Final draft ETS| ES 201 915-3 V1.1.1 (2001-12)

ETSI Standard

Open Service Access;
Application Programming Interface;
Part 3: Framework

5 N

D

2 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Reference
DES/SPAN-120070-3

Keywords
API, OSA, IDL, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2001.

© The Parlay Group 2001.
All rights reserved.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

3 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Contents

Intellectual Property RIGNES.........oo et 9
0 Yo (o SRS 9
1 o010 RSP 10
2 S L= (= 000 P 10
3 Definitions and aDbreVIBLIONS...........eceere ettt e sre e be s e e tesneeneeseeeneeneenreas 10
31 (D= T o T] (0] PP P PP USTORPP 10
3.2 ADDIEVIBLIONS ...ttt bbbt bt ae st e e eeE e e bt e bt e he e b e e e et e Rt eh e e Re e b e R e bt bt eneene e e re e 10
4 OVENVIEW OF the FramEWOTK.........c.coiiiiiiirieee ettt sb e e e e 10
5 The Base INterface SPECITICALION.c..coiieieeeere e 12
51 Interface SPECITiCaLiON FOIMELcc.ciiie ettt bt s bbbt 12
511 E 1S = To Y O =SSP 12
512 MELNOO AESCITLIONS. ...ttt bbbt bt bt b bt et b e st et b e bbb 12
5.1.3 L = 1= (= 0 L= o 1 0] 0] 12
514 Sz (= 1Y T L= SO PSPS 12
52 BaSE INEEITACE.ot bttt b bbbt a et E e Rt R e Rt h e e R bbbt ne e re e 13
521 1S g o O F= S T o] 11 o = o= P 13
53 SEIVICE INEEITACES ...ttt b b bkt e e e e e e b e bt ea e eb e s he e b e e e e b e b e sb e e b e e neenee e ennes 13
531 OVEIVIBW ..ottt sttt sttt sttt st s e st e be s e e st e ke s e e st e b e s e e st ebeseese e b e sees e eEeneeseebeseene e b e sbeneebenbe e ebenbeneesenbenennens 13
54 GENENIC SEIVICE INEEITACE ...ttt ettt et et e e et e b e seesbe s et ese e e e seseeseeseeeneeneeneeneas 13
54.1 INEEITACE ClASS IPSEIVICE ...ttt bbb et b e bbbt b et b e bbb 13
6 Framework ACCESS SESSION APo ettt et e e ae e e seeeneerenneas 14
6.1 S o 1= Torc T D TT=o = 1SS 14
6.1.1 Trust and Security Management SeqUENCE DIAQIaMSccvereerierieriesee e see e seeseesseeseeeeeseesseesseessens 14
6.1.1.1 Initial ACCESS TOr trUSLEA PAITIES. ... ccueeiiee et e e e saeesaeesreenseenneans 14
6.1.1.2 INTEBI ALCCESS. ...ttt bttt e et H e bt bt eh e e s e e e e b se e ke s Rt eb e e ne e b et e seeebeeneebe e e e e es 15
6.1.1.3 AUTNENTICALTION ...ttt et b et e h e bbb e e e b e s bt e b e et e e e e e sbeebesaeese e e ennees 17
6.1.14 APl LEVE AULNENEICALIONeveiiiieiiee ettt b e e b et eae e sr et sae b e e e 17
6.2 ClaSS DIAOIAMS. ...ttt ettt ettt sttt sttt bt bt s a et bt b e e bt s b e e eh e s R e st eb e e A e st e bt e b e e e bt b e ne e b e e e neebene et eb e s be e ebenbe e 19
6.3 1 1= g o To T O o PSS 19
6.3.1 Trust and Security Management INterface ClaSSeS.......cciireiiiieirieene e 19
6.3.1.1 Interface Class |pClientAPILevel AUhENEI CALION.........ccoieiiireiieeee e 20
6.3.1.2 INterface Class IPCIIENTACCESS........couc ittt st b et b et b e bbb et sbenne s 21
6.3.1.3 INterface ClasS IPINITIALcccoieiiieicece ettt e st e e et e e teeeesseesaeesneesseenseenneans 22
6.3.14 Interface Class IPAULNENLICALION............ccciieiee et et ee e sreesneesneenseenneens 23
6.3.1.5 Interface Class IPAPILeVEl AUtNENEICALIONccoiveiice e 24
6.3.1.6 INEErTACE ClaSS IPACCESScveete e eii ettt et et ee e e te s te s e seesaeesteesteeaeeesaeesaesseeteenseensesneesseesanesseenseensennseans 26
6.4 State TranSitioN DIBGIAIMS.ccciiie e ieese e eee st e te e e st e e be e e eseesseesteesteessesnaesaeesaeesseeseanseensenseesneessenssens 28
6.4.1 Trust and Security Management State Transition Diagramsc.coceeveereeeeeeeeseese e seesee e ee e 28
6.4.1.1 State Transition Diagrams fOr IPINItIalcoooeiiiiiii s 28
64.11.1 o L= = 29
6.4.1.2 State Transition Diagrams for IpAPILevel AUthentiCation.............coooerirrineinceeeee e 29
6.4.1.2.1 Lo [= (= TSP 29
6.4.1.2.2 SElECtiNg MELNOO SEALE.........cvieeiiriiece bbbt bt 29
6.4.1.2.3 AUhentiCating ClIENT SLALE.........oouiiieeieie et b et b e neene s 30
6.4.1.24 Client AUTNENTICAEEA SEALE........c..eieeeeeeieierie ettt b bt e e sbesbe s e enneneen 30
6.4.1.3 State Transition Diagrams fOr IPACCESS.......ccuieiieiereeseeseee e st steeste e e e e saeeaesraesreesteeneesseesseesaens 30
6.4.1.3.1 ACHVE SEALE ...ttt et sttt st et et e sttt ese et be st et et esee e et e nae e renreneeneas 30
7 Framework-to-APPHCAHON APloooee ettt st et e st s be e e sreenaenbenreas 31
7.1 SEOUENCE DIBOIAITIS ...ttt sttt sttt sttt bt ebe et ebese et b e s e e st b e s e e bt eb e s e e bt e be s e e Rt e b e e ebe e b e neeneebese e st eb e st et ebenreneees 31
711 Event Notification SeqUENCE DIiGQramS.ccuririeiriirieeniereeie ettt sttt be bbb e sbe s 31
7111 Enable EVENt NO ICAONeieeieeeee ettt seesbe e eneeneen 31
712 Integrity Management SEqQUENCE DIBGIaIMSc.cooueiiirieinieriee ettt 32

ETSI

4 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7121 Load Management: Suspend/resume notification from application...........cccecvevvneenvenieccecce e 32
7.1.2.2 Load Management: Framework queries |0ad StatiStiCS........cccovvuerieeiieese e see e 33
7.1.2.3 Load Management: Application reports current load CONdition.............ccvecvveeneeir e 33
7.1.24 Load Management: Application queries |0ad StatiStiCS........cevviveieeieere e 34
7.1.25 Load Management: Application callback registration and load controlccccceveevieieecencnseennen, 35
7.1.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationccccceeueeee. 35
7127 Fault Management: Framework detects a Service fallure ... 37
7128 Fault Management: Application requests a Framework activity test ..o e 38
713 Service DiSCOVErY SEQUENCE DIBgIaIMSoiveeriiieierieeete sttt sttt et sb et sb et b e b se e ebesreneenens 38
7131 SEIVICE DISCOVEIYotireetiitieeteste ettt sttt et h b e st e ekt b e b bt s e bt b s e bt bt b se b e s st b e e e e b e na e e enis 38
714 Service Agreement Management SeqUENCE DIiagramsSc..coveereeeerieieniereeesie sttt sesie s ereseeeenens 40
7141 SEIVICE SEIBCTION. ...ttt b et h et e e e e e b s b s bt b e e st e s e et e e e b e se e s besaeebe e e enneneen 40
7.2 L= S D=0 =0 1SS 42
7.3 INEEITACE CIBSSES. ... ettt a et bbbt b e bt b st e b e e e e b e e bt eh e e b e e heea e e e e e e b sheebesaeene e e enrenes 45
731 Service DiSCOVErY INErfate ClaSSES.uiiiiieii ettt s e st e te e aeeraeste e beenteeneeneeenes 45
7311 Interface Class |PSErVICEDISCOVETYccuiiieiieiieieeieseeseesteestesteeaesreesseesteeteesesseesseesseesseesseenseensenns 45
7.3.2 Service Agreement Management INterface Classes.......ouveiirie et 48
7321 Interface Class |pAppServiceAgreementManagementcoveereererereneneese s 48
7322 Interface Class |pServiceAgreementManagemENtc.coereerereneeeserese ettt 49
733 Integrity Management INEErface CIaSSES..........ci ittt e 52
7331 Interface Class |PAPPFAUITIMANAGETccoirieieireee ettt ettt sb e 52
7332 Interface Class IPFAUITIMANAGESooiiiiie ettt bbb bbb et sb e 55
7333 Interface Class IPAPPHEABEAMOML........oiiiiiieieie et 58
7.3.34 Interface Class IPAPPHEABERL.cceeieeieece ettt e s e e e e e saeesneesreenseenneens 59
7.3.35 Interface Class IPHEArtBEAMOMIL.........ccuiiieiie ettt e e sre e s e e saeenseenneens 59
7.3.3.6 Interface ClassS IPHEAMBERALccuveiieece et e e te e sae e e sreesneesreenseeneeens 61
7.3.37 Interface Class IPAPPLOBAMENGOESccuveiueeierieseeseesteesteeseeseeseesreestees e etesseesseesseesaeesseesseenseenseans 61
7.3.38 Interface Class IPLOAOME@NAQEYccueeiereeieeieeieseesee st e steeste et e eeeeaeesseesteesseesseesseeneesnnesseesseenseenseans 63
7.3.39 INLErfaCE ClASS IPOAM ..ottt e e st e e te e e ate e aaeeseesteesbeeteensesneesaeesneenseenseenseans 67
7.3.3.10 INterface Class IPAPPOAM ...ttt ettt b e et b e bbbt b e bt b e n et b b 67
734 Event Notification INterface ClIasseS.......couii ettt e e e e 68
7341 Interface Class |PAPPEVENINOLIFICATONooveiiereiieeere e 68
7342 Interface Class IPEVENINOLIFICATON ..ot 69
74 State TranSItioN DIAOIAMS.coiiuiieeeeie ettt ettt b e bt bt b e b et b e s b st beseeaeebese e st nbe b et ebenbenees 70
74.1 Service Discovery State TranSition DIagramSccvecevieieeieere e see s este e e ste e ssae s e e eesneesnes 71
74.1.1 State Transition Diagrams for IpSerViCEDISCOVENYuiiiiiieieiee et et eee e sree e 71
74111 ACHVE SEALE ...ttt ettt sttt st et e e et et e se et et e st e e ket et et e s ae e renreneereas 71
7.4.2 Service Agreement Management State Transition Diagrams........cccvccveeeeeerieceseeseeeee e e 71
74.3 Integrity Management State TranSition DIiagramMS..........cceieereeirseeseesie e eee et ee e eeessaeseesneesnes 72
7431 State Transition Diagrams for IPLOadManagerccuveuerierieieeie e s e ees e sreeneees 72
74311 Lo [= (= TSP 73
74312 NOLifiCation SUSPENTEA SEALE.........cc.eoeeeiriiieiireee et 73
74313 ot L= = 73
7432 State Transition Diagrams for LoadManagerinternal.............cocevireerineinineeneeeeseeseseeese e 74
74321 N To g r= L= o S = (TP 74
74322 APPlICAioN OVENOBH SEALEc.eivieeiiiteeeierie ettt b e s b e s besre e i 74
74323 INtErNal OVENTOBH SEALE.........coueieeeeeeie ittt bbbttt e sr e bt ebe e e s 74
74324 Internal and Application OVErload SEALEccccceieeiie e 74
7.4.3.3 State Transition Diagrams fOr IDOAM ..ottt ssaesnaesreennees 75
74331 ACHVE SEALE ...ttt ettt sttt st et e e et et e se et et e st e e ket et et e s ae e renreneereas 75
7434 State Transition Diagrams for IpFaUltManagercoveieecere e 75
7434.1 FrameWOrK ACHIVE SEBLE..........coouereirierieet ettt sttt st b et et e et b e sbesb et ne e e e s 76
74342 Framework FAUITY SEBLE.........cc.ciiiieirieeet ettt bbb 76
74343 Framework ACHVILY TESE SEALE........coeriieeeireieet sttt 76
74344 SENVICE ACHIVITY TESE SEALEe.ecueieieeeert ettt bbbttt be e 76
744 Event Notification State Transition DiagraimS........cociiereirieenereee st 76
7441 State Transition Diagrams for IPEVENtNOLIfiCatIONccciiiiiiiiecee s 76
74411 [AIE SEBEE.....ee ettt sttt sttt e bt e e bt s b e et e b e e b e b et b e st et bente e erenteneenens 77
74412 NOUITICATON ACHIVE SEALE ...ttt ettt b e b et ae e s 77
8 Framework-to-Enterprise OPErator APl ...ttt st ere s 77
8.1 S o 1= Torc T D TT=o = 1 S 8l

ETSI

5 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

8.1.1 Service SubsCription SEqUENCE DIAQIAIMIS.......ccveiuiiieeiesieeeee e see e steesee e seesaeetessaesraesse e beeseeeesneesnes 8l
8111 Service Discovery and SUDSCIiPtion SCENAMO.........ccuiiuieierieeee e see e se e ree e sre e e s e sreennees 8l
8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram................ 82
8.2 L= S D= =0 1SS 85
8.3 INEEITACE CIBSSES. ... ettt a et bbbt b e bt b st e b e e e e b e e bt eh e e b e e heea e e e e e e b sheebesaeene e e enrenes 86
831 Service SUDSCription INErfaCe ClaSSEScccieiiei ettt ee e 86
8311 Interface Class |pClIeNtAPPMANEGEMENTc.ciirieirierieeee ettt b e sb e 86
8312 Interface Class |pClientAPPINFOQUETY ..ottt e 20
8313 Interface Class |pServiceProfileManagemEent ..o 93
8314 Interface Class |pServiceProfilel NFOQUENYo.ci i 95
8.3.15 Interface Class |pServiceContraCtManagEmMENTcoiererererireree et 97
8.3.1.6 Interface Class |pServiceContraCtiNfOQUETYoiveiieiiiiiceesees e ens 98
8.3.1.7 Interface Class |pENtOPACCOUNTMANAJEMENLcoiiveieerieereeeeseeseestee e saeseesreeseeesseeseessesneessaesses 100
8.3.1.8 Interface Class | pENtOPACCOUNtINFOQUENYc.veeieeiiee ettt et e e 101
84 State TranSitioN DIBOIAIMS.cccueiieie et eee e e et e e st e e e e eeseesaeesseeeesseesseesseenseasseaseeeseesseesseesseenseeneennes 102
84.1 Service Subscription State Transition DiagramiS..........cveueeeereerieesieeiesieeseeseesre e eeessee e e e e sraesseesses 102
9 FramewOorK-10-SEIVICE AP ..ottt bttt nes 102
9.1 SEOUENCE DIBOIAITIS ...ttt ettt ettt sb et b et b et b s e s e b e £ e b £ R e s e e b e e e b e e st e bt e b e s e st e b et et ebe b 102
911 Service DiSCOVErY SEQUENCE DIBGIAIMScc.eiiirieeeie ettt sttt sttt b ettt sbe e 102
912 Service Registration SeqUENCE DIBOIaAIMSccuiieeirieieerie ettt be e b e sbe e 102
9121 NEW SCF REJISITALION. ...cveveaeeteieeeete sttt sttt bbb et b et b e e bt st b e et b e b 102
9.1.3 Service Instance Lifecycle Manager Sequence DiagramsScceeeveieeseesieeseesseeseeseeeseeeee s seenseensens 104
9131 SN SEIVICE AQIEEIMIENLceiuieiieieeteeteeee e e e steesteseeseesaeesseeteeneeessessaesseesseenseensesneesseesseesseenseensenns 104
914 Integrity Management SeqUENCE DIiagramScvuueiueieeieerieeeeeeeseesee e etesseessaesseessesssesesssessseensesnsenns 106
9141 Load Management: Service callback registration and load control.............cccoeveeieecnicn e 106
9.1.4.2 Load Management: Client and Service Load BalanCing.........cccocvevveveeeenieneesece e e e see e 107
9143 Heartbeat Management: Start/perform/end heartbeat supervision of the service.........ccccooeeeveneee 107
9144 Fault Management: Service requests Framework activity teSt.........cooooereiriineineneseees e 108
9.145 Fault Management: Service requests Application aCtiVity testccoeevereienenninesneees e 109
9.14.6 Fault Management: Application requests Service actiVity testcoevverrinennesereee e 110
9.14.7 Fault Management: Application detects serviceis unavailable.............cccvireinennincinenceeee 111
9.15 Event Notification SeqUENCE DIagramS.eoueeruirieiriiieesieie sttt et s 111
9.2 (O =SS D= =0 1P 112
9.3 INEEITACE CIBSSES. ... ettt b bbbt h et e e e e e Rt e b eh e eb e e st eae e e e nb e besheeb e e e enneneenras 115
931 Service Registration INtErface ClaSSES........civiiiiiiei ettt e e te e s esnaesraesneas 115
9311 Interface Class |pFWSErVICEREQISIIaLi ONecovieeeiieeeee e e e e sraenrees 115
9.3.2 Service Instance Lifecycle Manager Interface Classes.........uvveiireiieiee i se et 119
9321 Interface Class |pServicel nstanceLifeCyClEManagerccvevvveeieesiere et 119
9.33 Service DIiSCOVErY INErfaCe ClasSES........coi ittt bbbt 120
9331 Interface Class |PFWSEIVICEDISCOVETYc.ciirieiiiieirierie sttt b e 121
9.34 Integrity Management INEErfate CIaSSES..........uouriiieeirieere e 123
9341 Interface Class |PFWFELITMBNAGEScociiiieiiiere bbb 123
9342 Interface Class |PSVCFAUIMBNAGEYcoririieirieeere bbb 125
9.34.3 Interface Class IPFWHEArBEAIMOIML.........c.eoiieee ettt et e e snaesraennees 129
9.34.4 Interface Class IPFWHEAIMBERLcccceeiieie ettt sre et e e ae e sneesnaesneas 130
9.345 Interface Class |pSVCHEABEAIM QMLcoiiie ettt et sneas 131
9.34.6 Interface Class IPSVCHEAMBEALoceeiiee ettt sneas 132
9.34.7 Interface Class IPFWLOBAMENAGESc.ccveiiereereereeiteeeesee s e e te e e entesaessaesreesaeesseeseensesneesseesseessens 133
9.34.8 Interface Class IPSVCLOAOM@NAGETcccveiieiie et ee e e e et e e ae e e e sreesbe e e enaesneessaesneas 136
9.349 INtErface Class IPFWOAIMooiiiieet ettt ettt bbbt bbb 139
9.3.4.10 INtErface Class IPSVCOAM ..ottt bbbt b et bt b et be e 139
9.35 Event Notification INterface ClIassesS.......couiiii ittt 140
9351 Interface Class |PFWEVENINOLIiCALION..........cciirieiriere e 140
9.352 Interface Class |PSVCEVENENOLIfICALIONccouiieiiieee e 141
9.4 State TranSItioN DIGOIAMS.coueuiiriietiriee ettt ettt b e st b e st b e e st b e e e st be e e bt ebe e e st e b et et ebenbe e e 142
94.1 Service Registration State Transition DIagramsS.........ccccueveereeriersiesiesieeseeseesee e seesseeseeessessessessseessees 143
94.1.1 State Transition Diagrams for | pFWServiCeRegiStration...........cuecvvceieevee v 143
9.4.11.1 SCF REGISIENEA SEALE......cuecviieieetiiieiete ettt ettt e st s e st s b e e e s e s b et esesbesteneeseneeneens 143
94112 SCF ANNOUNCED SEBEE........eeueeieeteie sttt ettt sttt b e ittt se et e bbb e et e se e e e b e saeene e e e e nes 143
9.4.2 Service Instance Lifecycle Manager State Transition DiagramsS.........ceceeveeieeeeneeseeieseeseeseeseeseeseens 143
94.3 Service Discovery State Transition DIiagramsScc.eceeieeieiieeiee e ese e s s see s e e seeeee e raesseesneas 143

ETSI

6 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

94.4 Integrity Management State TranSition DIaQraMS.........ccvecueeeeneeieeieseeseese e see e saesaesee e saesseeseens 144
9441 State Transition Diagrams for IpFWLOaOdMaNagerccvevrrierieseeseee e s se e 144
94411 LA SEAL....... ettt e b e h e h e et b e Rt bRt b ettt er e b ae e e nas 144
94.4.1.2 Notification SUSPENAEA SLALE...........ccceeiierieeieieeees ettt ereesnaeeraesnaesneas 144
94413 ACTIVE SEBLE ...ttt bbbt bt et b se e eb e a e eh e et e e e e et b e ne e e nns 144
945 Event Notification State Transition DIagramsS.........cccccvecueieereereeieeeeseeseetesee e sesaesaesseesseesseessesnsenns 144
1O SEIVICE PrOPEITIES. ..ottt b b bbb e et e s e bt e bttt b e nb e b st e bt nb e b e nnennenn s 145
10.1 SEIVICE PIOPEITY TYIIES ...etiueetirtieettrtet ettt ettt e e b et b st e bbbt £ et e bt b e bt b et e bt e b e b e st e b et et e b e b 145
10.2 GENEral SEIVICE PrOPEITIESttt bbbt b et a b e st b e bbb 145
10.21 SEIVICE NBITIE. .. .ttt h et e bbbt eh e ae e s e e e e b e besh e eb e eheehe et en s e e e sbesbesneebe e e ennennen 146
10.2.2 = Ve A< £ o] o T OO OU PR PRURORTPRN 146
10.2.3 SEIVICE INSLANCE ID ...ttt e b ettt e b et b e s bt bt e st e s e e e sb e s besaeebe e e enteneen 146
10.2.4 SErVICE INSLANCE DESCIIPLION.......eiiie e iee ettt e e te et esae et e eaaesaeesae e seente e seenseeseenneeneennes 146
10.25 PIOGUCE INBITIE ...ttt bbbkttt bt h e e btk e st e s e e ne e bt s et e bt e ae et e nbeebenbesaeene e e et e 146
10.2.6 Lo To (8o Y= = Yoo TSP R VRSSO 146
10.2.7 SUPPOILE INEEITECEScvieeeeeie et ettt b e et b et b st s b e et b et e be b 146
10.2.8 OPEIBLION SEL ...ttt ettt ettt b bt b e e et bt b e eb e se e e eb e s h e e eb e s R e e eb e s R e e eb e eR e e bt R e e bt e bene Rt ere e ene s 146
R B = = = 1 o 146
111 Common Framework Data DefiNitiONScooiiiiiiieeee et s sb e neen 147
1111 TPCHEMAPPID ... bbbt b e bt bt e s e e e e bt s Rt eb e e st e st e e e b e besbeebeeneenne e enres 147
11.1.2 L O 1= 017N o] o115] I E= PRSP PP UR USSP 147
1113 TPDOMAINID ...ttt bttt s e bbb e aeeae et e s e b e sR e e b e e Rt e he e e e e e nbesheebe e e enne e etes 147
11.1.4 QLI o110 00T 1Y/ oS 147
1115 TPENLOPID ...t bbbttt e bbb e e st e e e e e R bt e Rt b e Rt e R e et et e Rt eh e a e e e nrenreras 147
1116 TPPIOPEITYNGIME. ... e e e s e n e 147
11.1.7 TPPTOPEITYV BIUB.......cvieiiitireeieet ettt b et b et b e bt b bt b bt e e bt bt e e bt e bt nn s ens 147
11.1.8 TPPTOPEITY ... et h e s e e e e n e 148
11.1.9 TOPTOPEITYLISE ...ttt bbbt b b e bt bt sk h e R bbb bbbt e n e e e enn 148
11.1.10 QLI =01 o1 5 = OSSP 148
11111 LI o USSR 148
11.1.12 LI 15 = Lol TS TO PSP PP USSP 148
11.1.13 I 1S = [0l R OO TSP PP URTSR TP 148
11.1.14 TPSEIVICEDESCIIPLIONc.eeceeeeteeeteete et s e e e e e e s reesbe et e e e estessaesseesseesaeensesneesneesneanseansennsenns 148
11.1.15 TPSEIVICEID ...ttt b e bbbt bt a e e e e e s et bt e bt e Reeae et e R e e e et e besheebeeneene e e ennan 148
11.1.16 TPSENVICEIDLISE ...ttt ettt bbbt bt e e e e s b bt s Rt e b e e st e se e e e b e besheeb e e e enne e enres 149
11.1.17 TPSENVICEIDRES ...ttt sttt et e e et e e e se et e see et e e st eneeeeneeseeseeeaeeneenseneentes 149
11.1.18 TPSENVICEINSLANCEIDoeiuiitiieiieteee ettt et b e a e bt bbbt b e e st bt e e bt b nnens 149
11.1.19 TPSEIVICESPECSIIING ...eveveueeterteneete sttt ettt ettt b et sb et b et b e s e st e bt s s e bt e e st e bt b e bbb e s e st e bt et e e ebenn e e ens 149
11.1.20 TPSENVICETYPEPIOPEITY ...ttt bbbt bbb bt s e st b bbb e ens 149
11121 TPSENVICETYPEPIOPEITYLISEceeceee ettt bbb e 149
11.1.22 TPSErVIiCETYPEPIOPEITYIMOUE. ...ttt b et bbb e 149
11.1.23 TPSErViCePrOPErtY TYPENGITIE.cvieeieeeie e siee sttt ste e te e s e st este e te e e estessaesseesaeesaeesseenseeseesseenseanseensenns 150
11.1.24 I 0SS Vo= 0] 0= NN = T TS 150
11.1.25 TPSerViCeProPErtYNAMELISL......cvieireieeeeeeseer ettt et et e e e e e eesnaesneesreesneesseeseensenns 150
11.1.26 TPSErVICEPIOPEIYV AIUE.eeieeie ettt e s s te e te e et esseestaesbe e teentesntesneesneesneanseensennsenns 150
11.1.27 TPSErViCEPrOPErtYV AlUELISL......cvieiicece ettt et e e st e st esteeteeeesreesneenneenseensenns 150
11.1.28 IS V0= (0] 0T S 150
11.1.29 T PSENVICEPTOPEITYL IS ...ttt ettt b bbb bt e et b e bbb e st bt e e e bt nr e ens 150
11.1.30 TPSENVICESUPPIIEITD ...ttt bbbttt b et b e et bbbt e 150
11131 TPSErVICETYPEDESCIIPLION ...ttt ettt b e bt b e bt b e bbb e s bbb e ens 150
11.1.32 TPSENVICETYPENGBIMIE ...ttt b et b et b e e bt et b b e e bt b s e bt b e b e bt e e st bt et e e e bt ne e s ens 151
11.1.33 TPSEVICETYPENBMELISE ...ttt bbbt et b b b e ens 151
11.1.34 L ST oL o 1Y oL TS OU PRSPPI 151
11.2 Event Notification Data DEfiNiTIONS..........cccoiiriiiiiiieieee e sb e 151
1121 TPPWEVENINGITIE. ...ttt bt e bbbttt e e e e b e s et eb e s bt ehe e e e s e b e sreebeeneenne e enres 151
11.2.2 I T Y= o (O (- S 152
11.2.3 TPRWEVENTINTO. .t e e b bbbt et e e b et bt bt et nne e e ras 152
11.3 Trust and Security Management Data DEfiNItIONSccviviieereeiceses e e e ne s 152
11.31 TACCESSTYPIE ...t e s a e e b e e sa e e b e s h e h e e e e e e e e re e 152
11.32 I T AU 1 g] Y OSSOSO 152

