

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12)

ETSI Standard

Open Service Access;
Application Programming Interface;

Part 4: Call Control SCF

�

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 2

Reference
DES/SPAN-120070-4

Keywords
API, OSA, IDL, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.

© The Parlay Group 2001.
All rights reserved.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 3

Contents

Intellectual Property Rights ..6

Foreword...6

1 Scope ..7

2 References ..7

3 Definitions and abbreviations...7
3.1 Definitions..7
3.2 Abbreviations ...7

4 Call Control SCF..7

5 The Service Interface Specifications..8
5.1 Interface Specification Format ...8
5.1.1 Interface Class ..8
5.1.2 Method descriptions..8
5.1.3 Parameter descriptions ..8
5.1.4 State Model...8
5.2 Base Interface ...9
5.2.1 Interface Class IpInterface ..9
5.3 Service Interfaces ...9
5.3.1 Overview ..9
5.4 Generic Service Interface ...9
5.4.1 Interface Class ..9

6 Generic Call Control Service ...10
6.1 Sequence Diagrams ..10
6.1.1 Additional Callbacks...10
6.1.2 Alarm Call ..12
6.1.3 Application Initiated Call..13
6.1.4 Call Barring 1 ...15
6.1.5 Number Translation 1 ...17
6.1.6 Number Translation 1 (with callbacks)...19
6.1.7 Number Translation 2 ...21
6.1.8 Number Translation 3 ...22
6.1.9 Number Translation 4 ...24
6.1.10 Number Translation 5 ...26
6.1.11 Prepaid ..27
6.1.12 Pre-Paid with Advice of Charge (AoC) ..29
6.2 Class Diagrams...32
6.3 Generic Call Control Service Interface Classes..33
6.3.1 Interface Class IpCallControlManager ...34
6.3.2 Interface Class IpAppCallControlManager ..38
6.3.3 Interface Class IpCall..40
6.3.4 Interface Class IpAppCall...45
6.4 Generic Call Control Service State Transition Diagrams...49
6.4.1 State Transition Diagrams for IpCallControlManager..49
6.4.1.1 Active State ...50
6.4.1.2 Notification terminated State ..50
6.4.2 State Transition Diagrams for IpCall ..50
6.4.2.1 Network Released State ..52
6.4.2.2 Finished State ..52
6.4.2.3 Application Released State ...52
6.4.2.4 No Parties State ...52
6.4.2.5 Active State ...52
6.4.2.6 1 Party in Call State...52
6.4.2.7 2 Parties in Call State ..53
6.4.2.8 Routing to Destination(s) State ...53

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 4

6.4.2.9 Network Released State ..55
6.4.2.10 Finished State ..55
6.4.2.11 Application Released State ...55
6.4.2.12 No Parties State ...55
6.4.2.13 Active State ...55
6.4.2.14 1 Party in Call State...55
6.4.2.15 2 Parties in Call State ..56
6.4.2.16 Routing to Destination(s) State ...56
6.5 Generic Call Control Service Properties ..57
6.5.1 List of Service Properties..57
6.5.2 Service Property values for the CAMEL Service Environment..58
6.6 Generic Call Control Data Definitions ...58
6.6.1 Generic Call Control Event Notification Data Definitions ...59
6.6.2 Generic Call Control Data Definitions..60

7 MultiParty Call Control Service...65
7.1 Sequence Diagrams ..65
7.1.1 Application initiated call setup ...65
7.1.2 Call Barring 2 ...67
7.1.3 Call forwarding on Busy Service..69
7.1.4 Call Information Collect Service ..72
7.1.5 Complex Card Service ..75
7.1.6 Hotline Service ...78
7.2 Class Diagrams...81
7.3 MultiParty Call Control Service Interface Classes ...82
7.3.1 Interface Class IpMultiPartyCallControlManager ..82
7.3.2 Interface Class IpAppMultiPartyCallControlManager ...86
7.3.3 Interface Class IpMultiPartyCall ..89
7.3.4 Interface Class IpAppMultiPartyCall..94
7.3.5 Interface Class IpCallLeg ...96
7.3.6 Interface Class IpAppCallLeg...103
7.4 MultiParty Call Control Service State Transition Diagrams ..106
7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager...106
7.4.1.1 Active State ...106
7.4.1.2 Interrupted State ..106
7.4.1.3 Overview of allowed methods...106
7.4.2 State Transition Diagrams for IpMultiPartyCall...106
7.4.2.1 IDLE State...107
7.4.2.2 ACTIVE State ...107
7.4.2.3 RELEASED State ...107
7.4.2.4 Overview of allowed methods...108
7.4.3 State Transition Diagrams for IpCallLeg..108
7.4.3.1 Originating Call Leg ...109
7.4.3.1.1 Initiating State ...109
7.4.3.1.2 Analysing State..111
7.4.3.1.3 Active State ...112
7.4.3.1.4 Releasing State ..114
7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD ...116
7.4.3.2 Terminating Call Leg ..117
7.4.3.2.1 Idle (terminating) State..117
7.4.3.2.2 Active (terminating) State ...118
7.4.3.2.3 Releasing (terminating) State ..121
7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD.............................123
7.5 Multi-Party Call Control Service Properties ..123
7.5.1 List of Service Properties..123
7.5.2 Service Property values for the CAMEL Service Environment..124
7.6 Multi-Party Call Control Data Definitions ...125
7.6.1 Event Notification Data Definitions ...125
7.6.2 Multi-Party Call Control Data Definitions..125

8 MultiMedia Call Control Service ...135
8.1 Sequence Diagrams ..135

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 5

8.1.1 Barring for media combined with call routing, alternative 1 ..135
8.1.2 Barring for media combined with call routing, alternative 2 ..137
8.1.3 Barring for media, simple ...139
8.1.4 Call Volume charging supervision..140
8.2 Class Diagrams...141
8.3 MultiMedia Call Control Service Interface Classes ...142
8.3.1 Interface Class IpMultiMediaCallControlManager ..142
8.3.2 Interface Class IpAppMultiMediaCallControlManager ...145
8.3.3 Interface Class IpMultiMediaCall...146
8.3.4 Interface Class IpAppMultiMediaCall..147
8.3.5 Interface Class IpMultiMediaCallLeg ..148
8.3.6 Interface Class IpAppMultiMediaCallLeg..150
8.3.7 Interface Class IpMultiMediaStream..150
8.4 MultiMedia Call Control Service State Transition Diagrams ..151
8.5 Multi-Media Call Control Data Definitions ...151
8.5.1 Event Notification Data Definitions ...151
8.5.2 Multi-Media Call Control Data Definitions..154

9 Conference Call Control Service..156
9.1 Sequence Diagrams ..156
9.1.1 Meet-me conference without subconferencing ...156
9.1.2 Non-add hoc add-on with subconferencing ..158
9.1.3 Non-addhoc add-on multimedia ...160
9.1.4 Resource Reservation ...162
9.2 Class Diagrams...163
9.3 Conference Call Control Service Interface Classes..165
9.3.1 Interface Class IpConfCallControlManager ...166
9.3.2 Interface Class IpAppConfCallControlManager...169
9.3.3 Interface Class IpConfCall..169
9.3.4 Interface Class IpAppConfCall...172
9.3.5 Interface Class IpSubConfCall ...173
9.3.6 Interface Class IpAppSubConfCall...177
9.4 Conference Call Control Service State Transition Diagrams ...178
9.5 Conference Call Control Data Definitions ...178
9.5.1 Event Notification Data Definitions ...178
9.5.2 Conference Call Control Data Definitions..178

10 Common Call Control Data Types...182

Annex A (normative): OMG IDL Description of Call Control SCF ...191

Annex B (informative): Contents of 3GPP OSA R4 Call Control ...192

History ..193

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 4 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), as identified below. The API specification (ES 201 915) is structured in the following
parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF";

Part 10: "Connectivity Manager SCF";

Part 11: "Account Management SCF";

Part 12: "Charging SCF".

The present document has been defined jointly between ETSI, The Parlay Group [24] and the 3GPP, in co-operation
with a number of JAIN™ Community [25] member companies.

The present document forms part of the Parlay 3.0 set of specifications.

http://webapp.etsi.org/IPR/home.asp

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 7

1 Scope
The present document is part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Call Control SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data Definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References
The references listed in clause 2 of ES 201 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 201 915-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ES 201 915-1 apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in ES 201 915-1 apply.

4 Call Control SCF
Two flavours of call control APIs have been included in Rel.4. These are the generic call control and the multi-party
call control. The generic call control is the same API as was already present in the previous specification for Rel.99
(TS 129 198 V3.2.0) and is in principle able to satisfy the requirements on Call Control APIs for Rel.4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay Call Control Working group with
collaboration from JAIN has been focussed on the Multi-party call control API. A number of improvements on call
control functionality have been made and are reflected in this API. For this it was necessary to break the inheritance that
previously existed between Generic and Multi-party call control.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 8

The joint call control group has furthermore decided that the multi-party call control is to be considered as the future
base call control family and the technical work will not be continued on Generic Call control. Errors or technical flaws
will of course be corrected.

The following clauses describe each aspect of the Call Control Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

• The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the the transition between states in the SCF. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

• The Data Definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

5 The Service Interface Specifications

5.1 Interface Specification Format
This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method "call") is described. All methods in the API return a value of type TpResult, indicating,
amongst other things, if the method invocation was successfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req'
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 9

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 10

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not uses SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6 Generic Call Control Service

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g. because the application crashed, the other call back interface is used
instead.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 11

first instance : (Lo gical
Vie w::Ip App Logic)

second instance :
(Logical View::IpA...

 : IpAppCallControlManager : IpApp Call Cont rolMan ager : IpCallControlManag er

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotfication is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotfication request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g. always first try the first registered or use some kind of round robin
scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 12

6.1.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as
a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

 :
IpCallControlManager

 : IpAppCall : IpCall : IpUICall :
IpAppUIManager

 :
IpAppUICall

 : (Logical
View::IpAppLogic)

1: new()

2: createCall()

3: new()

4: routeReq()

5: routeRes()

9: sendInf oReq()

6: 'f orward ev ent'

: createUICall()

8: new()

10: sendInf oRes()

11: 'f orward ev ent'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to
receive the 'reminder message'.

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 13

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 14

 :
IpCallControlManager

 : IpAppCall : IpCall : (Logical
View::IpAppLogic)

5: routeRes()

1: new()

2: createCall()
3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 15

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not
exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is accepted and the call is routed to the original called party.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 16

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :
IpUIManager

 :
IpCal lControlManager

 :
IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall ()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a message
(not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an
object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are
used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 17

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic.

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 18

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager: (Logical
View::IpAppLogic)

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 19

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the framework.

For illustation, in this sequence the callback references are set explictly. This is optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 20

 :
IpCallControlManager

: IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'translate number'

9: routeReq()

5: 'forward event'

: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7 : setCal lb ackWi thSessionID()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have a
explicit IpAppCallControlManager reference specified in the enableCallNotification.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 21

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object.

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically released.

 : (Logical
View::IpAppLogic)

 : IpAppCallCont rolManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'
8: routeRes()

7: routeReq()

10: release()

1: new()

3: cal lEventNot ify()

4: 'forward event'

5: new()

2: enableCallNotification()

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 22

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. If the translated number being routed to does not answer or is busy then the call is
automatically routed to a voice mailbox.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 23

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

8: routeRes()

6: 'translate number'

7: routeReq()

9 : 'forward event'

10: 'translate number'

11: routeReq()

12: routeRes()

13: 'forward event'

1: new()

: cal lEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

4: deass ignCall ()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 24

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the framework. Before the call is routed to the translated number, the application requests for all call related
information to be delivered back to the application on completion of the call.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 25

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deassignCall()

11: callEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When a
new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 26

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic.

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

6.1.10 Number Translation 5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as a result of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 27

 : IpAppCall : IpAppCallControlManager : IpCallIpAppLogic : IpCallControlManager

1: new()

2: enableCallNotification()

3: callEventNotify()

4: 'forward event '

5: new()

6: 'check status'

7: appropriate release cause

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

6.1.11 Prepaid

This sequence shows a Pre-paid application.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 28

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will received an announcement before his final timeslice.

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICal l : IpUIManager : IpAppUICall : IpApp Call

1: new()

2: enableCal lNotification()

3: callEventNotify()4: "forward event"

5: new()

7: routeReq()

8: superviseCallRes()
9: "forward event"

10: supe rviseCallReq()

11: superviseCal lRes()
12: "forward event"

13: supe rviseCallReq()

14: s uperviseCal lRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: sendInfoRes()
19: "forward event"

21: s uperviseCallReq()

22: s uperviseCal lRes()23: "forward event:

24: release()

16: createUICall()

20: release()

1: This message is used by the application to create an object implementing the IpAppGenericCallControlManager
interface.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 29

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created.

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played
only to the leg of the A-party, the B-party will not hear the announcement.

15: The message is forwarded to the application.

16: A new UICall object is created and associated with the controlling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends.

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 30

Prepaid : (Logical
View::Ip AppLogic)

 : IpAppCallControlManager : IpCal lCon tro lMan ager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: supervis eCallReq()

24: superviseCallReq()

27: release()

21: sendInfoReq()

18: new()

22: sendIn foRes ()
23: "forward event"

: new()

9: superviseCallRes()
0 : "forward event"

12: superviseCallRes()3 : "forward event"

14: setAdviceOfCharge()

16: s uperviseCallRes()
7 : "forward event"

25: superviseCallRes()
26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 31

that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created.

6: The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g. 18:00
hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g. 19:00 hours) the application sends a new AOC with the tarif switch time. Again, at
the tariff switch time,the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16: When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is
played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created.

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the calling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UICall object is terminated in the gateway and no further communication is possible between the UICall and the
application.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 32

6.2 Class Diagrams
This class diagram shows the interfaces of the generic call control service package.

IpCallControlManager

createCall()
enableCallNotification()
disableCallNotification()
setCallLoadControl()
changeCallNotification()
getCriteria()

(from gccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

<<Interface>>

IpCall

routeReq()
release()
deassignCall()
getCallInfoReq()
setCallChargePlan()
setAdviceOfCharge()
getMoreDial ledDigitsReq()
superviseCallReq()

(from gccs)

<<Interface>>

1 0..n

Figure 1: Service Interfaces

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>> associations; e.g. the IpCallControlManager interface uses the IpAppGenericCallControlManager , by means
of calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 33

IpAppCall

routeRes()
routeErr()
getCallInfoRes()
getCallInfoErr()
superviseCallRes()
superviseCallErr()
callFaultDetected()
getMoreDialledDigitsRes()
getMoreDialledDigitsErr()
callEnded()

(from gccs)

<<Interface>>

IpCall
(from gccs)

<<Interface>>
IpCallControl

Manager
(from gccs)

<<Interface>>

<<uses>>

IpInterface
<Interface>>

1 0..n

IpAppCallControlManager

callAborted()
callEventNotify()
callNotificationInterrupted()
callNotificationContinued()
callOverloadEncountered()
callOverloadCeased()

(from gccs)

<Interface>>

<<uses>>

1 0..n

Figure 2: Application Interfaces

6.3 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

The adopted call model has the following objects. Note that not all of these concepts are used in the generic call.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 34

 * a call object. A call is a relation between a number of parties. The call object relates to the entire call view
from the application. E.g. the entire call will be released when a release is called on the call. Note that different
applications can have different views on the same physical call, e.g. one application for the originating side and
another application for the terminating side. The applications will not be aware of each other, all
'communication' between the applications will be by means of network signalling. The API currently does not
specify any feature interaction mechanisms.

 * a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is
routed. Before that the leg object is IDLE and not yet associated with the address.

 * an address. The address logically represents a party in the call.

 * a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently
not addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g. in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e. only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e. the connection is being established) or connected to the call (i.e. the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

For the generic call control service, only a subset of the model is used; the API for generic call control does not give
explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service.
Furthermore, the generic call is restricted to two party calls, i.e. only two legs are active at any given time. Active is
defined here as 'being routed' or connected.

The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network.
Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this
way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 35

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a callAborted() to the application (the
application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 36

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA.The criteria are said to overlap if both originating and terminating ranges overlap
and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallBack().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 37

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignementID can be
used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e. until disabled by the application).

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 38

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method.

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 39

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
of which forms a part of the service level agreement), then the call in the network shall be released and callEnded()
shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPT, the application writer
should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through an
explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. This parameter will be null if the notification is in NOTIFY mode.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is in NOTIFY mode.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 40

Parameters
No Parameters were identified for this method

Method
callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method.

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased.

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 41

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g. in the multi-party call
control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g. when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 42

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 43

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setCallChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address.
Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 44

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 45

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.4 Interface Class IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method
routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED,

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 46

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can
be used to correlate the response with the request.

Method
routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

Method
getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 47

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 48

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 49

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g. getCallInfoRes) related to the call. The application is expected to deassign the call object after
having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

Act ive

Creat ion of
CallControlManager
by Service Factory

Notification terminated

"new"

enableCallNoti ficat ion

disableCallNotification

"a call object has terminated abnormally" ÎpAppCallControlManager.callAborted

"arrival of call related event"[noti fication active for this call event] /
create a Call object ÎpAppCallControlManager.callEventNotify

disableCallNotification
"a call object has terminated abnormally"

ÎpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"
 ÎpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"
 IpAppCallControlManager.callNotificationInterrupted

createCall / create a Call object

Figure 3: Application view on the Call Control Manager

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 50

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the applicatoin to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

6.4.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object. This diagram shows only the part of the state
transition diagram valid for 3GPP (UMTS) release 99.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 51

Network Released

Finished

Applicat ion
Released

release
deassignCall

timeout ĉallFaultDetected("timeout on release")

In state No Parties and Finished, a timer
should prevent the object from occupuing
resources.
Upon expiry of this timer, callEnded() should
be invoked with a release cause of 102
(Recovery on timer expiry). In case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked
on the IpAppCallControlManager as this is
an abnormal termination

Active

2 Parties in
Call

1 Party in
Call

2 Parties in
Call

1 Party in
Call

superviseCallReq

setAdviceOfCharge
IpAppCallControlManager.callEventNotify

deassignCall

release

"call ends : calling party disconnects" ĉallEnded

"call ends: calling party abandoned" ĉallEnded
"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ĉallFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ĉallEnded

"requested information ready"
ĝetCallInfoRes, superviseCallRes

[no reports requested with
getCallInfoReq AND
superviseCallReq]

"fault in retrieval of information" ĝetCallInfoErr, superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND
superviseCallReq]

"requested information ready" ĝetCallInfoRes,
superviseCallRes

release

"fault in retrieval of informat ion" ĝetCallInfoErr, superviseCallErr

"call supervision event"^superviseCallRes

"network event received for which was monitored[routeRes]

setCallChargePlan
getCal lInfoReq

"answer"

"connection to called party
unsuccessful"[monitor mode = interrupt]

r̂outeRes
"routing aborted or invalid address" r̂outeErr

"disconnect from called party" [monitor mode =
interrupt] r̂outeRes, getCallInfoRes,

superviseCallRes

routeReq

Figure 4: 3GPP

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 52

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used.In case the application has not requested additional call related information immediately a transition is made to
state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCallChargePlan(). The application can request for charging related information by calling
getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is
also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

6.4.2.5 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

6.4.2.6 1 Party in Call State

In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInforeq(). The
setCallChargePlan() and getCallInforeq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application is informed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issueing a routeReq() the application
can request a connection to a second call party by calling the operation routeReq() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
is ended or a transition is made back to the Routing to Destinations substate. When the second party answers the call, a
transition will be made to the 2 Parties in Call state.

