

ETSI ES 201 873-7 V4.1.1 (2009-06)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;

Part 7: Using ASN.1 with TTCN-3

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 2

Reference
RES/MTS-00107-7 T3 ed411 asn1

Keywords
ASN.1, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.

3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 3

Contents

Intellectual Property Rights ..5

Foreword...5

1 Scope ..6

2 References ..6
2.1 Normative references ...6
2.2 Informative references..7

3 Definitions and abbreviations...7
3.1 Definitions..7
3.2 Abbreviations ...7

4 Introduction ..8
4.1 Conformance ..8

5 General ...8

6 Amendments to the core language ...8

7 Additional TTCN-3 types...8
7.1 General ...8
7.2 The object identifier type ...9
7.2.1 Sub-typing of the objid type..9
7.2.1.1 Subtrees of the objid type ..9
7.2.1.2 List subtypes ...10
7.2.1.3 Range subtypes ...10
7.2.1.4 Mixing list and range subtypings ..10
7.2.2 Object identifier values ...10
7.2.3 Using objid values to identify modules...11
7.2.3.1 Identifying module definitions ..11
7.2.3.2 Identifying modules in import statements ...11
7.2.4 Object identifier templates..11
7.2.4.1 In-line Templates ..11
7.2.4.2 Template matching mechanisms ...11
7.2.5 Using objid with operators ..12
7.2.5.1 List operators...12
7.2.5.2 Relational operators ..12
7.2.6 Using objid with predefined functions ..13
7.2.6.1 Number of components of an objid value or template...13
7.2.6.2 The Substring function..13
7.2.6.3 The isvalue function..14
7.2.7 Supporting objid in TCI..14
7.2.7.1 objid and TciTypeClass...14
7.2.7.2 objid and TCI type hierarchy ..14

8 ASN.1 and TTCN-3 type equivalents ..14
8.1 General ...14
8.1bis Importing from ASN.1 modules...15
8.2 Identifiers ...15

9 ASN.1 data types and values..16
9.1 Transformation rules ..16
9.2 Scope of ASN.1 identifiers...22

10 Parameterization in ASN.1...22

11 Defining ASN.1 message templates ...22
11.1 General ...22
11.2 Receiving messages based on ASN.1 types ...23

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 4

11.3 Ordering of template fields...23

12 Encoding information...23
12.1 General ...23
12.2 ASN.1 encoding attributes ...24
12.3 ASN.1 variant attributes ...24

Annex A (normative): Additional BNF and static semantics ...26

A.1 New productions for ASN.1 support ..26

A.2 Amended core language BNF productions and static semantics..26

Annex B (normative): Additional Pre-defined TTCN-3 functions ..28

Annex C (informative): Predefined object identifier components ...29

Annex D (informative): Deprecated features ...30

D.1 Using sizeof for objid values and templates ..30

D.2 The decompose function ..30

Annex E (informative): Bibliography...31

History ..32

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 7 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 6

1 Scope
The present document defines a normative way of using ASN.1 as defined in the ITU-T Recommendation X.680 [2],
ITU-T Recommendation X.681 [3], ITU-T Recommendation X.682 [4] and ITU-T Recommendation X.683 [5] with
TTCN-3. The harmonization of other languages with TTCN-3 is not covered by the present document.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• Non-specific reference may be made only to a complete document or a part thereof and only in the following
cases:

- if it is accepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are indispensable for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] ETSI ES 201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language".

[2] ITU-T Recommendation X.680 (2002): "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".

[3] ITU-T Recommendation X.681 (2002): "Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification".

[4] ITU-T Recommendation X.682 (2002): "Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification".

[5] ITU-T Recommendation X.683 (2002): "Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications".

[6] ITU-T Recommendation X.690 (2002): "Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)".

[7] ITU-T Recommendation X.691 (2002): "Information technology - ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)".

[8] ITU-T Recommendation X.693 (2001): "Information technology - ASN.1 encoding rules: XML
Encoding Rules (XER)".

[9] ITU-T Recommendation T.100 (1988): "International information exchange for interactive
videotex".

http://docbox.etsi.org/Reference

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 7

[10] ITU-T Recommendation T.101 (1994): "International interworking for Videotex services".

[11] ITU-T Recommendation X.660 (2004): "Information technology - Open systems interconnection -
Procedures for the operation of OSI Registration Authorities: General procedures and top arcs of
the ASN.1 Object Identifier tree".

[12] ETSI ES 201 873-6 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

NOTE: References to ITU-T Recommendations include the Recommendation and all Amendments and
Corrigenda published to the Recommendation.

2.2 Informative references
The following referenced documents are not essential to the use of the present document but they assist the user with
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including
any amendments) applies.

[i.1] ITU-T Recommendation X.208: "Specification of Abstract Syntax Notation One (ASN.1)".

[i.2] ITU-T Recommendation T.61 (1988): "Character repertoire and coded character sets for the
international teletex service".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], ITU-T Recommendation
X.660 [11] and the following apply:

associated TTCN-3 type: TTCN-3 type definition resulted from the transformation of an ASN.1 type definition by
applying the transformation rules in clause 9.1

NOTE: Associated TTCN-3 types and values may not exist in a visible way; this term is used to identify the part
of the abstract information carried by the related ASN.1 type or value, which have significance from the
point of view of TTCN-3 (also called the TTCN-3 view).

metatype "OPEN TYPE": term used to explain the ASN.1 to TTCN-3 conversion process

NOTE: It does not exist in the input ASN.1 module or the output TTCN-3 module.

root type: Definition in ES 201 873-1 [1] applies with the following addition: in case of types based on imported
ASN.1 types, the root type is determined from the associated TTCN-3 type (see clause 8).

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in ES 201 873-1 [1] and the following apply:

ASN.1 Abstract Syntax Notation One
OID Object IDentifier
TTCN-3 Tree and Tabular Combined Notation version 3

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 8

4 Introduction
When using ASN.1 with TTCN-3 all features of TTCN-3 and statements given in clause 4 of ES 201 873-1 [1] do
apply. In addition, when supporting this part of the standard, TTCN-3 becomes fully harmonized with ASN.1 which
may be used with TTCN-3 modules as an alternative data type and value syntax. This part of the standard defines the
capabilities required in addition of those specified in ES 201 873-1 [1] when ASN.1 is supported. The approach used to
combine ASN.1 and TTCN-3 could be applied to support the use of other type and value systems with TTCN-3.
However, the details of this are not defined in the present document.

 TTCN-3
Core
Language

TTCN-3 User

ASN.1 Types
& Values

Other Types
& Values n

Graphical
format

Other Types
& Values 2

The shaded boxes are not
defined in this document

Tabular
format

Other
presentation
formats as
defined in

other parts of
the standard

Figure 1: User's view of the core language and the various presentation formats

4.1 Conformance
For an implementation claiming to support the use of ASN.1 with TTCN-3, all features specified in the present
document shall be implemented consistently with the requirements given in the present document and in
ES 201 873-1 [1].

5 General
TTCN-3 provides a clean interface for using ASN.1 definitions (as specified in ITU-T Recommendation X.680 [2],
ITU-T Recommendation X.681 [3], ITU-T Recommendation X.682 [4] and ITU-T Recommendation X.683 [5]) in
TTCN-3 modules.

6 Amendments to the core language
Void.

7 Additional TTCN-3 types

7.1 General
TheTTCN-3 types summarized in table 1 shall be supported in addition to those specified in clause 6 of
ES 201 873-1 [1].

Table 1: Overview of TTCN-3 types

Class of type Keyword Sub-type
Simple basic types objid list, range

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 9

7.2 The object identifier type
The object identifier type shall be supported as follows:

• objid: a type whose distinguished values are the set of all syntactically correct object identifier values. The
value notations for the objid type shall conform to clause 31 of ITU-T Recommendation X.680 [2] with the
exception that hyphens are replaced with underscores.

