ETS| ES 201 873-11 V4.8.1 (2018-05)

<. —

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 11: Using JSON with TTCN-3

2 ETSI ES 201 873-11 V4.8.1 (2018-05)

Reference
RES/MTS-201873-11ed481

Keywords
JSON, language, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.orq/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2018.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI ES 201 873-11 V4.8.1 (2018-05)

Contents

Intellectual Property RIGNES.... ..ot nren 5
[0 L= V1Yo (o RS S 5
Modal VErDS tEMINOIOGYciveiieciecieeet ettt e st e e ae et e sreentesaeeaeesresreennesreenes 5
1 o0 0 6
2 S = (= (0= SRR 6
21 NOIMBLIVE FEFEIENCES ...ttt ettt b e bt b e heeh e e e s et e se e e b e s aeeheeae e e et sae et e saeens e e eneneennens 6
2.2 INfOrMELIVE FEFEIENCES. ... ettt ettt bbbt a et e e e b et eb e s et ene e e e nenbenne s 6
3 Definitions and abbreViations............oecce e i e s e e ne e ne e 7
31 DEfINITIONS. ...ttt et e st e et e et e s aeesaeesbeesbeeabesaeesaeeebeebeeaseeaseeaeastaebeentesnnesaeas 7
3.2 ADDIEVIBLIONS ...ttt ettt et e e et e st e e te e te e tesaeesaeesaeesaeebeeaseeaseeaeeeaeeebeebe e teenreennesaeas 7
4 (o [0 o 1o S 8
5 Conformance and COMPALTDIHTITYc..eerireeese e re e eneas 8
6 USING TTCN-3 8S JSON SCREMAL......ceiuiiieiiiitieie st eee et e st s e e ssesbe e e tesreesesreeneentesreas 9
6.1 Y o] o] (0= ol OSSO UE PP URTPT PR PO 9
6.2 Validation Of JISON VAIUESc.ooiiee ettt sttt e ae et et e et e eaaeeaeesta e be e beenteennesaeas 9
6.3 NGIME CONVEISION TUIES.....c.eeictieteecteete ettt ettt e et et e et e st e e st e e beestesasesaeesaeesbeenbeeasesasesseasbaebeensesnsesanas 9
6.4 MapPING Of JSON VBIUES.......ceeueiuiieiirtireeiisteteeri sttt bbbt b et bbb e b e 10
6.4.1 JSON NUMDBEIS ...ttt st st e s te e be e beeaseeabesbeesbeesbeebeensesaeesaeesaeesaeanseenes 10
6.4.2 NS @ N I 1 T 10
6.4.3 NS O N = 1Y TSP PPRIN 12
6.4.4 NS @ V@ o= ox £ 13
6.4.5 NS @ VI = - £ 15
7 Using JSON to exchange data between TTCN-3 and other systemsccccocveveeviveecececcee e 15
7.1 GENEIA TUIES ...ttt ettt e b e et e et e e atesbeesbe e beebesasesaeesaeesseenseenseensesteesteesbeesreensennnas 15
7.2 JSON representations Of TTCN-3 VAIUES........coouiiiiriiiiirieintereeesie e 16
721 (O 0P o= S] 16 OSSOSO PO 16
722 BINAIY SEFNGS ...ttt ettt b et b e bbb e bt b e st bt eb e se bt ebene bt se e e b e b e e enenne e 17
7.2.3 0100 L= OO 17
724 0 ST 17
7.25 BOOIAN......c ettt b e b bR R e R bRt b b he b e e e e re e 18
7.2.6 ENUMEIBLEA ...ttt bbb bt b ae bt e e b s bt b e s bt eb e e e e e e e e sre e e 18
7.2.7 VA= £ [Tox 11/ o= 18
7.2.8 RECON BN SEL......ceetete ettt b a ettt et b e s bt e b e bt e e b e se et e sbeeb e e e e e e nnesrenre e 19
7.2.9 Record of, Set Of @N0 @ITAYSeooeeieceeeeeee ettt e e e e e 20
7.2.10 UNION N0 BNYLYPE. ...ttt sttt ettt sttt b e bt b e bt b e st b e se e st b e se e st et e se et b e e ebesbe e enennenea 20
7.2.11 OBJECE IABNLITIEIS ...ttt b et b e bbb e bbbt e s 21
8 JSON representations of TTCN-3 values based 0n ASN.L LYPES........ccovverirerienenenieeeeseseseenes 22
8.1 GBNENEI TUIES ...ttt b bt h e h et e b e e e e bt e bt e bt e b e e ae e s s e e e es e b e saeebeeaeens e e e nbenbenreas 22
8.2 (0172t = 1 o S 22
8.3 2T Y T o S PRRSRRUR 22
8.4 BOOLEAN ...ttt sttt sttt sa s s s et e e s e e s e e s s et esesaese e s be b e e sae s e e e be b e e aese e ntnsenensenenenns 22
85 ENUMERATEDoctottiisttiie ettt sttt ettt s st te s s s s te s e e stese e bese e sene e ntesesensnsenenss 22
8.6 REAL ..ottt ettt ettt ettt et b et b e b b e b b e s b ke ae A e Re s b et et et eRe s bebe et ene et beaeerebenearers 23
8.7 INTEGER..... oottt ettt s e e sttt e s ae e et et e s aee e et eeeaaeeesseeeaaeeessseaaseeesseeesaeenseeeaneeenseeannneesnes 23
8.8 L0]2 I TSRS 23
8.9 INULL 1ottt sttt ettt sttt et ettt e st et e e b e b e e b ebe s s et esese b ebe s ebesese b ebe st ene s ebeneesebeneaneris 23
8.10 SEQUENCE @N0 SET ..ottt sttt sttt sttt te st e saebesae e etesaeseebesaeseetesaesseseseesesaessesesseneas 23
8.11 SEQUENCE OF @nd SET OF ...ttt ettt st e sae et et e bt beentesaeesae e teenneennas 23
8.12 CHOICE QN0 OPEN TYPES...c.viveueeetereresteesaetesessssesessesesessssessssesesessesessssesessssesessssesessssessssssesessssssensssesensnes 23
Annex A (nor mative): TTCN-3MOdUIE JSON ...t 24

ETSI

4 ETSI ES 201 873-11 V4.8.1 (2018-05)

Annex B (normative): ENcoding iNStrUCLIONS.......coceeiiiicesece e 26
= 30 R €= 1 1= - PP RS 26
B.2 TheJSON encode atriDULE............ooiiieere ettt ne e 26
B.3 ENCOAING INSIIUCHIONS.......cueiuiitiriiitiiteriestei ettt b e ns et n e e s 26
B.3.1 GENETEI TUIBS ...ttt e bbbt e e et e ee ekt e bt e b e e aeea e e s e e e e besaeeb e e neen b e nsenbenbeereas 26
B.3.2 NS @ NI 1Y/ o T= T T =L) (o= () o 27
B.3.3 NOrMalIZING JSON VBIUESooiuieieeiieicsies et e e e s ste e ste e e e sse e saeesse e seenteentesseesseeseeseeneeensesnees 27
B.3.4 NBIMIE B ...ttt h e b b e e b e e Rt e et e e e R eRe R e e Rt e r e R et R e e Re e Reenre e nreenne e 27
B.3.5 NUMDEr O FraCtioN QIGITSc.eiieieeiiie ettt 28
B.3.6 USE ENE MITNUS SION ...ttt b et b e bbbt b e e st eb e et benn e b e 29
B.3.7 ESCADE 85 e 29
B.3.8 L 31 = 1S3 01 PSR PR 30
B.3.9 [= 1 RSP 30
B.3.10 ASVAIUE. ...ttt b e b h b h e Rt £ e R e R R R R e e R e e R e R e Rt ehe b e et et e nrenrennennea 31
=3I N T B o = OO 31
S B D U L <Y o (o[SO TS OTP VPP PRUSTUSTPPRORN 31
B.3.13 EXTOr DENAVIOUN ...ttt sttt ettt e bbb e bt bt e a e e e et e see e b e ke saeeb e et et e nnenbenbenneas 32
Annex C (informative): Bibliograpny ..o 33
[TS (TP 34

ETSI

5 ETSI ES 201 873-11 V4.8.1 (2018-05)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI membersand non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Palicy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not congtitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 11 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto beinterpreted as described in clause 3.2 of the ETS| Drafting Rules (Verba forms for the expression of
provisions).

"must” and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 ETSI ES 201 873-11 V4.8.1 (2018-05)

1 Scope

The present document specifies the rules to define schemas for JSON data structuresin TTCN-3, to enable testing of
JSON-based systems, interfaces and protocols, and the conversion rules between TTCN-3 [1] and JSON [2] to enable
exchanging TTCN-3 datain JSON format between different systems.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

2] IETF® RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format".
NOTE: Available at http://www.rfc-editor.org/rfc/rfc7159.txt.

[3] I SO/IEC 10646:2017: "Information technology -- Universal Coded Character Set (UCS)".
NOTE: Available at https:.//www.iso.org/standard/69119.html.

[4] |EEE 754™: "|EEE Standard for Floating-Point Arithmetic".

[5] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] |ETF® draft-handrews-json-schema-validation-00: "JSON Schema Validation: A Vocabulary for
Structural Validation of JSON".

NOTE: Available at https://datatracker.ietf.org/doc/draft-handrews-j son-schema.

[i.2] World Wide Web Consortium W3C® Recommendation: "W3C XML Schema Definition
Language (XSD) 1.1 Part 1: Structures”.

NOTE: Available at http://www.w3.org/TR/xmlschemall-1.

