange Defines the destination address or address range for which the notification is
requested.
Ori gi nati ngAddr ess TpAddr essRange Defines the origination address or a address range for which the notification is

requested.

Cal | Event Nane

TpCal | Event Name

Name of the event(s)

Cal I NotificationType

TpCal | Noti ficationType

Indicates whether it isrelated to the originating or the terminating user in the
cal.

Moni t or Mode

TpCal | Moni t or Mode

Defines the mode that the call isin following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a
legal value here.

TpCal | Event I nfo

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Call event

notification.
Sequence Element Name Sequence Element Type
Dest i nat i onAddr ess TpAddr ess
Origi nati ngAddr ess TpAddr ess
Origi nal Destinati onAddr ess TpAddr ess
Redi r ect i ngAddr ess TpAddr ess
Cal | Appl nfo TpCal | Appl nf oSet
Cal | Event Name TpCal | Event Nane
Cal | NotificationType TpCal | Noti ficationType
Moni t or Mbde TpCal | Moni t or Mode
6.6.2 Generic Call Control Data Definitions
| pCal |

Definesthe addressof an | pCal | Interface.

| pCal | Ref

Defines aRef er ence to type IpCall.

| pAppCal |

Definesthe address of an | pAppCal | Interface.

| pAppCal | Ref

DefinesaRef er ence to type IpAppCall

| pAppCal | Ref Ref
DefinesaRef er ence to type IpAppCallRef.

TpCal l I denti fi er Ref
DefinesaRef er ence to type TpCalldentifier.

ETSI

64 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpCal |l I dentifier
Definesthe Sequence of Data El enent s that unambiguously specify the Generic Call object

Sequence Element Sequence Element Sequence Element Description
Name Type
Cal | Ref er ence | pCal | Ref This element specifies the interface reference for the call object.
Cal | Sessi onl D TpSessi onl D This element specifies the call session ID of the call.

| pAppCal | Cont r ol Manager
Definesthe address of an | pAppCal | Cont r ol Manager Interface.

| pAppCal | Cont r ol Manager Ref
DefinesaRef er ence to type IpAppCallControlManager.

| pCal | Cont r ol Manager
Definesthe address of an | pCal | Cont r ol Manager Interface.

| pCal | Cont r ol Manager Ref
Defines aRef er ence to type IpCall Control Manager.

TpCal | Appl nfo
Definesthe Tagged Choi ce of Data El ement s that specify application-related call information.

Tag Element Type
TpCal | Appl nf oType
Tag Element Choice Element Choice Element Name
Value Type

P_CALL_APP_ALERTI NG_MECHANI SM TPCallAlertingMechanism Cal | AppAl erti ngMechani sm
P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType Cal | AppNet wor kAccessType
P_CALL_APP_TELE_SERVI CE TpCallTeleService Cal | AppTel eServi ce
P_CALL_APP_BEARER_SERVI CE TpCallBearerService Cal | AppBear er Ser vi ce
P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory Cal | AppPart yCat egory
P_CALL_APP_PRESENTATI ON_ADDRESS TpAddr ess Cal | AppPr esent ati onAddr ess
P_CALL_APP_CENERI C_I NFO TpString Cal | AppGeneri cl nfo
P_CALL_APP_ADDI TI ONAL_ADDRESS TpAddr ess Cal | AppAddi ti onal Addr ess

TpCal | Appl nf oType

Defines the type of call application-related specific information.

Name Value Description

P_CALL_APP_UNDEFI NED 0 Undefined

P_CALL_APP_ALERTI NG_MECHANI SM The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVI CE Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER SERVI CE Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY The category of the calling party

P_CALL_APP_PRESENTATI ON_ADDRESS The address to be presented to other call parties

P_CALL_APP_GENERI C_| NFO Carries unspecified service-service information

ol BN o>l I& 2 1 BN UGV B\ I o

P_CALL_APP_ADDI TI ONAL_ADDRESS Indicates an additional address

ETSI

65

TpCal | Appl nf 0Set
DefinesaNunber ed Set of Data El ement s of TpCallApplnfo.

TpCal | EndedReport

Definesthe Sequence of Data El enment s that specify the reason for the call ending.

ETSI ES 201 915-4 V1.1.1 (2002-02)

Sequence Element Sequence Element Description
Name Type
Cal | LegSessi onl D TpSessi onl D The leg that initiated the release of the call.

If the call release was not initiated by the leg, then thisvalueis set to—1.

Cause TpCal | Rel easeCause The cause of the call ending.
TpCal | Faul t
Defines the cause of the call fault detected.
Name Value Description
P_CALL_FAULT_UNDEFI NED 0 Undefined
P_CALL_TI MEQUT_ON_RELEASE 1 This fault occurs when the final report has been

sent to the application, but the application did
not explicitly release or deassign the call object,
within a specified time.

Thetimer value is operator specific.

P_CALL_TI MEOUT_ON_| NTERRUPT

2 This fault occurs when the application did not
ingtruct the gateway how to handle the call
within a specified time, after the gateway
reported an event that was requested by the
application in interrupt mode.

Thetimer value is operator specific.

TpCal | I nf oRepor t

Definesthe Sequence of
requested isinvalid.

Dat a El enent s that specify the call information requested. Information that was not

Sequence Element Sequence Element Description
Name Type
Cal | I nf oType TpCallinfoType The type of call report.
CalllnitiationStartTi me TpDat eAndTi e The time and date when the call, or follow-on call, was
started as aresult of arouteReq.
Cal | Connect edToResour ceTi me TpDat eAndTi ne The date and time when the call was connected to the
resource.
This data element is only valid when information on user
interaction is reported.
Cal | Connect edToDest i nati onTi e TpDat eAndTi ne The date and time when the call was connected to the
destination (i.e. when the destination answered the call).
If the destination did not answer, the timeis set to an empty
string.
This data element isinvalid when information on user
interaction is reported.
Cal | EndTi me TpDat eAndTi me The date and time when the call or follow-on call or user
interaction was terminated.
Cause TpCal | Rel easeCause The cause of the termination.

ETSI

66 ETSI ES 201 915-4 V1.1.1 (2002-02)

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

TpCal | Rel easeCause

Definesthe Sequence of Data El enent s that specify the cause of the release of acall.

Sequence Element Sequence Element
Name Type
Val ue Tpl nt 32
Locati on Tpl nt 32

NOTE:

The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by Cause Value from
Application Network
P_CALL_REPORT_BUSY 17 17
P_CALL_REPORT_NO_ANSVER 19 18,19,21
P_CALL_REPORT_DI SCONNECT 16 16
P_CALL_REPORT_REDI RECTED 23 23
P_CALL_REPORT_SERVI CE_CODE 31 NA
P_CALL_REPORT_ROUTI NG_FAI LURE 3 Any other value

TpCal | Report

Definesthe Sequence of Data El enent s that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

Moni t or Mbde TpCal | Moni t or Mbde

Cal | Event Ti me TpDat eAndTi e

Cal | Report Type TpCal | Report Type

Addi ti onal ReportlInfo TpCal | Addi ti onal Reportlnfo

TpCal | Addi ti onal Reportlinfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call report information for certain types
of reports.

Tag Element Type

TpCal | Report Type

Tag Element Value Choice Element Type Choice Element Name
P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY TpCallReleaseCauise Busy
P_CALL_REPORT_NO ANSVER NULL Undefined
P_CALL_REPORT_DI SCONNECT TpCallReleaseCause CallDisconnect
P_CALL_REPORT_REDI RECTED TpAddress ForwardAddress
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG_FAI LURE TpCallReleaseCause RoutingFailure

ETSI

TpCal | Report Request

67 ETSI ES 201 915-4 V1.1.1 (2002-02)

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

Moni t or Mode

TpCallMonitorMode

Cal | Report Type

TpCallReportType

Addi tional ReportCriteria

TpCallAdditional ReportCriteria

TpCal | Addi ti onal Report

Criteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria.

Tag Element Type
TpCallReportType
Tag Element Choice Element Choice Element
Value Type Name
P_CALL_REPORT_UNDEFI NED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTI NG NULL Undefined
P_CALL_REPORT_ANSVER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSVER TpDuration NoAnswerDuration
P_CALL_REPORT_DI SCONNECT NULL Undefined
P_CALL_REPORT_REDI RECTED NULL Undefined
P_CALL_REPORT_SERVI CE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTI NG_FAI LURE NULL Undefined

TpCal | Report Request Set

DefinesaNunbered Set of Data El ement s of TpCallReportRequest.

TpCal | Report Type

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFI NED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that progress has been made in
routing the call to the requested call party. This message may be sent more than once, or may

not be sent at all by the gateway with respect to routing a given call leg to a given address.

P_CALL_REPORT_ALERII NG 2 Call isalerting at the call party.

P_CALL_REPORT_ANSVER 3 Call answered at address.

P_CALL_REPORT_BUSY 4 Called address refused call due to busy.

P_CALL_REPORT_NO_ANSVER 5 No answer at called address.

P_CALL_REPORT_DI SCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has
ended. When the call is ended, the callEnded method is called. This event can occur both

when the called party hangs up, or when the application explicitly rel eases the leg using
IpCallLeg::release() This cannot occur when the app explicitly releases the call leg and the
call.
P_CALL_REPORT_REDI RECTED 7 Call redirected to new address: an indication from the network that the call has been
redirected to a new address.

P_CALL_REPORT_SERVI CE_CODE 8 Mid-call service code received.

P_CALL_REPORT_ROUTI NG_FAI LURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call isbeing held in aqueue. This event may be sent more than once during the routing

of acall.

ETSI

68 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpCal | Tr eat nent

Definesthe Sequence of Data El enent s that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Sequence Element
Name Type
Rel easeCause TpCal | Rel easeCause
Addi tional Treat ment | nfo TpCal | Addi ti onal Treat ment | nfo

TpCal | Event Criteri aResul t Set Ref
Defines areference to TpCallEventCriteriaResultSet.

TpCal | EventCriteri aResul t Set
Defines a set of TpCallEventCriteriaResullt.

TpCal | EventCriteri aResul t

Defines a sequence of data elements that specify arequested call event notification criteria with the associated
assignmentID.

Sequence Element Sequence Element Sequence Element
Name Type Description
EventCriteria TpCal | EventCriteria The event criteria that were specified by the application.
Assi gnnent | D Tpl nt 32 The associated assignmentID. This can be used to disable the notification.
7 MultiParty Call Control Service

The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methodsis givenin clause 7.5.

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, acall is
created first. Then party A'scall leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as avariation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes thisto happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

ETSI

ETSI ES 201 915-4 V1.1.1 (2002-02)

69

: IpUICall

‘IQUIM;nager

PartyA: PartyB :
IpCallLe IpCallLe

all

IpMultiPa

IpMultiPartyCallControlManager|

UiCall

allLel

Pa
MultiPar

allLe |

PartyA :
MultiPa

all

‘ IpAppMultiPa

1: new()

: (Logical
View::IpAppLogic)

3: new()

P
j)
x
5
Q
7]
x
c —
[
> =
o ©
& o
\\\\\\\\\\\\\\ N N A
]
©
3
5
~ 5
Z S
= ~
17
4 -
g g
3 %
— - 4 5
Z = g
< Ed S <]
\\\\\\\\\\\\ 7 R 1 I S IR T R I
= T >
© O ~
Q 2
©
H 3
I o
< .
wn

2: createCall()

R R T e T C N A
- e A
O
2
=
~ M
7
]
x
[=]
E
3
2
-9 _ _ _ Y-+ - -4 - - - 4 - - -] === ==
& w_
a
S
”
jo)
x
5
Q
7]
x
2
[
S
[IR IR I -3 A)
o
5
=
Q
['4
<
Q
o
<
8
W = s
-0 T <=\ " r-———"7""° T~~~ -~~~
o - —
17
x -
S g
@ ['4
o4 2
g]
5 e
S =
Qo ©0
b 3
— wn
- B z
5 =
[} ©
= - 2
\\\\\ S R D e -
2 2
T ©
13 7}
W °
4] 2
- - i B -1 _—r----

ETSI

70 ETSI ES 201 915-4 V1.1.1 (2002-02)

1. This messageis used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the IpMulti PartyCall Control M anager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteriafor creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interfaceis created it is used to pass the reference of the object
implementing the IpAppM ultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could aready have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteriafor creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.
8: Thecall isthen routed to the originating call leg.

9: Assuming the call isanswered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.
11: This message is used to inform party A that the call is being routed to party B.

12: Anindication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.
14: Assuming that the criteriafor creating a second object implementing the IpCallLeg interface is met, it is created.
15: This message requests the call leg for customer B to inform the application when the call leg answersthe call.
16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. Thiswill also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as aresult of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for aPIN code. The
code isregjected and the call is cleared.

ETSI

ETSI ES 201 915-4 V1.1.1 (2002-02)

71

. IpUICall

IpUIManager

IpMultiPartyCall

: IpMultiPartyCallControlManager

UlCall

IpA

IpAppMultiPartyCall

IpAppMultiPartyCallControlManager

: (Logical
View::IpAppLogic

2: createNotification()

1: new()

H_\\\

3:

-
(2]
<)
@
=
©
(@]
2
®
S)
\\\\\\\\ w_\\\\\n.q
o
H
Fal
c
5
o
=
<
@
>
°
o
<
g
S
=
4
o) o

7: createUICall()

—
\\\\\ I) R e
7l -~ m
3}
< 7
2 x
©]
8 E
< =]
< c
S @
E 2
S &
B2 =
[}
»
&
—_
= —~
9}
[+ -~
o =3 =
Q2 o}]
3 x @
O e <
T £ o
< 2 &
. — — G
‘€ 2]
.Mu -
—
[}
»
g —
© ~
b
©
9
°
o
&
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ e
e e
c c
@ @
> >
))
))
2 2
z z
S S
B B
S &
1 -
- - F---C---C—F--1F - F-===-

ETSI

72 ETSI ES 201 915-4 V1.1.1 (2002-02)
1. This messageis used by the application to create an object implementing the |pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, itislikely that all new call events destined for a particular address or address range prompted for
apassword before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the | pMultiPartyCall Control M anager. Assuming that the criteria for
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the
IpAppMultiPartyCall Control Manager interface.

4. Thismessage is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the | pMulti PartyCall ControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7. Thismessage is used to create a UICall object that is associated with the incoming leg of the call.
8: Thecall barring service dialogue isinvoked.

9: Theresult of the dialogue, which in this caseisthe PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.
13: This message is used to forward the previous message to the IpAppLogic.
14: No more Ul is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Call forwarding on Busy Service
The following sequence diagram shows an application establishing a call forwarding on busy.

When acall is made from A to B but the B-party is detected to be busy, then the application isinformed of this and sets
up a connection towards a C party. The C party can for instance be avoicemail system.

ETSI

ETSI ES 201 915-4 V1.1.1 (2002-02)

73

al |

Call
IpMultiPar:

IpMultiPartyCallControlManager

App CCM :
IpAppM ultiPartyCallControlManager

App Call :
IpAppMultiPartyCall

alllLe ‘ ‘

Appleg A:

ApplegC :
pAppCallLeg

‘ Applogic ‘ ‘

5 2
[2) ° N
5 2 s 3
I :
B) = 5
E 5 5
- _8l___o2l ______ W\\W \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
i 2 5 £
“ e s 5
& .| »
FRS
=
=
\\\\\\ B ey ity v
g
8 3
g £
g
= (=]
f =
S
T
o
NZ
\\\\\ e e e e —§---J---------- Q- - - - - - - - - -
=
X
[5]
@
Ee) —~
©
©
o
2
=
o
=z
=
=}
Q
o
=
-
g
T
Q
L
—~ ©
= o
15 2
E=1 ©
S -
=
B
z
[}
©
B T
o
« =
H °
= g
8 5
5
- - d - - - - D - - - - - - = 1l _ - |- - - - - - L
&
-
g
_ L Jd______________________l___._ <!l - ____L_
5
— -
g
£
5
-
\\\\\ ey B F

- c =
k) 2 g
= ° 7}
o < &
= 2
<)
2 5 a
5 2 0
sl S ___ sy
3 2
» <
< @ =
3 = £
R 2
[0}
Q
o
o
o
= . -
= =4
Ke) [
° 2
= =
© 3
m B
o n
W N
P . . | __|______
I 8
k)
o
©
O
£
£
kel
=
N S S AA/._.\ \\\\\\\\\\\\\\\\\
z
S e S el _____
T
o
g
x
j=
Q
~ 3
- r~
g - N
x| —
5| 8
T %
[.
g| &
[) S Z
L. 34 =
g 2
[7]
S T I - N I
o
o
o
[]
=}
£
=
[=]
o
2
N
.m
m
2
@
N

ETSI

74 ETSI ES 201 915-4 V1.1.1 (2002-02)
1. This messageis used by the application to create an object implementing the |pAppM ulti PartyCall Control M anager
interface.
2: Thismessageis sent by the application to enable notifications on new call events.
3:

4: When anew call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing
the IpMultiPartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

5

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.

8: Thenew Call Leg instance transitsto state I nitiating.

9:

10:

11: This message is used to pass the new call event to the object implementing the
I pAppMultiPartyCall ControlManager interface. Applied monitor mode is "interrupt”.

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
15: A new AppCallLegC is created to receive callbacks for another leg.

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

17:

18:

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.
20: The application requests to route the terminating leg to reach the associated party C.

The application may request if so desired acall redirection by including the original destination address (field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCalApplInfo) in the request to route the call leg to the
remote party C.

21.
22:

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for exampleif it is not interested in possible
requested call leg information (getlnfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLegB is notified and the event is forwarded to the application logic
(not shown).

24
25: The application requests to resume call processing for the originating call leg.

Asaresult call processing isresumed in the network that will try to reach the associated party B.

ETSI

75 ETSI ES 201 915-4 V1.1.1 (2002-02)

26: When the party C answersthe call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's |pCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number tranglation of the dialled number and
special charging (e.g. a premium rate service).

Additional call leg related information is requested with the getlnfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and additional
call leg related information is requested with the getinfoReq and superviseReg methods in order to illustrate the
information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which information is sent to the application: network release event followed by
possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally the destroy of
the call object (callEnded).

ETSI

76 ETSI ES 201 915-4 V1.1.1 (2002-02)

ApplLogic ApplegB: Appleg A: App Call : App CCM : : Call : LegB: SCs
[L [allL IpAppMultiPartyCall IpAppMultiPartyCallControlManager uti PartyCall CortrolM IpMultiPartyCall IpCallleg CaIILe IpCallLeg
| | | - . | | | | | | |
| | I | | | | | | |
! ! ! ZCHmENmimuor() ! ! ! ! ! !
I 1 1 ! I b | 3 "armtrigder” | |
u | | | | /I-r‘ t t t |
				4:"trigger event: Analysed Information™				
: : : : : 5: "checkif ‘?pﬁlcanon interested" ; ; ; :								
I I I I I \Z‘ I I I I								
				%\				
: : : : : : : 8: "state {‘ransllion to Active’ : :								
! ! ! ! ! 9: reportNotification() ! ! 1< ! !								
! !	0 favardevert”	: ! I I I I						
L L L U\ u								
	11:"new’							
+ +								
I 12:"pew I I I I I I I I								
_—								
- .								
1w S I I I I I I I I								
! ! ! ! 14: createCallLeg() ! ! ! ! ! !								
! ! ! ! ! ! 1 Anew								
15: "new’								
U					/U L			
						16 "state transitionto dle"		
l l l l 7 genkepriRa() l l l <								
			18: superviseReq()					
t t t - t t t								
I			1§ getiioReq()			I I		
			20 setChargePlan()					
T T T T T T T								
			2}: routeReq()					
: : : : : : : : 22: "slale:transllmn to Active” :								
						23: "informiCall object" <		
						t		
			24: eventReportReq()					
			i)					
! ! ! ! 26: continueProcessing() ! ! ! ! !								
I I I	I I							
					. L			
					%7 inform Call ohjec‘			
%								
: : : : : : : “connnue call proces%lng" :								
								J
							29."B partyansuer’,	
30: eventReportRes() <								
131; "forward event! ! ! ! ! ! ! ! !								
= [U		
! ! ! ! ! ! ! ! 2: "Discanedt fromA-party”								
							+	
! ! ! ! ! ! ! 33 "state trénsition to Releaslng" !								
				34: eventReportRes()			‘	
35: 'faward event” T T T T								
1< [l [[36: getinfoRes()								
		+ + + +						
I 37 Tawqrd event I I I I I I I I								
! ! ! ! ! 38: callLegEnded() ! ! ! ! !								
		+ + + +						
o "								
‘&AME‘L‘			40: "inform Call objeqt”					
								\
							41: "Disconnect from B- party	
I I I I I I I I 1<								
							42:"state lr@nsmon to Releaslng"	
: : : : : 43: eventReportRes() : : : ::I :								
44: "forward event								
b }						1 I		
				45: getinfoRes()				
	[[[[[[
46: “forward event"								
				.				
				AT:superviseRes()				
1 48; “forward event"	[l [l [l [l [l [l							
				49: callLegEnded()				
50: "forward event"	[[[[[[
						51: “inform,Call object"		
						I		
				52: callEnded()				
	53: "forward evenf U\ 1 1 U							
		[[

1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager

interface.
2: This message is sent by the application to enable notifications on new call events.

3.

ETSI

77 ETSI ES 201 915-4 V1.1.1 (2002-02)

4. When anew call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMulti PartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object.

5
A new MultiPartyCall object is created to handle this particular call.
A new CallLeg object corresponding to Party A is created.

The new Call Leg instance transits to state Active.

© © N 9

This message is used to pass the new call event to the object implementing the
pAppM ultiPartyCall ControlManager interface. Applied monitor modeis "interrupt”.

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state |dle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY™) when party B answers the call and when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party b for example to calculate charging.
20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22: The Cadll Leg instance transits to state Active.

23:

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.
26: The application requests to resume call processing for the originating call leg.

Asaresult call processing is resumed in the network that will try to reach the associated party B.

27:

28:

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state"

ETSI

78 ETSI ES 201 915-4 V1.1.1 (2002-02)

33

34: The application IpAppLegA is notified, as the release event has been requested to be reported in Notify mode.
35: The event is forwarded to the application logic

36: The call leg information is reported.

37: The event is forwarded to the application logic.

38: The origination call leg is destroyed, the AppLegA is notified.

39: The event is forwarded to the application logic

40:

41: When the B-party releases the call or the call isreleased as aresult of the rel ease request from party A, i.e. a
"originating release” indication, the terminating call leg is notified and makes a transition to "releasing state”.

42:

43: If anetwork release event is received being a "terminating release” indication from called party B, the application
IpAppLegB isnotified, as the release event from party B has been requested to be reported in NOTIFY mode.

NOTE: Noreportissent if the release is caused by propagation of network release event being a " originating
release” indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The cdll leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg information is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLegB is notified.
50: The event is forwarded to the application logic.

51:

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call is ended .

53: The event is forwarded to the application logic.

ETSI

ETSI ES 201 915-4 V1.1.1 (2002-02)

79

Complex Card Service

7.1.5

The following sequence diagram shows an advanced card service, initiated as aresult of a prearranged event being

received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN

code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set
on the controlling leg (the calling party's leg) such that if the calling party enters a'#5' an event will be sent to the

application. The call isthen routed to the destination party. Sometime during the call the calling party enters '#5' which
causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to

which it is then routed.

