ETSl ES 201 873-8 V3.2.1 (2007-02)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 8. The IDL to TTCN-3 Mapping

D

2 ETSI ES 201 873-8 V3.2.1 (2007-02)

Reference
DES/MTS-00090-8 ttcn3 & IDL

Keywords
IDL, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2007.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 873-8 V3.2.1 (2007-02)

Contents

Intellectual Property RIGNES.........oo et 5
0 Yo (o SRS 5
gLl [N o1 o] o [OOSR 5
1 o010 PR 7
2 L= £ 101 7
3 F N o] o=V (]SSPSR 7
4 Y o] (0= o o SRR 8
5 [0S (o | @0] 1= 011 o S 8
51 1000010101 011U 8
52 Lo g 1) (= £ TSP P TR PRUPTPRUSUSOI 8
5.3 LY S 8
54 L= = USSP PRTUPTPRURUSII 8
6 [0ot] oo S 9
7 DI o = o) {or= 1 o] o OSSPSR PR URURPRPPRPROPPN 9
7.1 Yoo (BT = N0 (= o == 4 o] o 1SS 9
7.2 INEEITACE AECIAIBIION ...ttt e et e st e s ee et e s e ea e e e e e e seeseesbeeneeneeeaneees 10
7.3 WV BIUE GECIAIALION. ...ttt b ettt se e e bt b e bt eh e et e s e et eh e e aeenee b e sbenbesbeene e e ennenes 11
74 (00010 =T | lo (=0 F= = 1 o o F PSP U P URUSROTRPT 11
8 I/ 0 =X 0 = o == 1 o o SO 12
8.1 I DL DASIC EYIES. ...ttt ettt ettt bbbt h b e b b ek b ek bR R R R E R e R R et R e n e e ns 12
811 Integer and floatiNG-POINT TYPES......ccuerieirieriee sttt sttt st b et b e et b et b et sb e et s 12
812 Char and Wi Char YReivieeeiiee ettt b e et b e bbb e b e neren 12
8.13 BOOIEAN YU ...ttt bbb bR b e bRt b et b et b et 12
814 (@ 1= 1 oL TSSO PT PP PSRRI 13
8.15 AANY YD e e e E e E e e e e a e n e s e e s a e e 13
8.2 L0001 Ll =0 1Y/ 0= SR 13
821 S U o SO SOO TSSO 13
822 DiSCriMINGLEA UNIONS ..ottt ettt st b e et b et e e e e e b e sbeeb e s st ese e e e ss e besbesbe e e enneneen 13
8.23 ENUMIBIBLIONS ...tttk b et et e e bt bt h e b et e e e e e e Rt bt eheeh e e heese e e e e e besbe et e eneennenens 15
8.3 BIC= 0] S0 0= SRS 15
8.3.1 = 0 0= 0 0 SRR ROPRTR 15
832 SUNG BN WSETING ..ttt ettt bbbt eb e b e eb s b e e b e s b e e ebesb e e ebesb e e ebesbeneebesbennenea 15
833 FIXEO TYPIES. ...ttt ettt bbbt b bt b e s b bt R e Rt R e Rt h et bRt b e et bbb n e 16
8.4 COMPIEX ECTBIBLONcveveeeetesteeete ettt ettt et b et b e s b e b e e b e b e ne e bt s b et e bt e b s e et eb e st e st eb e st et ebenneneees 16
84.1 N 1= Y TP U OO 16
842 INBEIVE TYES ...ttt sttt b bbbt b e bbbt b e s b et e bt s e et e bt s R et e bt e e e Rt e b e b e st e b e ne et ebe b et b b 16
9 EXCEPLION AECIAIALION......cceeeieeee ettt ettt e e tesreeneesaeeneestesseeneeseeeneesenneas 16
A0 @ o= = (Tola o (= = = (o RSSO 17
AN €1] 10 =0 o == 1 o SRS 18
12 NAMES NG SCOPING. ..t euveurereeeeueeieeseese st st sse s e s esee e st asesseabesee s e s e s eaeeaeeseebeebesbease b e s e e e s e enenseabenrennenennas 18
Annex A (informative): EXAMPIES. ... 20
AL EXAIMPIE. e R R R bR R R e e a Rt bR e e e 20
All DI = o o £ o o T 20
A.l2 Derived TTCN-3 SPECITICALIONccei ettt e et e e s e s reesteensesneesreesaeesneenseensenns 21
Annex B (informative): MAPPING HISES ...ttt 26

ETSI

4 ETSI ES 201 873-8 V3.2.1 (2007-02)

B.1 IDL keyword and concept Mapping liSt........coeceeiiiieiiiice st 26
B.2 Comparisonof IDL, ASN.1, TTCN-2 and TTCN-3 datatypesS.......ccceveieieeierieeieesieceesee st eee e e 27
Annex C (informative): Bibliograpnyocueeee e e 28
[TS 0] Y USRS 29

ETSI

5 ETSI ES 201 873-8 V3.2.1 (2007-02)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 8 of amulti-part deliverable. Full details of the entire series can be found in part 1 [1].

Introduction

Object-based technologies (such as CORBA, DCOM, DCE) and component-based technol ogies (such as CCM, EJB,
.NET) use interface specifications to describe the structure of an object-/component-based system and its operations and
capabilities to interact with the environment. These interface specifications support interoperability and reusability of
obj ects/components.

The techniques used for interface specifications are often called Interface Definition Language (IDL), for example
CORBA IDL, Microsoft IDL or DCE IDL. These languages are comparable in their abilities to define system
interfaces, operations at system interfaces and system structures to various extends. They differ in details of the
obj ect/component model.

When considering the testing of object-/component-based systems with TTCN-3, one is faced with the problem of
accessing the systems to be tested via the system interfaces as described in an IDL specification. In particular, for
TTCN-3 based test systems a direct import of IDL specificationsinto the test specifications for the use of e.g. system's
interface, operation and exception definitionsis prevalent to any manual transformation into TTCN-3.

The present document discusses the mapping of CORBA IDL specificationsinto TTCN-3. This mapping rules out the
principles not only for CORBA IDL, but also for other interface specification languages. The mapping can be adapted
to the details of other interface specification languages.