ETSI

https://docbox.etsi.org/Reference/
http://www.rfc-editor.org/rfc/rfc7159.txt
https://www.iso.org/standard/69119.html
https://datatracker.ietf.org/doc/draft-handrews-json-schema
http://www.w3.org/TR/xmlschema11-1/

7 ETSI ES 201 873-11 V4.8.1 (2018-05)

[i.3] World Wide Web Consortium W3C® Recommendation: "W3C XML Schema Definition
Language (XSD) 1.1 Part 2: Datatypes".

NOTE: Available at http://www.w3.org/TR/xmlschemall-2.

[i.4] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.5] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

[i.6] ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".

[i.7] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Real Time Testing".

[i.8] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Advanced Parameterization”.

[1.9] ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Behaviour Types'.

[i.10] ETSI ES 202 786: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Support of interfaces with continuous signals’.

[i.11] ETSI ES 202 789: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions: Extended TRI".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One

10 ASN.1 Information Object

JSON JavaScript Object Notation

SUT System Under Test

TTCN-3 Testing and Test Control Notation version 3
ucCs Universal Coded Character Set

usl UCS Sequence |dentifier

UTF-8 Unicode Transformation Format-8

XML eXtensible Markup Language

XSDh XML Schema Definition

ETSI

http://www.w3.org/TR/xmlschema11-2/

8 ETSI ES 201 873-11 V4.8.1 (2018-05)

4 Introduction

An increasing number of distributed applications use the JISON to exchange data for various purposes like data bases
queries or updates or event tel ecommunications operations such as provisioning. The JSON specification [2] definesthe
syntax and encoding for JSON types and defined literals, but no semanticsis defined. JSON does not have a schema
specification, like the XML Schema Definition Language used for XML documents (see [i.2] and [i.3]).

NOTE: Though an IETF® draft proposal exists for JSON structural validation (see[i.1]), it has not reached the
RFC status.

The core language of TTCN-3 isdefined in ETSI ES 201 873-1 [1] and provides afull text-based syntax, static
semantics and operational semantics. Other parts of the ETSI ES 201 873 series are defining its use with other
specification languages like ASN.1 [5], IDL [i.4], or XSD [i.5] as shown in figure 1, while other documentsas ETSI

ES 202 781 [i.6], ETSI ES 202 782 [i.7], ETSI ES202 784 [i.8], ETSI ES 202 785 [i.9], ETSI ES 202 786 [i.10] and
ETSI ES 202 789 [i.11] specify language extensions and thus can define additional rules to the JSON/TTCN-3 mapping
defined in the present document.

JSON Types | o
& Values [i ¢ ’
Other
TTCN-3 presentation
Other Types o 5 formats as
& Values > Core definedin [€—»
2 T S| gaelinedin o pm T TTCN-3 U
Language other parts of ser
the standard
or user-
specific
Other Types _ formats Note: The shaded boxes are
& Values g N > not defined in this document

Figure 1: User's view of the core language and the various presentation formats

In the context of TTCN-3, JSON can be used for different purposes:

1) TTCN-3 can be used asa JSON Schema definition language that allows generating JSON values from
TTCN-3 and consuming and evaluating received JSON values, i.e. enables testing of JISON-based interfaces
and protocols.

2) Toexchange type and data information between the TTCN-3 test system and systems written in other
languages like Java, C, C++, Python, etc. In thisway TTCN-3 test systems can be used as a subsystem of a
more complex test system; for example, the TTCN-3 system receiving contents of messages to be sent to an
SUT, encode and send a message, receive and process the response and report the result to the other system.

Consequently, there is a need to specify mappings between JSON and TTCN-3 for the above purposes.

5 Conformance and compatibility

For an implementation claiming to support the use of TTCN-3 as a JSON schema language, all features specified in
clause 6 of the present document shall be implemented consistently with the requirements given in clause 6 and
Annex B of the present document and in ETSI ES 201 873-1 [1].

For an implementation claiming to support the exchange of TTCN-3-based data between systems, and not supporting
using ASN.1 with TTCN-3, all features specified in clause 7 of the present document, with the exception of the
mapping of the objid type in clause 7.2.11 shall be implemented consistently with the requirements given in clause 7
and Annex B of the present document and in ETSI ES 201 873-1 [1]. Implementations claiming the support of using
ASN.1 with TTCN-3, shall in addition support features in clause 7.2.11 and clause 8 of the present document.

The language mappings presented in the present document is compatible to:

. ETSI ES 201 873-1[1], version 4.9.1.

ETSI

9 ETSI ES 201 873-11 V4.8.1 (2018-05)

If later versions of those parts are available and should be used instead, the compatibility of the rules presented in the
present document shall be checked individually.

6 Using TTCN-3 as JSON Schema

6.1 Approach

JSON [2] defines alimited set of JISON types and literal values. The clauses below define the TTCN-3 types that can be
used to specify a Schema for any JSON interface specification. The TTCN-3 types defined in the clauses below will
allow to use the same set of values as JSON permits. Annex A provides a TTCN-3 module containing all TTCN-3
definitions specified in these clauses. The JSON module in Annex A shall either explicitly be present in TTCN-3 test
suites or TTCN-3 tools shall support these typesimplicitly. Thisisleft as atool implementation option.

JSON in many cases alows different encoding options for the same value. These may be controlled by the JSON
encoding instructions specified in Annex B. JSON encoding instructions may be added to TTCN-3 types and fields by
using TTCN-3 variant attributes (see ETSI ES 201 873-1 [1], clause 27.5).

6.2 Validation of JSON Values

For further study.

6.3 Name conversion rules

The current version of the JSON specification [2] uses names to identify JSON object members only. The present
document defines JSON to TTCN-3 name conversion rules that shall be used when using TTCN-3 to specify a schema for
aJSON interface (see for example clause 6.4.4). When the JSON and the TTCN-3 names differ after applying therulesin
this clause, the"nameas..." encoding instruction shall be used to identify the exact JSON name. To ensure compatibility
with future versions and automatic conversions, the rules specified in this clause should always be applied.

JSON names can be identical to TTCN-3 reserved words, can contain characters not allowed in TTCN-3 identifiers or
alowed to be identical, when the corresponding TTCN-3 names are required to be unique, in which case the JSON
names shall be processed by the rules below to obtain the corresponding TTCN-3 identifiers.

The following character substitutions shall be applied, in order that each character string being mapped to aTTCN-3
name, where each substitution (except the first) shall be applied to the result of the previous transformation:

a) any character except "A" to"Z" (Latin Capital Letter A to Latin Capital Letter Z), "a' to "z" (Latin Small
Letter A to Latin Small Letter Z), "0" to "9" (Digit Zero to Digit Nine), and"_" (Low Line) shall be removed,;

b) asequence of two or more”_" (Low Line) characters shall be replaced with asingle” " (Low Line);
c) "_"(Low Line) charactersoccurring at the beginning or at the end of the name shall be removed;

d) if acharacter string starts with adigit (Digit Zero to Digit Nine), it shall be prefixed with an "x" (Latin Small
Letter X) character;

e) if acharacter string is empty, it shall be replaced by "x" (Latin Small Letter X);

f) if the TTCN-3 name being generated isidentical to a previously generated TTCN-3 identifier in the same
scope, then a postfix shall be appended to the character string generated by the above rules. If afield name of a
TTCN-3 structured type is clashing with a type's name used in the same structured type, the field's name shall
be postfixed. The postfix shall consist of a"_" (Low Line) followed by an integer. Thisinteger shall be the
least positive integer such that the new identifier is different from the identifier of any previously generated
identifier in the same scope (i.e. the first postfix applied by this mechanismis"_1"). TTCN-3 namesthat are
one of the TTCN-3 keywords (see clause A.1.5 of ETSI ES 201 873-1 [1]) or names of predefined functions
(see clause 16.1.2 of ETSI ES 201 873-1 [1]) after applying the postfix to clashing names, shall be suffixed by
asingle" " (Low Line) character.

ETSI

10 ETSI ES 201 873-11 V4.8.1 (2018-05)

6.4 Mapping of JSON Values

6.4.1 JSON Numbers

JSON numbers are represented as base 10 decimal digits containing a mandatory integer component that can be
prefixed with an optional minus sign, and can be followed by a fraction part, an exponent part or both. Leading zeros
are not allowed. JSON does not distinguish numbers based on their value sets like integers and reals, like other
languages do. No special values (as—infinity, infinity or NaN) are allowed.

In the general case, JSON numbers shall be mapped by using the following TTCN-3 type:
type float Nunmber (!-infinity .. linfinity) with {
variant "JSON: nunber"
}

When the JSON interface specification requires a number to conform to the ANSI/IEEE 754 [4] floating-point number
specification, the |EEE 754 floats useful types of clause E.2.1.4 of ETSI ES 201 873-1 [1] can be used in the context of
JSON encoding, in which case, by default, the given useful type will constrain the value set and the encoding of the
JSON value according to this clause. The JSON encoding instructionsin this case can be applied to fields of |EEE 754
useful types.

By default, i.e. without any encoding instruction applied, the form of the JSON representation of JSON. Nunber isa
tool implementation option (i.e. the number of fraction digits, using the exponent part, etc.)

To make defining JSON Schemasin TTCN-3 easier, the present document, in addition to the generic mapping of JSON
numbers, also specifies a TTCN-3 type that may be used where the interface specification alows only numbers without
the fraction and the exponent parts:

type integer Integer (-infinity .. infinity) with {
variant "JSON: i nteger"
}

Attempts to decode a JSON number value with either afraction or an exponent part or both into thisJSON. | nt eger
type shall cause a decoding failure.