In this state user interaction is possible.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 53

For 3GPP, the following text applies:

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state.

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.7 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested
reports are sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and
callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking
the callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

6.4.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

The state transition diagram shows the application view on the Call object.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 54

Network Released

Fini shed

Ap pli cati on
Released

In state Finshed and No Parties, a timer
mechanism should prevent the object from
occupying resources. Upon the expiry of
this timer, callEnded() should be invoked
with a release cause of 102 (Recovery on
timer expiry). In the case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked
on the IpAppCallControlManager as this is
an abnormal termination.

No Parties

setCallChargePlan

superviseCallReq
g etCal lInf oRe q

setAdviceOfCharge

rel ease

deassign

Active

Routing to
Destination(s)

2 Parties in
Ca ll

1 Party in
Call

Routing to
Destination(s)

2 Parties in
Ca ll

1 Party in
Call

"conn ectio n to call ed party unsuccessful "[
monitor mode = interrupt] ^routeRes

"disconnect from called party"[monitor mode = interrupt]
^routeRes, getCallInfo Res, supervi seCallRes

routeReq[on ly 1 out standi ng routeReq]

routeReq

getMoreDialledDigitsReq[no routeReq outstanding]

"routing aborted or invalid address" ^routeErr"answer"

"Di gi ts coll ected " ̂ get MoreDiall edDigitsRes

"Error in collecting digits" ^getMoreDialledDigitsErr

"party released"

" party rel eased"[n o more outstand ing
requests]

"answer from called party"

"requests failed"[no more outstanding
routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more
o utstanding ro uteReq ope rat io ns] r̂outeRe s

setAdviceOfCharge

setCallChargePlan
getCal lInfoReq

supervi seCallReq

createCall

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEventNotify(Answer from call party)

routeReq[number of routing requests < 2]

deassignCall

release

timeout ^callFaultDetected("timeout on release")

deassignCall

rele ase

"fa ult i n ret rieval of informa tion"
^getCallInfoErr, superviseCallErr

[no reports requested with getCallInfoReq AND superviseCallReq]

"requested information ready"
^getCallInfoRes, superviseCallRes

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"re quested inf ormat ion read y"
^getCallInfoRes, supervi seCal lRes

[no re ports req uested with get Call InfoReq AND supervi seCallReq]

release

" cal l end s: ca ll ing pa rty aban doned" ^cal lEnd ed

"call ends : call ing party disconnects" ^callEnded

"fau lt de tected"[f ault can not be commun icate d wi th net work event] ̂ call Faul tDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

deassignCall

Figure 5: Application view on the IpCall object

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 55

6.4.2.9 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used.In case the application has not requested additional call related information immediately a transition is made to
state Finished.

6.4.2.10 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

6.4.2.11 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.12 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCallChargePlan(). The application can request for charging related information by calling
getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is
also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

6.4.2.13 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

6.4.2.14 1 Party in Call State

In this state there is one party in the call.

In this state the application can request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInforeq(). The
setCallChargePlan() and getCallInforeq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application is informed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issueing a routeReq() the application
can request a connection to a second call party by calling the operation routeReq() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
is ended or a transition is made back to the Routing to Destinations substate. When the second party answers the call, a
transition will be made to the 2 Parties in Call state.

In this state user interaction is possible.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 56

For 3GPP, the following text applies:

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state.

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.15 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested
reports are sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and
callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking
the callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

6.4.2.16 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 57

6.5 Generic Call Control Service Properties

6.5.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by

which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plan (defined in TpAddressPlan.) e.g.
{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a reference to a Call
object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a call .

Value = FALSE: User Interaction can be performed in case there is only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type
TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description
P_TRIGGERING_ADDRESSES ADDRESS_RANGE_SET Indicates for which numbers the notification may be set. For terminating

notifications it applies to the terminating number, for originating
notifications it applies only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating and/or
terminating triggers in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in interrupt and/or
notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or fill for legs
in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan indicator.
Allowed values:

{P_CHARGE_PER_TIME,

P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be indicated
with integers) to a logical network chargeplan indicator. When the
chargeplan supports indicates P_CHARGE_PLAN then only chargeplans in
this mapping are allowed.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 58

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE shall have the Service Properties outlined above
set to the indicated values:

P_OPERATION_SET = {
"IpCallControlManager.enableCallNotification",
"IpCallControlManager.disableCallNotification",
"IpCallControlManager.changeCallNotification",
"IpCallControlManager.getCriteria",
"IpCallControlManager.setCallLoadControl",
"IpCall.routeReq",
"IpCall.release",
"IpCall.deassignCall",
"IpCall.getCallInfoReq",
"IpCall.setCallChargePlan",
"IpCall.setAdviceOfCharge",
"IpCall.superviseCallReq",
}

P_TRIGGERING_EVENT_TYPES = {
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,
P_EVENT_GCCS_CALLED_PARTY_BUSY,
P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,
P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY,
P_EVENT_GCCS_ROUTE_SELECT_FAILURE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_REPORT_ANSWER,
P_CALL_REPORT_BUSY,
P_CALL_REPORT_NO_ANSWER,
P_CALL_REPORT_DISCONNECT,
P_CALL_REPORT_ROUTING_FAILURE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

6.6 Generic Call Control Data Definitions
The present document provides the GCC data definitions necessary to support the API specification.

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text
represents Hypertext links.

The general format of a Data Definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 59

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

6.6.1 Generic Call Control Event Notification Data Definitions

TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event
This can be used for hot-line features. In case this event is set in
the TpCallEventCriteria, only the originating address(es) may
be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected
The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be done in the
application (see also the getMoreDialledDigits method on the
call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed
The dialled number is a valid and complete number in the
network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable (e.g. the called party has a
mobile telephone that is currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 1 Indicates that the notification is related to the originating user in the call.

P_TERMINATING 2 Indicates that the notification is related to the terminating user in the call.

TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 60

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or a address range for which the notification is
requested.

CallEventName TpCallEventName Name of the event(s)

CallNotificationType TpCallNotificationType Indicates whether it is related to the originating or the terminating user in the
call.

MonitorMode TpCallMonitorMode Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a

legal value here.

TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

CallEventName TpCallEventName

CallNotificationType TpCallNotificationType

MonitorMode TpCallMonitorMode

6.6.2 Generic Call Control Data Definitions

IpCall

Defines the address of an IpCall Interface.

IpCallRef

Defines a Reference to type IpCall.

IpAppCall

Defines the address of an IpAppCall Interface.

IpAppCallRef

Defines a Reference to type IpAppCall

IpAppCallRefRef

Defines a Reference to type IpAppCallRef.

TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 61

Sequence Element
Name

Sequence Element
Type

Sequence Element Description

CallReference IpCallRef This element specifies the interface reference for the call object.

CallSessionID TpSessionID This element specifies the call session ID of the call.

IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

IpCallControlManager

Defines the address of an IpCallControlManager Interface.

IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

 Tag Element Type
 TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 62

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element
Name

Sequence Element
Type

Description

CallLegSessionID TpSessionID The leg that initiated the release of the call.
If the call release was not initiated by the leg, then this value is set to –1.

Cause TpCallReleaseCause The cause of the call ending.

TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P_CALL_FAULT_UNDEFINED 0 Undefined

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has been
sent to the application, but the application did

not explicitly release or deassign the call object,
within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not
instruct the gateway how to handle the call
within a specified time, after the gateway

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element
Name

Sequence Element
Type

Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-on call, was
started as a result of a routeReq.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was connected to the
resource.

This data element is only valid when information on user
interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was connected to the
destination (i.e. when the destination answered the call).

If the destination did not answer, the time is set to an empty
string.

This data element is invalid when information on user
interaction is reported.

CallEndTime TpDateAndTime The date and time when the call or follow-on call or user
interaction was terminated.

Cause TpCallReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 63

TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element
Name

Sequence Element
Type

Value TpInt32
Location TpInt32

NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by
Application

Cause Value from
Network

P_CALL_REPORT_BUSY 17 17

P_CALL_REPORT_NO_ANSWER 19 18,19,21

P_CALL_REPORT_DISCONNECT 16 16

P_CALL_REPORT_REDIRECTED 23 23

P_CALL_REPORT_SERVICE_CODE 31 NA

P_CALL_REPORT_ROUTING_FAILURE 3 Any other value

TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

MonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime
CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types
of reports.

 Tag Element Type
 TpCallReportType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY TpCallReleaseCause Busy

P_CALL_REPORT_NO_ANSWER NULL Undefined

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure

TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 64

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallReportType TpCallReportType
AdditionalReportCriteria TpCallAdditionalReportCriteria

TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

 Tag Element Type
 TpCallReportType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_REPORT_UNDEFINED NULL Undefined
P_CALL_REPORT_PROGRESS NULL Undefined
P_CALL_REPORT_ALERTING NULL Undefined
P_CALL_REPORT_ANSWER NULL Undefined
P_CALL_REPORT_BUSY NULL Undefined
P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration
P_CALL_REPORT_DISCONNECT NULL Undefined
P_CALL_REPORT_REDIRECTED NULL Undefined
P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode
P_CALL_REPORT_ROUTING_FAILURE NULL Undefined

TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFINED 0 Undefined.
P_CALL_REPORT_PROGRESS 1 Call routing progress event:an indication from the network that progress has been made in

routing the call to the requested call party. This message may be sent more than once, or may
not be sent at all by the gateway with respect to routing a given call leg to a given address.

P_CALL_REPORT_ALERTING 2 Call is alerting at the call party.
P_CALL_REPORT_ANSWER 3 Call answered at address.
P_CALL_REPORT_BUSY 4 Called address refused call due to busy.
P_CALL_REPORT_NO_ANSWER 5 No answer at called address.
P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has

ended. When the call is ended, the callEnded method is called. This event can occur both
when the called party hangs up, or when the application explicitly releases the leg using

IpCallLeg::release() This cannot occur when the app explicitly releases the call leg and the
call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network that the call has been
redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received.
P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more than once during the routing
of a call.

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 65

Sequence Element
Name

Sequence Element
Type

ReleaseCause TpCallReleaseCause
AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

TpCallEventCriteriaResultSetRef

Defines a refernce to TpCallEventCriteriaResultSet.

TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

EventCriteria TpCallEventCriteria The event criteria that were specified by the application.
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

7 MultiParty Call Control Service
The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methods is given in clause 7.5.

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is
created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are reqiested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 66

PartyB :
IpCallLeg

 :
IpMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

PartyA :
IpCallLeg

 : (Logical
View::IpAppLogic)

4: setCallback()

1: new()

2: createCall()

3: new()

7: ev entReportReq()

 :
IpAppUICall

 : IpUICall

11: sendInf oReq()

15: ev entReportReq()

18: abortAct ionReq()

5: createCallLeg()
6: new()

13: createCallLeg()

14: new()

AppPartyA :
(IpAppMultiPartyCallLeg)

AppPartyB :
(IpAppMultiPartyCallLeg)

9: ev entReportRes ()

17: ev entReportRes ()

8: routeR eq()

16: routeReq()

12: sendInf oRes()

 :
IpUIManager

10: createUICall()

19: deassignCall()

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 67

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.

8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.

11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. This will also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The
code is rejected and the call is cleared.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 68

 : (Logical
View::IpAppLogic)

 :
IpAppMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

 : IpUICall :
IpUIManager

 : IpMultiPartyCallControlManager :
IpAppUICa ll

8: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oReq()

12: sendInf oRes()

15: release()

1: new()

3: reportNotif ication()

4: 'f orward ev ent'

5: new()

10: 'f orward ev ent'

13: 'f orward ev ent'

2: createNotif ication()

7: createUICall()

14: release()

6: getCallLegs()

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 69

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: This message is used to create a UICall object that is associated with the incoming leg of the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets
up a connection towards a C party. The C party can for instance be a voicemail system.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 70

App CCM :
IpAppMultiPartyCallControlManager

AppLogic App Leg C :
pAppCal lLeg

App Leg A :
IpAppCallLeg

App Call :
IpAppMultiPartyCall

CCM :
IpMultiPartyCallControlManager

Call :
IpMultiPartyCall

Leg A :
IpCallLeg

Leg B :
IpC allLeg

SCSLeg C :
IpCallLeg

1: "new"

12: "forward event"

15: "new"

14: "new"

13: "new"

2: createNotification()

5: "check if application interested"

11: reportNoti fi cation()

6: "new"

16: createCallLeg()

7: "new"

8: "state transition to Active"

23: continueProcessing()

24: "inform Call object"

3: "arm trigger"

4: "trigger event: Busy"

25: "continue call processing"

9: "new"
0: "state transit ion to Releas ing"

17: "new"

18: "state transition to Idle"

19: eventReportReq()

20: routeReq()

21: "state transition to Active"

22: "inform Call object"

26: "C-party answer"

27: eventReportRes()

28: "forward event"

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 71

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

3:

4: When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing
the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

5:

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

9:

10:

11: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt".

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

15: A new AppCallLegC is created to receive callbacks for another leg.

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

17:

18:

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.

20: The application requests to route the terminating leg to reach the associated party C.

The application may request if so desired a call redirection by including the original destination address (field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo) in the request to route the call leg to the
remote party C.

21:

22:

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for example if it is not interested in possible
requested call leg information (getInfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLegB is notified and the event is forwarded to the application logic
(not shown).

24:

25: The application requests to resume call processing for the originating call leg.

As a result call processing is resumed in the network that will try to reach the associated party B.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 72

26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number translation of the dialed number and
special charging (e.g. a premium rate service).

Additional call leg related information is requested with the getInfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and additional
call leg related information is requested with the getInfoReq and superviseReq methods in order to illustrate the
information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which information is sent to the application: network release event followed by
possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally the destroy of
the call object (callEnded).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 73

AppLogic App Leg B :
IpAppC al lLeg

App Leg A :
IpAppCallLeg

App Call :
IpAppMultiPartyCall

App CCM :
IpAppMultiPartyCallControlManager

CCM :
pM ultiPartyCall ControlM anager

Call :
IpMultiPartyCall

Leg A :
IpCallLeg

Leg B :
IpCallLeg

SCS

1: "new"

2: c reateNoti fi cat ion()
3: "arm trigger"

4: "trigger event: Analysed Information"

5: "check if application interested"

6: "new"
7: " new"

8: "state transition to Active"

9: reportNotification()
0: "forward event"

11: "new"

12: "new"

13: "new"

14: createCallLeg()
15: "new"

16: "state transi tion to Idle"

7: eventReportR eq()

18: superviseReq()

19: getInfoReq()

20: setChargePlan()

21: routeReq()

22: "state transition to Active"

23: "inform Call object"

24: eventReportReq()

25: getInfoReq()

26: continueProcessing()

27: "inform Call object"

28: "continue call processing"

29: "B party answer"
30: eventReportRes()

31: "forward event"

32: "Disconnect f rom A- par ty"

33: "state transition to Releasing"

34: eventReportRes()
35: "forward event"

36: getInfoRes()

37: "forward event"

38: callLegEnded()

39: "forward event"
40: "inform Call object"

41: "Disconnect from B-party"

42: "state transition to Releasing"

43: eventReportRes()

45: getInfoRes()

47: superviseRes()

49: callLegEnded()

44: "forward event"

46: "forward event"

48: "forward event"

50: "forward event"

51: "inform Call object"

52: callEnded()
53: "forward event"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

3:

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 74

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object.

5:

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Active.

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt".

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.

16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party b for example to calculate charging.

20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22: The Call Leg instance transits to state Active.

23:

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.

26: The application requests to resume call processing for the originating call leg.

As a result call processing is resumed in the network that will try to reach the associated party B.

27:

28:

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state".

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 75

33:

34: The application IpAppLegA is notified, as the release event has been requested to be reported in Notify mode.

35: The event is forwarded to the application logic

36: The call leg information is reported.

37: The event is forwarded to the application logic.

38: The origination call leg is destroyed, the AppLegA is notified.

39: The event is forwarded to the application logic

40:

41: When the B-party releases the call or the call is released as a result of the release request from party A, i.e. a
"originating release" indication, the terminating call leg is notified and makes a transition to "releasing state".

42:

43: If a network release event is received being a "terminating release" indication from called party B, the application
IpAppLegB is notified, as the release event from party B has been requested to be reported in NOTIFY mode.

NOTE: No report is sent if the release is caused by propagation of network release event being a "originating
release" indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The call leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg information is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLegB is notified.

50: The event is forwarded to the application logic.

51:

52: Assuming the IpCall object has been informed that the legs have been destroyed, the the IpAppMultiPartyCall is
notified that the call is ended .

53: The event is forwarded to the application logic.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN
code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set
on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the
application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which
causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to
which it is then routed.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 76

 : (Logical
View::IpAppLogic)

 :
IpAppMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

 : IpUICallPartyB' :
IpCallLeg

AppParty B' :
IpAppCallLeg

AppPartyB :
IpAppCallLeg

 :
IpUIManager

AppPartyA :
IpAppCallLeg

PartyB :
IpCallLeg

 :
IpMultiPartyCallControlManager

PartyA :
IpCallLeg

 :
IpAppUICall

27: createAndR outeCall()

8: sendInf oAndCollectReq()

10: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oAndCollectRes()

13: ev entReportReq()

1: new()

3: reportNotif ication()

4: 'f orward ev ent'

5: new()

23: release()

21: ev entReportRes()

24: sendInf oAndCollectReq()

25: sendInf oAndCollectRes()

12: setCallbackWithSessionID()

2: createNotif i cation()

7: createUICall()

6: getCallLegsf ()

15: createCallLeg()

17: routeReq()

16: ev entReportReq()

14: new()

20: attachMedia()

18: ev entReportRes()
19: "f orward ev ent"

22: "f orward ev ent"

30: eventReportRes()
31: "f orward ev ent"

32: callEnded()
33: "f orward ev ent"

34: userInteractionFaultDetected()
35: "f orward ev ent"

36: deassignCall()

26: new ()

28: new ()

29: ev entReportRes()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 77

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of message 3.