NOTE 1: This definition also allows object identifier values outside the collection of values defined in ITU-T
Recommendation X.660 [11] (e.g. with a node beneath the root not defined in ITU-T
Recommendation X.660 [11]).

The name form of object identifier components shall be used only for components defined in ITU-T Recommendation
X.660 [11]. These predefined object identifier components are given in annex C for information. In case of any conflict
between ITU-T Recommendation X.660 [11] and annex C of the present document, the former shall take precedence.

In cases when the identifier of a value referenced within an object identifier value notation is identical to any of the
predefined component names, i.e. independently of the position of the predefined component or the referenced value
inside the notation (considering name conversion rules in clause 8.2), the name of the referenced value shall be prefixed
with the name of the module in which it is defined (see definition of ASN.1 modules in clause 12 of ITU-T
Recommendation X.680 [2] and TTCN-3 modules in clause 8.1 of the core language standard ES 201 873-1 [1]). The
prefix and the identifier shall be separated by a dot (.). Predefined object identifier component names may also be
prefixed with the name "X660".

NOTE 2: To increase readability it is recommended to use the "X660" prefix also in object identifier values
referring to a value identifier that is clashing with any of the predefined component names.

NOTE 3: Rules to resolve name clashes caused by imports are defined in clause 8.2.3.1 of the core language
standard ES 201 873-1 [1].

EXAMPLE:

 objid{itu_t(0) identified_organization(4) etsi(0)}
 // or alternatively
 objid {itu_t identified_organization etsi(0)}
 // or alternatively
 objid { 0 4 0}

 // or alternatively
 const integer etsi := 0;
 const objid itu_idOrg := objid{ itu_t identified_organization }
 objid{ itu_idOrg etsi } // note, that both names are referencing value definitions

 const integer x := 162;
 objid{ itu_t recommendation x A.x } // it is mandatory to use the module name ('A')
 // to prefix the ambiguous identifier
 // or alternatively
 objid{ itu_t recommendation X660.x A.x } // the module name shall be present even if
 // the "X660" prefix is used

7.2.1 Sub-typing of the objid type

7.2.1.1 Subtrees of the objid type

The object identifier type is a collection of principally infinite set of unique identifier values, each containing a
sequence of components; each given sequence of arbitrary length compose an object identifier node as shown on
figure 2 (see also annex C). Thus, each node of the object identifier tree - except being a unique identifier itself - is the
root of a subtree, containing a potentially infinite number of unique identifiers. The first n components of all the
identifiers in the subtree are identical to the components of the node, being the root of the subtree, where n is the
number of components of that node. Hence, each object identifier node distinguishes also a unique subset (subtype) of
the objid type. Each member of this subtype (the subtree) is longer than the node identifying the subtree.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 10

Root

itu-t (0)
iso (1)

joint-iso-itu-t (2)

(0) (1) ... (i) (0) (1) … (j) (0) (1) … (k)

(0) ... (m)

Figure 2: The object identifier tree

Note that object identifiers may also be relative identifiers, i.e. when the given objid value contains only the additional
components related to a defined base node. However, the above remains true for relative object identifiers as well, as
they also do denote a unique node in the object identifier tree (the node defined by the base node + the relative
identifier). If a node is identified by a relative object identifier, all nodes in its subtree will have relative identifiers too.

7.2.1.2 List subtypes

In addition to the types listed in clause 6.1.2.1 of ES 201 873-1 [1], value list subtyping of the objid type shall be
supported. For value lists of the objid type the rules in this clause apply. The objid nodes in the list shall be of
objid type and shall be a true subset of the values defined by the objid type or the base type being restricted.
Clause 7.2.1.1 shall govern in determining if the nodes are a true subset. The subtype defined by this list restricts the
allowed values to the concrete nodes on the list and the subtrees identified by them.

EXAMPLE:

 //identifies the nodes {0 4 0 0}, {0 4 0 1} and all other nodes beneath them
 type objid MyObjids (objid{0 4 0 0}, objid{0 4 0 1});

 //Further restricting the base type MyObjids
 type MyObjids MyNarrowerObjids (objid{0 4 0 0 1 0}, objid{0 4 1 1}, objid{0 4 1 3});

 //invalid definition as the node {0 4 2} is not member of the type MyObjids
 type MyObjids MyNarrowestObjids (objid{0 4 2 1});

7.2.1.3 Range subtypes

In addition to the types listed in clause 6.1.2.2 of ES 201 873-1 [1], value list subtyping of the objid type shall be
supported. For range subtyping of the objid type the rules in this clause apply. The objid nodes determining the
lower and the upper bounds of the subtype shall be of objid type of equal length and shall be a true subset of the
values defined by the objid type or the base type being restricted. Clause 7.2.1.1 shall govern in determining if the
nodes are a true subset. The subtype defined by the range restricts the allowed values to the nodes between the lower
and the upper bounds inclusive and the subtrees identified by them.

EXAMPLE:

 //identifies the nodes {0 4 0 0}, {0 4 0 1} … {0 4 0 5} and all other nodes beneath them
 type objid MyObjidRange (objid{0 4 0 0} .. objid{0 4 0 5});

7.2.1.4 Mixing list and range subtypings

It is allowed to mix the list and the range subtyping mechanisms for objid types. The nodes identified by the different
subtyping mechanisms shall not overlap.

7.2.2 Object identifier values

When defining objid values, rules in clauses 5.4.1.1, 8.2.1, 10 and 11.1 of ES 201 873-1 [1] and in this clause shall
apply. In case of inconsistency the present document takes precedence.

Each object identifier node is an object identifier value. In this case the value identifies the concrete node (i.e. with a
definite number of components) and does not denote the objid subtree beneath it (see clause 7.2.1.1).

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 11

7.2.3 Using objid values to identify modules

7.2.3.1 Identifying module definitions

When ASN.1 is supported, module names (of the form of a TTCN-3 identifier) may optionally be followed by an object
identifier, which shall be a valid value as defined in ITU-T Recommendation X.660 [11].

NOTE: Module names in a test suite may differ in the object identifier part only. However, in this case, due
precaution has to be exercised at import to avoid name clash, as prefixing of TTCN-3 identifiers
(see clause 8.2.3.1 of ES 201 873-1 [1]) is unable to resolve such kind of clashes.

7.2.3.2 Identifying modules in import statements

When ASN.1 is supported, in addition to the module names, their object identifiers may also be provided in TTCN-3
import statements. If an object identifier is used as part of the module identifier, this object identifier shall be used by
TTCN-3 test systems to identify the correct module.

7.2.4 Object identifier templates

When defining templates of objid types, rules in clause 15 and annex B of ES 201 873-1 [1] and in this clause shall
apply. In case of inconsistency the present document takes precedence.

7.2.4.1 In-line Templates

The type of objid values can be identified from the value notation alone, hence in addition to the types listed in note 2
of clause 15.4 in ES 201 873-1 [1], the type specification may also be omitted in case of objid values.

7.2.4.2 Template matching mechanisms

Applicability of matching mechanisms to templates of objid types is defined in table 2.

Table 2: TTCN-3 Matching Mechanisms

Used with values
of

Value Instead of values Inside values Attributes

 S
p
e
c
i
f
i
c
V
a
l
u
e

O
m
i
t
V
a
l
u
e

C
o
m
p
l
e
m
e
n
t
e
d
L
I
s
t

V
a
l
u
e
L
i
s
t

A
n
y
V
a
l
u
e

(?)