In addition to the generic encoding instructions like "normalize" and "name as ...", the following specific instructions
shall be applicable to types and fields of JSON. Nunber and the IEEE 754 useful types:

e fractionDigits see clause B.3.5
° useMinus see clause B.3.6

NOTE: The beginning character of the exponent part can be both "e€" and "E". Thisis not controlled by any of the
encoding instructions but left as atool implementation option.

and to types and fields of JSON. | nt eger types:

. useMinus see clause B.3.6

6.4.2 JSON Strings

A JSON string is a sequence of zero or more Unicode characters, enclosed in a pair of quotation mark characters (""",
char (U22)). Any characters may be escaped by the escape sequence: "\u<HHHH>", where <HHHH> represents four
hexadecimal digits, but the icharacters: quotation mark (""", char (U22)) , reverse solidus ("\", char (U5C)) and all
CO0 control characters (char (U0) through char (ULF)) shall be escaped.

Alternatively, the short, two-character escape sequences defined in table 1 can be used to escape some of the characters.

ETSI

11

ETSI ES 201 873-11 V4.8.1 (2018-05)

Table 1: Short character escape sequences

Character's name | Character code Short escape
seguence
quotation mark char (U22) \"
reverse solidus char (Us0) \
solidus char (U2F) \/
backspace char (U8) \b
form feed char (UC) \f
line feed char (UA) \n
carriage return char (UD) \r
horizontal tab char (U9) \t

By default, it isatool implementation option which form of escaping is used, which may be overridden by the "escape
as..." encoding instruction.

NOTE 1: Note that the JSON module in Annex A defines useful TTCN-3 constants for the characters listed above.

The following TTCN-3 type shall be used to map JSON stringsto TTCN-3:

type universal charstring String with {
variant "JSON: string"
}

NOTE 2: Though Unicode and I SO/IEC 10646 [3] do not necessarily contain the same set of characters at all points
in time, JSON strings are expressed using the TTCN-3 universal charstring type.

In addition to the generic encoding instructions like "normalize" and "name as ...", the following specific encoding
instructions are applicable to JSON. St ri ng types:

. escapeas ... see clause B.3.7

EXAMPLE: String encoding examples

If:

const JSON. String c_stringl := <actual value> with {variant "escape as short"};

then
<actual val ue> JSON char act er UTF-8 serialization of the Not e
sequence JSON val ue
"abcd" "abcd" 226162636422
"ab\ cd" "ab\\ cd" 2261625C5C636422
"ab/ cd" "ab\/d" 2261625C2F636422
"ab" & char(U7) & "ab\ u0007cd" 2261625C75303030
"cd" 37636422
"ab" & char(U7) & "ab\ u0007\t cd" 2261625C7530303037
cu_ht & "cd" 5C74636422
If:
const JSON. String c_stringl := <actual value> with {variant "escape as usi"};
then
<actual val ue> JSON char act er UTF-8 serialization of the Not e
sequence JSON val ue
"abcd" "abcd" 226162636422
"ab\ cd" "ab\ u005Ccd" 2261625C75303035
43636422
"ab/cd" "ab/ cd" 2261622F636422 JSON doesn't require to
escape the solidus
character
"ab" & char(U7) & "ab\ u0007cd" 2261625C75303030
"cd" 37636422
- "ab" & char(U7) & "ab\u0007\u0009c 2261625C7530303037
i cs_ht & "cd" d" 5C7530303039636422
If:

const JSON. String c_stringl := <actual

val ue> with {variant

ETSI

"escape as transparent"};

12 ETSI ES 201 873-11 V4.8.1 (2018-05)

then
<actual val ue> JSON charact er UTF-8 serialization of the Not e
sequence JSON val ue
"abcd" "abcd" 226162636422
"ab\ cd" "ab\ cd" 2261625C636422 Note that the resulting
sequence is an invalid
JSON encodi ng
"ab/ cd" "ab/cd" 2261622F636422
:"ab" & char(U7) &: "ab\u0007\tcd" 2261625C7530303037 Note that the BELL and HT
; cs_ht & "cd" : 5C74636422 :Q0 control characters are
.escaped by the encoder ;
6.4.3 JSON Arrays

JSON arrays can contain a sequence of zero or more JSON values, i.e. the array members may be of different JSON

"types’.

The following TTCN-3 type shall be used to map JSON arraysto TTCN-3:

type record of JSON Values Array with {
variant "JSON array"
b

Where:

type union Val ues {
JSON. String str,
JSON. Nunber num
JSON. I nt eger int,
JSON. Obj ect obj ect,
JSON. Array array,
JSON. StrArray strArray,
JSON. NumArray numArray,
JSON. IntArray intArray,
JSON. Bool Array bool Array,
JSON. Obj ect Array obj Array,

JSON. Bool bool,
JSON. Nul I nul | _

} with {
vari ant "asVal ue"

}

To make specifying JSON Schemas easier for values, when according to the interface specification a specific array can
contain a sequence of values of the same JSON "type", aso the TTCN-3 types bel ow are specified:

NOTE:

Use the below subsidiary types with due precaution. The syntax of TTCN-3 values based on the below

helper type differs from the syntax of aJSON. Ar r ay value. Therefore, changes in an array description
in a JSON interface specification can require changing the TTCN-3 code as well.

type record of JSON. String StrArray with {

variant "JSON array"

}

type record of JSON. Number NumArray with {
variant "JSON array"

}

type record of JSON. Integer IntArray with {
variant "JSON array"
}

type record of JSON. Bool ean Bool Array with {

variant "JSON array"

}

type record of JSON (bject CbjArray with {

variant "JSON array"

}

ETSI

13 ETSI ES 201 873-11 V4.8.1 (2018-05)

Where JSON.Object is:
type record bject {
record length (1..infinity) of JSON CbjectMenber nenberlList optional
} with {
vari ant "JSON object"
}
And:
type record Object Menber {
JSON. String nanme, // shall contain an object nmenber's nane
JSON. Types value_ // shall contain an object nenber's val ue

} with {
variant "JSON: obj ect Menber"
}

Thereis no type-specific encoding instruction defined for JSON. Array, JSON. St r Ar ray, JSON. NunmAr r ay,
JSON. | nt Array, JSON. Bool Array, JSON. Obj Ar r ay, in addition to the generic ones like "normalize" and
"name as ...". In addition to the generic encoding instructions, the JSON. Types type uses the following instruction:

. asVaue seeclauseB.3.10.
EXAMPLE: TTCN-3 Schemafor a JSON array

Provided a JSON interface specification, allows alist of arbitrary JSON values e.g. as the value part of an object
member. I1ts TTCN-3 schemata will be:

type JSON. Array MyVal ue;
And e.g. the TTCN-3 value:

const MyVal ue c_nyVal ue : = {

{ str := "abcd" },

{ num:= 1.0},

{ int := 42},

{ intArray :={ 1, 2, 3, 4, 5 6},
{ null_:=null_1}

b
will be encoded in JSON e.g. as (character sequence):
["abcd", le0, 42, [1, 2, 3, 4, 5 61, null]

Note that as no additional instruction is specified for the "num" element, its encoding is atool option.

6.4.4 JSON Objects

JSON object values consist of unordered sequences of zero or more object members, where each object member is
constructed of a name-value pair. The JSON specification IETF® RFC 7159 [2] does not require uniqueness of object
member names within a JSON object.

JSON object specifications should be translated to TTCN-3r ecor d-s. The name of the record shall be the product of
applying clause 6.3 to the name of the object being trandated, if thisis specified, or be an arbitrary valid TTCN-3
identifier otherwise. The name of the type shall not be "Cbj ect ", if thisis the name of the JISON object being
tranglated, the postfixing rules specified in item f) of clause 6.3 shall be applied to it.

Each member of the object being converted shall generate a record field, where the name of the field shall be the
product of applying clause 6.3 to the name of the object member, but it shall not be "or der ": if thiswould be the name
of the TTCN-3 field, the postfixing rules specified in item f) of clause 6.3 shall be applied to it, asif it was preceded by
afield named or der . The type of the field shall be atype defined in clause 6 of the present document, corresponding
to the JSON type (or literal values allowed) of the object member. If the object member can carry values of different
JSON types (or literals), the type of the field shall be auni on of the TTCN-3 types required to represent all possible
values of the object member being translated, where the union field names shall be the names of the field's type with
lower cased first character.

ETSI

14 ETSI ES 201 873-11 V4.8.1 (2018-05)

Following thistranslation an opt i onal TTCN-3record of JSON. Stri ng field named or der may be inserted
asthefirst field of the record, and an opt i onal field named nenber Li st of thetyper ecord | ength
(1..infinity) of JSON. Obj ect Menber shall beinserted asthe last field of the record.

Possible name clashes caused by inserting the menber Li st field shall be resolved according to item f) of clause 6.3
with the exception that the additionally inserted field menber Li st shall be handled asif it was the first field of the
record (i.e. if an object member with the name "memberList” exists, the object member's name shall be postfixed).
Finally the "JSON:object" and if the or der field is present the "useOrder" encoding instructions shall be attached to
the generated record type. Any other encoding instructions may be attached to the record fields, as necessary for a
correct trandation.

Thenenber Li st field allows inserting any extra object membersin instance definitions, and converters shall encode
each Obj ect Menber as member of the JSON object being produced. At JISON to TTCN-3 conversion JSON object
members, which cannot be decoded into any other field being produced from the member's name, shall be decoded as
element of the nenber Li st field.

Use of theor der field is specified in clause B.3.12.

NOTE: Notethat attaching the optional "implicit omit" attribute to TTCN-3 values and templates implementing
object instances will allow skipping unused or der and nenber Li st fieldsin the instance definitions.