ETSI

7 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.3.3 BN oi Y/ o 0] g @ o= o 1 1 2SS 153
11.34 IS oi Y o 0 g @r" o= o1 11§ N S 153
11.35 T PENUA CCESSPIOPEITIES.cte et cee et et ettt s e e st sre e s te e te et e es s e eseessaesse e seeseensesseesneesneenseenseensenns 153
11.3.6 BN o7 U 10100 0 o S 153
11.3.7 QI 10 = e= \VF= T SS 153
11.3.8 I 10 = V= T S 154
11.39 TPSEIVICET OKEN. ...ttt bbbt b e et b e bt e e e bt b eh e bt b e s e e b et e bt nr e s ens 154
11.3.10 TPSIGNALUrEANASENVICEMQE ...ttt ettt b et bt et b e b e e b e e e e bt e e st bt e e ebesr e e ens 154
11.3.11 TPSIGNINGATGOITENM ...t b bbbt b bbb ens 154
114 Integrity Management Data DefiNitioNS............coeiiiiiiiiieereeee et eb e 155
1141 TPACHVITY TESIRES........ ettt b bbbt b bt b e et b e e e bt s b et bt bt b e st bt st e e ebene e s ens 155
11.4.2 QI o =5 = oo o S 155
1143 TPFAUIESEBES.veeeeeeee et e e Rt e R e e bR e et R et r e n e n e enn 155
11.4.4 QI L = S o=t o S 155
1145 TPFAUIESEBESSELccverveeeerise et r et r e st et R e n e r e n e n e r e 155
11.4.6 TPRACHVITYTESIID ...ttt e bt e e e e r e e r e n e nenr e ens 156
11.4.7 BN 10 = o = = T SS 156
1148 TPSVCUNGVAITREBSON......c.ecuiiieeiiitieei ettt bbbt b et b s e et b et b e ne e ens 156
1149 TPPWURNGVEITREBSON......c.eeitieciitee ettt b e bt et b bt b e e et b et benr e ens 156
11.4.10 TPLOAOLEVEL.......eeeeceeeeeee ettt bbbt b e bt et h e et b e bt bt et bbbt e e enen 156
11411 TPLOAATRIESNON ...ttt bbbt b et b s et b et b e nn e ens 156
11.4.12 TPLOAOINITV @I ...ttt b e b e bt et b e bt b e e e bbbt e ens 157
11.4.13 TPLOAUPOIICY ...ttt bbb bbbt et h e bbbt e e bbb et bt et e bt e e ens 157
11.4.14 QLI o]0z o S e = oSSR 157
11.4.15 QLI o1 ez o S e = 1 o T USRS 157
11.4.16 TPLOAOSEAEISHICDELAcveeeevereeererreee ettt r e n e e s r e es e nr e e r e r e nenr e 157
11.4.17 TPLOAASKALIStCENTITYID ...t n e nr s 157
11.4.18 QI o 0720 S e =1 Y/ L= 2SS 158
11.4.19 QI o 0720 S = = o 1 | oSS 158
11.4.20 TPL OA0SEAL St CINTOT YO ...ttt b bbbt e e bbb b e ens 158
11421 Bl o1 Moz o S e (o = o PSPPSR 158
115 Service SUbSCription Data DEfINITIONSc.ciirieiriiee bbb 158
1151 TPPIOPEITYNGIME. ...t s e e s s 158
1152 TPPTOPEITYV BIUB.......otieeititeeeiet ettt b et b bbbt b bt e e bbb et bt st e bt e e ens 159
11.53 I 0] (0] 0= ¢ TSROSO 159
11.54 I 0 0 T= 1 Y = S 159
11.55 QI]1(o) 0] 7 = SR 159
11.5.6 LI €111 o PSSP TR SO PSRR 159
11.5.7 QI 05 V0= 11 o 0 S 159
11.5.8 TPSErVIiCECONIIACHIDLISE ... eiceeecieestie et re et e et et e et e e e e e ssaesaeesreesaeesseeseesreesneenseanseensenns 159
1159 TPPEISONNGITIE ... e s r e b e e e e e e e aeenneene 159
11.5.10 TPPOSEBIAGUIESS ...ttt ettt bbbtk b et h bt s s bt et b e e e e bbbt bt e st bt st e e bt e e e ens 159
11511 TPTEEPNONENUMDE ..ot bbbt b et bbbt b e sn e ens 159
11.5.12 LI 01017 OO OO OE PP OTRRTPOR 160
11.5.13 TPHOMEPEAGE ... e e s s e s 160
11.5.14 TPPEISONPIOPEITIES. ...ttt sttt ettt b bt bt s bt e st b e s e bt s e et bt b eb e bt bese bt e e bt ne e s ens 160
11.5.15 I 0= £ o o TP 160
11.5.16 TPSEIVICESIAIDEALE. ... e evecteee ettt s e e e st et e et e e e et e e s be e teesteestessaesseesseesaeentesneesneesneenseanseensenns 160
11.5.17 I 0SS Vo= g To I - (S 160
11.5.18 T PSEIVIiCEREQUESLOLceeeeieeiteeteeeeetteeteestee s e e te e e seesseesseesseesseenseenseesseaseessaesseesseesseansesneesneessnnnseansennsenns 160
11.5.19 QI o12 T gTe 0] | o S 160
11.5.20 TPServiCeSUDSCIi Pt ONPIOPEITIES.......c..eiieeie e see st e ste e eee et este et e te e sseesreesreenseeeesaeesseesseanseensenns 160
11521 TPSEINVICECONIIBEL ...ttt ettt b et b et b et b b s e bt e bt s e b b ea e bt b ese bt st e e ebene e s ens 161
11.5.22 TPSErViCECONIIACIDESCITPIION. ...ttt sttt b bbb bbb bbb e ens 161
11.5.23 TPCHENTAPPPIOPEITIES.cveeeeeitireeiet ettt b et b s h bt e bbb e s e eb e b e st b et e e e bt b e e ens 161
11.5.24 TPCH ENTAPPDESCIIPLION. ...ttt ettt b s b e st b s s e b e s e seeb et e e e b se e ens 161
11.5.25 LI 05 o 1 SRS 161
11.5.26 LI 615 [0 = USRS PRR 161
11.5.27 QIS 0 | L=< ot] (o] o S 162
11.5.28 LI €5 TSRS 162
11.5.29 TPSEIVICEPIOTIEID ...ttt et eestessaesaeesreesteeneesnnessnesneanneanseensenns 162
11.5.30 IS S Vo= (o) = = S 162

ETSI

8 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.5.31 QI 0SS V0= (o = S 162
11.5.32 TPSErViCePrOfilEDESCITPLION.ectieieeiece et e et e et e e e steeste e teesestesneesreesneesseenseensenns 162
D (= o (0 O = 5T S 163
Annex A (normative): OMG IDL Description of Frameworkccccccveveveieccese e, 164
Annex B (informative): Contents of 3GPP OSA R4 FrameworK........coccceeieieeieneneneneseseeseeee 165
[1S 0] YOS 166

ETSI

9 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced
Networks (SPAN), and is now submitted for the ETSI standards Membership Approva Procedure.

The present document is part 3 of a multi-part deliverable covering Open Service Access (OSA); Application
Programming Interface (API), asidentified below. The API specification (ES 201 915) is structured in the following
parts:

Part1: "Overview";

Part 2. "Common Data Definitions";
Part 3: " Framework";

Part 4: "Cdl Control SCF";

Part5: "User Interaction SCF";
Part6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";
Part 8. "Data Session Control SCF";
Part9: "Generic Messaging SCF";
Part 10: "Connectivity Manager SCF";
Part 11: "Account Management SCF";
Part 12: "Charging SCF".

The present document has been defined jointly between ETSI, The Parlay Group [24] and the 3GPP, in co-operation
with anumber of JAIN™ Community [25] member companies.

ETSI

http://webapp.etsi.org/IPR/home.asp

10 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

1 Scope

The present document is part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

¢ Sequence Diagrams

¢ ClassDiagrams

* Interface specification plus detailed method descriptions
e State Transition diagrams

o DataDefinitions

e |IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

2 References

The referenceslisted in clause 2 of ES 201 915-1 contain provisions which, through reference in this text, constitute
provisions of the present document.

ETSI ES 201 915-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ES 201 915-1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ES 201 915-1 apply.

4 Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, between the Network
Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these
interfaces are represented by the yellow circlesin the diagram below). The description of the Framework in the present
document separates the interfaces into these three distinct sets: Framework to Application interfaces, Framework to
Enterprise Operator interfaces and Framework to Service interfaces.

ETSI

11 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Enterprise Operator

!

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. It isapolicy
decision for the application whether it must authenticate the framework or not. It isa policy decision for the
framework whether it allows an application to authenticate it before it has completed its authentication of the
application.

Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

Discovery of framework and network service capability features. After successful authentication,
applications can obtain available framework interfaces and use the discovery interface to obtain information on
authorised network service capability features. The Discovery interface can be used at any time after successful
authentication.

Establishment of service agreement: Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically exchanging documents) and an on-line part. The application has to sign the on-line part of the service
agreement before it is allowed to access any network service capability feature.

Access to network service capability features: The framework must provide access control functions to
authorise the access to service capability features or service datafor any APl method from an application, with
the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

Registering of network service capability features. SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon reguest about
available service capability features (Discovery). For example, this mechanism is applied when installing or
upgrading a Service Capability Server.

ETSI

12 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Basic mechanism between Framework and Enterprise Operator:

- Service Subscription function. This function represents a contractual agreement between the Enterprise
Operator and the Framework. In this subscription business model, the enterprise operators act in the role of
subscriber/customer of services and the client applications act in the role of users or consumers of services. The
framework itself actsin therole of retailer of services.

The following clauses describe each aspect of the Framework in the following order:

¢ The sequence diagrams give the reader a practical idea of how the Framework isimplemented.

The class diagrams clause show how each of the interfaces applicable to the Framework relate to one another.
¢ Theinterface specification clause describes in detail each of the interfaces shown within the class diagram part.

e The State Transition Diagrams (STD) show the transition between statesin the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

¢ The data definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the common data types part of this specification.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

511 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name | p<narne>.
The callback interfaces to the applications are denoted by classes with name | pApp<nane>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name | pSvc<name>,
while the Framework interfaces are denoted by classes with name |pFw<name>.

5.1.2 Method descriptions

Each method (API method "call") is described. All methodsin the API return avalue of type TpResul t , indicating,
amongst other things, if the method invocation was successfully executed or not.

Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a'Req’
suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a'Res' or 'Err'
suffix for method results and errors, respectively. To handle responses and reports, the application or service developer
must implement the relevant | pApp<nane> or | pSvc<namne> interfaces to provide the callback mechanism.
5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, astate model is shown to illustrate the states of the objects that implement the described interface.

ETSI

13 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

53.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface’. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

54 Generic Service Interface

54.1 Interface Class IpService
Inherits from: IpInterface

All serviceinterfacesinherit from the following interface.

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void
setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

Method
set Cal | back()

This method specifies the reference address of the callback interface that a service usesto invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionID's.

ETSI

14 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

Raises
TpComonExcept i ons

Method
set Cal | backWt hSessi onl X))

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not uses SessioniD's.

Parameters

applnterface : in IplnterfaceRef
Specifies areference to the application interface, which is used for callbacks

sessionlD : in TpSessionlD
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_ | D

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for trusted parties

The following figure shows a trusted party, typically within the same domain as the Framework, accessing the OSA
Framework for thefirst time. Trusted parties do not need to be authenticated and after contacting the Initial interface the
Framework will indicate that no further authentication is needed and that the application can immediately gain access to
other framework interfaces and SCFs. Thisis done by invoking the requestAccess method.

ETSI

15 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

. IpClientAPILevelAuthentication Client . Ipinitial : IpAccess Framework

IQAPILeveIA_uthentication

| |
: 1: initiateAuthentication() :

|

|

|

|

| U I

| |

| 2: authentioationSucceeded()
1 1

|
3 requestAcqess()

:

1: The Client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Based on the domainlD information that was supplied in the Initiate Authentication step, the Framework knows it
deals with atrusted party and no further authentication is needed. Therefore the Framework provides the authentication
succeeded indication.

3: The Client invokes requestAccess on the Framework's APl Level Authenticaiton interface, providing in turn a
reference to its own access interface. The Framework returns areference to its access interface.

6.1.1.2 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of al authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, astringified object reference, etc. At this stage,
the client has no guarantee that thisis a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface only supports the initiateA uthentication method to allow the authentication
process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This
is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

ETSI

16 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Client . Iplnitial . IpAPILevelAuthentication : IpAccess Eramework

InClientAPILevelAuthentication

|
| 1: initiateAuthentication() :

| | |
: 1 1
: gl 1 1
1 N 1 1 1
: : 2: selectEncwptionMethod() : :
; i g 1
: " 3 authenticaté() : :
| : T 1
1 U 1 1 1
: : 4: authenticationSucq‘:eeded() : :
| : f !
| |
I I !
|

|

|

|
5: a‘uthenticate()

iy :

| |
| 6: authenticationSucceeded()

i

|
|
[7: requestAccess() |
L

\] i
)

8:'obtaininterface()

1: Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public” (initial contact) interface to initiate the
authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Select Encryption Method

The client invokes sel ectEncryptionMethod on the Framework's API Level Authentication interface, identifying the
encryption methods it supports. The Framework prescribes the method to be used.

3: Authenticate
4. The client provides an indication if authentication succeeded.

5: The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more
invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the
client supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework
may issue its own challenges to the client using the authenticate method on the client's API Level Authentication
interface.

6: The Framework provides an indication if authentication succeeded.
7: Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level
Authenticaiton interface, providing in turn areference to its own access interface. The Framework returns a reference to
its access interface.

8: The client invokes obtainlnterface on the framework's Access interface to obtain areference to its service discovery
interface.

ETSI

17 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

6.1.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution tecnology mechanism.

Client . Ipnitial Framework . IpAuthentication : IpAccess

| 1: initiateAuthentication() |

1

|
: requestAccess()

-

Underlying Distribution
| Technology Mechanism is used
I for application identification and
l authentication.
|
|
|
|

|

)

)

|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
:
|
3: obtainlnterface()
T
|
|
|
|
|
|
|
|
|

1: Theclient callsinitiateAuthentication on the OSA Framework Initial interface. This alows the client to specify the
type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism
for identification and authentication.

2: Theclient invokes the requestAccess method on the Framework's Authentication interface. The Framework now
uses the underlying distribution technology mechanism for identification and authentication of the client.

3: If the authentication was successful, the client can now invoke obtainl nterface on the framework's Access interface
to obtain a reference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signaturesto ensure integrity. The inclusion of cryptographic processes and
digital signaturesin the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) Theclient calsinitiateAuthentication on the OSA Framework Initial interface. This allows the client to specify
the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthentication method can be used to specify the specific process,
(e.g. CORBA security). OSA defines generic a authentication interface (APl Level Authentication), which can
be used to perform the authentication process. The initiateAuthentication method allows the client to pass a
reference to its own authentication interface to the Framework, and receive a reference to the authentication
interface preferred by the client, in return. In this case the APl Level Authentication interface.

ETSI

18 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

2) The client invokes the selectEncryptionM ethod on the Framework's APl Level Authentication interface. This
includes the encryption capabilities of the client The framework then chooses an encryption method based on the
encryption capabilities of the client and the Framework. If the client is capable of handling more than one
encryption method, then the Framework chooses one option, defined in the prescribedM ethod parameter. In
some instances, the encryption capability of the client may not fulfil the demands of the Framework, in which
case, the authentication will fail.

3) The application and Framework interact to authenticate each other. For an authentication method of
P_OSA_ACCESS, this procedure consists of a number of challenge/ response exchanges. This authentication
protocol is performed using the authenticate method on the API Level Authentication interface.
P_OSA_ACCESSisbased on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved
by the framework invoking the authenticate method on the client's APILevel Authentication interface.

NOTE: At any point during the access session, either side can request re-authentication. Re-authentication does
not have to be mutual.

: IpClientAPILevelAuthentication Client : Ipinitial Framework : IpAPILevelAuthentication

|
| |
M 1: initiateAuthentication() I
|

IpClientAPILevelAuthentication
reference is passed to framework
and IpAPILevelAuthentication
reference isreturned.

[
|
2: SelectEhcryptionMethod() :

Thisisan example of the N
sequence of
authentication

L_F operations. Different
. authentication protocols
4: authenticate()

may have different

rauthenticate()

requirements on the

|
. ! order of operations.
T authenticate() :

|
|
|
|
|
|
T
|
|
ul
|
|
|
|
|
T
l
U

6: althenticate() U

IpClientAccess reference is
passed to Framework, and
IpAccess reference is
returned.

I
T
|
|
|
7: regueaAccess()
]
|
|
|
|
|
|
|
|
| |

e i SR S

ETSI

19 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

6.2 Class Diagrams

<<Interface>> <<Interface>>
IpClientAccess IpClientAPILevel Authentic ation
(from Client interfaces) (fom Client interfaces)
SterminateAccess() Sauthenticate()
SabortAuthentication()
' #authenticationSucceeded()

/N
N

I
I
I
|
<<uses>> |
I
I
I
I
I
L

<<uses>> 3
<<Interface>> <<Interface>>
Ipinitial <<Interface>> IpAPILevelAuthentication
(from Framework interfaces) IpAccess (from Framework interfaces)
(from Framework interfaces)

FinitiateAuthentication() #¥selectEncryptionMethod()
Sobtaininterface() Sauthenticate()
obtaininterfaceWithCallback() SabortAuthentication()
SendAccess() SauthenticationSucceeded()
Blistinterfaces()
releaselnterface() v

<<Interface>>
IpAuthentication
(from Framework interfaces)

FrequestAccess()

Figure 1: Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

- thefirst point of contact for a client to access a Framework provider;

the authentication methods for the client and Framework provider to perform an authentication protocol;
- theclient with the ability to select a service capability feature to make use of;
- theclient with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;
2) Authentication to the Framework;

3) Accessto Framework and Service Capability Festures.

ETSI

20 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: Iplnterface.

<<Interface>>

IpClientAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method
aut henticate()

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication
process is deemed successful when the authenticationSucceeded method isinvoked. The invocation of this method may
be interleaved with authenticate() calls by the client on the IpAPILevel Authentication interface.

Returns <response> : Thisis the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionMethod().

Parameters

chal l enge : in TpCctet Set

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionM ethod().

Returns
TpCct et Set

Method
abort Aut henti cati on()

The framework uses this method to abort the authentication process. This method isinvoked if the framework wishesto
abort the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on

I pAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method

ETSI

21 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
aut henti cati onSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt.

Parameters

No Parameters were identified for this method
6.3.1.2 Interface Class IpClientAccess
Inherits from: Iplnterface.

IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access
session.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : void

Method
t erm nat eAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any callsto these
interfaces will fail. If at any point the framework's level of confidence in the identity of the client becomes too low,
perhaps due to re-authentication failing, the framework should terminate al outstanding service agreements for that
client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the
client. This follows a generally accepted security model where the framework has decided that it can no longer trust the
client and will therefore sever ALL contact with it.

Parameters

termnationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signingAlgorithm: in TpSigningAl gorithm
Thisis the algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client,
the P_INVALID_SIGNING_ALGORITHM exception will be thrown.

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the termination text. The framework uses thisto confirm its identity to the client.
The client can check that the terminationText has been signed by the framework. If a match is made, the access session
isterminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpConmonExceptions, P_I NVALI D SI GNING ALGORI THM P_|I NVALI D_SI GNATURE

ETSI

22 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

6.3.1.3 Interface Class Iplinitial
Inherits from: Iplnterface.

The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework.

<<Interface>>

IpInitial

initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

Method
I nitiateAuthentication()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the
use of a specific authentication method.

Returns <fwDomain> : This provides the client with aframework identifier, and a reference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IplnterfaceRef;
} .

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the
framework to the client.
The authinterface parameter is a reference to the authentication interface of the framework. The type of this
interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAut hDomain
Thisidentifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {
domainlD: TpDomainiD;
authinterface: IplnterfaceRef;

The domainlD parameter is an identifier either for aclient application (i.e. TpClientApplD) or for an enterprise
operator (i.e. TPEntOpID), or for an existing registered service (i.e. TpServicel D) or for a service supplier (i.e.
TpServiceSupplierID). It isused to identify the client domain to the framework, (see authenticate() on
IpAPILevel Authentication). If the framework does not recognise the domaini D, the framework returns an error code
(P_INVALID_DOMAIN_ID).

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterface
is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

aut hType : in TpAut hType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an aternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the I pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authlnterface parameters are references to interfaces of type Ip(Client) APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication which is used when an underlying distibution technology authentication mechanism is used.

ETSI

23 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns
TpAut hDomai n
Raises

TpConmonExcept i ons, P_I NVALI D_DOVAI N_I D, P_I NVALI D_| NTERFACE_TYPE, P_I NVALI D
_AUTH_TYPE

6.3.1.4 Interface Class IpAuthentication
Inherits from: Iplnterface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The mutual authentication process should in this case be done with some underlying distribution
technology authentication mechanism, e.g. CORBA Security.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessinterface : in IpinterfaceRef) : IpinterfaceRef

Method
request Access()

Once client and framework are authenticated, the client invokes the requestAccess operation on the | pAuthentication or
IpAPILevel Authentication interface. This allows the client to request the type of access they require. If they request
P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Operators can define their own access
interfaces to satisfy client requirements for different types of access.)