A
n
y
V
a
l
u
e
O
r
N
o
n
e
(*)

R
a
n
g
e

S
u
p
e
r
s
e
t

S
u
b
t
y
p
e

P
a
t
t
e
r
n

A
n
y
E
l
e
m
e
n
t

(?)

A
n
y
E
l
e
m
e
n
t
s
O
r
N
o
n
e
(*)

P
e
r
m
u
t
a
t
i
o
n

L
e
n
g
t
h
R
e
s
t
r
i
c
t
i
o
n

I
f
P
r
e
s
e
n
t

objid Yes Yes Yes Yes Yes Yes
(see
note
1)

Yes Yes Yes Yes Yes
(see
note
2)

NOTE 1: When used, shall be applied to optional fields of record and set types only (without restriction on the type of
that field).

NOTE 2: When used, shall be applied to record and set fields only (without restriction on the type of that field).

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 12

The matching mechanisms SpecificValue, OmitValue, AnyValue, AnyValueOrNone and IfPresent are applicable to
objid fields as well according to the rules defined in ES 201 873-1 [1].

The value list and complemented value list matching mechanisms can also be used for objid templates and template
fields. Rules in clauses B.1.2.1 and B.1.2.2 of ES 201 873-1 [1] also shall apply to objid templates.

NOTE: This also means that only the concrete node values on the list is to be considered but not the subtrees
identified by them. I.e. in case of a complemented list, a node within a given subtree will match even if
the node being the root of the subtree is on the list.

The value range matching mechanism, in addition to types listed in clause B.1.2.5 of ES 201 873-1 [1], can also be used
for objid templates. When applied to objids, the values matching the range shall be determined according to
clause 7.2.1.3 of the present document, with the exception, that subtrees are not considered.

The inside value matching mechanism AnyElement, in addition to types listed in clause B.1.3.1 of ES 201 873-1 [1], can
also be used within objid templates. When applied to objids, it replaces exactly one component.

The inside value matching mechanism AnyElementsOrNone, in addition to types listed in clause B.1.3.2 of
ES 201 873-1 [1], can also be used within objid templates. When applied to objids, it matches the longest sequence of
components possible, according to the pattern as specified by the components surrounding the "*".

The length restriction matching attribute, in addition to types listed in clause B.1.4.1 of ES 201 873-1 [1], can also be
used with objid templates. When applied to objids, it identifies the number of components within an objid value
matching the objid template.

7.2.5 Using objid with operators

7.2.5.1 List operators

When ASN.1 is supported, the concatenation operator specified in clause 7.1.2 of ES 201 873-1 [1] shall be permitted
for objid values as well. The operation is a simple concatenation of the numerical values of the components from left
to right. If necessary (e.g. for logging purposes), the names of the components in the resulted objid value shall be
determined from the resulted objid value (i.e. names of the components will change when the component is changing
its position related to the input objid value). The result type is objid.

EXAMPLE:

 objid{itu_t identified_organization etsi(0)} & objid{inDomain(1) in_Network(1)}
 gives {0 4 0 1 1} that can also be presented as objid{itu_t identified_organization etsi(0)
inDomain(1) in_Network(1)}

 objid{itu_t identified_organization etsi(0)} & objid{iso(1) registration_authority(1)}
 gives {0 4 0 1 1} that can also be presented as objid{itu_t identified_organization etsi(0)
inDomain(1) in_Network(1)}

7.2.5.2 Relational operators

It is allowed to use objid values as operands of relational operators equality (==), less than (<), greater than (>),
non-equality to (!=), greater than or equal to (>=) and less than or equal to (<=).

Two objid values are equal, if they have equal number of components and the primary integer values at all positions
are the same.

The less than (<), greater than (>), greater than or equal to (>=) and less than or equal to (<=) operations shall use the
numerical values of objid value components for the decision, and the decision process shall comply with the following
rules:

• the comparison shall start by comparing the first primary integer values of the two objid values and shall be
continued in a recursive way until the smaller objid value is found or the two objid values are found to be
equal;

• the objid value in which a smaller primary integer value is found first , is less than the other objid value;

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 13

• if all compared pairs of primary integer values of the two objid values are equal and one of the objid values
has further primary integer values while the other does not, the shorter objid value is less than the longer objid
value.

EXAMPLE:

 // Given
 const objid c_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network(1)}
 const objid c_etsiINNet := objid{itu_t identified_organization etsi(0)
 inDomain(1) in_Network(1)}
 const objid c_etsiIN := objid{itu_t identified_organization etsi(0)
 inDomain(1)}
 var objid v_etsiInIso := objid{ iso identified_organization dod(6)
 internet(1) private(4) enterprise(1) etsi(13019)}
 // then
 c_etsiMobNet == c_etsiINNet // returns false
 c_etsiMobNet < c_etsiINNet // returns true as the mobile_domain(0) component is numerically
 // smaller than the inDomain(1) component
 c_etsiINNet == c_etsiIN // returns false as c_etsiINNet has more components
 c_etsiINNet > c_etsiIN // returns true as c_etsiINNet has more components
 v_etsiInIso <= c_etsiMobNet // returns false as the component itu_t(0) is numerically smaller
 // than the component iso(1))

7.2.6 Using objid with predefined functions

7.2.6.1 Number of components of an objid value or template

In excess the input parameter types given in clause C.28 of ES 201 873-1 [1], the lengthof predefined function shall
allow values and templates of objid types as input parameter. The actual value to be returned is the sequential number
of the last component.

When the function lengthof is applied to templates of objid types, inpar shall only contain the matching
mechanisms: specific value, value list, complemented list, "?" (AnyValue instead of value), "*" (AnyValueOrNone
instead of value), "?" (AnyElement inside value) and "*" (AnyElementsOrNone inside value) and the length restriction
matching attribute. The parameter inpar shall only match values, for which the lengthof function would give the
same result.

Additional error cases are:

• inpar can match objid values with different number of components.

EXAMPLE:

// Given
 var objid v_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network (1)}
 // then
 numElements := lengthof(v_etsiMobNet); // returns 5

7.2.6.2 The Substring function

When ASN.1 is supported, the substr predefined function shall support objid types, i.e. it shall allow objid as type
of the input parameter and return an object identifier value containing a fragment (sequence of components) of the input
parameter inpar. Rules specified in clause C.33 of ES 201 873-1 [1] shall apply with the following exceptions:
index zero identifies the first component of the input object identifier value or template. The third input parameter
(count) defines the number of components in the returned objid value.

EXAMPLE:

 var objid v_etsiMobNet := objid{itu_t identified_organization etsi(0)
 mobile_domain(0) umts_Network (1)}

 substr (v_etsiMobNet, 0, 2) // returns {itu_t identified_organization}

 substr (v_etsiMobNet, 2, 3) // returns {etsi(0) mobile_domain(0) umts_Network (1)}

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 14

 substr (v_etsiMobNet, 0, 0) // causes error as the number of components to be returned
 // shall be more than 0

 substr (v_etsiMobNet, 0, 6) // causes error as the input objid value contains less
 // than 6 components

7.2.6.3 The isvalue function

When ASN.1 is supported, the isvalue predefined function shall be supported for objid templates too. Rules
specified in clause C.37 of ES 201 873-1 [1] shall apply.

7.2.7 Supporting objid in TCI

7.2.7.1 objid and TciTypeClass

The TciTypeClass defined in clause 7.2.2.1 (Abstract TTCN-3 data types) of ES 201 873-6 [12] is extended with
the constant OBJID.

7.2.7.2 objid and TCI type hierarchy

The type hierarchy given in figure 4 in clause 7.2.2.2 (Abstract TTCN 3 values) of ES 201 873-6 [12] is extended by the
ObjidValue abstract type.

