

ETSI ES 201 873-4 V4.5.1 (2016-07)

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;

Part 4: TTCN-3 Operational Semantics

ETSI STANDARD

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)2

Reference
RES/MTS-201873-4 T3 ed451 OS

Keywords
language, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2016.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)3

Contents

Intellectual Property Rights .. 8

Foreword ... 8

Modal verbs terminology .. 8

1 Scope .. 9

2 References .. 9

2.1 Normative references ... 9

2.2 Informative references .. 9

3 Definitions and abbreviations ... 9

3.1 Definitions .. 9

3.2 Abbreviations ... 9

4 Introduction .. 10

5 Structure of the present document .. 10

6 Restrictions ... 10

7 Replacement of short forms ... 11

7.0 General ... 11

7.1 Order of replacement steps ... 12

7.2 Replacement of global constants and module parameters .. 12

7.3 Embedding single receiving operations into alt statements .. 12

7.4 Embedding stand-alone altstep calls into alt statements ... 13

7.5 Replacement of interleave statements .. 13

7.6 Replacement of trigger operations .. 26

7.7 Replacement of select-case statements ... 26

7.8 Replacement of simple break statements .. 28

7.9 Replacement of continue statements .. 28

7.10 Adding default parameters to disconnect and unmap operations without parameters 29

7.11 Adding default values of parameters .. 29

8 Flow graph semantics of TTCN-3 .. 29

8.0 General ... 29

8.1 Flow graphs .. 30

8.1.0 General .. 30

8.1.1 Flow graph frame .. 30

8.1.2 Flow graph nodes .. 30

8.1.2.0 General .. 30

8.1.2.1 Start nodes ... 30

8.1.2.2 End nodes .. 30

8.1.2.3 Basic nodes ... 30

8.1.2.4 Reference nodes .. 31

8.1.2.4.0 General .. 31

8.1.2.4.1 OR combination of reference nodes .. 31

8.1.2.4.2 Multiple occurrences of reference nodes ... 31

8.1.3 Flow lines ... 32

8.1.4 Flow graph segments .. 33

8.1.5 Comments ... 33

8.1.6 Handling of flow graph descriptions ... 34

8.2 Flow graph representation of TTCN-3 behaviour .. 34

8.2.0 General .. 34

8.2.1 Flow graph construction procedure .. 34

8.2.2 Flow graph representation of module control ... 35

8.2.3 Flow graph representation of test cases .. 36

8.2.4 Flow graph representation of functions .. 36

8.2.5 Flow graph representation of altsteps ... 37

8.2.6 Flow graph representation of component type definitions .. 38

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)4

8.2.7 Retrieval of start nodes of flow graphs ... 39

8.3 State definitions for TTCN-3 modules ... 39

8.3.0 General .. 39

8.3.1 Module state.. 40

8.3.1.0 General .. 40

8.3.1.1 Accessing the module state ... 40

8.3.1a Configuration state .. 40

8.3.1a.0 Genral .. 40

8.3.1a.1 Accessing the configuration state .. 40

8.3.2 Entity states ... 41

8.3.2.0 General .. 41

8.3.2.1 Accessing entity states .. 43

8.3.2.2 Data state and variable binding ... 44

8.3.2.3 Accessing data states ... 45

8.3.2.4 Timer state and timer binding ... 45

8.3.2.5 Accessing timer states ... 46

8.3.2.6 Port references and port binding ... 47

8.3.2.7 Accessing port references ... 48

8.3.3 Port states .. 48

8.3.3.0 General .. 48

8.3.3.1 Handling of connections among ports ... 49

8.3.3.2 Handling of port states .. 49

8.3.3a Component verdict states .. 50

8.3.4 General functions for the handling of module states .. 50

8.4 Messages, procedure calls, replies and exceptions ... 51

8.4.0 General .. 51

8.4.1 Messages ... 51

8.4.2 Procedure calls and replies ... 51

8.4.3 Exceptions... 52

8.4.4 Construction of messages, procedure calls, replies and exceptions .. 52

8.4.5 Matching of messages, procedure calls, replies and exceptions ... 52

8.4.6 Retrieval of information from received items ... 53

8.5 Call records for functions, altsteps and test cases ... 53

8.5.0 General .. 53

8.5.1 Handling of call records .. 53

8.6 The evaluation procedure for a TTCN-3 module ... 54

8.6.1 Evaluation phases ... 54

8.6.1.0 General .. 54

8.6.1.1 Phase I: Initialization... 54

8.6.1.2 Phase II: Update .. 55

8.6.1.3 Phase III: Selection ... 55

8.6.1.4 Phase IV: Execution .. 55

8.6.2 Global functions .. 56

9 Flow graph segments for TTCN-3 constructs .. 56

9.0 General ... 56

9.1 Action statement ... 56

9.2 Activate statement .. 57

9.2a Alive component operation .. 58

9.2a.0 General .. 58

9.2a.1 Flow graph segment <alive-comp-act> .. 60

9.2a.2 Flow graph segment <alive-comp-snap> .. 61

9.3 Alt statement .. 61

9.3.0 General .. 61

9.3.1 Flow graph segment <take-snapshot> .. 63

9.3.2 Flow graph segment <receiving-branch> ... 64

9.3.3 Flow graph segment <altstep-call-branch> ... 65

9.3.4 Flow graph segment <else-branch> .. 66

9.3.5 Flow graph segment <default-evocation>... 67

9.4 Altstep call.. 68

9.5 Assignment statement ... 68

9.5a Break statements in altsteps.. 68

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)5

9.6 Call operation ... 69

9.6.0 General .. 69

9.6.1 Flow graph segment <nb-call-with-one-receiver> .. 71

9.6.1a Flow graph segment <nb-call-with-multiple-receivers> ... 71

9.6.2 Flow graph segment <nb-call-without-receiver> .. 73

9.6.3 Flow graph segment <b-call-without-duration> ... 73

9.6.4 Flow graph segment <b-call-with-duration> .. 74

9.6.5 Flow graph segment <call-reception-part> ... 75

9.6.6 Flow graph segment <catch-timeout-exception> .. 76

9.7 Catch operation .. 76

9.8 Check operation .. 77

9.8.0 General .. 77

9.8.1 Flow graph segment <check-with-sender> ... 78

