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Intellectual Property Rights 

Essential patents 

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (https://ipr.etsi.org/). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Trademarks 

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. 
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no 
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does 
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. 

Foreword 
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification 
(MTS). 

The present document is part 11 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1]. 

Modal verbs terminology 
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and 
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx


 

ETSI 

ETSI ES 201 873-11 V4.8.1 (2018-05)6 

1 Scope 
The present document specifies the rules to define schemas for JSON data structures in TTCN-3, to enable testing of 
JSON-based systems, interfaces and protocols, and the conversion rules between TTCN-3 [1] and JSON [2] to enable 
exchanging TTCN-3 data in JSON format between different systems. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
https://docbox.etsi.org/Reference/. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; Part 1: TTCN-3 Core Language". 

[2] IETF® RFC 7159: "The JavaScript Object Notation (JSON) Data Interchange Format". 

NOTE: Available at http://www.rfc-editor.org/rfc/rfc7159.txt. 

[3] ISO/IEC 10646:2017: "Information technology -- Universal Coded Character Set (UCS)". 

NOTE: Available at https://www.iso.org/standard/69119.html. 

[4] IEEE 754TM: "IEEE Standard for Floating-Point Arithmetic". 

[5] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; Part 7: Using ASN.1 with TTCN-3". 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] IETF® draft-handrews-json-schema-validation-00: "JSON Schema Validation: A Vocabulary for 
Structural Validation of JSON". 

NOTE: Available at https://datatracker.ietf.org/doc/draft-handrews-json-schema. 

[i.2] World Wide Web Consortium W3C® Recommendation: "W3C XML Schema Definition 
Language (XSD) 1.1 Part 1: Structures". 

NOTE: Available at http://www.w3.org/TR/xmlschema11-1. 

https://docbox.etsi.org/Reference/
http://www.rfc-editor.org/rfc/rfc7159.txt
https://www.iso.org/standard/69119.html
https://datatracker.ietf.org/doc/draft-handrews-json-schema
http://www.w3.org/TR/xmlschema11-1/
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[i.3] World Wide Web Consortium W3C® Recommendation: "W3C XML Schema Definition 
Language (XSD) 1.1 Part 2: Datatypes". 

NOTE: Available at http://www.w3.org/TR/xmlschema11-2. 

[i.4] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; Part 8: The IDL to TTCN-3 Mapping". 

[i.5] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; Part 9: Using XML schema with TTCN-3". 

[i.6] ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support". 

[i.7] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing". 

[i.8] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization". 

[i.9] ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; TTCN-3 Language Extensions: Behaviour Types". 

[i.10] ETSI ES 202 786: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; TTCN-3 Language Extensions: Support of interfaces with continuous signals". 

[i.11] ETSI ES 202 789: "Methods for Testing and Specification (MTS); The Testing and Test Control 
Notation version 3; TTCN-3 Language Extensions: Extended TRI". 

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1] apply. 

3.2 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

ASN.1 Abstract Syntax Notation One 
IO ASN.1 Information Object 
JSON JavaScript Object Notation 
SUT System Under Test 
TTCN-3 Testing and Test Control Notation version 3 
UCS Universal Coded Character Set 
USI UCS Sequence Identifier 
UTF-8 Unicode Transformation Format-8 
XML eXtensible Markup Language 
XSD XML Schema Definition 

http://www.w3.org/TR/xmlschema11-2/
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4 Introduction 
An increasing number of distributed applications use the JSON to exchange data for various purposes like data bases 
queries or updates or event telecommunications operations such as provisioning. The JSON specification [2] defines the 
syntax and encoding for JSON types and defined literals, but no semantics is defined. JSON does not have a schema 
specification, like the XML Schema Definition Language used for XML documents (see [i.2] and [i.3]). 

NOTE: Though an IETF® draft proposal exists for JSON structural validation (see [i.1]), it has not reached the 
RFC status. 

The core language of TTCN-3 is defined in ETSI ES 201 873-1 [1] and provides a full text-based syntax, static 
semantics and operational semantics. Other parts of the ETSI ES 201 873 series are defining its use with other 
specification languages like ASN.1 [5], IDL [i.4], or XSD [i.5] as shown in figure 1, while other documents as ETSI 
ES 202 781 [i.6], ETSI ES 202 782 [i.7], ETSI ES 202 784 [i.8], ETSI ES 202 785 [i.9], ETSI ES 202 786 [i.10] and 
ETSI ES 202 789 [i.11] specify language extensions and thus can define additional rules to the JSON/TTCN-3 mapping 
defined in the present document. 

 
 
 

Other 
presentation 
formats as 
defined in 

other parts of 
the standard 

or user-
specific 
formats 

 
 
 
 
 

TTCN-3 
Core 

Language TTCN-3 User 

JSON Types 
& Values 

Other Types 
& Values n 

Other Types 
& Values 2 

Note: The shaded boxes are 
not defined in this document 

 

Figure 1: User's view of the core language and the various presentation formats 

In the context of TTCN-3, JSON can be used for different purposes: 

1) TTCN-3 can be used as a JSON Schema definition language that allows generating JSON values from 
TTCN-3 and consuming and evaluating received JSON values, i.e. enables testing of JSON-based interfaces 
and protocols. 

2) To exchange type and data information between the TTCN-3 test system and systems written in other 
languages like Java, C, C++, Python, etc. In this way TTCN-3 test systems can be used as a subsystem of a 
more complex test system; for example, the TTCN-3 system receiving contents of messages to be sent to an 
SUT, encode and send a message, receive and process the response and report the result to the other system. 

Consequently, there is a need to specify mappings between JSON and TTCN-3 for the above purposes. 

5 Conformance and compatibility 
For an implementation claiming to support the use of TTCN-3 as a JSON schema language, all features specified in 
clause 6 of the present document shall be implemented consistently with the requirements given in clause 6 and 
Annex B of the present document and in ETSI ES 201 873-1 [1]. 

For an implementation claiming to support the exchange of TTCN-3-based data between systems, and not supporting 
using ASN.1 with TTCN-3, all features specified in clause 7 of the present document, with the exception of the 
mapping of the objid type in clause 7.2.11 shall be implemented consistently with the requirements given in clause 7 
and Annex B of the present document and in ETSI ES 201 873-1 [1]. Implementations claiming the support of using 
ASN.1 with TTCN-3, shall in addition support features in clause 7.2.11 and clause 8 of the present document. 

The language mappings presented in the present document is compatible to: 

• ETSI ES 201 873-1 [1], version 4.9.1. 
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If later versions of those parts are available and should be used instead, the compatibility of the rules presented in the 
present document shall be checked individually. 

6 Using TTCN-3 as JSON Schema 

6.1 Approach 
JSON [2] defines a limited set of JSON types and literal values. The clauses below define the TTCN-3 types that can be 
used to specify a Schema for any JSON interface specification. The TTCN-3 types defined in the clauses below will 
allow to use the same set of values as JSON permits. Annex A provides a TTCN-3 module containing all TTCN-3 
definitions specified in these clauses. The JSON module in Annex A shall either explicitly be present in TTCN-3 test 
suites or TTCN-3 tools shall support these types implicitly. This is left as a tool implementation option. 

JSON in many cases allows different encoding options for the same value. These may be controlled by the JSON 
encoding instructions specified in Annex B. JSON encoding instructions may be added to TTCN-3 types and fields by 
using TTCN-3 variant attributes (see ETSI ES 201 873-1 [1], clause 27.5). 

6.2 Validation of JSON Values 
For further study. 

6.3 Name conversion rules 
The current version of the JSON specification [2] uses names to identify JSON object members only. The present 
document defines JSON to TTCN-3 name conversion rules that shall be used when using TTCN-3 to specify a schema for 
a JSON interface (see for example clause 6.4.4). When the JSON and the TTCN-3 names differ after applying the rules in 
this clause, the "name as …" encoding instruction shall be used to identify the exact JSON name. To ensure compatibility 
with future versions and automatic conversions, the rules specified in this clause should always be applied. 

JSON names can be identical to TTCN-3 reserved words, can contain characters not allowed in TTCN-3 identifiers or 
allowed to be identical, when the corresponding TTCN-3 names are required to be unique, in which case the JSON 
names shall be processed by the rules below to obtain the corresponding TTCN-3 identifiers. 