The Interface Definition Language (IDL) (chapter 3 in [4]) is a base of the whole Common Object Request Broker
Architecture (CORBA) [4] and an important point in developing distributed systems with CORBA. It allows the reuse
and interoperability of objectsin a system. A mapping between IDL and a programming language is defined in the
CORBA standard. IDL isvery similar to C++ containing pre-processor directives (include, comments, etc.), grammar as
well as constant, type and operation declarations. There are no programming language features like,

e.g. if-statements.

The core language of TTCN-3 isdefined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and
operational semantics as well as a definition for the use of the language with ASN.1. The IDL mapping provides a
definition for the use of the core language with IDL (figure 1).

ETSI

http://webapp.etsi.org/IPR/home.asp

6 ETSI ES 201 873-8 V3.2.1 (2007-02)

TTCN-3 < >

Core
ASN.1 types o Tabular
and values » Language format < >
IDL types o Graphical
and values g format < >

.................... TTCN-3 User
The shaded boxes are not

Other types o Presentation defined in the present
and values , > format , —> document

Figure 1. User's view of the core language and the various presentation formats

It makes no difference for the mapping if requested or provided interfaces are required by the test system and SUT.
Hence, TTCN can be used on client and server side without modifications to the mapping rules.

The further document is structured similar to the IDL specification document to provide easy access to the mapping of
each IDL element.

ETSI

7 ETSI ES 201 873-8 V3.2.1 (2007-02)

1 Scope

The present document defines the mapping rules for CORBA IDL (as defined in chapter 3in [4]) to TTCN-3
(asdefined in ES 201 873-1 [1]) to enable testing of CORBA-based systems. The principles of mapping CORBA IDL
to TTCN-3 can be also used for the mapping of interface specification languages of other object-/component-based
technologies.

The specification of other mappings is outside the scope of the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1. TTCN-3 Core Language'.
[2] ISO/IEC 646: "Information technology - 1SO 7-bit coded character set for information
interchange”.
[3] I SO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".
[4] OMG Forma Document: "The Common Object Request Broker - Architecture and Specification”.
[5] ITU-T Recommendation X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".
[6] |EEE 754: "|EEE Standard for Binary Floating-Point Arithmetic".
[7] I SO/IEC 8859: "8-hit single-byte coded graphic character sets’.
3 Abbreviations
For the purposes of the present document, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
CCM CORBA Component Model

NOTE: ByOMG.

CORBA Common Object Request Broker Architecture
NOTE: ByOMG.

DCE Distributed Computing Environment

NOTE: By OSF.

ETSI

http://docbox.etsi.org/Reference

8 ETSI ES 201 873-8 V3.2.1 (2007-02)

EJB Enterprise JavaBeans
NOTE: By Sun.

IDL Interface Definition Language
NET XML -based component technology

NOTE: By Microsoft.

OMG Object Management Group

OSsF Open Software Foundation

SUT System Under Test

TTCN Testing and Test Control Notation
XML eXtended Markup Language

4 Approach

Two different approaches can be identified: the use of either implicit or explicit mapping. The implicit mapping makes
use of the import mechanism of TTCN-3, denoted by the keywords language and import. It facilitates the immediate use
of data specified in other languages. Therefore, the definition of a specific data interface for each of these languagesis
required. Currently, ASN.1 data can be used besides the native TTCN-3 types (see clause D.1in [1]).

The present document follows the approach of explicit mapping, i.e. IDL data are trandated into appropriate TTCN-3
data. And only those TTCN-3 data are further used in the test specification.

5 Lexical Conventions

Thelexical conventions of IDL define the comments, identifiers, keywords and literals conventions which are described
below.

51 Comments

Comment definitionsin TTCN-3 and IDL are the same and therefore, no conversion of commentsis necessary.

5.2 Identifiers

IDL identifier rules define a subset of the TTCN-3 rulesin which no conversion is necessary.

5.3 Keywords

When IDL is used with TTCN-3 the keywords of TTCN-3 shall not be used asidentifiersin an IDL module.

5.4 Literals

The definition of literals differs slightly between IDL and TTCN-3 why some modifications have to be made. Table 1
gives the mapping for each literal type.

ETSI

9 ETSI ES 201 873-8 V3.2.1 (2007-02)

Table 1: Literal mapping

Literal IDL TTCN
Integer no "0" as first digit no "0" as first digit
Octet "0" as first digit 'FF96'0O
Hex "0X" or "0x" as first digits '‘ABO1D'H
Floating 1222.44E5 (Base 10) 1222.44E5 (Base 10)
Char ‘A "A"
Wide char L"A" "A"
Boolean TRUE, FALSE true, false
String "text" "text"
Wide string L"text" "text"
Fixed point 33.33D (see useful type IDLfixed)

IDL usesthe SO Latin-1 character set for string and wide string literals and TTCN-3 uses ISO/IEC 646 [2] for string
literals and |SO/IEC 10646 [3] for wide string literals.

6 Pre-processing

Pre-processor statements are not matched to TTCN-3 because the IDL specification must be used after pre-processing
it.

7 IDL specification

The module, interface, value and constant declaration are described now and the type and exception declaration as well
asthe bodies of interfaces are described later.

7.1 Module declaration
IDL modules are mapped to TTCN-3 modules. Nested IDL modules must be flattened accordingly to TTCN-3 modules.

As one IDL module can contain many nested IDL modules where several nested modules can have equal names in
different scopes, these names can clash. Hence, module names identifiers are to be used which are composed of the
identifiers of the upper level IDL modules (from hierarchical point of view) and the nested IDL module name, separated
one from each other by two underscores.

According the IDL scoping rules nested modules have access to the scope of upper level modules. As there are no
nested modules in TTCN-3, TTCN-3 modules have to import upper level modules. For avoiding name clashes, a prefix
for the imported definitions composed of the identifier of the module from which it isimported shall be used. The prefix
and the identifier are separated by a dot (.) asdefined in TTCN-3.