EXAMPLE: TTCN-3 Schemafor a JSON object

Suppose that the specification defines a JSON object that shall carry the location information "Latitude”,
"Longitude”, which are floating point numbers and may carry the "Precision” and "Address" information, where
precision isto be provided as a number and the address is another JSON object containing the city, street and
house number information, where city and street are JSON strings, house number is an integer value.

The schema of this specification can be described in TTCN-3 e.g. as.

modul e MyQbj ect Schema {
import fromJSON al | ;

type record Coordi nates {

record of JSON. String order optional,

JSON. Nunber Latitude,

JSON. Nunmber Longi t ude,

JSON. Nunmber Preci si on optional,

Address Address_1 optional,

record length (1..infinity) of JSON. ObjectMenber nenberlist optional
} with {

variant "JSON: object";

variant "useOrder"

vari ant (Address_1) "nane as 'Address'";

}

type record Address {

record of JSON. String order optional,

JSON. String city,

JSON. String street,

JSON. | nt eger house_no_,

record length (1..infinity) of JSON CbjectMenber nenberlList optional
} with {

variant "JSON: object";

variant "useOrder";

variant (house_no_) "nanme as 'house no.' "

} with { encode "JSON' }

And the TTCN-3 templates:

tenpl ate Coordinates t_coordinates : = {
Latitude := 51.523704,
Longi tude := -0. 158553,

Address_1 :=t_address
} with { optional "inplicit omt" }

ETSI

15 ETSI ES 201 873-11 V4.8.1 (2018-05)

tenpl ate Address t_address := {

order := {"house_no_", "subno","street","city"},
city := "London",

street := "Baker",

house_no_ := 221,

menber Li st := {{"subno", {str:="B"}}}
}

will be encoded in JSON as:

{"Latitude":51. 523704, "Longi tude": -0. 158553, " Addr ess":
{"house no.":221,"subno":"B","street":"Baker","city":"London"}}

Thereis no type-specific encoding instruction defined for JSON. Qbj ect , in addition to the generic ones like
"normalize" and "nameas ...".

6.4.5 JSON Literals

JSON specifiesthree literal values: t r ue, fal se and nul | . These are mapped to the TTCN-3 types:

//When only the true and false literals are all owed
type bool ean Bool with { variant "JSON. literal" }

//When only the null literal is allowed
type enunerated Null { null_ } with { variant "JSON: literal" }

NOTE: Inthecaseif aJSON value could contain al three defined JSON literals, the user can define a union type
of the above types.

Thereis no type-specific encoding instruction defined for the above types mapping JSON literals, in addition to the
generic ones like "normalize" and "nameas ...".

EXAMPLE:
The TTCN-3 value:

const JSON. Bool c_true := true;
will be transformed to JSON e.g. as:

true
(itsUTF-8 seridization is 74727565).

7 Using JSON to exchange data between TTCN-3 and
other systems

7.1 General rules

Clause 7 of the present document specifies converting abstract TTCN-3 values into their JSON representation (see
IETF® RFC 7159 [2]) and converting JSON data into values of abstract TTCN-3 types. Clause 7 of the present
document covers the conversion rules for the different TTCN-3 data types, while the encoding instructions, influencing
the conversion are detailed in Annex B.

By default all instances of top-level TTCN-3 types are represented by a"wrapper" JSON object with a single object
member, where the name of the object member shall be;

e thename of abuilt-in TTCN-3 type, except for anyt ype-s;
. the qualified name of the built-in TTCN-3 type anyt ype; or

. the qualified name of a user-defined TTCN-3 type (in case of atype alias, the name of the alias type shall be
used);

ETSI

16 ETSI ES 201 873-11 V4.8.1 (2018-05)

and the value of the object member isthe JSON representation of the value of the given instance. The name of the
top-level TTCN-3 type shall betransformedtoaJSON. St ri ng.

Inthe TTCN-3 to JSON direction, generating the type-name wrapper object for the top-level type can be disabled by
attaching the "noType" encoding instruction (see clause B.3.11). In the JSON to TTCN-3 direction, the presence of the
TTCN-3 type's name in the JSON "wrapper object” makes the conversion unambiguous, but tools shall transform JSON
values without the type-name wrapper object to TTCN-3 values, if the type of the TTCN-3 instance can be determined
(e.g. known from an external function declaration or from a port type definition).

Asthe JSON value's syntax is unambiguous for float and boolean values only, tools should not rely on the JSON value's
syntax only when determining the TTCN-3 type.

Conversion to and from JSON is allowed for types with the encode attributes specified in clause B.2.
EXAMPLE 1. Default conversion using the type wrapper
The TTCN-3 constant MyChar:

nodul e Mynodul e {
type charstring M/Char with { encode "JSON' };
const MyChar c_char := "abc";
}
Will be represented in JSON as:
{ "Mynodul e. MyChar" : "abc" }
EXAMPLE 2: Conversion without the type wrapper
type charstring MyChar with { encode "JSON'; variant "noType" };
const MyChar c_char := "abc";

Will be represented in JSON as:

"abc"

7.2 JSON representations of TTCN-3 values

7.2.1 Character strings
TTCN-3charstring,uni versal charstring valuesshal beencoded asJSON. St ri ngs (seeclause 6.4.2).

Charstrings shall appear exactly like in TTCN-3, with the exception that in the JSON representation the quotation mark
(char (U22), reverse solidus (char (USC) and all CO control characters (char (U0) through char (ULF) shall be
escaped. Both forms of escaping, i.e. the USI-like \uHHHH and the short format can be used, unless otherwise regulated
by the "escaped as..." encoding instruction (see clause B.3.7).

Universal charstrings shall be represented in JSON strings with UTF-8 encoding. JSON strings can contain the escaped
character \ u followed by 4 hex digit characters, the decoder shall convert thisinto the character represented by the hex
digits.

EXAMPLE:
The TTCN-3 value:

const universal charstring c_uchar := char(UW9) & "ny string";

Will be represented in JSON as:

{ "universal charstring" : "\u0009ny string" }

ETSI

17 ETSI ES 201 873-11 V4.8.1 (2018-05)

71.2.2 Binary Strings

TTCN-3 bitstring, hexst ri ng and oct et st ri ng values shall be encoded in JSON as JSON.St r i ng-s(see
clause 6.4.2) containing the bits or hex digits as capital characters. At JSON to TTCN-3 conversion al characters
alowed for binary TTCN-3 string types as specified in clause 6.1.1 of ETSI ES 201 873-1 [1] shall be accepted and
converted to TTCN-3, the characters Space (char(U20)), Horizontal tab (char(U9)), Line feed (char(UA)) and Carriage
return (char(UD)) shall be ignored, while any other character shall cause an error, unless specified differently by the
error behaviour encoding instruction (see clause B.3.13).

EXAMPLE:
The TTCN-3 value:

' 00ABC H;
' 00abc' H;

const hexstring c_hex1 :
const hexstring c_hex2 :

Both values will be transformed to the JSON value:

{ "hexstring" : "O00ABC' }
The JSON value:
{ "hexstring" : "00 abc" }

will be transformed to the TTCN-3 val ue:

' 00ABC H

7.2.3 Integer

All TTCN-3i nt eger valuesshall be encoded as the JISON numbers (see clause 6.4.1), without the optional fraction
and exponent parts.

At decoding the JSON -0 value, by default shall be converted to the TTCN-3 value 0.

NOTE: Detection of the minus sign in the JSON -0 value during decoding is possible only if the decoded field is
of afloat type and the "useMinus" encoding instruction is attached to it (see clause B.3.6).

EXAMPLE:
The TTCN-3 value:
const integer c_int := 42;
Will be represented by the JSON value:

{ "integer" : 42}

7.2.4 Float
Numeric TTCN-3f | oat values shall be encoded as JSON numbers (see clause 6.4.1).

At encoding the minus sign of the TTCN-3 —0.0 value shall be preserved. At decoding the JSON negative zero values,
by default shall be converted to the TTCN-3 value 0.0, unless the "useMinus' encoding instruction is applied to the
TTCN-3 type (see clause B.3.6).

The special float values"i nfinity","-infinity"and"not_a_nunber" are encoded as JSON strings.
EXAMPLE:
The TTCN-3 value:

const float c_float := -42.5;

Will be represented by the JSON value:

{ "float" : -4.25E1 }

ETSI

18 ETSI ES 201 873-11 V4.8.1 (2018-05)

7.2.5 Boolean

TTCN-3 bool ean vauesshall be encoded in JSON astheliteralst r ue and f al se.
EXAMPLE:
The TTCN-3 value:

const bool ean c_bool := true;

Will be represented by the JSON value:

{ "bool ean" : true }

7.2.6 Enumerated
TTCN-3 enuner at ed values shall be encoded asJSON. St ri ng-s.

For enumerated values with asingle implicit or explicit associated integer val ue the string shall contain the name of the
enumerated value.

For enumerated values with an associated integer value list or range, the string shall contain the name of the enumerated
value and a single integer value, following the enumeration namein apair of parenthesis, without any space.