The following character substitutions shall be applied, in order that each character string being mapped to a TTCN-3 
name, where each substitution (except the first) shall be applied to the result of the previous transformation: 

a) any character except "A" to "Z" (Latin Capital Letter A to Latin Capital Letter Z), "a" to "z" (Latin Small 
Letter A to Latin Small Letter Z), "0" to "9" (Digit Zero to Digit Nine), and "_" (Low Line) shall be removed; 

b) a sequence of two or more "_" (Low Line) characters shall be replaced with a single "_" (Low Line); 

c) "_" (Low Line) characters occurring at the beginning or at the end of the name shall be removed; 

d) if a character string starts with a digit (Digit Zero to Digit Nine), it shall be prefixed with an "x" (Latin Small 
Letter X) character; 

e) if a character string is empty, it shall be replaced by "x" (Latin Small Letter X); 

f) if the TTCN-3 name being generated is identical to a previously generated TTCN-3 identifier in the same 
scope, then a postfix shall be appended to the character string generated by the above rules. If a field name of a 
TTCN-3 structured type is clashing with a type's name used in the same structured type, the field's name shall 
be postfixed. The postfix shall consist of a "_" (Low Line) followed by an integer. This integer shall be the 
least positive integer such that the new identifier is different from the identifier of any previously generated 
identifier in the same scope (i.e. the first postfix applied by this mechanism is "_1"). TTCN-3 names that are 
one of the TTCN-3 keywords (see clause A.1.5 of ETSI ES 201 873-1 [1]) or names of predefined functions 
(see clause 16.1.2 of ETSI ES 201 873-1 [1]) after applying the postfix to clashing names, shall be suffixed by 
a single "_" (Low Line) character. 
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6.4 Mapping of JSON Values 

6.4.1 JSON Numbers 

JSON numbers are represented as base 10 decimal digits containing a mandatory integer component that can be 
prefixed with an optional minus sign, and can be followed by a fraction part, an exponent part or both. Leading zeros 
are not allowed. JSON does not distinguish numbers based on their value sets like integers and reals, like other 
languages do. No special values (as –infinity, infinity or NaN) are allowed. 

In the general case, JSON numbers shall be mapped by using the following TTCN-3 type: 

  type float Number (!-infinity .. !infinity) with { 
    variant "JSON:number" 
    } 
 

When the JSON interface specification requires a number to conform to the ANSI/IEEE 754 [4] floating-point number 
specification, the IEEE 754 floats useful types of clause E.2.1.4 of ETSI ES 201 873-1 [1] can be used in the context of 
JSON encoding, in which case, by default, the given useful type will constrain the value set and the encoding of the 
JSON value according to this clause. The JSON encoding instructions in this case can be applied to fields of IEEE 754 
useful types. 

By default, i.e. without any encoding instruction applied, the form of the JSON representation of JSON.Number is a 
tool implementation option (i.e. the number of fraction digits, using the exponent part, etc.) 

To make defining JSON Schemas in TTCN-3 easier, the present document, in addition to the generic mapping of JSON 
numbers, also specifies a TTCN-3 type that may be used where the interface specification allows only numbers without 
the fraction and the exponent parts: 

 type integer Integer (-infinity .. infinity) with { 
  variant "JSON:integer" 
 } 
 

Attempts to decode a JSON number value with either a fraction or an exponent part or both into this JSON.Integer 
type shall cause a decoding failure. 

In addition to the generic encoding instructions like "normalize" and "name as …", the following specific instructions 
shall be applicable to types and fields of JSON.Number and the IEEE 754 useful types: 

• fractionDigits  see clause B.3.5 

• useMinus   see clause B.3.6 

NOTE: The beginning character of the exponent part can be both "e" and "E". This is not controlled by any of the 
encoding instructions but left as a tool implementation option. 

and to types and fields of JSON.Integer types: 

• useMinus   see clause B.3.6 

6.4.2 JSON Strings 

A JSON string is a sequence of zero or more Unicode characters, enclosed in a pair of quotation mark characters (""", 
char(U22)). Any characters may be escaped by the escape sequence: "\u<HHHH>", where <HHHH> represents four 
hexadecimal digits, but the icharacters: quotation mark (""", char(U22)), reverse solidus ("\", char(U5C)) and all 
C0 control characters (char(U0) through char(U1F)) shall be escaped.  

Alternatively, the short, two-character escape sequences defined in table 1 can be used to escape some of the characters. 
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Table 1: Short character escape sequences 

Character's name Character code Short escape 
sequence 

quotation mark char(U22) \" 
reverse solidus char(U5C) \\ 
solidus char(U2F) \/ 
backspace char(U8) \b 
form feed char(UC) \f 
line feed char(UA) \n 
carriage return char(UD) \r 
horizontal tab char(U9) \t 

 

By default, it is a tool implementation option which form of escaping is used, which may be overridden by the "escape 
as …" encoding instruction. 

NOTE 1: Note that the JSON module in Annex A defines useful TTCN-3 constants for the characters listed above. 

The following TTCN-3 type shall be used to map JSON strings to TTCN-3: 

  type universal charstring String with { 
    variant "JSON:string" 
  } 
 

NOTE 2: Though Unicode and ISO/IEC 10646 [3] do not necessarily contain the same set of characters at all points 
in time, JSON strings are expressed using the TTCN-3 universal charstring type. 

In addition to the generic encoding instructions like "normalize" and "name as …", the following specific encoding 
instructions are applicable to JSON.String types: 

• escape as …  see clause B.3.7 

EXAMPLE: String encoding examples 

 If: 

 const JSON.String c_string1 := <actual value> with {variant "escape as short"}; 
 

 then 

<actual value> JSON character 
sequence 

UTF-8 serialization of the 
JSON value 

Note 

"abcd" "abcd" 226162636422  
"ab\cd" "ab\\cd" 2261625C5C636422  
"ab/cd" "ab\/d" 2261625C2F636422  

"ab" & char(U7) & 
"cd" 

"ab\u0007cd" 2261625C75303030 
37636422 

 

"ab" & char(U7) & 
cu_ht & "cd" 

"ab\u0007\tcd" 2261625C7530303037 
5C74636422 

 

 If: 

 const JSON.String c_string1 := <actual value> with {variant "escape as usi"}; 
 

 then 

<actual value> JSON character 
sequence 

UTF-8 serialization of the 
JSON value 

Note 

"abcd" "abcd" 226162636422  
"ab\cd" "ab\u005Ccd" 2261625C75303035 

43636422 
 

"ab/cd" "ab/cd" 2261622F636422 JSON doesn't require to 
escape the solidus 
character 

"ab" & char(U7) & 
"cd" 

"ab\u0007cd" 2261625C75303030 
37636422 

 

"ab" & char(U7) & 
cs_ht & "cd" 

"ab\u0007\u0009c
d" 

2261625C7530303037 
5C7530303039636422 

 

 If: 

 const JSON.String c_string1 := <actual value> with {variant "escape as transparent"}; 
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 then 

<actual value> JSON character 
sequence 

UTF-8 serialization of the 
JSON value 

Note 

"abcd" "abcd" 226162636422  
"ab\cd" "ab\cd" 2261625C636422 Note that the resulting 

sequence is an invalid 
JSON encoding 

"ab/cd" "ab/cd" 2261622F636422  
"ab" & char(U7) & 

cs_ht & "cd" 
"ab\u0007\tcd" 2261625C7530303037 

5C74636422 
Note that the BELL and HT 
C0 control characters are 
escaped by the encoder 

 

6.4.3 JSON Arrays 

JSON arrays can contain a sequence of zero or more JSON values, i.e. the array members may be of different JSON 
"types". 