6: This message retuns the call legs currently in the call. In principle a reference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.

8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger for follow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will try to reach the associated party.

18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not
connected to the other parties in the call. In order to allow inband communication between the new party and the other
parties in the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.

23: This message releases the called party.

24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.

27: The call is then forward routed to the new destination party.

28: As a result a new Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 78

31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-
defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination
party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
purposes.

NOTE: This service could be extended as follows:

 Sometime during the call the calling party enters '#5' which causes the called leg to be released. The
calling party is now prompted to enter the address of a new destination party, to which it is then routed.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 79

AppLogic App Leg B :
IpAppCallLeg

App Leg A :
IpAppCallLeg

App Cal l :
IpAppMultiPartyCall

App CCM :
IpAppMultiPartyCallControlManager

CCM :
IpMultiPartyCallControlManager

Call :
IpMultiPartyCall

Leg A :
IpCallLeg

Leg B :
IpCallLeg

SC S

13: "new"

32: "forwar d event"

30: "forwar d event"

12: "new"

37: "forward event"

11: "new"

40: "forwar d event"

1: "new"

10: "forwar d event"

2: createNotification()

5: "check if application interested"

9: reportNotification()

6: "new"

14: createCallLeg()

39: callEnded()

7: "new"

8: "state transition to Initiating"

21: eventReportReq()

22: continueProcessing()

23: "inform Call object"

35: "state transition to Releasing"

36: callLegEnded()

38: "inform Call object"

15: "new"

16: "state transition to Idle"

17: eventReportReq()

18: routeReq()

19: "state transition to Active"

20: "inform Call object"

28: "state transition to Releasing"

29: eventReportRes()

31: callLegEnded()

33: "inform Call object"

3: "arm trigger"

4: "trig ger event: Originating C all Attempt Authorised"

24: "continue call pr ocessing"

34: "Disconnect from A-party"

27: "Disconnect fr om B-party"

25: event "address_analysed"

26: "state transition to Active"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

3:

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

5:

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 80

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt".

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.

16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.

20:

21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

22: The application requests to resume call processing for the originating call leg.

As a result call processing is resumed in the network that will try to reach the associated party as specified by the
application (E.164 number provided by application).

23:

24:

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested
this event to be reported.

26:

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "Releasing state".

28:

29: The application is notified, as the release event has been requested to be reported in Notify mode.

30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLegB is notified.

32: This answer message is then forwarded.

33:

34: When the call release ("terminating release" indication) is propagated in the network toward the party A, the
originating call leg is notified and makes a transition to "releasing state". This release event (being propagated from
party B) is not reported to the application.

35:

36: When the originating call leg is destroyed, the AppLegA is notified.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 81

37: The event is forwarded to the application logic

38:

39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

7.2 Class Diagrams
The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

IpAppMultiPartyCallControlMa
nager

reportNotification()
callAborted()
managerInterrupted()
managerResumed()
callOverloadEncountered()
callOverloadCeased()

(f rom mpccs)

<<Interface>>

IpAppMultiPartyCall

getInfoRes()
getInfoErr()
superviseRes()
superviseErr()
callEnded()
createAndRouteCallLegErr()

(from mpccs)

<<Interface>>

IpMultiPartyCallControlManager

createCall()
createNotifi cation()
destroyNo tificati on()
changeNoti fication ()
getNotificat ion()
setCallLoadControl()

(f rom mpccs)

<<Interface>>
IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>
IpCall Leg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMedia()
detachMedia()
getLastRedirectedAddress()
continueProcessing()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

1 0..n

<<uses>>

1 0..n

pAp pCal lLe g

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
superviseRes()
superviseErr()
callLegEnded()

(from mpccs)

<Interface>>

1 0..n

<<uses>>

1 0..n

<<uses>>

IpInterface

(from csapi)

<<Inte rface>>

1 0..n

Figure 6: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 82

IpMultiPartyCallControl
Manager

createCall()
createNotification()
destroyNotification()
changeNotification()
getNotification()
setCallLoadControl()

(from mpccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

(from csapi)

<<Interface>>

IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

1 0..n

IpCallLeg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMedia()
detachMedia()
getLastRedirectedAddress()
continueProcessing()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>

1 0..n

Figure 7: Service Interfaces

7.3 MultiParty Call Control Service Interface Classes
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do
not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls,
than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 83

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives thye
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 84

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used and the same NotificationCallType is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the
error code P_INVALID_ASSIGNMENTID. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 85

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assigment ID both of them will be disabled.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the nofications that have been requested by the application.

Parameters
No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignementID can be
used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 86

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e. until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 87

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of
the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration
of which forms a part of the service level agreement), then the call in the network shall be released and callEnded()
shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. This parameter will be null if the
notification is being given in NOTIFY mode.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. From the
notificationInfo can be found on whose behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 88

Method
managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporary
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
managerResumed()

This method indicates to the application that event notifications possibleand method invocations are enabled.

Parameters
No Parameters were identified for this method.

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 89

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 90

Method
createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed.
Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through
the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 91

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getInfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 92

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address.
Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 93

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 94

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: IpInterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : void

Method
getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 95

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 96

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Method
createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an
unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this
operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 97

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMedia (callLegSessionID : in TpSessionID) : void

detachMedia (callLegSessionID : in TpSessionID) : void

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddess : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 98

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer", "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 99

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are
deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference:Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 100

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMedia()

This method will detach the call leg from its call, i.e. this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Returns redirectedAddress: Specifies the last address where the call leg was redirected to.

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 101

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
setChargePlan()

Set an operator specific charge plan for the cal leg. The charge plan must be set before the call leg is routed to a target
address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tarrifSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 102

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 103

7.3.6 Interface Class IpAppCallLeg

Inherits from: IpInterface

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method
eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

Method
eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 104

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
routeErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 105

Method
superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

Method
superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g. getInfoRes) related to the call leg. The call leg will be destroyed after returning from this method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the reason the connection is terminated.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 106

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager

ActiveInterrupted

'new'

 ^managerResumed

IpAccess.terminateServiceAgreement

 ^managerInterrupted

IpAccess.terminateServiceAgreement

Figure 8: Application view and the Multi-Party Call Control Manager

7.4.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.4.1.2 Interrupted State

When the Manager is in the Interrupted state it is temporarily unavailable for use. Events requested cannot be forwarded
to the application and methods in the API cannot successfully be executed. A number of reasons can cause this: for
instance the application receives more notifications from the network than defined in the Service Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable
Active createCall,

createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl

Interrupted getNotification

7.4.2 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 107

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_MONITOR_MODE_INTERRUPT, an activity timer is started. The activity
timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this activity
timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the case
when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the
IpAppMultiPartyCallControlManager as this is an abnormal termination.

IDLE

ACTIVE

RELEASED

IpMultiPartyCallManager.createCall

[incoming call]
^IpAppMultiPartyCallControlManager.reportNotification

release

'last leg released'

 ^callEnded

deassign

A ti mer mechanisem pre ve nts tha t the obje ct
kee ps occupyin g resources. In case the tim er
expires, callEnde d() is in vo ke d on th e
IpA ppM ult iP art yCal l with a rele ase cause o f
P_TIMER_E XPIRY. In the case when no
IpA ppM ult iP art yCal l is a va ila bl e on which to invoke
callEnded (), ca llAborted () shall be invoked on the
IpA ppM ult iP art yCal lCon tro lManage r a s this is an
abnormal termination.

createCallLeg

createAndRouteCallLeg

de assig n

Figure 9: Application view on the MultiParty Call object

7.4.2.1 IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
state.

7.4.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment.

7.4.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the
requested call information will be collected and returned through getInfoReq() and / or superviseReq(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
state.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 108

7.4.2.4 Overview of allowed methods

Methods applicable Call Control Call
State

Call Control Manager
State

getCallLegs,

Idle, Active, Released -

createCallLeg,
createAndRouteCallLe
gReq,
setAdviceOfCharge,
superviseReq,

Idle, Active Active

Release Active Active
Deassign Idle, Active -
GetInfoReq Idle Active
SetChargePlan Idle, Active Active

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:

1) Events in backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2) Events in forwards direction (downstream), coming from originating leg, are not visible in terminating leg
model.

3) States are as seen from the application: if there is no change in the method an application is permitted to apply on
the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or alerting events on
terminating leg do not change state. (see note 2)

4) The application is to send a request to continue processing (using an appropriate method like
continueProcessing) for each leg and event reported in monitor mode 'interrupt'. The call processing is resumed
in the network when no leg in the call is left suspended.

5) In case on a leg more than one network event (for example mid-call event 'service_code') is to be reported to the
application at quasi the same time, then the events are to be reported one by one to the application in the order
received from the network. When for a leg an event is reported in interrupt mode, a next pending event is not to
be reported to the application until a request to resume call processing for the current reported event has been
received on the leg.

NOTE 1: Call processing is suspended if for a leg a network event is met, which was requested to be monitored in
the P_CALL_MONITOR_MODE_INTERRUPT.

NOTE 2: Even though there in the Originating Call Leg STD is no change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear as just one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 109

7.4.3.1 Originating Call Leg

Initiating

Analysing

Ac tive

Releasing

do/ send reports if requested, or error reports if required

Originating Call Leg.

Transitions/events not shown:
All states:
continueProcessing, getLastRedirectedAddress, getCall: no state change
All states except Releasing:
eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq,
setChargePlan

All States

detachMedia

'Address_Collected'

 IpAppMultiPartyCallControlManager.
reportNotification(originating service code)

'release'

ttachMedia

attachMedia

detachMedia

'originat ing call attempt authorized'

detachMedia

IpAppMultiPartyCallControlManager.
reportNotification(originatingCallAttempt)

IpAppMultiPartyCallControlManager.
reportNotification(originatingCallAttemptAuthorized)

IpAppMultiPartyCallControlManager.
reportNotification(address_collected)

'Address Collected'

attachMedia

'originating service_code'

'Address Analysed'

IpAppMultiPartyCallControlManager.
reportNotification(address_analysed)

'network release'

'network release'

IpAppMultiPartyCallControlManager.
reportNotification(originating

release)

'networkRelease'

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

Figure 10: Originating leg

7.4.3.1.1 Initiating State

Entry events:

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an
"Originating_Call_Attempt" initial notification criterion.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an
"Originating_Call_Attempt_Authorised" initial notification criterion.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 110

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party's identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

oCA oCAA AC

See Note1

oREL See
Note2

Initiating
State

NOTE 1: Event oCA only applicable as an intitial notification.
NOTE 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

 oCA Originating Call Attempt
 oCAA Originating Call Attempt Authorized
 AC Address Collected
 oREL Originating Release

Figure 11: Application view on event reporting order in Initiating State

In this state the following functions are applicable:

- The detection of a "Originating_Call_Attempt" initial notification criterion.

- The detection of an "Originating_Call_Attempt_Authorised" initial notification criterion as a result that the call
attempt authorisation is successful.

- The report of the "Originating_Call_Attempt_Authorised" event indication whereby the following functions are
performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is intercepted and call leg processing
is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- The receipt of destination address information, i.e. initial information package/dialling string as received from
calling party.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 111

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period.

- Receipt of a deassign() method.

- Receipt of a release() method.

Detection of a "originating release" indication as a result of a premature disconnect from the calling party.

7.4.3.1.2 Analysing State

Entry events:

- Availability of an "Address_Collected" event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an "Address_Collected"
initial notification criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteria is met) is done in this state. This action
is recursive, e.g. the application could ask for 3 digits to be collected and when report request can be done repeatedly,
e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

oCAA AC AA

oREL
Note1 Analysing

State

NOTE: The release event (oREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

 oCAA Originating Call Attempt Authorized
 AC Address Collected
 AA Address Analysed
 oREL Originating Release

Figure 12: Application view on event reporting order in Analysing State

In this state the following functions are applicable:

- The detection of a "Address_Collected" initial notification criterion.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 112

- On receipt of the "Address_Collected" indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is intercepted and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.

- Receipt of a eventReportReq() method defining the criteria for the events the call leg object is to observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

- Detection of an "Address_Analysed" indication as a result of the availability of the routing address and nature of
address.

- Receipt of a deassign() method.

- Receipt of a release() method.

Detection of a "originating release" indication as a result of a premature disconnect from the calling party.

7.4.3.1.3 Active State

Entry events:

- Receipt of an "Address_Analysed" indication as a result of the availability of the routing address and nature of
address.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an "Address_Analysed
initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 113

Active
State

AA

oSC

 oREL

See Note1
See
Note2

AC

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.

NOTE 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

 AC Address Collected
 AA Address Analysed
 oSC Originating Service Code
 oREL Originating Release

Figure 13: Application view on event reporting order Active State

In this state the following functions are applicable:

- The detection of a Address_Analysed initial indication criterion.

- On receipt of the "Address_Analysed" indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is intercepted and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- In this state the routing information is interpreted, the authority of the calling party to establish this connection is
verified and the call leg connection is set up to the remote party.

- In this state a connection to the call party is established.

- Detection of a "terminating release" indication (not visible to the application) from remote party caused by a
network release event propagated from a terminating call leg causing the originating call leg STD to transit to
Releasing state:

- Detection of a premature disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of an "Answer" indication as a result of the remote party being connected (answered).

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an "Answer" initial
indication criterion.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 114

- On receipt of the "originating_service code" indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is intercepted and call leg processing
is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of an "originating release" indication as a result of a disconnect from the calling party and and an
"terminating release" indication as a result of a disconnect from called party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

7.4.3.1.4 Releasing State

Entry events:

- Detection of an "Originating_Release" or "Terminating Release" indication as a result of the network release
initiated by calling party of called party.

- Reception of the release() method from the application.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an "Originating_Release"
initial indication criterion.

- A transition due to fault detection to this state is made when the Call leg object is in a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the applicationand the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:

i) the network release event handling is performed.

ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to
the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:

- The detection of a "originating_release" initial indication criterion.

- On receipt of the "originating_release" indication the following functions are performed:

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 115

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is intercepted and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getInfoRes() and/or superviseRes() methods.

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended.

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLegEnded).

NOTE: The call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLegEnded() method.

- Detection of the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 116

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

state methods allowed
Initiating

attachMedia (as a request),
detachMedia, (as a request)
getCall , getLastRedirectedAddress,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing
attachMedia (as a request),
detachMedia, (as a request)
getCall , getLastRedirectedAddress,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMedia,
detachMedia,
getCall , getLastRedirectedAddress,
continueProcessing,
release deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall , getLastRedirectedAddress,
continueProcessing,
 release
deassign

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 117

7.4.3.2 Terminating Call Leg

Idle
(terminating)

Active
(terminating)

Releasing (terminating)

do/ send reports if requested, or error reports if required

All States
(terminating)

Terminating Call Leg.

'terminating call attempt authorized',
'alerting', 'answer', 'terminat ing service
code', 'redirec ted', 'queued'

detachMedia

Transitions/events not shown:
All states:
continueProcessing, getLastRedirectedAddress, getCall, sending getInfoRes,
superviseRes: no state change,
All states except Releasing:
eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

attachMedia

routeReq

'network release'

release

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

IpMultiPartyCall.createCallLeg

IpAppMultiPartyCallControlManager.
reportNotification(terminating

release)

IpAppMultiPartyCallControlManager. r
eportNotification("terminating call
attempt", "terminating call attempt
authorised", "alerting", "answer",

"terminating service code",
"redirected", "queued")

IpMultiPartyCall.createAndRouteCallLegReq

Figure 14: Terminating leg

7.4.3.2.1 Idle (terminating) State

Entry events:

- Receipt of a createCallLeg() method to start an application initiated call leg connection.

Functions:

In this state the call leg object is created and the interface connection is idled.

The application activity timer is being provided.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 118

In this state the following functions are applicable:

- Invoking routeReq will result in a request to actually route the call leg object.

- Resumption of call leg processing occurs on receipt of a routeReq() method.

Exit events:

- Receipt of a routeReq() method from the application.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a network release event being an "originating release" indication as a result of a premature
disconnect from the calling party.

7.4.3.2.2 Active (terminating) State

Entry events:

- Receipt of an routeReq will result in actually routing the call leg object.

- Receipt of a createAndRouteCallLeg() method to start an application initiated call leg connection.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an
"Terminating_Call_Attempt" trigger criterion.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an
"Terminating_Call_Attempt_Authorized" trigger criterion.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 119

tCAA

RD

tCA

tSC

AL ANS

Note2

 Q

tREL

Note3

Note 1

Active
State

NOTE 1: Event tCA applicable as initial notification.
NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed as the service

code is reported to the application.
NOTE 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

 tCA Terminating Call Attempt
 tCAA Terminating Call Attempt Authorized
 AL Alerting
 ANS Answer
 tREL Terminating Release
 Q Queued
 RD Redirected
 tSC Terminating Service Code

Figure 15: Application view on event reporting order in Active State

In this state the following functions are applicable:

- The detection of an "Terminating_Call_Attempt" initial notification criterion as a result that the call attempt.

- The detection of an "Terminating_Call_Attempt_Authorised" initial notification criterion as a result that the call
attempt authorisation is successful.

- The report of the "Terminating_Call_Attempt_Authorised" event indication whereby the following functions are
performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is intercepted and
call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an "Queued" indication as a result of the call to remote party being queued.

- On receipt of the "Queued" indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is intercepted and call leg processing is suspended.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 120

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an "Alerting" trigger
criterion.

- On receipt of the "Alerting" indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is intercepted and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an "Answer" trigger
criterion.

- Detection of an "Answer" indication as a result of the remote party being connected (answered).

- On receipt of the "Answer" indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is intercepted and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an "service_code" trigger
criterion.

- The detection of a "service_code" trigger criterion suspends call leg processing.

- On receipt of the "service code" indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is intercepted and call leg processing
is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then this is not a valid event (that event is not
notified) and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

- On receipt of the "redirected" indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is intercepted and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_REDIRECTED then this is not a valid event (that event is not notified) and call leg
processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

- Resumption of call leg processing occurs on receipt of a continueProcessing() method.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 121

Exit events:

- Detection of a network release event being an "terminating release" indication as a result of the following events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a network release event being an "originating release" indication as a result of the following events:

vi) Detection of a premature disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

- Detection of a netwok release event being an "originating release" indication as a result of a disconnect from the
calling party or a "terminating release" indication as a result of a disconnect from the called party.