NOTE: Enumerated values not defined by the relevant TTCN-3 type can be received from an external system, if
the error handling behaviour for the top-level typeis set to EB_ WARNING or EB_IGNORE (see
clause B.3.13), however, in this case the whole received JSON value is handled in TTCN-3 asa universal

charstring value.
EXAMPLE:
The TTCN-3 values:

type enunerated MyEnuniType {
bl ue(0),
yel low(1),
green(3),
ot her (2, 4..255)
} with { encode "JSON' };

bl ue;
ot her(4);

const MyEnuniType c_enuntl :
const MyEnuniType c_enun® :

Wil be represented by the JSON values respectively:
{ "MyEnunilype": "blue" }
{ "MyEnuniType": "other(4)" }

7.2.7 Verdicttype

TTCN-3verdi cttype vauesshal beencodedin JSON asJSON. St ri ng-s. The string shall contain one of the
values: "pass’, "fail", "inconc" or "none". Any other value shall cause an error unless an error behaviour encoding
instruction specifies otherwise (see clause B.3.13).

NOTE: Other verdict values can be received from an externa system, if the error handling behaviour for the top-
level typeisset to EB_WARNING or EB_IGNORE (see clause B.3.13) and no type wrapper is present,
the whole received JSON value is handled in TTCN-3 asa universal charstring value.

ETSI

19 ETSI ES 201 873-11 V4.8.1 (2018-05)

EXAMPLE:

The TTCN-3 value:

const verdicttype c_verdict := pass;

Wil be represented e.g. by the JSON value:

{"verdicttype": "pass"}

7.2.8

Record and set

Thebody of TTCN-3r ecor d and set vaues shall be encoded to JSON objects.

Each object member shall represent afield, where the object member's name shall be the name of the field and its value
shall be the value of thefield.

Omitted optional TTCN-3 fields can be handled in different waysin JSON:

By default (i.e. when none of the below encoding instruction is applied to the field in its corresponding type
definition), it shall be omitted at TTCN-3 to JSON conversion, i.e. no object member is generated for the field.
At JSON to TTCN-3 conversion, oni t shall be assigned to optional fields that do not appear in the JSON
value.

If the "omit as null" encoding instruction (see clause B.3.8) is applied to the corresponding field of itstype
definition, the omitted TTCN-3 field is represented in JSON as an object member, where the object member's
name shall be the name of the field and its value shall bethe nul | JSON literal value.

At JSON to TTCN-3 conversion, JSON object members with the literal value nul | shall be converted to

oni t for TTCN-3 data-type fields, and to the TTCN-3 value nul | for default and component type fields.

If the "default” encoding instruction (see clause B.3.9) is applied to the corresponding field of itstype, no
JSON object member shall be generated for the TTCN-3 field, while at JSON to TTCN-3 conversion, if no
object member corresponds to the field, the default value defined in the instruction shall be assigned to the
given TTCN-3field.

At TTCN-3 to JSON conversion the order of the object members shall be the same as the order of the fieldsin the
TTCN-3value, for bothr ecor dsand set s.

At JSON to TTCN-3 conversionJSON object members shall be accepted in any order, andin case of r ecor d types
the TTCN-3 fields shall be ordered according to their textual order in the type definition, whilein case of set typesno
re-ordering shall apply, i.e. thefield order in TTCN-3 shall correspond to the object member's order in the JSON value.

EXAMPLE 1: Converting arecord value

The TTCN-3 value ¢_myRecord:

nodul e MyRecExanpl el {

type record MyRecord {

}

integer int,
M/set nyset

type set Myset {

}

float value_,
bool ean case_

type record of integer MyRecordOf I nt;

const MyRecord c_nyRecord := { 5, { 5.5, true } }

} with { encode "JSON' }

Will berepresented in JON e.g. as:

{ "M/RecExanpl el. MyRecord" : { "int":5, "nyset" : { "value_":5.5, "case_":true }}}

ETSI

20 ETSI ES 201 873-11 V4.8.1 (2018-05)

EXAMPLE 2: Effect of the noType encoding instruction

When the TTCN-3 definitions in example 1 above are used, but adding the "noType" instruction:
(adding the instruction to MyRecord directly, would have the same effect)

nodul e MyRecExanpl el {
].’.\./vith { encode "JSON'; variant "noType" }
In which case the above value c_myRecord is represented in JSON without the wrapper type-name object:

{ "int":5, "nyset" : { "value_":5.5, "case_":true }}
EXAMPLE 3: Effect of the "omit as null" encoding instruction
nodul e MyRecExanpl e2 {
type record PhoneNunber {
i nteger countryPrefix optional,
i nteger networkPrefix,
i nt eger | ocal Nunber
} with { vari ant (countryPrefix) "omt as null" }

const PhoneNurmber c¢_pn :={ omt, 20, 1234567 }
} with { encode "JSON'}

Will be represented in JSON e.g. as.

{ "M/RecExanpl e2. PhoneNunber" :
{"countryPrefix":null, "networkPrefix":20, "local Nunber":1234567}}

/1 For conparison, the JSON representation without the attribute would be:
/1 { "MWRecExanpl e2. PhoneNunber" : {"networkPrefix":20, "l|ocal Nunber":1234567 }}

7.2.9 Record of, set of and arrays

TTCN-3record of ,set of andarray valuesshal be encoded in JSON as arrays. The elements of the array shall
be the JSON representations of the corresponding TTCN-3 elements.

JSON array elements shall appear in the same order asin the TTCN-3 value.
EXAMPLE:
The TTCN-3 value c_myRecOf:
modul e MyRecOF Exanpl e {
type record of integer MyRecordOf I nt;
const MyRecordOf Int c_nyRecOF := {1, 2,3}
} with { encode "JSON' }
Will berepresented in JON e.g. as:

{ "M/RecOX Exanpl e. MyRecordOf Int" : [1,2,3] }

7.2.10 Union and anytype

By default TTCN-3 uni onsand anyt ype fields shall be encoded as JSON objects. The object shall contain one
object member, the name of which shall be the name of the selected TTCN-3 alternative (name of the field for unions
and name of the type for anytypes) and its value shall be the value of the selected TTCN-3 field.

EXAMPLE 1: Union representation
The TTCN-3 value ¢_myUnion:

modul e MyUni onExanpl e {
type union Ul { // proposed order of fields
integer i,
float f,
octetstring os,

ETSI

21 ETSI ES 201 873-11 V4.8.1 (2018-05)

charstring cs
} with { encode "JSON' }

const UL c_nyUnion :={ f :=42.5}
} with { encode "JSON' }

Will be represented in JSON e.g. as.
{ "MyUni onExanpl e. U1" : { "f" : 4.25E1 }}

To TTCN-3 uni onsthe "asVaue" encoding instruction (see clause B.3.10) can be applied, in which case the JSON
representation shall only contain the value of the chosen alternative, i.e. the TTCN-3 value is represented as the
corresponding JSON value, without the name of the selected field. At JSON to TTCN-3 conversion the first alternative
of the TTCN-3 uni on type shall be selected, allowed by the JSON value's syntax.

NOTE 1. The"asVaue" isnot alowed for anyt ype-s, asitisan "implicit union" without defined order of
aternatives.

NOTE 2: The"asValue" instruction should be used with due caution. It is a good ideato declare more restrictive
fields before less restrictive ones; e.g.: hexstring is more restrictive than universal charstring, because
hexstring can only decode hex digits, whereas universal charstring can decode any character.

EXAMPLE 2: Union with the "asVaue" encoding instruction

Considering the TTCN-3 module:

modul e Mynodul e
/'l proposed order of fields
type union Ul {
integer i,
float f,
octetstring os,
charstring cs

}

/1 unheal thy order of fields
type union W2 {
float f,
integer i,
charstring cs,
octetstring os

}

type record of Ul RoUL,
type record of U2 RoU2;

const ROUL c_roul :={ {i :=10}, { f :=6.4}, { os :="1ED50O}, { cs := "hello" } };
const RoU2 c_rou2 :={ { i (=10}, { f :=6.4}, { os :="1ED50O}, { ¢cs := "hello" } };
} with { encode "JSON'; variant "noType"; variant "asVal ue" }

Both ¢_roul and c_rou2 will be represented in JSON e.g. as.
[10, 6. 4,” 1ED5”, "hel | 0"]

The above JSON array will be converted into the same value as ¢_roul, when processed as type RoU1, however it
will be converted into a value, different from c_rou2, when processed as RoU2: the float field will absorb both
numbers and the charstring field will absorb both strings and the resulted TTCN-3 value will be:

{{f:=10.0}, { f :=6.4}, { cs :="1EDS" }, { cs := "hello" } };

7.2.11 Object Identifiers
This clause shall be supported only if using ASN.1 with TTCN-3, i.e. ETSI ES 201 873-7 [5] is supported.

TTCN-3 objid values shall be encoded in JSON as JSON.St r i ng-s (see clause 6.4.2) containing the number forms of
the object identifier components, separated by dot (char(U2E)) characters without whitespace character between the
digits and the dots.

ETSI

22 ETSI ES 201 873-11 V4.8.1 (2018-05)

EXAMPLE:
The TTCN-3 values:

const objid c_objid :=objid{ joint_iso_itu_t renote_operations(4) informationObjects(5)
versionl(0) };

Will be transformed to the JSON value:

{ "objid" : "2.4.5.0" }

8 JSON representations of TTCN-3 values based on
ASN.1 types

8.1 General rules

Clause 8 shall only be supported by implementations supporting both ETSI ES 201 873-7 [5] and the present document.

Types and values imported from ASN.1 modules automatically shall have JSON encoding allowed and cannot have
JSON encoding instructions (variant attributes) attached.

TTCN-3 values based on ASN.1 types can have encoding instructions attached, therefore the effect of the "noType"
instruction shall be the same asin case of TTCN-3 values based on TTCN-3 types. In the type identification, the name
of the equivalent TTCN-3 type shall be used (i.e. dashesin ASN.1 names are replaced by underscores). See clauses 7.1
and B.3.11 for further details. During the conversion of TTCN-3 valuesto and from JSON, always the TTCN-3
equivalent type of the values (ASN.1) type shall be considered, as specified in clause 8 "ASN.1 and TTCN-3 type
equivalents’ and clause 9 "ASN.1 datatypes and values' of ETSI ES 201 873-7 [5].