The following TTCN-3 type shall be used to map JSON arrays to TTCN-3: 

 type record of JSON.Values Array with { 
  variant "JSON:array" 
 }, 
 

Where: 

 type union Values { 
  JSON.String str, 
  JSON.Number num, 
  JSON.Integer int, 
  JSON.Object object, 
  JSON.Array array, 
  JSON.StrArray strArray, 
  JSON.NumArray numArray, 
  JSON.IntArray intArray, 
  JSON.BoolArray boolArray, 
  JSON.ObjectArray objArray, 
  JSON.Bool bool, 
  JSON.Null null_ 
 } with { 
  variant "asValue" 
 } 
 

To make specifying JSON Schemas easier for values, when according to the interface specification a specific array can 
contain a sequence of values of the same JSON "type", also the TTCN-3 types below are specified: 

NOTE: Use the below subsidiary types with due precaution. The syntax of TTCN-3 values based on the below 
helper type differs from the syntax of a JSON.Array value. Therefore, changes in an array description 
in a JSON interface specification can require changing the TTCN-3 code as well. 

 type record of JSON.String StrArray with { 
  variant "JSON:array" 
 } 
 
 type record of JSON.Number NumArray with { 
  variant "JSON:array" 
 } 
 
 type record of JSON.Integer IntArray with { 
  variant "JSON:array" 
  } 
 
 type record of JSON.Boolean BoolArray with { 
  variant "JSON:array" 
 } 
 
 type record of JSON.Object ObjArray with { 
  variant "JSON:array" 
 } 
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Where JSON.Object is: 

 type record Object { 
  record length (1..infinity) of JSON.ObjectMember memberList optional 
 } with { 
  variant "JSON:object" 
 } 
 

And: 

 type record ObjectMember { 
  JSON.String name, // shall contain an object member's name 
  JSON.Types value_ // shall contain an object member's value 
 } with { 
  variant "JSON:objectMember" 
 } 
 

There is no type-specific encoding instruction defined for JSON.Array, JSON.StrArray, JSON.NumArray, 
JSON.IntArray, JSON.BoolArray, JSON.ObjArray, in addition to the generic ones like "normalize" and 
"name as …". In addition to the generic encoding instructions, the JSON.Types type uses the following instruction: 

• asValue  see clause B.3.10. 

EXAMPLE: TTCN-3 Schema for a JSON array 

Provided a JSON interface specification, allows a list of arbitrary JSON values e.g. as the value part of an object 
member. Its TTCN-3 schemata will be: 

 type JSON.Array MyValue; 
 

 And e.g. the TTCN-3 value: 

 const MyValue c_myValue := { 
  { str := "abcd" }, 
  { num := 1.0 }, 
  { int := 42 }, 
  { intArray := { 1, 2, 3, 4, 5, 6 }, 
  { null_ := null_ } 
 }; 
 

 will be encoded in JSON e.g. as (character sequence): 

 ["abcd", 1e0, 42, [ 1, 2, 3, 4, 5, 6 ], null ] 
 

 Note that as no additional instruction is specified for the "num" element, its encoding is a tool option. 

6.4.4 JSON Objects 

JSON object values consist of unordered sequences of zero or more object members, where each object member is 
constructed of a name-value pair. The JSON specification IETF® RFC 7159 [2] does not require uniqueness of object 
member names within a JSON object. 

JSON object specifications should be translated to TTCN-3 record-s. The name of the record shall be the product of 
applying clause 6.3 to the name of the object being translated, if this is specified, or be an arbitrary valid TTCN-3 
identifier otherwise. The name of the type shall not be "Object", if this is the name of the JSON object being 
translated, the postfixing rules specified in item f) of clause 6.3 shall be applied to it. 

Each member of the object being converted shall generate a record field, where the name of the field shall be the 
product of applying clause 6.3 to the name of the object member, but it shall not be "order": if this would be the name 
of the TTCN-3 field, the postfixing rules specified in item f) of clause 6.3 shall be applied to it, as if it was preceded by 
a field named order. The type of the field shall be a type defined in clause 6 of the present document, corresponding 
to the JSON type (or literal values allowed) of the object member. If the object member can carry values of different 
JSON types (or literals), the type of the field shall be a union of the TTCN-3 types required to represent all possible 
values of the object member being translated, where the union field names shall be the names of the field's type with 
lower cased first character. 
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Following this translation an optional TTCN-3 record of JSON.String field named order may be inserted 
as the first field of the record, and an optional field named memberList of the type record length 
(1..infinity) of JSON.ObjectMember shall be inserted as the last field of the record. 

Possible name clashes caused by inserting the memberList field shall be resolved according to item f) of clause 6.3 
with the exception that the additionally inserted field memberList shall be handled as if it was the first field of the 
record (i.e. if an object member with the name "memberList" exists, the object member's name shall be postfixed). 
Finally the "JSON:object" and if the order field is present the "useOrder" encoding instructions shall be attached to 
the generated record type. Any other encoding instructions may be attached to the record fields, as necessary for a 
correct translation. 

The memberList field allows inserting any extra object members in instance definitions, and converters shall encode 
each ObjectMember as member of the JSON object being produced. At JSON to TTCN-3 conversion JSON object 
members, which cannot be decoded into any other field being produced from the member's name, shall be decoded as 
element of the memberList field. 

Use of the order field is specified in clause B.3.12. 

NOTE: Note that attaching the optional "implicit omit" attribute to TTCN-3 values and templates implementing 
object instances will allow skipping unused order and memberList fields in the instance definitions. 

EXAMPLE: TTCN-3 Schema for a JSON object 

Suppose that the specification defines a JSON object that shall carry the location information "Latitude", 
"Longitude", which are floating point numbers and may carry the "Precision" and "Address" information, where 
precision is to be provided as a number and the address is another JSON object containing the city, street and 
house number information, where city and street are JSON strings, house number is an integer value. 
The schema of this specification can be described in TTCN-3 e.g. as: 

 module MyObjectSchema { 
 
  import from JSON all; 
 
  type record Coordinates { 
   record of JSON.String order optional, 
   JSON.Number Latitude, 
   JSON.Number Longitude, 
   JSON.Number Precision optional, 
   Address Address_1 optional, 
   record length (1..infinity) of JSON.ObjectMember memberList optional 
  } with { 
   variant "JSON:object"; 
   variant "useOrder" 
   variant(Address_1) "name as 'Address'"; 
    } 
 
  type record Address { 
   record of JSON.String order optional, 
   JSON.String city, 
   JSON.String street, 
   JSON.Integer house_no_, 
   record length (1..infinity) of JSON.ObjectMember memberList optional 
  } with { 
   variant "JSON:object"; 
   variant "useOrder"; 
   variant (house_no_) "name as 'house no.' " 
  } 
 
   
 } with { encode "JSON" } 
 

 And the TTCN-3 templates: 

  template Coordinates t_coordinates := { 
   Latitude := 51.523704, 
   Longitude := -0.158553, 
   Address_1 := t_address 
  } with { optional "implicit omit" } 
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  template Address t_address := { 
   order := {"house_no_","subno","street","city"}, 
   city := "London", 
   street := "Baker", 
   house_no_ := 221, 
   memberList := {{"subno",{str:="B"}}} 
  } 
 

 will be encoded in JSON as: 

 {"Latitude":51.523704,"Longitude":-0.158553,"Address": 
 {"house no.":221,"subno":"B","street":"Baker","city":"London"}} 
 

There is no type-specific encoding instruction defined for JSON.Object, in addition to the generic ones like 
"normalize" and "name as …". 

6.4.5 JSON Literals 

JSON specifies three literal values: true, false and null. These are mapped to the TTCN-3 types: 

 //When only the true and false literals are allowed 
 type boolean Bool with { variant "JSON:literal" } 
 
 //When only the null literal is allowed 
 type enumerated Null { null_ } with { variant "JSON:literal" } 
 

NOTE: In the case if a JSON value could contain all three defined JSON literals, the user can define a union type 
of the above types. 

There is no type-specific encoding instruction defined for the above types mapping JSON literals, in addition to the 
generic ones like "normalize" and "name as …". 

EXAMPLE: 

 The TTCN-3 value: 

 const JSON.Bool c_true := true; 
 

 will be transformed to JSON e.g. as: 

 true 

 (its UTF-8 serialization is 74727565). 

7 Using JSON to exchange data between TTCN-3 and 
other systems 

7.1 General rules 
Clause 7 of the present document specifies converting abstract TTCN-3 values into their JSON representation (see 
IETF® RFC 7159 [2]) and converting JSON data into values of abstract TTCN-3 types. Clause 7 of the present 
document covers the conversion rules for the different TTCN-3 data types, while the encoding instructions, influencing 
the conversion are detailed in Annex B. 

By default all instances of top-level TTCN-3 types are represented by a "wrapper" JSON object with a single object 
member, where the name of the object member shall be: 

• the name of a built-in TTCN-3 type, except for anytype-s; 

• the qualified name of the built-in TTCN-3 type anytype; or 

• the qualified name of a user-defined TTCN-3 type (in case of a type alias, the name of the alias type shall be 
used); 
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and the value of the object member is the JSON representation of the value of the given instance. The name of the 
top-level TTCN-3 type shall be transformed to a JSON.String. 