2 1pUICall
eq ||lpUiManager|

PartyA PartyB Partys’
IpCallLeg || IpCallleg IpCallLeg

all

MultiPart

PartyB' El =
l [ICall| |lpMultiPartyCallControlManager | |

ApppartyB .
IpAppCalleq

AppPartyB : || AppPartyA:
pAppCallLea || IpAppCallLeg

MuitiPartyCall | |1

MultiPartyCallControlManager

(Logical
View::IpAppLogic)

H
- §
i it 303
g 2
3|
g
H

1 newg

4 “forward event

[—

10 sendinfodnacotectrea)
!

-
i Y e RS =
{ =] —
: -
H
R DU S A e e e e e
SR IR N N O AR SIS | S I
- H
H
g
e g
oz £ sl e e i -
g : g i
\\\\\W\\W\m \\\\\\\\\\\ T
\\\\\\\\\\\ e P e
H H
— =- S----O-- -+

e s —_— - -
E-—-—-—=- - — — — — — — — — — — — [~ — — — — — — —
H -
F—F--—-——-F -+t -—- - — - | it

H £
: £
- —&-—-—-—-- —-T7-——7-—- -3~ -
H
H
F--O-—-—-—-—-—ft - H - = - ———— m—
\\\\\\ ﬂT\\\\wWT\\\\\\“\\\\\\\\\\\\\
R e e — e e =+ - - - -
3 g
H 4
H
T T I t— - - -H--}----
:
\\\\\\\\\\\\\\\\\\\ Wr\\\\\\\\w\\\\
- - - - - — — — Oo- - = - - - - s s

ETSI

80 ETSI ES 201 915-4 V1.1.1 (2002-02)
1. This messageis used by the application to create an object implementing the |pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, it islikely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the

I pMuultiPartyCall ControlManager. Assuming that the criteriafor creating an object implementing the IpMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the
IpAppMuultiPartyCall Control Manager interface.

4: Thismessageis used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the |pMulti PartyCall ControlManager using the return
parameter of message 3.

6: This message returnsthe call legs currently in the call. In principle areference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7: Thismessage is used to associate a user interaction object with the calling party.
8: Theinitial card service dialogue isinvoked using this message.

9: Theresult of the dialogue, which in this caseisthe ID and PIN code, isreturned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue isinvoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.
13: Thetrigger for follow-on callsis set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application hasto use the sessionl Ds of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create anew call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. Asaresult the network will try to reach the associated party.
18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the mediais not
connected to the other partiesin the call. In order to alow inband communication between the new party and the other
partiesin the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.
23: This message releases the called party.

24: Another user interaction dialogue is invoked.

ETSI

81 ETSI ES 201 915-4 V1.1.1 (2002-02)
25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.
26: A new AppCallLeg is created to receive callbacks for another leg.
27:The call isthen forward routed to the new destination party.
28: Asaresult anew Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application isinformed.
31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the Ul resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to congtitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a
pre-defined number (hot-line number) is provided by the application. The call isthen routed to the pre-defined
destination party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
pUrpOSES.

NOTE: Thisservice could be extended as follows:

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The
calling party is now prompted to enter the address of a new destination party, to which it is then routed.

ETSI

82 ETSI ES 201 915-4 V1.1.1 (2002-02)

39: callEnded()

40: "forvar d evert|

Applogic ApplegB: Appleg A Appcall AppCCM : ccm call : Leg A LegB: <s
I allLe IpAppCallleg I lu ltiPartyCall I ultiP: allCt IpMulti CallCt IpMultiPartyCall IpCallLeg IpCallLeg
I I [I I I I I I I
I | | | I I I I I I
I I I 2: cleateNotification() I I I | I I
u t t t t /IJ | 3 "arm UlggE"' | |
T I I I I T T T T I
I I I I I I I I I I
! ! ! ! ! ! 4:"wig gel event: Originating C all Attempt Authorisec”! !
I I I I I I | } | I
| | | | | 5:"checkif aplcation nterested | | | |
| | | | | j<— — | | | |
I I I I I | L mew I I
| | I I I] I 5 I I
| | | | | | | 8: “state triansition to Initiating" | |
I I I I I I I = I I
| | | | | 9: reportNotifcation() | | | | |
| | | 10: "forvar d evert” | U u | | | |
I I e | I T T I I I I
I - | I I I I I I I
I 2 I I I I I I I I
_— >
I [I I I I I I I I
I meew | I I I I I I I I
— I I I I I I I I
I I I I 14: createCallLeg() | I I I I I
u T T T T T 15:npw | |
‘ : : : : : ‘ : 1 "slal:e wansition o ldie” :
| | | | 17: qrentReporiReq() | | | < |
I | | | | | | | I I
| | | | 18: routeReq() I I I I I
I T T T T T T T | I
| | | | | | | | 19: "stale‘lransmun o Active” |
I I I I I I I I = I
| | | | | | | 20: "inform Jall object” [!
I I I I I I <t I
| | | | 21: eventRepoitReq() I I I I I
| T T T T T T | | |
! ! ! ! 22: continueProbessing() ! ! ! ! !
| | | | | | | | | |
| | | | | | 123: “inform Call object”| I |
I I I I I I [— | I
| | | | | | | 24: “ﬁminuecaﬂ proces: Slflg" |
I I I I I I I | | I
I I I I I I I I I I
I I I I I I I I | I
| | | | | | | | 25 event "add[a:sianalysed“ |
<
: : : : : : : 2%: “slale:lransmon o Active’ : :
I I I I I I I < I I
! ! ! ! ! ! ! ! 27: ¥Disconnect f omB-phrty”
I I I I I I I I I |
| | | | | | | | 28: "state UPHSHIOH to Re\easng'[
I I I I I I I I = I
I N I I | 29 eweniReportRes() I I I I I
| 30 forvar d evert : : : : : : 0 ‘
i< [I I I I I I [I
| | | | | 3L callLegEnded() | | | | |
[ol [[[[[[I I
32:forver d evert
[Pt I I I I | 33:inform Clall object” | |
I I I I I I <t I
I I I I I I I I I I
I I I I I I I I I I
! ! ! ! ! ! ! ! 34: "Disconne ‘UromArpany‘ !
I I I I I I I [< I
! ! ! ! ! ! ! 35: "state transition to Releasmg“ !
I I I I I I I i I
I I I I I 26: callLegEnded I I < I
I I I | | caltegtneed) | | I |
| 37: “forwqrd event" | | | | |38: "inform Call object’| |
[e— I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I | I | | I I
I | I I I I I
I T I I I I I
I I I I I I I
I I I I I I I
i i i i i i i

1: This message is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events.
3

4: When anew call, that matches the event criteria, arrives a message ("analysed information™) is directed to the object
implementing the |pMultiPartyCall ControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

5
6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.

8: Thenew Call Leg instance transitsto state Initiating.

ETSI

83 ETSI ES 201 915-4 V1.1.1 (2002-02)
9: Thismessage is used to pass the new call event to the object implementing the
IpAppMultiPartyCall ControlManager interface. Applied monitor modeis "interrupt”.
10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the |pMulti PartyCall ControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state |dle is made after the Call leg has been created.
17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.

20:

21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.
22: The application requests to resume call processing for the originating call leg.

Asaresult call processing isresumed in the network that will try to reach the associated party as specified by the
application (E.164 number provided by application).

23.
24.

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes atransition to "active" state. The application is not notified as it has not requested
this event to be reported.

26:

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY™) and makes a
transition to "Releasing state".

28:

29: The application is notified, as the release event has been requested to be reported in Notify mode.
30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLegB is notified.

32: This answer message is then forwarded.

33

34: When the call release ("terminating release” indication) is propagated in the network toward the party A, the
originating call leg is notified and makes atransition to "releasing state”. This release event (being propagated from
party B) is not reported to the application.

35:
36: When the originating call leg is destroyed, the AppLegA is notified.

ETSI

84 ETSI ES 201 915-4 V1.1.1 (2002-02)

37: The event is forwarded to the application logic
38:
39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

7.2 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

<<Interface>>
Ipinterface
(from csapi)
L
<Interface>>
<<Interface>> pAppCaliLeg
IpAppMultiPartyCallControlMa <<Interface>> (from mpccs)
nager IpAppMultiPartyCall
{from-mp.ccs) e mpes #eventReportRes()
ety 01 O-SoetnioRest I o
®Wmanagerinterrupted() "getlnqurr() } #WgetinfoErr()
#managerResumed() likuperviseRes) o uteE rr()
#calloverloadEncountered() SsuperviseEr) #superviseRes()
#®calloverloadCeased() ScallEnded(#superviseEm)
#WcreateAndRouteCallLegErr() ®callL ek nded(
‘ 1
| | /"\
I I |
: <<uses>> : <<uses>> |
I
<<uses>> | | |
| | !
| | <<Interface>>
I L
| <<Interface>> prCaII Leg
‘ IpMultiPartyCall (framimpees)
<<Interface>> (from mpccs)
IpMultiPartyCallControlManager HrouteReq(
(from mpccs) oetcallLegs) MWeventReportReq()
Wrelease()
HcreateCallLeg() BoetinfoReq(
e ateCall() 1 0.."McreateAndRouteCallLegReq() | 1 0.. q
- S > S R - 2 > [MgetCall()
% re ateNotifi cation() Wrelease())
—4 L — - WattachMedia()
estroyNo tification() eassignCall() X
L ®detachMedia()
#changeNofification () ®yetinfoReq() 8ot asRedirectedAdd
W etNotification() #setChargePlan() ":gnt;ue?’rcl)::eecssn?n 0 ress)
MsetCallLoadControl () HMsetAdviceOfCharge() 9
h #setChargePlan()
MsuperviseReq()
#setAdviceOfCharge()
WsuperviseReq()
®deassign()

Figure 6: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

ETSI

85

<<Interface>>
IpSenice
(from csapi)

#setCallback()

®setCallbackWithSessionID()

8

ETSI ES 201 915-4 V1.1.1 (2002-02)

<<Interface>>
IpCallLeg
<<Interface>> (from mpccs)
<<Interface>> IpMultiPartyCall
IpMultiPartyCallControl (from mpccs) "'routeReq()
Manager ®eventReport Req()
(from mpccs) SetCallLegs() Frelease()
WcreateCall() 1 0..n|[¥createCallLeg() 1 0..n getinoReq()
®createNotification() |-~ > ®createAndRouteCallLegReq() |- -~ — - - - - - - | [®¥getCall()
®destroyNotification() Frelease() attachMedia()
®changeNotification() ®deassignCall() ®detachMedia()
FgetNotification() FgetinfoReq() ®getLastRedirectedAddress()
®setCallLoadControl() ®setChargePlan() ®continueProcessing()
FsetAdviceOfCharge() FsetChargeP lan()
®supeniseReq() FsetAdviceOfCharge()
®supeniseReq()
®deassign ()

Figure 7: Service Interfaces

7.3 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the | pMultiPartyCall ControlManager, |pMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do
not lock athread into waiting whilst atransaction performs. In this way, the client machine can handle many more calls,
than one that uses synchronous message calls. To handle responses and reports, the devel oper must implement

I pAppMultiPartyCall ControlManager, IpAppM ultiPartyCall and IpAppCallLeg to provide the callback mechanism.

ETSI

86 ETSI ES 201 915-4 V1.1.1 (2002-02)

7.3.1 Interface Class IpMultiPartyCallControlManager
Inherits from: IpService

Thisinterface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use thisinterface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the

I pMultiPartyCall ControlManager must be if a method can successfully complete. In other words, if the

I pMuultiPartyCall ControlManager is in another state the method will throw an exception immediately.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
. in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentlID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentlD

Method
createCall ()

This method is used to create a new call object. An IpAppM ultiPartyCall ControlManager should already have been
passed to the | pMultiPartyCall Control M anager,

otherwise the call control will not be able to report a call Aborted() to the application (the application should invoke
setCallback() if it wishesto ensure this).

Returns call Reference: Specifies the interface reference and sessionl D of the call created.

Parameters

appCall : in IpAppMiltiPartyCall Ref
Specifies the application interface for callbacks from the call created.

Returns
TpMul ti PartyCallldentifier

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE TYPE

ETSI

87 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method

createNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application hasto do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the

context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the

eventReportReq() method on the call leg object. The application will get access to the call object when it receives thye
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges overlap and
the same number plan is used and the same NotificationCall Typeis used.

If anotification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a cal to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentI D: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCal | Cont rol Manager : in | pAppMilti PartyCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCall NotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D_CRI TERI A, P_I NVALI D_| NTERFACE_TYPE,
P_I NVALI D_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

ETSI

88 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignment 1D given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the framework will return the
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment 1D both of
them will be disabled.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT I D

Method

changeNoti fi cation()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignementI D will be replaced with the specified criteria.

Parameters

assignment|I D : in TpAssignnent| D

Specifiesthe ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assigment ID both of them will be disabled.

notificationRequest : in TpCall NotificationRequest
Specifies the new set of event specific criteria used by the application to define the event required. Only events that

meet these criteria are reported.
Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P I NVALI D_EVENT_TYPE

Method
get Notification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method

Returns
TpNoti fi cati onRequest edSet

Raises
TpComonExcept i ons

ETSI

89 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
set Cal | LoadControl ()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria

Returns assignmentl D: Specifies the assignmentI D assigned by the gateway to this request. This assignementID can be
used to correlate the call OverlloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application)
A duration of -2 indicates the network default duration.

mechani sm: in TpCal | LoadControl Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnment : in TpCall Tr eat ment

Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns
TpAssi gnnment | D

Raises
TpComonExcepti ons, P_I NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

ETSI

90 ETSI ES 201 915-4 V1.1.1 (2002-02)

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: Iplnterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, notificationinfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentiD) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
reportNotification()

This method notifies the application of the arrival of acall-related event.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated |egs) within a specified time period (the duration
of which forms a part of the service level agreement), then the call in the network shall be released and call Ended()
shall beinvoked, giving arelease cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode.

Parameters

call Reference : in TpMultiPartyCallldentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is being givenin NOTIFY mode.

cal | LegRef erenceSet : in TpCallLegldentifierSet

Specifiesthe set of al call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. From the
notificationl nfo can be found on whose behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

notificationlnfo : in TpCall Notificationlnfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignnmentI D : in TpAssignnmentlD

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

ETSI

91 ETSI ES 201 915-4 V1.1.1 (2002-02)

Returns
TpAppMul ti PartyCal | Back

Method
cal | Aborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

cal |l Reference : in TpSessionlD
Specifies the sessionl D of call that has aborted or terminated abnormally.

Method
manager | nt err upt ed()

This method indicates to the application that event notifications and method invocations have been temporary
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
manager Resuned()

This method indicates to the application that event notifications possible and method invocations are enabled.

Parameters
No Parameters were identified for this method.

Method
cal | Over | oadEncount er ed()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

ETSI

92 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

assignment|I D : in TpAssignnent| D

Specifies the assignmentl D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been encountered.

Method
cal | Over| oadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignment I D : in TpAssignnentl D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased.

7.3.3 Interface Class IpMultiPartyCall
Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, applinfo : in
TpCallAppinfoSet, appLeglnterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClinfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

ETSI

93 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
get Cal | Legs()

This method requests the identification of the call leg objects associated with the call object. Returnsthe legsin the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionlDs and the
interface references.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

Returns

TpCal | Legl denti fi er Set

Raises

TpComonExceptions, P_I NVALI D SESSION | D

Method
createCal |l Leg()

This method requests the creation of anew call leg object.

Returns callLeg: Specifies the interface and sessionl D of the call leg created.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

appCal Il Leg : in | pAppCal | LegRef
Specifies the application interface for callbacks from the call leg created.

Returns

TpCal | Legl dentifi er

Raises

TpCommonExcepti ons, P_I NVALI D SESSI ON_| D, P_I NVALI D_| NTERFACE_TYPE

Method

cr eat eAndRout eCal | LegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed.

Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through
the appL egl nterface parameter.

ETSI

94 ETSI ES 201 915-4 V1.1.1 (2002-02)

The extra address information such as originatingAddress is optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

If this method isinvoked, and call reports have been requested, yet the IpAppCallLeg interface parameter isNULL, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

Returns call LegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

event sRequested : in TpCal | Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "adress analysed”, "answer”, "release”.

target Address : in TpAddress
Specifies the destination party to which the call should be routed.

originati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLeglnterface : in | pAppCall LegRef

Specifies areference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on thisinterface.

Returns
TpCal | Legl dentifier
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_| D, P_I NVALI D_| NTERFACE_TYPE
P_I NVALI D_ADDRESS , P_UNSUPPORTED ADDRESS PLAN, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_EVENT_TYPE, P_I NVALI D_CRI TERI A

Method
rel ease()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reportsto be sent at the end of the call (e.g. by means of getinfoReq) these reports
will still be sent to the application.

ETSI

95 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cause : in TpRel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALI D SESSI ON I D, P_I NVALI D NETWORK_ STATE

Method
deassi gnCal | ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
get I nf oReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoRequested : in TpCalllnfoType
Specifies the call information that is requested.

ETSI

96 ETSI ES 201 915-4 V1.1.1 (2002-02)

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
set Char gePl an()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to atarget address.
Depending on the operator the method can a so be used to change the charge plan for ongoing calls.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cal |l ChargePl an : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method

set Advi ceOF Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

aCClnfo : in TpAoClinfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpComonExceptions, P_INVALID SESSION | D, P_I NVALI D_CURRENCY,
P_1 NVALI D_AMOUNT

ETSI

97 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
super vi seReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon asthe call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnent : in TpCall Supervi seTr eat nent

Specifies how the network should react after the granted connection time expired.
Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

7.3.4 Interface Class IpAppMultiPartyCall
Inherits from: Iplnterface

The Multi-Party call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCalllnfoReport) : void
getinfoErr (callSessionID : in TpSessionlD, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,
errorindication : in TpCallError) : void

ETSI

98 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
get | nf oRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getlnfoReq. Thisinformation may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of al cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

Method
getI nfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
super vi seRes()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happensin the network during an active call.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

ETSI

99 ETSI ES 201 915-4 V1.1.1 (2002-02)

usedTine : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
supervi seErr ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | Ended()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call sessioniID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

Method

creat eAndRout eCal | LegErr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an

unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this
operation.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

ETSI

100 ETSI ES 201 915-4 V1.1.1 (2002-02)

cal |l LegReference : in TpCallLegldentifier
Specifies the reference to the CallLeg interface that was created.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg
Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in
TpAddress, applnfo : in TpCallApplnfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLeginfoType) : void
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMedia (callLegSessionID : in TpSessionID) : void

detachMedia (callLegSessionID : in TpSessionID) : void

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOClInfo : in TpAoClnfo, tarrifSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

ETSI

101 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
rout eReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach M echanism val ues specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being aredirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

This operation continues processing of the call leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

target Addess : in TpAddress
Specifies the destination party to which the call leg should be routed.

originati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCall LegConnecti onProperties
Specifies the properties of the connection.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON I D, P_I NVALI D_NETWORK_STATE,
P | NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

Method

event Report Req()

This asynchronous method sets, clears or changes the criteriafor the events that the call leg object will be set to
observe.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

event sRequested : in TpCal | Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed"”, "answer", "release”.

ETSI

102 ETSI ES 201 915-4 V1.1.1 (2002-02)

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D_EVENT_TYPE,
P_INVALI D CRI TERI A

Method
rel ease()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases rel easing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause : in TpRel easeCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALI D SESSION I D, P_I NVALI D NETWORK_ STATE

Method
get I nf oReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are
deleted.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cal | Legl nfoRequested : in TpCall Legl nfoType
Specifiesthe call leg information that is requested.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

ETSI

103 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
getCall ()

This method requests the call associated with this call leg.

Returns call Reference: Specifies the interface and sessionlD of the call associated with this call leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Returns
TpMul ti PartyCallldentifier

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
attachMedi a()

This method requests that the call leg be attached to its call object. Thiswill alow transmission on all associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the sessionl D of the call leg to attach to the call.

Raises
TpConmmonExceptions, P_INVALI D SESSI ON I D, P_I NVALI D NETWORK_ STATE

Method
det achMedi a()

This method will detach the call leg fromitscall, i.e. thiswill prevent transmission on any associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the sessionl D of the call leg to detach from the call.

Raises
TpCommonExceptions, P_INVALI D SESSION I D, P_I NVALI D NETWORK STATE

ETSI

104 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
get Last Redi r ect edAddr ess()

Queriesthe last address the leg has been redirected to.
Returns redirectedAddress. Specifies the last address where the call leg was redirected to.

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call session ID of the call leg.

Returns

TpAddr ess

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON I D

Method
conti nueProcessi ng()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Raises
TpCommonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK_STATE

Method

set Char gePl an()

Set an operator specific charge plan for the cal leg. The charge plan must be set before the call leg is routed to a target
address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call party.

cal |l ChargePl an : in TpCall ChargePl an
Specifies the charge plan to use.

ETSI

105 ETSI ES 201 915-4 V1.1.1 (2002-02)

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
set Advi ceOr Char ge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call party.

aCClnfo : in TpAoClinfo
Specifies two sets of Advice of Charge parameter.

tarrifSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_CURRENCY,
P I NVALI D_AMOUNT

Method
super vi seReq()

The application calls this method to supervise acall leg. The application can set a granted connection time for this call.
If an application calls this function before it calls arouteReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call party.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatnment : in TpCall SuperviseTreat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

ETSI

106 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
deassi gn()

This method requests that the relationship between the application and the call leg and associated objects be
de-assigned. It leavesthe call leg in progress, however, it purges the specified call leg object so that the application has
no further control of call leg processing. If acall leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

7.3.6 Interface Class IpAppCallLeg
Inherits from: Iplnterface

The application call leg interface isimplemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : void
eventReportErr (callLegSessionID : in TpSessionlD, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLeginfoReport : in TpCallLeglnfoReport) : void
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method
event Report Res()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these
so-called disarming rules are captured in the data definition of the event type.

ETSI

107 ETSI ES 201 915-4 V1.1.1 (2002-02)

If this method isinvoked for areport with a monitor mode of P_ MONITOR_MODE_INTERRUPTED, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving arelease cause of P_ TIMER_EXPIRY.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg on which the event was detected.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

Method
event Report Err ()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
get | nf oRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg to which the information relates.

cal | Legl nfoReport : in TpCall Legl nf oReport
Specifies the call leg information requested.

Method
getI nfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

ETSI

108 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
rout ekrr ()

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
super vi seRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated itsinterest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happensin the network during an active call.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call leg supervision response.

usedTine : in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

Method
supervi seErr ()

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

ETSI

109 ETSI ES 201 915-4 V1.1.1 (2002-02)

errorindication : in TpCallError
Specifies the error which led to the original request failing.

Method
cal | LegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received al
requested results (e.g. getinfoRes) related to the call leg. The call leg will be destroyed after returning from this method.

Parameters

call LegSessionl D : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause : in TpRel easeCause
Specifies the reason the connection is terminated.