8 ASN.1 and TTCN-3 type equivalents

8.1 General
The ASN.1 types listed in table 3 are considered to be equivalent to their TTCN-3 counterparts.

Table 3: List of ASN.1 and TTCN-3 equivalents

ASN.1 type Maps to TTCN-3 equivalent
BOOLEAN boolean
INTEGER integer
REAL (note) float
OBJECT IDENTIFIER objid
BIT STRING bitstring
OCTET STRING octetstring
SEQUENCE record
SEQUENCE OF record of
SET set
SET OF set of
ENUMERATED enumerated
CHOICE union
VisibleString charstring
IA5String charstring
UniversalString universal charstring
NOTE: The ASN.1 type REAL is equivalent to the TTCN-3 type float until the base is

unrestricted or restricted to base 10 explicitly or implicitly. The ASN.1 notation allows
explicit restriction by e.g. inner subtyping but from ASN.1-TTCN-3 type mapping point
of view an explicit restriction is an ASN.1 value notation. Implicit restriction may be
defined by the textual description of the given protocol, i.e. outside of the ASN.1
module(s). However, in both cases the TTCN-3 value notation can be used irrespective
if the base in ASN.1 (see also note 3 in clause 8.1).

All TTCN-3 operators, functions, matching mechanisms, value notations etc. that can be used with a TTCN-3 type
given in table 3 may also be used with the corresponding ASN.1 type.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 15

8.1bis Importing from ASN.1 modules
When importing from ASN.1 modules, it is mandatory to use one of the following language identifier strings:

• "ASN.1:2002" for ASN.1 version 2002;

• "ASN.1:1997" for ASN.1 version 1997;

• "ASN.1:1994" for ASN.1 version 1994;

• "ASN.1:1988" for ASN.1 version 1988 (CCITT Blue Book).

NOTE 1: Language identifiers "ASN.1:1997", "ASN.1:1994" and "ASN.1:1988" refer to versions of ASN.1 based
on superseded ITU-T Recommendations (including the base document and all published Amendments
and Technical Corrigenda published so far complementing the base document). The only purpose to
include them into the present document is to allocate unique identifiers if protocol modules based on
these ASN.1 versions are used with TTCN-3. When ASN.1 version 1997 is supported, the support of
Amendment 3 to ITU-T Recommendation X.680 [2] is not considered.

NOTE 2: When "ASN.1:1988" is supported, the ASN.1 definitions will be imported from such modules according
to the syntactical and semantical rules of ITU-T Recommendation X.208 [i.1] (Blue Book).

NOTE 3: References to the 1994, 1997 and the Blue Book (1988) versions of ASN.1 can be found in annex E.

When importing ASN.1 types, values and value sets, first they have to be transformed to TTCN-3 types and values
respectively, according to the rules given in clauses 8 and 9.1 of the present document and import the resulted
definitions afterwards based on the rules defined below. All ASN.1 definitions are public by default (see clause 8.2.3
of ES 201 873-1 [1]).

NOTE 4: ASN.1 value sets are semantically equivalent to subtypes. Hence, in the present document they are not
handled separately but all rules specified for ASN.1 types also apply to ASN.1 value sets.

8.2 Identifiers
In converting ASN.1 identifiers to TTCN-3 identifiers, hyphen "-" characters shall be changed to underscore "_"
characters. When TTCN-3 keywords are used as identifiers in ASN.1 modules, these identifiers shall be appended with
a single underscore "_" character at import.

EXAMPLE:

 MyASN1module DEFINITIONS ::=
 BEGIN
 Misleading-ASN1-Name ::= INTEGER -- ASN.1 type identifier using '-'
 TypeWithTTCN-3Keyword ::= SEQUENCE {
 value INTEGER,
 message OCTET STRING
 }

 END

 module MyTTCNModule
 {
 import from MyASN1module language "ASN.1:2002" all;

 // TTCN-3 reference to ASN.1 type using underscores
 const Misleading_ASN1_Name cg_Example1 := 1;

 // TTCN-3 reference to identifiers which are TTCN-3 keywords
 const TypeWithTTCN_3Keyword cg_Example2 := {
 value_ := 5,
 message_ := 'FF'O
 }
 }

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 16

9 ASN.1 data types and values

9.1 Transformation rules
ASN.1 types and values may be used in TTCN-3 modules. ASN.1 definitions are made using a separate ASN.1 module.
ASN.1 types and values are referenced by their type references and value references as produced according to
clauses 9.3 and 9.4 of ITU-T Recommendation X.680 [2] within the ASN.1 module(s). Basic ASN.1 value notation and
XML ASN.1 value notation shall be transformed equally, i.e. a basic and an XML value notation referring to the same
value of the type shall produce the same associated TTCN-3 value.

EXAMPLE 1:

MyASN1module DEFINITIONS ::=
BEGIN
 Z::= INTEGER -- Simple type definition

 BMessage::= SEQUENCE -- ASN.1 type definition
 {
 name IA5String,
 title VisibleString,
 date IA5String
 }

 johnValues Bmessage ::= -- ASN.1 value definition
 {
 name "John Doe",
 title "Mr",
 date "April 12th"
 }

 johnValuesXML ::= -- XML ASN.1 value definition
 <Bmessage>
 <name>John Doe</name>
 <title>Mr</title>
 <date>April 12th<date>
 <Bmessage>

 DefinedValuesForField1 Z ::= {0 | 1} -- ASN.1 subtype definition
END

The ASN.1 module shall conform to the syntax and semantics of the ITU-T Recommendation X.680 [2], ITU-T
Recommendation X.681 [3], ITU-T Recommendation X.682 [4] and ITU-T Recommendation X.683 [5]. Once declared
and imported, ASN.1 types and values may be used within TTCN-3 modules in a similar way than TTCN-3 types and
values, imported from other TTCN-3 modules. Each imported ASN.1 definition produces an associated type or value.
All TTCN-3 definitions or assignments based on imported ASN.1 definitions shall be done according the rules imposed
by the related associated type or value. Also, the matching mechanism shall use the associated type when matching at a
receiving or a match operation.

Associated types and values are derived from ASN.1 definitions by applying the transformation rules below.
Transformations shall be started on a valid ASN.1 module and end in a valid TTCN-3 representation. The order
corresponds to the order of execution of the individual transformations:

0) Ignore all type prefixes and all encoding control sections (see note 1). ASN.1 type prefixes consist of tags and
encoding prefixes.

0bis) Ignore names of SEQUENCE OF and SET OF types, values and fields.

1) Ignore any extension markers and exception specifications.

2) Ignore any user defined constraints (see clause 9 of ITU-T Recommendation X.682 [4]).

3) Ignore any contents constraint (see clause 9 of ITU-T Recommendation X.682 [4]).

4) Ignore any pattern constraint (see clause 48.9 of ITU-T Recommendation X.680 [2]).

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 17

5) Create equivalent TTCN-3 subtypes for all ASN.1 types constrained using contained subtyping by replacing
included types by the set of values they represent. More detailed information on the conversion of ASN.1 type
constraints to TTCN-3 subtypes is given in table 4. Table 4 shows the applicability of ASN.1 type constraint
mechanisms to different ASN.1 types. Where the cell contains "No", the type constraint is disallowed for the
given type. Shaded cells identify type constraints applicable to a given type and text in the cell defines
TTCN-3 subtyping mechanisms to be used when transforming constrained ASN.1 types.

6) Execute the COMPONENTS OF transformation according to clause 24.4 of ITU-T Recommendation
X.680 [2] on any SEQUENCE types and according to clause 26.2 on any SET types containing the keywords
"COMPONENTS OF".

7) Replace any EMBEDDED PDV type with its associated type obtained by expanding inner subtyping in the
associated type of the EMBEDDED PDV type (see clause 32.5 of ITU-T Recommendation X.680 [2]) to a full
type definition.