In the TTCN-3 to JSON direction, generating the type-name wrapper object for the top-level type can be disabled by 
attaching the "noType" encoding instruction (see clause B.3.11). In the JSON to TTCN-3 direction, the presence of the 
TTCN-3 type's name in the JSON "wrapper object" makes the conversion unambiguous, but tools shall transform JSON 
values without the type-name wrapper object to TTCN-3 values, if the type of the TTCN-3 instance can be determined 
(e.g. known from an external function declaration or from a port type definition). 

As the JSON value's syntax is unambiguous for float and boolean values only, tools should not rely on the JSON value's 
syntax only when determining the TTCN-3 type. 

Conversion to and from JSON is allowed for types with the encode attributes specified in clause B.2. 

EXAMPLE 1: Default conversion using the type wrapper 

 The TTCN-3 constant MyChar: 

 module Mymodule { 
  type charstring MyChar with { encode "JSON" };  
  const  MyChar c_char := "abc"; 
 } 
 

 Will be represented in JSON as: 

 { "Mymodule.MyChar" : "abc" } 
 

EXAMPLE 2: Conversion without the type wrapper 

 type charstring MyChar with { encode "JSON"; variant "noType" }; 
 
 const  MyChar c_char := "abc"; 
 

 Will be represented in JSON as: 

 "abc" 
 

7.2 JSON representations of TTCN-3 values 

7.2.1 Character strings 

TTCN-3 charstring, universal charstring values shall be encoded as JSON.Strings (see clause 6.4.2). 

Charstrings shall appear exactly like in TTCN-3, with the exception that in the JSON representation the quotation mark 
(char(U22), reverse solidus (char(U5C) and all C0 control characters (char(U0) through char(U1F) shall be 
escaped. Both forms of escaping, i.e. the USI-like \uHHHH and the short format can be used, unless otherwise regulated 
by the "escaped as…" encoding instruction (see clause B.3.7). 

Universal charstrings shall be represented in JSON strings with UTF-8 encoding. JSON strings can contain the escaped 
character \u followed by 4 hex digit characters, the decoder shall convert this into the character represented by the hex 
digits. 

EXAMPLE: 

 The TTCN-3 value: 

 const universal charstring c_uchar := char(U9) & "my string"; 
 

 Will be represented in JSON as: 

 { "universal charstring" : "\u0009my string" } 
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7.2.2 Binary Strings 

TTCN-3 bitstring, hexstring and octetstring values shall be encoded in JSON as JSON.String-s (see 
clause 6.4.2) containing the bits or hex digits as capital characters. At JSON to TTCN-3 conversion all characters 
allowed for binary TTCN-3 string types as specified in clause 6.1.1 of ETSI ES 201 873-1 [1] shall be accepted and 
converted to TTCN-3, the characters Space (char(U20)), Horizontal tab (char(U9)), Line feed (char(UA)) and Carriage 
return (char(UD)) shall be ignored, while any other character shall cause an error, unless specified differently by the 
error behaviour encoding instruction (see clause B.3.13). 

EXAMPLE: 

 The TTCN-3 value: 

 const hexstring c_hex1 := '00ABC'H; 
 const hexstring c_hex2 := '00abc'H; 
 

 Both values will be transformed to the JSON value: 

 { "hexstring" : "00ABC" } 
 

 The JSON value: 

 { "hexstring" : "00 abc" } 
 

 will be transformed to the TTCN-3 value: 

 '00ABC'H 
 

7.2.3 Integer 

All TTCN-3 integer values shall be encoded as the JSON numbers (see clause 6.4.1), without the optional fraction 
and exponent parts. 

At decoding the JSON -0 value, by default shall be converted to the TTCN-3 value 0. 

NOTE: Detection of the minus sign in the JSON -0 value during decoding is possible only if the decoded field is 
of a float type and the "useMinus" encoding instruction is attached to it (see clause B.3.6). 

EXAMPLE: 

 The TTCN-3 value: 

 const integer c_int := 42; 
 

 Will be represented by the JSON value: 

 { "integer" : 42 } 
 

7.2.4 Float 

Numeric TTCN-3 float values shall be encoded as JSON numbers (see clause 6.4.1). 

At encoding the minus sign of the TTCN-3 –0.0 value shall be preserved. At decoding the JSON negative zero values, 
by default shall be converted to the TTCN-3 value 0.0, unless the "useMinus" encoding instruction is applied to the 
TTCN-3 type (see clause B.3.6). 

The special float values "infinity", "-infinity" and "not_a_number" are encoded as JSON strings.  

EXAMPLE: 

 The TTCN-3 value: 

 const float c_float := -42.5; 
 

 Will be represented by the JSON value: 

 { "float" : -4.25E1 } 
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7.2.5 Boolean 

TTCN-3 boolean values shall be encoded in JSON as the literals true and false. 

EXAMPLE: 

 The TTCN-3 value: 

 const boolean c_bool := true; 
 

 Will be represented by the JSON value: 

 { "boolean" : true } 
 

7.2.6 Enumerated 

TTCN-3 enumerated values shall be encoded as JSON.String-s. 

For enumerated values with a single implicit or explicit associated integer value the string shall contain the name of the 
enumerated value. 

For enumerated values with an associated integer value list or range, the string shall contain the name of the enumerated 
value and a single integer value, following the enumeration name in a pair of parenthesis, without any space. 

NOTE: Enumerated values not defined by the relevant TTCN-3 type can be received from an external system, if 
the error handling behaviour for the top-level type is set to EB_WARNING or EB_IGNORE (see 
clause B.3.13), however, in this case the whole received JSON value is handled in TTCN-3 as a universal 
charstring value. 

EXAMPLE: 

 The TTCN-3 values: 

 type enumerated MyEnumType { 
  blue(0), 
  yellow(1), 
  green(3), 
  other(2, 4..255) 
 } with { encode "JSON" }; 
 
 const MyEnumType c_enum1 := blue; 
 const MyEnumType c_enum2 := other(4); 
 

 Will be represented by the JSON values respectively: 

 { "MyEnumType": "blue" } 
 { "MyEnumType": "other(4)" } 
 

7.2.7 Verdicttype 

TTCN-3 verdicttype values shall be encoded in JSON as JSON.String-s. The string shall contain one of the 
values: "pass", "fail", "inconc" or "none". Any other value shall cause an error unless an error behaviour encoding 
instruction specifies otherwise (see clause B.3.13). 

NOTE: Other verdict values can be received from an external system, if the error handling behaviour for the top-
level type is set to EB_WARNING or EB_IGNORE (see clause B.3.13) and no type wrapper is present, 
the whole received JSON value is handled in TTCN-3 as a universal charstring value. 
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EXAMPLE: 

 The TTCN-3 value: 

 const verdicttype c_verdict := pass; 
 

 Will be represented e.g. by the JSON value: 

 {"verdicttype":"pass"} 
 

7.2.8 Record and set 

The body of TTCN-3 record and set values shall be encoded to JSON objects. 

Each object member shall represent a field, where the object member's name shall be the name of the field and its value 
shall be the value of the field. 

Omitted optional TTCN-3 fields can be handled in different ways in JSON: 

• By default (i.e. when none of the below encoding instruction is applied to the field in its corresponding type 
definition), it shall be omitted at TTCN-3 to JSON conversion, i.e. no object member is generated for the field. 
At JSON to TTCN-3 conversion, omit shall be assigned to optional fields that do not appear in the JSON 
value. 

• If the "omit as null" encoding instruction (see clause B.3.8) is applied to the corresponding field of its type 
definition, the omitted TTCN-3 field is represented in JSON as an object member, where the object member's 
name shall be the name of the field and its value shall be the null JSON literal value. 
At JSON to TTCN-3 conversion, JSON object members with the literal value null shall be converted to 
omit for TTCN-3 data-type fields, and to the TTCN-3 value null for default and component type fields. 

• If the "default" encoding instruction (see clause B.3.9) is applied to the corresponding field of its type, no 
JSON object member shall be generated for the TTCN-3 field, while at JSON to TTCN-3 conversion, if no 
object member corresponds to the field, the default value defined in the instruction shall be assigned to the 
given TTCN-3 field. 

At TTCN-3 to JSON conversion the order of the object members shall be the same as the order of the fields in the 
TTCN-3 value, for both records and sets. 