IDL EXAMPLE:

nodul e identifierl {
typedef |ong nyl ongl;

nmodul e identifier2 {
typedef string nystring2;
typedef nylongl nyl ong2;

nmodul e identifier3 {
typedef nylongl | ong_from nodul e_1;
typedef nystring2 string_fromnnodul e_2;
typedef nylong2 | ong_fromnnodule_1_2;
s
H
H

ETSI

10 ETSI ES 201 873-8 V3.2.1 (2007-02)

TTCN EXAMPLE:

nmodul e identifierl {
type | ong nyl ongl;

nmodul e identifierl identifier2 {
import fromidentifierl all;
type iso8859string nystring2;
type identifierl. nyl ongl nyl ong2;
}

nodul e identifierl identifier2__identifier3 {
import fromidentifierl all;
import fromidentifierl identifier2 all;

type identifierl.nylongl | ong_fromnodul e_1;
type identifierl__identifier2.nystring2 string_fromnodule_2;
type identifierl__identifier2.nylong2 |ong_fromnodule_1_2;

7.2 Interface declaration

Interfaces are flattened and all interface definitions are stored in one group. In contrast to interfaces in IDL, groups in
TTCN-3 do not create a scope. Therefore, prefixes for all identifiers of type definitions inside of the interface shall be
used, which are a combination of the interface name and two underscores as the prefix.

Import of single interface definitions from other modules via the importing group statement is possible. This can be
used if inheritance is used in the IDL specification.

For each interface, a procedure-based port type is defined for the test specification. It is associated with signatures
trandated from attributes and operations of the interface.

An IDL attribute is mapped to two signatures. one for the setting of a value and one for getting it. These signatures have
names composed of the prefix (interface name and two underscores), attribute name and the word "Set" (except for
"readonly™) or "Get" correspondingly.

Since an interface can be used in operation parameters to pass object references, an address type is also declared in the
data part. Components are used as collection of interfaces, or objects.

IDL EXAMPLE:

interface identifier {

attribute long attributeld ;

voi d operationnane (in string paramvalue) raises (ExceptionType) ;
ot her body definitions ...

TTCN EXAMPLE:

group identifierlnterface {
signature identifier__attributeldGet () return |ong;
signature identifier__attributeldSet (in long identifier__attributeld);

signature identifier__operationname (in iso8859string identifier__paramvalue)
exception (ExceptionType) ;

...other body definitions ...

type port identifier procedure { ... }
type address identifierQbject;

Interface inheritance is executed by rolling out all inherited elements. Thus, they have to be handled as defined in the
interface itself. Multiple inheritance elements have to be inherited only once! As normally an inherited IDL interface

uses types defined in the module, usualy it is essential to import the complete mapped TTCN-3 module. All inherited
elements have to be rolled out directly in the TTCN-3 group for the interface, even if the inheritance is multiple

Forward references of interfaces are provided by forward referencing the according port of the interface. Local
interfaces are treated as normal interfaces. However it is recommend not to use forward references and to move a
TTCN-3 definition of the interface (group) to a place where aforward definition is used first time.

ETSI

11 ETSI ES 201 873-8 V3.2.1 (2007-02)

7.3 Value declaration

In contrast to type interface, the IDL type value has local operations that are not used outside the object, and are
therefore not relevant from the functional testing point of view. However, since the public attributes of value instances
are used to communicate object states, the IDL value type is mapped to the record typein TTCN-3

The example below shows how to map valuetype and was used from section 5.2.5in [4].

IDL EXAMPLE:

val uet ype Enpl oyeeRecord {
/1 note this is not a CORBA: : (bj ect
/] state definition
private string nane,;
private string email;
private string SSN,

/1 initializer
factory init(
in string name, in string SSN);

TTCN EXAMPLE:

type record Enpl oyeeRecord {
i s08859stri ng name,
i s08859string email,

i s08859string SSN
}

7.4 Constant declaration

Constant declarations can be transformed by use of literal (seetable 1) and operator mapping for floating-point and
integer values (see table 2).

Table 2: Operators for constant expressions

Operator IDL TTCN
Unary floating-point
Positive + +
Negative - -
Binary floating-point
Addition + +
Subtraction - -
Multiplication * *
Division / /
Unary integer
Positive + +
Negative - -
Bit-complement ~ not4b
Binary integer
Addition + +
Subtraction - -
Multiplication * *
Division / /
Modulo % mod
Shift left << <<
Shift right >> >>
Bitwise and & and4b
Bitwise or | ordb
Bitwise xor " xor4b

ETSI

12 ETSI ES 201 873-8 V3.2.1 (2007-02)

IDL EXAMPLE:

const |ong nunber = 017; // 017 == OxF == 15
const long size = ((nunmber << 3) %O0x1F) & 0123;

TTCN EXAMPLE:

const |ong nunber := "17"Q
const long size := ((nunber << 3) nod '1F H) and4b '0123'Q

8 Type declaration

Type declaration mapping will be shown in the following clauses.

A construct for naming data types and defining new types by using the keyword typedef is provided by IDL. This can
be done under TTCN-3 via the keyword type, too.

To enhance readability and to provide a clear distinction, mapped IDL data types get the prefix IDL and the extension
attribute "variant" as donein TTCN-3 for type | DL fixed (see clause E.2.4.0 in [1]).

8.1 IDL basic types

IDL basic datatypes are mapped to predefined or useful typesin TTCN-3.

8.1.1 Integer and floating-point types

Integer and floating-point types are mapped onto the corresponding useful types short, unsignedshort, long,
unsignedlong, longlong, unsignedlonglong, | EEE754float, | EEE754double, and | EEE754extdouble.

IDL EXAMPLE:

const | ong si ze

((nunmber << 3) %Ox1F) & 0123;
const fl oat deci mal ;

15. 7,

TTCN EXAMPLE:

const | ong si ze

((nunber << 3) nod '1F H) and4b '0123' G
const | EEE754f | oat deci mal ;

15.7;

8.1.2 Char and wide char type

The IDL char and wide char type represent a single and wide character. They are mapped to the self defined type
iso8859char and type universal char.

IDL EXAMPLE:
const char letter = 'ABCD ;
const wchar w delLetter = L'ABCD ;

TTCN EXAMPLE:

type universal char iso8859char (char (0,0,0,0) .. char (0,0,0,255)) with { variant "8 bit" };
const iso08859char letter ;= "ABCD';
const universal char wideLetter := "ABCD';

8.1.3 Boolean type
The IDL boolean type is equivaent to the TTCN-3 boolean type.

IDL EXAMPLE:

const boolean isValid = TRUE;

ETSI

13 ETSI ES 201 873-8 V3.2.1 (2007-02)

TTCN EXAMPLE:

const boolean isValid = true;

8.14 Octet type

Octet cannot be mapped onto an integer type because it has the special feature that it will not change its internal
ordering if transferred between different system architectures. To represent it octet is mapped to octetstring.