8) Replace the EXTERNAL type with its associated type obtained by expanding inner subtyping in the associated
type of the EXTERNAL type (see clause 33.5 of ITU-T Recommendation X.680 [2]) to a full type definition
(see note 3).

9) Replace the CHARACTER STRING type with its associated type obtained by expanding inner subtyping in
the associated type of the CHARACTER STRING type (see clause 39.5 of ITU-T Recommendation
X.680 [2]) to a full type definition.

10) Replace the INSTANCE OF type with its associated type obtained by substituting INSTANCE OF
DefinedObjectClass by its associated ASN.1 type (see clause C.7 of ITU-T Recommendation X.681 [3]) and
replace all ASN.1 types with their TTCN-3 equivalents according to table 3. The resulted type is the TTCN-3
associated type.

11) Ignore any remaining inner subtyping (see note 4).

12) Ignore any named numbers and named bits in ASN.1 types. In ASN.1 values replace any named number by its
value and substitute any named bits or sequence of named bits by a bitstring without trailing zeros, where bit
positions identified by names present are replaced by "1"s, other bit positions are replaced by "0"s.

13) Replace any selection type with the type referenced by the selection type; if the denoted choice type (the
"Type" in clause 29.1 of ITU-T Recommendation X.680 [2]) is a constrained type, the selection has to be done
on the parent type of the denoted choice type.

14) Convert any RELATIVE-OID type or value to an objid type or value (see note 5).

15) Replace any of the following restricted character string types with their associated types obtained as
(see note 6):

- BMPString: universal charstring (char (0,0,0,0) .. char (0,0,255,255));

- UTF8String: universal charstring;

- NumericString: charstring constrained to the set of characters as given in clause 36.2 of ITU-T
Recommendation X.680 [2];

- PrintableString: charstring constrained to the set of characters as given in clause 36.4 of
ITU-T Recommendation X.680 [2];

- TeletexString and T61String: universal charstring constrained to the set of characters
as given in ITU-T Recommendation T.61 [i.2];

- VideotexString: universal charstring constrained to the set of characters as given in
ITU-T Recommendation T.100 [9] and ITU-T Recommendation T.101 [10];

- GraphicString: universal charstring;

- GeneralString: universal charstring.

16) Replace any GeneralizedTime and UTCTime types or values with the type or value of charstring.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 18

17) Replace any ObjectDescriptor type or value by the universal charstring type or value.

18) Replace any notations for the object class field types (see clause 14 of ITU-T Recommendation X.681 [3]) by
the ASN.1 definition they are referring to (see note 8); open types has to be replaced by the metatype "OPEN
TYPE" for the purpose of the transformation (and only for that).

19) Replace all information from objects notations (see clause 15 of ITU-T Recommendation X.681 [3]) by the
ASN.1 definition they are referencing to.

20) Revert table constraints (see clause 10 of ITU-T Recommendation X.682 [4]) to list subtyping and ignore all
relational constraints (see note 7).

21) Replace all occurrences of NULL type with the following associated TTCN-3 type (see note 13):

- type enumerated <identifier> { NULL },
where <identifier> is the ASN.1 Type reference converted according to clause 8.2, if a synonym of the
NULL type is defined, or with

- the nested type definition enumerated { NULL } <identifier>,
where <identifier> is the ASN.1 field identifier, if NULL is used within a structured type.

22) Replace all references to open types with the metatype "OPEN TYPE" (see note 11).

23) Replace ASN.1 types with their equivalents according to table 3 and ASN.1 values with equivalent TTCN-3
values based on the associated types. Fields of ASN.1 SEQUENCE and SET types identified as OPTIONAL
or with a DEFAULT value shall be optional fields in the associated type (see note 12). Missing (i.e. implicitly
omitted) optional fields in structured ASN.1 values (of the types (SET, SEQUENCE, etc.) shall be explicitly
omitted in the resulted structured TTCN-3 values (see note 9).

24) Replace the metatype "OPEN TYPE" by anytype.

NOTE 1: Associated types contain abstract information only, thus do not contain alone all information needed for
the correct encoding of values based on ASN.1 types. The way of handling the extra information needed
by the test system to provide correct encoding and/or decoding is implementation dependent and remains
hidden for the user; this knowledge is not required to make valid TTCN-3 declarations or assignments
involving imported ASN.1 types and values.

NOTE 2: When importing ENUMERATED types, integer numbers assigned by the user to enumerations will also be
imported.

NOTE 3: The data-value field of the EXTERNAL type may be encoded as a single-ASN1-type, octet-aligned or
arbitrary (see clause 8.18.1 of ITU-T Recommendation X.690 [6]) at the discretion of the encoder; if the
user wants to enforce one given form of encoding or wants to allow only one specific encoding form at
matching, it has to use the appropriate encoding attribute for the type or the given constant, variable,
template or template field (see clause 11.3).

NOTE 4: Inner subtyping has to be taken into account by the user when defining TTCN-3 values or templates based
on an ASN.1 type constrained by inner subtyping.

NOTE 5: Equivalence with the objid type is limited to the syntax to be used for value notations only. When
encoding/decoding an objid value retrieved from an ASN.1 RELATIVE-OID value using an ASN.1
encoding rule, the encoding/decoding will occur according to rules specified for the RELATIVE-OID
type.

NOTE 6: VisibleString, IA5String and UniversalString have their equivalent TTCN-3 types and
are replaced directly.

NOTE 7: Relational constraints have to be taken into account by the user when declaring values and templates (also
may be handled by tools implicitly).

NOTE 8: This replacement does not affect constraints applied to the "notation for the object class field type" itself.

NOTE 9: Missing optional fields in values of structured ASN.1 types (SET, SEQUENCE, EXTERNAL, etc.) are
equivalent to explicitly omitted fields in structured TTCN-3 values.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 19

EXAMPLE 2:

 module MyTTCNModule
 {
 import from MyASN1module language "ASN.1:2002" all;

 const Bmessage MyTTCNConst:= johnValues;
 const DefinedValuesForField1 Value1:= 1;
 }

NOTE 10: ASN.1 definitions other than types and values (i.e. information object classes or information object sets)
are not directly accessible from the TTCN-3 notation. Such definitions will be resolved to a type or
value within the ASN.1 module before they can be referenced from within the TTCN-3 module.

NOTE 11: The metatype "OPEN TYPE" is just used to describe the transformation process. It does not exist
neither before nor after the transformation.

NOTE 12: Most ASN.1 encoding rules require that fields with DEFAULT values are omitted in the encoded
message when their actual contents equal to the default values. However, in TTCN-3, it may be required
that the default value is also encoded and present. If fields with default values are omitted or present in
the encoded message, is a TTCN-3 test system runtime configuration option. It is also a TTCN-3 test
system runtime configuration option, if fields with default values missing in the received encoded
message are omitted or substituted by their default values in the abstract TTCN-3 value (the decoded
message).