At JSON to TTCN-3 conversionJSON object members shall be accepted in any order, and in case of record types 
the TTCN-3 fields shall be ordered according to their textual order in the type definition, while in case of set types no 
re-ordering shall apply, i.e. the field order in TTCN-3 shall correspond to the object member's order in the JSON value. 

EXAMPLE 1: Converting a record value 

 The TTCN-3 value c_myRecord: 

 module MyRecExample1 { 
 
 type record MyRecord { 
  integer int, 
  Myset myset 
 } 
 
 type set Myset { 
  float value_, 
  boolean case_ 
 } 
 
 type record of integer MyRecordOfInt; 
 
 const MyRecord c_myRecord := { 5, { 5.5, true } } 
 
 } with { encode "JSON" } 
 

 Will be represented in JSON e.g. as: 

 { "MyRecExample1.MyRecord" : { "int":5 , "myset" : { "value_":5.5, "case_":true }}} 
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EXAMPLE 2: Effect of the noType encoding instruction 

 When the TTCN-3 definitions in example 1 above are used, but adding the "noType" instruction: 
 (adding the instruction to MyRecord directly, would have the same effect) 

 module MyRecExample1 { 
 ... 
 } with { encode "JSON"; variant "noType" } 
 

 In which case the above value c_myRecord is represented in JSON without the wrapper type-name object: 

 { "int":5 , "myset" : { "value_":5.5, "case_":true }} 
 

EXAMPLE 3: Effect of the "omit as null" encoding instruction 

 module MyRecExample2 { 
 
 type record PhoneNumber { 
  integer countryPrefix optional, 
  integer networkPrefix, 
  integer localNumber 
 } with {   variant(countryPrefix) "omit as null"  } 
 const PhoneNumber c_pn := { omit, 20, 1234567 } 
 } with { encode "JSON"} 
 

 Will be represented in JSON e.g. as: 

 { "MyRecExample2.PhoneNumber" : 
  {"countryPrefix":null, "networkPrefix":20, "localNumber":1234567}} 
 
 // For comparison, the JSON representation without the attribute would be: 
 // { "MyRecExample2.PhoneNumber" : {"networkPrefix":20, "localNumber":1234567 }} 
 

7.2.9 Record of, set of and arrays 

TTCN-3 record of, set of and array values shall be encoded in JSON as arrays. The elements of the array shall 
be the JSON representations of the corresponding TTCN-3 elements. 

JSON array elements shall appear in the same order as in the TTCN-3 value. 

EXAMPLE: 

 The TTCN-3 value c_myRecOf: 

 module MyRecOfExample { 
 
 type record of integer MyRecordOfInt; 
 
 const MyRecordOfInt c_myRecOf := {1,2,3}  
 
 } with { encode "JSON" } 
 

 Will be represented in JSON e.g. as: 

 { "MyRecOfExample.MyRecordOfInt" : [1,2,3] } 
 

7.2.10 Union and anytype 

By default TTCN-3 unions and anytype fields shall be encoded as JSON objects. The object shall contain one 
object member, the name of which shall be the name of the selected TTCN-3 alternative (name of the field for unions 
and name of the type for anytypes) and its value shall be the value of the selected TTCN-3 field. 

EXAMPLE 1: Union representation 

 The TTCN-3 value c_myUnion: 

 module MyUnionExample { 
  type union U1 { // proposed order of fields 
   integer i, 
   float f, 
   octetstring os, 
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   charstring cs 
  } with { encode "JSON" } 
 
  const U1 c_myUnion := { f := 42.5 } 
 } with { encode "JSON" } 
 

 Will be represented in JSON e.g. as: 

 { "MyUnionExample.U1" : { "f" : 4.25E1 }} 
 

To TTCN-3 unions the "asValue" encoding instruction (see clause B.3.10) can be applied, in which case the JSON 
representation shall only contain the value of the chosen alternative, i.e. the TTCN-3 value is represented as the 
corresponding JSON value, without the name of the selected field. At JSON to TTCN-3 conversion the first alternative 
of the TTCN-3 union type shall be selected, allowed by the JSON value's syntax. 

NOTE 1: The "as Value" is not allowed for anytype-s, as it is an "implicit union" without defined order of 
alternatives. 

NOTE 2: The "asValue" instruction should be used with due caution. It is a good idea to declare more restrictive 
fields before less restrictive ones; e.g.: hexstring is more restrictive than universal charstring, because 
hexstring can only decode hex digits, whereas universal charstring can decode any character. 

EXAMPLE 2: Union with the "asValue" encoding instruction 

 Considering the TTCN-3 module: 

 module Mymodule 
  // proposed order of fields 
  type union U1 { 
   integer i, 
   float f, 
   octetstring os, 
   charstring cs 
  } 
 
  // unhealthy order of fields 
  type union U2 {  
   float f, 
   integer i, 
   charstring cs, 
   octetstring os 
  } 
 
  type record of U1 RoU1; 
  type record of U2 RoU2; 
 
  const RoU1 c_rou1 := { { i := 10 }, { f := 6.4 }, { os := '1ED5'O }, { cs := "hello" } }; 
  const RoU2 c_rou2 := { { i := 10 }, { f := 6.4 }, { os := '1ED5'O }, { cs := "hello" } }; 
 } with { encode "JSON"; variant "noType"; variant "asValue" } 
 

 Both c_rou1 and c_rou2 will be represented in JSON e.g. as: 

 [10,6.4,”1ED5”,”hello”] 
 

 The above JSON array will be converted into the same value as c_rou1, when processed as type RoU1, however it 
will be converted into a value, different from c_rou2, when processed as RoU2: the float field will absorb both 
numbers and the charstring field will absorb both strings and the resulted TTCN-3 value will be: 

 { { f := 10.0 }, { f := 6.4 }, { cs := "1ED5" },  { cs := "hello" } }; 
 

7.2.11 Object Identifiers 

This clause shall be supported only if using ASN.1 with TTCN-3, i.e. ETSI ES 201 873-7 [5] is supported. 

TTCN-3 objid values shall be encoded in JSON as JSON.String-s (see clause 6.4.2) containing the number forms of 
the object identifier components, separated by dot (char(U2E)) characters without whitespace character between the 
digits and the dots. 
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EXAMPLE: 

 The TTCN-3 values: 

 const objid c_objid := objid{ joint_iso_itu_t remote_operations(4) informationObjects(5) 
             version1(0) }; 
 

 Will be transformed to the JSON value: 

 { "objid" : "2.4.5.0" } 
 

8 JSON representations of TTCN-3 values based on 
ASN.1 types 

8.1 General rules 
Clause 8 shall only be supported by implementations supporting both ETSI ES 201 873-7 [5] and the present document. 

Types and values imported from ASN.1 modules automatically shall have JSON encoding allowed and cannot have 
JSON encoding instructions (variant attributes) attached. 

TTCN-3 values based on ASN.1 types can have encoding instructions attached, therefore the effect of the "noType" 
instruction shall be the same as in case of TTCN-3 values based on TTCN-3 types. In the type identification, the name 
of the equivalent TTCN-3 type shall be used (i.e. dashes in ASN.1 names are replaced by underscores). See clauses 7.1 
and B.3.11 for further details. During the conversion of TTCN-3 values to and from JSON, always the TTCN-3 
equivalent type of the values' (ASN.1) type shall be considered, as specified in clause 8 "ASN.1 and TTCN-3 type 
equivalents" and clause 9 "ASN.1 data types and values" of ETSI ES 201 873-7 [5]. 

8.2 Character strings 
Values based on ASN.1 character string types shall be encoded to and from JSON the same way as values based on the 
TTCN-3 universal charstring type. See details in clause 7.2.1 of the present document. 

Character string values defined in ASN.1 modules shall be converted by using the long (USI-like) escaping. When 
converting from JSON, both the long (USI-like) and the short escaping shall be accepted. 

8.3 Binary strings 
Values based on ASN.1 binary string types shall be encoded to and from JSON the same way as values based on the 
TTCN-3 bitstring, hexstring or octetstring types, respectively. See details in clause 7.2.2 of the present document. 

NOTE: Please note TTCN-3 constants generated for ASN.1 named bits (see clause 9.1 of ETSI 
ES 201 873-9 [i.5]), which are processed the same way as TTCN-3 constants declared explicitly. 

8.4 BOOLEAN 
Values based on ASN.1 BOOLEAN types shall be encoded to and from JSON the same way as values based on the 
TTCN-3 boolean type. See details in clause 7.2.5 of the present document. 