9.8.2 Flow graph segment <check-without-sender> .. 79

9.8a Checkstate port operation ... 80

9.8a.0 General .. 80

9.8a.1 Flow graph segment <check-port-status> ... 81

9.8a.2 Flow graph segment <check-port-connection> ... 81

9.9 Clear port operation .. 83

9.10 Connect operation... 83

9.11 Constant definition ... 84

9.12 Create operation ... 85

9.13 Deactivate statement ... 86

9.13.0 General .. 86

9.13.1 Flow graph segment <deactivate-one-default> ... 87

9.13.2 Flow graph segment <deactivate-all-defaults> ... 87

9.14 Disconnect operation .. 88

9.14.0 General .. 88

9.14.1 Flow graph segment <disconnect-one-par-pair> .. 88

9.14.2 Flow graph segment <disconnect-all> .. 90

9.14.3 Flow graph segment <disconnect-comp> ... 91

9.14.4 Flow graph segment <disconnect-port> .. 92

9.14.5 Flow graph segment <disconnect-two-par-pairs> ... 92

9.15 Do-while statement... 93

9.16 Done component operation... 94

9.16.0 General .. 94

9.16.1 Flow graph segment <done-assignment> ... 96

9.17 Execute statement ... 96

9.17.0 General .. 96

9.17.1 Flow graph segment <execute-without-timeout> ... 97

9.17.2 Flow graph segment <execute-timeout> ... 98

9.17.3 Flow graph segment <dynamic-error> .. 99

9.18 Expression .. 99

9.18.0 General .. 99

9.18.1 Flow graph segment <lit-value> ... 100

9.18.2 Flow graph segment <var-value> ... 100

9.18.3 Flow graph segment <func-op-call> ... 101

9.18.4 Flow graph segment <operator-appl> ... 101

9.19 Flow graph segment <finalize-component-init> .. 102

9.20 Flow graph segment <init-component-scope> ... 102

9.20a Flow graph segment <init-scope-with-runs-on> .. 103

9.20b Flow graph segment <init-scope-without-runs-on> ... 103

9.21 Flow graph segment <parameter-handling> ... 104

9.22 Flow graph segment <statement-block> .. 104

9.23 For statement .. 105

9.24 Function call ... 106

9.24.0 General .. 106

9.24.1 Flow graph segment <value-par-calculation> ... 108

9.24.2 Flow graph segment <ref-par-var-calc> ... 108

9.24.3 Flow graph segment <ref-par-timer-calc> .. 109

9.24.3a Flow graph segment <ref-par-port-calc> .. 109

9.24.4 Flow graph segment <user-def-func-call> .. 110

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)6

9.24.5 Flow graph segment <predef-ext-func-call>... 110

9.25 Getcall operation .. 111

9.26 Getreply operation .. 111

9.27 Getverdict operation ... 112

9.28 Goto statement .. 112

9.28a Halt port operation.. 113

9.29 If-else statement ... 113

9.29a Kill component operation ... 114

9.29a.0 General .. 114

9.29a.1 Flow graph segment <kill-mtc> .. 116

9.29a.2 Flow graph segment <kill-component> .. 117

9.29a.3 Flow graph segment <kill-all-comp> .. 118

9.29b Kill execution statement ... 118

9.29b.0 General .. 118

9.29b.1 Flow graph segment <kill-control> .. 119

9.29c Killed component operation ... 120

9.30 Label statement .. 122

9.31 Log statement ... 122

9.32 Map operation .. 123

9.33 Mtc operation ... 123

9.34 Port declaration .. 124

9.35 Raise operation ... 124

9.35.0 General .. 124

9.35.1 Flow graph segment <raise-with-one-receiver-op> .. 125

9.35.1a Flow graph segment <raise-with-multiple-receivers-op> ... 125

9.35.2 Flow graph segment <raise-without-receiver-op> .. 127

9.36 Read timer operation .. 127

9.37 Receive operation ... 128

9.37.0 General .. 128

9.37.1 Flow graph segment <receive-with-sender> ... 129

9.37.2 Flow graph segment <receive-without-sender> .. 131

9.37.3 Flow graph segment <receive-assignment> .. 132

9.38 Repeat statement .. 132

9.39 Reply operation .. 133

9.39.0 General .. 133

9.39.1 Flow graph segment <reply-with-one-receiver-op> ... 134

9.39.1a Flow graph segment <reply-with-multiple-receivers-op> .. 134

9.39.2 Flow graph segment <reply-without-receiver-op> ... 136

9.40 Return statement ... 136

9.40.0 General .. 136

9.40.1 Flow graph segment <return-with-value>... 138

9.40.2 Flow graph segment <return-without-value> ... 139

9.41 Running component operation ... 140

9.41.0 General .. 140

9.41.1 Flow graph segment <running-comp-act> .. 141

9.41.2 Flow graph segment <running-comp-snap> ... 142

9.42 Running timer operation ... 143

9.43 Self operation ... 144

9.44 Send operation .. 144

9.44.0 General .. 144

9.44.1 Flow graph segment <send-with-one-receiver-op> .. 145

9.44.1a Flow graph segment <send-with-multiple-receivers-op> ... 145

9.44.2 Flow graph segment <send-without-receiver-op> .. 147

9.45 Setverdict operation .. 147

9.46 Start component operation .. 148

9.47 Start port operation ... 150

9.48 Start timer operation ... 150

9.48.0 General .. 150

9.48.1 Flow graph segment <start-timer-op-default> .. 151

9.48.2 Flow graph segment <start-timer-op-duration> .. 152

9.49 Stop component operation .. 152

9.49.0 General .. 152

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)7

9.49.1 Void .. 154

9.49.2 Flow graph segment <stop-alive-component> .. 154

9.49.3 Flow graph segment <stop-all-comp> .. 155

9.50 Stop execution statement .. 156

9.51 Stop port operation ... 157

9.52 Stop timer operation ... 158

9.53 System operation .. 158

9.53a Test case stop operation ... 159

9.54 Timer declaration ... 159

9.54.0 General .. 159

9.54.1 Flow graph segment <timer-decl-default> .. 160

9.54.2 Flow graph segment <timer-decl-no-def> .. 160

9.55 Timeout timer operation ... 161

9.56 Unmap operation .. 162

9.56.0 General .. 162

9.56.1 Flow graph segment <unmap-all> .. 164

9.56.2 Flow graph segment <unmap-comp> ... 165

9.56.3 Flow graph segment <unmap-port> .. 166