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager

managerinterrupted

Interrupted

Active

IpAccess.teminateServiceAgreement
‘new'

s.terminateSeniceAgreement

\
/.
L o
Figure 8: Application view and the Multi-Party Call Control Manager

74.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it isinterested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

ETSI

110 ETSI ES 201 915-4 V1.1.1 (2002-02)

7.4.1.2 Interrupted State

When the Manager isin the Interrupted state it is temporarily unavailable for use. Events requested cannot be forwarded
to the application and methods in the API cannot successfully be executed. A number of reasons can cause this: for
instance the application receives more notifications from the network than defined in the Service Agreement. Another
exampleisthat the Service has detected it receives no notifications from the network due to e.g. alink failure.

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

Active createCall,
createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl

Interrupted getNotification

7.4.2 State Transition Diagrams for IpMultiPartyCall
The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_MONITOR_MODE_INTERRUPT, an activity timer is started. The activity
timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this activity
timer isto invoke callEnded() on the IpAppMultiPartyCall with arelease cause of P_TIMER_EXPIRY . In the case
when no IpAppMultiPartyCall is available on which to invoke callEnded(), call Aborted() shall be invoked on the

I pAppMultiPartyCall ControlManager asthisis an abnormal termination.

. IpMultiPartyCallManager.createCall { IDLE }

oming call]
ApAppMultiPartyCallCo IManager.reportNotification

creatéCallLeg

ACTIVE

deassign

“callEnded

RELEASED

@

A timer mechanisem preventsthatthe object AN
kee ps occupying resources. In case the timer
expires, callEnded() isinwledon the

IpAppM ultiP artyCall with a release cause of
P_TIMER_EXPIRY. In the case when no

IpAppM ultiP artyCall isavailable on which to invoke
callEnded(), callAborted () shall be invoked on the
IpAppM ultiP artyCal IControIManagerasthisisan
abnormal termination.

Figure 9: Application view on the MultiParty Call object

ETSI

111 ETSI ES 201 915-4 V1.1.1 (2002-02)

7.4.21 IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
State.

74272 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicatorsin this state prior to call establishment.

7.4.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call isin this state, the
requested call information will be collected and returned through getlnfoReq() and / or superviseReq(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
state.

7.4.2.4 Overview of allowed methods
Methods applicable Call Control Call Call Control Manager
State State
getCallLegs, Idle, Active, Released |-
createCallLeg, Idle, Active Active
createAndRouteCallLe
gReq,
setAdviceOfCharge,
superviseReq,
Release Active Active
Deassign Idle, Active -
GetinfoReq Idle Active
SetChargePlan Idle, Active Active
7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:
1) Eventsin backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2) Eventsin forwards direction (downstream), coming from originating leg, are not visible in terminating leg
model.

3) States are as seen from the application: if there is no change in the method an application is permitted to apply on
the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or aerting eventson
terminating leg do not change state. (see note 2)

4) The application isto send arequest to continue processing (using an appropriate method like
continueProcessing) for each leg and event reported in monitor mode ‘interrupt’. The call processing is resumed
in the network when no leg in the call is left suspended.

ETSI

112 ETSI ES 201 915-4 V1.1.1 (2002-02)

5) In case on aleg more than one network event (for example mid-call event 'service_codg) isto be reported to the
application at quasi the same time, then the events are to be reported one by one to the application in the order
received from the network. When for aleg an event is reported in interrupt mode, a next pending event isnot to
be reported to the application until a request to resume call processing for the current reported event has been
received on the leg.

NOTE 1: Call processing is suspended if for aleg a network event is met, which was requested to be monitored in
theP_CALL_MONITOR_MODE_INTERRUPT.

NOTE 2: Even though there in the Originating Call Leg STD is no change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear asjust one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

ETSI

113 ETSI ES 201 915-4 V1.1.1 (2002-02)

7.4.3.1 Originating Call Leg

Originating Call Leg. ﬁ

‘originating call attempt authoriﬂ
IpPAppM ultiParty CallControlManager.
attachMedia Initiating reportNotification(originatingCallAttempt)
detachMedi
‘ IpAppMultiParty CallControlManager.

reportNotification(originatingCallAttemptAuthorized)

'Address Collected'

['‘Address_Collected'

IpAppMultiParty CallControlManager.

reportNotification(address_collected)

'‘Address Analysed'

(N/originating senice_code'

‘networkRelease’

ttachMedia
detachMedia

'network release’

i Active IpAppM ultiParty CallC ontrol Manager.
attachMedia reportNotification(address_analysed)
detachMedia ‘
IpAppMultiParty CallControlManager.

reportNotification(originating senice code)

'network release’

All States ‘release’
Q timer expiry'

deasign @
NpAppCallLeg.callLegEnded

Transitions/events not shown:

All states:

continueProcessing, getLastRedirectedAddress, getCall: no state change
All states except Releasing:

eventReportReq, setAdvceOfCharge, getinfoReq, supeniseReq,
setChargePlan

Releasing

IpAppMultiParty CallControlManager.
reportNotification(originating
release)

do/ send reports if requested, or error reports if required

Figure 10: Originating leg

7.4.3.1.1 Initiating State

Entry events:

- Sending of areportNotification() method by the IPMultipartyCallControlManager for an
"Originating_Call_Attempt" initial notification criterion.

- Sending of areportNotification() method by the IPMultipartyCallControlManager for an
"Originating_Call_Attempt_Authorised” initia notification criterion.

ETSI

114 ETSI ES 201 915-4 V1.1.1 (2002-02)

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party's identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the I nitiating state and depending on the
monitor mode be reported to the application.

Initiating See OREL
State Note2

__ 4 ocA |_,l oCAA | |] AC

See Notel

NOTE 1: Event oCA only applicable as an initial notification.
NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

oCA Originating Call Attempt

oCAA Originating Call Attempt Authorized
AC Address Collected

OoREL Originating Release

Figure 11: Application view on event reporting order in Initiating State

In this state the following functions are applicable;

The detection of a"Originating_Call_Attempt" initial notification criterion.

The detection of an "Originating_Call_Attempt_Authorised” initial notification criterion as aresult that the call
attempt authorisation is successful.

The report of the "Originating_Call_Attempt_Authorised” event indication whereby the following functions are
performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is intercepted and call leg processing
is suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

The receipt of destination addressinformation, i.e. initial information package/dialling string as received from
caling party.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

ETSI

115 ETSI ES 201 915-4 V1.1.1 (2002-02)

Exit events:

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period.

- Receipt of adeassign() method.
- Receipt of arelease() method.

Detection of a"originating release” indication as aresult of a premature disconnect from the calling party.

7.4.3.1.2 Analysing State
Entry events:

- Availability of an "Address_Collected" event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Sending of areportNotification() method by the IPMultipartyCall ControlManager for an "Address_Collected"
initial notification criterion.
Functions:

In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialing plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteriais met) is done in this state. This action
isrecursive, e.g. the application could ask for 3 digitsto be collected and when report request can be done repeatedly,
e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

ETSI

116 ETSI ES 201 915-4 V1.1.1 (2002-02)

OREL

Analysing Notel >
State

0CAA . AC S AA

NOTE: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

oCAA Originating Call Attempt Authorized
AC Address Collected

AA Address Analysed

OREL Originating Release

Figure 12: Application view on event reporting order in Analysing State

In this state the following functions are applicable;

The detection of a"Address Collected" initial notification criterion.
On receipt of the "Address_Collected" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event isintercepted and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then no monitoring is performed.

Receipt of a eventReportReq() method defining the criteriafor the events the call leg object isto observe.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

Detection of an "Address_Analysed" indication as aresult of the availability of the routing address and nature of
address.

Receipt of adeassign() method.
Receipt of arelease() method.

Detection of a"originating release" indication as aresult of a premature disconnect from the calling party.

7.4.3.1.3 Active State

Entry events:

Receipt of an "Address Analysed" indication as aresult of the availability of the routing address and nature of
address.

Sending of areportNotification() method by the IPMultipartyCall ControlManager for an "Address_Analysed
initial indication criterion.

ETSI

117 ETSI ES 201 915-4 V1.1.1 (2002-02)

Functions:
In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

Notel
See Note See
ﬂ Note?
0oSC AN
AC ? OoREL
> AA
Active
State

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.
NOTE 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
AC Address Collected
AA Address Analysed

oSC Originating Service Code
OREL Originating Release

Figure 13: Application view on event reporting order Active State

In this state the following functions are applicable;
- Thedetection of a Address_Analysed initial indication criterion.
- On receipt of the"Address Analysed" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event is intercepted and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- Inthis state the routing information is interpreted, the authority of the calling party to establish this connection is
verified and the call leg connection is set up to the remote party.

- Inthis state a connection to the call party is established.

- Detection of a"terminating release” indication (not visible to the application) from remote party caused by a
network release event propagated from aterminating call leg causing the originating call leg STD to transit to
Releasing state:

- Detection of a premature disconnect from the calling party.

- Receipt of adeassign() method.

ETSI

118 ETSI ES 201 915-4 V1.1.1 (2002-02)

- Receipt of arelease() method.
- Detection of an "Answer" indication as aresult of the remote party being connected (answered).

- Sending of areportNotification() method by the IPMultipartyCallControlManager for an " Answer" initial
indication criterion.

- Onreceipt of the "originating_service code" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event isintercepted and call leg processing
is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.
Exit events:

- Detection of an "originating release” indication as a result of a disconnect from the calling party and an
"terminating release”" indication as aresult of a disconnect from called party.

- Receipt of adeassign() method.

- Receipt of arelease() method from the application.

7.4.3.1.4 Releasing State
Entry events:

- Detection of an "Originating_Release" or "Terminating Release” indication as aresult of the network release
initiated by calling party of called party.

- Reception of the release() method from the application.

- Sending of areportNotification() method by the IPMultipartyCallControlManager for an " Originating_Release”
initial indication criterion.

- A transition due to fault detection to this state is made when the Call leg object isin a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actionsto be performed is as follows:
i) the network release event handling is performed.

ii) the possible call leg information requested with getinfoReq() and/ or superviseReq() is collected and send to
the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or afault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

ETSI

119 ETSI ES 201 915-4 V1.1.1 (2002-02)

In this state the following functions are applicable;

The detection of a"originating_release” initial indication criterion.
On receipt of the "originating_release" indication the following functions are performed:
- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event isintercepted and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call leg information requested with the getlnfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getlnfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended.

In case of abnormal termination due to afault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded).

NOTE: Thecal inthe network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg isignored in this case because release of the leg is already ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

Detection of the sending of the last call leg information to the application the Call Leg object is destroyed and

additionally the application is informed that the call leg connection has ended, by sending the call LegEnded()
method.

ETSI

7.4.3.1.5

Overview of allowed methods, Originating Call Leg STD

120

state

methods allowed

Initiating

attachMedia (as a request),
detachMedia, (as a request)
getCall , getLastRedirectedAddress,
continueProcessing,
release (call leg),

deassign

eventReportReq,
getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing

attachMedia (as a request),
detachMedia, (as a request)
getCall , getLastRedirectedAddress,
continueProcessing,
release (call leg),

deassign

eventReportReq,
getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

attachMedia,

detachMedia,

getCall , getLastRedirectedAddress,
continueProcessing,

release deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,

superviseReq

Releasing

getCall , getLastRedirectedAddress,
continueProcessing,

release

deassign

ETSI

ETSI ES 201 915-4 V1.1.1 (2002-02)

7.4.3.2

All States

(teminating)

121

Terminating Call Leg

Terminating Call Leg. ﬁ

Idle
(terminating) ~

routeReq

teminating call attempt authorized',
‘alerting', ‘answer, 'terminating service
code', 'redirected’, 'queued'

attachMedia
detachMedia

'network|release’

ETSI ES 201 915-4 V1.1.1 (2002-02)

(terminating)

IpMultiPartyCall.createCallLeg

IpPAppMultiPartyCall Control Manager. r
eportNotification("terminating call
attempt”, "terminating call attempt

authorised", "alerting", "answer",
"terminating service code",
"redirected", "queued")

]

IpMultiParty Call.createAndRouteCallLegReq

release ‘

Releasing (terminating)

‘timer expiry" ‘ do/ send reports if requested, or emor reports if required

‘ IpAppMultiParty CallControlManager.
reportNotification(terminating

"NpAppCallLeg.callLegEnded

deasign @

release)

Transitions/events not shown:
All states:
continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,
supeniseRes: no state change,
All states except Releasing:
eventReportReq, setAdviceOfCharge, getinfoReq, supeniseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

74321

Entry events:

Figure 14: Terminating leg

Idle (terminating) State

- Receipt of acreateCallLeg() method to start an application initiated call leg connection.

Functions:

In this state the call leg object is created and the interface connection isidled.

The application activity timer is being provided.

ETSI

122 ETSI ES 201 915-4 V1.1.1 (2002-02)

In this state the following functions are applicable;

Invoking routeReq will result in arequest to actually route the call leg object.

Resumption of call leg processing occurs on receipt of a routeReq() method.

Exit events:

Receipt of arouteReq() method from the application.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

Receipt of adeassign() method.
Receipt of arelease() method.

Detection of a network release event being an "originating release” indication as aresult of a premature
disconnect from the calling party.

7.4.3.2.2 Active (terminating) State

Entry events:

Receipt of an routeReq will result in actually routing the call leg object.
Receipt of a createAndRouteCallLeg() method to start an application initiated call leg connection.

Sending of areportNotification() method by the IPMultipartyCall ControlManager for an
"Terminating_Call_Attempt" trigger criterion.

Sending of areportNotification() method by the |PMultipartyCall ControlManager for an
"Terminating_Call_Attempt_Authorized" trigger criterion.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

123 ETSI ES 201 915-4 V1.1.1 (2002-02)

Active
State a Q ‘—t RD
Note3 N
tCA +—p| tCAA AL |—p»| ANS |l tREL
Note 1 T l
Note2 > tSC

NOTE 1: Event tCA applicable as initial notification.

NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.

NOTE 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA Terminating Call Attempt

tCAA Terminating Call Attempt Authorized
AL Alerting

ANS Answer

tREL Terminating Release

Q Queued

RD Redirected

tSC Terminating Service Code

Figure 15: Application view on event reporting order in Active State

In this state the following functions are applicable:
- Thedetection of an "Terminating_Call_Attempt" initial notification criterion as aresult that the call attempt.

- Thedetection of an "Terminating_Call_Attempt_Authorised" initial notification criterion as aresult that the call
attempt authorisation is successful.

- Thereport of the "Terminating_Call_Attempt_Authorised" event indication whereby the following functions are
performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event isintercepted and
call leg processing is suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING _CALL_ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an "Queued" indication as aresult of the call to remote party being queued.

ETSI

124 ETSI ES 201 915-4 V1.1.1 (2002-02)

On receipt of the "Queued” indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_QUEUED then the event isintercepted and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

Sending of areportNotification() method by the IPMultipartyCall ControlManager for an "Alerting" trigger
criterion.

On receipt of the "Alerting" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event isintercepted and call leg processing is suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

Sending of areportNotification() method by the IPMultipartyCall ControlManager for an "Answer" trigger
criterion.

Detection of an "Answer" indication as aresult of the remote party being connected (answered).
On receipt of the "Answer" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event isintercepted and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

Sending of areportNotification() method by the |PMultipartyCall ControlManager for an "service_code" trigger
criterion.

The detection of a"service code" trigger criterion suspends call leg processing.
On receipt of the "service code" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is intercepted and call leg processing
is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE _CODE then thisis not avalid event (that event is not
notified) and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

On receipt of the "redirected" indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event isintercepted and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then thisisnot avalid event (that event is not notified) and call leg
processing continues.

ETSI

125 ETSI ES 201 915-4 V1.1.1 (2002-02)

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Detection of a network release event being an "terminating release” indication as aresult of the following events:

i) Unableto select aroute or indication from the remote party of the call leg connection cannot be presented
(thisisthe network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied
(e.g. business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

Detection of a network release event being an "originating release” indication as aresult of the following events:
vi) Detection of a premature disconnect from the calling party.

Receipt of a deassign() method.

Receipt of arelease() method from the application.

Detection of a network release event being an "originating release” indication as a result of a disconnect from the
calling party or a"terminating release” indication as a result of a disconnect from the called party.

7.4.3.2.3 Releasing (terminating) State

Entry events:

Detection of a network release event being an "originating release” indication as aresult of the network release
initiated by calling party or a"terminating release" indication as aresult of the network release initiated by called

party.
Sending of the release() method by the application.

Sending of areportNotification() method by the IPMultipartyCall ControlManager for an " Terminating Release”
trigger criterion.

A transition due to fault detection to this state is made when the Call leg object awaits arequest from the
application and thisis not received within a certain time period.

Detection of a network event being a "terminating release" indication as a result of the following events:

i) Unableto select aroute or indication from the remote party of the call leg connection cannot be presented
(thisisthe network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied
(e.g. business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

Detection of a network release event being an "originating release” indication as aresult of the following events:

vi) Detection of a premature disconnect from the calling party.

ETSI

126 ETSI ES 201 915-4 V1.1.1 (2002-02)

Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:
i) therelease event handling is performed.

ii) the possible call leg information requested with getinfoReq() and/ or superviseReq() is collected and send to the
application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or afault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:
- Thedetection of a"Terminating Release” trigger criterion.

- On receipt of the network release event being a" Terminating Release” indication the following functions are
performed:

- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event isintercepted and call leg processing is
suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- Thepossible cal leg information requested with the getlnfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

- ThecalLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended.

- Incase of abnormal termination due to afault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded).

NOTE: Thecall inthe network may continue or be released, depending e.g. on the call state.

- Incasetherelease() method isreceived in Releasing state it will be discarded. The request from the application
to release the leg isignored in this case because release of the leg is already ongoing.

Exit events:

- In casethat the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

- Detection of the sending of the last call leg information to the application the Call Leg object is destroyed and

additionally the application is informed that the call leg connection has ended, by sending the call LegEnded()
method.

ETSI

127

ETSI ES 201 915-4 V1.1.1 (2002-02)

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

state

methods allowed

Idle

routeReq,

getCall , getLastRedirectedAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,

superviseReq

Active

attachMedia

detachMedia

getCall , getLastRedirectedAddress,
continueProcessing,

release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

- getCall,
getLastRedirectedAddress,
continueProcessing,
release,

deassign

7.5

7.5.1

List of Service Properties

Multi-Party Call Control Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property

Type

Description

P_MAX_CALLLEGS PER CALL

INTEGER_SET

Indicates how many parties can bein one call.

P_UI_CALLLEG BASED

BOOLEAN_SET

Value= TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the

IpUIM anager.createUICall() operation.

Value= FALSE : No user interaction on leg level is supported.

P_ROUTING WITH_CALLLEG OPERATIONS

BOOLEAN_SET

CallLeg.

Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.route(), IpCallLeg.attachMedia()}

Value = FALSE : the convenience function has to be used for routing a

P_MEDIA_ATTACH_EXPLICIT

BOOLEAN_SET

Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value= FALSE : the CallLeg is automatically attached to a Call, no
IpCallL eg.attachM edia() is needed when a party answers.

ETSI

128

ETSI ES 201 915-4 V1.1.1 (2002-02)

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE shall have the Service Properties outlined

above set to the indicated values:

> OPERATI ON_SET = {
"I pMul ti PartyCall Control Manager.createNotification",
"I pMul tiPartyCall Control Manager. destroyNotification",
"I pMul tiPartyCall Control Manager. changeNotification",
"I pMul ti PartyCall Control Manager. get Notification",
"l pMul ti PartyCal | Control Manager. set Cal | LoadControl "
"I pMul tiPartyCall.getCall Legs",
"I pMul tiPartyCall.createCall Leg",
"I pMul ti PartyCall.createAndRout eCal | LegReq",
"I pMul ti PartyCall.rel ease",
"I'pMul ti PartyCall . deassignCall",
"I pMul tiPartyCall.getlnfoReq",
"I pMul ti PartyCall.set ChargePl an",
"I pMul ti PartyCall.set Advi ceCf Char ge",
"I pMul tiPartyCall.supervi seReq",
"I pCal | Leg. rout eReq",
pCal | Leg. event Report Req",
pCal | Leg. rel ease",
pCal | Leg. get | nf oReq",
pCal | Leg. getCal | ",
pCal | Leg. cont i nuePr ocessi ng"

}

P_TRI GGERI NG_EVENT_TYPES = {
P_CALL_EVENT CALL_ATTEMPT,
P_CALL_EVENT ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT_RELEASE,

}

P_DYNAM C_EVENT_TYPES = {
P_CALL_EVENT ANSVER
P_CALL_EVENT RELEASE

}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164

}

P U _CALL_BASED = {
TRUE
}

P U AT ALL_STAGES = {
FALSE
}

P_MEDI A TYPE = {
P_AUDI O
}

P_MAX_CALLLEGS PER CALL = {

0
2
}

P_U _CALLLEG BASED = {
FALSE
}

P_MEDI A ATTACH EXPLICI T = {

FALSE
}

ETSI

129 ETSI ES 201 915-4 V1.1.1 (2002-02)

7.6 Multi-Party Call Control Data Definitions
The present document provides the MPCC data definitions necessary to support the API specification.
The general format of a data definition specification is described below.
e DataType
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example

If relevant, an example is shown to illustrate the data type.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions

| pCal | Leg
Definesthe address of an | pCal | Leg Interface.
| pCal | LegRef

DefinesaRef er ence to type IpCallLeg.

| pCal | LegRef Ref
Defines aRef er ence to type |pCallLegRef.

| pAppCal | Leg
Definesthe address of an | pAppCal | Leg Interface.

| pAppCal | LegRef
DefinesaRef er ence to type IpAppCallLeg.

| pMul ti PartycCal |
Definesthe addressof an| pMul ti PartyCal | Interface.

| pMul ti PartyCal | Ref
Defines aRef er ence to type IpMultiPartyCall.

| pAppMul ti PartyCal |
Definesthe address of an | pAppMul ti PartyCal | Interface.

ETSI

130 ETSI ES 201 915-4 V1.1.1 (2002-02)

| pAppMul ti PartyCal | Ref
Defines aRef er ence to type IpAppMultiPartyCall.

| pMul ti PartyCal | Contr ol Manager
Definesthe addressof an | pMul ti Part yCal | Cont r ol Manager Interface.

| pMul ti PartyCal | Control Manager Ref
DefinesaRef er ence to type IpMultiPartyCall ControlManager.

| pAppMul ti PartyCal | Contr ol Manager
Definesthe address of an | pAppMul ti PartyCal | Cont r ol Manager Interface.

| pAppMul ti PartyCal | Contr ol Manager Ref
DefinesaRef er ence to type IpAppMultiPartyCall ControlManager.

TpAppCal | LegRef Set
Definesa Nunmbered Set of Data El ements of IpAppCallLegRef.

| pAppCal | LegRef
DefinesaRef er ence to type IpAppCallLegRef.

| pAppMul ti PartyCal | Ref
DefinesaRef er ence to type IpAppMultiPartyCall Ref.

TpMul ti PartyCall I dentifier
Defines the Sequence of Data Elements that unambiguously specify the Call object.

Sequence Element Sequence Element Sequence Element
Name Type Description
Cal | Ref erence I pMul ti PartyCal | Ref This element specifies the interface reference for the Multi-party call object.
Cal | Sessi onl D TpSessi onl D This element specifies the call session ID.

TpMul ti PartyCal |l ldentifierRef
DefinesaRef er ence to type TpMultiPartyCallldentifier.

ETSI

131 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpAppMul ti PartyCal | Back
Defines the Tagged Choice of Data Elements that references the application callback interfaces.