IDL EXAMPLE:
const octet data = 0x55;
TTCN EXAMPLE:

const octetstring data = '55'H

8.1.5 Any type

The IDL any type is mapped onto anytype in TTCN-3 which was especially introduced for this mapping.
IDL EXAMPLE:

typedef any All Types;
TTCN EXAMPLE:

type anytype All Types;

8.2 Constructed types

IDL provides the three constructed types struct, union, and enum. Recursive construction of typesis only permitted
with the sequence template.

8.2.1 Struct

struct is used to collect ordered datain one place where it is mapped onto record in TTCN-3.

IDL EXAMPLE:

typedef struct NC {
string id;
string kind;

} NameConponent ;

TTCN EXAMPLE:

type record NaneConponent {
i s08859string id,
i s08859string kind

8.2.2 Discriminated unions

InIDL, unions are discriminated to determine the actual type. Therefore, arecord type is used, which contains two
members. The first one stores the discriminator information using an enumeration type. The second member isa
TTCN-3 union type which members are defined according to the specified IDL union members.

In addition, two types are defined to express the link between discriminator's type and union'stype: atype to reflect the
discriminating type of a union and an enumeration to distinguish the discriminated cases. Using the information
provided by these type definitions, the marshalling/unmarshalling for discriminated unionsis possiblein an
unambiguous manner: to encode or decode a union value, we use the value of the kind field to resolve the
corresponding chosen option and cal culate then the real value for the discriminator by resolving thisvaluein the
discriminator enumeration.

ETSI

14 ETSI ES 201 873-8 V3.2.1 (2007-02)

IDL EXAMPLE 1.

uni on MyUnion switch(long) {
case 0 : bool ean b;
case 1 : char c;
case 2 : octet o;
case 3 : short s; };

TTCN EXAMPLE 1.
type | ong MyUnion__Switch;

type uni on MyUni onType {
bool ean b,
i s08859string c,
octetstring o,
short s }

type enunerated MyUni onEnuniType {
bool ean_b, is08859string_c, octetstring_o, short_s
}

type record MyUnion {
MyUni onEnuntType ki nd,
MyUni onType val ue

IDL EXAMPLE 2:

Enum MyDi scr {
BOOLEAN DI SCR,
CHAR DI SCR,
OCTET_DI SCR,
SEQ DI SCR,
SHORT_DI SCR

s

uni on MyUni on switch(MyDiscr) {
case BOOLEAN DI SCR : bool ean b;
case SHORT_DI SCR : short s;

}
TTCN EXAMPLE 2
type enunerated MyDi scr {
} BOOLEAN DI SCR, CHAR DI SCR, OCTET_DI SCR, SEQ DI SCR, SHORT_DI SCR
type MyDi scr MyUnion__Sw tch;
type enunerated MyUni on__CasesType {

case_BOOLEAN_DI SCR,
case_SHORT_DI SCR

}
type uni on MyUni onType {
bool ean b,
short s
}
type enunerated MyUni onEnuniType {
bool ean_b,
short_s
}

type record MyUnion {
My Uni onEnunifype ki nd_,
MyUni onType val ue_

ETSI

15

8.2.3 Enumerations
Enumerations are equally defined in IDL and TTCN-3.
IDL EXAMPLE:

enum Not FoundReason {
m ssi ng_node,
not _cont ext,
not _obj ect };

TTCN EXAMPLE:
type enunerated Not FoundReason {
m ssi ng_node,

not _cont ext,
not _obj ect }

8.3 Template types

IDL supports the template types sequence, string, wide string and fixed type.

8.3.1 Seqguence

ETSI ES 201 873-8 V3.2.1 (2007-02)

IDL sequence is mapped to record of in TTCN-3 to maintain order and to allow unbounded sequences.

IDL EXAMPLE 1:

typedef sequence<NaneConponent > Nane;

TTCN EXAMPLE 1:

type record of NaneConponent Nane;

IDL sequences with a specified maximum size are mapped to record of with limited number of elements to maintain

order and restrict the maximum number of elements.

IDL EXAMPLE 2:

typedef sequence<NaneConponent, nexinum size> Nang;

TTCN EXAMPLE 2:

type record length (0, nmaxinumsize-1) of NaneConponent Nane;

8.3.2 String and wstring

string and wstring types are sequences of char and wchar. Therefore, string and wstring are mapped to the useful

type iso8859string and universal charstring.

IDL EXAMPLE:

const string name = "My String";
const wstring wideName = L"My String";

TTCN EXAMPLE:

const is08859string name := "My String";
const universal charstring wideName := "My String";

ETSI

16 ETSI ES 201 873-8 V3.2.1 (2007-02)

8.3.3 Fixed types

The fixed type represents a fixed-point decimal number. It is mapped to the corresponding useful type IDLfixed in
TTCN-3 (seeclause E.2.4.0in [1]).

IDL EXAMPLE:
typedef fixed<12, 7> nyFix;
TTCN EXAMPLE:

tenpl ate | DLfixed nyFi xTenplate := { 12, 7, ?2}; [/ e.g. in nodule definition part
var |IDLfixed nyFix :={ 12, 7, "12345.1234567" }; // e.g. in nodule control part

8.4 Complex declarator

The last kind of type declarators are the complex array and native types.

8.4.1 Arrays

IDL array isequal tothe TTCN-3 array type.
IDL EXAMPLE:
typedef |ong NunberList[100];

TTCN EXAMPLE:

type | ong NunberList[100];

8.4.2 Native types

Native types are used to allow implementation of dependent types. TTCN-3 provides the type addr ess to address
entitiesinside a SUT. Hence, addr ess can be used for mapping of type native and concrete implementation is left to the
user.