9.57 Variable declaration ... 166

9.57.0 General .. 166

9.57.1 Flow graph segment <var-declaration-init> .. 167

9.57.2 Flow graph segment <var-declaration-undef> .. 167

9.58 While statement .. 168

10 Lists of operational semantic components ... 168

10.1 Functions and states.. 168

10.2 Special keywords .. 170

10.3 Flow graphs of TTCN-3 behaviour descriptions .. 170

10.4 Flow graph segments .. 171

History .. 174

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)8

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 4 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

NOTE: All formatting in the present document has been done intentionally. Underlined words denote special
elements of the formal semantics. Their meaning is described in clauses 7 and 8.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)9

1 Scope
The present document defines the operational semantics of TTCN-3. The present document is based on the TTCN-3
core language defined in ETSI ES 201 873-1 [1].

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

Not applicable.

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1] apply.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

BNF Backus-Nauer Form
MTC Master Test Component
SUT System Under Test
TTCN Testing and Test Control Notation

https://docbox.etsi.org/Reference/

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)10

4 Introduction
This clause defines the meaning of TTCN-3 behaviour in an intuitive and unambiguous manner. The operational
semantics is not meant to be formal and therefore the ability to perform mathematical proofs based on this semantics is
very limited.

This operational semantics provides a state oriented view on the execution of a TTCN module. Different kinds of states
are introduced and the meaning of the different TTCN-3 constructs is described by:

1) using state information to define the preconditions for the execution of a construct; and

2) defining how the execution of a construct will change a state.

The operational semantics is restricted to the meaning of behaviour in TTCN-3, i.e. functions, altsteps, test cases,
module control and language constructs for defining test behaviour, e.g. send and receive operations, if-else-, or
while- statements. The meaning of some TTCN-3 constructs is explained by replacing them with other language
constructs. For example, interleave statements are short forms for series of nested alt statements and the meaning
of each interleave statement is explained by its replacement with a corresponding series of nested alt statements.

In most cases, the definition of the semantics of a language is based on an abstract syntax tree of the code that may be
described. This semantics does not work on an abstract syntax tree but requires a graphical representation of TTCN-3
behaviour descriptions in form of flow graphs. A flow graph describes the flow of control in a function, alt step, test
case or the module control. The mapping of TTCN-3 behaviour descriptions onto flow graphs is straightforward.

NOTE: The mapping of TTCN-3 statements onto flow graphs is an informal step and is not defined by using the
BNF rules in ETSI ES 201 873-1 [1]. The reason for this is that the BNF rules are not optimal for an
intuitive mapping because several static semantic rules are coded into BNF rules in order to allow static
semantic checks during the syntax check.

5 Structure of the present document
The present document is structured into four parts:

1) The first part (see clause 6) describes restrictions of the operational semantics, i.e. issues related to the
semantics, which are not covered by the present document.

2) The second part (see clause 8) defines the meaning of TTCN-3 short cut and macro notations by their
replacement with other TTCN-3 language constructs. These replacements in a TTCN-3 module can be seen as
pre-processing step before the module can be interpreted according to the following operational semantics
description.

3) The third part (see clause 9) describes the operational semantics of TTCN-3 by means of flow graph
interpretation and state modification.

4) The fourth part (see clause 10) specifies the mapping of the different TTCN-3 statements onto flow graph
segments, which provide the building blocks for flow graphs representing functions, alt steps, test cases and
module control.

6 Restrictions
The operational semantics only covers behavioural aspects of TTCN-3, i.e. it describes the meaning of statements and
operations. It does not provide:

a) A semantics for the data aspects of TTCN-3. This includes aspects like encoding, decoding and the usage of
data imported from non-TTCN-3 specifications.

b) A semantics for the grouping mechanism. Grouping is related to the definitions part of a TTCN-3 module and
has no behavioural aspects.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)11

c) A semantics for the import statement. The import of definitions has to be done in the definitions part of a
TTCN-3 module. The operational semantics handles imported definitions as if they are defined in the
importing module.

d) A semantics for the visibility of definitions. The correct usage of imported definitions declared with public,
private and friend visibility has to be checked by other means.

e) A semantics for fuzzy and lazy evaluation of variables and parameters. However, notes in the appropriate
clauses of this standard refer to places where fuzzy and lazy evaluation has to be considered.