Tag Element Type
TpAppMultiPartyCallBackRef Type

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFI NED NULL Undef i ned
P_APP_MULTI PARTY_CALL_CALLBACK IpAppMultiPartyCall Ref appMul ti PartyCal |
P_APP_CALL_LEG CALLBACK IpAppCall LegRef appCal | Leg
P_APP_CALL_AND CALL_LEG CALLBACK TpAppCallLegCallBack appMil ti PartyCal | AndCal | Leg

TpAppMul ti PartyCal | BackRef Type
Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFI NED 0 Application Call back interface undefined
P_APP_MJLTI PARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced
P_APP_CALL_LEG CALLBACK 2 Application CallLeg interface referenced
P_APP_CALL_AND CALL_LEG CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

TpAppCal | LegCal | Back

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type
appMul ti PartyCal | I'pAppMul ti PartyCal | Ref
appCal | LegSet TpAppCal | LegRef Set Specifies the set of al call leg call back

references. First in the set isthe reference to
the call back of the originating callLeg. In
casethereisacall back to adestination call
leg thiswill be second in the set.

TpMul ti PartyCal | I dentifi er Set
DefinesaNunmber ed Set of Data El ement s of TpMultiPartyCallldentifier.

TpMul ti PartyCal | I denti fi er Set Ref
Defines aRef er ence to type TpMultiPartyCalll dentifierSet.

ETSI

TpCal | Appl nfo

132

ETSI ES 201 915-4 V1.1.1 (2002-02)

Definesthe Tagged Choi ce of Data El enent s that specify application-related call information.

Tag Element Type

TpCal | Appl nf oType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTI NG_MECHANI SM

TPCal | Al erti ngMechani sm

Cal | AppAl erti ngMechani sm

P_CALL_APP_NETWORK_ACCESS_TYPE

TpCal | Net wor kAccessType

Cal | AppNet wor kAccessType

P_CALL_APP_TELE_SERVI CE

TpCal | Tel eServi ce

Cal | AppTel eServi ce

P_CALL_APP_BEARER SERVI CE

TpCal | Bear er Servi ce

Cal | AppBear er Servi ce

P_CALL_APP_PARTY_CATEGORY

TpCal | Part yCat egory

Cal | AppPart yCat egory

P_CALL_APP_PRESENTATI ON_ADDRESS TpAddr ess Cal | AppPr esent ati onAddr ess
P_CALL_APP_GENERI C_|I NFO TpString Cal | AppGenericlnfo
P_CALL_APP_ADDI TI ONAL_ADDRESS TpAddr ess Cal | AppAddi ti onal Addr ess
P_CALL_APP_ORI G NAL_DESTI NATI ON_ADDRESS [TpAddr ess Cal | AppOri gi nal Desti nati onAddr ess
P_CALL_APP_REDI RECTI NG_ADDRESS TpAddr ess Cal | AppRedi r ect i ngAddr ess

TpCal | Appl nf oType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFI NED 0 Undefined
P_CALL_APP_ALERTI NG_MECHANI SM 1 The alerting mechanism or pattern to use
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)
P_CALL_APP_TELE SERVI CE 3 Indicates the tele-service (e.g. telephony)
P_CALL_APP_BEARER_SERVI CE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).
P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party
P_CALL_APP_PRESENTATI ON_ADDRESS 6 The address to be presented to other call parties
P_CALL_APP_GENERI C_I NFO 7 Carries unspecified service-service information
P_CALL_APP_ADDI TI ONAL_ADDRESS 8 Indicates an additional address
P_CALL_APP_ORI G NAL_DESTI NATI ON_ADDRESS 9 Contains the original address specified by the originating user when

launching the call.

P_CALL_APP_REDI RECTI NG_ADDRESS 10 Contains the address of the user from which the call is diverting.

TpCal | Appl nf 0Set

DefinesaNunber ed Set of Data El enents of TpCallApplnfo.

TpCal | Event Request

Definesthe Sequence of Data El enent s that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

Cal | Event Type

TpCallEventType

Additional Cal | EventCriteria

TpAdditional CallEventCriteria

Cal | Moni t or Mode

TpCallMonitorMode

ETSI

TpCal | Event Request Set

133

ETSI ES 201 915-4 V1.1.1 (2002-02)

DefinesaNunmber ed Set of Data El ement s of TpCallEventRequest.

TpCal | Event Type
Defines a specific call event report type.

Name Value Description
P_CALL_EVENT_UNDEFI NED 0 Undefined
P_CALL_EVENT_ORI G NATI NG_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ORI Gl NATI NG CALL_ATTENMPT_AUTHORI SED 2 An originating call attempt is authorised
P_CALL_EVENT_ADDRESS COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORI G NATI NG_SERVI CE_CCDE 5 Mid-call originating service code received.
P_CALL_EVENT_ORI G NATI NG_RELEASE 6 A originating call/call leg is released
P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERM NATI NG_CALL_ATTEMPT_AUTHORI SED 8 A terminating call is authorized
P_CALL_EVENT_ALERII NG 9 Call isalerting at the call party.
P_CALL_EVENT_ANSVER 10 Call answered at address.
P_CALL_EVENT_TERM NATI NG_RELEASE 11 A terminating call leg is released or the call could not be
routed.
P_CALL_EVENT_REDI RECTED 12 Call redirected to new address. an indication from the network
that the call has been redirected to a new address (no events
disarmed as aresult of this).
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE 13 Mid call terminating service code received.
P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events are disarmed asa
result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

e If anarmed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

« If aneventis met that causes the release of the related leg, then all events related to that leg are disarmed.

* When an event is met on acall leg irrespective of the event monitor mode, then only events belonging to that call

leg may become disarmed (see table below).

* |f acall isreleased, then all eventsrelated to that call are disarmed.

NOTE 1. Event disarmed means monitor modeissetto DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY.

The table below defines the disarming rules for dynamic events. In case such an event occurs on acall leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

ETSI

134

ETSI ES 201 915-4 V1.1.1 (2002-02)

Event Occurred

Events Disarmed

P_CALL_EVENT_UNDEFI NED

Not Applicable

P _CALL_EVENT_OR G NATI NG CALL_ATTENPT

Not applicable, can only be armed astrigger

P_CALL_EVENT_ ORI G NATI NG CALL_ATTEMPT_AUTHORI SED

P_CALL_EVENT_ ORI Gl NATI NG CALL_ATTEMPT_AUTHORI SED

P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P CALL_EVENT ADDRESS COLLECTED
P_CALL_EVENT_ADDRESS ANALYSED

P_CALL_EVENT_ALERTI NG

P CALL_EVENT ALERTING
P_CALL_EVENT__TERMINATING_RELEASE with criteria
P_USER_NOT_AVAILABLE

P BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSVER

P CALL_EVENT ALERTING
P_CALL_EVENT_ANSWER
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT_ORI G NATI NG_RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT_TERM NATI NG_RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT ORI G NATI NG_SERVI CE_CODE

P_CALL_EVENT ORI G NATI NG SERVI CE_CODE *) see NOTE
1

P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE

P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE *) see NOTE

NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed.

TpAddi ti onal Cal | EventCriteria

Definesthe Tagged Choi ce of Data El enent s that specify specific criteria.

Tag Element Type

TpCal | Event Type

ETSI

135 ETSI ES 201 915-4 V1.1.1 (2002-02)

Tag Element Choice Element Choice Element
Value Type Name
P_CALL_EVENT_UNDEFI NED NULL Undef i ned
P_CALL_EVENT_ORl Gl NATI NG CALL_ATTENPT NULL Undefi ned
P_CALL_EVENT ORI G NATI NG CALL_ATTEMPT_AUTHOR NULL Undef i ned
| SED
P_CALL_EVENT_ADDRESS COLLECTED Tpl nt 32 M nAddr essLengt h
P_CALL_EVENT_ADDRESS ANALYSED NULL Undef i ned
P_CALL_EVENT_ORI Gl NATI NG_SERVI CE_CODE TpCal T Ser vi ceCode i gi nati ngServi ceCode
P_CALL_EVENT_ORI G NATI NG_RELEASE TpRel easeCauseSet Origi nati ngRel easeCaus
eSet
P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT NULL Undef i ned
P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT_AUTHOR NULL Undef i ned
| SED
P_CALL_EVENT_ALERTI NG NULL Undefi ned
P_CALL_EVENT_ANSVER NULL Undefi ned
P_CALL_EVENT_TERM NATI NG_RELEASE TpRel easeCauseSet Ter m nat i ngRel easeCaus
eSet
P_CALL_EVENT_REDI RECTED NULL Undef i ned
P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE TpCal | Servi ceCode Term nati ngServi ceCode
P_CALL_EVENT_QUEUED NULL Undefi ned

TpCal | Event I nfo

Definesthe Sequence of Data El enment s that specify the event report specific information.

Sequence Element Sequence Element
Name Type
Cal | Event Type TpCal | Event Type
Addi tional Cal | Eventlnfo TpCal | Addi ti onal EventInfo
Cal | Moni t or Mode TpCal | Moni t or Mode
Cal | Event Ti ne TpDat eAndTi e

ETSI

136 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpCal | Addi ti onal Event | nfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call event information for certain types
of events.

Tag Element Type
TpCal | Event Type
Tag Element Choice Element Choice Element
Value Type Name

P_CALL_EVENT_UNDEFI NED NULL Undefi ned

P_CALL_EVENT_ORI Gl NATI NG CALL_ATTEMPT NULL Undefi ned

P_CALL_EVENT ORI Gl NATI NG CALL_ATTEMPT_AUTHORI S NULL Undef i ned

ED

P_CALL_EVENT_ADDRESS COLLECTED TpAddr ess Col | ect edAddr ess

P_CALL_EVENT_ADDRESS ANALYSED TpAddr ess Cal | edAddr ess

P_CALL_EVENT_ORI Gl NATI NG_SERVI CE_CODE TpCal I Servi ceCode O'i gi natingServi ceCo
de

P_CALL_EVENT_ORI G NATI NG_RELEASE TpRel easeCause Ori gi nati ngRel easeCa
use

P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT NULL Undef i ned

P_CALL_EVENT_TERM NATI NG CALL_ATTEMPT_AUTHORI S NULL Undef i ned

ED

P_CALL_EVENT_QUEUED NULL Undef i ned

P_CALL_EVENT_ALERTI NG NULL Undefi ned

P_CALL_EVENT_ANSVER NULL Undefi ned

P_CALL_EVENT_TERM NATI NG_RELEASE TpRel easeCause Term nat i ngRel easeCa
use

P_CALL_EVENT_REDI RECTED TpAddr ess For war dAddr ess

P_CALL_EVENT_TERM NATI NG_SERVI CE_CODE TpCal I Servi ceCode Term nat i ngSer vi ceCo
de

TpCal | Noti fi cati onRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification.

Sequence Element Name Sequence Element Type Description
Cal | Noti ficati onScope TpCal | Nof i cati onScope Defines the scope of the notification request.
Cal | Event sRequest ed TpCal | Event Request Set Defines the events which are requested

TpCal | Noti fi cati onScope
Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria

Sequence Element Sequence Element Description
Name Type
Dest i nat i onAddr ess TpAddr essRange Defines the destination address or address range for which the notification is
requested.
Ori gi nati ngAddr ess TpAddr essRange Defines the origination address or address range for which the notification is
requested.

ETSI

137

TpCal | Noti ficationlnfo
Definesthe Sequence of Data El enment s that specify the information returned to the application in a Call

notification report.

ETSI ES 201 915-4 V1.1.1 (2002-02)

Sequence Element

Sequence Element

Description

Name Type
Cal | Notificati onReport Scope TpCal | Noti fi cati onReport Scope Defines the scope of the notification report.
Cal | Appl nf o TpCal | Appl nf oSet Contains additional call info.

Cal | Event I nfo

TpCal | Event | nfo

Contains the event which is reported.

TpCal | Noti ficati onReport Scope

Definesthe Sequence of Data El enent s that specify the scope for which a notification report was sent.

Sequence Element

Sequence Element

Description

Name Type
Desti nati onAddr ess TpAddr ess Contains the destination address of the call.
Ori gi nati ngAddr ess TpAddr ess Contains the origination address of the call

Noti fi cationCal |l Type

TpNoti ficationCall Type

Indicates if the notification was reported for an originating or terminating call.

TpNoti fi cati onRequest ed
Defines the Sequence of Data Elements that specify the criteriarelating to event requests.

Sequence Element Sequence Element
Name Type
AppCal | Noti fi cati onRequest TpCal | Noti fi cati onRequest
Assi gnment | D Tpl nt 32

TpNoti fi cati onsRequest edSet
Defines anumbered Set of Data Elements of TpNotificationRequested.

TpNoti fi cati onsRequest edSet Ref

Defines areference to the type TpNotificationsRequestSet.

TpRel easeCause

Defines the reason for a release.

Name Value Description
P_UNDEFI NED 0 The reason of release is not known, because no info was received from the network.
P_USER_NOT_AVAI LBLE 1 The user is not available in the network. This means that the number is not allocated or that the user is
not registered.
P_BUSY 2 The user is busy.
P_NO_ANSWER 3 No answer was received
P_NOT_REACHABLE 4 The user terminal is not reachable
P_ROUTI NG_FAI LURE 5 A routing failure occurred. For example an invalid address was received
P_PREMATURE_DI SCONNECT 6 The user disconnected the call / call leg during the setup phase.
P_DI SCONNECTED 7 A disconnect was received.
P_CALL_RESTRI CTED 8 The call was subject of restrictions
P_UNAVAI LABLE_RESOURCE 9 The request could not be carried out as no resources were available.
P_GENERAL_FAI LURE 10 A general network failure occurred.
P_TI MER_EXPI RY 11 Thecall / call leg was released because an activity timer expired.

ETSI

138 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpRel easeCauseSet
Defines a Numbered Set of Data Elements of TpCallReleaseCause.

TpCal | Legl dentifier
Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Sequence Element Sequence Element

Name Type Description
Cal | LegRef erence | pCal | LegRef This element specifies the interface reference for the callLeg object.
Cal | LegSessi onl D TpSessi onl D This element specifies the callLeg session ID.

TpCal | Legl denti fi er Ref
DefinesaRef er ence to type TpCallLegldentifier.

TpCal | Legl denti fi er Set
DefinesaNumber ed Set of Data El ement s of TpCallLegldentifier.

TpCal | Legl denti fi er Set Ref
Defines aRef er ence to type TpCallLegl dentifierSet.

TpCal | LegAt t achMechani sm
Defines how a CallLeg should be attached to the call.

Name Value Description

P_CALLLEG ATTACH | MPLICITLY 0 CallLeg should be attached implicitly to the call.

P_CALLLEG ATTACH EXPLI CI TLY 1 CallLeg should be attached explicitly to the call by using the attachMedia() operation. This
alows e.g. the application to do first user interaction to the party before he/sheis placed in the
call.

TpCal | LegConnecti onProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object.

Sequence Element Sequence Element Sequence Element
Name Type Description
At t achMechani sm TpCal | LegAt t achMechani sm Defines how a CallLeg should be attached to the call.

ETSI

139

TpCal | Legl nf oRepor t

ETSI ES 201 915-4 V1.1.1 (2002-02)

Definesthe Sequence of Data El enent s that specify the call leg information requested.

Sequence Element
Type

Sequence Element
Name

Description

Cal | Legl nf oType TpCallLegInfoType

The type of the call leg.

Cal | LegStart Ti me TpDateAndTime

The time and date when the call leg was started (i.e. the leg was routed).

Cal | LegConnect edToResour ceTi ne TpDateAndTime

The date and time when the call leg was connected to the resource. If no
resource was connected the time is set to an empty string.
Either this element isvalid or the CallConnectedToAddressTimeisvalid,
depending on whether the report is sent as a result of user interaction.

Cal | LegConnect edToAddr essTi e TpDateAndTime

The date and time when the call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not answer,
thetimeis set to an empty string.

Either this element isvalid or the CallConnectedToResourceTimeis
valid, depending on whether the report is sent as aresult of user
interaction.

Cal | LegEndTi ne TpDateAndTime

The date and time when the call leg was released.

Connect edAddr ess TpAddress The address of the party associated with the leg. If during the call the
connected address was received from the party then thisis returned,
otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.
Cal | LegRel easeCause TpReleaseCause The cause of the termination. May be present with

P CALL_LEG_INFO RELEASE CAUSE was specified.

Cal | Appl nfo TpCallApplnfoSet

Additional information for the leg. May be present with
P CALL_LEG_INFO_APPINFO was specified.

TpCal | Legl nf oType

Defines the type of call leg information requested and reported. The values may be combined by alogica 'OR' function.

Name Value Description
P_CALL_LEG | NFO_UNDEFI NED 00h Undefined
P_CALL_LEG | NFO_TI MES 01h Relevant call times
P_CALL_LEG | NFO_RELEASE CAUSE 02h Call leg release cause
P_CALL_LEG | NFO_ADDRESS 04h Call leg connected address
P_CALL_LEG | NFO_APPI NFO 08h Call leg application related information

8 MultiMedia Call Control Service

8.1 Sequence Diagrams

8.1.1

Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media stream establishment of

one call.

In this sequence there is one application handling both the media barring and the routing of the call.

ETSI

140 ETSI ES 201 915-4 V1.1.1 (2002-02)

: (Logical - = - - -
View::IpAppLogic) IpAppMultiMediaCallControlManager| | IpAppMultiMediaCallL eg | [pMultiMediaCallControlManager |IpMultiMediaCall| | IpMultiMediaCallLeg
| | | |
M 1:new() ! ! !
| | |
| |
/I—J | |
! : createNotification() ! !
| | |
| |
|) A u
| 3: reportNotification() |
T f Il
! 4: “forward event" !
| |
|
|
|
5: new() |

6: mediaStreamMonitorReq()
|

|
|
: 7: mediaStreamMonitorRes()

8: "forward event' J

9: mediaStreamAllow()
|

‘

.

|
10: createAndRouteCallLegReq()
|

|

|

|

|

L |

| |

| I L

: : 11: me‘tiiaStreamMonitorRes()
|

|
12: "forwa‘ird event" :

+ |
U\ | 13: mediaStreamAllow()

:

1: The application creates a AppMultiMediaCall ControlManager interface in order to handle callback methods.

2. The application expressesinterest in al calls from subscriber A. Since createNotification is used and not
createMediaNotification all calls are reported regardless of the media used.

A makes acall with the SIP INVITE with SDP media stream indicating video. The application is notified.
The event is forwarded to the application.

The application creates a new AppMultiMediaCallL eg interface to receive callbacks.

The application sets a monitor on video media streams to be established (added) for the indicated leg.

N o g A~ w

. Since the video media stream was included in the SIP invite, the media streams monitored will be returned in the
monitor result.

8: Theevent isforwarded to the application.

9: The application denies the video media stream, i.e. it is not included in the allowed media streams. This corresponds
to removing the media stream from the setup.

10: The application requests to reroute the call to a different destination (or the same one...).

11: Later in the call the A party triesto establish alower bandwidth video media stream. Thisis again reported with
MediaStreamM onitorRes.

ETSI

141 ETSI ES 201 915-4 V1.1.1 (2002-02)

12: The event is forwarded.

13: Thistime the application allows the establishment of the media stream by including the media stream in the allowed
list.

8.1.2 Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one
call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media
control and one for routing. Thisis also the way that it is shown here, for clarity.

However, an implementation of the application could combine the medialogic and call logic in one object.

‘ callogc : (Logical ‘ ‘ calApLodc H IpAppMuiM edaCd ‘ PatyA ‘ ‘ Patye ‘ ‘ medelogic H mediapplogic ‘ ‘ - H ‘ ‘ PatyA H PartyB -
View::|pAppLogic) IpAppMultiMediaCallControlMan: IpMultiMediaCal... IpAppCalileg (Logical View:I.... I utiMediaCallControlM: r IpMultiMediaC: MultiviediaCall IpMultiVedaCalleg IpAppCaleg
| N | | | | | | | | | |
ﬂ | | I | | | | | |
| | 2: createNtific ation(| | | | | | |
| | | | | 3 new() | 0 | | |
! ! ! ! creatddedaNotfcato) ! ! ! !
| | | | | t | | |
| | | | | | 74 | | |
| ! ! ! 5: refortnotification() ! ! ! !
| t t t t t | | |
| 6: forward event” | | | | | | | |
7, tewo | | | | | | | |
>u | | | | | | |
& rew) Sl | | | | | |
| g | | | | | |
L | | | | 9: reportMedaNotification() | | |
| . | | | | | | |
| | | | | | | |
M | | | | | | | |
| | | | | | | | |
| | | | il | | | | |
| | | | | | | | |
| | | | | | | | |
| Lnew) | | N | | | | |
T T T i | | | | |
| | | i | | | | |
| | | 12: createAndRouteCalllegReq() | | | | I
13 new)
| | | | | | 1 ! —
| | | | | | U |)
! ! ! ! ! 14: medastreamallonk) ! !
o | | | | t t t > |
| | | | | | | | u | |
| | | | | | | | | |
| | | | | L 15: deassignCall() | L | |
| | | | | | | g | |
| | | | | U | | | | |
! | 17: “orward event’ | | | | | 16: eveniReporiRey() | |
i T T T L_l | | | |
[I I I 18 oassincai() ! ! ! !
t t t T t t > |
u | | | | | | U | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | 19: reportMediaNotification{) | | |
| | | | | | | | |
! ! ! ! ! ! 20 “forvard event” ! ! !
| | | | | | | |
| | | | | ”) | | |
| | | | | I | |
| | | | | | I |
| | | | | | | |
| | | | | 2 Geassncall) | | |
| | | | | | |
| | | | | 1 | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

1. The application creates a new AppMultiMediaCall Control M anager interface.
2. The application expressesinterest in all calls from subscriber A for rerouting purposes.

3: Theapplication creates a new AppMultiMediaCall ControlManager interface. Thisisto be used for the media
control only.

4: Separately the application expresses interest is some media streams for calls from and to A. The request indicates
interrupt mode.

ETSI

142 ETSI ES 201 915-4 V1.1.1 (2002-02)

5: Subscriber A makes acall with the SIP INVITE with SDP media stream indicating video. Since the media
establishment is combined with the SIP INVITE message, both applications are triggered (not necessarily in the order
shown).

Here the call application is notified about the call setup.

6: Theevent isforwarded to the call control application.

7: Thecall control application creates a new AppMultiMediaCall interface.

8: Thecall control application creates a new AppMultiMediaCallLeg interface.

9: The mediaapplication is notified about the call setup. All media streams from the setup will be indicated.
10: The event is forwarded to the media application.

11: The call control application creates a new AppMultiMediaCallLeg interface.

12: The call application decidesto reroute the call to another address. Included in the request are monitors on answer
and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media streams are
confirmed or rejected.

13:

14: The application allows the audio media stream, but refuses the high bandwidth video, by excluding it from the
allowed list. Since both call processing and media handling is now acknowledged, the call routing can continue (with a
changed SDP parameter reflecting the manipulated media).

15: The Media application is no longer interested in the call.

16: When the B subscriber answers the call application is notified.

17: The event is forwarded to the call application.

18:

19: When later in the call A triesto establish alower bandwidth video stream the media application is triggered.
20: The triggering is forwarded to the media application.