8.5 ENUMERATED 
Values based on ASN.1 ENUMERATED types shall be encoded to and from JSON the same way as values based on 
the TTCN-3 enumerated type. See details in clause 7.2.6 of the present document. 

NOTE: ASN.1 does not allow assigning a list or range of associated integers to ENUMERATED type members, 
therefore always the case with a single associated integer value will apply. 
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8.6 REAL 
Values based on ASN.1 REAL types shall be encoded to and from JSON the same way as values based on the TTCN-3 
float type. See details in clause 7.2.4 of the present document. 

8.7 INTEGER 
Values based on ASN.1 INTEGER types shall be encoded to and from JSON the same way as values based on the 
TTCN-3 integer type. See details in clause 7.2.3 of the present document. 

NOTE: TTCN-3 constants generated for ASN.1 named numbers (see clause 9.1 of ETSI ES 201 873-9 [i.5]), 
which are processed the same way as TTCN-3 constants declared explicitly. 

8.8 OBJID 
Object identifier values based on ASN.1 types shall be encoded to and from JSON the same way as values based on the 
TTCN-3 objid type. See details in clause 7.2.11 of the present document. 

8.9 NULL 
Values based on the ASN.1 NULL type shall be encoded by the JSON literal null. The "omit as null" encoding 
instruction (see clause B.3.8) shall not be used for TTCN-3 structured value fields of ASN.1 NULL type. 

NOTE: The value space of the ASN.1 NULL type consists of the single value NULL. 

8.10 SEQUENCE and SET 
Values based on ASN.1 SEQUENCE and SET types shall be encoded to and from JSON the same way as values based 
on the TTCN-3 record and set types respectively. See details in clause 7.2.8 of the present document. 

8.11 SEQUENCE OF and SET OF 
Values based on ASN.1 SEQUENCE OF and SET OF types shall be encoded to and from JSON the same way as 
values based on the TTCN-3 record of and set of types respectively. See details in clause 7.2.9 of the present document. 

8.12 CHOICE and Open Types 
Values based on ASN.1 CHOICE types shall be encoded to and from JSON the same way as values based on the 
TTCN-3 union type. See details in clause 7.2.10 of the present document. 

In ASN.1 open types can be created by information object class definitions, which are not directly imported to TTCN-3. 
However, these open type fields of IO classes can be referenced by importable ASN.1 definitions (e.g. be the field type 
of ASN.1 SEQUENCE types). In which case values based on ASN.1 open types shall be converted to and from JSON 
the same way as values based on the TTCN-3 anytype type. See details in clause 7.2.10 of the present document. 
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Annex A (normative): 
TTCN-3 module JSON 
This annex defines a TTCN-3 module containing type definitions equivalent to JSON built-in types and literal values. 

module JSON { 
 
//====================Types to define JSON Schemas ================================= 
 
 // JSON Number type (generic) 
 type float Number (!-infinity .. !infinity) with { 
  variant "JSON:number" 
 } 
  
 // Integer type 
 type integer Integer (-infinity .. infinity) with { 
  variant "JSON:integer" 
 } 
  
 // String type 
 type universal charstring String with { 
  variant "JSON:string" 
 } 
  
  
 // Array type 
 type record of JSON.Values Array with { 
  variant "JSON:array" 
 } 
  
 // Subsidiary array types 
 type record of JSON.String StrArray with { 
  variant "JSON:array" 
 } 
 
 type record of JSON.Number NumArray with { 
  variant "JSON:array" 
 } 
 
 type record of JSON.Integer IntArray with { 
  variant "JSON:array" 
  } 
 
 type record of JSON.Bool BoolArray with { 
  variant "JSON:array" 
 } 
 
 type record of JSON.Object ObjArray with { 
  variant "JSON:array" 
 } 
  
 // Object member 
 type record ObjectMember { 
  JSON.String name, 
  JSON.Values value_ 
 } with { 
  variant "JSON:objectMember" 
 } 
  
 // Generic JSON object type 
 type record Object { 
  record length (1..infinity) of JSON.ObjectMember memberList optional 
 } with { 
  variant "JSON:object" 
 } 
  
 type union Values { 
  JSON.String str, 
  JSON.Number num, 
  JSON.Integer int, 
  JSON.Object object, 
  JSON.Array array, 
  JSON.StrArray strArray, 
  JSON.NumArray numArray, 
  JSON.IntArray intArray, 
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  JSON.BoolArray boolArray, 
  JSON.ObjArray objArray, 
  JSON.Bool bool, 
  JSON.Null null_ 
 } with { 
  variant "asValue" 
 } 
 
 //JSON literals 
 //When only the true and false literals are allowed 
 type boolean Bool with { variant "JSON:literal" } 
 
 //When only the null literal is allowed 
 type enumerated Null { null_ } with { variant "JSON:literal" } 
 
 
//================================ Useful values ================================= 
 

 type JSON.String String_short with {variant "escape as short" }; 
 
 type JSON.String String_usi with {variant "escape as usi" }; 
 
 type JSON.String String_tr with {variant "escape as transparent" }; 
 
 const JSON.String_short cs_bs := char(U8); // encoded as "\b" (Backspace) 
 const JSON.String_short cs_ht := char(U9); // encoded as "\t" (Horizontal tab) 
 const JSON.String_short cs_lf := char(UA); // encoded as "\n" (Line feed) 
 const JSON.String_short cs_ff := char(UC); // encoded as "\f" (Form feed) 
 const JSON.String_short cs_cr := char(UD); // encoded as "\r" (Carriage return) 
 const JSON.String_short cs_quot := """"; // encoded as "\"" (Quotation mark) 
 const JSON.String_short cs_sol := "/"; // encoded as "\/" (Solidus or Slash) 
 const JSON.String_short cs_rs := "\"; // encoded as "\\" (Reverse solidus or Backslash) 
 
 const JSON.String_usi cu_nul := char(U0); // encoded as "\u0000" (Null character) 
 const JSON.String_usi cu_soh := char(U1); // encoded as "\u0001", (Start of Heading  
 const JSON.String_usi cu_stx := char(U2); // encoded as "\u0002" (Start of Text) 
 const JSON.String_usi cu_etx := char(U3); // encoded as "\u0003" (End-of-text character) 
 const JSON.String_usi cu_eot := char(U4); // encoded as "\u0004" (End-of-transmission character) 
 const JSON.String_usi cu_enq := char(U5); // encoded as "\u0005" (Enquiry character) 
 const JSON.String_usi cu_ack := char(U6); // encoded as "\u0006" (Acknowledge character) 
 const JSON.String_usi cu_bel := char(U7); // encoded as "\u0007" (Bell character) 
 const JSON.String_usi cu_bs := char(U8); // encoded as "\u0008" (Backspace) 
 const JSON.String_usi cu_ht := char(U9); // encoded as "\u0009" (Horizontal tab) 
 const JSON.String_usi cu_lf := char(UA); // encoded as "\u000A" (Line feed) 
 const JSON.String_usi cu_vt := char(UB); // encoded as "\u000B" (Vertical tab) 
 const JSON.String_usi cu_ff := char(UC); // encoded as "\u000C" (Form feed) 
 const JSON.String_usi cu_cr := char(UD); // encoded as "\u000D" (Carriage return) 
 const JSON.String_usi cu_so := char(UE); // encoded as "\u000E" (Shift Out) 
 const JSON.String_usi cu_si := char(UF); // encoded as "\u000F" (Shift In) 
 const JSON.String_usi cu_dle := char(U10); // encoded as "\u0010" (Data Link Escape) 
 const JSON.String_usi cu_dc1 := char(U11); // encoded as "\u0011" (Device Control 1) 
 const JSON.String_usi cu_dc2 := char(U12); // encoded as "\u0012" (Device Control 2) 
 const JSON.String_usi cu_dc3 := char(U13); // encoded as "\u0013" (Device Control 3) 
 const JSON.String_usi cu_dc4 := char(U14); // encoded as "\u0014" (Device Control 4) 
 const JSON.String_usi cu_nak := char(U15); // encoded as "\u0015" (Negative-acknowledge charac.) 
 const JSON.String_usi cu_syn := char(U16); // encoded as "\u0016" (Synchronous Idle) 
 const JSON.String_usi cu_etb:= char(U17); // encoded as "\u0017" (End of Transmission Block) 
 const JSON.String_usi cu_can := char(U18); // encoded as "\u0018" (Cancel character) 
 const JSON.String_usi cu_em := char(U19); // encoded as "\u0019" (End of Medium) 
 const JSON.String_usi cu_sub := char(U1A); // encoded as "\u001A" (Substitute character) 
 const JSON.String_usi cu_esc := char(U1B); // encoded as "\u001B" (Escape character) 
 const JSON.String_usi cu_fs := char(U1C); // encoded as "\u001C" (File Separator) 
 const JSON.String_usi cu_gs := char(U1D); // encoded as "\u001D" (Group Separator) 
 const JSON.String_usi cu_rs := char(U1E); // encoded as "\u001E" (Record Separator) 
 const JSON.String_usi cu_us := char(U1F); // encoded as "\u001F" (Unit Separator) 
 const JSON.String_usi cu_sp := " "; // encoded as "\u0020" (Space) 
 const JSON.String_usi cu_quot := """"; // encoded as "\u0022" (Quotation mark) 
 const JSON.String_usi cu_sol := "/"; // encoded as "\u002F" (Solidus or Slash) 
 const JSON.String_usi cu_revs := "\"; // encoded as "\u005C" (Reverse solidus or Backslash) 
 const JSON.String_usi cu_del := char(U7F); // encoded as "\u007F" (Delete) 
 