8.2 Character strings

Values based on ASN.1 character string types shall be encoded to and from JSON the same way as values based on the
TTCN-3 universal charstring type. See detailsin clause 7.2.1 of the present document.

Character string values defined in ASN.1 modules shall be converted by using the long (USI-like) escaping. When
converting from JSON, both the long (USI-like) and the short escaping shall be accepted.

8.3 Binary strings

Values based on ASN.1 binary string types shall be encoded to and from JSON the same way as values based on the
TTCN-3 bitstring, hexstring or octetstring types, respectively. See detailsin clause 7.2.2 of the present document.

NOTE: Please note TTCN-3 constants generated for ASN.1 named bits (see clause 9.1 of ETSI
ES 201 873-9 [i.5]), which are processed the same way as TTCN-3 constants declared explicitly.

8.4 BOOLEAN

Values based on ASN.1 BOOLEAN types shall be encoded to and from JSON the same way as values based on the
TTCN-3 boolean type. See detailsin clause 7.2.5 of the present document.

8.5 ENUMERATED

Values based on ASN.1 ENUMERATED types shall be encoded to and from JSON the same way as values based on
the TTCN-3 enumerated type. See detailsin clause 7.2.6 of the present document.

NOTE: ASN.1 does not allow assigning alist or range of associated integersto ENUMERATED type members,
therefore always the case with a single associated integer value will apply.

ETSI

23 ETSI ES 201 873-11 V4.8.1 (2018-05)

8.6 REAL

Values based on ASN.1 REAL types shall be encoded to and from JSON the same way as values based on the TTCN-3
float type. See detailsin clause 7.2.4 of the present document.

8.7 INTEGER

Values based on ASN.1 INTEGER types shall be encoded to and from JSON the same way as values based on the
TTCN-3 integer type. See detailsin clause 7.2.3 of the present document.

NOTE: TTCN-3 constants generated for ASN.1 named numbers (see clause 9.1 of ETSI ES 201 873-9 [i.5]),
which are processed the same way as TTCN-3 constants declared explicitly.

8.8 OBJID

Object identifier values based on ASN.1 types shall be encoded to and from JSON the same way as values based on the
TTCN-3 objid type. See detailsin clause 7.2.11 of the present document.

8.9 NULL

Values based on the ASN.1 NULL type shall be encoded by the JSON literal nul | . The "omit as null" encoding
instruction (see clause B.3.8) shall not be used for TTCN-3 structured value fields of ASN.1 NULL type.

NOTE: The value space of the ASN.1 NULL type consists of the single value NULL.

8.10 SEQUENCE and SET

Values based on ASN.1 SEQUENCE and SET types shall be encoded to and from JSON the same way as val ues based
on the TTCN-3 record and set types respectively. See details in clause 7.2.8 of the present document.

8.11 SEQUENCE OF and SET OF

Values based on ASN.1 SEQUENCE OF and SET OF types shall be encoded to and from JSON the same way as
values based on the TTCN-3 record of and set of types respectively. See detailsin clause 7.2.9 of the present document.

8.12 CHOICE and Open Types

Values based on ASN.1 CHOICE types shall be encoded to and from JSON the same way as values based on the
TTCN-3 union type. See detailsin clause 7.2.10 of the present document.

In ASN.1 open types can be created by information object class definitions, which are not directly imported to TTCN-3.
However, these open type fields of 10 classes can be referenced by importable ASN.1 definitions (e.g. be the field type
of ASN.1 SEQUENCE types). In which case values based on ASN.1 open types shall be converted to and from JSON
the same way as val ues based on the TTCN-3 anytype type. See detailsin clause 7.2.10 of the present document.

ETSI

24 ETSI ES 201 873-11 V4.8.1 (2018-05)

Annex A (normative):
TTCN-3 module JSON

This annex defines a TTCN-3 module contai ning type definitions equivalent to JSON built-in types and literal values.

modul e JSON {

I/ Types to define JSON Schemas

/1 JSON Nunber type (generic)
type float Nunber (!-infinity .. linfinity) with {
variant "JSON: nunber"

}

/'l I nteger type

type integer Integer (-infinity .. infinity) with {
variant "JSON integer"

}

/1 String type

type universal charstring String with {
variant "JSON: string"

}

/Il Array type

type record of JSON Values Array with {
variant "JSON array"

}

/1 Subsidiary array types

type record of JSON String StrArray with {
variant "JSON array"

}

type record of JSON. Nunmber NumArray with {
variant "JSON array"
}

type record of JSON Integer IntArray with {
variant "JSON array"

}

type record of JSON Bool Bool Array with {
variant "JSON array"
}

type record of JSON Object ObjArray with {
variant "JSON array"
}

/1 Object menmber
type record bj ect Menber {
JSON. String nang,
JSON. Val ues val ue_
} with {
vari ant "JSON: obj ect Menber"
}

/1 Generic JSON object type
type record bject {
record length (1..infinity) of JSON. ObjectMenber nenberlList optional
} with {
variant "JSON object"
}

type uni on Val ues {

JSON. String str,

JSON. Nurmber num

JSON. I nt eger int,

JSON. Obj ect obj ect,
JSON. Array array,

JSON. StrArray strArray,
JSON. NunmArray numArray,
JSON. IntArray intArray,

ETSI

25 ETSI ES 201 873-11 V4.8.1 (2018-05)

JSON. Bool Array bool Array,
JSON. Obj Array obj Array,
JSON. Bool bool,
JSON. Nul | nul | _

} with {
vari ant "asVal ue"

}

/1JSON literals
//When only the true and false literals are all owed
type bool ean Bool with { variant "JSON. literal" }

//When only the null literal is allowed
type enunerated Null { null_ } with { variant "JSON: literal" }

/1 Useful val ues

type JSON. String String_short with {variant "escape as short" };
type JSON. String String_usi with {variant "escape as usi" };

type JSON. String String_tr with {variant "escape as transparent" };
const JSON. String_short cs_bs :
const JSON. String_short cs_ht

const JSON. String_short cs_If
const JSON. String_short cs_ff

char(U8); // encoded as "\b" (Backspace)
char(W9); // encoded as "\t" (Horizontal tab)
char (UA); // encoded as "\n" (Line feed)
char (UC); // encoded as "\f" (Form feed)

const JSON. String_short cs_cr := char(UD); // encoded as "\r" (Carriage return)

const JSON. String_short cs_quot :=""""; // encoded as "\"" (Quotation mark)

const JSON. String_short cs_sol :="/"; // encoded as "\/" (Solidus or Slash)

const JSON. String_short cs_rs :="\"; // encoded as "\\" (Reverse solidus or Backsl ash)

const JSON. String_usi cu_nul
const JSON. String_usi cu_soh :
const JSON. String usi cu_stx :
const JSON. String_usi cu_etx :
const JSON. String_usi cu_eot
const JSON. String_usi cu_enq :
const JSON. String usi cu_ack :
const JSON. String_usi cu_bel
const JSON. String_usi cu_bs :
const JSON. String_usi cu_ht
const JSON. String_usi cu_lf
const JSON. String_usi cu_vt
const JSON. String_usi cu_ff
const JSON. String_usi cu_cr
const JSON. String_usi cu_so :
const JSON. String_usi cu_si
const JSON. String_usi cu_dle :
const JSON. String_usi cu_dcl :
const JSON. String_usi cu_dc2 :
const JSON. String_usi cu_dc3 :
const JSON. String_usi cu_dc4 :

char(U0); // encoded as "\u0000" (Null character)
char(Ul); // encoded as "\u0001", (Start of Heading
char(U2); // encoded as "\u0002" (Start of Text)
char(U3); // encoded as "\u0003" (End-of-text character)
char(W); // encoded as "\u0004" (End-of-transm ssion character)
char(Us); // encoded as "\u0005" (Enquiry character)
char(U6); // encoded as "\u0006" (Acknow edge character)
char(U7); // encoded as "\u0007" (Bell character)
char(U8); // encoded as "\u0008" (Backspace)

char (UW9); // encoded as "\u0009" (Horizontal tab)

char (UA); // encoded as "\uOOOA" (Line feed)

char(UB); // encoded as "\u000B" (Vertical tab)

char(UC); // encoded as "\u000C' (Form feed)

char(UD); // encoded as "\u000D' (Carriage return)
char(UE); // encoded as "\uOOOE" (Shift Qut)

char(UF); // encoded as "\uOOOF" (Shift In)

char (U10); // encoded as "\u0010" (Data Link Escape)
char(U11); // encoded as "\u0011l" (Device Control 1)
char (U12); // encoded as "\u0012" (Device Control 2)
char (U13); // encoded as "\u0013" (Device Control 3)
char(U14); // encoded as "\u0014" (Device Control 4)
const JSON. String_usi cu_nak := char(Ul5); // encoded as "\u0015" (Negative-acknow edge charac.)
const JSON. String_usi cu_syn := char(U16); // encoded as "\u0016" (Synchronous I|dle)
const JSON. String_usi cu_etb:= char(Ul7); // encoded as "\u0017" (End of Transm ssion Bl ock)
const JSON. String_usi cu_can := char(U18); // encoded as "\u0018" (Cancel character)
const JSON. String_usi cu_em:= char(Ul9); // encoded as "\u0019" (End of Medium

const JSON. String_usi cu_sub := char(UlA); // encoded as "\uOOlA" (Substitute character)
const JSON. String_usi cu_esc := char(UlB); // encoded as "\uOO0l1B" (Escape character)
const JSON. String_usi cu_fs := char(U1C); // encoded as "\uO0lC' (File Separator)

const JSON. String_usi cu_gs := char(UlLD); // encoded as "\uO00lD' (G oup Separator)

const JSON. String_usi cu_rs := char(UlE); // encoded as "\uOOlE" (Record Separator)
const JSON. String_usi cu_us := char(UlF); // encoded as "\uOOlF" (Unit Separator)

const JSON. String usi cu_sp :=" "; [/ encoded as "\u0020" (Space)

const JSON. String_usi cu_quot :=""""; [/ encoded as "\u0022" (Quotation mark)

const JSON. String_usi cu_sol :="/"; // encoded as "\uOO2F" (Solidus or Slash)

const JSON. String_usi cu_revs :="\"; // encoded as "\u005C' (Reverse solidus or Backsl ash)
const JSON. String_usi cu_del := char(U7F); // encoded as "\uOO7F" (Delete)