21: The application now allows the establishment of the media stream by including the media stream in the
mediaStreamAllow list.

22: The media application is no longer interested in the call.

ETSI

143 ETSI ES 201 915-4 V1.1.1 (2002-02)

8.1.3 Barring for media, simple

This sequence illustrates how an application can block the establishment of video streams for a certain user.

: (Logical o o o o
View:: IpAppLogic) IpAppMultiMediaCallControlManager || IpMultiMediaCallControlMan... | | pMultiMediaCall || pMultiMediaCallLeg

1: new() |

2: createMediaNotification()

1]

3: reportMediaNotification()

5: mediaStreamAllo

)

|
|
|
|
|
|
|
|
|
|
|
1
|
4: "forward event" ;
|
|
|
|
|
|
|
|
|
|
|
|

6: deassignCall()

u
s o

1: The application starts a new AppMultiMedial Call ControlManager interface for reception of callbacks.

2. The application expressesinterest in al calls from or to subscriber A that use video. Thejust created App interface
is given as the callback interface.

3: Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video.
4: The message is forwarded to the application.

5: The application indicates that the setup of the media stream is not allowed by not including the media streaml in the
alowed list. This has the effect of suppressing the video capabilities in the setup.

6: The application is no longer interested in the call.

New attempts to open video streams will again be indicated with a createMediaNotification.

ETSI

144 ETSI ES 201 915-4 V1.1.1 (2002-02)

8.14 Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

|
19: super\)‘ iseVolumeReq()

|

|

|

|

|

|

|

| |
| |
201 release() !
Il Il
|

|

|

|

|

|

|

: (Logica - : IpAppUICall o o : IpuliCall IpUIManager :
iew:: | Logic IpAppMultiMediaCallControlManager IgAggMuItMedlaCaI IpMultiMediaCallControlManager | IpMultiMediaCall IpUIManager
| : | | | | | | |

/I_J 2 setCallback() | | | | | |

T T T | | |

im0 | | E | | |

: 4: crealeCaII()/I_J : : : : :

| | | /u | | |

| 5: routeReq() | | | |

‘ I . | |

| | | | /U | |

! ! ! 6: routeRes() ! ! ! !

T 7 "forwa*d event" ! : : ! : :
u\ T | | | |
| | | | |

| | | | | |
| | | | | | |
s ! 8: rolteReq() ! ! Bl ! !
I ! I I ~ | |

| | | | | |

| | | . | | |

L | | | 9: routeRes() | | |
10: “forward event" 7 7 | |

[T T I I I I
| | | | |

| | | | |

| 1 | | | |

| 11: superviseVolumeReq() | | = | |

I ‘ I . | |

| | | | /U | |

| | | | | | |

o | | | | M | |
| | | | | | |
! ! ! ! 12: superviseVolumeRes() ! !
! 13: "forward event" ! ! ! ! !
I | | | |
I I I I I
T | | | |
| | | |

| 14: crehteUlCall() ! LJ ! !

Il Il Il Il Il Il

| | | | | /U

15: | sendlnfoAndCoIIeclReq() : : ! :

| | | | |

| | | | |

L | | | | |
| | | 16: sendinfoAndCollectRes() | |
| 17: "foward event” | f |
I I | |
U\ | | |
s | 18: release(), | |
t |

| | |

| | |

| | |

| | |

| |

| |

| |

|

|

|

|

|

|

|

|

|

|

|

gl

The application creates a new interface to receive callbacks on the call control manager.
The created interface is set as the callback interface for the call control manager.
The application creates a new interface to receive callback on the call.

The application requests the creation of acall.

a »c W N R

The application initiates the call by routing to the origination. Thiswill implicitly create acall leg. The application
requ&sts anotification when the party answers.

6: When the A party answers the application is notified.
7: Themessageis forwarded to thelogic.

8: The application aso routes the call to the destination. Thisimplicitly createsacall leg. The application requests to
be notified on answer of the B-party.

ETSI

145 ETSI ES 201 915-4 V1.1.1 (2002-02)

9: When the B-party answers the application is notified.
10: The message is forwarded to the logic.

11: The application requests to supervise the call. In the request the application specifies alimit on the amount of bytes
that may be transferred. The application specifiesthat if the limit is reached the application should be notified.

12: When the limit is reached a notification is send to the application.
13: The message is forwarded to the logic.
14:

15: The application plays an announcement to the user, asking whether the user wants to end the call or continue the
call.

16: When the user answers whether the call should continue.
17: The message is forwarded to the logic.
18: The Ulcall isreleased, since no further announcements are needed.

19: In case the user answers that the call should continue, the supervision is reset with a new maximum number of
alowed bytes. (note this might have charging consequences, not shown)

20: If the user answered that the call should not continue, the call is released.

8.2 Class Diagrams

<<Interface>>
<<Interface>> <<Interface>> IpAppCallLeg
IpAppMulti PartyCallControlManager IpAppMuliPartyCall (from mpccs)
(from mpccs) (from mpccs)
®eventReportRes ()
®reportNotification() o 9>1 #getinfoRes () R 0..n| [ventReportErr()
FcallAborted() ®getinfoErr() ®getinfoRes()
®managerinterrupted() ®superviseRes() ®getinfoErr()
®managerResumed() s upenviseErr() FrouteErr()
®callOverloadEncountered() ®callEnded() ®supeniseRes()
BcallOverloadCeased() ®createAndRouteCallLegErr() ®supeniseErr()
®callLegEnded()
\
<<Interface>>
<<Interface>> pAppMuliMediaCall <<Interface>>
IpAppMuliMediaCallC ontrolManager (from mmccs) IpAppMultiMediaCallLeg
(from mmccs) (from m mccs)
®supeniseVolumeRes()]]
e portMediaNotification() WsupeniseVolumeErr() FmediaStreamMonitorRes()
f i A
! |
<<uses>> ! :
‘ — ! <<uses>> |
| uses>> | |
1 | :
<<Interface>> |
n i | <<Interface>>
IpMuIt|Medf|aCaIIControIManager SRS IpMultiMediaCallLeg
(e W EEs) 1 on IpMultiMediaCall 1 o.n (from mmccs)

,,,,,,, = (from mmccs) AN

®createMediaNotification()
®destroyMediaNotification()
®changeMediaNotification()
®getMediaNotification()

®mediaStreamAlow()
®supeniseVolumeReq() #mediaStreamMonitorReq()
®getMediaStreams ()

Figure 16: Application Interfaces

ETSI

146 ETSI ES 201 915-4 V1.1.1 (2002-02)

<<Interface>> <<Interface>> <<Interface>>
IpMultiPartyCallControlManager IpMultiPartyCall IpCallLeg
(from mpccs) (from mpccs) (from mpccs)
WcreateCall() WgetCallLegs() ®o uteReq()
®createNotification() createCallLeg() #eventRep ortReq()
®destroyNotification() createAndRouteCallLegReq() e |ease()
®changeNotification() Wrelease() ®getinfoReq ()
®getNotification() FdeassignCall() Bgetcall()
®setCallLoadControl () #getinfoReq() #attachMedia(
#setChargePlan() #detachMe dia()
#setAdviceOfCharge() #®getlastRe directed Add ress()
®superviseReq() %o nti nueP roce ssing()
#setCharge Plan()
#setAd vice OfCharge()
#superviseReq()
®deassign()

<<Interface>> <<Interface>>

IpM ultiMediaCall Control Ma IoMultiMediaCallLe
nager <<Interface>> p 9 <<Interface>>

(from_mmccs) 0 IpMultiMediaCall 1 0 (from mmccs) 1 o.h IpMultiMediaStream
B reateMe diaNotification() - - - - — > (from mmces) L _____ > B cdiasteamAliow(Lo (from mmccs)
|8 csvoyMediaNotif cation() % ediaStreamMonitorReq()
% hangeMediaNotification() #superviseVolumeReq() B cvediast = Wsubstract()
% etMediaNotification () CIECLESIEEmEY,

Figure 17: Service Interfaces
8.3 MultiMedia Call Control Service Interface Classes

The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with
multi-media capabilities.

The MultiMedia Call Control Serviceis represented by the |pMultiMediaCall ControlManager, IpMultiMediaCall,
IpMultiMediaCallLeg and IpMultiM ediaStream interfaces that interface to services provided by the network. Some
methods are asynchronous, in that they do not lock athread into waiting whilst a transaction performs. In this way, the
client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and
reports, the devel oper must implement |pAppM ultiMediaCallManager, |pAppMutliMediaCall and
IpAppMultiMediaCallL eg to provide the callback mechanism.

To handle the multi-media aspects of a call the concept of media stream isintroduced. A media stream is bi-directional
media stream and is associated with acall leg. These media streams are usually negotiated between the terminalsin the
call. The multi-party Call Service gives the application control over the media streams associated with thelegsina
multi-media call in the following way:

* The application can be triggered on the establishment of a media stream that meets the application defined
characteristics.

¢ The application can monitor on the establishment (addition) or release (substraction) of media streams of an
ongoing call.

e Theapplication can alow or deny the establishment of media streams (provided the stream establishment was
monitored/notified in interrupt mode).

« The application can explicitly substract already established media streams.

« The application can request the media streams associated with a specific leg.

ETSI

147 ETSI ES 201 915-4 V1.1.1 (2002-02)

8.3.1 Interface Class IpMultiMediaCallControlManager
Inherits from: |pMultiPartyCall Control M anager

The Multi Media Call Control Manager is the factory interface for creating multimedia calls. The multi-media call
control manager interface provides the management functions to the multi-media call control service. The application
programmer can use thisinterface to create, destroy, change and get media stream related notifications.

<<Interface>>

IpMultiMediaCallControlManager

createMediaNotification (applnterface : in IpAppMultiMediaCallControIManagerRef,
notificationMediaRequest : in TpNotificationMediaRequest) : TpAssignmentID

destroyMediaNoatification (assignmentID : in TpAssignmentID) : void

changeMediaNoatification (assignmentID : in TpAssignmentID, notificationMediaRequest : in
TpNotificationMediaRequest) : void

getMediaNoatification () : TpMediaNotificationRequestedSet

Method
creat eMedi aNot i fication()

This method is used to create media stream notifications so that events can be sent to the application.

This applies both to callsetup media (e.g. SIP initial INVITE or H.323 with faststart) and for media setup during the
call.

Thisisthe first step an application has to do to get initia notifications of media streams happening in the network.
When such an event happens, the application will be informed by reportMediaNotification(). In case the application is
interested in other events during the context of a particular call session it has to use the mediaStreamM onitorReq()
method on the Multi-Media call leg object.

The createM ediaNotification method is purely intended for applications to indicate their interest to be notified when
certain media stream events take place. It is possible to subscribe to a certain media stream event for a whole range of
addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with
800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteriaare said to overlap if both originating and terminating ranges overlap and
the same number plan is used and the same NotificationCall Typeis used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createM ediaNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the one that has been registered by setCallback().

Returns assignmentl D: Specifiesthe ID assigned by the multi-media call control manager interface for this
newly-created notification.

ETSI

148 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

applnterface : in I pAppMilti Medi aCal | Control Manager Ref
Specifies areference to the application interface, which is used for callbacks.

notificati onMedi aRequest : in TpNotificati onMedi aRequest

The mediaMonitorMode is a parameter of TpM ediaStreamRequest and can be in interrupt or in notify mode. If in
interrupt mode the application has to specify which media streams are alowed by calling mediaStreamAllow on the
callLeg.

The notificationM ediaRequest parameter specifies the event specific criteria used by the application to define the event
required. Thisisthe media portion of the criteria. Only events that meet the notificationM ediaRequest are reported.

Individual addresses or address ranges may be specified for the destination and/or origination.

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_I NVALI D CRI TERI A, P_I NVALI D_| NTERFACE_TYPE
P_I NVALI D_EVENT_TYPE

Method
destroyMedi aNoti fi cation()

This method is used by the application to disable Multi Media Channel notifications.

Parameters

assignnmentI D : in TpAssignnentlD

Specifies the assignment ID given by the Multi Media call control manager interface when the previous enable.
Notification was caled. If the assignment ID does not correspond to one of the valid assignment IDs, the framework
will return the error code P_INVALID_ASSIGNMENTID.

Raises
TpComonExcept i ons

Method

changeMedi aNot i fication()

This method is used by the application to change the event criteriaintroduced with createMediaNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria

Parameters

assignnmentI D : in TpAssignnmentlD

Specifiesthe ID assigned by the multi-media call control manager interface for the media stream notification. If two
callbacks have been registered under this assigment ID both of them will be disabled.

ETSI

149 ETSI ES 201 915-4 V1.1.1 (2002-02)

notificati onMedi aRequest : in TpNotificati onMedi aRequest
Specifies the new set of event specific criteria used by the application to define the event required. Only events that

meet these criteria are reported.
Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P I NVALI D_EVENT_TYPE

Method
get Medi aNot i fication()

This method is used by the application to query the event criteria set with createM ediaNotification or
changeMediaNoatification.

Returns notificationsM ediaRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method

Returns

TpMedi aNot i fi cati onRequest edSet
Raises

TpComonExcept i ons

8.3.2 Interface Class IpAppMultiMediaCallControlManager
Inherits from: I pAppM ultiPartyCall Control M anager

The Multi Media call control manager application interface provides the application call control management functions
to the multi mediacall control service.

<<Interface>>

IpAppMultiMediaCallControlManager

reportMediaNotification (callReference : in TpMultiMediaCallldentifier, callLegReferenceSet : in
TpMultiMediaCallLegldentifierSet, mediaStreams : in TpMediaStreamSet, type : in
TpMediaStreamEventType, assignmentID : in TpAssignmentID) : TpAppMultiMediaCallBack

ETSI

150 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
report Medi aNotification()

This method is used to inform the application about the establishment of media streams.

If the corresponding monitor was in interrupt mode, then the application hasto allow or deny the streams using
mediaStreamAllow() method.

Returns appl nterface: Specifies areference to the application interface which implements the callback interface for the
new call.

Returns appMultiMediaCallBack: Specifies references to the application interface which implements the callback
interface for the new multi-media call and/or new call leg. This parameter may be null if the notification is being given
in NOTIFY mode

Parameters

call Reference : in TpMiltiMedi aCallldentifier

Specifies the call interface on which the media streams were added or substracted. It also gives the corresponding
sessioniD.

cal |l LegReferenceSet : in TpMilti Medi aCal |l Legl dentifi er Set
Specifies set of all callLeg references (interface and sessionl D) for which the media streams were established or
substracted.

First in the set is the reference to the originating callLeg. It indicates the call leg related to the originating party. In case
there is a destination call leg this will be the second leg in the set. from the notificationlnfo can be found on whose
behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

medi aStreans : in TpMedi aSt r eantet

Specifies all the media streams that are established. Note that this can be more media streams than requested in the
createMediaNotification, e.g. when faststart is used in H.323 or in SIP when an INVITE method with SDP media
stream parametersis used.

type : in TpMedi aStreankEvent Type
Refersto the type of event on the media stream, i.e. added or substracted.

assignnmentI D : in TpAssignnmentlD

Specifies the assignment id which was returned by the createM ediaNotification() method. The application can use
assignment id to associate events with event specific criteriaand to act accordingly.

Returns
TpAppMul ti Medi aCal | Back

ETSI

151 ETSI ES 201 915-4 V1.1.1 (2002-02)

8.3.3 Interface Class IpMultiMediaCall

Inherits from: IpMultiPartyCall

<<Interface>>
IpMultiMediaCall

superviseVolumeReq (callSessionID : in TpSessionID, volume : in TpCallSuperviseVolume, treatment : in
TpCallSuperviseTreatment) : void

Method
super vi seVol unmeReq()

The application calls this method to supervise a cal. The application can set a granted data volume this call.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

volunme : in TpCall Supervi seVol une
Specifies the granted time in milliseconds for the connection.

treatment : in TpCall Supervi seTreat nent
Specifies how the network should react after the granted volume expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

8.3.4 Interface Class IpAppMultiMediaCall

Inherits from: IpAppMultiPartyCall

The application multi-media call interface contains the callbacks that will be used from the multi-media call interface
for asynchronous results to requests performed by the application. The application should implement thisinterface.

<<Interface>>
IpAppMultiMediaCall

superviseVolumeRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedVolume : in
TpCallSuperviseVolume) : void

superviseVolumeErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

ETSI

152 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
super vi seVol uneRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when atariff switch happensin the network during an active call.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedVol une : in TpCall Supervi seVol une
Specifies the used time for the call supervision (in milliseconds).

Method
super vi seVol unekErr ()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

ETSI

153 ETSI ES 201 915-4 V1.1.1 (2002-02)

8.3.5 Interface Class IpMultiMediaCallLeg

Inherits from: IpCallLeg

The Multi-Media call leg represents the signalling relationship between the call and an address. Associated with the
signalling relationship there can be multiple media channels. Media channels can be started and stopped by the
terminals themsel ves. The application can monitor on these changes and influence them.

<<Interface>>

IpMultiMediaCallLeg

mediaStreamAllow (callLegSessionID : in TpSessionID, mediaStreamList : in TpSessionIDSet) : void

mediaStreamMonitorReq (callLegSessionID : in TpSessionID, mediaStreamEventCriteria : in
TpMediaStreamRequestSet) : void

getMediaStreams (callLegSessionID : in TpSessionID) : TpMediaStreamSet

Method
medi aSt r eamAl | ow()

This method can be used to allow setup of a media stream that was reported by a mediaStreamM onitorRes method.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

medi aStreanlist : in TpSessi onl DSet

Refers to the media streams (sessionl Ds) as received in the mediaStreamMonitorRes() or in the
reportM ediaNotification() that is allowed to be established.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
medi aSt r eamvbni t or Req()

With this method the application can set monitors on the addition and substraction of media streams. The monitors can
either be general or restricted to certain types of codecs.

Monitoring on addition of media streams can be done in either interrupt of notify mode. In the first case the application
hasto allow or deny the establishment of the stream with mediaStreamAllow.

Monitoring on substraction of media streamsis only allowed in notify mode.

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifies the session ID of the call leg.

ETSI

154 ETSI ES 201 915-4 V1.1.1 (2002-02)

nmedi aStreantEventCriteria : in TpMedi aStreanRequest Set
Specifies the event specific criteria used by the application to define the event required. The mediaMonitorMode .isa

parameter of TpMediaStreamRequest and can be in interrupt or in notify mode. If in interrupt mode the application has
to respond with mediaStreamAllow().
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_CRI TERI A
P I NVALI D_EVENT_TYPE

Method
get Medi aSt r eans()

This method is used to return al currently established media streams for the leg.

Parameters

cal |l LegSessionlD : in TpSessionlD
This method is used to return al currently open media channels for the leg.

Returns

TpMedi aSt r eantet

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

8.3.6 Interface Class IpAppMultiMediaCallLeg
Inherits from: IpAppCallLeg

The application multi-media call leg interface contains the callbacks that will be called from the multi-media call leg for
asynchronous results to reguests performed by the application. The application should implement this interface.

<<Interface>>

IpAppMultiMediaCallLeg

mediaStreamMonitorRes (callLegSessionID : in TpSessionID, streams : in TpMediaStreamSet, type : in
TpMediaStreamEventType) : void

Method
medi aSt r eamvoni t or Res()

This method is used to inform the application about the media streams that are being established (added) or substracted.

If the corresponding request was done in interrupt mode, the application hasto alow or deny the media streams using
mediaStreamAllow().

ETSI

155 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

cal |l LegSessionl D : in TpSessionlD
Specifies the session ID of the call leg for which the media channels are opened or closed.

streans : in TpMedi aStreantet

Specifies all the media streams that are added. Note that this can be more media streams than requested in the
createMediaNoatification, e.g. when faststart is used in H.323 or SIP INVITE with SDP media stream parametersis
used.

type : in TpMedi aStreanEvent Type
Refers to the type of event on the media stream, i.e. added or substraced.

8.3.7 Interface Class IpMultiMediaStream

Inherits from: IpService

The Multi Media Streaml Interface represents a bi-directional information stream associated with a call leg. Currently,
the only available method is to substract the media stream.

<<Interface>>

IpMultiMediaStream

substract (mediaStreamSessionID : in TpSessionID) : void

Method
substract ()

This method can be used to substract the multi-media stream.

Parameters

medi aSt r eanSessionl D : in TpSessionl D
Specifies the sessionl D for the media stream.

Raises
TpComonExceptions, P_I NVALI D SESSION | D

8.4 MultiMedia Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the MultiMedia Call Control Service package.

ETSI

156 ETSI ES 201 915-4 V1.1.1 (2002-02)

8.5 Multi-Media Call Control Data Definitions

This clause provides the Multi-Media call control data definitions necessary to support the API specification.

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text
represents Hypertext links.

The general format of a data definition specification is described below.
 DataType
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example

If relevant, an example is shown to illustrate the data type.

85.1 Event Notification Data Definitions

TpMedi aSt r eanRequest Set
DefinesaNunbered Set of Data El ements of TpMedi aSt r eanRequest

TpMedi aSt r eanRequest
Definesthe Sequence of Data El enment s that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMedi aStreanDi recti on
Dat aTypeRequest TpMedi aSt r eanDat aTypeRequest
Medi aMoni t or Mbde TpCal | Moni t or Mode

TpMedi aSt reanDi recti on

Defines the direction in which the media stream is established (as seen from the leg).

Name Value Description
P_SEND ONLY 0 Indicates that the offerer is only willing to send
this media stream
P_RECEI VE_ONLY 1 Indicates that the offerer is only willing to
receive this media stream
P_SEND_RECEI VE 2 Indicates that the offerer iswilling to send and

receive this media stream

ETSI

157 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpMedi aSt r eanDat aTypeRequest
Definesthe Tagged Choi ce of Data El enent s that specify the mediatype and associated codecs that are of

interest.

Tag Element Type

TpMedi aType

Tag Element Value Choice Element Type Choice Element Name
P_AUDI O TpAudi oCapabi | i ti esType Audi o
P_VI DEO TpVi deoCapabi l i ti esType Vi deo
P_DATA TpDat aCapabi lities Dat a

TpAudi oCapabi liti esType

Defines the audio codec. The requested capabilities can be indicated by adding the values together (i.e. alogical OR
function).E.g. 28 indicates interest in all G.722 codes (4+8+16).

Name Value Description

P_Gri1l1_64K 1 g.711 on 64k, both alaw and ulaw
P_Gri11_56K 2 g.711 on 56k, both alaw and ulaw
P_Gr22_64K 4

P_G722_56K 8

P_Gr22_48K 16

P_Gr231 32

P_Gr28 64

P_Gr29 128

P_Gr729_ANNEX_A 256

P_1S1172 512

P 151318 1024

P_G729_ANNEXB 2048

P_G729_ANNEX_A AND B 4096

P_G7231_ANNEX_C 8192

P_GSM FULLRATE 16384

P_GSM HALFRATE 32768

P_GSM_ENHANCED 65536

TpVi deoCapabi liti esType

Defines the video codec. The requested capabilities can be indicated by adding the values together (i.e. alogical OR
function). E.g. 3 indicates both H.261 and H.262 codecs.

Name Value Description
P_H261 1
P_H262 2
P_H263 4
P_IS11172 8

TpDat aCapabilities

A TplInt32 defining the minimum maxBitRate in bit/s. |.e. all data media streams whose maxBitRate exceeds this
number are reported.