 //NOTE: see ISO/IEC 10646 [3] and https://en.wikipedia.org/wiki/List_of_Unicode_characters 
 

} with { encode "JSON" } //end module 
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Annex B (normative): 
Encoding instructions 

B.1 General 
This annex defines the encoding instructions for the JSON to TTCN-3 mapping. Encoding instructions are contained in 
TTCN-3 encode and variant attributes associated with the TTCN-3 definition, field or value of a definition. 

A single attribute shall contain one encoding instruction only. Therefore, if several encoding instructions shall be 
attached to a TTCN-3 language element, several TTCN-3 attributes shall be used. 

The "syntactical structure" paragraphs of each clause below identify the syntactical elements of the attribute (i.e. inside 
the with {   } statement). The syntactical elements shall be separated by whitespaces, which shall contain one or 
more spaces (char(U20)) and horizontal tab (char(U9)) characters. No whitespace character is required between 
the opening and closing quotation marks (char(U22)) and the first and last syntactical elements of the instruction, 
respectively, though whitespace characters are allowed at those places as well. All characters (including whitespaces) 
between a pair of apostrophe (or single quote characters, char(U27)) shall be part of the encoding instruction. 

Typographical conventions: bold font identify TTCN-3 keywords. The syntactical elements freetext and name are 
identified by italic font; they shall contain one or more characters and their contents are specified by the textual 
description of the encoding instruction. Normal font identify syntactical elements that shall occur within the TTCN-3 
attribute as appear in the syntactical structure. The following character sequences identify syntactical rules and shall not 
appear in the encoding instruction itself: 

• ( | ) - identify alternatives. 

• [ ] - identify that the part of the encoding instruction within the square brackets is optional. 

• { } - identify zero or more occurrences of the part between the curly brackets. 

• """ - identify the opening or the enclosing quotation marks (char(U22)) of the encoding instruction. 

B.2 The JSON encode attribute 
The TTCN-3 encode attribute shall be used to identify that the definitions in the scope unit to which this attribute is 
attached shall be encoded in the following formats: 

• "JSON" or "JSON RFC7159" 

Syntactical structure 

 encode """ ( JSON | JSON RFC7159) """ 
 

Applicable to (TTCN-3) 

Module, group, definition. 

B.3 Encoding instructions 

B.3.1 General rules 
Faults in the JSON encoding/decoding process, by default shall cause errors. This can be modified with the error 
behaviour encoding instruction (see clause B.3.13). 
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Any number of white spaces (spaces and tabs only) can be added between each word or identifier in the attribute syntax, 
but at least one is necessary if the syntax does not specify a separator (a comma or a colon). The attribute can also start 
and end with white spaces. 

EXAMPLE: 

 variant(field1) "omit as null";   // ok 
 variant(field2) " omit as null ";   // ok (extra spaces) 
 variant(field3) " omit as null"; // ok (with tabs) 
 variant(field4) "omitasnull";   // not ok 
 

B.3.2 JSON type identification 
Syntactical structure(s) 

 variant """ ( JSON:array | JSON:integer | JSON:literal | JSON:number |  
      JSON:string | JSON:object | JSON: objectMember """ 

Applicable to (TTCN-3) 

TTCN-3 type definitions. 

Description 

These encoding instructions are typically should not appear in TTCN-3 module describing a JSON Schema. They are 
attached to the TTCN-3 type definitions of the module named JSON in Annex A of the present document, 
corresponding to JSON "types" and literal values, and normally should be imported from this module. 

The encoder and decoder shall handle instances of a type according to the corresponding JSON definition in IETF® 
RFC 7159 [2]. 

B.3.3 Normalizing JSON Values 
Syntactical structure(s) 

 variant """ normalize """ 

Applicable to (TTCN-3) 

All TTCN-3 types or values 

Description 

JSON allows arbitrary number of whitespaces, composed of space(char(U20)), horizontal tabulator(char(U9)), 
line feed (char(UA)) or carriage return (char(UD)) characters between JSON syntactical elements. 

In the encoding process this instruction shall result that in the encoded JSON value only a single space (char(U32)) 
character is used between any two JSON syntactical elements. 

B.3.4 Name as 
Syntactical structure(s) 

 variant """ name ( as ( 'freetext' | changeCase ) | all as <changeCase> ) """, 

where <changeCase> := ( capitalized | uncapitalized | lowercased | uppercased ) 

Applicable to (TTCN-3) 

Fields of records, sets and unions. 
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Description 

Gives the specified field a different name in the JSON representation.  

When the "name as 'freetext'" form is used, freetext shall be used as the name of the JSON object member, instead of the 
name of the related TTCN-3 field or definition. 

The "name as capitalized" and "name as uncapitalized" forms identify that only the first character of the related 
TTCN-3 name shall be changed to lower case or upper case respectively. 

The "name as lowercased" and "name as uppercased" forms identify that each character of the related TTCN-3 name 
shall be changed to lower case or upper case respectively. 

EXAMPLE: 

type union PersionID { 
  integer numericID, 
  charstring email, 
  charstring name 
} with { 
  variant(numericID) "name as 'ID'"; 
  variant(email) "name as 'Email'"; 
  variant(name) "name as 'Name'"; 
} 
type record of PersionID PersionIDs; 
var PersionIDs pids := { { numericID := 189249214 }, { email := "jdoe@mail.com" }, { name := "John 
Doe" } }; 
// JSON code: 
// [{"ID":189249214},{"Email":"jdoe@mail.com"},{"Name":"John Doe"}] 
 

B.3.5 Number of fraction digits 
Syntactical structure(s) 

 variant """ fractionDigits <an integer value>""" 

Applicable to (TTCN-3) 

Types and fields of JSON.Number type. 

Description 

By default, the number of fraction digits, and/or the use of the exponent part is a tool implementation option. The 
"fractionDigits" encoding instruction, at encoding constraints the maximum number of fractional digits following the 
decimal point in the encoded JSON value. TTCN-3 allows using either the decimal point notation or the E-notation for 
float values (see clause 6.1.0 of ETSI ES 201 873-1 [1]). In the encoding process, at most the number of fraction digits 
specified in the instruction shall be used. If representing the actual value does not require the number of fraction digits 
specified by this instruction, the encoder shall use the needed number of digits, if If representing the actual (numeric) 
value would require more fraction digits than specified by this instruction, the encoder shall use a mixed fraction part + 
exponent part representation. 

NOTE: The "fractionDigits 0" instruction will enforce the encoder to use the exponent part exclusively. 

EXAMPLE: Number of fraction digits 

 If: 

 const JSON.Number c_number1 := <actual value> with {variant "fractionDigits 3"}; 
 

 then 

<actual value> encoded JSON value 
0.0 0.0 

3.14 3.14 
3.142 3.142 
3.1415 31.415E-1or 31.415e-1 
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 If: 

 const JSON.Number c_number2 := <actual value> with {variant "fractionDigits 0"}; 
 

 then 

<actual value> encoded JSON value 
0.0 0E1 or 0e1 

3.14 314E-2 or 314e-2 
3.142 3142E-3 or 3142e-3 
3.1415 31415E-4 or 31415e-4 

 

This encoding instruction has no effect at decoding of JSON values. 