/I NOTE: see |SO'| EC 10646 [3] and https://en.w ki pedi a. org/ wi ki/List_of _Unicode_characters

} with { encode "JSON' } //end nodul e

ETSI

26 ETSI ES 201 873-11 V4.8.1 (2018-05)

Annex B (normative):
Encoding instructions

B.1 General

This annex defines the encoding instructions for the JISON to TTCN-3 mapping. Encoding instructions are contained in
TTCN-3encode andvar i ant attributes associated with the TTCN-3 definition, field or value of a definition.

A single attribute shall contain one encoding instruction only. Therefore, if several encoding instructions shall be
attached to a TTCN-3 language element, several TTCN-3 attributes shall be used.

The "syntactical structure” paragraphs of each clause below identify the syntactical elements of the attribute (i.e. inside
thewith { } statement). The syntactical elements shall be separated by whitespaces, which shall contain one or
more spaces (char (U20)) and horizontal tab (char (U9)) characters. No whitespace character is required between
the opening and closing quotation marks (char (U22)) and the first and last syntactical elements of the instruction,
respectively, though whitespace characters are allowed at those places as well. All characters (including whitespaces)
between a pair of apostrophe (or single quote characters, char (U27)) shall be part of the encoding instruction.

Typographical conventions. bold font identify TTCN-3 keywords. The syntactical elements freetext and name are
identified by italic font; they shall contain one or more characters and their contents are specified by the textua
description of the encoding instruction. Normal font identify syntactical elements that shall occur within the TTCN-3
attribute as appear in the syntactical structure. The following character sequences identify syntactical rules and shall not
appear in the encoding instruction itself:

. (]) - identify alternatives.
e []-identify that the part of the encoding instruction within the square bracketsis optional.
e {} -identify zero or more occurrences of the part between the curly brackets.

e """ -identify the opening or the enclosing quotation marks (char (U22)) of the encoding instruction.

B.2 The JSON encode attribute

The TTCN-3 encode attribute shall be used to identify that the definitions in the scope unit to which this attribute is
attached shall be encoded in the following formats:

. "JSON" or "JSON RFC7159"

Syntactical structure

encode """ (JSON | JSON RFC7159) """
Applicableto (TTCN-3)

Module, group, definition.

B.3 Encoding instructions

B.3.1 General rules

Faults in the JSON encoding/decoding process, by default shall cause errors. This can be modified with the error
behaviour encoding instruction (see clause B.3.13).

ETSI

27 ETSI ES 201 873-11 V4.8.1 (2018-05)

Any number of white spaces (spaces and tabs only) can be added between each word or identifier in the attribute syntax,
but at least one is necessary if the syntax does not specify a separator (acomma or a colon). The attribute can also start
and end with white spaces.

EXAMPLE:

variant(fieldl) "omt as null"; /1 ok

variant(field2) " onmt as null "; /'l ok (extra spaces)
variant(field3) " om t as null"; [/ ok (with tabs)
variant(field4) "omtasnull"; /1 not ok

B.3.2 JSON type identification

Syntactical structure(s)

variant """ (JSON:array | JSON:integer | JSON:literal | JSON:number |
JSON:string | JSON:object | JSON: objectMember """

Applicableto (TTCN-3)
TTCN-3 type definitions.
Description

These encoding instructions are typically should not appear in TTCN-3 module describing a JSON Schema. They are
attached to the TTCN-3 type definitions of the module named JSON in Annex A of the present document,
corresponding to JSON "types" and literal values, and normally should be imported from this module.

The encoder and decoder shall handle instances of atype according to the corresponding JSON definition in IETF®
RFC 7159 [2].

B.3.3 Normalizing JSON Values

Syntactical structure(s)
variant """ normalize"""

Applicableto (TTCN-3)

All TTCN-3 typesor values

Description

JSON allows arbitrary number of whitespaces, composed of space(char (U20)), horizontal tabulator(char (U9)),
line feed (char (UA)) or carriage return (char (UD)) characters between JSON syntactical elements.

In the encoding process this instruction shall result that in the encoded JSON value only asingle space (char (U32))
character is used between any two JSON syntactical elements.

B.3.4 Name as

Syntactical structure(s)

variant """ name (as ('freetext’ | changeCase) | all as <changeCase>) """,
where <changeCase> := (capitalized | uncapitalized | lowercased | uppercased)
Applicableto (TTCN-3)

Fields of records, sets and unions.

ETSI

28 ETSI ES 201 873-11 V4.8.1 (2018-05)

Description
Givesthe specified field a different name in the JSON representation.

When the "name as ‘freetext™ form is used, freetext shall be used as the name of the JSON object member, instead of the
name of the related TTCN-3 field or definition.

The "name as capitalized" and "name as uncapitalized" formsidentify that only the first character of the related
TTCN-3 name shall be changed to lower case or upper case respectively.

The "name as lowercased" and "name as uppercased" forms identify that each character of the related TTCN-3 name
shall be changed to lower case or upper case respectively.

EXAMPLE:

type union PersionlD {
i nteger nunericlD,
charstring emil,
charstring nane

} with {
variant(nunericlD) "nane as 'ID";
variant(enmil) "nane as 'Enmil'";
variant (nanme) "name as 'Nane'";

}

type record of PersionlD PersionlDs;

var PersionlDs pids := { { nunericlD := 189249214 }, { enumil := "jdoe@mil.con }, { nane := "John
Doe" } };

/1 JSON code:

/1 [{"1D"':189249214},{"Enuni |l ":"j doe@mai |l .coni'}, {"Nane": "John Doe"}]

B.3.5 Number of fraction digits

Syntactical structure(s)

variant """ fractionDigits <an integer value>

Applicableto (TTCN-3)
Types and fields of JSON. Nurrber type.
Description

By default, the number of fraction digits, and/or the use of the exponent part is atool implementation option. The
"fractionDigits" encoding instruction, at encoding constraints the maximum number of fractional digits following the
decimal point in the encoded JSON value. TTCN-3 alows using either the decimal point notation or the E-notation for
float values (see clause 6.1.0 of ETSI ES 201 873-1 [1]). In the encoding process, at most the number of fraction digits
specified in the instruction shall be used. If representing the actual value does not require the number of fraction digits
specified by thisinstruction, the encoder shall use the needed number of digits, if If representing the actua (humeric)
value would require more fraction digits than specified by thisinstruction, the encoder shall use a mixed fraction part +
exponent part representation.

NOTE: The"fractionDigits 0" instruction will enforce the encoder to use the exponent part exclusively.

EXAMPLE: Number of fraction digits

If:
const JSON. Nunmber c_nunberl := <actual value> with {variant "fractionDi gits 3"};
then
<actual value> encoded JSON value
0.0 0.0
3.14 3.14
3.142 3.142
3.1415 31.415E-10r 31.415e-1

ETSI

29 ETSI ES 201 873-11 V4.8.1 (2018-05)

If:

const JSON. Number c_nunber?2 := <actual value> with {variant "fractionDigits 0"};
then
<actual value> encoded JSON value
0.0 OE1 or Oel
3.14 314E-2 or 314e-2
3.142 3142E-3 or 3142e-3
3.1415 31415E-4 or 31415e-4

This encoding instruction has no effect at decoding of JSON values.

B.3.6 Use the Minus sign

Syntactical structure(s)

variant """ useMinus
Applicableto (TTCN-3)
Types and fields of JSON. Nunber and JSON. | nt eger types.
Description

By default, without the "useMinus' instruction, JSON numbers are decoded to TTCN-3 JSON. Nunber and IEEE 754
float useful types by their values; i.e. al the -0.0, 0.0, -Oe<number>, Oe<number>, -OE<number>, OE<number>, -0 and
0 JSON values are decoded in TTCN-3 as 0.0 for JSON. Nurrber typesand as0for JSON. | nt eger types(i.e.
without the minus sign), where <number> is any positive or negative integer number.

The"useMinus' encoding instruction, when applied to aJ SON. Nunber type, instructs the decoder to decode the
JSON values -0.0, -Oe<number>, -OE<number> and -0 in TTCN-3 as negative float numbers, i.e. together with their
minus sign. The instruction has no effect on JSON. | nt eger types.

This encoding instruction has no effect at encoding and at decoding of any other JISON val ues than specified above.

B.3.7 Escape as

Syntactical structure(s)

variant """ escape as (short | usi | transparent) """,
Applicableto (TTCN-3)

Types and fields of JSON. Nunber and JSON. St ri ng types.
Description

The "escape as short" encoding instruction tells the encoder that all charactersin the TTCN-3 value, which has short
escape sequences defined (see IETF® RFC 7159 [2] and clause 6.4.2), shall be encoded using the short escape
sequence.