If this method is called before the client and framework have successfully completed the authentication process, then
the request fails, and an error code (P_ACCESS DENIED) is returned.

Returns <fwA ccesslnterface> : This provides the reference for the client to call the access interface of the framework.

Parameters

accessType : in TpAccessType

Thisidentifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS TYPE) isreturned.

clientAccesslinterface : in |IplnterfaceRef

This provides the reference for the framework to call the accessinterface of the client. If the interface reference is not of
the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns
| pl nt er f aceRef
Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D_ACCESS TYPE,
P | NVALI D_I NTERFACE_TYPE

ETSI

24 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: |pAuthentication.

The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication
process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability
authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method
sel ect Encrypti onMet hod()

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throwsthe P NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the
client's authenticate() method (the wait isto ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : Thisisreturned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedM ethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncrypti onCapabilityList
Thisis the means by which the encryption mechanisms supported by the client are conveyed to the framework.

Returns
TpEncryptionCapability
Raises

TpComonExcepti ons, P_ACCESS DEN ED,
P_NO_ACCEPTABLE_ENCRYPTI ON_CAPABI LI TY

ETSI

25 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method

aut henticate()

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The clientAppl D received in the initiateAuthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed
successful when the authenticationSucceeded method isinvoked. The invocation of this method may be interleaved
with authenticate() calls by the framework on the client's APILevel Authentication interface.

Returns <response> : Thisis the response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

Parameters

challenge : in TpCctet Set

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by sel ectEncryptionMethod().

Returns

TpCct et Set

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
abort Aut henti cati on()

The client uses this method to abort the authentication process. This method isinvoked if the client no longer wishes to
continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on
IpAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons, P_ACCESS_DENI ED

Method
aut henti cati onSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

ETSI

26 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)
Raises

TpComonExcepti ons, P_ACCESS DEN ED

6.3.1.6 Interface Class IpAccess

Inherits from: Ipinterface.

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName) : IpinterfaceRef

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, clientinterface : in IpinterfaceRef) :
IpinterfaceRef

endAccess (endAccessProperties : in TpEndAccessProperties) : void
listinterfaces () : TpinterfaceNameList

releaselnterface (interfaceName : in TplnterfaceName) : void

Method
obt ai nl nterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainlnterfaceswithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwlInterface> : Thisisthe reference to the interface requested.

Parameters

interfaceName : in TplnterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns

| pl nt er f aceRef

Raises

TpComonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_| NTERFACE_NAME

Method
obt ai nl nterfaceWthCal | back()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtaininterface
method should be used when no callback interface needs to be supplied.)

Returns <fwlInterface> : Thisisthe reference to the interface requested.

ETSI

27 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

interfaceName : in TplnterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientinterface : in IplnterfaceRef

Thisisthe reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainlnterface method should be used when no callback interface needsto be
supplied.) If the interface referenceis not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns
| pl nt er f aceRef
Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_| NTERFACE_NAVE, P_I NVALI D_|I NT
ERFACE_TYPE

Method
endAccess()

The endAccess operation is used by the client to request that its access session with the framework is ended. After it is
invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references
to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

Thisisalist of propertiesthat can be used to tell the framework the actions to perform when ending the access session
(e.0. exigting service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

Raises
TpCommonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_PROPERTY

Method
listlnterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainl nterface() or obtainl nterfaceWithCallback().

Returns <frameworklnterfaces> : The frameworklnterfaces parameter contains alist of interfaces that the framework
makes available.

Parameters
No Parameters were identified for this method

ETSI

28 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns

Tpl nt er f aceNaneLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
rel easel nterface()

The client uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TplnterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises
TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D | NTERFACE NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

s initiateAuthentication / return new IpAuthentication

i
[
[
|

A
Active

AN J

Figure 2: State Transition Diagram for Iplnitial

ETSI

29 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

6.4.1.1.1 Active State

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

Ipinitial.initiateAuthentication

requestAccess
"P_ACCESS_DENE

"no method found"
P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

selectEngryptionMethod

Selecting
requestAccess Method
"P_ACCESS_DENIED

"found method" / return prescribedMethod “client.authenticate 6\

All States

authenticate / "Buffer request" authenticate result(VALID)[Auth
requestAccess P_ACCESS_DENIE Incomplete] ~client. authenticate

Authenticating result(INVALID)
Client

authenticate result(VALID)[AuthComplete] /
"Process duthenticate requests" “client.authenticationS uc ceeded

"re-authenticate"
“client.authenticate

requestAccess / new IpAccess

Client
Authenticated

Figure 3. State Transition Diagram for IpAPILevelAuthentication

6.4.1.2.1 Idle State

When the client has invoked the Iplnitial initiateA uthentication method, an object implementing the
IpAPILevel Authentication interface is created. The client now has to provide its encryption capabilities by invoking
SelectEncryptionMethod.

6.4.1.2.2 Selecting Method State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It isapolicy
of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not.
In case no mechanism can be found the P NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception isthrown
and the Authentication object moves back to the IDLE state The client can now revisit itslist of supported capabilities
to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke
abortAuthentication.

ETSI

30 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

6.4.1.2.3 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method
on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the
IpAPILevel Authentication interface, the Framework will either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the Framework has processed the response
from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication
process is not yet complete, then another Authenticate request is sent to the client. If the responseis valid and the
authentication process has been completed, then atransition to the state ClientAuthenticated is made, the client is
informed of its success by invoking authenticationSucceeded, then the framework begins to process any buffered
authenticate requests. In case the response is not valid, the Authentication object is destroyed. Thisimplies that the
client has to re-initiate the authentication by calling once more the initiateAuthentication method on the IplInitial
interface.

6.4.1.2.4 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface. In case
the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevel Authentication
interface, the Framework provides the correct response to the challenge. If the framework decides to re-authenticate the
client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.

6.4.1.3 State Transition Diagrams for IpAccess

Ipinitial.requestAccess

obtaininterface / return requested FW interface
/ \/obtainInterfaceWithCaIIback / return requested FW interface

B

network operator initiated endAccess / destroy all interface objects used by the client

endAccess / destroy all interface objects used by the client

Figure 4: State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the Iplnitial interface, an object implementing the IpAccess
interface is created. The client can now request other Framework interfaces, including Service Discovery. When the
client isno longer interested in using the interfaces it calls the endAccess method. This resultsin the destruction of all
interface objects used by the client. In case the network operator decides that the client has no longer accessto the
interfaces the same will happen.

ETSI

31 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7111 Enable Event Notification

AppLogic : IpAppEventNotification : IpAccess . IpEventNotification

l
|
1: obtainlhterface()

2: new()

]
|
|
|
|
|
|
1
|
3: new() I
|

i

4: createNotification(in TpFwEventCriteria)

5: reportNotification()

1: Thismessage is used to receive areference to the object implementing the | pEventNotification interface.

2: If thereis currently no object implementing the |pEventNotification interface, then one is created using this
message.

3: Thismessage is used to create an object implementing the IpAppEventNotification interface.
4: createNotification(eventCriteria : in TpFwEventCriteria, assignmentI D : out TpAssignmentI DRef) : TpResult.

This message is used to enable the notification mechanism so that subseguent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wantsto
be notified: those specified in ServiceTypeNameList.

The result of thisinvocation has many similarities with the result of invoking listServiceTypes: in both cases the
application isinformed of the availability of alist of SCFs. The differences are:

e inthe case of invoking listServiceTypes, the application has to take the initiative, but it isinformed of ALL SCFs
available

ETSI

32 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

¢ inthe case of using the event notification mechanism, the application needs not take the initiative to ask about
the availability of SCFs, but it is only informed of the ones that are newly available.
Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5. The application is notified of the availability of new SCFs of the requested type(s).
7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evaluation of the load balancing policy as aresult of the detection of a change in load level of the framework.

. IPAppLoadManager . IpLoadManager

1: load change detection and policy evaluation

l [This is
. 2: suspendNotification() ljrzféll_elmentatlon
I P ! |

-

Load balancing senice
makes a decision based
on pre-defined policy

-
-

|

|

| -
-

|

|

ction and policy evaluation

Pa—

3: load change de

‘ - resumeNatification() -+

ETSI

33

Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

. IpLoadManaqger

. IpAppLoadManager

1: queryAppLoadReq()

3: queryAppLoadRes()

T

2: get.load information

<

N

|
|

This is the
implementation

detail

7.1.2.3 Load Management: Application reports current load condition

This sequence diagram shows how an application reportsits load condition to the framework load manager.

: IpAppLoadManager

. IpLoadM anager

1: reportLoad()

i

2: évaluate policy

[

ETSI

This is the implementation
detail

34

Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.1.2.4 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

. IpAppLoadManager

: IpLoadManager

i 1: queryLoadReq()

3: queryLoadRes()

2: get'load information

~
N
<
~
~

|

ETSI

This is the
implementation
detail

35 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.1.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registersitself and the framework invokes load management function
based on policy.

: IpApplLoadManager :IpLoadManager

|
1: createLoadLevelNotification() i

|
|
N
Framework detects its

load condition change 2:load change/(Létectlon & policy evaluation
and initiates load control <]
action - ----_3:loadLevelNotification()
— ™ \
S - This is the
N | implementation detail
\\ |
\ |
|
|

N 4:load change détection & policy evaluation

\ This is the
N implementation detail

e
|
|

u
U g

7.1.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of the
application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

ETSI

36 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Application : IpHeartBeat o
IpAppHeartBeat Mgmt

|
[1: enableHeartBeat()

At a certain point of
time the application
decides to stop
heartbeat supenvision

ETSI

37 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.1.2.7 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework updates its own records and informs the client application using the service instance to stop.

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework s hould detect if
asenice instance fails, for
example via an unretumed
heartbeat. The framework

should inform the application

that is using that senice
instance.

1: sxcUnavailablelnd() i

The application must l
cease the use of this ;
senice instance. 1

1. Theframework informsthe client application that is using the service instance that the serviceis unavailable. The
client application is then expected to abandon use of this service instance and access a different service instance viathe
usual means (e.g. discovery, selectService etc.). The client application should not need to re-authenticate in order to
discover and use an alternative service instance. The framework will also need to make the relevant updates to its
internal records to make sure the service instance is removed from service and no client applications are still recorded as
using it.

ETSI

38 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.1.2.8 Fault Management: Application requests a Framework activity test

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks
framework to carry out an
activity test. The framework is
denoted as the target by a NULL
swcld parameter value.

1: activity TestReq()

Framework carries out test and
returns result to client application.

2: activityTestRes ()

1. The client application asks the framework to do an activity test. The client identifiesthat it would like the activity
test done for the framework, rather then a service, by supplying a NULL value for the svcld parameter.

2: The framework does the requested activity test and sends the result to the client application.

7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
thisis why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; thisis done via an invocation the method obtaininterface on the Framework's Access interface.

Discovery can be athree-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/di scoverServiceType methods):

ETSI

39 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Application : IpAccess . IpSeniceDiscowery

! 1: obtaininterface() !

1]

‘ : listSeniceTypes()

3: describeSeniceType()

- - -

4: discoverSenice()

!
!
!

2: Discovery: first step - list service types

Inthisfirst step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:
e outlistTypes

Thisisalist of service type names, i.e., alist of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type

In this second step the application requests what are the properties that describe a certain service type that it isinterested
in, among those listed in the first step.

The following input is necessary:
e inname

Thisisaservice type name: a string that contains the name of the SCF whose description the Application isinterested in
(eg."P_MPCC").

And the output is:
e out serviceTypeDescription
The description of the specified SCF type. The description provides information about:
e the property names associated with the SCF,
¢ the corresponding property value types,
¢ the corresponding property mode (mandatory or read only) associated with each SCF property,
¢ the names of the super types of thistype, and

« whether the typeis currently enabled or disabled.

ETSI

40 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

4. Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties(i. e.,
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the servicel D that isthe
identifier this network operator has assigned to the SCF version described in terms of those service properties. Thisis
the moment where the servicel D identifier is shared with the application that is interested on the corresponding service.

Thisis done for either one service or more (the application specifies the maximum number of responses it wishesto
accept).

Input parameters are:
¢ inserviceTypeName

Thisisastring that contains the name of the SCF whose description the Application isinterested in (e.g. "P_MPCC").
¢ indesiredPropertyList

Thisisagain alist like the one used for service registration, but where the value of the service properties have been fine

tuned by the Application to (they will be logicaly interpreted as " minimum", "maximum", etc. by the Framework).
The following parameter is necessary as input:
e inmax
This parameter states the maximum number of SCFs that are to be returned in the " ServiceList" result.
And the output is:
e out servicelist

Thisisalist of duplets: (servicel D, servicePropertyList). It provides alist of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (servicel D), and once again the
service property list.

7.1.4 Service Agreement Management Sequence Diagrams

7.1.4.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets alist of one or more SCF versions that match its required description. It now needs
to decide which serviceit is going to use; it also needsto actually get away to useit.

ETSI

41 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Thisis achieved by the following two steps:

Application o Framework
IpSeniceAgreementManagement

IpAppServiceAqregme ntManagement

|
1
|
1: selectSenvice() I
|

e

|
1

2 initiateSignServiceAgreement(b
| |

g

3: signSeniceAgreement(|)

T

|

: U
4: signSeniceAgreement() |

|

|
—

1. Service Selection: first step - selectService

In thisfirst step the Application identifies the SCF version it has finally decided to use. Thisis done by means of the
servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application a new identifier for the service chosen: a service token, that is a private identifier for this service
between this Application and this network, and is used for the process of signing the service agreement.

Input is:

e inservicelD
Thisidentifies the SCF required.
And output:

e out serviceToken

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this
contractual details have been agreed, then the Application can be given the meansto actually useit. The meansarea
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceM anager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (viathe lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:
e inserviceToken
Thisisthe identifier that the network and Application have agreed to privately use for a certain version of SCF.

e inagreementText

ETSI

42 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Thisisthe agreement text that is to be signed by the Framework using the private key of the Framework.
e insigningAlgorithm

Thisisthe algorithm used to compute the digital signature.

Output:
e out signatureAndServiceMgr

Thisis areference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

7.2 Class Diagrams

<<lInterface>>
IpAppEventNotification
(from App Interfaces)

SreportNotification()
LnotificationTerminated()

/\

<<uses>> |

<Interface>>
IpEventNotification
(from Framework Interfaces)

WcreateNotification()
WdestroyNotification()

Figure 5: Event Notification Class Diagram

ETSI

43 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>
<<Interface>> IpAppFaultManager
IpAppLoadManager
activity TestRes()
queryAppLoadReq() appActivity TestReq()
<<Interface>> Er—— queryLoadRes() fwFaultReportInd()
nteriace: queryLoadErr() fwFaultRecoveryind()

A AR IpAppHeartBeat loadLevel Notification() svcUnavailablelnd() <<Interface>>
enableAppHeartBeat() resumeNatification() genFaultStatsRecordRes () IPAPPOAM
disableAppHeartBeat() 1 0..n| pulse() sus pendNotification() ML{Q&/alIablelnd()
changelntenval() N activity TestErr() systemDateTimeQuery/()

/\ A | genFaultStatsRecordE rr())

| | | appUnavailablelnd() |

I | I I

<uses>> ! <<uses>> ! <<uses>> ! : <<uses>> |
i | i <<uses>> | |

L | I | I

<<Interface>> | <<Inte|“face>> <<|mer‘face>> <<|nter‘face>>
LT <<Interface>> IpLoadManager IpFaultManager IPOAM
IpHeartBeat

enableHeartBeat() B .

disableHeartBeat() 1 0..n | reportLoad() actMty'_I'gstReq() systemDateTimeQuery()

changelnterval() pulse) queryLoadReq() appActivity TestRes()
queryAppLoadRes() swcUnavailablelnd()
queryAppLoadErr() genFaultStatsRecordReq()
createLoadLevelNotification() appActivity TestErr()
destroyLoadLevelNotification() appUnavail ableind()
resumeNotification()
suspendNotification()

Figure 6: Integrity Management Package Overview

<<Interface>>
IpSenviceDiscowvery
(from Framework interfaces)

®listSeniceTypes()
®describeSeniceType()
®discoverSenice()
®listSubscribedSenices()

Figure 7: Service Discovery Package Overview

ETSI

44 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>

<<Interface>> IpClientAPILevelAuthentication
IpClientAccess (from Client interfaces)
(from Client interfaces)
Wauthenticate()
SWerminateAccess) WabortAuthentication()

WauthenticationSucceeded()

7
/

|
|
|
|
<<uses>> |
|
|
|
I

/
a
|
|
|
|
|
|

<<uses>>
<<Interface>> <<|nter‘face>>
IpAcces§ IpAPILevelAuthentication
<<Interface>> (5 (ARl I = E=s) (from Framework interfaces)
IpInitial
from Framework interfaces) Hobtaininterface() .
.) lectEncryptionMeth
WobtaininterfaceWithCallback() :SaEtEZntic(;tyep()lo ethod()
Minitiate Authentication() “gndAccess() MWabortAuthentication()
MWistinterfaces() o
WauthenticationSucceeded()
Wreleaselnterface()
|
L

"/

<<Interface>>
IpAuthentication
(from Framework interfaces)

TrequestAccess()

Figure 8: Trust and Security Management Package Overview

<<Interface>>
IpAppSeniceAgreementManagement
(from App Interfaces)

¥signSeniceAgreement()
$terminateSeniceAgreement()

<<uses>> |

<<Interface>>
IpServiceAgreement Management
(rom Framework Interfaces)

WsignSeniceAgreement ()
$terminateSeniceAgreement)
¥selectService()

initi ateSignService Agreement()

Figure 9: Service Agreement Management Package Overview

ETSI

45 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery
Inherits from: Iplnterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties are applicable to each service type. The "listServiceType() method returns alist of al "service
types' that are currently supported by the framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the " service-specific properties” that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values’, by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

Method
| i st Servi ceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method

Returns
TpSer vi ceTypeNaneLi st

Raises
TpComonExcept i ons, P_ACCESS_DENI ED

ETSI

46 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
descri beServi ceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:
- the service properties associated with this service type: i.e. alist of service property { name, mode and type} tuples,
- the names of the super types of this service type, and
- whether the service type is currently enabled or disabled.

Parameters

nane : in TpServiceTypeNane
The name of the service type to be described.

- If the "name" is malformed, then the P_ILLEGAL_SERVICE_TY PE exception is raised.

- 1f the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception is raised.

Returns
TpServi ceTypeDescri ption

Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_| LLEGAL_SERVI CE_TYPE, P_UNKNOAN_SERVI
CE_TYPE

Method
di scover Servi ce()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passesin alist of desired service properties to describe the serviceit is
looking for, in the form of attribute/value pairs for the service properties. The client application aso specifies the
maximum number of matched responsesit iswilling to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicel D/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned will form a
complete view of what the client application will be able to do with the service, as per the service level agreement. If
the framework supports service subscription, the service level agreement will be encapsul ated in the subscription
properties contained in the contract/profile for the client application, which will be arestriction of the registered
properties.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service property { name, mode and value list} tuples associated with the service.

Parameters

servi ceTypeNane : in TpServi ceTypeNane

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading”. It isthe basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

- If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception israised.

ETSI

a7 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

- 1f the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TY PE exception israised.

The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertylList : in TpServicePropertylLi st

The "desiredPropertyList”parameter is alist of service property { name, mode and value list} tuples that the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property valuesin the desired property list must be logically interpreted as "minimum®,
"maximum”, etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property val ue be specified as an
appropriate range of values, so that desired property values can specify an "enclosing” range of valuesto help in the
selection of desired services.

max : in Tplnt32
The "max" parameter states the maximum number of servicesthat areto be returned in the "servicelList" result.

Returns
TpServi ceLi st
Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_| LLEGAL_SERVI CE_TYPE, P_UNKNOAN_SERV
CE_TYPE, P_I NVALI D_PROPERTY

Method
| i st Subscri bedSer vi ces()

Returns alist of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain alist of subscribed services that they are allowed to access.

Returns <serviceList> : The "serviceList" parameter returns alist of subscribed services. Each serviceis characterised
by its service ID and alist of service property { name, mode and value list} tuples associated with the service.

Parameters
No Parameters were identified for this method

Returns
TpSer vi ceLi st

Raises
TpComonExcept i ons, P_ACCESS_DENI ED

ETSI

48 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement

Inherits from:

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

Method
si gnServi ceAgreenent ()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be arestriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digital Signature> : The digital Signature is the signed version of a hash of the service token and agreement text
given by the framework.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the
serviceToken isinvalid, or not known by the client application,then the P_INVALID_SERVICE_TOKEN exceptionis
thrown.

agreenent Text : in TpString

Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText isinvalid, thenthe P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAl gorithm: in TpSigningAl gorithm

Thisisthe algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the client
application, the P_INVALID_SIGNING_ALGORITHM exception is thrown.

ETSI

49 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns
TpCct et Set
Raises

TpConmonExcept i ons, P_I NVALI D_AGREEMENT TEXT, P_I NVALI D_SERVI CE_TOKEN,
P I NVALI D_SI GNI NG_ALGORI THV

Method
t er m nat eSer vi ceAgr eenent ()

This method is used by the framework to terminate an agreement for the service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistoken is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

termnationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing a gorithm given when the service agreement was signed using signServiceAgreement(). The framework
uses thisto confirm itsidentity to the client application. The client application can check that the terminationText has
been signed by the framework. If a match is made, the service agreement is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpConmmonExceptions, P_I NVALI D SERVI CE_ TOKEN, P_I NVALI D_SI GNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from:

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (servicelD : in TpServicelD) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

ETSI

50 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
si gnServi ceAgreenent ()

This method is used by the client application to request that the framework sign an agreement on the service, which
allowsthe client application to use the service. If the framework agrees, both parties sign the service agreement, and a
reference to the service manager interface of the serviceis returned to the client application. The service manager
returned will be configured as per the service level agreement. If the framework uses service subscription, the service
level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client
application, which will be arestriction of the registered properties. If the client application is not allowed to access the
service, then an error code (P_SERVICE_ACCESS DENIED) is returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
structure TpSignatureAndServiceMar {
digitalSignature: TpOctetSet;
serviceMgrinterface: |plnterfaceRef;
1
The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.
The serviceMgrinterface is areference to the service manager interface for the selected service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) isreturned.

agreenent Text : in TpString

Thisisthe agreement text that isto be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm: in TpSigningA gorithm
Thisis the algorithm used to compute the digital signature. If the signingAlgorithm isinvalid, or unknown to the
framework, an error code (P_INVALID_SIGNING_ALGORITHM) isreturned.

Returns
TpSi gnat ur eAndSer vi ceMgr
Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_| NVALI D_AGREEMENT TEXT, P_I NVALI D_SER
VI CE_TOKEN, P_I NVALI D_SI GNI NG_ALGORI THM P_SERVI CE_ACCESS_DENI ED

Method
t er m nat eSer vi ceAgr eenent ()

This method is used by the client application to terminate an agreement for the service.

Parameters

servi ceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. Thistoken is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

ETSI

51 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

termnationText : in TpString
Thisisthe termination text describes the reason for the termination of the service agreement.

digital Signature : in TpCctet Set

Thisisasigned version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework
uses thisto check that the terminationText has been signed by the client application. If a match is made, the service
agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) isreturned.

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D SERVI CE_TOKEN,
P_1 NVALI D_SI GNATURE

Method

sel ect Ser vi ce()

This method is used by the client application to identify the service that the client application wishesto use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS DENIED exception isthrown. The

P_SERVICE_ACCESS DENIED exception is also thrown if the client attempts to select a service for which it has
aready signed a service agreement for, and therefore obtained an instance of.

Returns <serviceToken> : Thisis afree format text token returned by the framework, which can be signed as part of a
service agreement. Thiswill contain operator specific information relating to the service level agreement. The
serviceToken has alimited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expireif the client
application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

servicelD: in TpServicelD

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) is returned.

Returns
TpServi ceToken
Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D SERVI CE | D,
P_SERVI CE_ACCESS _DEN ED

Method
I nitiateSi gnServi ceAgreenent ()

This method is used by the client application to initiate the sign service agreement process. If the client application is
not allowed to initiate the sign service agreement process, the exception (P_SERVICE_ACCESS _DENIED) isthrown.

ETSI

52 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

servi ceToken : in TpServiceToken
Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the

service instance requested by the client application. If the serviceToken isinvalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) isthrown.