ETSI

158 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpMedi aSt r eanEvent Type

Defines the action performed on the media stream.

Name Value Description
P_MEDI A_STREAM ADDED 0 The media stream is added
P_MEDI A_STREAM SUBTRACTED 1 The media stream is substracted.

TpMedi aSt r eanfSet

DefinesaNunmber ed Set of Data El ement s of TpMediaStream.

TpMedi aSt r eantSet Ref
Defines areference to type TpMediaStreamSet

TpMedi aSt r eam

Definesthe Sequence of Data El enment s that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMedi aStreanDi recti on
Dat aType TpMedi aSt r eanDat aType
Channel Sessi onl D TpSessi onl D
Medi aSt ream I pMul ti Medi aSt ream

TpMedi aSt r eanDat aType

Defines the type of the reported media stream. It isidentical to TpMedi aSt r eanDat aTypeRequest , only now the
values are not used as a mask, but as the actual codec should be indicated for audio and video. For data the actual
maximum bitrate is indicated.

8.5.2 Multi-Media Call Control Data Definitions

| pMul ti Medi aCal |
Definesthe addressof an | pMul ti Medi aCal | Interface.

| pMul ti Medi aCal | Ref
DefinesaRef er ence to type IpMultiMediaCall.

| pMul ti Medi aCal | Ref Ref
DefinesaRef er ence to type IpMultiMediaCall Ref.

| pAppMul ti Medi aCal |
Definesthe address of an | pAppMul t i Medi aCal | Interface.

| pAppMul ti Medi aCal | Ref
Defines aRef er ence to type IpAppMultiMediaCall.

ETSI

159 ETSI ES 201 915-4 V1.1.1 (2002-02)

| pMul ti Medi aCal | Leg
Definesthe addressof an | pMul t i Medi aCal | Leg Interface.

| pMul ti Medi aCal | LegRef
DefinesaRef er ence to type IpMultiMediaCallLeg.

| pAppMul ti Medi aCal | Leg
Definesthe address of an | pAppMul t i Medi aCal | Leg Interface.

| pAppMul ti Medi aCal | LegRef
DefinesaRef er ence to type IpAppMultiMediaCallLeg.

TpAppMul ti Medi aCal | LegRef Set
DefinesaNunbered Set of Data El ements of

TpMul ti Medi aCal | I denti fi er Ref
Defines aRef er ence to type TpMultiMediaCallldentifier.

TpMul ti Medi aCal | Legl denti fi er Ref
DefinesaRef er ence to type TpMultiMediaeCall L egl dentifier.

TpMul ti Medi aCal | I dentifier
Defines the Sequence of Data Elements that unambiguously specify the MultiMediaCall object.

| pAppMul ti Medi aCal | LegRef .

Sequence Element Name | Sequence Element Type Sequence Element Description

MVCal | Ref er ence I pMul ti Medi aCal | Ref This element specifies the interface reference for the call object.

MMCal | Sessi onl D

TpSessi onl D This element specifiesthe call session ID of the call created.

TpMul ti Medi aCal | I denti fi er Set
Defines a Numbered Set of Data Elements of TpMultiMediaCallldendifier.

TpMul ti Medi aCal | Legl dentifier
Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Name

Sequence Element Type

Sequence Element Description

MVCal | LegRef er ence

I pMul ti Medi aCal | LegRef

This element specifiesthe interface reference for the callLeg

object.

MMCal | LegSessi onl D

TpSessi onl D

This element specifiesthe callLeg session ID of the call created.

| pAppMul ti Medi aCal | Cont r ol Manager

Definesthe address of an | pAppMul t i Medi aCal | Cont r ol Manager Interface.

| pAppMul ti1 Medi aCal | Cont r ol Manager Ref
Defines aRef er ence to type IpAppMultiMediaCall Control Manager.

ETSI

160 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpAppMul ti Medi aCal | Back
Defines the Tagged Choice of Data Elements that references the application callback interfaces.

Tag Element Type

TpAppMultiMediaCallBackRef Type

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFI NED NULL Undef i ned
P_APP_MULTI MEDI A- CALL_CALLBACK IpAppMultiM ediaCall Ref appMul ti Medi aCal |
P_APP_CALL- LEG CALLBACK IpAppMultiMediaCall LegRef appMil ti Medi aCal | Leg
P_APP_CALL_AND CALL- LEG CALLBACK TpAppMultiMediaCallLegCallBack | AppMul ti Medi aCal | AndCal | Leg

TpAppMul ti Medi aCal | BackRef Type
Defines the type application call back interface.

Name Value Description

P_APP_CALLBACK_UNDEFI NED 0 Application Call back interface undefined

P_APP_MJLTI MEDI A- CALL_CALLBACK 1 Application Multi-Media Call interface
referenced

P_APP_CALL- LEG CALLBACK 2 Application Multi-Media CallLeg interface
referenced

P_APP_CALL_AND_ CALL-LEG CALLBACK 3 Application Multi-Media Call and CallLeg

interface referenced

TpAppMul ti Medi aCal | LegCal | Back

Defines the Sequence of Data Elements that references acall and acall leg application interface.

Sequence Element Name Sequence Element Type
appMul ti Medi aCal | I pPAppMul ti Medi aCal | Ref
appCal | LegSet TpAppMultiMediaCallL egRef Set Specifiesthe set of all call leg call back

references. First in the set isthe reference to
the call back of the originating callLeg. In
casethereisacall back to adestination call
leg thiswill be second in the set.

TpCal | Super vi seVol une

Defines the Sequence of Data Elements that specify the amount of volume that is alowed to be transmitted for the
specific connection.

Sequence Element Name | Sequence Element Type Sequence Element Description

Vol umeQuantity Tpl nt 32 Thisdatatypeisidentical to a TpInt32, and defines the quantity
of the granted volume that can be transmitted for the specific
connection.

Vol uneUni t Tpl nt 32 Thisdatatypeisidentical to a TpInt32, and defines the unit of the
granted volume that can be transmitted for the specific
connection.

Unit must be specified as 10"n number of bytes, where
n denotes the power.

When the unit is for examplein kilobytes, VolumeUnit must be
setto 3.

ETSI

161 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpNoti fi cati onMedi aRequest

Defines the Sequence of Data Elements that specify the criteria for a media stream notification.

Sequence Element Name Sequence Element Type Description
Medi aNot i fi cati onScope TpCallNoficationScope Defines the scope of the notification request.
Medi aSt r eanmrsRequest ed TpMediaStreamRequestSet Defines the media stream events which are requested

TpMedi aNot i fi cati onRequest ed

Defines the Sequence of Data Elements that specify the criteriarelating to event requests.

Sequence Element Name Sequence Element Type
AppNot i fi cati onMEdi aRequest TpNoti fi cati onMedi aRequest
Assi gnnment | D Tpl nt 32

TpMedi aNoti fi cati onsRequest edSet
Defines a numbered Set of Data Elements of TpM ediaNotificationRequested.

TpMedi aNot i fi cati onsRequest edSet Ref
Defines areference to the type TpMediaNotificationsRequest Set.

9 Conference Call Control Service

9.1 Sequence Diagrams

9.1.1 Meet-me conference without subconferencing

This sequence illustrates a pre-arranged meet-me conference for a specified time period. During this timeslot parties can
‘call in to' the meet-me conference by dialling a special number.

For each participant joining the conference, the application can decide to accept the participant in to the conference.

The application can also be notified when parties are leaving the conference.

ETSI

ETSI ES 201 915-4 V1.1.1 (2002-02)

162

. IpConfCall

IpConfCallControlManager

IpAppConfCall

IpAppConfCallCont ol Manager

. (Logical
View::IpApplLogic)

e ﬂ_\\\H_\lﬂ_\\\i Tﬂ_ \\\\\\\\\\ H_\m\\
~
-
— — 7
3}
- -
e} o m
b} b} <}
< < £
\\\\\\\\\ w_\\\\\\\\\\\\\ S f---4-—""-"-----8F- -Gt~ -
> > =
= = W
8 8 %
N~ (e2} ..
N
—
~
Z
S
) —
IS T o =
g o} p o —
Q x W_ 5 i=] -
“““““““““““ S fptgt - “e""""""‘ITWw‘llllllj‘wlll
c = > ©
- o 5 £ S 3
©]
7 |5 g = = >
Q 3 © S e S
o - ko) .. 4
5 ™ . © —
I} o
N
i}
R = =
L L
e c c
o} 2 2
3 = 9] o
o
] FE—— : SR R E— -
| v L L
= E E
c
g S 5]
— —
< o
3 o
- g
o
£
<
S ey SYSSURNU RSSPRU — ey M S— N o S

ETSI

163 ETSI ES 201 915-4 V1.1.1 (2002-02)

1. The application creates a new object to receive the callbacks from the conference call control manager.
2: The application reserves resources for some time in the future.

With this same method the application registers interest in the creation of the conference (e.g. when the first party to
joins the conference or at the specified start time, this isimplementation dependant).

The reservation aso includes the conference policy. One of the elements is whether joined parties must be explicity
attached. If so, thisis treated as an implicit joinMonitorReq.

. The conferenceis created.

. The messageis forwarded to the application.

3
4
5: The application creates an object to receive the call back messages from the conference call.
6: The application a so requests to be notified when parties |eave the conference.

7: The application is notified of the first party that joined the conference.

8: When the party is allowed to join the conference, the party is added.

Alternatively, the party could have been rejected with areleaseCallLeg.

9: A new party joins the conference and the application is notified.

10: The message is forwarded to the application.

11: This party also is allowed into the conference by attaching the leg.

12: A party leaves the conference.

13: The message is forwarded to the application.

14: The application decides to release the entire conference.

9.1.2 Non-add hoc add-on with subconferencing

This sequence illustrates a prearranged add-on conference. The end user that initiates the call, communicates with the
conference application via aweb interface (not shown). By dragging and dropping names from the addressbook, the
end-users adds parties to the conference.

Also viathe web-interface, the end-user can group parties in subconferences. Only partiesin the same subconference
can talk to each other.

ETSI

164 ETSI ES 201 915-4 V1.1.1 (2002-02)

: (Logical o : IpAppCallLeg o : IpConfCall first : : IpCallLeg second :
View::IpAppLogic) | pAppConfCall IpConfCallControlManager IpSubConfCall IpSubConfCall
I 1: new() I I

|
2: OLDcreateConference ()
1

‘ W

|
3: getSubConferences()
|

|

|

|

|

|

|

|

|

|

| i
|

4: 'new() :

|
5: createAndRouteCallLegReq()
1 1

| |
7: createAndRouteCallLegReq()
Il Il

| |
8: createAndRouteCallLegReq()
| |

| |
9: createAndRouteCallLegReq()

11: "forward event"

iy J

]

|

| |

12: splitSubConference(})

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13; moveCallLeg() |

14: release()

|
|
|
|
|
|
1
|
|
|
|
|
Il
|
|
|
|
|
|
|
|
10: eventReportRes()
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|

R

1. The application creates a new interface to receive the callbacks from the conference call.

2: Theapplication initiates the conference. There has been no prior resource reservation, so thereis a chance that no
resources are available when parties are added to the conference.

The conferenceCall interface object is returned.
3: Together with the conference a subconferenceisimplicitly created.

However, the subconference is not returned as a result of the createConference, therefore the application uses this
method to get the subconference.

4. The application creates anew |pAppCallLeg interface.

5: The application adds the first party to the subconference. This processis repeated for all 4 parties. Note that in the
following not all steps are shown.

6: The gateway creates a new IpCallLeg interface.

7. The application adds parties to the subconference.
8: The application adds parties to the subconference.
9: The application adds parties to the subconference.

10: When a party A answers the application is notified.

ETSI

165 ETSI ES 201 915-4 V1.1.1 (2002-02)

We assume that all parties answer. This happens in the same way as for party A and is not shown in the following.
11: The message is forwarded to the application.

12: The application decides to split the conference. Party C&D are indicated in the message.

The gateway will create a new subconference and move party C and D to the new subconference.

The configuration is A&B arein speech, C&D are in speech. There is no bearer connection between the two
subconferences.

13: The application moves one of the legs from the second subconference back to the first. The configuration now is
A, B&C arein speech configuration. D is alonein its own subconference.

14: The second subconference is released. Since party D wasin this subconference, this callleg is also rel eased.

This |eaves one subconference with A,B & C.

ETSI

166 ETSI ES 201 915-4 V1.1.1 (2002-02)

9.1.3 Non-addhoc add-on multimedia

This sequence illustrates a prearranged add-on multi-media conference. The end user that initiates the call,
communicates with the conference application viaa web interface (not shown). By dragging and dropping hames from
the addressbook, the end-users adds parties to the conference.

Also viathe web-interface, the end-user can do things that normally the chair would be able to do, e.g. determine who
has the floor (e.g. whose video is being broadcast to the other participants) or inspect the video of participants who do
not have the floor (e.g. to see how they react to the current speaker).

21: "forward event"

|
|
|
| 20: floorRequest()
[l
|
|

22: appointSpeaker()

:(Logical : IpAppSubConfCall PartyA : PartyB : o l : IpConfCall : IpSubConfCall PartyA : PartyB :
View::IpAppLogic) IpAppCaliLeg IpAppCallLeg IpConf CaliControlM anage IpAppCallLeqg | | IpAppCallLeg

n 1: new() | | | | | | | |

| | | | | | |

| | | | | | |

| :createConference() | | | | | |

t t | | | |

| - | U | | | |

| 3 g‘etSubCunferenues(‘) | | | | |

| | | | 1] I I I

| | | | I | | |

4: new() | | | | | | |

+ L | | | | | |

| /U | | | | | |

: : 5: createAndRuu‘teCalILegReq() : : | 6: new() : :
>

I I I I I B I

[| | | | |

| 7inew) I I I I N I I

[[/E—‘ | | | | |

! ! 8: createAndRol teCallLegReq() ! ! ! ! !

| | i | | | 9 new() |

| | | | | 1 1

| | | | | | 1]

| | | | | | |

! | 10: createAndRolteCallLegReq() ! ! ! !

Il Il Il Il Il I I

| | | | | L | |

| I 11: createAndRouteCallLegReq() | | [l | |

I \ I I . | |

: : : : 12: eventReportRes() : /IT‘ ‘ :

T 13: "forward event" 1 1 1 1 |

t | | | | |

U | | | | | |

| 14: chairgelection() | | | !

T T T T T |

| | | | | /U |

L | | | | | | | |

| | | | | | | | |

| | | | | 15: eventReportRes() | | |
| | | t t t t
| | | U\ | | | |
| | | | | | | |

| | | | | | | | |

: : : 16: appoi‘ptSpeaker() : : : : :

1 1 1 1 1 /u | |

| | | | | | |

| | 17: inspectVideo() | | | | |

t t | |

| | /U | |

| | | | |

| | .t " | | |

| | 18: |nsp%clV|deo() | | |

H | | /u | |

| | | |

| | | | |

| | | | | |

| | 19: inspectyideoCancel() | | |

I I | |

| /U | |

| | | |

| | | | |

| | | | |

| | |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

e o

1: The application creates a new object for receiving callbacks from the MM SubConference.

2: When the user selects the appropriate option in the web interface, the application will create a conference without
resource reservation. The policy for video is set to ‘chairperson switched'.

3: The application requests the subconference that was implicitly created together with the conference.
4. The application creates anew |pAppCallLeg interface.

5: The application adds the first party to the subconference. This process is repeated for all 4 parties. Note that in the
following not al steps are shown.

ETSI

167 ETSI ES 201 915-4 V1.1.1 (2002-02)

The gateway creates a new |pCallLeg interface.
The application creates a new |pAppCallLeg interface.

The application add parties to the conference and monitors on success.

The gateway creates a new IpCallLeg interface.

10: The application add parties to the conference and monitors on success.
11: The application add parties to the conference and monitors on success.
12: When aparty A answers the application is notified.

We assume that al parties answer.

13:

14: We assume that A wasthe initiating party.

The initiating end-user is assigned the chairpersonship.

This message is needed to synchronise the chairpersonship in the application with the M CU chairpersonship, since the
chair can also use H.323 messages to control the conference.

15: When a party B answers the application is notified. We assume the other parties answer as well and thisis not
shown below in the sequence.

16: Chairperson (A) decides via WWW interface that party B isthe speaker. This means that the video of B is broadcast
to the rest.

17: The chairperson select the video of C in order to judge their reactions on B's proposal .

18: The chairperson select the video of D in order to judge their reactions on B's proposal.

19: The chairperson goes back to receiving the broadcasted videostream (B)

20: User C requests the floor viathe H.323 signals. The application is notified of this.

21: The message is forwarded to the application logic.

22: The chairperson (viathe WWW interface) grants the request by appointing C as the speaker.

ETSI

168 ETSI ES 201 915-4 V1.1.1 (2002-02)

9.14 Resource Reservation

This sequence illustrates how an application can check and reserve resources for a meet-me conference.

: (Logical o o . IpConfCall
View::IpApplLogic) IpAppConfCallControlManager | | lpConfCallControlManager

0 1: checkResources() |

|
2: new() 1
|

|

3: reserveResources()
|
|
: 1
| |
4: freeResources() |
| |
|
: 1
|
|

5: reserneResources()

|
6: conferenceCreated()
7: "“forward event" |

1. The application checksif enough conference resources are available in a given time period.
2. The application creates a object to receive callback messages.

3: The application reserves resources for the time period. The callback object isin order to receive a notification when
the conference is started.

4: Because the time was wrong by accident, the application cancels the earlier reservation.
5: The application makes a new reservation.
6: At the specified time, or when the first party joins the conference the application is notified.

7: Theevent isforwarded to the application.

ETSI

169 ETSI ES 201 915-4 V1.1.1 (2002-02)

9.2 Class Diagrams

The conference call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side. The class diagrams in the following figures show the interfaces that make up the
conference call control application package and the conference call control service package.

This class diagram shows the interfaces that make up the application conference call control service package and the
relation to the interfaces in the conference call control service package.

The diagram al so shows the inheritance relation between the multi-party call application interfaces and the conference
call application interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.

Communication between the application and service packages is done via the <<uses>> relations; the interfaces can
communicate with callback methods in the corresponding application interfaces.

i
/
<<Interface>>
<<Interface>> IpAppMultiMediaCall <<Interface>>
pAppMul iMe diaCall Contm IM anager (from mmccs) IpAppMuliMediaCallLeg
(from mmccs) (from mmccs)
WsuperviseVolumeRes()
®eportMediaNotification() SsuperviseVolumeErr() WmediaStreamMonitorRes()
0.n - 0-n7
-7 L |
-7 . - |
- L7 |
P - |
-7 7 |
-7 7 |
- 1.7 |
<sinterface>> e <<Interface>> | :
<<Interface>> IpAppConfCall -7 IpAppSubConfCall |
IpAppConfCallControlManager (from cccs) |
PAPK 9 1 0 1 0..n (from cccs) !
(fromcccs) 00 F---—- Y B |
_ sl elzal] WchairSelection() !
i |
‘bonferenceCrea;(\edO % eaveMonitorRes() = 00rReqUest) !
I I
! I\ <<uses>> /| |
<<uses>> | ! |
| <<uses>> | <<Interface>> !
1 | IpSubConfCall |
<«<uses>
<<Interface>> I [‘f (from cccs) :
<< >
IpConfCallControlManager e |
(from cccs) IpConfCall MsplitSubConference() I
1 (from cccs) 1 0.1 ®mergeSubConference() |
[-~ - ={®moveCallLe
®reateConference()] ILeg(|
— SN WyetSubConferences() MW nspectVideo() |
.re;Crve ;Seo:oﬁ::os() ScreateSubConference() MinspectVideoCancel() |
e eResources)) % eaveMonitorReq() MappointSpeaker() !
®chairSelection() |
®changeConferencePolicy() !
I
I
I
I
I
I
I
I
I
I

- 1
S~ <<Interface>>
T~-0.n IpMultiMediaCallLeg
- (from mmccs)

BWnediaStreamAllow()
SmnediaStreamMonitorReq()
BetMediaStreams()

Figure 18: Application Interfaces

This class diagram shows the interfaces that make up the conference call control service package.

The diagram also shows the inheritance relation between the multi-party call interfaces and the conference call
interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.

ETSI

170 ETSI ES 201 915-4 V1.1.1 (2002-02)

Furthermore, the class diagram illustrates that the conference call control manager can instantiate or be associated with
zero or more conference calls. Each conference call can have one or more subconferences associated with it. Each
subconference contains zero or more call legs associated. Detached legs are not associated with any specific
subconference, instead they are associated with the conference call itself.

<Interface>> <<Interface>>
IpMultiMediaCallControlManager IpMultiMediaCall
(from mmccs) (from mmccs)
®treateMediaNotification() MsuperviseVolumeReq()
M estroyMediaNotification()
®hangeMediaNotification()
®etMediaNotification() 4
% <<Interface>>
| IpSubConfCall
<<Interface>> <<Interface>> (from cccs)
Ip ConfCallControlManager pConfCall
(from cccs) (from cccs) MplitSubConference()
1 0.. 1 ..n [®nergeSubConference()
McreateConference() [>|BlyetsubConferences) |~~~ = ®moveCallLeg()
"checkResou rces() e reateSub Confere nce() ®inspectVideo()
e = veResources() % e aveMonitoReq () “Inspe.ctVideOCanceI()
e eReso urTes) SappointSpeaker()
®chairSelection()
‘\ *®thangeConferencePolicy()
N 1
\ 1 \

<<Interface>>
IpMultiMediaCallLeg
\ (from mmccs)

>

™ edia StreamAl low()
™ edia StreamM onitorRe q()
e tMe dia Streams()

Figure 19: Service Interfaces

9.3 Conference Call Control Service Interface Classes

The Conference Call Control Service enhances the multi-media call control service. The conference call control service
gives the application the ability to manipulate subconferences within a conference. A subconference defines the
grouping of legs within the overall conference call. Only parties in the same subconference have a bearer connection (or
media channel connection) to each other (e.g. can speak to each other). The application can:

» Create new subconferences within the conference, either as an empty subconference or by splitting an existing
subconference in two subconferences.

e Move legs between subconferences.
¢ Merge subconferences.
e Getalist of al subconferencesin the call.
The generic conference also gives the possibility to manipulate typical multi-media conference details, such as:
« Interworking with network signalled conference protocols (e.g. H.323).
¢ Manipulation of the mediain the MCU, e.g. broadcasting of video.

¢ Handling of multi-media conference policies, e.g. how video should be handled, voice controlled switched or
chair controlled.

ETSI

171 ETSI ES 201 915-4 V1.1.1 (2002-02)

Furthermore the conference call control service adds support for the reservation of resources needed for conferencing.
The application can:

¢ Reserve resources for a predefined time period.

* Freereserved resources.

e Search for the availability of conference resources based on a number of criteria.
There are two ways to initiate a conference:

¢ The conferences can be started on the pre-arranged time by the service, at the start time indicated in the
reservation. The application is notified about this. The application can then add parties to the conference and/or
parties can dial-in to the conference using the address provided during reserveration.

« The conference can be created directly on request of the application using the createConference method to the
I pConferenceCall ControlManager interface.
9.3.1 Interface Class IpConfCallControlManager
Inherits from: IpMultiMediaCall Control M anager

The conference Call Control Manager is the factory interface for creating conferences. Additionally it takes care of
resource management.