IDL EXAMPLE:

typedef native MyNativeVari abl e;

TTCN EXAMPLE:

type MyNativeVari abl e address;

9 Exception declaration

In IDL, exceptions are used in conjunction with operations to handle exceptional conditions during an operation call.
Thus, aspecial struct-like exception type is provided which has to be associated with each operation that can trigger
this exception. TTCN-3 also supports the use of exceptions with procedure calls by binding it to signature definitions.
However, it provides no special exception type. Hence, exceptions are defined by using type record.

A definition of an exception is shown in the following example. The use of exception binding in signature definitions
and exception catching is shown in the context of operation declaration.

IDL EXAMPLE:
exception Not FoundException {

Not FoundReason why;
Name rest_of _nane; };

ETSI

17 ETSI ES 201 873-8 V3.2.1 (2007-02)

TTCN EXAMPLE:

/1 definition of an exception type
type record Not FoundException {
Not FoundReason why,
Nane rest_of _nane }

/] definition of a tenplate for the
/1 defined exception type
tenpl at e Not FoundExcepti on

Not FoundExcepti onTenpl ate (Not FoundReason reason, Nane nane) := {
why : = reason,
rest_of _nane := nane }

10 Operation declaration

Apart from attributes, operations are the main part of interface definitionsin IDL and are used, for instance, in the
CORBA scheme as procedures which can be called by clients. Procedure callsin general are supported by TTCN-3 by
means of synchronous communication operations which are used in combination with ports.

IDL supports an optional oneway éttribute for operations which implies best-effort invocation semantics without a
guarantee of delivery but with a most-once invocation semantics. Message or procedure-based ports can be used for
oneway procedures because both would be a valid mapping based upon IDL. However, the use of procedure-based
ports for oneway procedures is recommended because the IDL specification does not guarantee that oneway calls are
non-blocking or asynchronous. Furthermore, CORBA implements oneway procedures by synchronous communication,
too. Use of non-blocking or blocking procedures for oneway operationsis left to the user. Mapped oneway operations
acquire an additional variant attribute (see example).

The parameter attributesin, inout and out describe the transmission direction of parameters and can be mapped directly
to the communication parameter attributesin TTCN-3 because they have the exact same semantics.

A raise expression specifies all exceptions which can be thrown by an operation. It can be mapped directly to TTCN-3
because it can be indicated by the procedure signature definition by specifying an exception. Nevertheless, each
operation can trigger a standard exception.

A context expression provides access to local properties of the called operation. These properties consist of a name and
astring value. The context expression can be matched by redefining the operation with the context parameters included
in the operation parameters (see section 4.6, [4]). The additional parameter must be of type array containing atype
record for each context parameter. Therecord itself contains two variables of type string for the context name and
value.

IDL EXAMPLE:
/1 not found exception is defined in section "exception declaration"

string remoteProcl(in long Parll, out long Parl12, inout string nanel)
rai ses(Not Found)
context("MyContextl");

/] oneway procedure: no return value and no inout or out allowed!!!
oneway void renmoteProc2(in long Par21, in long Par22, in string name2);

TTCN EXAMPLE:
/1 only operation definition

type record | DLCont ext El ement {
i s08859stri ng nane,
i s08859string val ue_

}
type record of |DLContextEl enent | DLCont ext;

si gnat ure Renot eProcSi gnat urel(
in long Parll, out |ong Parl12,
inout charstring namel, in |DLContext context)
return i so8859string
exception(Not FoundException);

ETSI

18 ETSI ES 201 873-8 V3.2.1 (2007-02)

si gnat ure Renot eProcSi gnat ur e2(
in long Par2l1, in |long Par22,
in iso8859string nane2)
with { variant "IDL: oneway FORVAL/O01-12-01 v.2.6" };

type port RenoteProcPort procedure {
out Renot eProcSi gnat urel;
out Renot eProcSi gnat ure2

}

type conponent CorbaSystem {
port RenoteProcPort PCO
}

11 Attribute declaration

An attributeislike a set- and get-operation pair to access avalue. If an attribute is marked asreadonly, only the
get-operation is used. Therefore, attribute mapping can be done by the operation mapping.

12 Names and scoping

The name definition scheme of IDL does not collide with the name definition in TTCN-3. Scoping is more restrictivein
IDL thanin TTCN-3, where the IDL scoping rules have to be mapped appropriately to alow seamless mapping. IDL
uses nested scopes for modules, interfaces, structures, unions, operations and exceptions and identifiers are scoped in
types, constants, enumeration values, exceptions, interfaces, attributes and operations. The hierarchical scopesin
TTCN-3 are module, control part of module, function, testcase and statement blocks within control part of module,
function and testcase.

Furthermore, TTCN-3 supports no overloading of identifiers so that no identifier name can be used more than onceina
scope hierarchy. However, IDL alows redefinition of self defined typesif defined inside a module, interface or
valuetype. Hence, identifiers have to be mapped by using their path name including all interface and valuetype names
asdesignated in IDL and TTCN-3. The use of module namesis not necessary because they are reflected by the TTCN-3
module structure. An underscore is used as a separator and existing underscores are doubl ed.

Several new identifiers are generated during transformation of IDL types by adding to the original IDL type identifier
suffixeslike: "Type", "Enum”, "Object”, "Interface”, etc. This approach and the use of TTCN-3 keywordsin IDL
modules can cause a name clashes, which are to be resolved by a suffix " _":

IDL EXAMPLE:
interface identifier {

... body definitions ...
}

//an exanple of the identifier, which can cause a nane cl ash
typedef |ong identifierCbject;

TTCN EXAMPLE:

group identifierlnterface {
... body definitions ...

type port identifier procedure { ... }
//the suffix ' ' is used only where necessary

//to resolve the nane cl ash
type address identifierCbject_;

}

type long identifierQbject;

ETSI

19 ETSI ES 201 873-8 V3.2.1 (2007-02)

To indicate the specia treatment of TTCN-3 statements derived from IDL, TTCN-3 provides a new mechanism to
attach attributes to language elements. The use of attributes makes code more readable and require no specia naming
scheme. Therefore, the variant attribute can be used to indicate the derivation of types from IDL and the special
treatment for encoding by the test system. Thisis used in TTCN-3 for the I DL fixed useful type:
type record | DLfixed {

unsi gnedshort digits,

short scal e,

charstring value_

}
with { variant "IDL:fixed FORMAL/01-12-01 v.2.6" };

Names of new types which are specially defined for the IDL mapping and their use in conjunction with IDL shall
always begin with the word IDL to provide better distinction.