The "escape asusi" encoding instruction tells the encoder that all charactersin the TTCN-3 value shall be encoded
using the USI-like escape sequence "\u<HHHH>" (see IETF® RFC 7159 [2] and clause 6.4.2).

The "escape as transparent” encoding instruction tells the encoder that charactersin the TTCN-3 value shall not be
escaped in their JSON representation, except the CO control characters (present inthe TTCN-3 valueinthechar (..)
representation).

NOTE: Thisinstruction is useful, when a character string is copied from a JSON string, where the needed
characters are aready have been replaced by their escape sequences, into a TTCN-3 code.

ETSI

30 ETSI ES 201 873-11 V4.8.1 (2018-05)

Thisinstruction has no effect at decoding, i.e. al escaped characters, using either the short or the USI-like escaping
shall be decoded to and evaluated in its (abstract) character representation in TTCN-3 (e.g. at matching or in any other
operations).

B.3.8 Omit as null

Syntactical structure(s)

variant omit asnull """,
Applicableto (TTCN-3)

Optional fields of records and sets
Description

If set, the value of the specified optional field will be encoded with the JSON literal 'nul | ' if the value is omitted. By
default omitted fields (both their name and value) are skipped entirely. The decoder ignores this attribute and accepts
both versions.

This encoding instruction shall not be used for fields of ASN.1 NULL type.

B.3.9 Default

Syntactical structure(s)
variant """ default (<value>)"""
where <value> is a value of the type the instruction is applied to.
Applicableto (TTCN-3)
Fields of records and sets
Description
This encoding attribute has no effect at encoding.
The decoder shall set the given value to the field if it does not appear in the encoded JSON value.

The <value> shall contain avalid TTCN-3 value of the field's type, but string types do not need the starting and ending
quotes. All JSON escaped characters can be used, plus the escape sequence \)' will add a")' (right round bracket)
character.

Optional fields with adefault value will be settooni t if thefieldisset tonul | in the JSON value being decoded,
and shall use the default value if the field does not appear in the encoded JSON value.

EXAMPLE:

type record Product {
charstring nane,
float price,
octetstring id optional,
charstring from

} with {
variant(id) "default (FFFF)"
variant(from "defaul t(Hungary)"

}

/1 { "name" : "Shoe", "price" : 29.50 } will be decoded into:

/1 { name := "Shoe", price :=29.5, id:="'FFFF O from:= "Hungary" }

/1 { "name" : "Shirt", "price" : 12.99, "id" : null } will be decoded into:
/1 { nane := "Shirt", price :=12.99, id := onit, from:= "Hungary" }

ETSI

31 ETSI ES 201 873-11 V4.8.1 (2018-05)

B.3.10 As value

Syntactical structure(s)

variant """ asValue """,
Applicableto (TTCN-3)
Unionstypes and fields.
Description

The TTCN-3 union value shall be encoded as a JSON value instead of as a JSON object with one object member (see
clause 7.2.10). This allows the creation of heterogenous arrays in the JSON document (e.g. ["text",10,true,nulll).

Since the field name no longer appears in the encoded JSON value, the decoder shall determine the selected field based
on the syntax of the JSON value. Thefirst union field (in the textual order of declaration) that can successfully decode
the JSON value will be the selected one.

B.3.11 No Type

Syntactical structure(s)

variant """ noType """
Applicableto (TTCN-3)
TTCN-3 types.
Description

The "noType" encoding instruction shall cause that the "type wrapper" of the top-level TTCN-3 type of the instance
being encoded, is omitted in the JSON representation, and at decoding a JSSON value, it is not expected to be present.
However, the presence of the type wrapper shall not cause a decoding error. See also clause 7.1 General rules.

B.3.12 Use order

Syntactical structure(s)
variant """ useOrder """
Applicableto (TTCN-3)
Record type definition, generated for JSON objects (see clause 6.4.4).
Description

The encoding instruction designates that the encoder shall encode the JSON object members according to the strings
order inthe or der field. The object member names are equally identified by the field names of the record type
generated for the object (except the or der and menber Li st fields) and the values of the nane fields of the
menber Li st field'srecord of elements. If the or der field contains more or less elements than object members
identified by the TTCN-3 value, or amember name non-existing in the TTCN-3 value, the encoder shall cause atest
case error. If theor der field is missing, the textual order of their fields in the corresponding type definition - and the
elements order inthe menber Li st field of the value being encoded - shall be followed.

At decoding, if the or der field existsin the type definition of the value being decoded, the received values of the
JSON object members shall be placed in their corresponding record fields or into a subsequent element of the
nmenber Li st field if no dedicated field exists for the member, and a new record of element containing the member's
name shall be inserted into the or der field for each JSON object member processed (i.e. the final order of the record
of elements shall reflect the order of the membersin the JSON object being decoded).

ETSI

32 ETSI ES 201 873-11 V4.8.1 (2018-05)

B.3.13 Error behaviour

Syntactical structure(s)

variant """ er r or behavi or "(" <error_type>":" <error_handling>
{"," <error_type>":" <error_handling>} ")"""",

where the error types (<error_type>) and possible related error behaviours (<error_handling>) are defined in tables B.1
and B.2 correspondingly.

Table B.1: Conversion failure types

ET_UNDEF Undefined/unknown error.

ET DEC ENUM Decoding of an unknown enumerated value.
ET_INCOMPL_MSG |Decode error: incomplete message.
ET_INVAL MSG Decode error: invalid message.
ET_CONSTRAINT The value breaks some constraint.

ET _ALL All error types.

Table B.2: Values of error behaviours

EB_ERROR Causes a test case error if the selected error type occurs.
EB_WARNING Logs a warning but tries to continue the operation. If the decoding
fails, it returns the undecoded JSON value to TTCN-3 as a universal
charstring value.

EB_IGNORE Like EB_WARNING but without the logging a warning message. If
the decoding fails, it returns the undecoded JSON value to TTCN-3
as a universal charstring value.

Applicableto (TTCN-3)
All types.
Description

TTCN-3 predefined decoding functions ensure that the decoding trial of the inout parameter encoded_value will not
cause a test case error, when the decoding fails or isincomplete (see clause C.5 of ETSI ES 201 873-1 [1]). This
encoding instruction provides a similar feature, i.e. avoid test case error at JSON to TTCN-3 conversion, when the
TTCN-3 test system is communicating with other systems via an interface that allows alternatively receiving abstract
TTCN-3valuesor TTCN-3 uni ver sal char st ri ng vaues, like TTCN-3 communication ports.

EB_ERROR isthe default error behaviour for all conversion failure types (see tables B.1 and B.2), in which case a
JSON to TTCN-3 conversion failure shall cause atest case error. When a JSON to TTCN-3 conversion failure occurs,
and for the type of the failure AND for the target TTCN-3 language element a different error behaviour than
EB_ERROR is specified, no test case error shall occur, but the relevant behaviour in table B.2 shall be followed.

ETSI

33 ETSI ES 201 873-11 V4.8.1 (2018-05)

Annex C (informative):
Bibliography
ECMA International® Standard ECMA-404: "The JSON Data | nterchange Format".

NOTE: Available at http://www.ecma-international .org/publications/filess ECMA-ST/ECMA-404.pdf.

I SO/IEC 646: "Information technology -- SO 7-bit coded character set for information interchange”.

ETSI

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

34 ETSI ES 201 873-11 V4.8.1 (2018-05)

History
Document history
V4.7.1 June 2017 Publication
V4.8.1 March 2018 Membership Approval Procedure MV 20180504: 2018-03-05 to 2018-05-04
V4.8.1 May 2018 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Conformance and compatibility
	6 Using TTCN-3 as JSON Schema
	6.1 Approach
	6.2 Validation of JSON Values
	6.3 Name conversion rules
	6.4 Mapping of JSON Values
	6.4.1 JSON Numbers
	6.4.2 JSON Strings
	6.4.3 JSON Arrays
	6.4.4 JSON Objects
	6.4.5 JSON Literals

	7 Using JSON to exchange data between TTCN-3 and other systems
	7.1 General rules
	7.2 JSON representations of TTCN-3 values
	7.2.1 Character strings
	7.2.2 Binary Strings
	7.2.3 Integer
	7.2.4 Float
	7.2.5 Boolean
	7.2.6 Enumerated
	7.2.7 Verdicttype
	7.2.8 Record and set
	7.2.9 Record of, set of and arrays
	7.2.10 Union and anytype
	7.2.11 Object Identifiers

	8 JSON representations of TTCN-3 values based on ASN.1 types
	8.1 General rules
	8.2 Character strings
	8.3 Binary strings
	8.4 BOOLEAN
	8.5 ENUMERATED
	8.6 REAL
	8.7 INTEGER
	8.8 OBJID
	8.9 NULL
	8.10 SEQUENCE and SET
	8.11 SEQUENCE OF and SET OF
	8.12 CHOICE and Open Types

	Annex A (normative): TTCN-3 module JSON
	Annex B (normative): Encoding instructions
	B.1 General
	B.2 The JSON encode attribute
	B.3 Encoding instructions
	B.3.1 General rules
	B.3.2 JSON type identification
	B.3.3 Normalizing JSON Values
	B.3.4 Name as
	B.3.5 Number of fraction digits
	B.3.6 Use the Minus sign
	B.3.7 Escape as
	B.3.8 Omit as null
	B.3.9 Default
	B.3.10 As value
	B.3.11 No Type
	B.3.12 Use order
	B.3.13 Error behaviour

	Annex C (informative): Bibliography
	History