7.4.3.2.3 Releasing (terminating) State

Entry events:

- Detection of a network release event being an "originating release" indication as a result of the network release
initiated by calling party or a "terminating release" indication as a result of the network release initiated by called
party.

- Sending of the release() method by the application.

- Sending of a reportNotification() method by the IPMultipartyCallControlManager for an "Terminating Release"
trigger criterion.

- A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and this is not received within a certain time period.

- Detection of a network event being a "terminating release" indication as a result of the following events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a network release event being an "originating release" indication as a result of the following events:

vi) Detection of a premature disconnect from the calling party.

Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 122

When the Releasing state is entered the order of actions to be performed is as follows:

i) the release event handling is performed.

ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the
application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:

- The detection of a "Terminating Release" trigger criterion.

- On receipt of the network release event being a "Terminating Release" indication the following functions are
performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is intercepted and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getInfoRes() and/or superviseRes() methods.

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended.

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLegEnded).

NOTE: The call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the application
to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLegEnded() method.

- Detection of the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded()
method.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 123

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

state methods allowed
Idle routeReq,

getCall , getLastRedirectedAddress,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMedia
detachMedia
getCall , getLastRedirectedAddress,
continueProcessing,

release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing - getCall ,
getLastRedirectedAddress,
continueProcessing,
 release,
deassign

7.5 Multi-Party Call Control Service Properties

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description
P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIONS BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.route(), IpCallLeg.attachMedia()}
Value = FALSE : the convenience function has to be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachMedia() is needed when a party answers.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 124

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE shall have the Service Properties outlined
above set to the indicated values:

P_OPERATION_SET = {
"IpMultiPartyCallControlManager.createNotification",
"IpMultiPartyCallControlManager.destroyNotification",
"IpMultiPartyCallControlManager.changeNotification",
"IpMultiPartyCallControlManager.getNotification",
"IpMultiPartyCallControlManager.setCallLoadControl"
"IpMultiPartyCall.getCallLegs",
"IpMultiPartyCall.createCallLeg",
"IpMultiPartyCall.createAndRouteCallLegReq",
"IpMultiPartyCall.release",
"IpMultiPartyCall.deassignCall",
"IpMultiPartyCall.getInfoReq",
"IpMultiPartyCall.setChargePlan",
"IpMultiPartyCall.setAdviceOfCharge",
"IpMultiPartyCall.superviseReq",
"IpCallLeg.routeReq",
"IpCallLeg.eventReportReq",
"IpCallLeg.release",
"IpCallLeg.getInfoReq",
"IpCallLeg.getCall",
"IpCallLeg.continueProcessing"
}

P_TRIGGERING_EVENT_TYPES = {
P_CALL_EVENT_CALL_ATTEMPT,
P_CALL_EVENT_ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,
P_CALL_EVENT_RELEASE,
}

P_DYNAMIC_EVENT_TYPES = {
P_CALL_EVENT_ANSWER,
P_CALL_EVENT_RELEASE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164
}

P_UI_CALL_BASED = {
TRUE
}

P_UI_AT_ALL_STAGES = {
FALSE
}

P_MEDIA_TYPE = {
P_AUDIO
}

P_MAX_CALLLEGS_PER_CALL = {
0,
2
}

P_UI_CALLLEG_BASED = {
FALSE
}

P_MEDIA_ATTACH_EXPLICIT = {
FALSE
}

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 125

7.6 Multi-Party Call Control Data Definitions
The present document provides the MPCC data definitions necessary to support the API specification.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions

IpCallLeg

Defines the address of an IpCallLeg Interface.

IpCallLegRef

Defines a Reference to type IpCallLeg.

IpCallLegRefRef

Defines a Reference to type IpCallLegRef.

IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

IpMultiPartyCall

Defines the address of an IpMultiPartyCall Interface.

IpMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

IpAppMultiPartyCall

Defines the address of an IpAppMultiPartyCall Interface.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 126

IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCall.

IpMultiPartyCallControlManager

Defines the address of an IpMultiPartyCallControlManager Interface.

IpMultiPartyCallControlManagerRef

Defines a Reference to type IpMultiPartyCallControlManager.

IpAppMultiPartyCallControlManager

Defines the address of an IpAppMultiPartyCallControlManager Interface.

IpAppMultiPartyCallControlManagerRef

Defines a Reference to type IpAppMultiPartyCallControlManager.

TpAppCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppCallLegRef.

IpAppCallLegRef

Defines a Reference to type IpAppCallLegRef.

IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCallRef.

TpMultiPartyCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallReference IpMultiPartyCallRef This element specifies the interface reference for the Multi-party call object.
CallSessionID TpSessionID This element specifies the call session ID.

TpMultiPartyCallIdentifierRef

Defines a Reference to type TpMultiPartyCallIdentifier.

TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces.

 Tag Element Type
 TpAppMultiPartyCallBackRefType

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 127

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFINED NULL Undefined

P_APP_MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef appMultiPartyCall

P_APP_CALL_LEG_CALLBACK IpAppCallLegRef appCallLeg

P_APP_CALL_AND_CALL_LEG_CALLBACK TpAppCallLegCallBack appMultiPartyCallAndCallLeg

TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined

P_APP_MULTIPARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced

P_APP_CALL_LEG_CALLBACK 2 Application CallLeg interface referenced

P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type
appMultiPartyCall IpAppMultiPartyCallRef

appCallLegSet TpAppCallLegRefSet Specifies the set of all call leg call back
references. First in the set is the reference to
the call back of the originating callLeg. In

case there is a call back to a destination call
leg this will be second in the set.

TpMultiPartyCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiPartyCallIdentifier.

TpMultiPartyCallIdentifierSetRef

Defines a Reference to type TpMultiPartyCallIdentifierSet.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

 Tag Element Type
 TpCallAppInfoType

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 128

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTING_MECHANISM TPCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress

TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when
launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is diverting.

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

TpCallEventRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
CallEventType TpCallEventType

AdditionalCallEventCriteria TpAdditionalCallEventCriteria
CallMonitorMode TpCallMonitorMode

TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 129

TpCallEventType

Defines a specific call event report type.

Name Value Description
P_CALL_EVENT_UNDEFINED 0 Undefined
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED 2 An originating call attempt is authorised
P_CALL_EVENT_ADDRESS_COLLECTED 3 The destination address has been collected.
P_CALL_EVENT_ADDRESS_ANALYSED 4 The destination address has been analysed.
P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code received.
P_CALL_EVENT_ORIGINATING_RELEASE 6 A originating call/call leg is released
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT 7 A terminating call attempt takes place
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED 8 A terminating call is authorized
P_CALL_EVENT_ALERTING 9 Call is alerting at the call party.
P_CALL_EVENT_ANSWER 10 Call answered at address.
P_CALL_EVENT_TERMINATING_RELEASE 11 A terminating call leg isreleased or the call could not be

routed.
P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an indication from the network

that the call has been redirected to a new address (no events
disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 Mid call terminating service code received.

P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events are disarmed as a
result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

• If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

• If an event is met that causes the release of the related leg, then all events related to that leg are disarmed.

• When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that call
leg may become disarmed (see table below).

• If a call is released, then all events related to that call are disarmed.

NOTE 1: Event disarmed means monitor mode is set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY.

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 130

Event Occurred Events Disarmed
P_CALL_EVENT_UNDEFINED Not Applicable

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Not applicable, can only be armed as trigger

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_ALERTING P_CALL_EVENT_ALERTING

P_CALL_EVENT__TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ALERTING

P_CALL_EVENT_ANSWER

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT_ORIGINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_TERMINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_ORIGINATING_SERVICE_CODE P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE
1

P_CALL_EVENT_TERMINATING_SERVICE_CODE P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see NOTE

NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed.

TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

 Tag Element Type
 TpCallEventType

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 131

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHOR
ISED

NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpInt32 MinAddressLength

P_CALL_EVENT_ADDRESS_ANALYSED NULL Undefined

P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCode OriginatingServiceCode

P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCauseSet OriginatingReleaseCaus
eSet

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHOR
ISED

NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCauseSet TerminatingReleaseCaus
eSet

P_CALL_EVENT_REDIRECTED NULL Undefined

P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCode TerminatingServiceCode

P_CALL_EVENT_QUEUED NULL Undefined

TpCallEventInfo

Defines the Sequence of Data Elements that specify the event report specific information.

Sequence Element
Name

Sequence Element
Type

CallEventType TpCallEventType
AdditionalCallEventInfo TpCallAdditionalEventInfo

CallMonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime

TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types
of events.

 Tag Element Type
 TpCallEventType

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 132

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORIS
ED

NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress

P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress

P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCode OriginatingServiceCo
de

P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCause OriginatingReleaseCa
use

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORIS
ED

NULL Undefined

P_CALL_EVENT_QUEUED NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCause TerminatingReleaseCa
use

P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress

P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCode TerminatingServiceCo
de

TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification.

Sequence Element Name Sequence Element Type Description
CallNotificationScope TpCallNoficationScope Defines the scope of the notification request.
CallEventsRequested TpCallEventRequestSet Defines the events which are requested

TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or address range for which the notification is
requested.

TpCallNotificationInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call
notification report.

Sequence Element
Name

Sequence Element
Type

Description

CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report.
CallAppInfo TpCallAppInfoSet Contains additonal call info.
CallEventInfo TpCallEventInfo Contains the event which is reported.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 133

TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddress Contains the destination address of the call.
OriginatingAddress TpAddress Contains the origination address of the call
NotificationCallType TpNotificationCallType Indicates if the notification was reported for an originating or terminating call.

TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element
Name

Sequence Element
Type

AppCallNotificationRequest TpCallNotificationRequest
AssignmentID TpInt32

TpNotificationsRequestedSet

Defines a numbered Set of Data Elements of TpNotificationRequested.

TpNotificationsRequestedSetRef

Defines a reference to the type TpNotificationsRequestSet.

TpReleaseCause

Defines the reason for a release.

Name Value Description
P_UNDEFINED 0 The reason of release is not known, because no info was received from the network.

P_USER_NOT_AVAILBLE 1 The user is not available in the network. This means that the number is not allocated or that the user is
not registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal is not reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P_DISCONNECTED 7 A disconnect was received.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were available.

P_GENERAL_FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired.

TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpCallReleaseCause.

TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 134

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallLegReference IpCallLegRef This element specifies the interface reference for the callLeg object.
CallLegSessionID TpSessionID This element specifies the callLeg session ID.

TpCallLegIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.

TpCallLegIdentifierSetRef

Defines a Reference to type TpCallLegIdentifierSet.

TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name Value Description
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call.
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMedia() operation. This

allows e.g. the application to do first user interaction to the party before he/she is placed in the
call.

TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call.

TpCallLegInfoReport

Defines the Sequence of Data Elements that specify the call leg information requested.

Sequence Element
Name

Sequence Element
Type

Description

CallLegInfoType TpCallLegInfoType The type of the call leg.
CallLegStartTime TpDateAndTime The time and date when the call leg was started (i.e. the leg was routed).

CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to the resource. If no
resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid,
depending on whether the report is sent as a result of user interaction.

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not answer,

the time is set to an empty string.
Either this element is valid or the CallConnectedToResourceTime is

valid, depending on whether the report is sent as a result of user
interaction.

CallLegEndTime TpDateAndTime The date and time when the call leg was released.
ConnectedAddress TpAddress The address of the party associated with the leg. If during the call the

connected address was received from the party then this is returned,
otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.

CallLegReleaseCause TpReleaseCause The cause of the termination. May be present with
P_CALL_LEG_INFO_RELEASE_CAUSE was specified.

CallAppInfo TpCallAppInfoSet Additional information for the leg. May be present with
P_CALL_LEG_INFO_APPINFO was specified.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 135

TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_LEG_INFO_UNDEFINED 00h Undefined
P_CALL_LEG_INFO_TIMES 01h Relevant call times
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address
P_CALL_LEG_INFO_APPINFO 08h Call leg application related information

8 MultiMedia Call Control Service

8.1 Sequence Diagrams

8.1.1 Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media stream establishment of
one call.

In this sequence there is one application handling both the media barring and the routing of the call.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 136

 : (Logical
View::IpAppLogic)

 :
IpAppMultiMediaCallControlManager

 :
IpMultiMediaCallControlManager

 :
IpMultiMediaCall

 :
IpMultiMediaCallLeg

 :
IpAppMultiMediaCallLeg

1: new()

: createNotification()

3: reportNotification()

4: "forward event"

10: createAndRouteCallLegReq()

6: mediaStreamMonitorReq()

9: mediaStreamAllow()

7: mediaStreamMonitorRes()

5: new()

8: "forward event"

11: mediaStreamMonitorRes()

12: "forward event"

13: mediaStreamAllow()

1: The application creates a AppMultiMediaCallControlManager interface in order to handle callback methods.

2: The application expresses interest in all calls from subscriber A. Since createNotification is used and not
createMediaNotification all calls are reported regardless of the media used.

3: A makes a call with the SIP INVITE with SDP media stream indicating video. The application is notified.

4: The event is forwarded to the application.

5: The application creates a new AppMultiMediaCallLeg interface to receive callbacks.

6: The application sets a monitor on video media streams to be established (added) for the indicated leg.

7: Since the video media stream was included in the SIP invite, the media streams monitored will be returned in the
monitor result.

8: The event is forwarded to the application.

9: The application denies the video media stream, i.e. it is not included in the allowed media streams. This corresponds
to removing the media stream from the setup.

10: The application requests to reroute the call to a different destination (or the same one...).

11: Later in the call the A party tries to establish a lower bandwidth video media stream. This is again reported with
MediaStreamMonitorRes.

12: The event is forwarded.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 137

13: This time the application allows the establishment of the media stream by including the media stream in the allowed
list.

8.1.2 Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one
call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media
control and one for routing. This is also the way that it is shown here, for clarity.

However, an implementation of the application could combine the media logic and call logic in one object.

callLogic : (Logical
View::IpAppLogic)

callAppLogic :
IpAppMultiMediaCallControlManager

 :
IpMultiMediaCallControlManager

 :
IpMultiMediaCall

PartyA :
IpMultiMediaCallLeg

PartyB :
IpAppCallLeg

PartyB :
IpAppCallLeg

PartyA :
IpMultiMediaCal...

 : IpAppMultiM ediaCall mediaAppLogic :
IpAppMultiMediaCallControlManager

mediaLogic :
(Logical View::I...

1: new()

2: createNotific ation()

5: reportNotification()

6: "forward event"

12: createAndRouteCallLegReq()

7: new()

9: reportMediaNotification()

19: reportMediaNotification()

3: new()

: createMediaNotification()

10: "forward event"

14: mediaStreamAllow()

15: deassignCall()

20: "forward event"

21: mediaStreamAllow()

22: deassignCall()

8: new()

1: new()

13: new()

16: eventReportRes()17: "forward event"

18: deassignCall()

1: The application creates a new AppMultiMediaCallControlManager interface.

2: The application expresses interest in all calls from subscriber A for rerouting purposes.

3: The application creates a new AppMultiMediaCallControlManager interface. This is to be used for the media
control only.

4: Separately the application expresses interest is some media streams for calls from and to A. The request indicates
interrupt mode.

5: Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video. Since the media
establishment is combined with the SIP INVITE message, both applications are triggered (not necessarily in the order
shown).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 138

Here the call application is notified about the call setup.

6: The event is forwarded to the call control application.

7: The call control application creates a new AppMultiMediaCall interface.

8: The call control application creates a new AppMultiMediaCallLeg interface.

9: The media application is notified about the call setup. All media streams from the setup will be indicated.

10: The event is forwarded to the media application.

11: The call control application creates a new AppMultiMediaCallLeg interface.

12: The call application decides to reroute the call to another address. Included in the request are monitors on answer
and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media streams are
confirmed or rejected.

13:

14: The application allows the audio media stream, but refuses the high bandwidth video, by excluding it from the
allowed list. Since both call processing and media handling is now acknowledged, the call routing can continue (with a
changed SDP parameter reflecting the manipulated media).

15: The Media application is no longer interested in the call.

16: When the B subscriber answers the call application is notified.

17: The event is forwarded to the call application.

18:

19: When later in the call A tries to establish a lower bandwidth video stream the media application is triggered.

20: The triggering is forwarded to the media application.

21: The application now allows the establishment of the media stream by including the media stream in the
mediaStreamAllow list.

22: The media application is no longer interested in the call.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 139

8.1.3 Barring for media, simple

This sequence illustrates how an application can block the establishment of video streams for a certain user.

 : (Logical
View:: IpAppLogic)

 :
IpAppMultiMediaCallControlManager

 :
IpMultiMediaCallControlMan...

 :
IpMultiMediaCall

 :
pMultiMediaCallLeg

1: new()

2: createMediaNotificat ion()

3: reportMediaNotification()

4: "forward event"

6: deassignCall()

5: mediaStreamAllow()

1: The application starts a new AppMultiMedialCallControlManager interface for reception of callbacks.

2: The application expresses interest in all calls from or to subscriber A that use video. The just created App interface
is given as the callback interface.

3: Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video.

4: The message is forwarded to the application.

5: The application indicates that the setup of the media stream is not allowed by not including the media streaml in the
allowed list. This has the effect of supressing the video capabilities in the setup.

6: The application is no longer interested in the call.

New attempts to open video streams will again be indicated with a createMediaNotification.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 140

8.1.4 Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

 :
IpMultiMediaCallControlManager

 :
IpAppMult iMediaCall

 : (Logic al
iew:: IpAppLogic)

:
IpMultiMediaCall

: IpU ICal l IpUIManager :
IpUIManager

 :
IpAppMultiMediaCallControlManager

 : IpAppUICall

4: createCall()

3 : new()

5: routeReq()

8: routeReq()

9: routeRes()
10: "f orward ev ent"

6: routeRes()
7: "f orward ev ent"

12: superv iseVolumeRes()
13: "f orward ev ent"

15: sendInf oAndCollectReq()

16: sendInf oAndCollectRes()
17: "f orward ev ent"

19: superv iseVolumeReq()

20: release()

11: superv iseVolumeReq()

18: release()

14: createUICall()

1: new()

2: setCallback()

1: The application creates a new interface to receive callbacks on the call control manager.

2: The created interface is set as the callback interface for the call control manager.

3: The application creates a new interface to receive callback on the call.