Raises

TpComonExcepti ons, P_I NVALI D SERVI CE TOKEN, P_SERVI CE_ACCESS DEN ED

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager
Inherits from: Iplnterface.

Thisinterface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface.

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpinterfaceFault) : void

fwFaultRecoverylnd (fault : in TpinterfaceFault) : void

svcUnavailablelnd (servicelD : in TpServicelD, reason : in TpSvcUnavailReason) : void
genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, servicelDs : in TpServicelDList) : void
fwUnavailablelnd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, servicelDs : in TpServicelDList) :
void

appUnavailablelnd () : void

Method
activityTest Res()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the client application to correlate this response (when it arrives) with the original request.

ETSI

53 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

activityTestResult : in TpActivityTestRes
The result of the activity test.

Method
appActivityTest Req()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out atest on itself, to check that it is operating correctly. The application reports the test result by
invoking the appActivityTestRes method on the |pFaultM anager interface.

Parameters

activityTestID : in TpActivityTestlD
The identifier provided by the framework to correlate the response (when it arrives) with this request.

Method
f wFaul t Report | nd()

The framework invokes this method to notify the client application of afailure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault : in TplnterfaceFault
Specifies the fault that has been detected by the framework.

Method
f wFaul t Recoveryl nd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TplnterfaceFault
Specifies the fault from which the framework has recovered.

Method

svcUnavai | abl el nd()

The framework invokes this method to inform the client application that it can no longer use its instance of the indicated
service. On receipt of this request, the client application must act to reset its use of the specified service (using the

normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin
use of adifferent service instance).

ETSI

54 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

servicelD : in TpServicelD
Identifies the affected service.

reason : in TpSvcUnavail Reason
I dentifies the reason why the service is no longer available

Method
genFaul t St at sRecor dRes()

This method is used by the framework to provide fault statistics to a client application in responseto a
genFaultStatsRecordReg method invocation on the IpFaultM anager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

servicelDs : in TpServicel DLi st

Specifies the framework or services that are included in the genera fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

Method
f wnavai | abl el nd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavail Reason
Identifies the reason why the framework is no longer available

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the application to correlate this response (when it arrives) with the original request.

ETSI

55 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
genFaul t St at sRecor dErr ()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the | pFaultM anager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

servicelDs : in TpServicel DLi st

Specifies the framework or services that were included in the general fault statistics record request. If the servicel Ds
parameter isan empty list, then the fault statistics were requested for the framework.

Method
appUnavai | abl el nd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding. On receipt of this indication, the application must end its current session with the service instance.

Parameters
No Parameters were identified for this method

7.3.3.2 Interface Class IpFaultManager
Inherits from: Ipinterface.

Thisinterface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces asit is assumed that the client application suppliesits Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback
operation on the IpAccessinterface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServicelD) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcUnavailablelnd (servicelD : in TpServicelD) : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, servicelDs : in TpServicelDList) : void
appActivityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailablelnd (servicelD : in TpServicelD) : void

ETSI

56 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method

activityTest Req()

The application invokes this method to test that the framework or itsinstance of a service is operational. On receipt of
this request, the framework must carry out atest on itself or on the client'sinstance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the
IpAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,

the P_ UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicelD.

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the client application to correlate the response (when it arrives) with this request.

svclD : in TpServicelD
Identifies either the framework or a service for testing. The framework is designated by a null value.

Raises
TpConmmonExcept i ons, P_| NVALI D SERVI CE_| D, P_UNAUTHORI SED PARAVETER VALUE

Method
appActivityTest Res()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpConmmonExcept i ons, P_| NVALI D_SERVI CE_| D, P_I NVALI D_ACTI VI TY_TEST | D

Method
svcUnavai | abl el nd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to afailurein the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action. The framework assumes that the session between
this client application and service instance isto be closed and updates its own records appropriately as well as
attempting to inform the service instance and/or its administrator. Attempts by the client application to continue using
this session should be rejected. If the application does not have access to a service instance with the specified servicel D,
the P_UNAUTHORISED _PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

ETSI

57 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

servicelD : in TpServicelD
Identifies the service that the application can no longer use.

Raises
TpConmmonExceptions , P_I NVALI D_SERVI CE_| D, P_UNAUTHORI SED PARAMETER VALUE

Method
genFaul t St at sRecor dReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes
operation on the | pAppFaultM anager interface. If the application does not have access to a service instance with the
specified servicel D, the P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

timePeriod : in TpTinelnterval
The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

servicelDs : in TpServicel DLi st
Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an

empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises

TpComonExceptions, P_INVALID SERVICE | D, P_UNAUTHORI SED PARAMETER VALUE

Method
appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-reguested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpComonExceptions, P_INVALID ACTIVITY_TEST ID

ETSI

58 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
appUnavai | abl el nd()

This method is used by the application to inform the framework that the it is ceasing its use of the service instance. This
may aresult of the application detecting a failure. The framework assumes that the session between this client
application and service instance is to be closed and updates its own records appropriately as well as attempting to
inform the service instance and/or its administrator.

Parameters
servicelD : in TpServicelD

I dentifies the affected application.
Raises
TpComonExcept i ons

7.3.3.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the client application by the framework.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwinterface : in IpHeartBeatRef) : void
disableAppHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method
enabl eAppHeart Beat ()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

fwnterface : in | pHeart Beat Ref
This parameter refersto the callback interface the heartbeat is calling.

ETSI

59 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
di sabl eAppHeart Beat ()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters
interval : in Tplnt32

Thetime interval in milliseconds between the heartbeats.
7.3.3.4 Interface Class IpAppHeartBeat
Inherits from: Iplnterface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

<<Interface>>

IpAppHeartBeat

pulse () : void

Method
pul se()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the |pHeartBeatM gmt.enableHeartbeat() method. If the pul se()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

7.3.3.5 Interface Class IpHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a client application.

ETSI

60 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, applinterface : in IpAppHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method
enabl eHear t Beat ()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

applnterface : in | pAppHeart Beat Ref

This parameter refersto the callback interface the heartbeat is calling.
Raises

TpComonExcept i ons

Method
di sabl eHear t Beat ()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

ETSI

61 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters
interval : in Tplnt32

Thetime interval in milliseconds between the heartbeats.
Raises
TpComonExcept i ons

7.3.3.6 Interface Class IpHeartBeat
Inherits from: Ipinterface.

The Heartbeat Framework interface is used by the client application to send its heartbeat.

<<Interface>>

IpHeartBeat

pulse () : void

Method
pul se()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the | pAppHeartBeatM gmt.enableAppHeartbeat() method. If the
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

7.3.3.7 Interface Class IpAppLoadManager
Inherits from: Ipinterface.

The client application devel oper supplies the load manager application interface to handle requests, reports and other
responses from the framework |oad manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainl nterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

queryAppLoadReq (timelnterval : in TpTimelnterval) : void

ETSI

62 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNaotification (loadStatistics : in TpLoadStatisticList) : void
resumeNotification () : void

suspendNotification () : void

Method
guer yAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

timelnterval : in TpTinelnterval
Specifies the time interval for which load statistic records should be reported.

Method
guer yLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryL oadReq method on the I pLoadManager interface.

Parameters

| cadStatistics : in TpLoadStatisticLi st
Specifies the framework-supplied load statistics

Method
guer yLoadErr ()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pLoadM anager interface.

Parameters

| oadSt atisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

ETSI

63 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
| oadLevel Notification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the SCFs or framework
which have been registered for load level notifications) this method isinvoked on the application.

Parameters

| cadStatistics : in TpLoadStati sticlLi st
Specifies the framework-supplied load statistics, which include the load level change(s).

Method
resunmeNoti fication()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled atemporary overload condition.

Parameters
No Parameters were identified for this method

Method
suspendNoti fication()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method

7.3.3.8 Interface Class IpLoadManager
Inherits from: Iplinterface.

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at al costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy isrelated to the QoS level to which the application is subscribed. The framework 1oad management function is
represented by the I pLoadManager interface. Most methods are asynchronous, in that they do not lock athread into
waiting whilst atransaction performs. To handle responses and reports, the client application developer must implement
the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this
callback interface at the time it obtains the framework's load manager interface, by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface.

ETSI

64 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (servicelDs : in TpServicelDList, timelnterval : in TpTimelnterval) : void
queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
createLoadLevelNotification (servicelDs : in TpServicelDList) : void
destroyLoadLevelNotification (servicelDs : in TpServicelDList) : void
resumeNotification (servicelDs : in TpServicelDList) : void

suspendNotification (servicelDs : in TpServicelDList) : void

Method
report Load()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 1oad, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

| oadLevel : in TpLoadLevel
Specifies the application's load level.

Raises
TpComonExcept i ons

Method

quer yLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the

specified servicel D, the P_UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timelnterval : in TpTinelnterval
Specifies the timeinterval for which load statistics records should be reported.

ETSI

65 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Raises

TpConmonExcept i ons, P_I NVALI D_SERVI CE_I D, P_SERVI CE_NOT_ENABLED,
P_UNAUTHORI SED_PARAMETER VALUE

Method
guer yAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadReg method on the |pA ppLoadManager interface.

Parameters

| cadStatistics : in TpLoadStatisticLi st
Specifies the application-supplied load statistics.

Raises
TpComonExcept i ons

Method
qguer yAppLoadErr ()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppL oadReg method on the IpAppL cadManager interface.

Parameters

| oadSt atisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises
TpComonExcept i ons

Method

creat eLoadLevel Notification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with its instances of the individual services used by the application. If the application does not have

access to a service instance with the specified servicel D, the P_UNAUTHORISED _PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or SCFsto be registered for load control. To register for framework load control, the
servicel Ds parameter must be an empty list.

ETSI

66 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Raises
TpCommonExcepti ons, P_I NVALI D_SERVI CE_I D, P_UNAUTHORI SED PARAVETER VALUE

Method

destroyLoadLevel Notification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with itsinstances of the individual services used by the application. If the application does not have

access to a service instance with the specified servicel D, the P_UNAUTHORISED _PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list.

Raises
TpConmmonExceptions, P_I NVALI D SERVI CE | D, P_UNAUTHORI SED PARAMETER VALUE

Method
resunmeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled atemporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P_ UNAUTHORISED PARAMETER VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

servicelDs : in TpServicel DLi st

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpConmonExcept i ons, P_I NVALI D_SERVI CE_I D, P_SERVI CE_NOT_ENABLED,
P_UNAUTHORI SED_PARAMETER VALUE

Method
suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles atemporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P UNAUTHORISED_PARAMETER_VALUE exception shal be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

ETSI

67 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

servicelDs : in TpServicel DLi st
Specifies the framework or the services for which the sending of notifications by the framework should be suspended.

To suspend notifications for the framework, the servicel Ds parameter must be an empty list.
Raises

TpConmonExcept i ons, P_I NVALI D_SERVI CE_I D, P_SERVI CE_NOT_ENABLED,
P_UNAUTHORI SED_PARAMETER VALUE

7.3.3.9 Interface Class IpOAM

Inherits from: Ipinterface.

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of of the OSA APIs.

<<Interface>>
IpPOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi nreQuer y()

This method is used to query the system date and time. The client application passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDat eAndTime : in TpDat eAndTi me

Thisisthe date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns
TpDat eAndTi ne

Raises
TpComonExcepti ons, P_I NVALI D_TI ME_ AND_DATE FORMAT

7.3.3.10 Interface Class IpAppOAM
Inherits from: Iplnterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes.This method is invoked by the Framework to interchange the framework and client
application date and time.

ETSI

68 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>
IpPAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi nreQuer y()

This method is used to query the system date and time. The framework passesin its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (application).

Parameters

systenDat eAndTi e : in TpDat eAndTi ne
Thisisthe system date and time of the framework.

Returns
TpDat eAndTi ne

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification
Inherits from: Iplnterface.

Thisinterface is used by the services to inform the application of a generic service-related event. The Event Notification
Framework will invoke methods on the Event Notification Application Interface that is specified when the Event
Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the application of the arrival of a generic event.

ETSI

69 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

eventinfo : in TpFwEventlnfo
Specifies specific data associated with this event.

assignment|I D : in TpAssignnentl D

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

Method
notificationTerm nated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters
No Parameters were identified for this method

7.3.4.2 Interface Class IpEventNotification
Inherits from: Ipinterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

Method
createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the application to define the event required.

ETSI

70 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns
TpAssi gnnment | D
Raises

TpConmonExcept i ons, P_ACCESS DENI ED, P_|I NVALI D_CRI TERI A,
P | NVALI D_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignnmentI D : in TpAssignnmentlD

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment I Ds, the framework will return the error code
P_INVALID_ASSIGNMENTID.

Raises
TpComonExcept i ons, P_ACCESS DEN ED, P_I NVALI D_ASSI GNVENT _I D

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also eventsinternal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

ETSI

71 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

obtainFrameworkInterface(discoweryService)
obtaininterfac eWithCallback(discoveryService)

istSeniceTypes
describeSeniceType

istSubscribedS ervices
discoverSenice

Active W

AN /

IpAccess.endAccess

\
7 N\
°

Figure 10: State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application reguests Service Discovery by invoking the obtainl nterface or the obtainlnterfaceWithCallback
methods on the IpAccess interface, an instance of the |pServiceDiscovery will be created. Next the applicationis
allowed to request alist of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management.

ETSI

72 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.4.3 Integrity Management State Transition Diagrams

IpAccess.obtaininterface

IpAccess.obtaininterfaceWithCallback

Application not
supernvised

ccess.endAccess

enableHeartBeat

disableHeartBeat
changeTimePeyi

Application supervised

do/ periodically request Application for heartbeat by invoking send() method on IpAppHeartBeat

IpAppHeartBeatMgmt.enableAppHeartBeat

send / return heartbeat

FW supenvsed by
Application

IpAppHeartBeat Mgmt .disableA ppHeartBeat

pAccess.endAccess

°

7.4.3.1 State Transition Diagrams for IpLoadManager

ETSI

createLoadLevelNotification

73

Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

reportLoad

"load change" NoadLevelNotification m/querySchoadRes[load statistics requested by LoadManager]

querySvcLoadErt| load statistics requested by LoadManager]

I

destroyLoadLevelNotification

IpAcces s\obtainipterface
IpAccessbtai

Active } queryLoadReq

resumeNotification

destroyLoadLevelNotification

Al States

IpAccesis.endAccess

®

suspendNotification
[all notifications suspended]

eportLoad
querySvcLoadRes[load statistics requested by LoadManager]
querySvcLoadEnT load statistics requested by Load Manager]

Notification queryLoadReq
Suspended

Figure 11: State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load

level notification information.

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createl oadlL evelNotification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadL evel Notification(), resumeNotification() or suspendNatification() on the application side of
interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the

method reportL oad().

ETSI

74

Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.4.3.2 State Transition Diagrams for LoadManagerinternal

registerLoadController

Normal load

"internal load change detection”

"internal load change to non overlpaded"

Internal overload

entry/ evaluate policy and perform necessary actions

exit/ cancel performed actions

\
\
\
\

A necessary action can be
suspending the load
notifictions from the
application by invoking
suspendNotification or
enabling load control
mechanisms on the
application by invoking
enableLoadControl.

AN

reportLoad[loadlevel != 0]

1

Application Overload
entry/ evaluate policy and perform necessary actions
exit/ cancel performed actions

reportLoad[loadlevel = 0]

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senvices.

I
I
I

-

internal load change detection”

"internal load change/to non gverload"

reportLoad| loadlevel != 0]

entry/ evaluate policy and perform necessary actions

Internal and Application Overload
exit/ cancel performed actions

reportLoad| loadlevel = 0]

ALL
STATES

unregisterLoadController

°

Figure 12: State Transition Diagram for LoadManagerinternal

7.4.3.2.1 Normal load State

In this state the none of the entities defined in the load balancing policy between the application and the framework /

SCFsisoverloaded.

7.4.3.2.2 Application Overload State

In this state the application hasindicated it is overloaded. When entering this state the load policy is consulted and the

appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

75 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.4.3.3 State Transition Diagrams for IpPOAM

IpAccess.obtaininterface
IpAccess .obtaininterfaceW ithCallback

\ systemDateTimeQuery

[\

IpAccess.endAccess

Figure 13: State Transition Diagram for IDOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

IpAccess.obtaininterfaceWithCallback("FaultManagement")/
add application to fault management

'service fault' ~svcUnavailablelnd to all applications using the service

srvUnavailablelnd / test the senice, inform service that application is not using it
genFaultStatsRecordReq “app.genFaultStatsRecordRes

enice fault *srvUnavailablelnd to all applicationsusng the service Framework

Active

no fault detected

activityTestReq][scf

activityTestReq[null

service list]
no fault detected

- — Framework Activity Test
Service Activity Test

IpAccess.endAccess entry/ teg activity of framework
exit/ NlpAppFaultManager.activityTestRes

entry/ test activity of service
exit/ NlpAppFaultManager.activityTestRes

IpActess.endAccess /
Abort pending-te

IpAccess.endAcgess/ Aport
pending ted requeg
fault detected in fw

IpAccess.endAccess/ remove
application from load management

@ fault detécted in fw

Framework Faulty ‘

entry/ ~MwFaultReportind to all applicationswith callback
ext/ MwFaultRecoveryind to all applicationswith callback

Figure 14: State Transition Diagram for IpFaultManager

ETSI

76 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.4.3.4.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified via a fwFaultRecoverylnd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problemis diagnosed, all applications with fault
management callbacks are notified through a fwFaultReportind message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing atest on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcUnavailablelnd message.

7.4.4 Event Notification State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpEventNotification

createNotification

IpAccess.obtaininterface destroyNotification
IpAccess.obtaiginterfaceWithCallback

createNotification

Notification
- Active

g installed]

ess.endAccess

IpAccegs.endAccess

&
L)

Figure 15: State Transition Diagram for IpEventNotification

ETSI

77 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

7.4.4.1.1 Idle State

7.4.4.1.2 Notification Active State

8 Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly
subscribe to the services before the client applications can access those services. To accomplish this, they use the
service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a
contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the
role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of
the service.

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in
the role of users or consumers of services. The framework itself actsin therole of retailer of services. The following
examplesillustrate these roles:

e Service (to be subscribed): Call Centre Service, Mobility Service, etc.
¢ Framework Operator: AT&T, BT, etc.

¢ Enterprise Operator: A Financia institution such as a Bank or Insurance Company, or possibly an Application
Service Provider (Such an enterprise has a conformant Subscription Application inits domain which "talks' to
its peer in the Framework).

e User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call Centre
Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before
aclient application of the enterprise can use the new service. In general, the service subscription is performed after an
off-line negotiation of a set of services and the associated price between the framework operator and the enterprise
operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line
negotiated contract between the framework operator and the enterprise. The on-line service subscription function is
used for subscriber, client application, and service contract management. The following clause describes a service
subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service
subscription process. The subscription process involves the enterprise operator (which actsin the role of service
subscriber) and the Framework (which actsin the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through aretailer, such
as the Framework. An enterprise operator represents an organisation or a company which will be hosting client
applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to
the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about
the service usage with the Framework, using an on-line subscription interface provided by the Framework. The
Framework provides the service according to the service contract. The Enterprise Operator authorises the client
application in his’her domain for the service usage. Finally a subscribed service can be used by a particular client
application.

ETSI

78 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Enterprise Operator (In the role
of Service Subscriber)

Signs contract about service usage
Framework (In the role
of Service Retailer)
Authorises

Client Application (In the role of
User or Consumer of Services)

Figure 16: Subscription Business Model

The interfaces between an enterprise operator and the client applicationsin its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of
services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The
Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service
contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the
framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object isidentified by a
unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator
in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of
services (and their price, etc.) phase. The enterprise operator properties contains information such as the name and
address of the enterprise operator (individua or organisation), service charge payment information, etc. The enterprise
operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of
client applicationsin its domain in order to assign the same set of service features to the group. Such agroup iscalled a
Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGsinitsdomain. A SAG relatesa
client application to the features of a service. A client application may be a member of multiple SAGs, one for each
service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each
service. Each service subscription is described by a service contract which defines the conditions for the service
provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service
parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the
SAG's needs. A service profile istherefore arestriction of the service contract in order to provide restricted service
featuresto a SAG. It isidentified by a unique ID (within the framework domain) and contains a set of service
properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

ETSI

79 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Client Applications and SAGsin the Enterprise Domain

Service Contractsfor Individual Services
Subscribed by Enter prise Opera

Service Profilesin a Service Contract

Figure 17: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client applicationis
represented in the Framework domain as a clientApp object. The clientApp object isidentified by aunique ID and
contains a set of client application properties describing the client application relevant information for subscription.
Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has
one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG
can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on
behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service
contracts and service profiles.

An enterprise operator may not want to grant all client applicationsin its domain the same service characteristics and
usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service
Profile to each group. A client application can be assigned to more than one service profile for a given service, aslong
as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to
two SAGs. One of these SAGs uses ServiceProfilel to control accessto service 1. The other uses ServiceProfile3 to
control access to service 1. If the datesin the two service profiles overlap, asis the case here, then it cannot be
determined when the client signs the service agreement which service profile should be used. For example, if the client
application signed the service agreement on February the 8", then it could not be determined which of service profile 1
or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of
the service profilesto use. A SAG may have multiple service profiles, one for each subscribed service, associated with
it.

ETSI

80 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

SAG

Client Client
App.1 App.3

erviceProfile erviceProfile
Start: 02, Feb Start: 02, Feb Start: 08, Feb
End: 10, Feb End: 10, Feb End: 30, Feb
ServicelD: 1 ServicelD: 2 ServicelD: 1

Figure 18: Overlapping date fields in service profiles

Enterprise Enterprise

Operator 1 / Operator 2

Enterprise
Operator 3

CIe

Figure 19: Multiple Enterprise Operators

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise
operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator
(if the services offered through the framework belong to a single network — it is even possible that the network operator
will be the only enterprise operator). It is possible, however, that each service registered with the framework could
actually be in adifferent network. The client application I Ds have to be unique within the framework. The framework
operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the
enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription-related functions. The
service subscription interfaces are classified in the following categories:

e Enterprise Operator Account Management
e Enterprise Operator Account Query
¢ Service Contract Management

¢ Service Contract Query

ETSI

81 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

¢ Service Profile Management

e Service Profile Query

¢ Client Application Management
e Client Application Query

Only the enterprise operator, which is registered and later on authenticated, is allowed to use these interfaces.

8.1 Sequence Diagrams

8.1.1 Service Subscription Sequence Diagrams

8.1.1.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behal f
of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must
have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services
provided by the framework using the IpServiceDiscovery interface. Initially, the enterprise operator obtains alist of
service types supported by the framework by invoking listServiceTypes() on IpServiceDiscovery interface. Then it
obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a
particular service type. Subsequently it invokes discoverService() to discover the services of a given type which
supports the desired set of property values. The discoverService() method returnsalist of "servicel Ds' and their
associated property values. The service discovery phase is followed by the service subscription phase. The enterprise
operator uses the | pServiceContractM anagement and | pServiceProfileM anagement interfaces to perform service
subscription.

The enterprise operator invokes the createServiceContract() on | pServiceContractM anagement interface to subscribe to
a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by
their "servicel D" or by their service type. In the former case only the specific service can be used by the enterprise
operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise
operator may create multiple service profiles (each of which are arestriction of the service contract) by invoking
createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to adifferent
Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different
service privileges to different client application groups. During the life time of a service contract, the enterprise operator
may perform service contract and service profile management functions, such as modifying the service profiles
(modifyServiceProfile()) and service contract (modifyServiceContract()), re-assigning the service profilesto a SAG
(assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles
(deleteServiceProfilg()), etc. These methods may be interleaved in any logical order. The enterprise operator or the
client applications, can at any time obtain alist of currently subscribed services by invoking listSubscribedServices()
method on the I pServiceDiscovery interface. This method returns alist of servicel Ds of the set of subscribed services.
The service contract ceases to exist after the specified end date. The deleteServiceContract del etes the service contract
object held in the framework. It is up to the discretion of the Framework operator to allow the enterprise operator to
delete a service contract before its specified end date.