B.3.6 Use the Minus sign 
Syntactical structure(s) 

 variant """ useMinus """ 

Applicable to (TTCN-3) 

Types and fields of JSON.Number and JSON.Integer types. 

Description 

By default, without the "useMinus" instruction, JSON numbers are decoded to TTCN-3 JSON.Number and IEEE 754 
float useful types by their values; i.e. all the -0.0, 0.0, -0e<number>, 0e<number>, -0E<number>, 0E<number>, -0 and 
0 JSON values are decoded in TTCN-3 as 0.0 for JSON.Number types and as 0 for JSON.Integer types (i.e. 
without the minus sign), where <number> is any positive or negative integer number. 

The "useMinus" encoding instruction, when applied to a JSON.Number type, instructs the decoder to decode the 
JSON values -0.0, -0e<number>, -0E<number> and -0 in TTCN-3 as negative float numbers, i.e. together with their 
minus sign. The instruction has no effect on JSON.Integer types. 

This encoding instruction has no effect at encoding and at decoding of any other JSON values than specified above. 

B.3.7 Escape as 
Syntactical structure(s) 

 variant """ escape as ( short | usi | transparent ) """, 

Applicable to (TTCN-3) 

Types and fields of JSON.Number and JSON.String types. 

Description 

The "escape as short" encoding instruction tells the encoder that all characters in the TTCN-3 value, which has short 
escape sequences defined (see IETF® RFC 7159 [2] and clause 6.4.2), shall be encoded using the short escape 
sequence. 

The "escape as usi" encoding instruction tells the encoder that all characters in the TTCN-3 value shall be encoded 
using the USI-like escape sequence "\u<HHHH>" (see IETF® RFC 7159 [2] and clause 6.4.2). 

The "escape as transparent" encoding instruction tells the encoder that characters in the TTCN-3 value shall not be 
escaped in their JSON representation, except the C0 control characters (present in the TTCN-3 value in the char(…) 
representation). 

NOTE: This instruction is useful, when a character string is copied from a JSON string, where the needed 
characters are already have been replaced by their escape sequences, into a TTCN-3 code. 
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This instruction has no effect at decoding, i.e. all escaped characters, using either the short or the USI-like escaping 
shall be decoded to and evaluated in its (abstract) character representation in TTCN-3 (e.g. at matching or in any other 
operations). 

B.3.8 Omit as null 
Syntactical structure(s) 

 variant """ omit as null """, 

Applicable to (TTCN-3) 

Optional fields of records and sets 

Description 

If set, the value of the specified optional field will be encoded with the JSON literal 'null' if the value is omitted. By 
default omitted fields (both their name and value) are skipped entirely. The decoder ignores this attribute and accepts 
both versions. 

This encoding instruction shall not be used for fields of ASN.1 NULL type. 

B.3.9 Default 
Syntactical structure(s) 

 variant """ default (<value>)""" 

where <value> is a value of the type the instruction is applied to. 

Applicable to (TTCN-3) 

Fields of records and sets 

Description 

This encoding attribute has no effect at encoding. 

The decoder shall set the given value to the field if it does not appear in the encoded JSON value.  

The <value> shall contain a valid TTCN-3 value of the field's type, but string types do not need the starting and ending 
quotes. All JSON escaped characters can be used, plus the escape sequence '\)' will add a ')' (right round bracket) 
character. 

Optional fields with a default value will be set to omit if the field is set to null in the JSON value being decoded, 
and shall use the default value if the field does not appear in the encoded JSON value. 

EXAMPLE: 

 type record Product { 
  charstring name, 
  float price, 
  octetstring id optional, 
  charstring from 
 } with { 
  variant(id) "default (FFFF)" 
  variant(from) "default(Hungary)" 
 } 
 
 // { "name" : "Shoe", "price" : 29.50 } will be decoded into:  
 // { name := "Shoe", price := 29.5, id := 'FFFF'O, from := "Hungary" } 
 
 // { "name" : "Shirt", "price" : 12.99, "id" : null } will be decoded into: 
 // { name := "Shirt", price := 12.99, id := omit, from := "Hungary" }  
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B.3.10 As value 
Syntactical structure(s) 

 variant """ asValue """, 

Applicable to (TTCN-3) 

Unions types and fields. 

Description 

The TTCN-3 union value shall be encoded as a JSON value instead of as a JSON object with one object member (see 
clause 7.2.10). This allows the creation of heterogenous arrays in the JSON document (e.g. ["text",10,true,null]). 

Since the field name no longer appears in the encoded JSON value, the decoder shall determine the selected field based 
on the syntax of the JSON value. The first union field (in the textual order of declaration) that can successfully decode 
the JSON value will be the selected one. 

B.3.11 No Type 
Syntactical structure(s) 

 variant """ noType """ 

Applicable to (TTCN-3) 

TTCN-3 types. 

Description 

The "noType" encoding instruction shall cause that the "type wrapper" of the top-level TTCN-3 type of the instance 
being encoded, is omitted in the JSON representation, and at decoding a JSON value, it is not expected to be present. 
However, the presence of the type wrapper shall not cause a decoding error. See also clause 7.1 General rules. 

B.3.12 Use order 
Syntactical structure(s) 

 variant """ useOrder """ 

Applicable to (TTCN-3) 

Record type definition, generated for JSON objects (see clause 6.4.4). 

Description 

The encoding instruction designates that the encoder shall encode the JSON object members according to the strings' 
order in the order field. The object member names are equally identified by the field names of the record type 
generated for the object (except the order and memberList fields) and the values of the name fields of the 
memberList field's record of elements. If the order field contains more or less elements than object members 
identified by the TTCN-3 value, or a member name non-existing in the TTCN-3 value, the encoder shall cause a test 
case error. If the order field is missing, the textual order of their fields in the corresponding type definition - and the 
elements' order in the memberList field of the value being encoded - shall be followed. 

At decoding, if the order field exists in the type definition of the value being decoded, the received values of the 
JSON object members shall be placed in their corresponding record fields or into a subsequent element of the 
memberList field if no dedicated field exists for the member, and a new record of element containing the member's 
name shall be inserted into the order field for each JSON object member processed (i.e. the final order of the record 
of elements shall reflect the order of the members in the JSON object being decoded). 
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B.3.13 Error behaviour 
Syntactical structure(s) 

 variant """ errorbehavior "(" <error_type> ":" <error_handling>  
          { "," <error_type> ":" <error_handling> } ")"""", 

where the error types (<error_type>) and possible related error behaviours (<error_handling>) are defined in tables B.1 
and B.2 correspondingly. 

Table B.1: Conversion failure types 

ET_UNDEF Undefined/unknown error. 
ET_DEC_ENUM Decoding of an unknown enumerated value. 
ET_INCOMPL_MSG Decode error: incomplete message. 
ET_INVAL MSG Decode error: invalid message. 
ET_CONSTRAINT The value breaks some constraint. 
ET_ALL All error types. 

 

Table B.2: Values of error behaviours 

EB_ERROR Causes a test case error if the selected error type occurs. 
EB_WARNING Logs a warning but tries to continue the operation. If the decoding 

fails, it returns the undecoded JSON value to TTCN-3 as a universal 
charstring value. 

EB_IGNORE Like EB_WARNING but without the logging a warning message. If 
the decoding fails, it returns the undecoded JSON value to TTCN-3 
as a universal charstring value. 

 

Applicable to (TTCN-3) 

All types. 

Description 

TTCN-3 predefined decoding functions ensure that the decoding trial of the inout parameter encoded_value will not 
cause a test case error, when the decoding fails or is incomplete (see clause C.5 of ETSI ES 201 873-1 [1]). This 
encoding instruction provides a similar feature, i.e. avoid test case error at JSON to TTCN-3 conversion, when the 
TTCN-3 test system is communicating with other systems via an interface that allows alternatively receiving abstract 
TTCN-3 values or TTCN-3 universal charstring values, like TTCN-3 communication ports. 

EB_ERROR is the default error behaviour for all conversion failure types (see tables B.1 and B.2), in which case a 
JSON to TTCN-3 conversion failure shall cause a test case error. When a JSON to TTCN-3 conversion failure occurs, 
and for the type of the failure AND for the target TTCN-3 language element a different error behaviour than 
EB_ERROR is specified, no test case error shall occur, but the relevant behaviour in table B.2 shall be followed. 
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Annex C (informative): 
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