7 Replacement of short forms

7.0 General
Short forms have to be expanded by the corresponding complete definitions on a textual level before this operational
semantics can be used for the explanation of TTCN-3 behaviour.

TTCN-3 short forms are:

• lists of module parameter, constant and variable declarations of the same type and lists of timer declarations;

• stand-alone receiving operations;

• stand-alone altsteps calls;

• trigger operations;

• missing return and stop statements at the end of function and test case definitions;

• missing stop execution statements;

• interleave statements;

• select-case statements;

• break and continue statements;

• disconnect and unmap operations without parameters; and

• default values of missing actual parameters.

In addition to the handling of short forms, the operational semantics requires a special handling for module parameters,
global constants, i.e. constants that are defined in the module definitions part, and pre-processing macros. All references
to module parameters, global constants and pre-processing macros shall be replaced by concrete values. This means, it
is assumed that the value of module parameters, global constants and pre-processing macros can be determined before
the operational semantics becomes relevant.

NOTE 1: The handling of module parameters and global constants in the operational semantics will be different
from their handling in a TTCN-3 compiler. The operational semantics describes the meaning of TTCN-3
behaviour and is not a guideline for the implementation of a TTCN-3 compiler.

NOTE 2: The operational semantics handles parameters of and local constants in test components, test cases,
functions and module control like variables. The wrong usage of local constants or in, out and inout
parameters has to be checked statically.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)12

7.1 Order of replacement steps
The textual replacements of short forms, global constants and module parameters have to be done in the following
order:

1) replacement of lists of module parameter, constant, variable and timer declarations with individual
declarations;

2) replacement of global constants and module parameters by concrete values;

3) replacement of all select-case statements by equivalent nested if-else statements;

4) embedding stand-alone receiving operations into alt statements;

5) embedding stand-alone altstep calls into alt statements;

6) expansion of interleave statements;

7) replacement of all trigger operations by equivalent receive operations and repeat statements;

8) adding return at the end of functions without return statement, adding self.stop operations at the end
of testcase definitions without a stop statement;

9) adding stop at the end a module control part without stop statement;

10) expansion of break statements;

11) expansion of continue statements;

12) adding default parameters to disconnect and unmap operations without parameters; and

13) adding default values of parameters.

NOTE: Without keeping this order of replacement steps, the result of the replacements would not represent the
defined behaviour.

7.2 Replacement of global constants and module parameters
Constants declared in the module definitions part are global for module control and all test components that are created
during the execution of a TTCN-3 module. Module parameters are meant to be global constants at run-time.

All references to global constants and module parameters shall be replaced by the actual values before the operational
semantics starts the interpretation of the module. If the value of a constant or module parameter is given in form of an
expression, the expression has to be evaluated. Then, the result of the evaluation shall replace all references of the
constant or module parameter.

7.3 Embedding single receiving operations into alt statements
TTCN-3 receiving operations are: receive, trigger, getcall, getreply, catch, check, timeout, and
done.

NOTE: The operations receive, trigger, getcall, getreply, catch and check operate on ports and
they allow branching due to the reception of messages, procedure calls, replies and exceptions. The
operations timeout and done are not real receiving operations, but they can be used in the same
manner as receiving operations, i.e. as alternatives in alt statements. Therefore, the operational
semantics handles timeout and done like receiving operations.

A receiving operation can be used as stand-alone statement in a function, an altstep or a test case. The timeout
operation can also be used as stand-alone statement in module control. In such a case the receiving operation as
considered to be shorthand for an alt statement with only one alternative defined by the receiving operation. For the
operational semantics an alt statement in which the receiving statement is embedded shall replace all stand-alone
occurrences of receiving operations.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)13

EXAMPLE:

 // The stand-alone occurrence of
 :
 MyCL.trigger(MyType:?);
 :

 // shall be replaced by
 :
 alt {
 [] MyCL.trigger (MyType:?) { }
 }
 :

 // or
 :
 MyPTC.done;
 :

 // shall be replaced by
 :
 alt {
 [] MyPTC.done { }
 }
 :

7.4 Embedding stand-alone altstep calls into alt statements
TTCN-3 allows calling altsteps like functions in functions, altsteps, test cases and module control. The meaning of a
stand-alone call of an altstep is given by an alt statement with one branch only that calls the altstep. The alt
statement is responsible for the snapshot that is evaluated within the altstep and for the invocation of the default
mechanism if none of the alternatives in the altstep can be chosen.

NOTE: An altsteps used in module control can only include alternatives with timeout operations and an else
branch.

EXAMPLE:

 // The stand-alone occurrence of
 :
 myAltstep(MyPar1Val);
 :

 // shall be replaced by
 :
 alt {
 [] myAltstep(MyPar1Val) { }
 }
 :

7.5 Replacement of interleave statements
The meaning of an interleave statement is defined by its replacement by a series of nested alt statements that has
the same meaning. The algorithm for the construction of the replacement for an interleave statement is described in
this clause. The replacement shall be made on a syntactical level.

Within an interleave statement it is not allowed:

1) to use the control transfer statements for, while, do-while, goto, activate, deactivate, stop,
repeat and return;

2) to call altsteps;

3) to call user-defined functions which include communication operations;

4) to guard branches of the interleave statement with Boolean expressions; and

5) to specify else branches.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)14

Due to these restrictions, all not mentioned stand-alone statements (e.g. assignment, log, send or reply), blocking
call operations and the compound statements interleave, if-else and alt can be used within an interleave
statement.