After the service subscription is performed the client applications can access and use the set of subscribed servicesin
addition to the set of freely available services. In order to start a service, the interface reference of the serviceis
required. The discoverService() method or the listSubscribedServices() method, described above, return the

"servicel D". The interface reference of the service is obtained in the service access phase. The service access phase
begins with the client applications selecting the service, via the selectService() method, and signing a service
agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to
identify the servicethat it wantsto initiate. The input to the selectService() isthe "servicel D" returned by the
discoverService() or the listSubscribedServices() and the output is a"serviceToken". The serviceToken is free format
text token returned by the framework, which can be used as part of a service agreement. If the service is not subscribed
by the enterprise operator, then a " service not subscribed" exception is raised. The signServiceAgreement() is invoked
by the client application on the framework to sign an agreement on the service. The input to this method is the service
token returned by the selectService() method. The sign service agreement is used as away of non-repudiation of the
intention to use the service by the client application. The successful completion of the signServiceAgreement() returns
the interface reference to the service (or to its service manager). The client application can then use thisinterface
reference to start the service.

ETSI

82 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

L L : IpAccess : IpServiceDiscovery - IpServiceContr it - 1pSer vic eCont adt Inf oQ Ler - IpServiceProfileM anagement - IpServic eProfi € nfo Query
EnterpriseOperator | | ClientApplication
Auth. phase D
followed by

|
|
|
1: obtaininterface() |

! |
! |
! |
! |
T |
U | u |
3 MslSerwceTypS() !
I I | I
H | | ’U
| | |
! 3: describeServiceTypé() |
t t
| | /U
! | Find desired D
| | Senices
1 4: discoer Service(1)
f

|
|
5: otlalnlnkerlace()

f
|
|
|
1
[Subscribe [

| the Services

6: cregteServiceContract()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/u create more 1\
SPsinSC

E s B o I s S —

gl

Y Y Y Y

gl

|

)

I |
H | | | | |
			8:assign()	
			9: modifyServiceProfile()	
f f f f f				
U				
			Omsign)	
[l				
			11: desctibeServiceProfile() [
f f f f f				
U				
			12: celeteServic ePrdfil e()	
T T T T T				
U				
: 13 nm%iifySemceContract() : : :				
H			1 I	
	14: listSubscribedServices()			
T				
U	/u			
: lﬁ‘: listSubs cribedSer VILJ‘ES() : : :				
	/U			
! ! ! 16: describeSkrviceContract() ! !
I I I | I I

H | | | U

| | | |
| | | | |
[[17: creéteSeniceContract() ! [
t |
| |
|
|
|
|

)

]

8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence
Diagram

Thefirst step in the service subscription process is the creation of an account for the enterprise operator. The creation of
enterprise operator accounts is performed by the Framework Operator viainterfaces outside of this specification. When
the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator
(acting in the role of service subscriber) can then create accounts within the framework for al of the client applications
inits domain. The enterprise operator obtains the reference to the | pEntOpManagement interface by invoking
obtainlnterface() on the IpAccessinterface. The enterprise operator at any time may inspect its subscription account by
invoking describeEntOpAccount on the I pEntOpA ccountlnfoQuery interface and modify the subscriber-related
information contained in its subscription account by invoking modifyEntOpAccount() on | pEntOpAccountM anagement
interface.

ETSI

83 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

An enterprise operator usualy has many client applicationsin its enterprise domain. These client applications must be
registered within the framework so that the set of services subscribed to by the enterprise operator (through
createServiceContract()) can be assigned to these client applications by associating a service profile (arestriction of
service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create
an account for individual client applications, the enterprise operator invokes createClientApp() on
IpClientAppManagement interface. The enterprise operator groups a related set of client applicationsin a SAG so that
the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking
createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly
created SAG by invoking addSAGMembers() on I pClientA ppManagement interface. The enterprise operator also
performs other client application / SAG management functions such as modifyClientApp(), deleteClientApp(),
modifySAG(), listSAGS(), listSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be
interleaved in any logical order. Finaly, the enterprise operator (or the framework operator) can delete its subscription
account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.

ETSI

84 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Enterprise Framework : IpAccess i = i =
Operator Operator IpEntOpAccountManagement IpEntOpAccountinfoQuery | | IpClientAppManagement | | IpClientAppinfoQuery
| | | | | | |
| | | | | | |
! The Enterprise Operator ! ! ! !
: account has already been created. : : : :
Auth. Phase followed by:			
: 1: oblainlhleﬁace() : : : : :			
T			
T_‘			
o			
: : : n#escribeEntO pAccount() : : : :			
T T T			
		/U	
T :3: modinyntOpAc‘bount() : : : :			
T T			
	/U		
T			
4: obtaininterface()			
/I-J			
L		1	
		5: createClientApp()	
. , , \ , .			
	Create more client	/U	
		T	
L		apps	
		6: createSAG()	
. \ \ \ \ .			
			T_[
			T
L			
I I I 7: addSAGMembers() I I I			
I I I I I I			
			/u
	.		
T		8: modifydjentApp ()	
T T T T			
			1_‘
]
e ! ! 9: modifySAG() ! ! !			
]]]]			
			/U
T			
: : : 10: deleteCI:ientApp() : : :			
			ﬂ
L ! ! 1: removeSAGMembers() ! ! !			
1 1 1 1 1			
			T_J I
T		12: modifySAG()	
I I I i I I			
			/u
L			
: 13:obtainl‘nterfaoe() : : : : :			
1			
/U			
T			
			14: listSAGS()
. , , , , , .			
L			
: : : : 15: litsSAGMembers() : : :			
T			
16: deleteEntOpAgcount()			!
. i i .			
	/U		
	T		
L			

ETSI

Class Diagrams

85 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<lInterface>>
IpClientAppInfoQuery
(from App interfaces)

IpClientAppM anage ment

<<Interface>>

(from App interfaces)

FdescribeClientApp()
WlistClientApps()
SdescribeSAG()
istSAGs()
WlistSAGMembers()
SlistClientAppMembership()

createClientApp()
¥modify ClientApp()
¥deleteClientApp()
¥createSAG()
¥modifySAG()
FdeleteSAG()
®addSAGMembers()
SremoveSAGMembers()

<<Interface>>
IpPEntOpAccountinfoQuery

(from Framework interfaces)

<<Interface>>
IpEntOpAccountManagement
(from Framework interfaces)

#describeEntOpAccount()

Smodify EntOpAccount()
#deleteEntOpAccount()

<<Interface>>
IpSeniceContractinfoQuery
(from Framework interfaces)

WdescribeSeniceContract()
BlistSeniceContracts()
WlistSeniceProfiles()

<<Interface>>
IpSeniceProfileinfoQuery
(from Framework interfaces)

<<Interface>>
IpSenvice ProfileManagement
(from Framework interfaces)

<<Interface>>
IpSeniceContractManagement
from Framework interfaces)

#listSeniceProfiles()
#describeSeniceProfile()
WlistAssignedMembers()

SicreateSeniceProfile()
Fmodify SeniceProfile()
FdeleteSeniceProfile()
Fassign()

Fdeassign()

#createSeniceContract()
#modify SeniceContract()
#FdeleteSeniceContract()

Figure 20: Service Subscription Package Overview

ETSI

86 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>> <<Interface>>
IpClientAccess IpClientAPILeelAuthentication
(from Client interfaces (from Client interfaces)
SterminateAccess() Sauthenticate()
\ ®abortAuthentication()
WauthenticationSucceeded()

/
/

I
I
1 ‘
<<uses>> ' |
I I
| <<uses>>
| |
l |
<<Interface>> 1
IpAccess <<Interface>>
<<Interface>> P) T
(from Framework interfaces) IpAPILevelAuthentication

Ipinitial
(from Framework interfaces)

(from Framework interfaces)

Fobtaininterface()

AR #obtaininterfaceWithCallback() WselectEncryptionMethod()
FendAccess() Fauthenticate()
Slistinterfaces() WabortAuthentication()
Wreleaselnterface() WauthenticationSucceeded()

\ /
\ /

<<Interface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 21: Trust and Security Management Package Overview

8.3 Interface Classes

8.3.1 Service Subscription Interface Classes

8.3.1.1 Interface Class IpClientAppManagement
Inherits from: Ipinterface.

If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the
enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator
must use the client application management interface, to which (s)he can subscribe as a privileged user. The client
application management interface is intended for cases where an organisation wants to allow several client applications
to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client
applications and SAGs, delete them and to modify subscription related information concerning the client applications
and the SAGs. Client applications use the subscribed servicesin the enterprise operator's name. The main task of client
application management is to: register, modify and delete client applications (Client Application Management), manage
groups of client applications, called Subscription Assignment Groups (SAG Management).

ETSI

87 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription : in TpClientAppDescription) : void
modifyClientApp (clientAppDescription : in TpClientAppDescription) : void
deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (sagID : in TpSagID) : void

addSAGMembers (sagID : in TpSaglD, clientAppIDs : in TpClientAppIDList) : void
removeSAGMembers (sagID : in TpSaglD, clientAppIDList : in TpClientApplIDList) : void

Method
created i ent App()
A client application is represented in the Framework domain as a " clientApp object". This method creates a new

clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other
subscription related client application's properties stored in it.

Parameters

client AppDescription : in TpdientAppDescription

The "clientAppDescription” parameter contains the clientApp ID that isto be associated with the newly created
clientApp object and the subscription-related "client application properties'. The clientApp ID must be aunique ID
across framework, if the ID already exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client
application propertiesisalist of name/value pairs. The client application propertiesis an item for bi-lateral agreement
between the enterprise operator and the framework operator.

Raises
TpConmonExcept i ons, P_ACCESS DENI ED, P_| NVALI D_CLI ENT_APP_| D

Method
nodi fyd i ent App()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

client AppDescription : in TpdientAppDescri ption
The "clientAppDescription” parameter contains the modified client application information. If the clientApp ID does
not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

ETSI

88 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D CLI ENT_APP_I D

Method
del et ed i ent App()

Delete the specified clientApp object associated with the enterprise operator. An exception of "P_TASK_REFUSED" is
raised if a non-associated enterprise operator invokes this method.

Parameters

clientAppl D : in TpdientApplD
The"clientAppID" parameter identifies the clientApp object that isto be deleted. If the clientApp ID does not exist, an
exception "P_INVALID_APP_ID" would be raised.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D CLI ENT_APP_I D

Method
cr eat eSAH))

Create a new SAG associated with the enterprise operator. The SAG object isidentified by a SAG - ID and contains
SAG - specific description.

Parameters

sag : in TpSag
The"sag" parameter contains the SAG-ID and SAG-specific description. This saglD is particular to the SAG, and must

be unique across framework. If the saglD supplied already exists, an exception of type"P_INVALID_SAG_ID" would
be raised.

clientApplDs : in Tpdient Appl DLi st
The"clientApplDs" parameter contains the list of client application IDs that are to be associated with the newly created
SAG.

Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_| NVALI D_CLI ENT_APP_| D, P_I NVALI D_SAG
I D

Method
nodi f ySAX)

Modify the description of an existing SAG associated with the enterprise operator. An exception of
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

ETSI

89 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

sag : in TpSag
The"sag" parameter contains the modified SAG-specific description. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" would be raised.

Raises
TpComonExcepti ons, P_ACCESS DENI ED, P_INVALID SAG ID

Method
del et eSAY)

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters
saglD : in TpSaglD

The "sagID" parameter identifies the SAG that isto be deleted. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" israised.

Raises
TpCommonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_SAG | D

Method
addSAGvenber s()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to assign membersto it, an exception "P_TASK_REFUSED" would be
raised if anon-associated enterprise operator invokes this method.

Parameters

saglD : in TpSaglD
The "saglD" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does
not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientApplDs : in Tpdient Appl DLi st

The"clientApplDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The
clientApp objects are first created using the createClientApp() method. If one or all of the client application IDsin the
list does not exist, an exception "P_INVALID_APP_ID" would be raised.

Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_| NVALI D_CLI ENT_APP_| D, P_I NVALI D_SAG_
I D

ETSI

90 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
r enoveSAGvenber s()

Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method.

Parameters

saglD : in TpSaglD
The"saglD" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not
exist, an exception "P_INVALID_SAG_ID" would be raised.

clientApplDList : in TpdientAppl DLi st
The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG.

If one or al of the client application IDsin the list does not exist, an exception "P_INVALID_APP_ID" would be
raised.

Raises

TpComonExcepti ons, P_ACCESS DEN ED,
P_INVALI D_CLI ENT_APP_I D, P_I NVALID SAG I D

8.3.1.2 Interface Class IpClientAppinfoQuery
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain
information about them.

<<Interface>>

IpClientAppinfoQuery

describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription
listClientApps () : TpClientAppIDList

describeSAG (sagID : in TpSagID) : TpSagDescription

listSAGs () : TpSagIDList

listSAGMembers (sagID : in TpSagID) : TpClientApplDList
listClientAppMembership (clientAppID : in TpClientAppID) : TpSagIDList

Method
descri bed i ent App()

Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription> : The "clientAppDescription” parameter contains the clientApp description.

ETSI

91 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

clientAppl D : in TpdientApplD
The"clientApplD" parameter identifies the clientApp object whose description is requested.

Returns

Tpd i ent AppDescri ption

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_CLI ENT_APP_I D

Method
listCient Apps()

Get alist of al client applications belonging to an enterprise operator.
Returns <clientApplDs> : The "clientApplDs' parameter identifies the list of client applicationsin the enterprise
operator domain.

Parameters
No Parameters were identified for this method

Returns

Tpd i ent Appl DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
descri beSAH)

Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription> : The "sagDescription” parameter returns the SAG-specific description.

Parameters

saglD : in TpSaglD
The"saglD" parameter identifies the SAG whose description is required.

Returns
TpSagDescri ption

Raises
TpCommonExcepti ons, P_ACCESS DENIED, P_INVALID SAG ID

ETSI

92 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
i st SAGs()

Get alist of al SAGs associated with an enterprise operator.
Returns <SagIDList> : The "sagIDList" parameter returns the list of the identifiers of the SAGs associated with the
enterprise operator.

Parameters
No Parameters were identified for this method

Returns

TpSagl DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
| i st SAGVenber s()

Get alist of al client applications associated with the specified SAG.
Returns <clientAppIDList> : The "clientAppIDList" parameter returnsthe list of the client applications associated with
the SAG.

Parameters
saglD : in TpSaglD
The"saglD" parameter identifies the SAG whose clientAppID list is required.

Returns

Tpd i ent Appl DLi st

Raises

TpComonExcepti ons, P_ACCESS DENI ED, P_INVALID SAG ID

Method
| i stdient AppMenbershi p()

Obtain alist of the SAGs of which the specified client application is a member.

Returns <sags> : The SAGs of which the client application is a member.

Parameters

clientApplD : in Tpdient Appl D
The"clientAppl D" parameter identifies the clientApp object whose membership details are requested.

ETSI

93 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns

TpSagl DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D CLI ENT_APP_I D

8.3.1.3 Interface Class IpServiceProfileManagement
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator for the management of Service Profiles, which are defined for every
subscribed service, and to assign/de - assign the Service Profilesto SAGs.

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfile|D
modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfilelD : in TpServiceProfilelD) : void

assign (saglID : in TpSagID, serviceProfilelD : in TpServiceProfileID) : void

deassign (saglID : in TpSaglID, serviceProfilelD : in TpServiceProfilelD) : void

Method
createServiceProfile()

Creates anew Service Profile for the specified service contract. The service properties within the service profile restrict
the service to meet the client application requirements. A Service Profile isarestriction of the corresponding service
contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfilelD> : The service profile ID, generated by the framework, will be used to uniquely identify the
service profile within the framework.

Parameters

serviceProfileDescription : in TpServiceProfileDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract
information and which may further restrict the value ranges of the service subscription properties.

Returns
TpServi ceProfilel D

Raises
TpCommonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_PROFI LE_I D

ETSI

94 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
nodi fyServi ceProfil e()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated
with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non-
associated enterprise operator invokes this method.

Parameters

serviceProfile : in TpServiceProfile

The modified Service Profile. If the serviceProfilel D specified in the serviceProfile parameter does not exist, an
exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_PROFI LE_I D

Method
del eteServiceProfil e()
Deletes the specified Service Profile. Only the enterprise operator associated with the particular service profileis

allowed to delete it, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise operator
invokes this method.

Parameters

serviceProfilelD: in TpServiceProfilelD

The "serviceProfilel D" parameter identifies the Service Profile that isto be deleted. If the serviceProfilel D does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExcept i ons, P_ACCESS DENI ED, P_I NVALI D_SERVI CE_PROFI LE_I D

Method
assi gn()
Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfilelD is

allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise
operator invokes this method.

Parameters

saglD : in TpSaglD
The"saglD" parameter identifies the SAG to which Service Profileisto be assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfilelD : in TpServiceProfilelD

The"serviceProfilelD" parameter identifies the Service Profile that is to be assigned to the SAG. If the serviceProfilelD
does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

ETSI

95 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Raises

TpComonExcept i ons,
P_ACCESS DENI ED, P_I NVALI D_SAG | D, P_I NVALI D_SERVI CE_PROFI LE_I D

Method
deassi gn()
De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the

serviceProfilel D is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if anon-
associated enterprise operator invokes this method.

Parameters

saglD : in TpSaglD
The "sagID" parameter identifies the SAG whose Service Profileisto be de-assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfilelD : in TpServiceProfilelD

The"serviceProfilelD" parameter identifies the Service Profile that is to be de-assigned. If the serviceProfilel D does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpConmonExcept i ons, P_ACCESS_DENI ED, P_I NVALI D_SAG | D, P_I NVALI D_SERVI CE_PRO
FILE I D

8.3.1.4 Interface Class IpServiceProfileInfoQuery
Inherits from: Ipinterface.

Thisinterface is used by the enterprise operator to obtain information about individual Service Profiles, to find out
which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given
client application or SAG.

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles () : TpServiceProfilelDList
describeServiceProfile (serviceProfileID : in TpServiceProfilelD) : TpServiceProfileDescription

listAssignedMembers (serviceProfilelD : in TpServiceProfileID) : TpSagIDList

Method
| i st ServiceProfiles()

Get alist of al service profiles created by the enterprise operator.

Returns <serviceProfilelDList> : The "serviceProfilelDList" isalist of the service profiles associated with the
enterprise operator.

ETSI

96 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters
No Parameters were identified for this method

Returns

TpServi ceProfil el DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
descri beServiceProfil e()

Query information about a single service profile.

Returns <serviceProfileDescription> : The "serviceProfileDescription” parameter is a structured data type which
contains a description for the specified service profile.

Parameters

serviceProfilelD : in TpServiceProfilelD
The "serviceProfilelD" parameter identifies the Service Profile whose description is being requested.

Returns

TpServi ceProfil eDescription

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_PRCFI LE_I D

Method
| i st Assi gnedMenber s()

Get alist of SAGs assigned to the specified service profile.
Returns <saglDList> : The "saglDs" parameter isthe list of the SAG IDsthat are assigned to the specified service
profile.

Parameters

serviceProfilelD : in TpServiceProfilelD

The"serviceProfilelD" parameter identifies the Service Profile. If the serviceProfilel D is not recognised by the
framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSagl DLi st

Raises

TpComonExcept i ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_PROFI LE_I D

ETSI

97 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

8.3.1.5 Interface Class IpServiceContractManagement
Inherits from: Iplnterface.

The enterprise operator uses this interface for service contract management, such as create, modify, and delete service
contracts.

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription : in TpServiceContractDescription) :
TpServiceContractID

modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

Method
createServi ceContract ()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract
description. This contract should conform to the previously negotiated high - level agreement (regarding the services,
their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the
appropriate exception is raised by the framework. When the description has been validated, a service contract 1D will be
generated.

Returns <serviceContract| D> : The service contract ID will be used to uniquely identify the service contract within the
framework.

Parameters

servi ceContractDescription : in TpServiceContractDescription

The "serviceContractDescription” parameter provides the information contained in the service contract. The service
contract is a structured data type, which contains the following information:

a. information about the service requestor, i.e., the enterprise operator,

b. information about the billing contact (person),

C. service start date,

d. service end date,

e. service type (e.g. obtained from listServiceType() method),

f. service ID (e.g. obtained from discoverService() method). For certain services, service type information is
sufficient and service ID may not be required. Thisimplies that any service of the type specified above is subscribed
and hence accessible to the enterprise operator or to its client applications.

g. list of service subscription properties and their value ranges (service profiles further restrict these value
ranges)

Returns
TpServi ceContract| D
Raises

TpComonExcepti ons,
P_ACCESS DENI ED, P_I NVALI D_SERVI CE_| D, P_I NVALI D_SERVI CE_CONTRACT _I D

ETSI

98 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
nodi f ySer vi ceContract ()

Modify an existing service contract. The service contract can be modified only within the context of a pre-existing off-
line negotiated high-level agreement between the enterprise operator and the framework operator. Only the enterprise
operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method.

Parameters

serviceContract : in TpServiceContract

The "serviceContract” parameter provides the modified service contract. If the serviceContract|D does not exists, an
exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

Raises

TpComonExcepti ons,
P_ACCESS DENI ED, P_I NVALI D_SERVI CE_| D, P_I NVALI D_SERVI CE_CONTRACT _I D

Method
del et eServi ceContract ()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. Only
the enterprise operator associated with the serviceContract is allowed to delete it, an exception "P_TASK_REFUSED"
would be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceContractI D : in TpServiceContractlD

The "serviceContractI D" parameter identifies the service contract that the enterprise operator wishes to delete. If the
serviceContractI D does not exists, an exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

Raises
TpConmonExcepti ons, P_ACCESS DENI ED, P_| NVALI D_SERVI CE_CONTRACT | D

8.3.1.6 Interface Class IpServiceContractinfoQuery
Inherits from: Ipinterface.

The enterprise operator uses this interface to query information about a given service contract.

<<Interface>>

IpServiceContractinfoQuery

describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription
listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfileIDList

ETSI

99 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
descri beServi ceContract ()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain
information that is stored in the specified service contract. The enterprise operator can only obtain information about the
service contracts that it has created.

Returns <serviceContractDescription> : The "serviceContract” parameter contains the description for the specified
service contract.

Parameters

serviceContractI D : in TpServiceContractlD
The "serviceContractID" parameter identifies the service whose description is being requested.

Returns

TpServi ceCont ract Descri ption

Raises

TpComonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_CONTRACT_I D

Method
| i st Servi ceContracts()

Returns alist of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractlDs> : The "serviceContractlDs" parameter will contain alist of IDs for service contracts that
the enterprise operator has created.

Parameters
No Parameters were identified for this method

Returns

TpServi ceContract | DLi st

Raises

TpComonExcepti ons, P_ACCESS DEN ED

Method
| i stServiceProfiles()

The enterprise operator invokes this operation to obtain alist of service profiles that are associated with a particular
service contract.

Returns <serviceProfilelDs> : The "serviceContractIDs"' parameter contains the service profile members associated
with a particular service contract.

ETSI

100 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

serviceContractID : in TpServiceContractlD

The "serviceContractl D" parameter identifies the service contract. If the serviceContractI D is not recognised by the
frameowork, an exception "P_INVALID_SERVICE_CONTRACT _ID" would be raised.

Returns

TpServi ceProfil el DLi st

Raises

TpCommonExcepti ons, P_ACCESS DEN ED, P_I NVALI D_SERVI CE_CONTRACT_I D

8.3.1.7 Interface Class IpEntOpAccountManagement
Inherits from: Iplinterface.

The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise
operator subscription accounts, such as modify and del ete enterprise operator accounts. The EntOplD will be decided in
an off-line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more
meaningful than a random number. The EntOp account, consisting of the EntOpl D, along with the list of valid
properties and their modes and prescribed ranges, will be entered viaa FW operator interface that is currently outside
the scope of the API.

<<Interface>>

IPEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void
deleteEntOpAccount () : void

Method
nodi f yEnt QpAccount ()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseCperatorProperties : in TpEnt OpProperties

The "enterprise operator properties’ parameter conveys the modified/popul ated information about the enterprise
operator. The values of the "enterprise operator properties’ can only be modified within the prescribed range, as
negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a
P_INVALID_PROPERTY exception israised.

Raises
TpCommonExcepti ons, P_ACCESS DENI ED, P_I NVALI D_PROPERTY

ETSI

101 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
del et eEnt OpAccount ()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the
enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete
the enterprise operator account will result inaP_TASK_REFUSED exception if there are outstanding service contracts
(and service profiles).

Parameters
No Parameters were identified for this method

Raises
TpComonExcepti ons, P_ACCESS DEN ED

8.3.1.8 Interface Class IpEntOpAccountinfoQuery
Inherits from: Iplnterface.

Thisinterface is used by the enterprise operator to query information related to its own subscription account as held
within the framework.

<<Interface>>

IPEntOpAccountinfoQuery

describeEntOpAccount () : TpEntOp

Method
descri beEnt OQpAccount ()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what
information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator> : The "enterpriseOperator” parameter conveys the information stored in the EntOp object
about the enterprise operator. It contains the unique "enterprise operation ID" followed by alist of "enterprise operator
properties’. The enterprise operator propertiesis alist of name/value pairs which provide enterprise operator related
information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),
etc. to the framework.