ETSI

20 ETSI ES 201 873-8 V3.2.1 (2007-02)

Annex A (informative):
Examples

A.l Example

The following example shows how a mapping would look like if a complete IDL and TTCN-3 specification, including a
test case, is used. It isonly intended to give an impression of how the different elements have to be mapped and used in
TTCN-3.

Some parts are used from the CORBA standard like the Naming Service with slight modifications to cover more IDL
elements.

A.1.1 IDL specification

nodul e ttcnExanpl e
{

// kkkkkkkkkk*k

/1 Basic Types

[] xR Kokkkkkkokok

const |ong nunber = 017; // 017 == OxF == 15

const | ong si ze = ((nunmber << 3) %O0x1F) & 0123;
const fl oat deci mal = 15.7;

const char letter = 'A;

const wchar W deLetter = L'A';

const bool ean isValid TRUE;

const octet anCct et 0x55; // limted to 8 bit

const string nyName
const wstring w deMyName

"nmy nane";
L"nmy name";

typedef string MyString;

[] xR KKK KRk kokok ok kK k ko

/'l Constructed Types

// kkkkkkhkkhkkkhkkkkkkkk*x

typedef struct NC {
M/String id;
My/String kind;

} NameConponent ;

uni on MyUnion switch(long) {
case 0 : bool ean b;

case 1 : char c;
case 2 : octet o;
case 3 : short s;

}s

enum Not FoundReason { m ssi ng_node,
not _cont ext,
not _obj ect };
// kkkkkkkhkkkkkkk*k

/] Tenpl ate Types

// kkkkkhkkkkkkkkk*k

typedef sequence <NaneConponent> Nane;
typedef sequence <NaneConponent> Key;
typedef fixed<12, 7> Fix;

// kkhkkkkkhkkhkkhkkhkkhkkhkkkkkkk*%

/1 Conpl ex Decl ar at or
// kkkkkhkkkhkkhkkhkhkkhkkkkkk*x

typedef | ong NunmberList[100];

nati ve MyNativeVari abl e;

ETSI

21 ETSI ES 201 873-8 V3.2.1 (2007-02)

[] KKKk oKk okokok ok ok ok ok ok ok ok ok kK

/1 Val uetype Definition

// kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkk*

val uetype StringVal ue string;

val uet ype Enpl oyeeRecord {
/1 note this is not a CORBA: : (bj ect
/1 state definition
private string nane;
private string email;
private string SSN,

/1 initializer
factory init(in string nane, in string SSN);

h
[] KKKk kR ok okokokok ok ok ok ok ok ok ok ok k

/1l Interface Definition

// kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkk*x
interface Nam ngContext {
attribute string object_type;
readonly attribute Key external _form.id;

exception Not Found {
Not FoundReason why;
Name rest_of _nane;

b

M/String bind(in Nane n, inout Object obj, out Object nyQOhj)
rai ses(NotFound) context ("Hostnanme");

oneway void rebind(in Name n, in Cbject obj);
}; /1 end of interface Nam ngContext

}; /1 end of nodul e ttcnExanple

A.1.2 Derived TTCN-3 specification

nmodul e ttcnExanpl e {
inmport from|DLaux all;

[] KRx KRk ok kokokok ok kR kkokok ok kK k ok ok ok ok ok Kk ok koK

/1 Mapping of the IDL Specification

// kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkkkkkkk*x*%

[] KxFREE KKKk kkkxkkkkkkx K

/1 Mapping of Basic Types
// kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkk*
const | ong nunber
const |ong size

hex2i nt (' 1F' H), 4) and4b '0123' O);
const | EEE754f | oat deci nal

oct2int('17' O ;
oct 2i nt (i nt 2oct (oct 2i nt (i nt 2oct (nunber, 4) <<3) nod

15.7;

type universal char iso8859char (char (0,0,0,0) .. char (0,0,0,255))
with { variant "8 bit" };

const iso8859char letter ="A";

const universal char wi deLetter := "A";

const bool ean isvalid = true;

const octetstring anCct et = hex2oct ('55'H);
const is08859string nmy Name = "my nane";
const universal charstring wi deM/Name : = "nmy nane";

type iso8859string MyString;

// R R O I I I
/1 Constructed Types

// kkhkkkkhkkhkkhkkhkkhkkhkkkhkkkkk*%

[] xxxkEx

/1 Struct

// *kkkk*k

ETSI

type record NanmeConponent {

M/String id,
MyString kind
}

[] xxxHx*

/1 Union

// * k k k%

type uni on MyUni on
bool ean b,
i so8859char c,
octetstring o,
short s

}s
// kkkkkhkkkkkkx

/! Enuneration

[] xR Kokkkkkkkok

{

type enunerated Not FoundReason {

m ssi ng_node,
not _cont ext,
not _obj ect

}

[] xxxEEkEx%

/'l Sequence

// *kkkkkkk*k

type record of NameConponent
type record of NameConponent

[] xxxx KK

/'l Fixed

// * Kk kk*k

/1 see also using of fixed in testcase bel ow
tenplate I DLfixed fixTenpl ate

[] Rx KKKk KRk kokokkkkkk ok

/1 Conpl ex Decl arator

// kkhkkkkkhkkhkkhkkhkkhkkhkkkhkkkkk*%

type | ong nunberlList[100];

Nare;
Key;

= { 12, 7,

22

/'l see using of native in testcase bel ow

[] KK KRRk kokok ok ok ok koK ok ok ok ok k

/1 Val uetype Definition

// kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkk*

type iso8859string StringVal ue;

type record Enpl oyeeRecord {
i s08859stri ng nane,
i s08859string email,
i s08859string SSN

}s

// kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkk*x

/1l Interface Definition

[] KK KRRk okokok ok ok ok ok ok ok ok ok ok k

type record | DLCont ext El ement {

i s08859stri ng name,
i s08859string val ue_

}

type record of |DLContextEl ement

group Nam ngContextlnterface {

type address Nam ngCont ext Obj ect ;

/] attribute object_type
si gnat ure Nam ngCont ext __obj ect _typeGet ()
si gnat ure Nam ngCont ext __obj ect _typeSet (

| DLCont ext ;