4: The application requests the creation of a call.

5: The application initiates the call by routing to the origination. This will implicitly create a call leg. The application
requests a notification when the party answers.

6: When the A party answers the application is notified.

7: The message is forwarded to the logic.

8: The application also routes the call to the destination. This implicitly creates a call leg. The application requests to
be notified on answer of the B-party.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 141

9: When the B-party answers the application is notified.

10: The message is forwarded to the logic.

11: The application requests to supervise the call. In the request the application specifies a limit on the amount of bytes
that may be transferred. The application specifies that if the limit is reached the application should be notified.

12: When the limit is reached a notification is send to the application.

13: The message is forwarded to the logic.

14:

15: The application plays an announcement to the user, asking whether the user wants to end the call or continue the
call.

16: When the user answers whether the call should continue.

17: The message is forwarded to the logic.

18: The UIcall is released, since no further announcements are needed.

19: In case the user answers that the call should continue, the supervision is reset with a new maximum number of
allowed bytes. (note this might have charging consequences, not shown)

20: If the user answered that the call should not continue, the call is released.

8.2 Class Diagrams

pAppMultiMediaCall

superviseVolumeRes()
superviseVolumeErr()

(from mmccs)

<<Interface>>

IpAppMultiMediaCallControlManager

reportMediaNotification()

(from mmccs)

<<Interface>>
IpAppMultiMediaCallLeg

mediaStreamMonitorRes()

(from m mccs)

<<Interface>>

IpAppCallLeg

eventReportRes()
eventReportErr()
getInfoRes()
getInfoErr()
routeErr()
superviseRes()
superviseErr()
callLegEnded()

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

getInfoRes()
getInfoErr()
superviseRes()
superviseErr()
callEnded()
createAndRouteCallLegErr()

(from mpccs)

<<Interface>>
IpAppMultiPartyCallControlManager

reportNotification()
callAborted()
managerInterrupted()
managerResumed()
callOverloadEncountered()
callOverloadCeased()

(from mpccs)

<<Interface>>

1 0..n1 0..n

IpMultiMediaCallLeg

mediaStreamAllow()
mediaStreamMonitorReq()
getMediaStreams()

(from m mccs)

<<Interface>>

<<uses>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

1 0..n

IpMultiMediaCallControlManager

createMediaNotification()
destroyMediaNotification()
changeMediaNotification()
getMediaNotification()

(from mmccs)

<<Interface>>

1 0..n

<<uses>>

<<uses>>

Figure 16: Application Interfaces

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 142

IpM ul ti MediaCall Control Ma
nager

reateMe diaNot ifi cati on()
estroyMediaNoti fi ca ti on()
han geMedia Noti fi ca ti on()
etMediaNot if icat ion ()

(from mmccs)

<<Interface>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>
IpMultiMediaCal lLeg

ediaS treamAllow()
ediaS treamM oni torReq()
etMediaS treams()

(from mmccs)

<<Interface>>

IpMultiMediaStream

substract()

(from mmccs)

<<Interface>>

IpCallLeg

routeReq()
eventRep ortReq()
re lease()
getInfoReq()
getCa ll()
attachMedia()
detachMe dia()
getLastRe directedAddress()
co nti nueProce ssing()
setCh arge Plan()
setAd vice OfCharge()
superviseReq()
deassign()

(from mpccs)

<<Interface>>
IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCal lLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>
IpMultiPartyCallControlManager

createCall()
createNotification()
destroyNoti fication()
changeNotification()
getNotification()
setCallLoadControl()

(from mpccs)

<<Interface>>

0..n 1 0..n 1 0..n

Figure 17: Service Interfaces

8.3 MultiMedia Call Control Service Interface Classes
The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with multi-
media capabilities.

The MultiMedia Call Control Service is represented by the IpMultiMediaCallControlManager, IpMultiMediaCall,
IpMultiMediaCallLeg and IpMultiMediaStream interfaces that interface to services provided by the network. Some
methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the
client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and
reports, the developer must implement IpAppMultiMediaCallManager, IpAppMutliMediaCall and
IpAppMultiMediaCallLeg to provide the callback mechanism.

To handle the multi-media aspects of a call the concept of media stream is introduced. A media stream is bi-directional
media stream and is associated with a call leg. These media streams are usually negotiated between the terminals in the
call. The multi-party Call Service gives the application control over the media streams associated with the legs in a
multi-media call in the following way:

• The application can be triggered on the establishment of a media stream that meets the application defined
characteristics.

• The application can monitor on the establishment (addition) or release (substraction) of media streams of an
ongoing call.

• The application can allow or deny the establishment of media streams (provided the stream establishment was
monitored/notified in interrupt mode).

• The application can explicitly substract already established media streams.

• The application can request the media streams associated with a specific leg.

8.3.1 Interface Class IpMultiMediaCallControlManager

Inherits from: IpMultiPartyCallControlManager

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 143

The Multi Media Call Control Manager is the factory interface for creating multimedia calls. The multi-media call
control manager interface provides the management functions to the multi-media call control service. The application
programmer can use this interface to create, destroy, change and get media stream related notifications.

<<Interface>>

IpMultiMediaCallControlManager

createMediaNotification (appInterface : in IpAppMultiMediaCallControlManagerRef,
notificationMediaRequest : in TpNotificationMediaRequest) : TpAssignmentID

destroyMediaNotification (assignmentID : in TpAssignmentID) : void

changeMediaNotification (assignmentID : in TpAssignmentID, notificationMediaRequest : in
TpNotificationMediaRequest) : void

getMediaNotification () : TpMediaNotificationRequestedSet

Method
createMediaNotification()

This method is used to create media stream notifications so that events can be sent to the application.

This applies both to callsetup media (e.g. SIP initial INVITE or H.323 with faststart) and for media setup during the
call.

This is the first step an application has to do to get initial notifications of media streams happening in the network.
When such an event happens, the application will be informed by reportMediaNotification(). In case the application is
interested in other events during the context of a particular call session it has to use the mediaStreamMonitorReq()
method on the Multi-Media call leg object.

The createMediaNotification method is purely intended for applications to indicate their interest to be notified when
certain media stream events take place. It is possible to subscribe to a certain media stream event for a whole range of
addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with
800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used and the same NotificationCallType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createMediaNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the one that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the multi-media call control manager interface for this newly-
created notification.

Parameters

appInterface : in IpAppMultiMediaCallControlManagerRef

Specifies a reference to the application interface, which is used for callbacks.

notificationMediaRequest : in TpNotificationMediaRequest

The mediaMonitorMode is a parameter of TpMediaStreamRequest and can be in interupt or in notify mode. If in
interrupt mode the application has to specify which media streams are allowed by calling mediaStreamAllow on the
callLeg.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 144

The notificationMediaRequest parameter specifies the event specific criteria used by the application to define the event
required. This is the media portion of the criteria. Only events that meet the notificationMediaRequest are reported.

Individual addresses or address ranges may be specified for the destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
destroyMediaNotification()

This method is used by the application to disable Multi Media Channel notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the Multi Media call control manager interface when the previous
enable..Notification was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
framework will return the error code P_INVALID_ASSIGNMENTID.

Raises

TpCommonExceptions

Method
changeMediaNotification()

This method is used by the application to change the event criteria introduced with createMediaNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi-media call control manager interface for the media stream notification. If two
callbacks have been registered under this assigment ID both of them will be disabled.

notificationMediaRequest : in TpNotificationMediaRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 145

Method
getMediaNotification()

This method is used by the application to query the event criteria set with createMediaNotification or
changeMediaNotification.

Returns notificationsMediaRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method

Returns

TpMediaNotificationRequestedSet

Raises

TpCommonExceptions

8.3.2 Interface Class IpAppMultiMediaCallControlManager

Inherits from: IpAppMultiPartyCallControlManager

The Multi Media call control manager application interface provides the application call control management functions
to the multi media call control service.

<<Interface>>

IpAppMultiMediaCallControlManager

reportMediaNotification (callReference : in TpMultiMediaCallIdentifier, callLegReferenceSet : in
TpMultiMediaCallLegIdentifierSet, mediaStreams : in TpMediaStreamSet, type : in
TpMediaStreamEventType, assignmentID : in TpAssignmentID) : TpAppMultiMediaCallBack

Method
reportMediaNotification()

This method is used to inform the application about the establishment of media streams.

If the corresponding monitor was in interrupt mode, then the application has to allow or deny the streams using
mediaStreamAllow() method.

Returns appInterface: Specifies a reference to the application interface which implements the callback interface for the
new call.

Returns appMultiMediaCallBack: Specifies references to the application interface which implements the callback
interface for the new multi-media call and/or new call leg. This parameter may be null if the notification is being given
in NOTIFY mode

Parameters

callReference : in TpMultiMediaCallIdentifier

Specifies the call interface on which the media streams were added or substracted. It also gives the corresponding
sessionID.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 146

callLegReferenceSet : in TpMultiMediaCallLegIdentifierSet

Specifies set of all callLeg references (interface and sessionID) for which the media streams were established or
substracted.

First in the set is the reference to the originating callLeg. It indicates the call leg related to the originating party. In case
there is a destination call leg this will be the second leg in the set. from the notificationInfo can be found on whose
behalf the notification was sent.

However, this parameter will be null if the notification is being given in NOTIFY mode.

mediaStreams : in TpMediaStreamSet

Specifies all the media streams that are established. Note that this can be more media streams than requested in the
createMediaNotification, e.g. when faststart is used in H.323 or in SIP when an INVITE method with SDP media
stream parameters is used.

type : in TpMediaStreamEventType

Refers to the type of event on the media stream, i.e. added or substracted.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createMediaNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiMediaCallBack

8.3.3 Interface Class IpMultiMediaCall

Inherits from: IpMultiPartyCall

<<Interface>>

IpMultiMediaCall

superviseVolumeReq (callSessionID : in TpSessionID, volume : in TpCallSuperviseVolume, treatment : in
TpCallSuperviseTreatment) : void

Method
superviseVolumeReq()

The application calls this method to supervise a call. The application can set a granted data volume this call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

volume : in TpCallSuperviseVolume

Specifies the granted time in milliseconds for the connection.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 147

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted volume expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

8.3.4 Interface Class IpAppMultiMediaCall

Inherits from: IpAppMultiPartyCall

The application multi-media call interface contains the callbacks that will be used from the multi-media call interface
for asynchronous results to requests performed by the application. The application should implement this interface.

<<Interface>>

IpAppMultiMediaCall

superviseVolumeRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedVolume : in
TpCallSuperviseVolume) : void

superviseVolumeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

Method
superviseVolumeRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedVolume : in TpCallSuperviseVolume

Specifies the used time for the call supervision (in milliseconds).

Method
superviseVolumeErr()

This asynchronous method reports a call supervision error to the application.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 148

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

8.3.5 Interface Class IpMultiMediaCallLeg

Inherits from: IpCallLeg

The Multi-Media call leg represents the signalling relationship between the call and an address. Associcated with the
signalling relationship there can be multiple media channels. Media channels can be started and stopped by the
terminals themselves. The application can monitor on these changes and influence them.

<<Interface>>

IpMultiMediaCallLeg

mediaStreamAllow (callLegSessionID : in TpSessionID, mediaStreamList : in TpSessionIDSet) : void

mediaStreamMonitorReq (callLegSessionID : in TpSessionID, mediaStreamEventCriteria : in
TpMediaStreamRequestSet) : void

getMediaStreams (callLegSessionID : in TpSessionID) : TpMediaStreamSet

Method
mediaStreamAllow()

This method can be used to allow setup of a media stream that was reported by a mediaStreamMonitorRes method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

mediaStreamList : in TpSessionIDSet

Refers to the media streams (sessionIDs) as received in the mediaStreamMonitorRes() or in the
reportMediaNotification() that is allowed to be established.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 149

Method
mediaStreamMonitorReq()

With this method the application can set monitors on the addition and substraction of media streams. The monitors can
either be general or restricted to certain types of codecs.

Monitoring on addition of media streams can be done in either interrupt of notify mode. In the first case the application
has to allow or deny the establishment of the stream with mediaStreamAllow.

Monitoring on substraction of media streamsis only allowed in notify mode.

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg.

mediaStreamEventCriteria : in TpMediaStreamRequestSet

Specifies the event specific criteria used by the application to define the event required. The mediaMonitorMode .is a
parameter of TpMediaStreamRequest and can be in interrupt or in notify mode. If in interrupt mode the application has
to respond with mediaStreamAllow().

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getMediaStreams()

This method is used to return all currently established media streams for the leg.

Parameters

callLegSessionID : in TpSessionID

This method is used to return all currently open media channels for the leg.

Returns

TpMediaStreamSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 150

8.3.6 Interface Class IpAppMultiMediaCallLeg

Inherits from: IpAppCallLeg

The application multi-media call leg interface contains the callbacks that will be called from the multi-media call leg for
asynchronous results to requests performed by the application. The application should implement this interface.

<<Interface>>

IpAppMultiMediaCallLeg

mediaStreamMonitorRes (callLegSessionID : in TpSessionID, streams : in TpMediaStreamSet, type : in
TpMediaStreamEventType) : void

Method
mediaStreamMonitorRes()

This method is used to inform the application about the media streams that are being established (added) or substracted.

If the corresponding request was done in interrupt mode, the application has to allow or deny the media streams using
mediaStreamAllow().

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg for which the media channels are opened or closed.

streams : in TpMediaStreamSet

Specifies all the media streams that are added. Note that this can be more media streams than requested in the
createMediaNotification, e.g. when faststart is used in H.323 or SIP INVITE with SDP media stream parameters is
used.

type : in TpMediaStreamEventType

Refers to the type of event on the media stream, i.e. added or substraced.

8.3.7 Interface Class IpMultiMediaStream

Inherits from: IpService

The Multi Media Streaml Interface represents a bi-directional information stream associated with a call leg. Currently,
the only available method is to substract the media stream.

<<Interface>>

IpMultiMediaStream

substract (mediaStreamSessionID : in TpSessionID) : void

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 151

Method
substract()

This method can be used to substract the multi-media stream.

Parameters

mediaStreamSessionID : in TpSessionID

Specifies the sessionID for the media stream.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

8.4 MultiMedia Call Control Service State Transition Diagrams
There are no State Transition Diagrams for the MultiMedia Call Control Service package.

8.5 Multi-Media Call Control Data Definitions
This clause provides the Multi-Media call control data definitions necessary to support the API specification.

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text
represents Hypertext links.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

8.5.1 Event Notification Data Definitions

TpMediaStreamRequestSet

Defines a Numbered Set of Data Elements of TpMediaStreamRequest

TpMediaStreamRequest

Defines the Sequence of Data Elements that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMediaStreamDirection

DataTypeRequest TpMediaStreamDataTypeRequest

MediaMonitorMode TpCallMonitorMode

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 152

TpMediaStreamDirection

Defines the direction in which the media stream is established (as seen from the leg).

Name Value Description
P_SEND_ONLY 0 Indicates that the offerer is only willing to send

this media stream

P_RECEIVE_ONLY 1 Indicates that the offerer is only willing to
receive this media stream

P_SEND_RECEIVE 2 Indicates that the offerer is willing to send and
receive this media stream

TpMediaStreamDataTypeRequest

Defines the Tagged Choice of Data Elements that specify the media type and associated codecs that are of
interest.

 Tag Element Type
 TpMediaType

Tag Element Value Choice Element Type Choice Element Name
P_AUDIO TpAudioCapabilitiesType Audio

P_VIDEO TpVideoCapabilitiesType Video

P_DATA TpDataCapabilities Data

TpAudioCapabilitiesType

Defines the audio codec. The requested capabilities can be indicated by adding the values together (i.e. a logical OR
function).E.g. 28 indicates interest in all G.722 codes (4+8+16).

Name Value Description
P_G711_64K 1 g.711 on 64k, both alaw and ulaw

P_G711_56K 2 g.711 on 56k, both alaw and ulaw

P_G722_64K 4

P_G722_56K 8

P_G722_48K 16

P_G7231 32

P_G728 64

P_G729 128

P_G729_ANNEX_A 256

P_IS1172 512

P_IS1318 1024

P_G729_ANNEXB 2048

P_G729_ANNEX_A_AND_B 4096

P_G7231_ANNEX_C 8192

P_GSM_FULLRATE 16384

P_GSM_HALFRATE 32768

P_GSM_ENHANCED 65536

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 153

TpVideoCapabilitiesType

Defines the video codec. The requested capabilities can be indicated by adding the values together (i.e. a logical OR
function). E.g. 3 indicates both H.261 and H.262 codecs.

Name Value Description
P_H261 1

P_H262 2

P_H263 4

P_IS11172 8

TpDataCapabilities

A TpInt32 defining the minimum maxBitRate in bit/s. I.e. all data media streamswhose maxBitRate exceeds this
number are reported.

TpMediaStreamEventType

Defines the action performed on the media stream.

Name Value Description
P_MEDIA_STREAM_ADDED 0 The media stream is added

P_MEDIA_STREAM_SUBTRACTED 1 The media stream is substracted.

TpMediaStreamSet

Defines a Numbered Set of Data Elements of TpMediaStream.

TpMediaStreamSetRef

Defines a reference to type TpMediaStreamSet

TpMediaStream

Defines the Sequence of Data Elements that specify the type of media stream.

Sequence Element Name Sequence Element Type
Direction TpMediaStreamDirection

DataType TpMediaStreamDataType

ChannelSessionID TpSessionID

MediaStream IpMultiMediaStream

TpMediaStreamDataType

Defines the type of the reported media stream. It is identical to TpMediaStreamDataTypeRequest, only now the
values are not used as a mask, but as the actual codec should be indicated for audio and video. For data the actual
maximum bitrate is indicated.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 154

8.5.2 Multi-Media Call Control Data Definitions

IpMultiMediaCall

Defines the address of an IpMultiMediaCall Interface.

IpMultiMediaCallRef

Defines a Reference to type IpMultiMediaCall.

IpMultiMediaCallRefRef

Defines a Reference to type IpMultiMediaCallRef.

IpAppMultiMediaCall

Defines the address of an IpAppMultiMediaCall Interface.

IpAppMultiMediaCallRef

Defines a Reference to type IpAppMultiMediaCall.

IpMultiMediaCallLeg

Defines the address of an IpMultiMediaCallLeg Interface.

IpMultiMediaCallLegRef

Defines a Reference to type IpMultiMediaCallLeg.

IpAppMultiMediaCallLeg

Defines the address of an IpAppMultiMediaCallLeg Interface.

IpAppMultiMediaCallLegRef

Defines a Reference to type IpAppMultiMediaCallLeg.

TpAppMultiMediaCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppMultiMediaCallLegRef.

TpMultiMediaCallIdentifierRef

Defines a Reference to type TpMultiMediaCallIdentifier.

TpMultiMediaCallLegIdentifierRef

Defines a Reference to type TpMultiMediaeCallLegIdentifier.

TpMultiMediaCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the MultiMediaCall object.

Sequence Element Name Sequence Element Type Sequence Element Description
MMCallReference IpMultiMediaCallRef This element specifies the interface reference for the call object.

MMCallSessionID TpSessionID This element specifies the call session ID of the call created.

TpMultiMediaCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiMediaCallIdendifier.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 155

TpMultiMediaCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Name Sequence Element Type Sequence Element Description
MMCallLegReference IpMultiMediaCallLegRef This element specifies the interface reference for the callLeg

object.

MMCallLegSessionID TpSessionID This element specifies the callLeg session ID of the call created.

IpAppMultiMediaCallControlManager

Defines the address of an IpAppMultiMediaCallControlManager Interface.

IpAppMultiMediaCallControlManagerRef

Defines a Reference to type IpAppMultiMediaCallControlManager.

TpAppMultiMediaCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces.

 Tag Element Type
 TpAppMultiMediaCallBackRefType

Tag Element Value Choice Element Type Choice Element Name
P_APP_CALLBACK_UNDEFINED NULL Undefined

P_APP_MULTIMEDIA-CALL_CALLBACK IpAppMultiMediaCallRef appMultiMediaCall

P_APP_CALL-LEG_CALLBACK IpAppMultiMediaCallLegRef appMultiMediaCallLeg

P_APP_CALL_AND_CALL-LEG_CALLBACK TpAppMultiMediaCallLegCallBack AppMultiMediaCallAndCallLeg

TpAppMultiMediaCallBackRefType

Defines the type application call back interface.

Name Value Description
P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined

P_APP_MULTIMEDIA-CALL_CALLBACK 1 Application Multi-Media Call interface
referenced

P_APP_CALL-LEG_CALLBACK 2 Application Multi-Media CallLeg interface
referenced

P_APP_CALL_AND_CALL-LEG_CALLBACK 3 Application Multi-Media Call and CallLeg
interface referenced

TpAppMultiMediaCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type
appMultiMediaCall IpAppMultiMediaCallRef

appCallLegSet TpAppMultiMediaCallLegRefSet Specifies the set of all call leg call back
references. First in the set is the reference to
the call back of the originating callLeg. In

case there is a call back to a destination call
leg this will be second in the set.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 156

TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the
specific connection.

Sequence Element Name Sequence Element Type Sequence Element Description
VolumeQuantity TpInt32 This data type is identical to a TpInt32, and defines the quantity

of the granted volume that can be transmitted for the specific
connection.

VolumeUnit TpInt32 This data type is identical to a TpInt32, and defines the unit of the
granted volume that can be transmitted for the specific

connection.

Unit must be specified as 10^n number of bytes, where

n denotes the power.

When the unit is for example in kilobytes, VolumeUnit must be
set to 3.

TpNotificationMediaRequest

Defines the Sequence of Data Elements that specify the criteria for a media stream notification.

Sequence Element Name Sequence Element Type Description
MediaNotificationScope TpCallNoficationScope Defines the scope of the notification request.

MediaStreamsRequested TpMediaStreamRequestSet Defines the media stream events which are requested

TpMediaNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element Name Sequence Element Type
AppNotificationMEdiaRequest TpNotificationMediaRequest

AssignmentID TpInt32

TpMediaNotificationsRequestedSet

Defines a numbered Set of Data Elements of TpMediaNotificationRequested.

TpMediaNotificationsRequestedSetRef

Defines a reference to the type TpMediaNotificationsRequestSet.

9 Conference Call Control Service

9.1 Sequence Diagrams

9.1.1 Meet-me conference without subconferencing

This sequence illustrates a pre-arranged meet-me conference for a specified time period. During this timeslot parties can
'call in to' the meet-me conference by dialling a special number.

For each participant joining the conference, the application can decide to accept the participant in to the conference.

The application can also be notified when parties are leaving the conference.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 157

 : (Logical
View::IpAppLogic)

 :
IpAppConfCallControlManager

 :
IpAppConfCall

 :
IpConfCallControlManager

 : IpConfCall

1: new()

5: new()

2: reserveResources()

6: leaveMonitorReq()

9: partyJoined()10: "forward event"

3: conferenceCreated()4: "forward event"

12: leaveMonitorRes()13: "forward event"

11: attachMedia ()

14: release()

8: attachMedia ()

7: partyJoined()

1: The application creates a new object to receive the callbacks from the conference call control manager.

2: The application reserves resources for some time in the future.

With this same method the application registers interest in the creation of the conference (e.g. when the first party to
joins the conference or at the specified start time, this is implementation dependant).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 158

The reservation also includes the conference policy. One of the elements is whether joined parties must be explicity
attached. If so, this is treated as an implicit joinMonitorReq.

3: The conference is created.

4: The message is forwarded to the application.

5: The application creates an object to receive the call back messages from the conference call.

6: The application also requests to be notified when parties leave the conference.

7: The application is notified of the first party that joined the conference.

8: When the party is allowed to join the conference, the party is added.

Alternatively, the party could have been rejected with a releaseCallLeg.

9: A new party joins the conference and the application is notified.

10: The message is forwarded to the application.

11: This party also is allowed into the conference by attaching the leg.

12: A party leaves the conference.

13: The message is forwarded to the application.

14: The application decides to release the entire conference.

9.1.2 Non-add hoc add-on with subconferencing

This sequence illustrates a prearranged add-on conference. The end user that initiates the call, communicates with the
conference application via a web interface (not shown). By dragging and dropping names from the addressbook, the
end-users adds parties to the conference.

Also via the web-interface, the end-user can group parties in subconferences. Only parties in the same subconference
can talk to each other.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 159

 :
IpConfCallControlManager

 :
pAppConfCall

: (Logical
View::IpAppLogic)

 : IpConfCall first :
IpSubConfCall

second :
IpSubConfCall

 : IpCallLeg: IpAppCallLeg

2: OLDcreateConference ()

1: new()

3: getSubConferences()

5: createAndRouteCallLegReq()

7: createAndRouteCallLegReq()

8: createAndRouteCallLegReq()

12: splitSubConference()

9: createAndRouteCallLegReq()

13: moveCallLeg()

14: release()

10: eventReportRes()
11: "forward event"

4: new()

6: new()

1: The application creates a new interface to receive the callbacks from the conference call.

2: The application initiates the conference. There has been no prior resource reservation, so there is a chance that no
resources are available when parties are added to the conference.

The conferenceCall interface object is returned.

3: Together with the conference a subconference is implicitly created.

However, the subconference is not returned as a result of the createConference, therefore the application uses this
method to get the subconference.

4: The application creates a new IpAppCallLeg interface.

5: The application adds the first party to the subconference. This process is repeated for all 4 parties. Note that in the
following not all steps are shown.

6: The gateway creates a new IpCallLeg interface.

7: The application adds parties to the subconference.

8: The application adds parties to the subconference.

9: The application adds parties to the subconference.

10: When a party A answers the application is notified.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 160

We assume that all parties answer. This happens in the same way as for party A and is not shown in the following.

11: The message is forwarded to the application.

12: The application decides to split the conference. Party C&D are indicated in the message.

The gateway will create a new subconference and move party C and D to the new subconference.

The configuration is A&B are in speech, C&D are in speech. There is no bearer connection between the two
subconferences.

13: The application moves one of the legs from the second subconference back to the first. The configuration now is
A, B&C are in speech configuration. D is alone in its own subconference.

14: The second subconference is released. Since party D was in this subconference, this callleg is also released.

This leaves one subconference with A,B & C.

9.1.3 Non-addhoc add-on multimedia

This sequence illustrates a prearranged add-on multi-media conference. The end user that initiates the call,
communicates with the conference application via a web interface (not shown). By dragging and dropping names from
the addressbook, the end-users adds parties to the conference.

Also via the web-interface, the end-user can do things that normally the chair would be able to do, e.g. determine who
has the floor (e.g. whose video is being broadcast to the other participants) or inspect the video of participants who do
not have the floor (e.g. to see how they react to the current speaker).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 161

 :
IpConfCallControlM anager

 : IpAppSubConfCall: (Logical
View::IpAppLogic)

 : IpConfCall : IpSubConfCal l PartyA :
IpAppCallLeg

PartyB :
IpAppCal lLeg

PartyB :
IpAppCallLeg

PartyA :
IpA ppCal lLeg

: cre ateCon fe rence()

1: new()

3: getSubConferen ce s()

5: createAndRouteCal lLegReq()

8: createAndRouteCal lLegReq()

10: createAndRouteCallLegReq()

11: createAndRouteCallLegReq()

16: appointSpeaker()

17: inspectVideo()

18: inspectVideo()

19: inspectVideoCancel()

20: floorRequest()
21: "forward event"

22: appointSpeaker()

6: new()

4: new()

12: eventReportRes()

13: "forward event"

14: chairSelection()

7: new()

9: ne w()

15: eventReportRes()

1: The application creates a new object for receiving callbacks from the MMSubConference.

2: When the user selects the appropriate option in the web interface, the application will create a conference without
resource reservation. The policy for video is set to 'chairperson switched'.

3: The application requests the subconference that was implicitly created together with the conference.

4: The application creates a new IpAppCallLeg interface.

5: The application adds the first party to the subconference. This process is repeated for all 4 parties. Note that in the
following not all steps are shown.

6: The gateway creates a new IpCallLeg interface.

7: The application creates a new IpAppCallLeg interface.

8: The application add parties to the conference and monitors on success.

9: The gateway creates a new IpCallLeg interface.

10: The application add parties to the conference and monitors on success.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 162

11: The application add parties to the conference and monitors on success.

12: When a party A answers the application is notified.

We assume that all parties answer.

13:

14: We assume that A was the initiating party.

The initiating end-user is assigned the chairpersonship.

This message is needed to synchonise the chairpersonship in the application with the MCU chairpersonship, since the
chair can also use H.323 messages to control the conference.

15: When a party B answers the application is notified. We assume the other parties answer as well and this is not
shown below in the sequence.

16: Chairperson (A) decides via WWW interface that party B is the speaker. This means that the video of B is broadcast
to the rest.

17: The chairperson select the video of C in order to judge their reactions on B's proposal.

18: The chairperson select the video of D in order to judge their reactions on B's proposal.

19: The chairperson goes back to receiving the broadcasted videostream (B)

20: User C requests the floor via the H.323 signals. The application is notified of this.

21: The message is forwarded to the application logic.

22: The chairperson (via the WWW interface) grants the request by appointing C as the speaker.

9.1.4 Resource Reservation

This sequence illustrates how an application can check and reserve resources for a meet-me conference.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 163

 : (Logical
View::IpAppLogic)

 :
IpAppConfCallCont rolManager

 :
IpConfCallControlManager

 : IpConfCall

1: checkResources()

3: reserveResources()

4: freeResources()

5: reserveResources()

2: new()

6: conferenceCreated()
7: "forward event"

1: The application checks if enough conference resources are available in a given time period.

2: The application creates a object to receive callback messages.

3: The application reserves resources for the time period. The callback object is in order to receive a notification when
the conference is started.

4: Because the time was wrong by accident, the application cancels the earlier reservation.

5: The application makes a new reservation.

6: At the specified time, or when the first party joins the conference the application is notified.

7: The event is forwarded to the application.

9.2 Class Diagrams
The conference call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side. The class diagrams in the following figures show the interfaces that make up the
conference call control application package and the conference call control service package.

This class diagram shows the interfaces that make up the application conference call control service package and the
relation to the interfaces in the conference call control service package.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 164

The diagram also shows the inheritance relation between the multi-party call application interfaces and the conference
call application interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.

Communication between the application and service packages is done via the <<uses>> relations; the interfaces can
communicate with callback methods in the corresponding application interfaces.

IpAppConfCall

partyJoined()
leaveMonitorRes()

(from cccs)

<<Interface>>

IpAppConfCallCon trolM ana ger

conferenceCreated()

(from cccs)

<< Interface>> IpAppSubConfCall

chairSelection()
floorRequest()

(from cccs)

<<Interface>>

IpConfCall

getSubConferences()
createSubConference()
leaveMonitorReq()

(from cccs)

<<Interface>>

IpSubConfCall

splitSubConference()
mergeSubConference()
moveCallLeg()
inspectVideo()
inspectVideoCancel()
appointSpeaker()
chairSelection()
changeConferencePolicy()

(from cccs)

<<Interface>>

IpConfCallControlManager

createConference()
checkResou rces()
reserve Resource s()
fre eResources()

(from cccs)

<< Interface>>

1 0..n

1 ..n

<<uses>>

pAppM ul tiMe diaCall Con tro lM anager

reportMediaNotification()

(from mmccs)

<< Interface>> IpAppMultiMediaCall

superviseVolumeRes()
superviseVolumeErr()

(from mmccs)

<<Interface>>

IpMultiMediaCallLeg

mediaStreamAllow()
mediaStreamMonitorReq()
getMediaStreams()

(from mmccs)

<< Interface>>

IpAppM ul tiMediaCall Leg

mediaStreamMonitorRes()

(from mmccs)

<< Interface>>

1 0..n

0..n

1

0..n

<<uses>>

<<uses>>

1

0..n

1 0..n

<<uses>>

0..n

Figure 18: Application Interfaces

This class diagram shows the interfaces that make up the conference call control service package.

The diagram also shows the inheritance relation between the multi-party call interfaces and the conference call
interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.

Furthermore, the class diagram illustrates that the conference call control manager can instantiate or be associated with
zero or more conference calls. Each conference call can have one or more subconferences associated with it. Each
subconference contains zero or more call legs associated. Detached legs are not associated with any specific
subconference, instead they are associated with the conference call itself.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 165

p ConfCa ll

ge tSub Conferen ce s()
createSub Confere nce()
le aveMo nito rReq ()

(from cccs)

<<Interface>>
Ip ConfCallControlManager

createCon fere nce()
checkResou rces()
re se rveReso urces()
fre eReso urces()

(from cccs)

<<Interface>>

1 0..n

IpSubConfCall

splitSubConference()
mergeSubConference()
moveCallLeg()
inspectVideo()
inspectVideoCancel()
appointSpeaker()
chairSelection()
changeConferencePolicy()

(from cccs)

<<Interface>>

IpMultiMediaCallControlManager

createMediaNotification()
destroyMediaNotification()
changeMediaNotification()
getMediaNotification()

(from mmccs)

<Inte rface>>
IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

IpMultiMediaCallLeg

m edia Strea mAl low()
m edia Strea mM on itorRe q()
ge tMe dia Strea ms()

(from mmccs)

<<Inte rface>>

1 . .n

1

0..n

1

0. .n

Figure 19: Service Interfaces

9.3 Conference Call Control Service Interface Classes
The Conference Call Control Service enhances the multi-media call control service. The conference call control service
gives the application the ability to manipulate subconferences within a conference. A subconference defines the
grouping of legs within the overall conference call. Only parties in the same subconference have a bearer connection (or
media channel connection) to each other (e.g. can speak to each other). The application can:

• Create new subconferences within the conference, either as an empty subconference or by splitting an existing
subconference in two subconferences.

• Move legs between subconferences.

• Merge subconferences.

• Get a list of all subconferences in the call.

The generic conference also gives the possibility to manipulate typical multi-media conference details, such as:

• Interworking with network signalled conference protocols (e.g. H.323).

• Manipulation of the media in the MCU, e.g. broadcasting of video.

• Handling of multi-media conference policies, e.g. how video should be handled, voice controlled switched or
chair controlled.

Furthermore the conference call control service adds support for the reservation of resources needed for conferencing.
The application can:

• Reserve resources for a predefined time period.

• Free reserved resources.

• Search for the availability of conference resources based on a number of criteria.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 166

There are two ways to initiate a conference:

• The conferences can be started on the pre-arranged time by the service, at the start time indicated in the
reservation. The application is notified about this. The application can then add parties to the conference and/or
parties can dial-in to the conference using the address provided during reserveration.

• The conference can be created directly on request of the application using the createConference method to the
IpConferenceCallControlManager interface.

9.3.1 Interface Class IpConfCallControlManager

Inherits from: IpMultiMediaCallControlManager

The conference Call Control Manager is the factory interface for creating conferences. Additionally it takes care of
resource management.

<<Interface>>

IpConfCallControlManager

createConference (appConferenceCall : in IpAppConfCallRef, numberOfSubConferences : in TpInt32,
conferencePolicy : in TpConfPolicy, numberOfParticipants : in TpInt32, duration : in TpDuration) :
TpConfCallIdentifier

checkResources (searchCriteria : in TpConfSearchCriteria) : TpConfSearchResult

reserveResources (appInterface : in IpAppConfCallControlManagerRef, startTime : in TpDateAndTime,
numberOfParticipants : in TpInt32, duration : in TpDuration, conferencePolicy : in TpConfPolicy) :
TpAddress

freeResources (resourceID : in TpAddress) : void

Method
createConference()

This method is used to create a new conference. If the specified resources are not available for the indicated duration the
creation is rejected with P_RESOURCES_UNAVAILBLE.

Returns conference: Specifies the interface reference and sessionID of the created conference.

Parameters

appConferenceCall : in IpAppConfCallRef

Specifies the callback interface for the conference created.

numberOfSubConferences : in TpInt32

Specifies the number of subconferences that the user wants to create automatically. The references to the interfaces of
the subconferences can later be requested with getSubConferences.

The number of subconferences should be at least 1.

conferencePolicy : in TpConfPolicy

Specifies the policy to be applied for the conference, e.g. are parties allowed to join (call into) the conference?

Note that if parties are allowed to join the conference, the application can expect partyJoined() messages on the
IpAppConfCall interface.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 167

numberOfParticipants : in TpInt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these
resources are not guaranteed, i.e. anything exceeding this will be best effort only and the conference service may drop
or reject participants in order to fulfil other committed resource requests. By specifying 0, the application can request a
best effort conference.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this,
but after the duration, the resources are no longer guaranteed, i.e. parties may be dropped or rejected by the service in
order to satisfy other committed resource requests. When the conference is released before the allocated duration, the
reserved resources are released and can be used to satisfy other resource requests. By specifying 0, the application
requests a best effort conference.

Returns

TpConfCallIdentifier

Raises

TpCommonExceptions

Method
checkResources()

This method is used to check for the availability of conference resources.

The input is the search period (start and stop time and date) - mandatory.