NOTE 1: Blocking call operations and if-else statements can be treated like stand-alone statements if they
have no embedded alt statements. In case of embedded alt statements, the alternatives contribute to
the interleave statement and need a special handling. For simplicity, the algorithm below does not
distinguish between these two cases.

NOTE 2: Non-blocking call operations are also allowed in interleave statements, they are considered to be
stand-alone statements.

The algorithm described in this clause only works for interleave statements without embedded interleave
statements. In case of an interleave statement that has embedded interleave statements, the embedded
interleave statements have to be replaced before the algorithm can be applied.

NOTE 3: Due to restrictions 1 to 5, it is always possible to find finite replacements for nested embeddings of
interleave statements.

The replacement algorithm works on a graph representation of an interleave statement and transforms it into a
semantically equivalent tree structure describing a series of nested alt statements. For this, a graph representation of
stand-alone statements, the compound statements if-else, blocking call, alt and interleave is needed.

A stand-alone statement is described by a node with the statement as inscription. A sequence of stand-alone statements
is described by a set of nodes connected by a flow lines. This is shown in figure 1.

P1.send(MyVar);

P1.send(MyVar);

(a) TTCN-3 stand-alone statement (b) graph representation of (a)

P1.send(MyVar);
x := 7 + 5;

P1.send(MyVar);

x := 7 + 5;

(c) Sequence of TTCN-3 stand-alone statements (d) graph representation of (c)

Figure 1: Graph representation of TTCN-3 stand-alone statements

The graph representation of an if-else statement is shown in figure 2. An if-else statement is represented by an
IF node with two flow lines connected to the first statement in the two alternatives. An if-else statement without
ELSE branch is represented in the same manner, if there are statements following the if-else statement. In this case
the flow line representing the else branch is connected to the first statement following the if-else statement. An
if-else statement without ELSE branch and without following statements is represented by an IF node with one flow
line only.

NOTE 4: The inscriptions on the flow lines in figure 1 are introduced for readability purposes only. The algorithm
only uses the relation expressed by the flow line and not the inscription.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)15

if (x < 7) {
 P1.send(MyVar);
}
else {
 x := 7 + 5;
}
x := x * 2

IF

P1.send(MyVar);

(x < 7)

x := 7 + 5;

ELSE

x := x * 2;

(a) TTCN-3 if-else statement (b) Graph representation of (a)

if (x < 7) {
 P1.send(MyVar);
}
x := x * 2

IF

P1.send(MyVar);

(x < 7)
ELSE

x := x * 2;

(c) TTCN-3 if-else statement without else branch (d) Graph representation of (c)

Figure 2: Graph representation of TTCN-3 if-else statements

The graph representation of a blocking call statement is shown in figure 3. A blocking call statement is represented
by a BLOCKING-CALL node with flow lines connected to the getreply and catch statements of the different
alternatives.

P1.call (MyProc:{-, true}, 20E-3) {
 [] P1.getreply(MyProc:{?,-} {
 setverdict(pass);
 }
 [] P1.catch(MyProc, MyException) {}
 [] P1.catch(timeout) {
 setverdict(fail);
 }
}
x := 7 + 5;

(a) TTCN-3 blocking call statement

BLOCKING CALL

P1.call(MyProc:{-,true}, 20E-3)

P1.getreply(MyProc:{?,-})

x := 7 + 5;

setverdict(pass);

P1.catch(MyProc, MyException)

P1.catch(timeout)

setverdict(fail);

(b) Graph representation of (a)

Figure 3: Graph representation of a TTCN-3 blocking call statement

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)16

The graph representation of an alt statement is shown in figure 4. An alt statement is represented by an alt-node
with several flow lines connected to the different alternatives.

alt {
 [x<5] P1.receive(MyMessageOne} {
 setverdict(pass);
 }
 [] P1.receive(MyMessageTwo) {}
 [] T1.timeout {
 setverdict(fail);
 }
}
x := 7 + 5;

(a) TTCN-3 alt statement

ALT

P1.receive(MyMessageOne)

x := 7 + 5;

setverdict(pass);

P1.receive(MyMessageTwo)

T1.timeout

setverdict(fail);

[x<5]

(b) Graph representation of (a)

Figure 4: Graph representation of a TTCN-3 alt statement

In general, the graph representations of if-else, blocking call and alt statements are directed graphs without
loops where the flow lines of the different alternatives join when leaving the statement. By means of duplication, it is
possible to transform such directed graphs into a semantically equivalent tree representation. This is shown in figure 5
for the alt statement in figure 4. The algorithm described below will construct such tree representations.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)17

alt {
 [x<5] P1.receive(MyMessageOne} {
 setverdict(pass);
 x := 7 + 5;
 }
 [] P1.receive(MyMessageTwo) {
 x := 7 + 5;
 }
 [] T1.timeout {
 setverdict(fail);
 x := 7 + 5;
 }
}

(a) TTCN-3 alt statement that is semantically equivalent to figure 4(a)

ALT

P1.receive(MyMessageOne)

x := 7 + 5;

setverdict(pass);

P1.receive(MyMessageTwo)

T1.timeout

setverdict(fail);

[x<5]

x := 7 + 5; x := 7 + 5;

(b) Graph representation of (a) (semantically equivalent to figure 4(b))

Figure 5: Graph representation of a TTCN-3 alt statement

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)18

An interleave statement can be described by a graph that consists of a set of directed sub-graphs, each of which is
constructed by means of stand-alone statements and the compound statements if-else, blocking call and alt. The
directed sub-graphs describe the interleaved flows of control. An example is shown in figure 6. The node inscriptions in
figure 6 (b) refer to the labels of the TTCN-3 statements in figure 6(a).