NOTE 13: The associated type for the ASN.1 NULL type is introduced to specify the TTCN-3 value notation for
this type. The encoding/decoding of NULL values and fields have to be as defined for the NULL type in
the ASN.1 Recommendations (see e.g. in ITU-T Recommendations X.690 [6], X.691 [7] and
X.693 [8]). Also, the restriction in clause 7.1.3 of ES 201 873-1 [1] (relational operators) [1] that only
values of the same enumerated types are allowed to be compared, does not apply to imported ASN.1
NULL types.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 20

Table 4: ASN.1 type constraint to TTCN-3 subtype conversions

Type (or derived from such a
type by tagging or

subtyping)

Single
Value

Contained
Subtype (h)

Value
Range

Size
Constraint

Permitted
Alphabet

Type
Constraint

Inner
Subtyping

(see i)

Pattern
Constraint

User
defined

constraint

Table
constraint

(see k)

Relation
constraint

(see k)

Content
constraint

Bit String list single value: list,
size: length

No length No No No No ignore No No ignore

Boolean list list No No No No No No ignore No No No
Choice list list No No No No convert to

full type
No ignore No No No

Embedded-pdv (see a) list No No No No No convert to
full type

No ignore No No No

Enumerated list list No No No No No No ignore No No No
External (see a) list No No No No No convert to

full type
No ignore No No No

Instance-of (see a and b) list list No No No No convert to
full type

No ignore No No No

Integer list single value: list,
value range: range

range No No No No No ignore No No No

Null ignore ignore No No No No No No ignore No No No
Object class field type (see c) (see c) No No No No No No ignore list ignore No
Object Descriptor (see e) list single value: list,

size: length,
perm.alphabet:

range

No length range No No No ignore No No No

Object Identifier list list No No No No No No ignore No No No
Octet String list single value: list,

size: length
No length No No No No ignore No No ignore

open type No No No No No anytype
with list

constraint

No No ignore No
(see m)

No
(see m)

No

Real list single value: list,
value range: range

range No No No convert to
full type

No ignore No No No

Relative Object Identifier
(see d)

list list No No No No No No ignore No No No

Restricted Character String
Types

list single value: list,
size: length,

perm.alphab.:
range

range length range No No Ignore
(see g)

ignore No No No

Sequence list list No No No No convert to
full type

No ignore No No No

Sequence-of list single value: list,
value range: range

No length No No convert to
full type

No ignore No No No

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 21

Type (or derived from such a
type by tagging or

subtyping)

Single
Value

Contained
Subtype (h)

Value
Range

Size
Constraint

Permitted
Alphabet

Type
Constraint

Inner
Subtyping

(see i)

Pattern
Constraint

User
defined

constraint

Table
constraint

(see k)

Relation
constraint

(see k)

Content
constraint

Set list list No No No No convert to
full type

No ignore No No No

Set-of list single value: list,
value range: range

No length No No convert to
full type

No ignore No No No

Time Types (see a) list list No No No No No No ignore No No No
Unrestricted Character String
Type (see a)

list No No length
(applied to

field "string-
value")

No No convert to
full type

No ignore No No No

NOTES:
(a) These types are seen from TTCN-3 as being equivalent to their associated types.
(b) Type-id field of the associated type for Instance of shall be replaced by the type of the &id field the value field is anytype (annex C of ITU-T Recommendation X.681 [3]).
(c) Replaced by the referenced type, thus applicable as to the referenced type.
(d) Seen as object identifier from TTCN-3.
(e) Its associated type is a restricted character string type.
(f) Open type is replaced by anytype.
(g) Character patterns can only be used in constants, variables, templates and module parameters in TTCN-3 but cannot be used for subtyping.
(h) Contained subtype constraints shall be replaced by literal constraints at import.
(i) Information in this column relates to the TTCN-3 views of ASN.1 definitions. Encoding/decoding shall be according to the root type, thus extra information for encoding also has

to be stored which are not shown in this table.
(j) Applicable to notations for the object class field type only.
(k) Applicable when the open type is defined using the notation for the object class field type (see above).

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 22

9.2 Scope of ASN.1 identifiers
Imported ASN.1 identifiers follow the same scope rules as imported TTCN-3 types and values (see clause 5.2 of
ES 201 873-1 [1]).

10 Parameterization in ASN.1
It is not permitted to reference parameterized ASN.1 definitions from within the TTCN-3 module. However, non-
parameterized ASN.1 definitions may reference parameterized ASN.1 definitions by providing the actual parameters.
Such ASN.1 definitions can be imported to and used in TTCN-3 and when importing all definitions of an ASN.1
module, such definitions shall also be imported.

11 Defining ASN.1 message templates

11.1 General
Imported ASN.1 values can be used as messages in both send and receive operations.

EXAMPLE:

 MyASN1module DEFINITIONS ::=
 BEGIN
 -- ASN.1 Module definition

 -- The message definition

 MyMessageType::= SEQUENCE
 { field1 [1] IA5STRING, -- Like TTCN-3 charstring

field2 [2] INTEGER OPTIONAL, -- like TTCN-3 integer
field3 [4] Field3Type, -- Like TTCN-3 record
field4 [5] Field4Type -- Like TTCN-3 array

 }

 Field3Type::= SEQUENCE {field31 BIT STRING, field32 INTEGER, field33 OCTET STRING},
 Field4Type::= SEQUENCE OF BOOLEAN

 -- may have the following value
 myValue MyMessageType::=
 {
 field1 "A string", -- IA5STRING

field2 123, -- INTEGER
 field3 {field31 '11011'B, field32 456789, field33 'FF'O}, -- SEQUENCE
 field4 {true, false} - SEQUENCE OF
 }
 END

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 23

11.2 Receiving messages based on ASN.1 types
Matching mechanisms are not supported by the ASN.1 syntax. Thus, if matching mechanisms are wished to be used
with a received ASN.1 message, a TTCN-3 template shall be defined based on the ASN.1 type and this shall be used in
the receiving operation.

EXAMPLE:

 import from MyASN1module language "ASN.1:2002" {
 type myMessageType
 }

 // a message template using matching mechanisms is defined within a TTCN-3 module
 template myMessageType MyValue:=
 {
 field1 := pattern"A?tr*g",
 field2 := *,
 field3.field31 := '110??'B,
 field3.field32 := ?,
 field3.field33 := 'F?'O,
 field4.[0] := true,
 field4.[1] := false
 }

 // the following syntax is equally valid
 template myMessageType MyValue:=
 {
 field1 := pattern"A?tr*g", // string with wildcards
 field2 := *, // any integer or none at all
 field3 := {'110??'B, ?, 'F?'O},
 field4 := {?, false}
 }

11.3 Ordering of template fields
When TTCN-3 templates are used for ASN.1 types the significance of the order of the fields in the template will depend
on the type of ASN.1 construct used to define the message type. For example: if SEQUENCE or SEQUENCE OF is used
then the message fields shall be sent or matched in the order specified in the template. If SET or SET OF is used then
the message fields may be sent or matched in any order.

12 Encoding information

12.1 General
TTCN-3 allows references to encoding rules and variations within encoding rules to be associated with various TTCN-3
language elements. It is also possible to define invalid encodings. This encoding information is specified using the
with statement (see clause 27 of ES 201 873-1 [1]) according to the following syntax:

EXAMPLE:

 module MyModule
 {
 :
 import from MyASN1module language "ASN.1:2002" {
 type myMessageType
 }
 with {
 encode "PER-BASIC-ALIGNED:1997" // All instances of MyMessageType should be encoded
using PER:1997
 }
 :
 } // end module
 with { encode "BER:1997" } // Default encoding for the entire module (test suite) is BER:1997

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 24

12.2 ASN.1 encoding attributes
The following strings are the predefined (standardized) encoding attributes for the current version of ASN.1:

a) "BER:2002" means encoded according to ITU-T Recommendation X.690 [6] (BER);

b) "CER:2002" means encoded according to ITU-T Recommendation X.690 [6] (CER);

c) "DER:2002" means encoded according to ITU-T Recommendation X.690 [6] (DER);

d) "PER-BASIC-UNALIGNED:2002" means encoded according to (Unaligned PER) ITU-T
Recommendation X.691 [7];

e) "PER-BASIC-ALIGNED:2002" means encoded according to ITU-T Recommendation X.691 [7]
(Aligned PER);

f) "PER-CANONICAL-UNALIGNED:2002" means encoded according to (Canonical Unaligned PER)
ITU-T Recommendation X.691 [7];

g) "PER-CANONICAL-ALIGNED:2002" means encoded according to ITU-T Recommendation X.691 [7]
(Canonical Aligned PER);

h) "BASIC-XER:2002" means encoded according to ITU-T Recommendation X.693 [8] (Basic XML encoding
rules);

i) "CANONICAL-XER:2002" means encoded according to ITU-T Recommendation X.693 [8] (Canonical XML
encoding rules);

j) "EXTENDED-XER:2002" means encoded according to Amd. 1 ITU-T Recommendation X.693 [8] (Extended
XML encoding rules).