Parameters
No Parameters were identified for this method

Returns

TpEnt Op

Raises

TpComonExcepti ons, P_ACCESS DEN ED

ETSI

102 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

8.4.1 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.

9 Framework-to-Service API

9.1 Sequence Diagrams

9.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery.

9.1.2 Service Registration Sequence Diagrams

9.1.2.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

IpFwServica?eqistration

1: registerSenice()

i 2: announceSeniceAvailability()

1. Registration: first step - register service

The purpose of thisfirst step in the process of registration is to agree, within the network, on aname to call, internally, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal isto make an association between the new SCF version, as characterized by alist of
properties, and an identifier called servicel D.

ETSI

103 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:
¢ inserviceTypeName

Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").
e inservicePropertyList

Thisisalist of types TpServiceProperty; each TpServiceProperty isatriplet (ServicePropertyName,
ServicePropertyValuelList, ServicePropertyMode).

e ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are listed in
the SCF data definition).

e ServicePropertyValuelist isanumbered set of types TpServicePropertyValue; TpServicePropertyVaueisa
string that describes avalid value of a SCF property (valid SCF property values are listed in the SCF data
definition).

e ServicePropertyMode is the value of the property modes (e.g. "mandatory", meaning that all properties of this
SCF must be given values at service registration time).

The following output parameter results from service registration:
e out servicelD
Thisisastring, automatically generated by the Framework of this network, based on the following:
e astring that contains a unique number, generated by the Framework;
e asdtring that identifies the SCF name (e.g. "P_MPCC");
e aconcatenation of strings that identify the SCF specialization, if any.

Thisis the name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2: Registration: second step - announce service availability

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to useit. Installing the SCSlogic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point", called lifecycle manager, is used. Therole of the lifecycle manager
isto control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary
to invoke the methods offered by these interfaces. The starting point for a client to use an SCF isto obtain an interface
reference to a lifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle manager for it that will allow client to useit. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of thisinformation, the Framework makes the
new SCF (identified by the pair [servicel D, servicel nstancel ifecycleManagerRef]) discoverable.

The following input parameters are given from the SCSto the Framework in this second registration step:
e inservicelD

Thisisthe identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needsto
include the servicel D, to know which SCF it is.

¢ inservicelnstancelLifecycleM anager Ref

ETSI

104 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Thisisthe interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in thisinterface, any time between now and when it accepts the first
application requests for discovery, so that it can get the service manager interface necessary for applications as an entry
point to any SCF.

9.1.3 Service Instance Lifecycle Manager Sequence Diagrams

9.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

ETSI

105 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

3: signServiceAgreement()
! 4: createServiceManager() 5: new()

A

AppLogic o : IpAppCallControlManager : Iplnitial o GenericCallControlService : : IpCallControlManager
pAppSe viceAgreem ent Managem ent IpServiceAgreementManagement IpServicelnstanceLif ecy cleManager

| | | | | | |
W e assume that the application is already authenticated and discovered the service it wants to use ﬁ :
|
|
| | | | |
M | | | | |
o			
1: selectService()			
	/u		
: 2: sigrhServic eAgreement() M : :			
T t			
L	\		
	L]		
™			

6; new()

7: setCallback()

:

L
|
|
|
|
|
+
|
|
|
|
|
|
|
|

ETSI

106 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)
1. The application selects the service, using a servicel D for the generic call control service. The servicel D could have
been obtained via the discovery interface. A ServiceToken is returned to the application.
2: Theframework signs the service agreement.

3: Theclient application signs the service agreement. As aresult a service manager interface reference (in this case of
type IpCallControlManager) is returned to the application.

4. Provided the signature information is correct and al conditions have been fulfilled, the framework will request the
service identified by the servicel D to return a service manager interface reference. The service manager istheinitial
point of contact to the service.

5: Thelifecycle manager creates a new manager interface instance (acall control manager) for the specified
application. It should be noted that this is an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

6: The application creates a new |pAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.
9.14 Integrity Management Sequence Diagrams

9.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registersitself and the framework invokes load management function
based on policy:

. IpSwcL.oadManager . IpFwLoadM anager

| 1: createLoadLewelNotification()

]

U 2: load change dete ‘tion & policy evaluation

|

| =

| 3: loadLevelNotification()

M L This is the

‘ e implementation detail
Framework detects its o

|
load condition change !
and initiates load control [

action 4: load change detection & policy evaluation
o] =
‘ 5. loadLewelNotification() AN
| = AN

u L This is the

implementation detail

6: destroyLoadLewelNatification() !

ETSI

107 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

9.1.4.2 Load Management: Client and Service Load Balancing

Application : Framework : Framework : Service :
IpAppLoadManager IpLoadManager pLoadManager IpSvcLoadManager

Framework checks
application load.

1: queryAppLoadReq()

2: queryAppLoadRes() U I

u Depending on the load, the

framework may chose to stop
sending notifications to the
application, to allow its load to
reduce.

3: suspendNotification()

|
U : 4: querySvcLoadReq()

|
|
|
|
| |
The framework may then check
the load on the service, and take

|

|

|

|

1

actioniif (according to the load :
balancing policy) if required. :
|

|

|

|

|

|

|

-

9.1.4.3 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

ETSI

108 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Framework

IpFwH (;utBeat IpSvc Heart_B eatMgmt

! 1: enable:SvcHeartBeat()

u |

4: disabléSvcHeartBeat()

|

! 2: pulse()

|

| L

l l L]

| | |

! ! 3: pulse() | | At a certain point of
| time the application
| LF decides to stop

| | heartbeat supervision
|

|

|

|

|

9.1.4.4 Fault Management: Service requests Framework activity test

Framework : Senice :
IpFwFaultManager IpSwvcFaultManager

|
|
1
| The Senice requests that the
! Framework does an activity test.
U\ The Framework is identified as the
target of the test by a NULL appld
parameter value.

1: activityTestReq()

2: activityTestRes()

1: The service asksthe framework to carry out its activity test. The service denotes that it requires the activity test done
for the framework, rather than an application, by supplying a NULL value for the appl D parameter.

2. Theframework carries out the test and returns the result to the service.

ETSI

109 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

9.1.45 Fault Management: Service requests Application activity test

Senvice : Framework : Framework : Application :
IpSvcFaultManager IpFwFaultManager IpFwFaultMa. .. IpAppFaultManager

|
: 1: activityTestReq()

U m The Framework checks appld

parameter to identify which Application

comunicates internally to Framework
interface to the Application.

|
|
|
|
|
|
the test is directed at, and :
|
|
|
|
|
|

]

|

I The application

: carries out the

I activity test and

: returns the result to
: the Framework.

|

\

3: appActivity TestRes ()

ntemal Framework
ommunications.
4: activityTestRes()

e

1: The service asks the framework to invoke an activity test on a client application, the application isidentified by the
appld parameter.

2: Theframework asks the application to do the activity test. It is assumed that there isinternal communication
between the service facing part of the framework (i.e IpFwFaultManager interface) and the part that faces the client
application.

3: The application does the activity test and returns the result to the framework.

4. The framework internally passes the result from its application facing interface (IpFaultManager) to its service
facing side, and sends the result to the service.

ETSI

110 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

9.1.4.6 Fault Management: Application requests Service activity test

Client Application : Framework : Framework : Senvice :
IpAppFaultManager IpFaultManager IpFaultManager IpSvcFaultManager

|
|
The client application asks the |
framework to carry out the |
activity test on a senvice. !
|
|
|
|
|

1: activityTestReq()

| g

|
The Framework identifies which
sewice the test is directed at by the
swlD parameter, and
communicates internally with the
appropriate framework interface.
Which inwkes the call on the

sewice.
| |
| |
| 1 2: swcActivity TestReq()
| |
| U gl
| |
1 ‘ 1
| | Senice does test and
| | returns the result.
1 1 1
| | |
[I 3: swActivityTestRes() 1
| | |
Framework passes result LF U
internally from senvice facing

part to application facing part,
and sends the result to the
application.

: activityTestRes()

e

1. The client application asks the framework to invoke an activity test on a service, the service isidentified by the
svcld parameter.

2. Theframework asks the service to do the activity test. It is assumed that there isinternal communication between
the application facing part of the framework (i.e |pFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4: The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application
facing side, and sends the result to the client application.

ETSI

111 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

9.1.4.7 Fault Management: Application detects service is unavailable

Client Application : Framework : Framework : Senice :
IpAppFaultManager IpFaultManager IpFaultManager IpSwcFaultManager

|
The application detects that
the sewiceis not responding,
soit informs the framework via
the swcUnavailablelnd method
and then ceases use ofthe
service.

I 1: svcUnavailablelnd()

|
The framework informs the
senice that the application
is no longer using it.

| 2: appUnavailableind()

U 1

1: The client application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework and takes action to stop using this
service instance and change to a different one (via the usual mechanisms, such as discovery, selectService etc.). The
client application should not need to re-authenticate in order to discover and use an alternative service instance.

2: The framework informs the service instance that the client application was unable to get a response from it and has
ceased to be one of its users. The framework and service instance must carry out the appropriate updates to remove the
client application as one of the users of this service instance. The service or framework may then decide to carry out an
activity test to see whether there is a general problem with the service instance that requires further action.

9.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

ETSI

112 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Class Diagrams

<<Interface>> <<Interface>> o
IpSvcAccess pSwAPILe\gIAuthentlcatlon
fom Senice Interfaces) (from Senvice Interfaces)
BterminateAccess() “authenticate() .
BabortAuthentication()
: N
<<uses>> ! <<Uses>> 1
<<lInterface>> <<Interface>>
jlné\?mrfa.f? I» IpFwAccess IpPFWA PILevelAuthentication
prufnita (from Framework interfaces) (from Framework interfaces)
(from Framework interfaces)
Sobtaininterface() s clectEncrypti
— . ryptionMethod()
SinitiateAuthentication() ®obtaininterfaceWithCallback () Wauthenticate()
SendAccess() SWabortAuthentication()

.

<<Interface>>
IpFwAuthentication
(from Framework interfaces)

TrequestAccess()

<Interface>>
IpFwServiceDiscowvery

(from Framework interfaces)

WlistSeniceTypes()
$describeSeniceType()
LdiscoverSenice()
WlistRegisteredSenices()

Figure 22: Service Discovery Package Overview

ETSI

113 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>
IpFwSeniceRegistration
(from Framework interfaces)

SregisterSenice()
$announceSeniceAvailability ()
PunregisterSenice()
$describeSenice()
$unannounceSenice()

Figure 23: Service Registration Package Overview

<Interface>>
<<Interface>> IpClientAPILevelAuthentication
IpClientAccess (from Client interfaces)
(from Client interfaces
®authenticate()
®terminateAccess() $abortAuthentication()
3 WauthenticationSucceeded()
; A
<uses>> ! <<uses>> |
<<Interface>> <Interface>>
<<Interface>> [prgEEss PAP ILewel Authentication
pinitial (from Framework interfaces) (from Framework interfaces)
(from Framework interfaces) .]
‘obta!nlnterface() _ ®selectEncryptionMethod()
WinitiateAuthentication() ‘obtalnInterfacethCaIIback() *authentlcate(_) -
endAccess() ®abortAuthentication()
Slistinterfaces() SauthenticationSucceeded()
Preleaselnterface()

J

\
\

<Interface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure 24: Trust and Security Management Package Overview

ETSI

114 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>
IpS ervicelnstanceLifecycle Manager

from Service Interfaces)

WcreateSeniceManager()
WdestroySeniceManager()

Figure 25: Service Instance Lifecycle Manager Package Overview

<<Interface>>
P — IpSvcFaultManager
IpSvcLoadManager B
activity TestRes()
<<Interface>> svcActivity TestReq()
uerySwvcLoadRe
IpSwvcHeartBeatMgmt query 40 fwFaultReportind()
<<Interface>> queryLoadRes()
fwFaultRecoveryInd() rfa
IpSvcHeartBeat queryLoadErr() fwUnavailableind <<Interface>>
enableSwcHeartBeat () loadLeeINotificati hawilablelnd() IPS\COAM
oadLeweINotification() U P P
disableSvcHeartBeat() | 1 0..n suspendNotification S S i)
I p 0
changelnterval() pulse0 resumeNatification() EAERE Y
‘ genFaultStatsRecordRes() systemDateTimeQuery()
x | : activity TestErr() A
| | | genFaultStatsRecordEr() |
| | |
<<uses>> | <<uses>> | <<uses>> | A\ |
‘ \ : <<uses>> : <<uses>> |
| |
| | |
: 1 w ! 1
<<Interface>> | L <<Interface>> |
IpFwHeartBeatMgmt <<Interface>> <<Interface>> IpFwFaultManager ‘
IpFwHeartBeat IpFwLoadManager <<Interface>>
enableHeartBeat() |, 0..n activity TestReq|() IPFWOAM
disableHeartBeat() pulse() reportLoad() sweActivity TestRes ()
changelnterval() queryLoadReq() appUnavailablelnd() systemDateTimeQuery()
querySvcLoadRes() genFaultStatsRecordReq()
query SvcLoadErr() svcUnavailablelnd()
createLoadLevelNotification() sveActivity TestErr()
destroyLoadLevelNotification()
suspendNotification()
resumeNotification()
Figure 26: Integrity Management Package Overview

ETSI

115 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>
IpSvcEventNotification
(from Senvice Interfaces)

®reportNotification()
®notificationTerminated()

A
I

<<uses>>

<<Interface>>
IpFwWEventNotification

(from Framework Interfaces)

ScreateNotification()
WdestroyNotification()

Figure 27: Event Notification Package Overview

9.3 Interface Classes

9.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register anew service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain alist of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

9.3.1.1 Interface Class IpFwServiceRegistration
Inherits from: Iplnterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

ETSI

116 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServicelD

announceServiceAvailability (servicelD : in TpServicelD, servicelnstanceLifecycleManagerRef : in
service_lifecycle::IpServicelnstanceLifecycleManagerRef) : void

unregisterService (servicelD : in TpServicelD) : void
describeService (servicelD : in TpServicelD) : TpServiceDescription

unannounceService (servicelD : in TpServicelD) : void

Method
regi sterService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications .. A service-1D is returned to the service supplier when a service isregistered in
the Framework. The service-ID is the handle with which the service supplier can identify the registered service when
needed (e.g. for withdrawing it). The service-1D is only meaningful in the context of the Framework that generated it.

Returns <servicel D> : Thisisthe unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to accessit via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of thistype.

Parameters

servi ceTypeNane : in TpServi ceTypeNane

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in
further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string
representation of the "type" does not obey the rules for identifiers, thenan P_ILLEGAL_SERVICE_TY PE exceptionis
raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a
recognised service type, then aP_UNKNOWN_SERVICE_TY PE exception is raised.

servi cePropertyList : in TpServicePropertyli st

The "servicePropertyList” parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioral, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory” or "readonly"”. These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiersindicates that a value must be provided and that subsequently it may not be modified. An
example of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type of any of the property valuesis not the same as the declared type (declared in the service type), then a
P_PROPERTY_TYPE_MISMATCH exception israised. If an attempt is made to assign a dynamic property valueto a
readonly property, then the P READONLY_DYNAMIC_PROPERTY exception israised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY _PROPERTY exception israised. If two or more properties with the same property name
areincluded in this parameter, the P_DUPLICATE_PROPERTY _NAME exception is raised.

ETSI

117 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns
TpServicel D

Raises

TpConmonExcept i ons, P_| LLEGAL_SERVI CE_| D, P_UNKNOWN_SERVI CE_| D, P_PROPERTY T
YPE_M SMATCH, P_DUPL| CATE_PROPERTY_NANE,

P_I LLEGAL_SERVI CE_TYPE, P_UNKNOWK_SERVI CE_TYPE, P_M SSI NG_MANDATCRY_PRCP
ERTY

Method
announceServi ceAvai l ability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service instance lifecycle
manager isinstantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

There exists a " service manager"instance per service instance. Each service implements the

| pServicel nstancel ifecycleManager interface. The |pServicel nstancel ifecycleManager interface supports a method
called the createServiceM anager(application: in TpClientAppl D, serviceManager: out |pServiceRefRef). When the
service agreement is signed for some servicel D (using signServiceAgreement()), the framework calls the
createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

servicelD : in TpServicelD

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

servi cel nstancelLi fecycl eManagerRef : in
service_lifecycle::|pServicelnstancelifecycl eManager Ref

The interface reference at which the service instance lifecycle manager of the previously registered service is available.

Raises

TpConmonExcept i ons, P_I LLEGAL_SERVI CE_| D, P_UNKNOWN_SERVI CE_| D, P_I NVALI D_I N
TERFACE_TYPE

Method
unr egi st er Servi ce()

The unregisterService() operation is used by the service suppliers to remove aregistered service from the Framework.
The service isidentified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

ETSI

118 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

servicelD : in TpServicelD

The service to be withdrawn isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service identifiers,
then an P_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there is no service offer within
the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpCommonExcept i ons, P_| LLEGAL_SERVI CE_| D, P_UNKNOAN_SERVI CE_I D

Method
descri beService()
The describeService() operation returns the information about a service that is registered in the framework. It

comprises, the "type" of the service, and the "properties’ that describe this service. The serviceisidentified by the
"service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or lessrestrictive, for
example), and each getting a different servicel D assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service, and the properties that describe this service.

Parameters

servicelD: in TpServicelD

The service to be described isidentified by the "servicel D" parameter which was originaly returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there is no service offer within
the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

Returns

TpServi ceDescri ption

Raises

TpCommonExcepti ons, P_I LLEGAL_SERVI CE_| D, P_UNKNOWN_SERVI CE_| D

Method
unannounceSer vi ce()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. Thiswill prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

ETSI

119 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

servicelD : in TpServicelD

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islegal but there
is no service offer within the Framework with that 1D, then an P_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpComonExcepti ons, P_| LLEGAL_SERVI CE | D, P_UNKNOMN SERVI CE I D

9.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServicel nstanceLifecycleManager interface allows the framework to get access to a service manager interface of
aservice. It is used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that isthe initial point of contact for the service. E.g., the
generic call control service uses the IpCall ControlManager interface.

9.3.2.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Iplnterface.

The I pServicel nstancel ifecycleManager interface allows the Framework to create and destroy Service Manager
Instances.

<<Interface>>

IpServicelnstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
servicelnstancelD : in TpServicelnstancelD) : IpServiceRef

destroyServiceManager (servicelnstance : in TpServicelnstancelD) : void

Method
creat eServi ceManager ()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application : in TpdientAppl D
Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertyli st

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form apart of the service level agreement. An example of these propertiesisalist of methods that the client application
is allowed to invoke on the service interfaces.

servicelnstancel D : in TpServicel nstancel D
Specifies the Service Instance ID that the new Service Manager isto be identified by.

ETSI

120 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns

| pSer vi ceRef

Raises

TpComonExcepti ons, P_I NVALI D_PROPERTY

Method
dest roySer vi ceManager ()

This method destroys an existing service manager interface reference. This will result in the client application being
unable to use the service manager any more.

Parameters

servicelnstance : in TpServicelnstancel D
I dentifies the Service Instance to be destroyed.

Raises
TpComonExcept i ons

9.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returnsalist of all "service types' that are currently supported by the framework and the " describeServiceType()”
method returns a description of each service type. The description of service type includes the " service-specific
properties' that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously registered.

ETSI

121 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

9.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Iplnterface.

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

Method
| i st Servi ceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method

Returns

TpSer vi ceTypeNaneLi st
Raises

TpComonExcept i ons

Method
descri beServi ceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service type is currently enabled or disabled.

Parameters

nane : in TpServiceTypeNane

The name of the service type to be described. If the "name" is malformed, thenthe P_ILLEGAL_SERVICE_TYPE
exception israised. If the "name" does not exist in the repository, then the P UNKNOWN_SERVICE_TY PE exception
israised.

ETSI

122 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns
TpServi ceTypeDescri ption

Raises
TpCommonExcept i ons, P_I LLEGAL_SERVI CE_TYPE, P_UNKNOAN_SERVI CE_TYPE

Method
di scover Servi ce()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin a
list of desired service properties to describe the service it islooking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responsesit is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service property { name, mode and value list} tuples associated with the service.

Parameters

servi ceTypeNane : in TpServi ceTypeNane

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, then the P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertylList : in TpServicePropertylLi st

The "desiredPropertyList" parameter isalist of service property { name, mode and value list} tuples that the required
services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired
service. The property valuesin the desired property list must be logically interpreted as "minimum”, " maximum", etc.
by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It
is suggested that, at the time of service registration, each property val ue be specified as an appropriate range of values,
so that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max : in Tplnt32
The"max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

Returns
TpSer vi ceLi st
Raises

TpConmonExcept i ons, P_I LLEGAL_SERVI CE_TYPE, P_UNKNOAN_SERVI CE_TYPE, P_| NVALI
D_PROPERTY

ETSI

123 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
| i st Regi st eredSer vi ces()

Returns alist of services so far registered in the framework.
Returns <serviceList> : The "serviceList" parameter returns alist of registered services. Each service is characterised by

itsservice ID and alist of service property { name, mode and value list} tuples associated with the service.

Parameters
No Parameters were identified for this method

Returns

TpServi ceLi st
Raises
TpComonExcept i ons

9.34 Integrity Management Interface Classes

9.3.4.1 Interface Class IpFwFaultManager
Inherits from: Iplnterface.

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the API,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces asit is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the IpAccess interface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void
svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult ; in TpActivityTestRes) : void
appUnavailablelnd () : void

genFaultStatsRecordReq (timePeriod : in TpTimelnterval, recordSubject : in TpSubjectType) : void
svcUnavailablelnd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

Method
activityTest Req()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the IpSvcFaultManager interface.

ETSI

124 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

test Subject : in TpSubjectType
I dentifies the subject for testing (framework or client application).

Raises
TpComonExcept i ons

Method
SsvcActivityTest Res()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpComonExcepti ons, P_I NVALI D ACTIVITY_TEST_ID

Method
appUnavai | abl el nd()

This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of thisindication, the framework must act to inform the client application that it should cease use of this service
instance.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

Method

genFaul t St at sRecor dReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time

interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the
I pSvcFaultManager interface.

ETSI

125 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

timePeriod : in TpTinelnterval
The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

recordSubj ect : in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).

Raises
TpComonExcept i ons

Method
svcUnavai | abl el nd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The
framework should inform the client application that is currently using this service instance that it is unavailable for use
(viathe svcUnavailablelnd method on the IpAppFaultM anager interface).

Parameters

reason : in TpSvcUnavail Reason
Identifies the reason for the service instance's unavailability.

Raises
TpComonExcept i ons

Method
SsvcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters
activityTestID : in TpActivityTestlD

Used by the framework to correlate this response (when it arrives) with the original request.
Raises
TpComonExceptions, P_I NVALI D ACTIVITY_TEST_ID

9.3.4.2 Interface Class IpSvcFaultManager
Inherits from: Iplnterface.

Thisinterface is used to inform the service instance of eventsthat affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the

obtainl nterfaceWithCallback operation on the IpAccess interface.

ETSI

126 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportind (fault : in TpInterfaceFault) : void

fwFaultRecoverylnd (fault : in TpinterfaceFaultRef) : void

fwUnavailablelnd (reason : in TpFwUnavailReason) : void

svcUnavailablelnd () : void

appUnavailablelnd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void
activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) :
void

Method
activityTest Res()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestlD
Used by the service to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpComonExcepti ons, P_I NVALI D ACTIMI TY _TEST ID

Method
svcActivityTest Req()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out atest on itself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivityTestRes method on the |pFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

ETSI

127 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Raises
TpComonExcept i ons

Method
f wFaul t Report | nd()
The framework invokes this method to notify the service instance of afailure within the framework. The service

instance must not continue to use the framework until it has recovered (asindicated by a fwFaultRecoverylnd).

Parameters

fault : in TplnterfaceFault
Specifies the fault that has been detected by the framework.

Raises
TpComonExcept i ons

Method
f wFaul t Recoveryl nd()
The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The

service instance may then resume using the framework.