Furthermore, a conference duration and number of participants can be specified - optional.

The search algorithm will search the specified period for availability of conference resources and tries to find an
optimal solution.

When a match is found the actual number of available resources, the actual start and the actual duration for which these
are available is returned. These values can exceed the requested values.

When no match is found a best effort is returned, still the actual start time, duration, number of resources are returned,
but these values now indicate the best that the conference bridge can offer, e.g. one or more of these values will not
reach the requested values.

Returns result : Specifies the result of the search. It indicates if a match was found. If no exact match was found the best
attempt is returned.

Parameters

searchCriteria : in TpConfSearchCriteria

Specifies the boundary conditions of the search. E.g. the time period that should be searched, the number of
participants.

Returns

TpConfSearchResult

Raises

TpCommonExceptions

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 168

Method
reserveResources()

This method is used to reserve conference resources for a given time period. Conferences can be created without first
reserving resources, but in that case no guarantees can be made.

Returns resourceID : Specifies the address with which the conference can be addressed, both in the methods of the
interface and in the network, i.e. if joinAllowed is TRUE, parties can use this address to join the conference.

If no match is found the resourceID contains an empty address.

Parameters

appInterface : in IpAppConfCallControlManagerRef

Specifies the callback interface to be used when the conference is created in the network. The applicaiton will receive
the ConferenceCreated message when a conference is created in the network.

startTime : in TpDateAndTime

Specifies the time at which the conference resources should be reserved, i.e. the start time of the conference.

numberOfParticipants : in TpInt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these
resources are not guaranteed, i.e. anything exceeding this will be best effort only and the conference service may drop
or reject participants in order to fulfil other committed resource requests.

duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this,
but after the duration, the resources are no longer guaranteed, i.e. parties may be dropped or rejected by the service in
order to satisfy other committed resource requests. When the conference is released before the allocated duration, the
reserved resources are released and can be used to satisfy other resource requests.

conferencePolicy : in TpConfPolicy

The policy to be applied for the conference, e.g. are parties allowed to join (call into) the conference? Note that if
parties are allowed to join the conference, the application can expect partyJoined() messages on the appConfCall.

Returns

TpAddress

Raises

TpCommonExceptions

Method
freeResources()

This method can be used to cancel an earlier made reservation of conference resources.

This also means that no ConferenceCreated events will be received for this conference.

Parameters

resourceID : in TpAddress

Specifies the resourceID that was received during the reservation.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 169

Raises

TpCommonExceptions

9.3.2 Interface Class IpAppConfCallControlManager

Inherits from: IpAppMultiMediaCallControlManager

The conference call control manager application interface provides the application with additional callbacks when a
conference is created by the network (based on an earlier reservation).

<<Interface>>

IpAppConfCallControlManager

conferenceCreated (conferenceCall : in TpConfCallIdentifier) : IpAppConfCallRef

Method
conferenceCreated()

This method is called when a conference is created from an earlier resource reservation.

Returns appInterface: Specifies a reference to the application interface which implements the callback interface for the
new conference.

Parameters

conferenceCall : in TpConfCallIdentifier

Specifies the reference to the conference call interface to which the notification relates and the associated sessionID.

Returns

IpAppConfCallRef

9.3.3 Interface Class IpConfCall

Inherits from: IpMultiMediaCall

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 170

The conference call manages the subconferences. It also provides some convenience methods to hide the fact of
multiple subconferences from the applications that do not need it. Note that the conference call always contains one
subconference. The following inherited call methods apply to the conference as a whole, with the specified semantics:

 - setCallback; changes the callback interface reference.
 - release; releases the entire conference, including all the subconferences and detached legs.
 - deassignCall; de-assigns the complete conference. No callbacks will be received by the application, either on the
conference, or on any of the contained subconferences or call legs.
 - getInfoReq; request information over the complete conference. The conference duration is defined as the time
when the first party joined the conference until when the last party leaves the conference or the conference is released.

 - setChargePlan; set the chargeplan for the conference. This chargeplan will apply to all the subconferences, unless
another chargeplan is explicitly overridden on the subconference.
 - superviseReq; supervise the duration of the complete conference.
 - getCallLegs; return all the call legs used within the conference.
 - superviseVolumeReq; supervises and sets a granted data volume for the conference.

 Other methods apply to the default subconference. When using multiple subconferences, it is recommended that the
application calls these methods directly on the subconference since this makes it more explicit what the effect of the
method is:
 - createAndRouteCallLeg
 - createCallLeg

<<Interface>>

IpConfCall

getSubConferences (conferenceSessionID : in TpSessionID) : TpSubConfCallIdentifierSet

createSubConference (conferenceSessionID : in TpSessionID, appSubConference : in
IpAppSubConfCallRef, conferencePolicy : in TpConfPolicy) : TpSubConfCallIdentifier

leaveMonitorReq (conferenceSessionID : in TpSessionID) : void

Method
getSubConferences()

This method returns all the subconferences of the conference.

Returns subConferenceList : Specifies the list of all the subconferences of the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the sessionID of the conference.

Returns

TpSubConfCallIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 171

Method
createSubConference()

This method is used to create a new subconference. Note that one subconference is already created together with the
conference.

Returns subConference : Specifies the created subconference (interface and sessionID).

Parameters

conferenceSessionID : in TpSessionID

Specifies the sessionID of the conference.

appSubConference : in IpAppSubConfCallRef

Specifies the call back interface for the created subconference.

conferencePolicy : in TpConfPolicy

Conference Policy to be used in the subconference. Optional; if undefined, the policy of the conference is used. Note
that not all policy elements have to be applicable for subconferences.

Returns

TpSubConfCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
leaveMonitorReq()

This method is used to request a notification when a party leaves the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the conference.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 172

9.3.4 Interface Class IpAppConfCall

Inherits from: IpAppMultiMediaCall

The Conference Call application interface allows the application to handle call responses and state reports. Additionally
it allows the application to handle parties entering and leaving the conference.

<<Interface>>

IpAppConfCall

partyJoined (conferenceSessionID : in TpSessionID, callLeg : in mpccs::TpCallLegIdentifier, eventInfo : in
TpJoinEventInfo) : mpccs::IpAppCallLegRef

leaveMonitorRes (conferenceSessionID : in TpSessionID, callLeg : in TpSessionID) : void

Method
partyJoined()

This asynchronous method indicates that a new party (leg) has joined the conference. This can be used in, e.g. a meetme
conference where the participants dial in to the conference using the address returned during reservation of the
conference.

The Leg will be assigned to the default subconference object and will be in a detached state. The application may move
the call Leg to a different subconference before attaching the media.

The method will only be called when joinAllowed is indicated in the conference policy.

Returns appCallLeg : Specifies the call back interface that should be used for callbacks from the new call Leg.

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the confererence that the party wants to join.

callLeg : in mpccs::TpCallLegIdentifier

Specifies the interface and sessionID of the call leg that joined the conference.

eventInfo : in TpJoinEventInfo

Specifies the address information of the party that wants to join the conference.

Returns

mpccs::IpAppCallLegRef

Method
leaveMonitorRes()

This asynchronous method indicates that a party (leg) has left the conference.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 173

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the conference that the party wants to leaves.

callLeg : in TpSessionID

Specifies the sessionID of the call leg that left the conference.

9.3.5 Interface Class IpSubConfCall

Inherits from: IpMultiMediaCall

The subconference is an additional grouping mechanism within a conference. Parties (legs) that are in the same
subconference have a speech connection with each other. The following inherited call methods apply to the
subconference as a whole, with the specified semantics:
 - setCallback; changes the callback interface reference.
 - release; releases the subconference, including all currently attached legs. When the last subconference in the
conference is released, the conference is implicitly released as well.
 - deassignCall; de-assigns the subconference. No callbacks will be received by the application on this
subconference, nor will the gateway accept any methods on this subconference or accept any methods using the
subconfernece as a parameter (e.g. merge). When the subconference is the last subconference in the conference, the
conference is deassigned as well. In general it is recommended to only use deassignCall for the complete conference.
 - getInfoReq; request information over the subconference. The subconference duration is defined as the time when
the first party joined the subconference until when the last party leaves the subconference or the subconference is
released.
 - setChargePlan; set the charge plan for the subconference.
 - superviseReq; supervise the duration of the subconference. It is recommended that this method is only used on the
complete conference.
 - superviseVolumeReq; supervises and sets a granted data volume for the subconference.
 - getCallLegs; return all the call legs in the subconference.
 - createCallLeg; create a call leg.
 - createAndRouteCallLeg; implicitly create a leg and route the leg to the specified destination.

<<Interface>>

IpSubConfCall

splitSubConference (subConferenceSessionID : in TpSessionID, callLegList : in TpSessionIDSet,
appSubConferenceCall : in IpAppSubConfCallRef) : TpSubConfCallIdentifier

mergeSubConference (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in
TpSessionID) : void

moveCallLeg (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in TpSessionID,
callLeg : in TpSessionID) : void

inspectVideo (subConferenceSessionID : in TpSessionID, inspectedCallLeg : in TpSessionID) : void

inspectVideoCancel (subConferenceSessionID : in TpSessionID) : void

appointSpeaker (subConferenceSessionID : in TpSessionID, speakerCallLeg : in TpSessionID) : void

chairSelection (subConferenceSessionID : in TpSessionID, chairCallLeg : in TpSessionID) : void

changeConferencePolicy (subConferenceSessionID : in TpSessionID, conferencePolicy : in TpConfPolicy) :
void

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 174

Method
splitSubConference()

This method is used to create a new subconference and move some of the legs to it.

Returns newSubConferenceCall : Specifies the new subconference that is implicitly created as a result of the method.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference.

callLegList : in TpSessionIDSet

Specifies the sessionIDs of the legs that will be moved to the new subconference.

appSubConferenceCall : in IpAppSubConfCallRef

Specifies the application call back interface for the new subconference.

Returns

TpSubConfCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
mergeSubConference()

This method is used to merge two subconferences, i.e. move all our legs from this subconference to the other
subconference followed by a release of this subconference.

Parameters

subConferenceCallSessionID : in TpSessionID

Specifies the session ID of the subconference.

targetSubConferenceCall : in TpSessionID

The session ID of target subconference with which the current subconference will be merged.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
moveCallLeg()

This method moves one leg from this subconference to another subconference.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 175

Parameters

subConferenceCallSessionID : in TpSessionID

Specifies the session ID of the source subconference.

targetSubConferenceCall : in TpSessionID

Specifies the sessionID of the target subconference.

callLeg : in TpSessionID

Specifies the sessionID of the call leg to be moved.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
inspectVideo()

This method can be used by the application to select which video should be sent to the party that is currently selected as
the chair.

Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

inspectedCallLeg : in TpSessionID

Specifies the sessionID of call leg of the party whose video stream should be sent to the chair.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
inspectVideoCancel()

This method cancels a previous inspectVideo. The chair will receive the broadcasted video.

Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 176

Method
appointSpeaker()

This method indicates which of the participants in the conference has the floor. The video of the speaker will be
broadcast to the other parties.

Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

speakerCallLeg : in TpSessionID

Specifies the sessionID of the call leg of the party whose video stream should be broadcast.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
chairSelection()

This method is used to indicate which participant in the conference is the chair. E.g. the terminal of this participant will
be the destination of the video of the inspectVideo method.

Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

chairCallLeg : in TpSessionID

Specifies the sessionID of the call leg of the party that will become the chair.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
changeConferencePolicy()

This method can be used to change the conference policy in an ongoing conference.

Multi media conference policy options available. E.g.:

• Chair controlled video / voice switched video

• Closed conference / open conference

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 177

• Composite video (different types) / only speaker

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.

conferencePolicy : in TpConfPolicy

New Conference Policy to be used in the subconference.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

9.3.6 Interface Class IpAppSubConfCall

Inherits from: IpAppMultiMediaCall

The Sub Conference Call application interface allows the application to handle call responses and state reports from a
sub conference.

<<Interface>>

IpAppSubConfCall

chairSelection (subConferenceSessionID : in TpSessionID) : mpccs::TpCallLegIdentifier

floorRequest (subConferenceSessionID : in TpSessionID) : mpccs::TpCallLegIdentifier

Method
chairSelection()

This method is used to inform the application about the chair selection requests from the network. It is used to interwork
with H.323 conference signalling. The application can grant the request by calling the selectChair method on the
subconference.

Returns chair: Specifies the reference to the interface of the leg that wants to become the chair.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference where the chair request originates.

Returns

mpccs::TpCallLegIdentifier

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 178

Method
floorRequest()

This method is used to inform the application about the floor requests from the network. It is used to interwork with
H.323 conference signalling. The application can grant the request by calling the appointSpeaker method.

Returns floorRequester : Specifies the reference to the interface of the leg that requests the floor.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference where the floor request originates.

Returns

mpccs::TpCallLegIdentifier

9.4 Conference Call Control Service State Transition Diagrams
There are no State Transition Diagrams for the Conference Call Control Service package.

9.5 Conference Call Control Data Definitions
This clause provides the Conference call control data definitions necessary to support the API specification.

The present document is written using Hypertext link, to aid navigation through the data structures. Underlined text
represents Hypertext links.

The general format of a data definition specification is described below.

• Data Type

This shows the name of the data type.

• Description

This describes the data type.

• Tabular Specification

This specifies the data types and values of the data type.

• Example

If relevant, an example is shown to illustrate the data type.

9.5.1 Event Notification Data Definitions

No specific event notification data.

9.5.2 Conference Call Control Data Definitions

IpConfCall

Defines the address of an IpConferenceCall Interface.

IpConfCallRef

Defines a Reference to type IpConfCall.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 179

IpAppConfCall

Defines the address of an IpAppConfCall Interface.

IpAppConfCallRef

Defines a Reference to type IpAppConfCall.

IpSubConfCall

Defines the address of an IpSubConfCall Interface.

IpSubConfCallRef

Defines a Reference to type IpSubConfCall.

IpAppSubConfCall

Defines the address of an IpAppSubConfCall Interface.

IpAppSubConfCallRef

Defines a Reference to type IpAppSubConfCall.

TpConfCallIdentifierRef

Defines a Reference to type TpConfCallIdentifier.

TpSubConfCallIdentifierSet

Defines a Numbered Set of Data Elements of IpSubConfCallIdentifier.

TpSubConfCallIdentifierSetRef

Defines a Reference to type IpSubConfCallIdentifierSet.

TpSubConfCallIdentifierRef

Defines a Reference to type TpSubConfCallIdentifier.

TpConfCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Conference Call object.

Sequence Element Name Sequence Element Type Sequence Element Description
ConfCallReference IpConfCallRef This element specifies the interface reference for the conference

call object.

ConfCallSessionID TpSessionID This element specifies the session ID of the conference call.

TpSubConfCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the SubConfernece Call object.

Sequence Element Name Sequence Element Type Sequence Element Description
SubConfCallReference IpSubConfCallRef This element specifies the interface reference for the

subconference call object.

SubConfCallSessionID TpSessionID This element specifies the session ID of the subconference call.

IpAppConfCallControlManager

Defines the address of an IpAppConfCallControlManager Interface.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 180

IpAppConfCallControlManagerRef

Defines a Reference to type IpAppConfCallControlManager.

TpConfPolicyType

Defines policy type for the conference.

If undefined the gateway will select an appropriate default.

If a mono media conference policy is specified for a multi-media conference, the gateway will select appropriate
defaults for the multi-media policy items.

If a mulit-media policy is selected for a mono-media (voice-only) conference, the multi-meda conference items will be
ignored.

Name Value Description
P_CONFERENCE_POLICY_UNDEFINED 0 Undefined

P_CONFERENCE_POLICY_MONOMEDIA 1 CCCS – monomedia conference policy

P_CONFERENCE_POLICY_MULTIMEDIA 2 MMCCS – mulitmedia conference policy

TpConfPolicy

Defines the Tagged Choice of Data Elements that specify the policy that needs adhered to by the
conference.

 Tag Element Type
 TpConfPolicyType

Tag Element Value Choice Element Type Choice Element Name
P_CONFERENCE_POLICY_MONOMEDIA TpMonoMediaConfPolicy MonoMedia

P_CONFERENCE_POLICY_MULTIMEDIA TpMultiMediaConfPolicy MultiMedia

TpMonoMediaConfPolicy

Defines the type of conference policy as a sequence of Policy Items and their values.

For mono media there are only two types of conference policies; specified, i.e. the application provides the policy, or
undefined, i.e. the GW may choose a default conference policy.

Sequence Element Name Sequence Element Type description
JoinAllowed TpBoolean Specifies if dial-in to the conference is allowed. Parties can

dial-in to the conference using the address returned during
reservation. If this is specified the application will receive

partyJoined for each participant dialling into the
conference.

TpJoinEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Join event
notification.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 181

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

TpConfSearchCriteria

Defines the Sequence of Data Elements that specify the criteria for doing a search for available conference
resources.

Sequence Element Name Sequence Element Type
StartSearch TpDateAndTime

StopSearch TpDateAndTime

RequestedResources TpInt32

RrequestedDuration TpDuration

TpConfSearchResultRef

Defines a reference to type TpConfSearchResult.

TpConfSearchResult

Defines the Sequence of Data Elements that specifies the result of a search for available conference resources.

Sequence Element Name Sequence Element Type
MatchFound TpBoolean

ActualStartTime TpDateAndTime

ActualResources TpInt32

ActualDuration TpDuration

TpMultiMediaConfPolicy

Sequence of items for multi-media conferences.

Sequence Element Name Sequence Element Type description
JoinAllowed TpBoolean Specifies if dial-in to the conference is

allowed. Parties can dial-in to the conference
using the address returned during reservation.
If this is specified the application will receive
partyJoined for each participant dialling into

the conference.

MediaAllowed TpMediaType Specifies the media that are allowed to be
used by the participants. E.g. this can be used

to limit the conference to audio only, even
when all participants support video.

Chaired TpBoolean Specifies whether the conference is chaired or
free. In a chaired conference the application or

one of the participants acting as chair has
special privileges; e.g. can control the video

distribution.

VideoHandling TpVideoHandlingType Specifies how the video should be handled.

TpVideoHandlingType

Defines how video should be handled in the conference.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 182

Name Value Description
P_MIXED_VIDEO 0 Video is mixed, no special treatement of speaker

P_SWITCHED_VIDEO_CHAIR_CONTROLLED 1 Video is switched, chair determines the speaker

P_SWITCHED_VIDEO_VOICE_CONTROLLED 2 Video is switched automatically based on audio
output of the speaker

10 Common Call Control Data Types
TpCallAlertingMechanism
This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values
of this data type are operator specific.