The encodings of previous ASN.1 versions rule (e.g. 1988, 1994 or 1997) can be used as well. In this case, the date
has to be replaced accordingly. For example, for ASN.1 1997 the following encoding attributes apply: "BER:1997",
"CER:1997", "DER:1997", "PER-BASIC-UNALIGNED:1997", "PER-BASIC-ALIGNED:1997",
"PER-CANONICAL-UNALIGNED:1997" and "PER-CANONICAL-ALIGNED:1997".

12.3 ASN.1 variant attributes
The following strings are predefined (standardized) variant attributes. They have predefined meaning only when applied
jointly with predefined ASN.1 encoding attributes (see clause 12.2). Handling of these predefined attributes, when
applied jointly with other attributes or to an TTCN-3 object without an attribute, is out of scope of the present document
(see note):

a) "length form 1" means, that the given value shall only be encoded and decoded using the short form of the
length octets (see clause 8.1.3 of ITU-T Recommendation X.690 [6]) in case of BER, CER and DER
encodings or the single octet length determinant (see clause 10.9 of Recommendation X.691 [7]) in case of any
form of the PER encoding.

b) "length form 2" means, that the given value shall only be encoded and decoded using the long form of the
length octets (see clause 8.1.3 of ITU-T Recommendation X.690 [6]) in case of BER, CER and DER
encodings or the two octets length determinant (see clause 10.9 of ITU-T Recommendation X.691 [7]) in case
of any form of the PER encoding.

c) "length form 3" means, that the given value shall only be encoded and decoded using the indefinite form of the
length octets (see clause 8.1.3 of ITU-T Recommendation X.690 [6]) in case of BER, CER and DER
encodings.

d) "REAL base 2" means that the given value shall be encoded or matched according to the REAL binary
encoding form. This attribute can be used on constants, variables or templates only and when used on any kind
of a grouping (e.g. to groups or to the whole import statement) it shall have effect on these TTCN-3 objects
only.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 25

e) "single-ASN1-type", "octet-aligned" and "arbitrary" mean, that the given value based on an ASN.1
EXTERNAL type shall be encoded using the specified by the attribute encoding form or matched if received
with the specified choice only (see clause 8.18 of ITU-T Recommendation X.690 [6]). This attribute can be
used on imported ASN.1 EXTERNAL types and constants, variables, templates or template fields based on
these types only; when used on any kind of a grouping (e.g. to groups or to the whole import statement) it shall
have effect on these TTCN-3 objects only. If the conditions set in clauses 8.18.6 to 8.18.8 of ITU-T
Recommendation X.690 [6] and the specified attribute do not met, this shall cause a run-time error.

f) "TeletexString" means that the given value shall be encoded and decoded as the ASN.1 type TeletexString
(see clause 8.20 of ITU-T Recommendation X.690 [6] and clause 26 of ITU-T Recommendation X.691 [7]).

g) "VideotexString" means that the given value shall be encoded and decoded as the ASN.1 type VideotexString
(see clause 8.20 of ITU-T Recommendation X.690 [6] and clause 26 of ITU-T Recommendation X.691 [7]).

h) "GraphicString" means that the given value shall be encoded and decoded as the ASN.1 type GraphicString
(see clause 8.20 of ITU-T Recommendation X.690 [6] and clause 26 of ITU-T Recommendation X.691 [7]).

i) "GeneralString" means that the given value shall be encoded and decoded as the ASN.1 type GeneralString
(see clause 8.20 of ITU-T Recommendation X.690 [6] and clause 26 of ITU-T Recommendation X.691 [7]).

NOTE: These attributes may be reused in implementation specific encoding rules with a different meaning than
specified in the current clause, may be ignored or a warning/error indication may be given. However, the
strategy to be applied is implementation dependent.

Application of these variant attributes may lead to invalid ASN.1 encoding (e.g. using the indefinite length form to
primitive values in BER or not using the minimum necessary number of length octets). This is allowed intentionally and
users shall allocate these variant attributes to constants, variables, templates or template fields used for receiving
cautiously.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 26

Annex A (normative):
Additional BNF and static semantics
When ASN.1 is supported, rules defined in annex A of ES 201 873-1 [1] shall apply, supplemented by the BNF and
semantic rules specified in this annex.

In addition to those listed in table 3 "List of TTCN-3 terminals which are reserved words" (see clause A.1.5 of
ES 201 873-1 [1]), the word objid shall also be a TTCN-3 reserved word (keyword).

Amendments to clause A.1.6 of ES 201 873-1 [1] are specified in the subsequent clauses of this annex.

A.1 New productions for ASN.1 support
1000. DefinitiveIdentifier ::= ObjectIdentifierKeyword "{" DefinitiveObjIdComponentList "}"
1001. ObjectIdentifierKeyword ::= "objid"
1002. DefinitiveObjIdComponentList ::= {DefinitiveObjIdComponent}+
1003. DefinitiveObjIdComponent ::= NameForm |
 DefinitiveNumberForm |
 DefinitiveNameAndNumberForm
1004. NameForm ::= Identifier
1005. DefinitiveNumberForm ::= Number
1006. DefinitiveNameAndNumberForm ::= Identifier "(" DefinitiveNumberForm ")"
1007. ObjectIdentifierValue ::= ObjectIdentifierKeyword "{" ObjIdComponentList "}"
1008. ObjIdComponentList ::= {ObjIdComponent}+
1009. ObjIdComponent ::= DefinitiveObjIdComponent | ReferencedValue
/* STATIC SEMANTICS - ReferencedValue shall be an object identifier value */
1010. NameAndNumberForm ::= Identifier "(" NumberForm | ReferencedValue ")"
/* STATIC SEMANTICS - ReferencedValue shall be an integer value */

A.2 Amended core language BNF productions and static
semantics

In addition to those specified in clause A.1.5 of ES 201 873-1 [1], when the use of ASN.1 is supported, the keywords
listed in clause 11.18 of ITU-T Recommendation X.680 [2], after applying the name conversion rules defined in
clause 8.2 of the present document, shall not be used as identifiers in a TTCN-3 module. ASN.1 keywords shall follow
the requirements of ITU-T Recommendation X.680 [2].

In addition to those listed in table A.3 of ES 201 873-1 [1], when the use of ASN.1 is supported, "objid" shall be a
reserved word.

Additions to clause A.1.6 of ES 201 873-1 [1] are identified by underlined font, deletions are identified by strikethrough
font.