ETSI

? 1

ETSI ES 201 873-8 V3.2.1 (2007-02)

return i so8859string;
in iso8859string Nam ngContext__object_type);

23 ETSI ES 201 873-8 V3.2.1 (2007-02)

tenpl at e Nam ngCont ext __obj ect _typeSet bj ect TypeSet Si gnatureTenpl ate : = {

obj ect_type := "ny object type"
}
/1
/] attribute external _fromid
/1

si gnature Nam ngContext__external _form.idGet() return Key;

/] exception not FoundException

type record Nam ngCont ext __Not FoundExcepti on {
Not FoundReason why,
Name rest_of _nane

}

tenpl at e Nami ngCont ext __Not FoundExcepti on

Nam ngCont ext __ Not FoundExcepti onTenpl ate (Not FoundReason reason, Nanme nane) := {
why ;= reason,
rest _of _nane := nane
}

/1

/1 bind procedure

/1

si gnat ure Nam ngCont ext__Bi ndSi gnature(in Name n, inout address obj, inout address

o, | |
in | DLContext context) return MyString
excepti on(Nam ngCont ext __Not FoundException);

tenpl at e Nami ngCont ext __Bi ndSi gnat ure
Nam ngCont ext __Bi ndTenpl ate (charstring object, |IDLContext con) := {

n :={ {"nane", ""} },
obj = obj ect,
ny Qbj =2,
cont ext = con
}
/1
/1 rebind procedure
/1

si gnat ure Nam ngCont ext__Rebi ndSi gnature(in Nanme n, in address obj)
with { variant "IDL: oneway FORMAL/O01-12-01 v.2.6" };

tenpl at e Nanmi ngCont ext __Rebi ndSi gnat ure

Nam ngCont ext __Rebi ndTenpl ate (address object) := {
n :={ {"name", ""} },
obj := object

type port Nam ngContext procedure {
out Nam ngCont ext __obj ect _typeGCet;
out Nam ngCont ext __obj ect _typeSet;
out Nam ngContext__external _form.i dGet;
out Nam ngCont ext __Bi ndSi gnat ure;

}

/'l conponent is necessary for test case

type conponent CorbaSystem nterface {
port Nami ngCont ext PCO

}

/] somewhere has nmin test conponent MyYMIC to be defined
type conponent MyMIC {

port Nami ngCont ext Nami ngCont ext PCG,
}

// kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkk*

/1 Testcase Definition

[] KK KKKk kK kokokok ok ok ok k ok ko

test case MyNani ngServi ceTest Case() runs on MyMIC system Cor baSystem nterface {

/'l exanpl es to show how above definitions can be used inside a
/1l testcase definition

ETSI

24 ETSI ES 201 873-8 V3.2.1 (2007-02)

var CorbaSystem nterface nyCorbaSystem : = CorbaSystem nterface. create;
connect (sel f: Nam ngCont ext PCO, myCor baSyst em PCO) ;
myCor baSystem start;

/1

/'l Fixed Type

/1

var |DLfixed fix :={ 12, 7, "12345.1234567" };

/1

/1 Native

/1

var address MyNativeVari abl e;

/1

/1 Procedure Calls

/1

var MyString nyResul t 1;
var Key nyResul t 2;

var MyString nyResul t 3;
var address object, nyQbject, resultCbject, resultMObject;

var | DLCont ext El ement context El ement : = {
name := "Hostnane",
val ue_ := "disen"
}
var | DLCont ext contextParaneter := { contextEl enent };
I
/] procedure get object_type
I/

Nani ngCont ext PCO. cal | (Obj ect TypeCet Si gnature)

[1 Nami ngCont ext PCO getreply(Object TypeGet Signature value *)
-> value nyResult1 {}

}

/1

/'l procedure set object_type

/1

Nami ngCont ext PCO. cal | (Obj ect TypeSet Si gnat ureTenpl ate);

/1

/] procedure get external _from.id

/1

Nani ngCont ext PCO. cal | (Ext er nal For m dGet Si gnature)

[1 Nami ngCont ext PCO getrepl y(External Form dGet Si gnature val ue *)
-> value MyResult2 {}

}
/1
/'l procedure bind (with tenplate)
/1
Nanmi ngCont ext PCO. cal | (Bi ndTenpl at e(obj ect, contextParaneter))
{
[T Nami ngCont ext PCO getreply(BindTenplate(*) value *)
-> val ue nyResult3
paran(resultObject, resultMCbject) sender nySender {}
[1 Nami ngCont ext PCO. cat ch(Bi ndSi gnat ur e,
Nam ngCont ext __Not FoundExcepti onTenpl ate)
{
setverdict(fail);
st op;
}
}

ETSI

{}

25 ETSI ES 201 873-8 V3.2.1 (2007-02)

I
/1 procedure bind (w thout tenplate)
I/
Nami ngCont ext PCO. cal | (
Bi ndSi gnature: { nyNane, object, nyObject, contextParaneter })

[1 Nami ngCont ext PCO getrepl y(BindSignature:{ -, *, nyObject }
value *) -> value nyResult3 paran(resultObject, resultMyCbject) sender mySender

}

/1

/1 procedure rebind

/1

Nam ngCont ext PCO. cal | (Rebi ndSi gnature:{ nyNane, object}); // or use a tenplate

/1
/1 raising an exception
/1

/1 this would be used to raise an exception inside of procedure bind
// if defined by TTCN-3 (if used on server side).
var Nami ngCont ext __Not FoundExcepti on nmyNot FoundException : = {

why m ssi ng_node,

rest _of _nane := "nonane"

}

Nani ngCont ext PCO. r ai se(Bi ndSi gnat ure, nyNot FoundException);

} /1 end of testcase MyNami ngServiceTest Case

ETSI

26 ETSI ES 201 873-8 V3.2.1 (2007-02)

Annex B (informative):

Mapping lists

B.1

IDL keyword and concept mapping list

Table B.1 lists the mapping of keywords and concepts of IDL to TTCN-3 keywords or concepts. Literal and operator
mapping can be seenin tables 1 and 2.