Parameters
fault : in TplnterfaceFault Ref

Specifies the fault from which the framework has recovered.
Raises
TpComonExcept i ons

Method
f wnavai | abl el nd()

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavail Reason
Identifies the reason why the framework is no longer available

Raises
TpComonExcept i ons

ETSI

128 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
svcUnavai | abl el nd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance (either due to afailurein the client application or in the service instance itself). The
service should assume that the client application isleaving the service session and the service should act accordingly to
terminate the session from its own end too.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

Method
appUnavai | abl el nd()

The framework invokes this method to inform the service instance that the client application is ceasing its current use of
the service. This may be aresult of the application reporting afailure. Alternatively, the framework may have detected
that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

Method

genFaul t St at sRecor dRes()

This method is used by the framework to provide fault statistics to a service instance in response to a
genFaultStatsRecordReg method invocation on the I pFwFaultM anager interface.

Parameters

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

recordSubj ect : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises
TpComonExcept i ons

ETSI

129 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters
activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises
TpComonExceptions, P_INVALID ACTIVITY_TEST ID

Method
genFaul t St at sRecor dErr ()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the | pFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

recordSubj ect : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpComonExcept i ons

9.3.4.3 Interface Class IpFwHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a service instance.

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcinterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

ETSI

130 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
enabl eHear t Beat ()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

svclnterface : in | pSvcHeart Beat Ref

This parameter refersto the callback interface the heartbeat is caling.
Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE_TYPE

Method
di sabl eHear t Beat ()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in Tplnt32
Thetime interval in milliseconds between the heartbeats.

Raises
TpComonExcept i ons

9.3.4.4 Interface Class IpFwHeartBeat
Inherits from: Iplnterface.

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat.

ETSI

131 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>

IpFwHeartBeat

pulse () : void

Method
pul se()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pSvcHeartBeatM gmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

9.3.4.5 Interface Class IpSvcHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the service instance by the framework.

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in Tpint32, fwinterface : in IpFwHeartBeatRef) : void
disableSvcHeartBeat () : void

changelnterval (interval : in TpInt32) : void

Method
enabl eSvcHear t Beat ()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in Tplnt32
The time interval in milliseconds between the heartbeats.

ETSI

132 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

fwnterface : in | pFwHeart Beat Ref

This parameter refersto the callback interface the heartbeat is caling.
Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE_TYPE

Method
di sabl eSvcHeart Beat ()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

Method
changel nterval ()

Allows the administrative change of the heartbeat interval.

Parameters
interval : in Tplnt32

Thetime interval in milliseconds between the heartbeats.
Raises
TpComonExcept i ons

9.3.4.6 Interface Class IpSvcHeartBeat
Inherits from: Ipinterface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat.

<<Interface>>

IpSvcHeartBeat

pulse () : void

ETSI

133 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
pul se()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the |pFwHeartBeatM gmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

9.3.4.7 Interface Class IpFwLoadManager
Inherits from: Ipinterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the I pFwL cadManager interface. To handle responses and reports, the service devel oper must implement the

I pSvcL oadManager interface to provide the callback mechanism.

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timelnterval : in TpTimelnterval) : void
querySvclLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void
createLoadLevelNoatification (notificationSubject : in TpSubjectType) : void
destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void
suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

Method
report Load()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the service instance has changed.

ETSI

134 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.

Parameters

| oadLevel : in TpLoadLeve
Specifies the service instance's load level.

Raises
TpComonExcept i ons

Method

guer yLoadReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters
guerySubj ect : in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

timelnterval : in TpTinmelnterval
Specifies the timeinterval for which load statistics records should be reported.

Raises
TpComonExcept i ons

Method
quer ySvclLoadRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadReq method on the IpSvcl oadManager interface.

Parameters

| cadStatistics : in TpLoadStati sticlLi st
Specifies the service-supplied load statistics.

Raises
TpComonExcept i ons

ETSI

135 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
querySvcLoadErr ()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcl oadReq method on the | pSvcl oadManager interface.

Parameters

| oadStatisticError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises
TpComonExcept i ons

Method

creat eLoadLevel Noti fication()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should be reported.

Raises
TpComonExcept i ons

Method
destroyLoadLevel Notification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises
TpComonExcept i ons

ETSI

136 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
suspendNoti fication()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises
TpComonExcept i ons

Method
resunmeNoti fication()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled atemporary overload condition.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which the sending of notifications of load level changes by the

framework should be resumed.
Raises
TpComonExcept i ons

9.3.4.8 Interface Class IpSvcLoadManager
Inherits from: Ipinterface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the timeiit
obtains the framework's |oad manager interface, by use of the obtainlnterfaceWithCallback() method on the IpAccess
interface.

ETSI

137 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

<<Interface>>

IpSvcLoadManager

querySvclLoadReq (timelnterval : in TpTimelnterval) : void
gueryLoadRes (loadStatistics : in TpLoadStatisticList) : void
queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void
loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void
suspendNotification () : void

resumeNotification () : void

Method
quer ySvclLoadReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timelnterval : in TpTinelnterva
Specifies the time interval for which load statistic records should be reported.

Raises
TpComonExcept i ons

Method
quer yLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryL oadReq method on the IpFwL oadManager interface.

Parameters

| oadStatistics : in TpLoadStatisticLi st
Specifies the framework-supplied load statistics

Raises
TpComonExcept i ons

Method
quer yLoadErr ()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadReq method on the |pFwL oadManager interface.

ETSI

138 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Parameters

| oadStatisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises
TpComonExcept i ons

Method

| oadLevel Notification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the application or
framework which has been registered for load level notifications) this method is invoked on the SCF.

Parameters

| oadStatistics : in TpLoadStati sticLi st
Specifies the framework-supplied load statistics, which include the load level change(s).

Raises
TpComonExcept i ons

Method

suspendNoti fication()

The framework uses this method to reguest the service instance to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method
Raises

TpComonExcept i ons

Method
resunmeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled atemporary overload condition.

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

ETSI

139 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

9.3.4.9 Interface Class IpFwOAM
Inherits from: Iplnterface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API.

<<Interface>>
IpFWOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
syst enDat eTi nreQuer y()

This method is used to query the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDat eAndTime : in TpDat eAndTi me

Thisisthe date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT isreturned if the
format of the parameter isinvalid.

Returns

TpDat eAndTi ne

Raises

TpCommonExcepti ons, P_I NVALI D_TI ME_AND DATE_FORNAT

9.3.4.10 Interface Class IpSvcOAM

Inherits from: Iplnterface.

<<Interface>>
IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

ETSI

140 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Method
syst enDat eTi meQuer y()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (service).

Parameters

syst enDat eAndTi me : in TpDat eAndTi e

Thisisthe system date and time of the framework. The error code P_INVALID_DATE TIME_FORMAT isreturned if
the format of the parameter isinvalid.

Returns

TpDat eAndTi ne

Raises

TpComonExcepti ons, P_I NVALI D Tl ME AND DATE FORVAT

9.35 Event Notification Interface Classes

9.3.5.1 Interface Class IpFwEventNotification
Inherits from: Ipinterface.

The event notification mechanism is used to notify the service of generic events that have occurred.

<<Interface>>

IpFwEventNoatification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

Method
createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentl D> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the service to define the event required.

ETSI

141 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Returns

TpAssi gnnment | D

Raises

TpComonExcepti ons, P_I NVALI D_EVENT_TYPE, P_I NVALI D_CRI TERI A

Method
destroyNotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignnmentI D : in TpAssignnentlD

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment I Ds, the framework will return the error code
P_INVALID_ASSIGNMENT _ID.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT | D

9.3.5.2 Interface Class IpSvcEventNotification
Inherits from: Iplnterface.

Thisinterface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained.

<<Interface>>

IpSvcEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentlD) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventinfo : in TpFwEventlnfo
Specifies specific data associated with this event.

ETSI

142 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

assignnmentI D : in TpAssignnmentlD

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteriaand to act accordingly.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

Method
notificationTerm nated()

This method indicates to the service that al generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method

Raises
TpComonExcept i ons

9.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

ETSI

143 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

9.4.1 Service Registration State Transition Diagrams

9.4.1.1 State Transition Diagrams for IpFwServiceRegistration

egisterSenice

" scF)
Registered

AN J

_ Ao I
unannounceSenice announceServiceAvailability

/N

/ \ . .
[| describeService

VA

‘” SCF
‘ Announced

AN /

unregisterService

-
L
Figure 28: State Transition Diagram for IpFwServiceRegistration

9.4.1.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

9.4.1.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it isno
longer available for discovery.

9.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager.

9.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery.

ETSI

144 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

9.4.4 Integrity Management State Transition Diagrams

9.4.4.1 State Transition Diagrams for IpFwLoadManager

eportLoad

"load change” YoadLevelNotification queryAppLoadRes| load statistics requested by LoadManager]
queryAppLoadEr load statistics requested by LoadManager]

createlLoadLevel Notification \(Active } queryLoadReq

destroyLoadLevelNotification

IpAccess\obtainl

IpAccess \gbtaininterfaceWithCallback

resumeNotification

reportLoad
queryAppLoadRes| load statistics requested by LoadManager]
queryAppLoadEr| load statistics requested by LoadManager]

Notification queryLoadReq
Suspended

destroyLoadLevelNotification

suspendNotification
[all notifications suspended]

All States

IpAccess.endAccess

Figure 29: State Transition Diagram for IpFwLoadManager

9.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

9.4.4.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the service has requested the LoadM anager to suspend sending the load level
notification information.

9.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the IpFwL oadM anager. The load manager can now request the service to supply load statistics
information (by invoking querySvcLoadReq()). Furthermore the LoadManager can reguest the service to control its
load (by invoking loadL evelNotification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects a changein load level, it reports this to the LoadManager by calling the method
reportLoad().

9.4.5 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

ETSI

145 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

10

10.1

Service Properties

Service Property Types

The service type defines which properties the supplier of an SCF supplier shall provide when he registers an SCF.

At Service Registration the properties of atype shall be interpreted as the set of values that can be supported by the
service. If aservice type has a certain property (e.g. "CAN_DO_SOVETHI NG'), aservice registers with a property value

of {"true",

"fal se"}. Thismeansthat the SCSis able to support Service instances where this property is used or

allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thuslead to a
sub-set of the service property values. When the correct SCF isinstantiated during the discovery and selection
procedure (see note), the Service Properties shall thus be interpreted as the requested property values.

NOTE:
interface.

Thisis achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager

All property values are represented by an array of strings. The following table shows all supported property types.

Property type name

Description

Example value (array of
strings)

Interpretation of example
value

BOOLEAN_SET

set of Booleans

{"FALSE"}

The set of Booleans consisting of
the Boolean "false".

INTEGER_SET set of integers {"1","2", "5", "7"} The set of integers consisting of
the integers 1, 2, 5and 7.
STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of

the string "Sophia" and the string
"Rijen".

ADDRESSRANGE_SET

set of address ranges

{"123??2*", "* ericsson.se"}

The set of address ranges
consisting of ranges 123??* and
*.ericsson.se.

INTEGER_INTERVAL

interval of integers

{"5", "100"}

The integers that are between or
equal to 5 and 100.

STRING_INTERVAL

interval of strings

{'Rijen”, "Sophia"}

The strings that are between or
equal to the strings "Rijen" and
"Sophia", in lexicographical
order.

INTEGER_INTEGER_MAP

map from integers to
integers

{"1", "10", "2", "20", "3",
II30II}

The map that maps 1 to 10, 2 to
20 and 3 to 30.

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the | eft
bound of the interval holds the value "UNBOUNDED", the lower bound of the interval isthe smallest value supported
by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval isthe
largest value supported by the type.

10.2

General Service Properties

Each service instance has the following general properties:

¢ Service Name
¢ ServiceVersion

¢ Service Instance ID

¢ Service Instance Description

¢ Product Name

ETSI

146 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

¢ Product Version

e Supported Interfaces

10.2.1 Service Name

This property contains the name of the service, e.g. "UserLocation", "UserL ocationCamel", "UserL ocationEmergency"
or "UserStatus”.

10.2.2 Service Version

This property contains the version of the APIs, to which the service is compliant, e.g. "2.1".

10.2.3 Service Instance ID

This property uniquely identifies a specific instance of the service. The Framework generates this property.

10.2.4 Service Instance Description

This property contains a textual description of the service.

10.2.5 Product Name

This property contains the name of the product that provides the service, e.g. "Find It", "Locate.com".

10.2.6 Product Version

This property contains the version of the product that provides the service, eg. "3.1.11".

10.2.7 Supported Interfaces

This property contains alist of strings with interface names that the service supports, e.g. "IpUserLocation”,
"IpUserStatus’.

10.2.8 Operation Set

Property Type Description
P_OPERATION_SET |[STRING_SET |Specifies set of the operations the SCS supports.
The notation to be used is :
{"Interfacel.operationl","Interfacel.operation2",
"Interface2.operationl"}, e.g.:
{"IpCall.createCall","IpCall.routeReq"}.

11 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.
The general format of a data definition specification is the following:

— Datatype, that shows the name of the data type;

Description, that describes the data type;

Tabular specification, that specifies the data types and values of the data type;

Example, if relevant, shown to illustrate the data type.

ETSI

147 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.1 Common Framework Data Definitions

11.1.1 TpClientAppID

Thisisan identifier for the client application. It is used to identify the client to the Framework. This datatypeis
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator's domain). This unique
identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

11.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientApplD.

11.1.3 TpDomainlD

Definesthe Tagged Choi ce of Data El enent s that specify either the Framework or the type of entity
attempting to access the Framework.

Tag Element Type
TpDomai nl DType

Tag Element Value

Choice Element Type

Choice Element Name

P_FW TpFw D Fwi D
P_CLI ENT_APPLI CATI ON TpCd i ent Appl D a i ent Appl D
P_ENT_OP TpEnt Opl D Ent Opl D
P_SERVI CE_| NSTANCE TpServi cel D Servicel D

P_SERVI CE_SUPPLI ER

TpServi ceSupplierlD

Servi ceSupplierlD

11.1.4 TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P_FwW 0 The Framework
P_CLI ENT_APPLI CATI ON 1 A client application
P_ENT_OP 2 An enterprise operator
P_SERVI CE_| NSTANCE 3 A service instance
P_SERVI CE_SUPPLI ER 4 A service supplier

11.1.5 TpEntOpID

This datatypeisidentical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

11.1.6 TpPropertyName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "property"”.

11.1.7 TpPropertyValue

Thisdatatypeisidentical to TpSt ri ng. It isthe vaue (or the list of values) associated with a generic "property”.

ETSI

148 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.1.8 TpProperty

ThisdatatypeisaSequence of Data El enent s which describesageneric "property”. It isastructured data
type consisting of the following { name,value} pair:

Sequence Element Sequence Element
Name Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

11.1.9 TpPropertyList

This datatype definesaNunber ed Li st of Data El ement s of type TpProperty.

11.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOplD.

11.1.11 TpFwiID

Thisdatatypeisidentical to TpSt ri ng and identifies the Framework to a client application (or Service Capability
Feature).

11.1.12 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element Sequence Element Documentation
Name Type
Servi cel D TpServicelD
Servi ceDescri ption TpServiceDescription This field contains the description of the service

11.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

11.1.14 TpServiceDescription

This datatypeis a Sequence of Data Elements which describes aregistered SCF. It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation
Name Type
Servi ceTypeNane TpServiceTypeName
Servi cePropertylLi st TpServicePropertyList

11.1.15 TpServicelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

ETSI

149 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicelD.

11.1.17 TpServicelDRef

Defines a Reference to type TpServicel d.

11.1.18 TpServicelnstancelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

11.1.19 TpServiceSpecString

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by
the string "SP_".The following values are defined.

Character String Value Description
NULL An empty (NULL) string indicates no SCF specialization
P_CALL The Call speciaization of the of the User Interaction SCF

11.1.20 TpServiceTypeProperty

ThisdatatypeisaSequence of Data El enent s which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
Itissimilar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the service
property's name and mode, but also defines the list of values assigned to it.

Sequence Element Sequence Element Documentation
Name Type
Servi cePropertyName TpServicePropertyName
Ser vi cet ypePr oper t yMode TpServiceTypePropertyMode
Servi cePropertyTypeNane TpServiceProperty TypeName

11.1.21 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

11.1.22 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORVAL 0 The value of the corresponding SCF property type may optionally be provided
MANDATORY 1 The value of the corresponding SCF property type shall be provided at service registration time
READONLY 2 The value of the corresponding SCF property typeis optional, but once given avalueit can not be
modified/restricted by a service level agreement
MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not subsequently be
modified/restricted by a service level agreement.

ETSI

150 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.1.23 TpServicePropertyTypeName

This datatypeisidentical to TpString and describes avalid SCF property name. The valid SCF property names are
listed in the SCF data definition.

11.1.24 TpServicePropertyName

This datatypeisidentical to TpString. It defines avalid SCF property name.

11.1.25 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type T pServicePropertyName.

11.1.26 TpServicePropertyValue

This datatypeisidentical to TpString and describes a valid value of a SCF property.

11.1.27 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue.

11.1.28 TpServiceProperty

This data type is a Sequence of Data Elements which describes an " SCF property". It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation
Name Type
Ser vi cePropert yNane TpServicePropertyName
Ser vi cePropertyVal uelLi st TpServicePropertyValuelList

11.1.29 TpServicePropertyList

This data type defines aNumbered Set of Data Elements of type TpServiceProperty.

11.1.30 TpServiceSupplierlD

Thisisan identifier for aservice supplier. It is used to identify the supplier to the Framework. This datatype isidentical
toTpStri ng.

11.1.31 TpServiceTypeDescription

This datatypeisa Sequence_of Data Elements which describes an SCF type. It is a structured data type. It consists of

Sequence Element Sequence Element Documentation
Name Type
Servi ceTypePropertyli st TpServiceTypePropertyList |a sequence of property name and property mode tuples associated with the
SCF type
Servi ceTypeNaneLi st TpServiceTypeNameList the names of the super types of the associated SCF type
Enabl edOr Di sabl ed TpBoolean an indication whether the SCF type is enabled (true) or disabled (false)

ETSI

151 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.1.32 TpServiceTypeName

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may aso be used, but should be preceded by the string

"SP_". The following values are defined.

Character String Value

Description

NULL

An empty (NULL) string indicates no SCF name

P_GENERI C_CALL_CONTROL

The name of the Generic Call Control SCF

P_MULTI _PARTY_CALL_CONTROL

The name of the MultiParty Call Control SCF

P_MULTI _MEDI A CALL_CONTROL

The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL_CONTROL

The name of the Conference Call Control SCF

P_USER | NTERACTI ON

The name of the User Interaction SCFs

P_TERM NAL_CAPABI LI TI ES

The name of the Terminal Capabilities SCF

P_USER_LOCATI ON

The name of the User Location SCF

P_USER_LOCATI ON_CAMEL

The name of the Network User Location SCF

P_USER_LOCATI ON_EMERGENCY

The name of the User Location Emergency SCF

P_USER_STATUS

The name of the User Status SCF

P_DATA_SESSI ON_CONTROL

The name of the Data Session Control SCF

P_GENERI C_MESSAG NG

The name of the Generic Messaging SCF

P_CONNECTI VI TY_VANAGER

The name of the Connectivity Manager SCF

P_CHARG NG

The name of the Charging SCF

P_ACCOUNT _MANAGENMENT

The name of the Account Management SCF

11.1.33 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

11.1.34 TpSubjectType

Defines the subject of a query/notification request/result.

Name

Value Description

P_SUBJECT_UNDEFI NED

client application

P_SUBJECT_CLI ENT_APP

The subject is the client application

P_SUBJECT FW

The subject is the framework

11.2 Event Notification Data Definitions

11.2.1 TpFwEventName

Defines the name of event being notified.

Name

Value Description

P_EVENT_FW NAVE_UNDEFI NED

Undefined

P_EVENT_FW SERVI CE_AVAI LABLE

Notification of SCS(s) available

P_EVENT_FW SERVI CE_UNAVAI LABLE

ETSI

The subject is neither the framework nor the

Notification of SCS(s) becoming unavailable

152 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.2.2 TpFwEventCriteria

Definesthe Tagged Choi ce of Data El enent s that specify the criteriafor an event notification to be
generated.

Tag Element Type

TpFwEvent Nane

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString Event NaneUndef i ned
P_EVENT_FW_SERVICE_AVAILABLE TpServi ceTypeNaneLi st Servi ceType Nane Li st
P_EVENT_FW_SERVICE_UNAVAILABLE TpServi ceTypeNaneLi st Servi ceType Nane Li st

11.2.3 TpFwEventinfo

Definesthe Tagged Choi ce of Data El ement s that specify the information returned to the application in an
event notification.

Tag Element Type

TpFwEvent Nane

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString Event NameUndef i ned
P_EVENT_FW_ SERVICE_AVAILABLE TpSer vi cel DLi st Servi cel D Li st
P_EVENT_FW_SERVICE_UNAVAILABLE TpSer vi cel DLi st Servi cel D Li st

11.3 Trust and Security Management Data Definitions

11.3.1 TpAccessType

Thisdatatypeisidentical to a TpString. Thisidentifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value Description

P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

11.3.2 TpAuthType

This datatypeisidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and client's with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication isthe default
authentication method. Other Network operator specific capabilities may aso be used, but should be preceded by the
string "SP_". The following values are defined:

String Value Description
P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevel Authentication and
IpClientAPILevel Authentication
P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

ETSI

153 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.3.3 TpEncryptionCapability

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES 56 A simpletransfer of secret information that is shared between the client application and the Framework with protection
against interception on the link provided by the DES algorithm with a 56-bit shared secret key.
P_DES 128 A simple transfer of secret information that is shared between the client entity and the Framework with protection against
interception on the link provided by the DES algorithm with a 128-bit shared secret key.
P_RSA_512 A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.
P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of secrets using 1024-bit keys.

11.3.4 TpEncryptionCapabilityList

This datatypeisidentical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma
(,) asthe separation character.

11.3.5 TpEndAccessProperties

This datatypeis of type TpPropertyList. It identifies the actions that the Framework should perform when an

application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or |eft running).

11.3.6 TpAuthDomain

ThisisSequence of Data El enent s containing all the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain.

Sequence Element | Sequence Element Description
Name Type
Domai nl D TpDonmai nl D Identifies the domain for authentication. Thisidentifier is assigned to the domain during the

initial contractual agreements, and isvalid during the lifetime of the contract.

Authinterface I pl nterfaceRef Identifies the authentication interface of the specific entity. This data element has the same
lifetime as the domain authentication process, i.e. in principle anew interface reference can
be provided each time a domain intents to access another.

11.3.7 TplinterfaceName
This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the

Framework SCFsthat are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

ETSI

154 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Character String Value

Description

P_DI SCOVERY The name for the Discovery interface.
P_EVENT_NOTI FI CATI ON The name for the Event Notification interface.
P_OAM The name for the OA&M interface.

P_LOAD_MANAGER

The name for the Load Manager interface.

P_FAULT_MANAGER

The name for the Fault Manager interface.

P_HEARTBEAT MANAGEMENT

The name for the Heartbeat M anagement interface.

P_REG STRATI ON

The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_MANAGEMENT

The name for the Service Subscription: Enterprise Operator Account Management interface.

P_ENT_OP_ACCOUNT_| NFO_QUERY

The name for the Service Subscription: Enterprise Operator Account Information Query
interface.

P_SVC_CONTRACT MANAGENMENT

The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT | NFO_QUERY

The name for the Service Subscription: Service Contract Information Query interface.

P_CLI ENT_APP_MANAGEMENT

The name for the Service Subscription: Client Application Management interface.

P_CLI ENT_APP_I NFO_QUERY

The name for the Service Subscription: Client Application Information Query interface.

P_SVC_PROFI LE_VANAGEMENT

The name for the Service Subscription: Service Profile Management interface.

P_SVC_PROFI LE_| NFO_QUERY

The name for the Service Subscription: Service Profile Information Query interface.

11.3.8 TplinterfaceNameList

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

11.3.9 TpServiceToken

This datatypeisidentica to a TpString, and identifies a selected SCF. Thisis afree format text token returned by the
Framework, which can be signed as part of a service agreement. Thiswill contain Network operator specific
information relating to the service level agreement. The serviceToken has alimited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P_I NVALI D_SERVI CE_TOKEN). Service Tokens will
automatically expireif the client or Framework invokes the endAccess method on the other's corresponding access
interface.

11.3.10 TpSignatureAndServiceMgr

Thisis a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Sequence Element
Name Type

Di gital Signature TpString

Servi ceMyriInterface | pSer vi ceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.

The ServiceMgrinterface is areference to the SCF manager interface for the selected SCF.

11.3.11 TpSigningAlgorithm

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that identify the signing agorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

ETSI

155 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required.
P_MX5_RSA 512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This

is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit key.