interleave {
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 }

 }
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 }
 [] Comp1.done { } // L8
 }
 x := 7 + 5; // L9
 }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)

 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 }
 }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 }
 }
 }
 }
}

(a) TTCN-3 interleave statement

L1

ALT

L2

L3

L4

L6

L7

L8

L5

IF

ALT

L10 L13

BC

ALT

L11 L12

L14

L9

(b) Graph representation of (a)

Figure 6: Graph representation of a TTCN-3 interleave statement

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)19

Formally, an interleave statement can be described by a graph GI = (St, F) where:

St is the set of allowed TTCN-3 statements; and

F ⊆ (St � St) describes the flow relation.

The term allowed TTCN-3 statements refers to the static restrictions 1-5 above.

For the construction algorithm the following functions need to be defined:

• The REACHABLE function returns all statements that are reachable from a statement s in a graph GI = (St, F):

 REACHABLE (s, GI) = { s } ∪
 { stmt | stmt ∈ St ∧ ∃(s = x1, x2, … , xn = stmt) where xi ∈ St,

 i ∈ {1…n} ∧ (xi, xi+1)∈ F}

• The SUCCESSORS function returns all successors of a statement s in a graph GI = (St, F):

 SUCCESSORS (s, GI) = { stmt | stmt ∈ St ∧ (s, stmt) ∈ F}

• The ENABLED function returns all statements of a graph GI = (St, F) which have no predecessors:

 ENABLED (GI) = { stmt | stmt ∈ St ∧ (F ∩ (S � {s}) = ∅)}

• The KIND function returns the kind or type of a TTCN-3 statement in a graph representing an interleave
statement.

• The DISCARD function deletes a statement s or a set of statements S from a graph GI = (St, F) and returns the
resulting graph GI'= (St', F'):

For single nodes:

 DISCARD (s, GI) = GI' where: GI' = (St', F'), with St' = St\{s} and
 F' = F ∩ (St\{s} � St\{s}).

For sets of nodes:

 DISCARD (S, GI) = GI' where: GI' = (St', F'), with St' = St\S and F' = F ∩ (St\S � St\S).

• The RECEIVING function takes a set of statements of a graph GI and returns all receiving statements:

 RECEIVING (S) = { stmt | stmt ∈ St ∧ KIND(stmt) ∈ {receive, trigger, getcall, getreply, catch, check,
 done, timeout}}

• The RANDOM function selects randomly an element s from a given set S and returns s.

 RANDOM (S) = s where s ∈ S

The construction algorithm (see figure 7) of the tree is a recursive procedure where in each recursive call the successor
nodes for a given node is constructed. The procedure is provided in a C-like pseudo-code notation that uses the
functions defined above and some additional mathematical notation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)20

CONSTRUCT-SUCCESSORS (statementType *predecessor, graphType GI) {
 // - statementType refers to the type of a node of the tree that is constructed
 // - *predecessor refers to the last node that has been created
 // - graphType denotes type of the graph of TTCN-3 statements
 // - GI is called by value and refers to the subgraph consisting of all remaining TTCN-3
 // statements that have to be taken into consideration

 var graphType myGraph;
 var statementType i, myStmt;
 var statementType *newStmt, *firstInBranch; // pointers for new statement nodes in the
 // tree that is constructed recursively

 // Retrieving sets of TTCN-3 statements that have no predecessors in 'GI'
 var statementSet enabStmts := ENABLED(GI); // all statements without predecessor
 var statementSet enabRecStmts := RECEIVING(enabStmts); // receiving statements in 'enabStmts'
 var statementSet enabNonRecStmts := enabStmts\enabRecStmts;
 // non receiving statements in 'enabStmts'

 if (GI.St == ∅) { // It is assumed that GI.St refers to the set of statements in GI
 return; // No statements are left, termination criterion of Recursion
 }
 elseif (enabNonRecStmts != ∅) { // Handling of non receiving statements in 'enabStmts'

 myStmt := RANDOM(enabNonRecStmts);
 // There can only be one statement in 'enabNonRec', because the Algorithm
 // continues the construction until there is a branch that contributes to
 // the interlave statement.
 newStmt := create(myStmt, predecessor);
 // Creation of a new tree node representing 'myStmt' in the tree
 // and update of pointers in 'newStmt' and 'predecessor'.

 if (KIND(myStmt) == IF || KIND(myStmt) == BLOCKING_CALL) {
 for each i in SUCCESSORS(myStmt, GI) {

 firstInBranch := create(i, newStmt);
 // Creation of a second node for the first statement of in a branch due to
 // an if-else statement.
 // Note, this create statement will be used to create tree nodes
 // representing the receiving statements in blocking call operations.

 myGraph := DISCARD({i, myStmt} ∪ REACHABLE(myStmt, GI)\REACHABLE(i, GI))
 // Removal of i, myStmt and all statements that are reachable from
 // myStmt but not reachable from i. The latter considers the branching of
 // a flow of control in a subgraph of GI.