5. GlobalModuleId ::= ModuleIdentifier [Dot DefinitiveIdentifier]
51. ValueOrRange ::= RangeDef | ConstantExpression
/* STATIC SEMANTICS - RangeDef production shall only be used with integer, charstring, universal
charstring, or float or object identifier based types */
/* STATIC SEMANTICS - When subtyping charstring or universal charstring range and values shall not
be mixed in the same SubTypeSpec */
144 LowerBound ::= SingleConstExpression | Minus InfinityKeyword
145 UpperBound ::= SingleConstExpression | InfinityKeyword
/* STATIC SEMANTICS - LowerBound and UpperBound shall evaluate to types integer, charstring,
universal charstring, or float or object identifier. In case LowerBound or UpperBound evaluates to
types charstring, or universal charstring or object identifier, only SingleConstExpression may be
present and in case of charstring and universal charstring types the string length shall be 1*/
438. PredefinedType ::= BitStringKeyword |
 BooleanKeyword |
 CharStringKeyword |
 UniversalCharString |
 IntegerKeyword |
 OctetStringKeyword |
 HexStringKeyword |
 VerdictTypeKeyword |

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 27

 FloatKeyword |
 AddressKeyword |
 DefaultKeyword |
 AnyTypeKeyword |
 ObjectIdentifierKeyword
459. PredefinedValue ::= BitStringValue |
 BooleanValue |
 CharStringValue |
 IntegerValue |
 OctetStringValue |
 HexStringValue |
 VerdictTypeValue |
 EnumeratedValue |
 FloatValue |
 AddressValue |
 OmitValue |
 ObjectIdentifierValue

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 28

Annex B (normative):
Additional Pre-defined TTCN-3 functions
Void.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 29

Annex C (informative):
Predefined object identifier components
ITU-T Recommendation X.660 [11] defines the tree of object identifier components shown below. Only the object
identifier components defined in ITU-T Recommendation X.660 [11] shall use the name form (without defining the
numerical value of the component) in object identifier value notations. These predefined components have specified
numerical values when used at their predefined positions only. Names in italic are reserved for historical reasons,
therefore their use in TTCN-3 codes is deprecated, but it is recommended that TTCN-3 test systems are able to
recognize them and substitute with the correct numerical value.

NOTE: Names below are given according to the TTCN-3 syntax, i.e. all dash characters are replaced by
underscore characters.

itu_t(0), ccitt(0), itu_r(0)
recommendation(0)

a(1)
b(2)
c(3)
d(4)
e(5)
f(6)
g(7)
h(8)
i(9)
j(10)
k(11)
l(12)
m(13)
n(14)
o(15)
p(16)
q(17)
r(18)
s(19)
t(20)
u(21)
v(22)
x(24)
y(25)
z(26)

question(1)
administration(2)
network_operator(3)
identified_organization(4)
r_recommendation(5)

iso(1)
standard(0)
registration_authority(1)
member_body(2)
identified_organization(3)

joint_iso_itu_t(2), joint_iso_ccitt(2)

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 30

Annex D (informative):
Deprecated features

D.1 Using sizeof for objid values and templates
The previous version (up to and including 3.1.1) of the standard allowed to use the sizeof predefined function to
objid values. This feature is replaced by the use of the length of predefined function (see clause 7.2.6.1) and, in
consequence, is deprecated in this edition of the standard and may be fully removed in the next published edition.

D.2 The decompose function
The previous version (up to and including 3.1.1) of the standard defined the decomp predefined function. This feature
is replaced by the use of the substr predefined function for objid values and templates (see clause 7.2.6.2) and, in
consequence, is deprecated in this edition of the standard and may be fully removed in the next published edition.

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 31

Annex E (informative):
Bibliography

• ITU-T Recommendation X.680 (07/94): "Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation".

• ITU-T Recommendation X.680 (12/97): "Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation".

• ITU-T Recommendation X.681 (07/94): "Information technology - Abstract Syntax Notation One (ASN.1):
Information object specification".

• ITU-T Recommendation X.681 (12/97): "Information technology - Abstract Syntax Notation One (ASN.1):
Information object specification".

• ITU-T Recommendation X.682 (07/94): "Information technology - Abstract Syntax Notation One (ASN.1):
Constraint specification".

• ITU-T Recommendation X.682 (12/97): "Information technology - Abstract Syntax Notation One (ASN.1):
Constraint specification".

• ITU-T Recommendation X.683 (07/94): "Information technology - Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications".

• ITU-T Recommendation X.683 (12/97): "Information technology - Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications".

• ISO/IEC 6429 (1992): "Information technology - Control functions for coded character sets".

• ITU-T Recommendation T.50 (1992): "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information interchange".

• ISO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets - Part 1: Latin
alphabet No. 1".

• A repository of Object IDentifiers (OIDs) is freely available at http://www.oid-info.com/.

NOTE: References to ITU-T Recommendations include the Recommendation and all Amendments and
Corrigenda published to the Recommendation except when specified otherwise in other parts of the
present document.

In the present document the following Amendments and Corrigenda were considered for X.680 (2002):

• ITU-T Recommendation X.680 Amendment 1 (10/2003): "Information technology - Abstract Syntax Notation
One (ASN.1): Specification of basic notation; Amendment 1: Support for EXTENDED-XER".

• ITU-T Recommendation X.680 Amendment 2 (08/2004): "Information technology - Abstract Syntax Notation
One (ASN.1): Specification of basic notation; Amendment 2: Alignment with changes made to ITU-T Rec.
X.660 | ISO/IEC 9834-1 for identifiers in object identifier value notation".

• ITU-T Recommendation X.680 Corrigendum 1 (05/2005): "Information technology - Abstract Syntax
Notation One (ASN.1): Specification of basic notation; Technical Corrigendum 1".

• ITU-T Recommendation X.680 Amendment 3 (06/2006): "Information technology - Abstract Syntax Notation
One (ASN.1): Specification of basic notation; Amendment 3: Time type support".

• ITU-T Recommendation X.680 Amendment 4 (05/2007): "Information technology - Abstract Syntax Notation
One (ASN.1): Specification of basic notation; Amendment 4".

http://www.oid-info.com/

ETSI

ETSI ES 201 873-7 V4.1.1 (2009-06) 32

History

Document history

V3.1.1 June 2005 Publication

V3.3.2 April 2008 Publication

V4.1.1 March 2009 Membership Approval Procedure MV 20090522: 2009-03-24 to 2009-05-22

V4.1.1 June 2009 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	4.1 Conformance

	5 General
	6 Amendments to the core language
	7 Additional TTCN-3 types
	7.1 General
	7.2 The object identifier type
	7.2.1 Sub-typing of the objid type
	7.2.1.1 Subtrees of the objid type
	7.2.1.2 List subtypes
	7.2.1.3 Range subtypes
	7.2.1.4 Mixing list and range subtypings

	7.2.2 Object identifier values
	7.2.3 Using objid values to identify modules
	7.2.3.1 Identifying module definitions
	7.2.3.2 Identifying modules in import statements

	7.2.4 Object identifier templates
	7.2.4.1 In-line Templates
	7.2.4.2 Template matching mechanisms

	7.2.5 Using objid with operators
	7.2.5.1 List operators
	7.2.5.2 Relational operators

	7.2.6 Using objid with predefined functions
	7.2.6.1 Number of components of an objid value or template
	7.2.6.2 The Substring function
	7.2.6.3 The isvalue function

	7.2.7 Supporting objid in TCI
	7.2.7.1 objid and TciTypeClass
	7.2.7.2 objid and TCI type hierarchy

	8 ASN.1 and TTCN-3 type equivalents
	8.1 General
	8.1bis Importing from ASN.1 modules
	8.2 Identifiers

	9 ASN.1 data types and values
	9.1 Transformation rules
	9.2 Scope of ASN.1 identifiers

	10 Parameterization in ASN.1
	11 Defining ASN.1 message templates
	11.1 General
	11.2 Receiving messages based on ASN.1 types
	11.3 Ordering of template fields

	12 Encoding information
	12.1 General
	12.2 ASN.1 encoding attributes
	12.3 ASN.1 variant attributes

	Annex A (normative): Additional BNF and static semantics
	A.1 New productions for ASN.1 support
	A.2 Amended core language BNF productions and static semantics

	Annex B (normative): Additional Pre-defined TTCN-3 functions
	Annex C (informative): Predefined object identifier components
	Annex D (informative): Deprecated features
	D.1 Using sizeof for objid values and templates
	D.2 The decompose function

	Annex E (informative): Bibliography
	History