P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of theinput. This
is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit key

11.4 Integrity Management Data Definitions

11.4.1 TpActivityTestRes

Thistypeisidentical to TpString and is an implementation specific result. The valuesin this data type are " Available"
or "Unavailable".

11.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element Sequence Element
Name Type
Peri od TpTi el nt erval
Faul t St at sSet TpFaul t St at sSet

11.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Sequence Element Description
Name Type
Faul t Tpl nterfaceFaul t
Cccurrences Tpl nt 32 The number of separate instances of this fault
MaxDur at i on Tpl nt 32 The number of seconds duration of the longest fault
Tot al Durati on Tpl nt 32 The cumulative duration (all occurrences)
Nunmber O d i ent sAf f ect ed Tpl nt 32 The number of clientsinformed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and Total Duration are the
number of seconds duration of the longest fault and the cumulative total during the period.
Nunmber OF C i ent sAf f ect ed isthe number of clients informed of the fault by the Framework.

11.4.4 TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault statistics information.

Name Value Description
P_FAULT_I NFO_ERROR_UNDEFI NED 0 Undefined error
P_FAULT_I NFO_UNAVAI LABLE 1 Fault statistics unavail able

11.4.5 TpFaultStatsSet

This datatype definesaNunber ed Set of Data El enent s of type TpFaultStats

ETSI

156 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.4.6 TpActivityTestID

Thisdatatypeisidentical to a TpInt32, and is used as a token to match activity test requests with their results.

11.4.7 TplinterfaceFault

Defines the cause of the interface fault detected.

Name Value Description

| NTERFACE_FAULT_UNDEFI NED 0 Undefined

| NTERFACE_FAULT_LOCAL_FAI LURE A fault in the local API software or hardware has been detected

1
| NTERFACE_FAULT_GATEWAY_FAI LURE 2 A fault in the gateway API software or hardware has been detected
3

| NTERFACE_FAULT_PROTOCOL_ERROR An error in the protocol used on the client-gateway link has been detected

11.4.8 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

Name Value Description

SERVI CE_UNAVAI LABLE_UNDEFI NED 0 Undefined

SERVI CE_UNAVAI LABLE_LOCAL_FAI LURE The Local API software or hardware has failed

SERVI CE_UNAVAI LABLE_GATEWAY_FAI LURE The gateway API software or hardware has failed

SERVI CE_UNAVAI LABLE_OVERLQADED The SCF isfully overloaded

AlW[IN|PF

SERVI CE_UNAVAI LABLE_CLOSED The SCF has closed itself (e.g. to protect from fraud or malicious attack)

11.4.9 TpFWUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description

FW_UNAVAI LABLE_UNDEFI NED 0 Undefined

FW UNAVAI LABLE_LOCAL_FAI LURE The Local API software or hardware has failed

FW UNAVAI LABLE_GATEWAY_FAI LURE The gateway API software or hardware has failed

FW UNAVAI LABLE_CLOSED The Framework has closed itself (e.g. to protect from fraud or malicious attack)

1
2
FW UNAVAI LABLE_OVERLOADED 3 The Framework is fully overloaded
4
5

FW UNAVAI LABLE_PROTOCOL_FAI LURE The protocol used on the client-gateway link has failed

11.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD_LEVEL_NORMAL 0 Normal load
LOAD_LEVEL_OVERLQAD 1 Overload

LOAD_LEVEL_SEVERE_OVERLQAD 2 Severe Overload

11.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold valueis
application and SCF dependent, so is their relationship with load level.

ETSI

157

Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Sequence Element
Name

Sequence Element
Type

LoadThr eshol d

TpFl oat

11.4.12 TpLoadinitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated |oad threshold value.

Sequence Element
Name

Sequence Element
Type

LoadLevel

TpLoadLevel

LoadThr eshol d

TpLoadThr eshol d

11.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name

Sequence Element Type

LoadPol i cy

TpString

11.4.14 TpLoadStatistic

Definesthe Sequence of Data El enment s that represents aload statistic record for a specific entity (i.e.

Framework, service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntitylD

TpLoadStatisticEntitylD

Ti meSt anp

TpDat eAndTi e

LoadStatisticlnfo

TpLoadStatisticlnfo

11.4.15 TpLoadStatisticList

DefinesaNunber ed Li st of Data El ement s of type TpLoadStatistic.

11.4.16 TpLoadStatisticData

Definesthe Sequence of Data El enent s that represents load statistic information.

Sequence Element Name

Sequence Element Type

LoadVal ue (see Note)

TpFl oat

LoadLevel

TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

11.4.17 TpLoadStatisticEntitylD

Definesthe Tagged Choi ce of Data El enent s that specify the type of entity (i.e. service, application or

Framework) providing load statistics.

Tag Element Type

TpLoadStatisticEntityType

ETSI

158 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_FW_TYPE TpFw D Fr amewor kI D
P_LOAD_STATISTICS SVC _TYPE TpServicel D Servicel D
P_LOAD_STATISTICS_APP_TYPE Tpd i ent Appl D CientAppl D

11.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P_LQAD_STATI STI CS_FW TYPE 0 Framework-type load statistics
P_LQAD_STATI STI CS_SVC TYPE 1 Service-type load statistics
P_LQAD_STATI STI CS_APP_TYPE 2 Application-type load statistics

11.4.19 TpLoadStatisticInfo

Definesthe Tagged Choi ce of Data El ement s that specify the type of load statistic information (i.e. valid or
invalid).

Tag Element Type

TpLoadStatisticinfoType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS VALID TpLoadSt ati sti cData LoadStati sticData
P_LOAD_STATISTICS INVALID TpLoadStati sticError LoadSt ati sti cError

11.4.20 TpLoadStatisticinfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P_LOAD_STATI STI CS_VALI D 0 Valid load statistics
P_LQAD_STATI STI CS_I NVALI D 1 Invalid load statistics

11.4.21 TplLoadStatisticError

Defines the error code associated with afailed attempt to retrieve any load statistics information.

Name Value Description
P_LOAD | NFO_ERROR_UNDEFI NED 0 Undefi ned error
P_LOAD_| NFO_UNAVAI LABLE 1 Load statistics unavail able

11.5 Service Subscription Data Definitions

11.5.1 TpPropertyName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "property"”.

ETSI

159 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.5.2 TpPropertyValue

Thisdatatypeisidentical to TpSt ri ng. It isthe vaue (or the list of values) associated with a generic "property”.

11.5.3 TpProperty

ThisdatatypeisaSequence of Data El ement s which describesageneric "property”. It isa structured data
type consisting of the following { name,value} pair:

Sequence Element Sequence Element
Name Type
Pr oper t yNanme TpPropertyName
Pr opertyVal ue TpPropertyValue

11.5.4 TpPropertyList

This datatype definesaNunber ed Li st of Data El enent s of type TpProperty.

11.5.5 TpEntOpProperties

This datatypeis of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

11.5.6 TpENtOp

ThisdatatypeisaSequence of Data El enent s which describesan enterprise operator. It isa structured data
type, consisting of a unique "enterprise operator ID" and alist of "enterprise operator properties’, as follows:

Sequence Element Sequence Element
Name Type
Ent Opl D TpENtOpID
Ent OpProperties TpEntOpProperties

11.5.7 TpServiceContractiD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of a Parlay service by the enterprise.

11.5.8 TpServiceContractIDList

Thisdatatype definesaNunber ed Li st of Data El enent s of type TpServiceContractID.

11.5.9 TpPersonName

Thisdatatypeisidentical to TpSt ri ng. It isthe name of a generic "person”.

11.5.10 TpPostalAddress

Thisdatatypeisidentical to TpSt ri ng. It isthe mailing address of a generic "person”.

11.5.11 TpTelephoneNumber

Thisdatatypeisidentical to TpSt ri ng. It isthe telephone number of a generic "person”.

ETSI

160 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.5.12 TpEmail

Thisdatatypeisidentical to TpSt ri ng. It isthe email address of a generic "person"”.

11.5.13 TpHomePage

Thisdatatypeisidentical to TpSt ri ng. It isthe web address of a generic "person”.

11.5.14 TpPersonProperties

This datatypeis of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic "person”.

11.5.15 TpPerson

ThisdatatypeisaSequence of Data El ement s which describes ageneric "person”: e.g. abilling contact, a
service requestor. It is a structured data type which consists of:

Sequence Element Sequence Element

Name Type

Per sonNane TpPersonName

Post al Addr ess TpPostalAddress

Tel ephoneNunber TpTelephoneNumber

Enai | TpEmail

HonmePage TpHomePage

Per sonProperties TpPersonProperties

11.5.16 TpServiceStartDate

Thisis of type TpDat eAndTi nre. It identifies the contractual start date and time for the use of a Parlay service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.17 TpServiceEndDate

Thisisof type TpDat eAndTi me. It identifies the contractual end date and time for the use of a Parlay service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

11.5.18 TpServiceRequestor

Thisis of type TpPerson. It identifies the enterprise person requesting use of a Parlay service: e.g. the enterprise
operator.

11.5.19 TpBillingContact

Thisis of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’'s
use of a Parlay service.

11.5.20 TpServiceSubscriptionProperties

Thisis of type TpServicePropertyList. It specifies a subset of all available service properties and service property values
that apply to an enterprise's use of a Parlay service.

ETSI

161 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.5.21 TpServiceContract

ThisdatatypeisaSequence of Data El enent s which represents a service contract. It isa structured data type
which consists of:

Sequence Element Sequence Element
Name Type

Servi ceContract| D TpServiceContract|D

Servi ceContract Descri ption TpServiceContractDescription

11.5.22 TpServiceContractDescription

ThisdatatypeisaSequence of Data El enent s which describesa service contract. This contract should
conform to a previously negotiated high-level agreement (regarding Parlay services, their usage and the price, €tc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element Sequence Element
Name Type

Ser vi ceRequest or TpServiceRequestor
Bi I I'i ngCont act TpBillingContact
Servi ceStart Dat e TpServiceStartDate
Servi ceEndDat e TpServiceEndDate
Servi ceTypeNane TpServiceTypeName
Servicel D TpServicelD
Servi ceSubscri pti onProperties TpServiceSubscriptionProperties

11.5.23 TpClientAppProperties

Thisis of type TpPropertyList. The client application propertiesisalist of { name,value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

11.5.24 TpClientAppDescription

ThisdatatypeisaSequence of Data El enent s which describesan enterprise client application. Itisa
structured data type, consisting of a unique "client application ID", password and alist of "client application properties:

Sequence Element Sequence Element
Name Type
Cient Appl D TpClientApplD
C i ent AppProperties TpClientAppProperties

11.5.25 TpSagIiD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

11.5.26 TpSagIDList

This datatype definesaNunber ed Li st of Data El ement s of type TpSagID.

ETSI

162 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

11.5.27 TpSagDescription

Thisdatatypeisidentical to TpSt ri ng. It describes a SAG: e.g. alist of identifiers of the constituent client
applications, the purpose of the "grouping”.

11.5.28 TpSag

ThisdatatypeisaSequence of Data El enent s which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element Sequence Element
Name Type
Sagl D TpSagID
SagDescri ption TpSagDescription

11.5.29 TpServiceProfilelD

Thisdatatypeisidentical to TpSt ri ng. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses a Parlay service.

11.5.30 TpServiceProfilelDList

Thisdatatype definesaNunber ed Li st of Data El enents of type TpServiceProfilelD.

11.5.31 TpServiceProfile

ThisdatatypeisaSequence of Data El enent s which representsa Service Profile. It isastructured data type
which consists of:

Sequence Element Sequence Element
Name Type
ServiceProfilel D TpServiceProfilelD
Servi ceProfil eDescription TpServiceProfileDescription

11.5.32 TpServiceProfileDescription

ThisdatatypeisaSequence of Data El enents which describesa Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is arestriction of
the service contract in order to provide restricted service features to a SAG. It isa structured data type which consists
of:

Sequence Element Sequence Element
Name Type
Servi ceContract| D TpServiceContract|D
Servi ceStart Dat e TpServiceStartDate
Servi ceEndDat e TpServiceEndDate
Servi ceTypeNane TpServiceTypeName
Servi ceSubscri pti onProperties TpServiceSubscriptionProperties

ETSI

163 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

12 Exception Classes

The following are the list of exception classes which are used in thisinterface of the API.

Name Description
P_ACCESS DENI ED The client isnot currently authenticated with the framework
P_APPLI CATI ON_NOT_ACTI VATED An application is unauthorised to access information and request
services with regards to users that have deactivated that particular
application.

P_DUPLI CATE_PROPERTY_NAVE A dupilcate property name has been received

P_I LLEGAL_SERVI CE_I D Illegal Service ID

P_I LLEGAL_SERVI CE_TYPE Illegal Service Type

P_I NVALI D_ACCESS_TYPE The framework does not support the type of access interface requested

by the client.

P_I NVALI D_ACTIVITY_TEST_|I D 1D does not correspond to avalid activity test request

P_I NVALI D_AGREEMENT _TEXT Invalid agreement text

P_I NVALI D_ENCRYPTI ON_CAPABI LI TY Invalid encryption capability

P_I NVALI D_AUTH_TYPE Invalid type of authentication mechanism

P_INVALI D CLI ENT_APP_ID Invalid Client Application ID

P_I NVALI D_DOVAI N_I D Invalid client ID

P_INVALI D ENT_OP_I D Invalid Enterprise Operator ID

P_I NVALI D_PROPERTY The framework does not recogni se the property supplied by the client

P_INVALID SAG | D Invalid Subscription Assignment Group |D

P_I NVALI D_SERVI CE_CONTRACT_I D Invalid Service Contract ID

P_INVALI D SERVICE ID Invalid service ID

P_I NVALI D_SERVI CE_PROFI LE_I D Invalid service profile ID

P_I NVALI D_SERVI CE_TOKEN The service token has not been issued, or it has expired.

P_I NVALI D_SERVI CE_TYPE Invalid Service Type

P_I NVALI D_SI GNATURE Invalid digital signature

P_I NVALI D_SI GNI NG ALGORI THM Invalid signing algorithm

P_M SSI NG_MANDATORY PROPERTY Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTI ON_CAPABI LI TY | An encryption mechanism, which is acceptable to the framework, is not
supported by the client

P_PROPERTY_TYPE_M SMATCH Property Type Mismatch

P_SERVI CE_ACCESS DENI ED The client application is not allowed to access this service.

P_SERVI CE_NOT_ENABLED The service ID does not correspond to a service that has been enabled

P_UNKNOWN_SERVI CE_I D Unknown Sevice ID

P_UNKNOWN_SERVI CE_TYPE Unknown Service Type

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description

Extral nfornation TpString Carries extrainformation to help identify the source of the exception,
e.g. a parameter name

ETSI

164 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_entop.idl, fw_if _service.idl contained in archive es 20191503v010101m0.ZIP) which accompany
the present document.

ETSI

165 Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

Annex B (informative):
Contents of 3GPP OSA R4 Framework

All parts of the present document, except clause 8, Framework to Enterprise Operator API, are relevant for
TS 129 198-3 V4 (Release 4).

ETSI

166

Final draft ETSI ES 201 915-3 V1.1.1 (2001-12)

History

Document history

V111

December 2001

Membership Approval Procedure

MV 20020215: 2001-12-18 to 2002-02-15

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access for trusted parties
	6.1.1.2 Initial Access
	6.1.1.3 Authentication
	6.1.1.4 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.2 Interface Class IpClientAccess
	6.3.1.3 Interface Class IpInitial
	6.3.1.4 Interface Class IpAuthentication
	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.6 Interface Class IpAccess

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.1.1 Active State

	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Selecting Method State
	6.4.1.2.3 Authenticating Client State
	6.4.1.2.4 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Application reports current load condition
	7.1.2.4 Load Management: Application queries load statistics
	7.1.2.5 Load Management: Application callback registration and load control
	7.1.2.6 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.7 Fault Management: Framework detects a Service failure
	7.1.2.8 Fault Management: Application requests a Framework activity test

	7.1.3 Service Discovery Sequence Diagrams
	7.1.3.1 Service Discovery

	7.1.4 Service Agreement Management Sequence Diagrams
	7.1.4.1 Service Selection

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.2 Interface Class IpServiceAgreementManagement

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.2 Interface Class IpFaultManager
	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.8 Interface Class IpLoadManager
	7.3.3.9 Interface Class IpOAM
	7.3.3.10 Interface Class IpAppOAM

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.2 Interface Class IpEventNotification

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification
	7.4.4.1.1 Idle State
	7.4.4.1.2 Notification Active State

	8 Framework-to-Enterprise Operator API
	8.1 Sequence Diagrams
	8.1.1 Service Subscription Sequence Diagrams
	8.1.1.1 Service Discovery and Subscription Scenario
	8.1.1.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Subscription Interface Classes
	8.3.1.1 Interface Class IpClientAppManagement
	8.3.1.2 Interface Class IpClientAppInfoQuery
	8.3.1.3 Interface Class IpServiceProfileManagement
	8.3.1.4 Interface Class IpServiceProfileInfoQuery
	8.3.1.5 Interface Class IpServiceContractManagement
	8.3.1.6 Interface Class IpServiceContractInfoQuery
	8.3.1.7 Interface Class IpEntOpAccountManagement
	8.3.1.8 Interface Class IpEntOpAccountInfoQuery

	8.4 State Transition Diagrams
	8.4.1 Service Subscription State Transition Diagrams

	9 Framework-to-Service API
	9.1 Sequence Diagrams
	9.1.1 Service Discovery Sequence Diagrams
	9.1.2 Service Registration Sequence Diagrams
	9.1.2.1 New SCF Registration

	9.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	9.1.3.1 Sign Service Agreement

	9.1.4 Integrity Management Sequence Diagrams
	9.1.4.1 Load Management: Service callback registration and load control
	9.1.4.2 Load Management: Client and Service Load Balancing
	9.1.4.3 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	9.1.4.4 Fault Management: Service requests Framework activity test
	9.1.4.5 Fault Management: Service requests Application activity test
	9.1.4.6 Fault Management: Application requests Service activity test
	9.1.4.7 Fault Management: Application detects service is unavailable

	9.1.5 Event Notification Sequence Diagrams

	9.2 Class Diagrams
	9.3 Interface Classes
	9.3.1 Service Registration Interface Classes
	9.3.1.1 Interface Class IpFwServiceRegistration

	9.3.2 Service Instance Lifecycle Manager Interface Classes
	9.3.2.1 Interface Class IpServiceInstanceLifecycleManager

	9.3.3 Service Discovery Interface Classes
	9.3.3.1 Interface Class IpFwServiceDiscovery

	9.3.4 Integrity Management Interface Classes
	9.3.4.1 Interface Class IpFwFaultManager
	9.3.4.2 Interface Class IpSvcFaultManager
	9.3.4.3 Interface Class IpFwHeartBeatMgmt
	9.3.4.4 Interface Class IpFwHeartBeat
	9.3.4.5 Interface Class IpSvcHeartBeatMgmt
	9.3.4.6 Interface Class IpSvcHeartBeat
	9.3.4.7 Interface Class IpFwLoadManager
	9.3.4.8 Interface Class IpSvcLoadManager
	9.3.4.9 Interface Class IpFwOAM
	9.3.4.10 Interface Class IpSvcOAM

	9.3.5 Event Notification Interface Classes
	9.3.5.1 Interface Class IpFwEventNotification
	9.3.5.2 Interface Class IpSvcEventNotification

	9.4 State Transition Diagrams
	9.4.1 Service Registration State Transition Diagrams
	9.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	9.4.1.1.1 SCF Registered State
	9.4.1.1.2 SCF Announced State

	9.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	9.4.3 Service Discovery State Transition Diagrams
	9.4.4 Integrity Management State Transition Diagrams
	9.4.4.1 State Transition Diagrams for IpFwLoadManager
	9.4.4.1.1 Idle State
	9.4.4.1.2 Notification Suspended State
	9.4.4.1.3 Active State

	9.4.5 Event Notification State Transition Diagrams

	10 Service Properties
	10.1 Service Property Types
	10.2 General Service Properties
	10.2.1 Service Name
	10.2.2 Service Version
	10.2.3 Service Instance ID
	10.2.4 Service Instance Description
	10.2.5 Product Name
	10.2.6 Product Version
	10.2.7 Supported Interfaces
	10.2.8 Operation Set

	11 Data Definitions
	11.1 Common Framework Data Definitions
	11.1.1 TpClientAppID
	11.1.2 TpClientAppIDList
	11.1.3 TpDomainID
	11.1.4 TpDomainIDType
	11.1.5 TpEntOpID
	11.1.6 TpPropertyName
	11.1.7 TpPropertyValue
	11.1.8 TpProperty
	11.1.9 TpPropertyList
	11.1.10 TpEntOpIDList
	11.1.11 TpFwID
	11.1.12 TpService
	11.1.13 TpServiceList
	11.1.14 TpServiceDescription
	11.1.15 TpServiceID
	11.1.16 TpServiceIDList
	11.1.17 TpServiceIDRef
	11.1.18 TpServiceInstanceID
	11.1.19 TpServiceSpecString
	11.1.20 TpServiceTypeProperty
	11.1.21 TpServiceTypePropertyList
	11.1.22 TpServiceTypePropertyMode
	11.1.23 TpServicePropertyTypeName
	11.1.24 TpServicePropertyName
	11.1.25 TpServicePropertyNameList
	11.1.26 TpServicePropertyValue
	11.1.27 TpServicePropertyValueList
	11.1.28 TpServiceProperty
	11.1.29 TpServicePropertyList
	11.1.30 TpServiceSupplierID
	11.1.31 TpServiceTypeDescription
	11.1.32 TpServiceTypeName
	11.1.33 TpServiceTypeNameList
	11.1.34 TpSubjectType

	11.2 Event Notification Data Definitions
	11.2.1 TpFwEventName
	11.2.2 TpFwEventCriteria
	11.2.3 TpFwEventInfo

	11.3 Trust and Security Management Data Definitions
	11.3.1 TpAccessType
	11.3.2 TpAuthType
	11.3.3 TpEncryptionCapability
	11.3.4 TpEncryptionCapabilityList
	11.3.5 TpEndAccessProperties
	11.3.6 TpAuthDomain
	11.3.7 TpInterfaceName
	11.3.8 TpInterfaceNameList
	11.3.9 TpServiceToken
	11.3.10 TpSignatureAndServiceMgr
	11.3.11 TpSigningAlgorithm

	11.4 Integrity Management Data Definitions
	11.4.1 TpActivityTestRes
	11.4.2 TpFaultStatsRecord
	11.4.3 TpFaultStats
	11.4.4 TpFaultStatisticsError
	11.4.5 TpFaultStatsSet
	11.4.6 TpActivityTestID
	11.4.7 TpInterfaceFault
	11.4.8 TpSvcUnavailReason
	11.4.9 TpFWUnavailReason
	11.4.10 TpLoadLevel
	11.4.11 TpLoadThreshold
	11.4.12 TpLoadInitVal
	11.4.13 TpLoadPolicy
	11.4.14 TpLoadStatistic
	11.4.15 TpLoadStatisticList
	11.4.16 TpLoadStatisticData
	11.4.17 TpLoadStatisticEntityID
	11.4.18 TpLoadStatisticEntityType
	11.4.19 TpLoadStatisticInfo
	11.4.20 TpLoadStatisticInfoType
	11.4.21 TpLoadStatisticError

	11.5 Service Subscription Data Definitions
	11.5.1 TpPropertyName
	11.5.2 TpPropertyValue
	11.5.3 TpProperty
	11.5.4 TpPropertyList
	11.5.5 TpEntOpProperties
	11.5.6 TpEntOp
	11.5.7 TpServiceContractID
	11.5.8 TpServiceContractIDList
	11.5.9 TpPersonName
	11.5.10 TpPostalAddress
	11.5.11 TpTelephoneNumber
	11.5.12 TpEmail
	11.5.13 TpHomePage
	11.5.14 TpPersonProperties
	11.5.15 TpPerson
	11.5.16 TpServiceStartDate
	11.5.17 TpServiceEndDate
	11.5.18 TpServiceRequestor
	11.5.19 TpBillingContact
	11.5.20 TpServiceSubscriptionProperties
	11.5.21 TpServiceContract
	11.5.22 TpServiceContractDescription
	11.5.23 TpClientAppProperties
	11.5.24 TpClientAppDescription
	11.5.25 TpSagID
	11.5.26 TpSagIDList
	11.5.27 TpSagDescription
	11.5.28 TpSag
	11.5.29 TpServiceProfileID
	11.5.30 TpServiceProfileIDList
	11.5.31 TpServiceProfile
	11.5.32 TpServiceProfileDescription

	12 Exception Classes
	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): Contents of 3GPP OSA R4 Framework
	History