<<Interface>>

IpConfCallControlManager

createConference (appConferenceCall : in IpAppConfCallRef, numberOfSubConferences : in Tpint32,
conferencePolicy : in TpConfPolicy, numberOfParticipants : in TpInt32, duration : in TpDuration) :
TpConfCallldentifier

checkResources (searchCriteria : in TpConfSearchCriteria) : TpConfSearchResult

reserveResources (applinterface : in IpAppConfCallControIManagerRef, startTime : in TpDateAndTime,
numberOfParticipants : in TpInt32, duration : in TpDuration, conferencePolicy : in TpConfPolicy) :
TpAddress

freeResources (resourcelD : in TpAddress) : void

Method
cr eat eConf erence()

This method is used to create a new conference. If the specified resources are not available for the indicated duration the
creation isrejected with P_RESOURCES_UNAVAILBLE.

Returns conference: Specifies the interface reference and sessionl D of the created conference.

Parameters

appConferenceCall : in | pAppConfCal |l Ref
Specifies the callback interface for the conference created.

ETSI

172 ETSI ES 201 915-4 V1.1.1 (2002-02)

nunber O SubConf erences : in Tplnt32

Specifies the number of subconferences that the user wants to create automatically. The references to the interfaces of
the subconferences can later be requested with getSubConferences.

The number of subconferences should be at least 1.

conferencePolicy : in TpConfPolicy
Specifies the policy to be applied for the conference, e.g. are parties allowed to join (call into) the conference?

Note that if parties are allowed to join the conference, the application can expect partyJoined() messages on the
IpAppConfCall interface.

nunmber O Partici pants : in Tplnt32

Specifies the number of participantsin the conference. The actual number of participants may exceed this, but these
resources are not guaranteed, i.e. anything exceeding this will be best effort only and the conference service may drop
or reject participants in order to fulfil other committed resource requests. By specifying 0, the application can request a
best effort conference.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this,
but after the duration, the resources are no longer guaranteed, i.e. parties may be dropped or rejected by the servicein
order to satisfy other committed resource requests. When the conference is released before the all ocated duration, the
reserved resources are released and can be used to satisfy other resource requests. By specifying O, the application
requests a best effort conference.

Returns

TpConf Cal | I dentifier

Raises

TpComonExcept i ons

Method
checkResour ces()

This method is used to check for the avail ability of conference resources.
Theinput isthe search period (start and stop time and date) - mandatory.
Furthermore, a conference duration and number of participants can be specified - optional.

The search algorithm will search the specified period for availability of conference resources and triesto find an
optimal solution.

When a match is found the actual number of available resources, the actual start and the actual duration for which these
are availableis returned. These values can exceed the requested values.

When no match is found a best effort isreturned, still the actual start time, duration, number of resources are returned,
but these values now indicate the best that the conference bridge can offer, e.g. one or more of these values will not
reach the requested values.

Returns result : Specifies the result of the search. It indicates if a match was found. If no exact match was found the best
attempt is returned.

ETSI

173 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

searchCriteria : in TpConfSearchCriteria

Specifies the boundary conditions of the search. E.g. the time period that should be searched, the number of
participants.

Returns
TpConf Sear chResul t

Raises
TpComonExcept i ons

Method
reserveResour ces()

This method is used to reserve conference resources for a given time period. Conferences can be created without first
reserving resources, but in that case no guarantees can be made.

Returns resourcel D : Specifies the address with which the conference can be addressed, both in the methods of the
interface and in the network, i.e. if joinAllowed is TRUE, parties can use this address to join the conference.

If no match isfound the resourcel D contains an empty address.

Parameters

applnterface : in | pAppConf Cal | Control Manager Ref

Specifies the callback interface to be used when the conference is created in the network. The application will receive
the ConferenceCreated message when a conference is created in the network.

startTine : in TpDateAndTi ne
Specifies the time at which the conference resources should be reserved, i.e. the start time of the conference.

nunber O Participants : in Tplnt32

Specifies the number of participantsin the conference. The actual number of participants may exceed this, but these
resources are not guaranteed, i.e. anything exceeding this will be best effort only and the conference service may drop
or reject participants in order to fulfil other committed resource requests.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this,
but after the duration, the resources are no longer guaranteed, i.e. parties may be dropped or rejected by the servicein
order to satisfy other committed resource requests. When the conference is released before the all ocated duration, the
reserved resources are released and can be used to satisfy other resource requests.

conferencePolicy : in TpConfPolicy

The policy to be applied for the conference, e.g. are parties allowed to join (call into) the conference? Note that if
parties are allowed to join the conference, the application can expect partyJoined() messages on the appConfCall.

ETSI

174 ETSI ES 201 915-4 V1.1.1 (2002-02)

Returns

TpAddr ess

Raises
TpComonExcept i ons

Method
freeResources()

This method can be used to cancel an earlier made reservation of conference resources.

This a'so means that no ConferenceCreated events will be received for this conference.

Parameters
resourcel D : in TpAddress

Specifies the resourcel D that was received during the reservation.
Raises
TpComonExcept i ons

9.3.2 Interface Class IpAppConfCallControlManager
Inherits from: I pAppM ultiMediaCall Control M anager

The conference call control manager application interface provides the application with additional callbacks when a
conference is created by the network (based on an earlier reservation).

<<Interface>>

IpAppConfCallControlManager

conferenceCreated (conferenceCall : in TpConfCallldentifier) : IpAppConfCallRef

Method
conferenceCreat ed()

This method is called when a conference is created from an earlier resource reservation.

Returns appl nterface: Specifies a reference to the application interface which implements the callback interface for the
new conference.

Parameters

conferenceCall : in TpConfCallldentifier
Specifies the reference to the conference call interface to which the notification relates and the associated sessioniD.

ETSI

175 ETSI ES 201 915-4 V1.1.1 (2002-02)

Returns
| pAppConf Cal | Ref

9.3.3 Interface Class IpConfCall

Inherits from: IpMultiMediaCall

The conference call manages the subconferences. It also provides some convenience methods to hide the fact of
multiple subconferences from the applications that do not need it. Note that the conference call always contains one
subconference. The following inherited call methods apply to the conference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.

- release; releases the entire conference, including all the subconferences and detached legs.

- deassignCall; de-assigns the complete conference. No callbacks will be received by the application, either on the
conference, or on any of the contained subconferences or call legs.

- getInfoReq; request information over the complete conference. The conference duration is defined as the time
when the first party joined the conference until when the last party leaves the conference or the conference is released.

- setChargePlan; set the chargeplan for the conference. This chargeplan will apply to all the subconferences, unless
another chargeplan is explicitly overridden on the subconference.

- superviseReq; supervise the duration of the complete conference.

- getCallLegs; return all the call legs used within the conference.

- superviseVolumeReq; supervises and sets a granted data volume for the conference.

Other methods apply to the default subconference. When using multiple subconferences, it is recommended that the
application calls these methods directly on the subconference since this makes it more explicit what the effect of the
method is:

- createAndRouteCallLeg

- createCallLeg

<<Interface>>
IpConfCall

getSubConferences (conferenceSessionID : in TpSessionID) : TpSubConfCallldentifierSet

createSubConference (conferenceSessionID : in TpSessionID, appSubConference : in
IpAppSubConfCallRef, conferencePolicy : in TpConfPolicy) : TpSubConfCallldentifier

leaveMonitorReq (conferenceSessionID : in TpSessionID) : void

Method
get SubConf erences()

This method returns all the subconferences of the conference.

Returns subConferencelist : Specifiesthelist of all the subconferences of the conference.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the sessionl D of the conference.

ETSI

176 ETSI ES 201 915-4 V1.1.1 (2002-02)

Returns
TpSubConf Cal | | denti fi er Set

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

Method
creat eSubConf er ence()

This method is used to create a new subconference. Note that one subconference is already created together with the
conference.

Returns subConference : Specifies the created subconference (interface and sessioniD).

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the sessionl D of the conference.

appSubConference : in | pAppSubConf Cal | Ref
Specifies the call back interface for the created subconference.

conferencePolicy : in TpConfPolicy

Conference Policy to be used in the subconference. Optional; if undefined, the policy of the conference is used. Note
that not al policy elements have to be applicable for subconferences.

Returns
TpSubConf Cal | I denti fi er

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
| eaveMoni t or Req()

This method is used to request a notification when a party leaves the conference.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the session ID of the conference.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

ETSI

177 ETSI ES 201 915-4 V1.1.1 (2002-02)

9.34 Interface Class IpAppConfCall
Inherits from: IpAppMultiMediaCall

The Conference Call application interface allows the application to handle call responses and state reports. Additionally
it allows the application to handle parties entering and leaving the conference.

<<Interface>>

IpAppConfCall

partyJoined (conferenceSessionID : in TpSessionID, callLeg : in mpccs::TpCallLegldentifier, eventinfo : in
TpJoinEventinfo) : mpccs:: IpAppCallLegRef

leaveMonitorRes (conferenceSessionID : in TpSessionID, callLeg : in TpSessionID) : void

Method
partyJoi ned()

This asynchronous method indicates that a new party (leg) has joined the conference. This can be used in, e.g. a meetme
conference where the participants dial in to the conference using the address returned during reservation of the
conference.

The Leg will be assigned to the default subconference object and will be in a detached state. The application may move
the call Leg to adifferent subconference before attaching the media

The method will only be called when joinAllowed is indicated in the conference policy.

Returns appCallLeg : Specifies the call back interface that should be used for callbacks from the new call Leg.

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the session ID of the conference that the party wantsto join.

callLeg : in npccs:: TpCall Legldentifier
Specifies the interface and sessionl D of the call leg that joined the conference.

eventInfo : in TpJoi nEventlnfo
Specifies the address information of the party that wants to join the conference.

Returns
npccs: : | pAppCal | LegRef

Method
| eaveMoni t or Res()

This asynchronous method indicates that a party (leg) has left the conference.

ETSI

178 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

conferenceSessionlD : in TpSessionlD
Specifies the session ID of the conference that the party wants to leaves.

callLeg : in TpSessionlD
Specifies the sessionl D of the call leg that left the conference.

9.35 Interface Class IpSubConfCall
Inherits from: IpMultiMediaCall

The subconference is an additional grouping mechanism within a conference. Parties (Iegs) that are in the same
subconference have a speech connection with each other. The following inherited call methods apply to the
subconference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.

- release; releases the subconference, including all currently attached legs. When the last subconference in the
conference isreleased, the conferenceisimplicitly released as well.

- deassignCall; de-assigns the subconference. No callbacks will be received by the application on this
subconference, nor will the gateway accept any methods on this subconference or accept any methods using the
subconference as a parameter (e.g. merge). When the subconference is the last subconference in the conference, the
conference is deassigned as well. In general it is recommended to only use deassignCall for the compl ete conference.

- getInfoReq; request information over the subconference. The subconference duration is defined as the time when
the first party joined the subconference until when the last party leaves the subconference or the subconferenceis
released.

- setChargePlan; set the charge plan for the subconference.

- superviseReq; supervise the duration of the subconference. It is recommended that this method is only used on the
complete conference.

- superviseVolumeReq; supervises and sets a granted data volume for the subconference.

- getCallLegs; return all the call legsin the subconference.

- createCallLeg; create acal leg.

- createAndRouteCallLeg; implicitly create aleg and route the leg to the specified destination.

<<Interface>>
IpSubConfCall

splitSubConference (subConferenceSessionID : in TpSessionID, callLegList : in TpSessionIDSet,
appSubConferenceCall : in IpAppSubConfCallRef) : TpSubConfCallldentifier

mergeSubConference (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in
TpSessionID) : void

moveCallLeg (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in TpSessionID,
callLeg : in TpSessionID) : void

inspectVideo (subConferenceSessionID : in TpSessionID, inspectedCallLeg : in TpSessionID) : void
inspectVideoCancel (subConferenceSessionID : in TpSessionID) : void

appointSpeaker (subConferenceSessionID : in TpSessionID, speakerCallLeg : in TpSessionID) : void
chairSelection (subConferenceSessionID : in TpSessionID, chairCallLeg : in TpSessionID) : void

changeConferencePolicy (subConferenceSessionID : in TpSessionID, conferencePolicy : in TpConfPolicy) :
void

ETSI

179 ETSI ES 201 915-4 V1.1.1 (2002-02)

Method
spl i t SubConf erence()

This method is used to create a new subconference and move some of the legsto it.

Returns newSubConferenceCall : Specifies the new subconference that isimplicitly created as aresult of the method.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the subconference.

cal |l LegList : in TpSessionl DSet
Specifies the sessionl Ds of the legs that will be moved to the new subconference.

appSubConferenceCall : in | pAppSubConf Cal | Ref
Specifies the application call back interface for the new subconference.

Returns

TpSubConf Cal | I denti fi er

Raises

TpComonExceptions, P_I NVALI D SESSION | D

Method

mer geSubConf er ence()

This method is used to merge two subconferences, i.e. move al our legs from this subconference to the other
subconference followed by arelease of this subconference.

Parameters

subConf erenceCal | SessionlD : in TpSessionlD
Specifies the session ID of the subconference.

t arget SubConferenceCall : in TpSessionlD
The session ID of target subconference with which the current subconference will be merged.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
noveCal | Leg()

This method moves one leg from this subconference to another subconference.

ETSI

180 ETSI ES 201 915-4 V1.1.1 (2002-02)

Parameters

subConf erenceCal | SessionlD : in TpSessionlD
Specifies the session ID of the source subconference.

target SubConferenceCall : in TpSessionlD
Specifies the sessionl D of the target subconference.

callLeg : in TpSessionlD
Specifies the sessionl D of the call leg to be moved.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
| nspect Vi deo()

This method can be used by the application to select which video should be sent to the party that is currently selected as
the chair.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

i nspectedCall Leg : in TpSessionlD
Specifies the sessionl D of call leg of the party whose video stream should be sent to the chair.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
| nspect Vi deoCancel ()

This method cancels a previous inspectVideo. The chair will receive the broadcasted video.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

ETSI

181 ETSI ES 201 915-4 V1.1.1 (2002-02)

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

Method
appoi nt Speaker ()

This method indicates which of the participantsin the conference has the floor. The video of the speaker will be
broadcast to the other parties.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

speakerCall Leg : in TpSessionlD
Specifies the sessionl D of the call leg of the party whose video stream should be broadcast.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
chai r Sel ection()

This method is used to indicate which participant in the conference is the chair. E.g. the terminal of this participant will
be the destination of the video of the inspectVideo method.

Whether this method can be used depends on the selected conference policy.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the multi media subconference.

chairCallLeg : in TpSessionlD
Specifies the sessionl D of the call leg of the party that will become the chair.

Raises
TpComonExcepti ons, P_I NVALI D SESSION | D

Method
changeConf er encePol i cy()

This method can be used to change the conference policy in an ongoing conference.

ETSI

182 ETSI ES 201 915-4 V1.1.1 (2002-02)

Multi media conference policy options available. E.qg.:
e Chair controlled video / voice switched video
¢ Closed conference/ open conference

¢ Composite video (different types) / only speaker

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifiesthe session ID of the multi media subconference.

conferencePolicy : in TpConfPolicy

New Conference Policy to be used in the subconference.

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

9.3.6 Interface Class IpAppSubConfCall
Inherits from: IpAppMultiMediaCall

The Sub Conference Call application interface allows the application to handle call responses and state reports from a
sub conference.

<<Interface>>

IpAppSubConfCall

chairSelection (subConferenceSessionID : in TpSessionID) : mpccs::TpCallLegldentifier

floorRequest (subConferenceSessionID : in TpSessionID) : mpccs:: TpCallLegldentifier

Method
chai r Sel ection()

This method is used to inform the application about the chair selection requests from the network. It is used to interwork
with H.323 conference signalling. The application can grant the request by calling the selectChair method on the
subconference.

Returns chair: Specifies the reference to the interface of the leg that wants to become the chair.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the subconference where the chair request originates.

ETSI

183 ETSI ES 201 915-4 V1.1.1 (2002-02)

Returns
npccs: : TpCal | Legl denti fi er

Method
f 1 oor Request ()

This method is used to inform the application about the floor requests from the network. It is used to interwork with
H.323 conference signalling. The application can grant the request by calling the appointSpeaker method.

Returns floorRequester : Specifies the reference to the interface of the leg that requests the floor.

Parameters

subConf erenceSessionl D : in TpSessionlD
Specifies the session ID of the subconference where the floor request originates.

Returns
npccs: : TpCal | Legl denti fi er

9.4 Conference Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the Conference Call Control Service package.

9.5 Conference Call Control Data Definitions

This clause provides the Conference call control data definitions necessary to support the API specification.

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text
represents Hypertext links.

The general format of a data definition specification is described below.
e DataType
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
¢ Example

If relevant, an example is shown to illustrate the data type.

95.1 Event Notification Data Definitions

No specific event notification data.

ETSI

184 ETSI ES 201 915-4 V1.1.1 (2002-02)

9.5.2 Conference Call Control Data Definitions
| pConf Cal |

Definesthe address of an | pConf er enceCal | Interface.

| pConf Cal | Ref
Defines aRef er ence to type IpConfCall.

| pAppConf Cal |
Definesthe address of an | pAppConf Cal | Interface.

| pAppConf Cal | Ref

DefinesaRef er ence to type IpAppConfCall.

| pSubConf Cal |
Defines the address of an | pSubConf Cal | Interface.

| pSubConf Cal | Ref
Defines aRef er ence to type IpSubConfCall.

| pAppSubConf Cal |
Defines the address of an | pAppSubConf Cal | Interface.

| pAppSubConf Cal | Ref
DefinesaRef er ence to type IpAppSubConfCall.

TpConf Cal |l I denti fi er Ref
DefinesaRef er ence to type TpConfCallldentifier.

TpSubConf Cal | I denti fi er Set
DefinesaNunber ed Set of Data El enent s of IpSubConfCallldentifier.

TpSubConf Cal | I denti fi er Set Ref
DefinesaRef er ence to type IpSubConfCalll dentifierSet.

TpSubConf Cal | I denti fi er Ref
DefinesaRef er ence to type TpSubConfCallldentifier.

TpConf Cal | I dentifier

Defines the Sequence of Data Elements that unambiguously specify the Conference Call object.

Sequence Element Name | Sequence Element Type Sequence Element Description
Conf Cal | Ref erence | pConf Cal | Ref This element specifies the interface reference for the conference
call object.
Conf Cal | Sessi onl D TpSessi onl D This element specifies the session ID of the conference call.

ETSI

185 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpSubConf Cal | I denti fier
Defines the Sequence of Data Elements that unambiguously specify the SubConference Call object.

Sequence Element Name | Sequence Element Type Sequence Element Description

SubConf Cal | Ref er ence | pSubConf Cal | Ref This element specifies the interface reference for the
subconference call object.

SubConf Cal | Sessi onl D TpSessi onl D This element specifies the session ID of the subconference call.

| pAppConf Cal | Cont r ol Manager
Definesthe address of an | pAppConf Cal | Cont r ol Manager Interface.

| pAppConf Cal | Cont r ol Manager Ref
DefinesaRef er ence to type IpAppConfCall Control M anager.

TpConf Pol i cyType
Defines policy type for the conference.
If undefined the gateway will select an appropriate default.

If amono media conference policy is specified for a multi-media conference, the gateway will select appropriate
defaults for the multi-media policy items.

If amulti-media policy is selected for a mono-media (voice-only) conference, the multi-media conference items will be
ignored.

Name Value Description
P_CONFERENCE_PCLI CY_UNDEFI NED 0 Undefined
P_CONFERENCE_POLI CY_MONOVEDI A 1 CCCS— monomedia conference policy
P_CONFERENCE_POLI CY_MULTI MEDI A 2 MMCCS — mulitmedia conference policy

TpConf Pol i cy

Definesthe Tagged Choi ce of Data El enent s that specify the policy that needs adhered to by the
conference.

Tag Element Type

TpConf Pol i cyType

Tag Element Value Choice Element Type Choice Element Name
P_CONFERENCE_POLI CY_MONOVEDI A TpMonoMedi aConf Pol i cy MonoMedi a
P_CONFERENCE_POLI CY_MJULTI MEDI A TpMul ti Medi aConf Pol i cy Ml ti Medi a

ETSI

186 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpMonoMedi aConf Pol i cy
Defines the type of conference policy as a sequence of Policy Items and their values.

For mono media there are only two types of conference policies; specified, i.e. the application provides the policy, or
undefined, i.e. the GW may choose a default conference policy.

Sequence Element Name

Sequence Element Type

description

Joi nAl | owed

TpBool ean

Specifiesif dial-in to the conferenceis allowed. Parties can
dial-in to the conference using the address returned during
reservation. If thisis specified the application will receive

partyJoined for each participant dialling into the
conference.

TpJoi nEvent I nfo

Definesthe Sequence of Data El enent s that specify the information returned to the application in a Join event

notification.

Sequence Element Name

Sequence Element Type

Desti nati onAddr ess TpAddr ess
Origi nati ngAddr ess TpAddr ess
Origi nal Destinati onAddr ess TpAddr ess
Redi r ect i ngAddr ess TpAddr ess

Cal | Appl nfo

TpCal | Appl nf oSet

TpConf SearchCriteria

Definesthe Sequence of Data El enent s that specify the criteriafor doing a search for available conference

resources.

Sequence Element Name

Sequence Element Type

Start Search

TpDat eAndTi e

St opSear ch

TpDat eAndTi e

Request edResour ces

Tpl nt 32

Rr equest edDur ati on

TpDur ati on

TpConf Sear chResul t Ref
Defines areference to type TpConf Sear chResul t .

TpConf Sear chResul t

Definesthe Sequence of Data El ement s that specifies the result of a search for available conference resources.

Sequence Element Name

Sequence Element Type

Mat chFound TpBool ean
Actual Start Ti ne TpDat eAndTi e
Act ual Resour ces Tpl nt 32
Act ual Durati on TpDur ati on

ETSI

187 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpMul ti Medi aConf Pol i cy

Sequence of items for multi-media conferences.

Sequence Element Name Sequence Element Type description

Joi nAl | oved TpBool ean Specifiesif dial-in to the conferenceis

allowed. Parties can dial-in to the conference

using the address returned during reservation.

If thisis specified the application will receive

partyJoined for each participant dialling into
the conference.

Medi aAl | owed TpMedi aType Specifies the mediathat are allowed to be
used by the participants. E.g. this can be used
to limit the conference to audio only, even
when all participants support video.

Chaired TpBool ean Specifies whether the conferenceis chaired or
free. In achaired conference the application or
one of the participants acting as chair has
specia privileges; e.g. can control the video

digtribution.
Vi deoHandl i ng TpVi deoHandl! i ngType Specifies how the video should be handled.

TpVi deoHandl i ngType
Defines how video should be handled in the conference.

Name Value Description
P_M XED_VI DEO 0 Video is mixed, no special treatment of speaker
P_SW TCHED VI DEO_CHAI R_CONTROLLED 1 Video is switched, chair determines the speaker
P_SW TCHED VI DEO VO CE_CONTROLLED 2 Video is switched automatically based on audio

output of the speaker

10 Common Call Control Data Types

TpCal | Al erti ngMechani sm

Thisdatatypeisidentical toaTpl nt 32, and defines the mechanism that will be used to aert acall party. The values
of this data type are operator specific.

TpCal | Bear er Servi ce

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,
and TS 122 002).