 CONSTRUCT-SUCCESSORS(firstInBranch, myGraph); // NEXT RECURSION STEP
 }
 }
 elseif (KIND(myStmt) == ALT) {
 for each (i in SUCCESSORS(myStmt, GI) {

 CONSTRUCT-SUCCESSORS(mystmt, DISCARD(REACHABLE(myStmt, GI)\REACHABLE(i, GI)));
 // NEXT RECURSION STEP, the DISCARD(REACHABLE(myStmt, GI)\REACHABLE(i, GI))
 // argument considers the branching of a flow of control due to different
 // receiving events.
 }
 }
 else { // mystmt is a stand-alone statement
 CONSTRUCT-SUCCESSORS(newSonNode, DISCARD(myStmt, GI));
 // NEXT RECURSION STEP
 }
 }
 else { // Handling of receiving events that interleave
 if (KIND(predecessor) != ALT) { // an alt node is missing and has to be created, if the
 // interleaving is not influenced by an embedded alt statement
 predecessor := create(ALT, predecessor);
 }

 for each i in enabRecStmts) {
 newStmt := create(i, predecessor); // New tree node
 CONSTRUCT-SUCCESSORS(newStmt, DISCARD(i, GI)); // NEXT RECURSION STEP(S)
 }
 }
}

Figure 7: Replacement algorithm for TTCN-3 interleave statements

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)21

Initially, the CONSTRUCT-SUCCESSORS function (see figure 7) will be called with a root node of an empty tree and
the graph of TTCN-3 statements describing the interleave statement that shall be replaced. After termination, the
root node can be used to access the constructed tree.

The application of the CONSTRUCT-SUCCESSORS function to the interleave statement shown in figure 6 leads
to the tree shown in figure 8. The labels refer to the statements in figure 6(a). Multiple labels are the result of the
duplication of code. The TTCN-3 code that corresponds to the tree in figure 8 is shown in figure 9.

NOTE 5: The example for the application of the algorithm in figure 7 (see figures 6, 8 and 9) is very
comprehensive. This example is provided in order to show most of the special situations, i.e. branching
and joining of flow lines, an embedded alt statement, a blocking call statement and an if-else
statement.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)22

L1

ALT

L5 L4

ALT

L6

L7

L8

L5

IF

ALT

L9

L9

L10 L13

BC

ALT

L11 L12

L14

L2

L3

ALT

L6

L7

L8

L5

IF

ALT

L10 L13

BC

ALT

L11 L12

L14 L9

L9 IF

L8

ALT

L9

L6

L7

L9

L2

L3

L4

ALT

L2

L3

L4

ALT

L4 L2

L3

L6

L7

L8

ALT

L9

L9

L6

L7

L8

ALT

L9

L9

BC

L10

ALT

L2

L3

L4

ALT

L13

L14

L6

L7

L8

L9

L9

ALT

L1

ALT

L2

L3

L4

ALT

L1

ALT

L2

L3

L4

L6

L7

L8

L9

L9

ALT

L2

L3

L6

L7

L8

L9

L9

ALT

L4

L5

IF

ALT

L10

BC

ALT

L11 L12

ALT

L1

ALT

L2

L3

L4

L13

L14

ALT

L1

ALT

L2

L3

L4

ALT

L1

ALT

L2

L3

L4

L1

ALT

L2

L3

L4 L11 L12

ALT

L11 L12

ALT

L11 L12

ALT

L2

L3

L4

ALT

L2

L3

L4

ALT

L2

L3

L4 L11 L12

ALT

L11 L12

ALT

L11 L12

ALT

L2

L3

L4

ALT

L2

L3

L4

Figure 8: Result of applying the algorithm in figure 7 to the interleave statement in figure 6

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)23

alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 } } } } } }
 [] T1.timeout { // L4
 alt { // ALT
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 } } } } } }
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } }
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } }

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)24

 [] T1.timeout { // L4
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } } } }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] T1.timeout { // L4
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] P2.receive(M5) { // L11
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } }
 [] P2.receive(M6) { // L12
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } } } } }
 [] P2.receive(M2) { // L5
 if (x < 5) { // IF
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)25

 x := 7 + 5; // L9
 } } }
 [] T1.timeout { // L4
 alt { // ALT
 [] P2.receive(M4) { // L6
 setverdict(pass); // L7
 x := 7 + 5; // L9
 }
 [] Comp1.done { // L8
 x := 7 + 5; // L9
 } } } } }
 else {
 P3.call(MyProcTempl, 20E-3) { // BC (= BLOCKING CALL)
 [] P3.getreply(ReplyTempl) { // L10
 alt { // ALT
 [] P2.receive(M5) { // L11
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] P2.receive(M6) { // L12
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } }
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] T1.timeout { // L4
 alt { // ALT
 [] P2.receive(M5) { } // L11
 [] P2.receive(M6) { } // L12
 } }
 [] P2.receive(M5) { // L11
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } }
 [] P2.receive(M6) { // L12
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
 } } } } } }
 [] P3.catch(timeout) { // L13
 setverdict(fail); // L14
 alt { // ALT
 [] P1.receive(M1} { // L1
 alt { // ALT
 [] P1.receive(M3) { // L2
 setverdict(pass); // L3
 }
 [] T1.timeout { } // L4
} } } } } } } }

Figure 9: Semantically equivalent TTCN-3 code for the interleave statement in figure 6

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)26

7.6 Replacement of trigger operations
The trigger operation filters messages with a certain matching criterion from a stream of messages on a given port.
The semantics of the trigger operation can be described by its replacement with two receive operations and a
goto statement. The operational semantics assumes that this replacement is done on the syntactical level.

EXAMPLE 1:

 // The following trigger operation …

 alt {
 [] MyCL.trigger (MyType:?) { }
 }

 // shall be replaced by …

 alt {
 [] MyCL.receive (MyType:?) { }
 [] MyCL.receive {
 repeat
 }
 }

If the trigger statement is used in a more complex alt statement, the replacement is done in the same manner.