TpCallBearerService
This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,
and TS 122 002).

Name Value Description
P_CALL_BEARER_SERVICE_UNKNOWN 0 Bearer capability information unknown at this time

P_CALL_BEARER_SERVICE_SPEECH 1 Speech

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED 2 Unrestricted digital information

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED 3 Restricted digital information

P_CALL_BEARER_SERVICE_AUDIO 4 3,1 kHz audio

P_CALL_BEARER_SERVICE_
DIGITALUNRESTRICTEDTONES

5 Unrestricted digital information with tomes/announcements

P_CALL_BEARER_SERVICE_VIDEO 6 Video

TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
ChargeOrderType TpCallChargeOrderCategory Charge order

TransparentCharge TpOctetSet Operator specific charge plan specification,
e.g. charging table name / charging table

entry. The associated charge plan data will be
send transparently to the charging records.

Only applicable when transparent charging is
selected.

ChargePlan TpInt32 Pre-defined charge plan. Example of the
charge plan set from which the application can
choose could be : (0 = normal user, 1 = silver

card user, 2 = gold card user).

Only applicable when transparent charging is
selected.

AdditionalInfo TpOctetSet Descriptive string which is sent to the billing
system without prior evaluation. Could be

included in the ticket.

PartyToCharge TpCallPartyToCharge Identifies the entity or party to be charged for
the call or call leg.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 183

TpCallPartyToCharge

Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

 Tag Element Type
 TpCallPartyToChargeType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_PARTY_ORIGINATING, , NULL Undefined

P_CALL_PARTY_DESTINATION, NULL Undefined

P_CALL_PARTY_SPECIAL TpAddress CallPartySpecial

TpCallPartyToChargeType

Defines the type of call party to charge.

Name Value Description
P_CALL_PARTY_ORIGINATING, , 0 Calling party, i.e. party that initiated the call. For application initiated calls this

indicates the first party of the call

P_CALL_PARTY_DESTINATION, 1 Called party

P_CALL_PARTY_SPECIAL 2 An address identifying e.g. a third party, a service provider

TpCallChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

 Tag Element Type
 TpCallChargeOrderCategory

Tag Element Value Choice Element Type Choice Element Name

P_CALL_CHARGE_TRANSPARENT TpOctetSet TransparentCharge

P_CALL_CHARGE_PREDEFINED_SET TpInt32 ChargePlan

TpCallChargeOrderCategory

Defines the type of charging to be applied.

Name Value Description

P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name / charging
table entry. The associated charge plan data will be send transparently to the

charging records

P_CALL_CHARGE_PREDEFINED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user, 2 =

gold card user).

TpCallAdditionalChargePlanInfo

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

 Tag Element Type
 TpCallChargeOrderCategory

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 184

Tag Element Value Choice Element
Type

Choice Element
Name

Description

P_CALL_CHARGE_TRANSPARENT NULL Undefined

P_CALL_CHARGE_PREDEFINED_SET TpOctetSet SetAdditionalInfo Descriptive string which is sent to
the billing system without prior
evaluation. Could be included in

the ticket.

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element Name Sequence Element Type Description
CallLegSessionID TpSessionID The leg that initiated the release of the call.

If the call release was not initiated by the leg,
then this value is set to –1.

Cause TpReleaseCause The cause of the call ending.

TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name Sequence Element Type
ErrorTime TpDateAndTime

ErrorType TpCallErrorType

AdditionalErrorInfo TpCallAdditionalErrorInfo

TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific
information. This is also used to specify call leg errors and information errors.

 Tag Element Type
 TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_ERROR_UNDEFINED NULL Undefined

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE NULL Undefined

P_CALL_ERROR_RESOURCE_UNAVAILABLE NULL Undefined

TpCallErrorType

Defines a specific call error.

Name Value Description
P_CALL_ERROR_UNDEFINED 0 Undefined; the method failed or was refused,

but no specific reason can be given.

P_CALL_ERROR_INVALID_ADDRESS 1 The operation failed because an invalid address
was given

P_CALL_ERROR_INVALID_STATE 2 The call was not in a valid state for the
requested operation

P_CALL_ERROR_RESOURCE_UNAVAILABLE 3 There are not enough resources to complete the
request successfully

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 185

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not
requested is invalid.

Sequence Element Name Sequence Element Type Description
CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-
on call, was started.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was
connected to the destination (i.e. when the

destination answered the call). If the
destination did not answer, the time is set to

an empty string.

This data element is invalid when
information on user interaction is reported

with an intermediate report.

CallEndTime TpDateAndTime The date and time when the call or follow-
on call or user interaction was terminated.

Cause TpReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_INFO_UNDEFINED 00h Undefined

P_CALL_INFO_TIMES 01h Relevant call times

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause

P_CALL_INFO_INTERMEDIATE 04h Send only intermediate reports. When this is not
specified the information report will only be

sent when the call has ended. When
intermediate reports are requested a report will
be generated between follow-on calls, i.e. when

a party leaves the call.

TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

 Tag Element Type
 TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_LOAD_CONTROL_PER_INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 186

TpCallLoadControlIntervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in
milliseconds) between calls that are admitted.

Name Value Description
P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS 0 Infinite interval

(do not admit any calls)

 1 - 60000 Duration in milliseconds

TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name Value Description
P_CALL_LOAD_CONTROL_PER_INTERVAL 1 admit one call per interval

TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name Value Description
P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the call control

service and call processing is interrupted. The
application is notified of the event and call

processing resumes following an appropriate
API call or network event (such as a call

release)

P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the call control
service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event

TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (TS 124 002) This information is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description
P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN 0 Network type information unknown at this time

P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS

P_CALL_NETWORK_ACCESS_TYPE_ISDN 2 ISDN

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET 3 Dial-up Internet

P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDLS

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS 5 Wireless

TpCallPartyCategory
This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 187

Name Value Description
P_CALL_PARTY_CATEGORY_UNKNOWN 0 calling party's category unknown at this time

P_CALL_PARTY_CATEGORY_OPERATOR_F 1 operator, language French

P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English

P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German

P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian

P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish

P_CALL_PARTY_CATEGORY_ORDINARY_SUB 6 ordinary calling subscriber

P_CALL_PARTY_CATEGORY_PRIORITY_SUB 7 calling subscriber with priority

P_CALL_PARTY_CATEGORY_DATA_CALL 8 data call (voice band data)

P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call

P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone

TpCallServiceCode
Defines the Sequence of Data Elements that specify the service code and type of service code received during
a call. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type
CallServiceCodeType TpCallServiceCodeType

ServiceCodeValue TpString

TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description
P_CALL_SERVICE_CODE_UNDEFINED 0 The type of service code is unknown. The corresponding string is

operator specific.

P_CALL_SERVICE_CODE_DIGITS 1 The user entered a digit sequence during the call. The corresponding
string is an ascii representation of the received digits.

P_CALL_SERVICE_CODE_FACILITY 2 A facility information element is received. The corresponding string
contains the facility information element as defined in ITU Q.932.

P_CALL_SERVICE_CODE_U2U 3 A user-to-user message was received. The associated string contains
the content of the user-to-user information element.

P_CALL_SERVICE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.
The corresponding string is an ascii representation of the entered

digits.

P_CALL_SERVICE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by
some digits. The corresponding string is an ascii representation of the

entered digits.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 188

TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a
logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due to timer expiry or
call party release. In case the called party

disconnects but a follow-on call can still be
made also this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning tone has been applied. This is only
sent in combination with

P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_UI_FINISHED 08h The user interaction has finished.

TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by a logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE_RELEASE 01h Release the call when the call supervision timer

expires

P_CALL_SUPERVISE_RESPOND 02h Notify the application when the call supervision
timer expires

P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the originating party
when the call supervision timer expires. If call

release is requested, then the call will be
released following the tone after an

administered time period

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 189

TpCallTeleService
This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High
Layer Compatitibility Information, and TS 122 003)

Name Value Description
P_CALL_TELE_SERVICE_UNKNOWN 0 Teleservice information unknown at this time

P_CALL_TELE_SERVICE_TELEPHONY 1 Telephony

P_CALL_TELE_SERVICE_FAX_2_3 2 Facsimile Group 2/3

P_CALL_TELE_SERVICE_FAX_4_I 3 Facsimile Group 4, Class I

P_CALL_TELE_SERVICE_FAX_4_II_III 4 Facsimile Group 4, Classes II and III

P_CALL_TELE_SERVICE_VIDEOTEX_SYN 5 Syntax based Videotex

P_CALL_TELE_SERVICE_VIDEOTEX_INT 6 International Videotex interworking via gateways or interworking
units

P_CALL_TELE_SERVICE_TELEX 7 Telex service

P_CALL_TELE_SERVICE_MHS 8 Message Handling Systems

P_CALL_TELE_SERVICE_OSI 9 OSI application

P_CALL_TELE_SERVICE_FTAM 10 FTAM application

P_CALL_TELE_SERVICE_VIDEO 11 Videotelephony

P_CALL_TELE_SERVICE_VIDEO_CONF 12 Videoconferencing

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF 13 Audiographic conferencing

P_CALL_TELE_SERVICE_MULTIMEDIA 14 Multimedia services

P_CALL_TELE_SERVICE_CS_INI_H221 15 Capability set of initial channel of H.221

P_CALL_TELE_SERVICE_CS_SUB_H221 16 Capability set of subsequent channel of H.221

P_CALL_TELE_SERVICE_CS_INI_CALL 17 Capability set of initial channel associated with an active 3.1 kHz
audio or speech call.

P_CALL_TELE_SERVICE_DATATRAFFIC 18 Data traffic.
P_CALL_TELE_SERVICE_EMERGENCY_CAL

LS
19 Emergency Calls

P_CALL_TELE_SERVICE_SMS_MT_PP 20 Short message MT/PP
P_CALL_TELE_SERVICE_SMS_MO_PP 21 Short message MO/PP
P_CALL_TELE_SERVICE_CELL_BROADCAS

T
22 Cell Broadcast Service

P_CALL_TELE_SERVICE_ALT_SPEECH_FA
X_3

23 Alternate speech and facsimile group 3

P_CALL_TELE_SERVICE_AUTOMATIC_FAX
_3

24 Automatic Facsimile group 3

P_CALL_TELE_SERVICE_VOICE_GROUP_C
ALL

25 Voice Group Call Service

P_CALL_TELE_SERVICE_VOICE_BROADCA
ST

26 Voice Broadcast Service

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the
network (for example, call which are not admitted by the call load control mechanism).

Sequence Element Name Sequence Element Type
CallTreatmentType TpCallTreatmentType

ReleaseCause TpReleaseCause

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 190

TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description
P_CALL_TREATMENT_DEFAULT 0 Default treatment

P_CALL_TREATMENT_RELEASE 1 Release the call

P_CALL_TREATMENT_SIAR 2 Send information to the user, and release the
call (Send Info & Release)

TpCallAdditionalTreatmentInfo

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.

 Tag Element Type
 TpCallTreatmentType

Tag Element Value Choice Element Type Choice Element Name
P_CALL_TREATMENT_DEFAULT NULL Undefined

P_CALL_TREATMENT_RELEASE NULL Undefined

P_CALL_TREATMENT_SIAR TpUIInfo InformationToSend

TpMediaType

Defines the media type of a media stream. The values may be combined by a logical 'OR' function.

Name Value Description
P_AUDIO 1 Audio stream

P_VIDEO 2 Video stream

P_DATA 4 Data stream (e.g. T120)

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 191

Annex A (normative):
OMG IDL Description of Call Control SCF
The OMG IDL representation of this interface specification is contained in text files (common_cc_data.idl,
gcc_data.idl, gcc_interfaces.idl, mpcc_data.idl, mpcc_interfaces.idl, mmccs.idl, cccs.idl contained in archive
es_20191504v010101m0.ZIP) which accompany the present document.

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 192

Annex B (informative):
Contents of 3GPP OSA R4 Call Control
All items in Generic Call Control, clause 6 and all items in MultiParty Call Control are relevant for TS 129 198-4 V4
(Release 4).

Note that there are 2 State Transition Diagrams associated with IpCall in the present document - one from TS 129 198,
the other from Parlay. They have different descriptions for the same states - these have been combined into a common
description (since e.g. Active state for IpCall is the same, regardless of which diagram it is in).

ETSI

Final draft ETSI ES 201 915-4 V1.1.1 (2001-12) 193

History

Document history

V1.1.1 December 2001 Membership Approval Procedure MV 20020215: 2001-12-18 to 2002-02-15

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Call Control SCF
	5 The Service Interface Specifications
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class

	6 Generic Call Control Service
	6.1 Sequence Diagrams
	6.1.1 Additional Callbacks
	6.1.2 Alarm Call
	6.1.3 Application Initiated Call
	6.1.4 Call Barring 1
	6.1.5 Number Translation 1
	6.1.6 Number Translation 1 (with callbacks)
	6.1.7 Number Translation 2
	6.1.8 Number Translation 3
	6.1.9 Number Translation 4
	6.1.10 Number Translation 5
	6.1.11 Prepaid
	6.1.12 Pre-Paid with Advice of Charge (AoC)

	6.2 Class Diagrams
	6.3 Generic Call Control Service Interface Classes
	6.3.1 Interface Class IpCallControlManager
	6.3.2 Interface Class IpAppCallControlManager
	6.3.3 Interface Class IpCall
	6.3.4 Interface Class IpAppCall

	6.4 Generic Call Control Service State Transition Diagrams
	6.4.1 State Transition Diagrams for IpCallControlManager
	6.4.1.1 Active State
	6.4.1.2 Notification terminated State

	6.4.2 State Transition Diagrams for IpCall
	6.4.2.1 Network Released State
	6.4.2.2 Finished State
	6.4.2.3 Application Released State
	6.4.2.4 No Parties State
	6.4.2.5 Active State
	6.4.2.6 1 Party in Call State
	6.4.2.7 2 Parties in Call State
	6.4.2.8 Routing to Destination(s) State
	6.4.2.9 Network Released State
	6.4.2.10 Finished State
	6.4.2.11 Application Released State
	6.4.2.12 No Parties State
	6.4.2.13 Active State
	6.4.2.14 1 Party in Call State
	6.4.2.15 2 Parties in Call State
	6.4.2.16 Routing to Destination(s) State

	6.5 Generic Call Control Service Properties
	6.5.1 List of Service Properties
	6.5.2 Service Property values for the CAMEL Service Environment.

	6.6 Generic Call Control Data Definitions
	6.6.1 Generic Call Control Event Notification Data Definitions
	6.6.2 Generic Call Control Data Definitions

	7 MultiParty Call Control Service
	7.1 Sequence Diagrams
	7.1.1 Application initiated call setup
	7.1.2 Call Barring 2
	7.1.3 Call forwarding on Busy Service
	7.1.4 Call Information Collect Service
	7.1.5 Complex Card Service
	7.1.6 Hotline Service

	7.2 Class Diagrams
	7.3 MultiParty Call Control Service Interface Classes
	7.3.1 Interface Class IpMultiPartyCallControlManager
	7.3.2 Interface Class IpAppMultiPartyCallControlManager
	7.3.3 Interface Class IpMultiPartyCall
	7.3.4 Interface Class IpAppMultiPartyCall
	7.3.5 Interface Class IpCallLeg
	7.3.6 Interface Class IpAppCallLeg

	7.4 MultiParty Call Control Service State Transition Diagrams
	7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.4.1.1 Active State
	7.4.1.2 Interrupted State
	7.4.1.3 Overview of allowed methods

	7.4.2 State Transition Diagrams for IpMultiPartyCall
	7.4.2.1 IDLE State
	7.4.2.2 ACTIVE State
	7.4.2.3 RELEASED State
	7.4.2.4 Overview of allowed methods

	7.4.3 State Transition Diagrams for IpCallLeg
	7.4.3.1 Originating Call Leg
	7.4.3.1.1 Initiating State
	7.4.3.1.2 Analysing State
	7.4.3.1.3 Active State
	7.4.3.1.4 Releasing State
	7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.4.3.2 Terminating Call Leg
	7.4.3.2.1 Idle (terminating) State
	7.4.3.2.2 Active (terminating) State
	7.4.3.2.3 Releasing (terminating) State
	7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	7.5 Multi-Party Call Control Service Properties
	7.5.1 List of Service Properties
	7.5.2 Service Property values for the CAMEL Service Environment.

	7.6 Multi-Party Call Control Data Definitions
	7.6.1 Event Notification Data Definitions
	7.6.2 Multi-Party Call Control Data Definitions

	8 MultiMedia Call Control Service
	8.1 Sequence Diagrams
	8.1.1 Barring for media combined with call routing, alternative 1
	8.1.2 Barring for media combined with call routing, alternative 2
	8.1.3 Barring for media, simple
	8.1.4 Call Volume charging supervision

	8.2 Class Diagrams
	8.3 MultiMedia Call Control Service Interface Classes
	8.3.1 Interface Class IpMultiMediaCallControlManager
	8.3.2 Interface Class IpAppMultiMediaCallControlManager
	8.3.3 Interface Class IpMultiMediaCall
	8.3.4 Interface Class IpAppMultiMediaCall
	8.3.5 Interface Class IpMultiMediaCallLeg
	8.3.6 Interface Class IpAppMultiMediaCallLeg
	8.3.7 Interface Class IpMultiMediaStream

	8.4 MultiMedia Call Control Service State Transition Diagrams
	8.5 Multi-Media Call Control Data Definitions
	8.5.1 Event Notification Data Definitions
	8.5.2 Multi-Media Call Control Data Definitions

	9 Conference Call Control Service
	9.1 Sequence Diagrams
	9.1.1 Meet-me conference without subconferencing
	9.1.2 Non-add hoc add-on with subconferencing
	9.1.3 Non-addhoc add-on multimedia
	9.1.4 Resource Reservation

	9.2 Class Diagrams
	9.3 Conference Call Control Service Interface Classes
	9.3.1 Interface Class IpConfCallControlManager
	9.3.2 Interface Class IpAppConfCallControlManager
	9.3.3 Interface Class IpConfCall
	9.3.4 Interface Class IpAppConfCall
	9.3.5 Interface Class IpSubConfCall
	9.3.6 Interface Class IpAppSubConfCall

	9.4 Conference Call Control Service State Transition Diagrams
	9.5 Conference Call Control Data Definitions
	9.5.1 Event Notification Data Definitions
	9.5.2 Conference Call Control Data Definitions

	10 Common Call Control Data Types
	Annex A (normative): OMG IDL Description of Call Control SCF
	Annex B (informative): Contents of 3GPP OSA R4 Call Control
	History