Name Value Description
P_CALL_BEARER SERVI CE_UNKNOAN 0 Bearer capability information unknown at thistime
P_CALL_BEARER SERVI CE_SPEECH 1 Speech
P_CALL_BEARER SERVI CE_DI G TALUNRESTRI CTED 2 Unrestricted digital information
P_CALL_BEARER SERVI CE_DI G TALRESTRI CTED 3 Restricted digital information
P_CALL_BEARER SERVI CE_AUDI O 4 3,1 kHz audio
P_CALL_BEARER SERVI CE_ 5 Unrestricted digital information with tomes/announcements
DI G TALUNRESTRI CTEDTONES
P_CALL_BEARER SERVI CE_VI DEO 6 Video

ETSI

188

TpCal | Char gePl an

Definesthe Sequence of Data El enent s that specify the charge plan for the call.

ETSI ES 201 915-4 V1.1.1 (2002-02)

Sequence Element Name

Sequence Element Type

Description

Char geOr der Type

TpCal | Char geOr der Cat egory

Charge order

Transpar ent Char ge

TpCct et Set

Operator specific charge plan specification,
e.g. charging table name/ charging table
entry. The associated charge plan datawill be
send transparently to the charging records.

Only applicable when transparent charging is
selected.

Char gePl an

Tpl nt 32

Pre-defined charge plan. Example of the
charge plan set from which the application can
choose could be : (0 = normal user, 1 = silver
card user, 2 = gold card user).

Only applicable when transparent charging is
selected.

Addi tional I nfo

TpCct et Set

Descriptive string which is sent to the billing
system without prior evaluation. Could be
included in the ticket.

Part yToChar ge

TpCal | Part yToChar ge

Identifies the entity or party to be charged for
thecall or call leg.

TpCal | PartyToChar ge
Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

Tag Element Type

TpCal | Part yToChar geType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_PARTY_ORIGINATING, , NULL Undef i ned
P_CALL_PARTY_DESTINATION, NULL Undef i ned
P_CALL_PARTY_SPECIAL TpAddr ess Cal | PartySpeci al

TpCal | PartyToChar geType
Defines the type of call party to charge.

Name Value Description
P_CALL_PARTY_ORIGINATING, , 0 Calling party, i.e. party that initiated the call. For application initiated calls this
indicates the first party of the call
P_CALL_PARTY_DESTINATION, Cal |l ed party
P_CALL_PARTY_SPECIAL 2 An address identifying e.g. athird party, a service provider

ETSI

TpCal | Char geOr der

189

ETSI ES 201 915-4 V1.1.1 (2002-02)

Definesthe Tagged Choi ce of Data El enent s that specify the charge plan for the call.

Tag Element Type

TpCal | Char geOr der Cat egory

Tag Element Value Choice Element Type Choice Element Name
P_CALL_CHARGE_TRANSPARENT TpCct et Set Tr anspar ent Char ge
P_CALL_CHARGE_PREDEFI NED _SET Tpl nt 32 Char gePl an
TpCal | Char geOr der Cat egory
Defines the type of charging to be applied.

Name Value Description
P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name/ charging

table entry. The associated charge plan data will be send transparently to the
charging records

P_CALL_CHARGE_PREDEFI NED_SET

1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user, 2 =
gold card user).

TpCal | Addi ti onal Char gePl anl nf o

Definesthe Tagged Choi ce of Data El enent s that specify the charge plan for the call.

Tag Element Type

TpCal | Char geOr der Cat egory

Tag Element Value Choice Element Choice Element Description
Type Name
P_CALL_CHARGE_TRANSPARENT NULL Undef i ned
P_CALL_CHARGE_PREDEFI NED_SET TpCct et Set Set Addi ti onal I nfo Descriptive string which is sent to
the billing system without prior
evaluation. Could be included in
the ticket.
TpCal | EndedReport
Definesthe Sequence of Data El enment s that specify the reason for the call ending.
Sequence Element Name Sequence Element Type Description
Cal | LegSessi onl D TpSessi onl D Theleg that initiated the release of the call.

If the call release was not initiated by the leg,

then thisvalueis set to—1.

Cause

TpRel easeCause

The cause of the call ending.

ETSI

TpCal | Error

190

ETSI ES 201 915-4 V1.1.1 (2002-02)

Definesthe Sequence of Data El enent s that specify the additional information relating to acall error.

Sequence Element Name

Sequence Element Type

ErrorTi me

TpDat eAndTi e

Error Type

TpCal | Error Type

Additional Errorinfo

TpCal | Addi tional Errorlnfo

TpCal | Addi tional Errorlnfo

Definesthe Tagged Choi ce of Data El enent s that specify additional call error and call error specific
information. Thisis aso used to specify cal leg errors and information errors.

Tag Element Type

TpCal | Error Type

Tag Element Value Choice Element Type Choice Element Name
P_CALL_ERROR_UNDEFI NED NULL Undef i ned
P_CALL_ERROR | NVALI D_ADDRESS TpAddr essError Cal | Errorlnval i dAddress
P_CALL_ERRCR | NVALI D_STATE NULL Undef i ned
P_CALL_ERROR RESOURCE_UNAVAI LABLE NULL Undef i ned
TpCal | Error Type
Defines a specific call error.

Name Value Description
P_CALL_ERROR_UNDEFI NED 0 Undefined; the method failed or was refused,
but no specific reason can be given.
P_CALL_ERROR_| NVALI D_ADDRESS 1 The operation failed because an invalid address
was given

P_CALL_ERROCR | NVALI D_STATE 2 The call was not in avalid state for the
requested operation

P_CALL_ERROR_RESOURCE_UNAVAI LABLE 3 There are not enough resources to complete the
request successfully

ETSI

TpCal | I nf oReport

Definesthe Sequence of Data El enent s that specify the call information requested. |nformation that was not

requested isinvalid.

191

ETSI ES 201 915-4 V1.1.1 (2002-02)

Sequence Element Name

Sequence Element Type

Description

Cal I I nfoType

TpCallinfoType

Thetype of call report.

CalllnitiationStartTi nme

TpDat eAndTi e

The time and date when the call, or follow-
on call, was started.

Cal | Connect edToResour ceTi ne

TpDat eAndTi ne

The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction isreported.

Cal | Connect edToDest i nati onTi ne

TpDat eAndTi ne

The date and time when the call was
connected to the destination (i.e. when the
destination answered the call). If the
destination did not answer, thetimeis set to
an empty string.

This data element isinvalid when
information on user interaction is reported
with an intermediate report.

Cal | EndTi me TpDat eAndTi ne The date and time when the call or follow-
on call or user interaction was terminated.
Cause TpRel easeCause The cause of the termination.

A calllnfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not

both.

TpCal | I nf oType

Defines the type of call information requested and reported. The values may be combined by alogical 'OR' function.

Name Value Description
P_CALL_I NFO_UNDEFI NED 00h Undefined
P_CALL_I NFO Tl MES 01h Relevant call times
P_CALL_I NFO_RELEASE_CAUSE 02h Call release cause
P_CALL_I NFO_| NTERMEDI ATE 04h Send only intermediate reports. When thisis not

specified the information report will only be
sent when the call has ended. When
intermedi ate reports are requested a report will
be generated between follow-on calls, i.e. when
aparty leavesthe call.

TpCal | LoadCont r ol Mechani sm
Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type

TpCallLoadControlMechanismType

Tag Element Value

Choice Element Type

Choice Element Name

P_CALL_LOAD_CONTROL_PER | NTERVAL

TpCal | LoadControl I nterval Rate

Cal | LoadContr ol Perl nterval

ETSI

192 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpCal | LoadControl I nterval Rate

Defines the call admission rate of the call 1oad control mechanism used. This data type indicates the interval (in
milliseconds) between calls that are admitted.

Name Value Description

P_CALL_LQAD CONTROL_ADM T_NO CALLS 0 Infiniteinterval
(do not admit any calls)
1 - 60000 Duration in milliseconds

TpCal | LoadCont r ol Mechani snilype

Defines the type of call load control mechanism to use.

Name Value Description

P_CALL_LOAD_CONTROL_PER | NTERVAL 1 admit one call per interval

TpCal | Moni t or Mode

Defines the mode that the call will monitor for events, or the mode that the call isin following a detected event.

Name Value Description

P_CALL_MONI TOR_MODE_| NTERRUPT 0 The call event isintercepted by the call control
service and call processing isinterrupted. The
application is notified of the event and call
processing resumes following an appropriate
API call or network event (such asacall
release)

P_CALL_MONI TOR_MODE_NOTI FY 1 The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_MONI TOR_MODE_DO _NOT_MONI TOR 2 Do not monitor for the event

TpCal | Net wor kAccessType

This data defines the bearer capabilities associated with the call. (TS 124 002) This information is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description
P_CALL_NETWORK_ACCESS_TYPE_UNKNOMN 0 Network type information unknown at thistime
P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS
P_CALL_NETWORK_ACCESS_TYPE_| SDN 2 ISDN
P_CALL_NETWORK_ACCESS_TYPE_DI ALUPI NTERNET 3 Dial-up Internet
P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDLS
P_CALL_NETWORK_ACCESS_TYPE_W RELESS 5 Wireless

ETSI

193 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpCal | PartyCat egory
This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

Name Value Description
P_CALL_PARTY_CATEGORY_UNKNOMN 0 calling party's category unknown at thistime
P_CALL_PARTY_CATEGORY_OPERATOR _F 1 operator, language French
P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English
P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German
P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian
P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish
P_CALL_PARTY_ CATEGORY_ORDI NARY SUB 6 ordinary calling subscriber
P_CALL_PARTY_CATEGORY_PRI ORI TY_SUB 7 calling subscriber with priority
P_CALL_PARTY_CATEGORY_DATA CALL 8 data call (voice band data)
P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call
P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone

TpCal | Servi ceCode

Definesthe Sequence of Data El enent s that specify the service code and type of service code received during
acall. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type
Cal | Servi ceCodeType TpCal | Servi ceCodeType
Servi ceCodeVal ue TpString

TpCal | Servi ceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description
P_CALL_SERVI CE_CCDE_UNDEFI NED 0 The type of service code is unknown. The corresponding string is
operator specific.
P_CALL_SERVI CE_CODE_DI A TS 1 The user entered a digit sequence during the call. The corresponding
string is an ascii representation of the received digits.
P_CALL_SERVI CE_CODE_FACI LI TY 2 A facility information element is received. The corresponding string
contains the facility information element as defined in ITU Q.932.
P_CALL_SERVI CE_CODE_U2U 3 A user-to-user message was received. The associated string contains
the content of the user-to-user information element.
P_CALL_SERVI CE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.
The corresponding string is an ascii representation of the entered
digits.
P_CALL_SERVI CE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by
some digits. The corresponding string is an ascii representation of the
entered digits.

ETSI

194 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpCal | Supervi seReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a
logical 'OR' function.

Name Value Description
P_CALL_SUPERVI SE_TI MEQUT 01h The call supervision timer has expired
P_CALL_SUPERVI SE_CALL_ENDED 02h The call has ended, either due to timer expiry or

call party release. In case the called party
disconnects but a follow-on call can till be
made also thisindication is used.

P_CALL_SUPERVI SE_TONE_APPLI ED 04h A warning tone has been applied. Thisis only
sent in combination with
P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVI SE_UI _FI NI SHED 08h The user interaction has finished.

TpCal | Supervi seTr eat nent

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by alogical 'OR' function.

Name Value Description
P_CALL_SUPERVI SE_RELEASE 01h Release the call when the call supervision timer
expires
P_CALL_SUPERVI SE_RESPOND 02h Notify the application when the call supervision
timer expires
P_CALL_SUPERVI SE_APPLY_TONE 04h Send awarning tone to the originating party

when the call supervision timer expires. If call
release is requested, then the call will be
released following the tone after an
administered time period

ETSI

195 ETSI ES 201 915-4 V1.1.1 (2002-02)

TpCal | Tel eSer vi ce

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High
Layer Compuatitibility Information, and TS 122 003)

Name Value Description
P_CALL_TELE_SERVI CE_UNKNOMN 0 Teleservice information unknown at thistime
P_CALL_TELE_SERVI CE_TELEPHONY 1 Telephony
P_CALL_TELE SERVICE FAX 2 3 2 Facsimile Group 2/3
P_CALL_TELE SERVI CE_FAX 4 _| 3 Facsimile Group 4, Class |
P_CALL_TELE SERVI CE_FAX 4_I1_I11I 4 Facsimile Group 4, Classes || and |11
P_CALL_TELE SERVI CE_VI DEOTEX_SYN 5 Syntax based Videotex
P_CALL_TELE_SERVI CE_VI DEOTEX_| NT 6 International Videotex interworki_ng via gateways or interworking

units

P_CALL_TELE_SERVI CE_TELEX 7 Telex service
P_CALL_TELE SERVI CE_MHS 8 Message Handling Systems
P_CALL_TELE_SERVI CE_OSI 9 OSl application
P_CALL_TELE SERVI CE_FTAM 10 FTAM application
P_CALL_TELE SERVI CE_VI DEO 11 Videotelephony
P_CALL_TELE SERVI CE_VI DEO CONF 12 Videoconferencing
P_CALL_TELE SERVI CE_AUDI OGRAPH CONF 13 Audiographic conferencing
P_CALL_TELE SERVI CE_MULTI MEDI A 14 Multimedia services
P_CALL_TELE SERVICE_CS | NI _H221 15 Capability set of initial channel of H.221
P_CALL_TELE SERVI CE_CS SUB H221 16 Capability set of subsequent channel of H.221
P_CALL_TELE SERVICE_CS I N _CALL 17 Capability set of initial channel associated with an active 3.1 kHz

audio or speech call.
P_CALL_TELE SERVI CE_DATATRAFFI C 18 Datatraffic.
P_CALL_TELE_SERVI CE_EVERGENCY_CAL 19 Emergency Calls
P_CALL_TEL E_LSSERVI CE_SMs_MI_PP 20 Short message MT/PP
P_CALL_TELE_SERVI CE_SM5_MO_PP 21 Short message MO/PP
P_CALL_TEL E__?ERVI CE_CELL_BROADCAS 22 Cell Broadcast Service
P_CALL_TEL E_§E§V I CE_ALT_SPEECH FA 23 Alternate speech and facsimile group 3
P_CALL_TEL E_S?I’ERVI CE_AUTOVATI C_FAX 24 Automatic Facsimile group 3
P_CALL_TEL E_,§|_E|_RVI CE_VO CE_GROUP_C 25 Voice Group Call Service
P_CALL_TEL E_SS_FRV' CE_VO CE_BROADCA 26 Voice Broadcast Service

TpCal | Tr eat nent

Definesthe Sequence of Data El enent s that specify the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name Sequence Element Type
Cal | Tr eat ment Type TpCal | Tr eat ment Type
Rel easeCause TpRel easeCause
Addi ti onal Treat nent | nfo TpCal | Addi ti onal Treat ment I nfo

ETSI

196

TpCal | Tr eat nent Type

Defines the treatment for calls that will be handled only by the network.

ETSI ES 201 915-4 V1.1.1 (2002-02)

Name Value Description
P_CALL_TREATMENT_DEFAULT 0 Default treatment
P_CALL_TREATMENT_RELEASE 1 Release the call

P_CALL_TREATMENT_SI AR

2

Send information to the user, and release the
call (Send Info & Release)

TpCal | Addi ti onal Treat nent| nfo
Definesthe Tagged Choi ce of Data El enent s that specify the information to be sent to acall party.

Tag Element Type

TpCal | Tr eat ment Type

Tag Element Value Choice Element Type Choice Element Name
P_CALL_TREATMENT_DEFAULT NULL Undef i ned
P_CALL_TREATMENT_RELEASE NULL Undef i ned
P_CALL_TREATMENT_SI AR TpUl I nfo I nf or nat i onToSend

TpMedi aType

Defines the media type of a media stream. The values may be combined by alogical 'OR' function.
Name Value Description

P_AUDI O 1 Audio stream

P_VI DEO 2 Video stream

P_DATA 4 Data stream (e.g. T120)

ETSI

197 ETSI ES 201 915-4 V1.1.1 (2002-02)

Annex A (normative):
OMG IDL Description of Call Control SCF

The OMG IDL representation of this interface specification is contained in text files (common_cc_data.idl,
gcc_data.idl, gec_interfaces.idl, mpcc_data.idl, mpcc_interfaces.idl, mmccs.idl, cccs.idl contained in archive
es 20191504v010101p0.Z1P) which accompany the present document.

ETSI

198 ETSI ES 201 915-4 V1.1.1 (2002-02)

Annex B (informative):
Contents of 3GPP OSA R4 Call Control

All itemsin Generic Call Control, clause 6 and all itemsin MultiParty Call Control are relevant for TS 129 198-4 V4
(Release 4).

Note that there are 2 State Transition Diagrams associated with IpCall in the present document - one from TS 129 198,

the other from Parlay. They have different descriptions for the same states - these have been combined into a common
description (since e.g. Active state for IpCall is the same, regardless of which diagramiitisin).

ETSI

199

ETSI ES 201 915-4 V1.1.1 (2002-02)

History

Document history
V111 December 2001 | Membership Approval Procedure MV 20020215: 2001-12-18 to 2002-02-15
V111 February 2002 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Call Control SCF
	5 The Service Interface Specifications
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class

	6 Generic Call Control Service
	6.1 Sequence Diagrams
	6.1.1 Additional Callbacks
	6.1.2 Alarm Call
	6.1.3 Application Initiated Call
	6.1.4 Call Barring 1
	6.1.5 Number Translation 1
	6.1.6 Number Translation 1 (with callbacks)
	6.1.7 Number Translation 2
	6.1.8 Number Translation 3
	6.1.9 Number Translation 4
	6.1.10 Number Translation 5
	6.1.11 Prepaid
	6.1.12 Pre-Paid with Advice of Charge (AoC)

	6.2 Class Diagrams
	6.3 Generic Call Control Service Interface Classes
	6.3.1 Interface Class IpCallControlManager
	6.3.2 Interface Class IpAppCallControlManager
	6.3.3 Interface Class IpCall
	6.3.4 Interface Class IpAppCall

	6.4 Generic Call Control Service State Transition Diagrams
	6.4.1 State Transition Diagrams for IpCallControlManager
	6.4.1.1 Active State
	6.4.1.2 Notification terminated State

	6.4.2 State Transition Diagrams for IpCall
	6.4.2.1 Network Released State
	6.4.2.2 Finished State
	6.4.2.3 Application Released State
	6.4.2.4 No Parties State
	6.4.2.5 Active State
	6.4.2.6 1 Party in Call State
	6.4.2.7 2 Parties in Call State
	6.4.2.8 Routing to Destination(s) State
	6.4.2.9 Network Released State
	6.4.2.10 Finished State
	6.4.2.11 Application Released State
	6.4.2.12 No Parties State
	6.4.2.13 Active State
	6.4.2.14 1 Party in Call State
	6.4.2.15 2 Parties in Call State
	6.4.2.16 Routing to Destination(s) State

	6.5 Generic Call Control Service Properties
	6.5.1 List of Service Properties
	6.5.2 Service Property values for the CAMEL Service Environment.

	6.6 Generic Call Control Data Definitions
	6.6.1 Generic Call Control Event Notification Data Definitions
	6.6.2 Generic Call Control Data Definitions

	7 MultiParty Call Control Service
	7.1 Sequence Diagrams
	7.1.1 Application initiated call setup
	7.1.2 Call Barring 2
	7.1.3 Call forwarding on Busy Service
	7.1.4 Call Information Collect Service
	7.1.5 Complex Card Service
	7.1.6 Hotline Service

	7.2 Class Diagrams
	7.3 MultiParty Call Control Service Interface Classes
	7.3.1 Interface Class IpMultiPartyCallControlManager
	7.3.2 Interface Class IpAppMultiPartyCallControlManager
	7.3.3 Interface Class IpMultiPartyCall
	7.3.4 Interface Class IpAppMultiPartyCall
	7.3.5 Interface Class IpCallLeg
	7.3.6 Interface Class IpAppCallLeg

	7.4 MultiParty Call Control Service State Transition Diagrams
	7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.4.1.1 Active State
	7.4.1.2 Interrupted State
	7.4.1.3 Overview of allowed methods

	7.4.2 State Transition Diagrams for IpMultiPartyCall
	7.4.2.1 IDLE State
	7.4.2.2 ACTIVE State
	7.4.2.3 RELEASED State
	7.4.2.4 Overview of allowed methods

	7.4.3 State Transition Diagrams for IpCallLeg
	7.4.3.1 Originating Call Leg
	7.4.3.1.1 Initiating State
	7.4.3.1.2 Analysing State
	7.4.3.1.3 Active State
	7.4.3.1.4 Releasing State
	7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.4.3.2 Terminating Call Leg
	7.4.3.2.1 Idle (terminating) State
	7.4.3.2.2 Active (terminating) State
	7.4.3.2.3 Releasing (terminating) State
	7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	7.5 Multi-Party Call Control Service Properties
	7.5.1 List of Service Properties
	7.5.2 Service Property values for the CAMEL Service Environment.

	7.6 Multi-Party Call Control Data Definitions
	7.6.1 Event Notification Data Definitions
	7.6.2 Multi-Party Call Control Data Definitions

	8 MultiMedia Call Control Service
	8.1 Sequence Diagrams
	8.1.1 Barring for media combined with call routing, alternative 1
	8.1.2 Barring for media combined with call routing, alternative 2
	8.1.3 Barring for media, simple
	8.1.4 Call Volume charging supervision

	8.2 Class Diagrams
	8.3 MultiMedia Call Control Service Interface Classes
	8.3.1 Interface Class IpMultiMediaCallControlManager
	8.3.2 Interface Class IpAppMultiMediaCallControlManager
	8.3.3 Interface Class IpMultiMediaCall
	8.3.4 Interface Class IpAppMultiMediaCall
	8.3.5 Interface Class IpMultiMediaCallLeg
	8.3.6 Interface Class IpAppMultiMediaCallLeg
	8.3.7 Interface Class IpMultiMediaStream

	8.4 MultiMedia Call Control Service State Transition Diagrams
	8.5 Multi-Media Call Control Data Definitions
	8.5.1 Event Notification Data Definitions
	8.5.2 Multi-Media Call Control Data Definitions

	9 Conference Call Control Service
	9.1 Sequence Diagrams
	9.1.1 Meet-me conference without subconferencing
	9.1.2 Non-add hoc add-on with subconferencing
	9.1.3 Non-addhoc add-on multimedia
	9.1.4 Resource Reservation

	9.2 Class Diagrams
	9.3 Conference Call Control Service Interface Classes
	9.3.1 Interface Class IpConfCallControlManager
	9.3.2 Interface Class IpAppConfCallControlManager
	9.3.3 Interface Class IpConfCall
	9.3.4 Interface Class IpAppConfCall
	9.3.5 Interface Class IpSubConfCall
	9.3.6 Interface Class IpAppSubConfCall

	9.4 Conference Call Control Service State Transition Diagrams
	9.5 Conference Call Control Data Definitions
	9.5.1 Event Notification Data Definitions
	9.5.2 Conference Call Control Data Definitions

	10 Common Call Control Data Types
	Annex A (normative): OMG IDL Description of Call Control SCF
	Annex B (informative): Contents of 3GPP OSA R4 Call Control
	History