Table B.1: Conceptual list of IDL mapping

IDL TTCN-3 IDL TTCN-3
FALSE fal se nodul e nodul e
oj ect addr ess native addr ess
TRUE true oct et octetstring
abstract has to be rolled oneway operation with
out variant attribute
any anytype operation signature for
procedur e
array array out out
attribute get (and set) rai ses exception
operation
bool ean bool ean readonly only a get-operation
for the attribute
char i so8859char sequence record of
(sel f defined type)
const const short short
cont ext addi ti onal string i s08859string
procedur e paraneter
of type record
enum enuner at ed struct record
exception record t ypedef type
fixed | DLf i xed uni on record, enunerated
uni on
fl oat | EEE754f | oat unsi gned | ong unsi gnedl ong
doubl e | EEE754doubl e unsi gned | ong | ong |unsi gnedl ongl ong
| ong doubl e | EEE754ext doubl e unsi gned short unsi gnedshort
in in val uet ype record
i nout i nout wchar uni ver sal char
interface group, port wst ring uni versal charstring
| ocal ---
| ong | ong
I ong | ong | ongl ong

ETSI

ETSI ES 201 873-8 V3.2.1 (2007-02)

B.2 Comparison of IDL, ASN.1, TTCN-2 and TTCN-3
data types
Table B.2
IDL ASN.1 TTCN-2 TTCN-3
hj ect oj ect I nstance (X 500 | A5String addr ess
Di sti ngui shed nane)
any ANY DEFI NED BY [5] or CHO CE anytype
SEQUENCE {t ypecode,
anyVal ue}
array SEQUENCE OF (with SEQUENCE Sl ZE(n) OF array
si zeConstrai nt subtype)
bool ean BOOLEAN BOOLEAN bool ean
char G aphicString G aphicString or i so8859char
| A5String(SlZE(1)) (sel f defined
type)
enum ENUVMERATED ENUVERATED enuner at ed
exception SPECI FI C ERRORS SEQUENCE record
fixed See note See note | DLfi xed
fl oat REAL See note | EEE754f | oat
doubl e REAL See note | EEE754doubl e
| ong doubl e REAL See note | EEE754ext doubl e
| ong I NTEGER | NTEGER | ong
| ong | ong I NTEGER | NTEGER | ongl ong
native See note See note addr ess
oct et OCTET STRI NG OCTET STRING (Sl ZE(1)) [|octetstring
sequence SEQUENCE OF (with optional SEQUENCE OF record of
si zeConstrai nt subtype for
I DL bounds)
short | NTEGER | NTEGER short
string GraphicString GraphicString i s08859string
struct SEQUENCE SEQUENCE record
uni on, switch, CHO CE (with ASN. 1 TAGS) SEQUENCE record,
case enuner at ed, uni on
unsi gned | ong I NTEGER | NTEGER unsi gnedl ong
unsi gned | ong I NTEGER | NTEGER unsi gnedl ongl ong
| ong
unsi gned short I NTEGER | NTEGER unsi gnedshort
val uet ype See note See note record
we har See note G aphicString or uni versal char
BMPSt ri ng(Sl ZE(1))
wstring See note GraphicString uni ver sal
charstring
NOTE: Mapping of this type was not considered.

ETSI

28 ETSI ES 201 873-8 V3.2.1 (2007-02)

Annex C (informative):
Bibliography

M. Ebner, A. Yin, and M. Li (2002): "Definition and Utilization of OMG IDL to TTCN-3 Mappings". In testing of
communicating systems XIV - Application to Internet Technologies and Services, ed. |. Schieferdecker, H. Kénig and A.
Wolisz. IFIP, Kluwer Academic Publishers, pp. 443-458. ISBN 0-7923-7695-1.

M. Ebner (2001): "A Mapping of OMG IDL to TTCN-3". SIIM Technica Report SIIM-TR-A- 01-11, Institute for
Telematics, Medical University of Libeck, Germany. Schriftenreihe der Institute fur Informatik/Mathematik.

M. Ebner (2001): "Mapping CORBA IDL to TTCN-3 based on IDL to TTCN-2 mappings'. In Proceedings of the 11th
GI/ITG Technical Meeting on Formal Description Techniques for Distributed Systems, Bruchsal, Germany, 21-22. June
2001. International University in Germany.

A.Yin (2001): "Testing Operation-Based Interfaces Exemplified for CORBA with ADL and TTCN-3". Diplomarbeit,
Telecommunication Network Group, Faculty of Electrical Engineering and Computer Science, Technical University
Berlin, Germany.

A.Yin, I. Schieferdecker and M. Li (2001): "Mapping of IDL to TTCN-3". Technical Report, Fraunhofer Institute for
Open Communication Systems (FOKUS), Germany.

I SO/IEC 9646-3: "Information technology - Open Systems I nterconnection - Conformance testing methodol ogy and
framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

ETSI

29

ETSI ES 201 873-8 V3.2.1 (2007-02)

History

Document history

V321

February 2007

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Abbreviations
	4 Approach
	5 Lexical Conventions
	5.1 Comments
	5.2 Identifiers
	5.3 Keywords
	5.4 Literals

	6 Pre-processing
	7 IDL specification
	7.1 Module declaration
	7.2 Interface declaration
	7.3 Value declaration
	7.4 Constant declaration

	8 Type declaration
	8.1 IDL basic types
	8.1.1 Integer and floating-point types
	8.1.2 Char and wide char type
	8.1.3 Boolean type
	8.1.4 Octet type
	8.1.5 Any type

	8.2 Constructed types
	8.2.1 Struct
	8.2.2 Discriminated unions
	8.2.3 Enumerations

	8.3 Template types
	8.3.1 Sequence
	8.3.2 String and wstring
	8.3.3 Fixed types

	8.4 Complex declarator
	8.4.1 Arrays
	8.4.2 Native types

	9 Exception declaration
	10 Operation declaration
	11 Attribute declaration
	12 Names and scoping
	Annex A (informative): Examples
	A.1 Example
	A.1.1 IDL specification
	A.1.2 Derived TTCN-3 specification

	Annex B (informative): Mapping lists
	B.1 IDL keyword and concept mapping list
	B.2 Comparison of IDL, ASN.1, TTCN-2 and TTCN-3 data types

	Annex C (informative): Bibliography
	History