EXAMPLE 2:

 // The following alt statement includes a trigger statement …

 alt {
 [] PCO2.receive {
 stop;
 }
 [] MyCL.trigger (MyType:?) { }
 [] PCO3.catch {
 setverdict(fail);
 stop;
 }
 }

 // which will be replaced by

 alt {
 [] PCO2.receive {
 stop;
 }
 [] MyCL.receive (MyType:?) { }
 [] MyCL.receive {
 repeat;
 }
 [] PCO3.catch {
 setverdict(fail);
 stop;
 }
 }

7.7 Replacement of select-case statements
The select-case statement is an alternative to using a set of nested if-else statements when comparing a value
(defined by a select-expression following the select keyword) to one or several other values (defined by template
instances in the case branches). Therefore, the semantics of a select-case statement can be described by its
replacement with a set of nested if-else statements. To avoid a multiple evaluation of the select-expression, the set
of nested if-else statements has to be placed into a statement block and value of the expression has to be stored in a
variable at the beginning of the statement block. The operational semantics assumes that this replacement is done on the
syntactical level.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)27

Schematically the select-case statement looks as follows:

select (<expression>) {
 case (<templateInst1a>, …, <templateInst1n>)

 <statementblock1>

 case (<templateInst2a>, …, <templateInst2n>)

 <statementblock2>

 …
 case (<templateInstxa>, …, <templateInstxn>)

 <statementblockx>

 case else
 <statementblockx+1>

 }

The syntactical replacement of the schematic select-case statement by nested if-else statements looks as
follows:

{
 var <expression>Type myTempVar := <expression>; // temporary variable for storing the
 // value of the expression
 if (match(myTempVar, <templateInst1a>) or … or match(myTempVar, <templateInst1n>))

 <statementblock1>

 else {
 if (match(myTempVar, <templateInst2a>) or … or match(myTempVar, <templateInst2n>))

 <statementblock2>

 else {
 …
 if (match(myTempVar, <templateInstxa>) or … or match(myTempVar, <templateInstxn>))

 <statementblockx>

 else
 <statementblockx+1>

 …
 }
 }
}

EXAMPLE:

 // The following select-case statement:

 select (MyModulePar) { // where MyModulePar is of charstring type
 case ("firstValue") {
 log ("The first branch is selected");
 }
 case (MyCharstingVar, MyCharstringConst) {
 log ("The second branch is selected");
 }
 case else {
 log ("The else branch is selected");
 }
 }

 // is semantically equivalent to:

 {
 var charstring myTempVar := MyModulePar;
 if (match(myTempVar, "firstValue")) {
 log ("The first branch is selected");
 }
 else {
 if (match(myTempVar, MyCharstingVar) or match(myTempVar, MyCharstingConst)) {
 log ("The second branch is selected");
 }
 else {
 log ("The else branch is selected");
 }
 }
 }

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)28

7.8 Replacement of simple break statements
"Simple" break statements are break statements used for leaving loops, interleave statements and alt statements. Such
simple break statements are considered to be a short-hand form for using a pair of goto-label statements. For each
break statement a label statement is added after the loop, alt statement or expanded interleave statement. The
label statement shall have an unused label. The break statement is replaced by a goto statement to this specific
label.

Note, that interleave statements are explained already. Therefore the limitation that goto statements cannot be
used within interleave statements does not hold.

NOTE: The semantics for the break statement used to leave an altstep is defined in clause 9.5a.

EXAMPLE:

 // The following loop with a break statement:

 while (cond1) { // cond1 is a Boolean condition guarding the loop
 …
 if(cond2) {
 break;
 };
 …
 }

 // is semantically equivalent to:

 while (cond1) { // cond1 is a Boolean condition guarding the loop
 …
 if(cond2) {
 goto break_12345; // break_12345 is a unique label
 };
 …
 }
 label break_12345;

7.9 Replacement of continue statements
The continue statement is a short-hand form for using a pair of goto-label statements. For each continue
statement a label statement is added at the end of the loop body. The label statement shall have an unused label.
The continue statement is replaced by a goto statement to this specific label.

EXAMPLE:

 // The following loop with a continue statement:

 while (cond1) { // cond1 is a Boolean condition guarding the loop
 …
 if(cond2) {
 continue;
 };
 …
 }

 // is semantically equivalent to:

 while (cond1) { // cond1 is a Boolean condition guarding the loop
 …
 if(cond2) {
 goto continue_12345; // continue_12345 is a unique label
 };
 …
 label continue_12345;
 }

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)29

7.10 Adding default parameters to disconnect and unmap
operations without parameters

The usage of a disconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation. For
the operational semantics the parameter self:all port shall be added to all occurrences of disconnect and
unmap operations without parameters.

EXAMPLE:

 // each occurrence of
 disconnect;

 // shall be expanded in the following manner:
 disconnect(self:all port);

 // and

 // each occurrence of
 unmap;

 // shall be expanded in the following manner:
 unmap(self:all port);

7.11 Adding default values of parameters
Formal parameters may have default values. If no actual parameter is provided in a specific invocation, then the default
value is added to the actual parameter list. If list notation has been used for the actual parameter list, then the default
value is inserted according to the order in the formal parameter list. If assignment notation has been used for the actual
parameter list, then the default values are appended to the actual parameters, the order among the default values
corresponds to their order in the formal parameter list.

EXAMPLE:

 function f_comp (in integer p_int1, in integer p_int2 := 3) return integer {
 var integer v := p_int1 + p_int2;
 :
 return v;
 }

 // Each occurrence of
 f_comp(1)

 // shall be expanded to
 f_comp(1, 3);

 // Each occurrence of
 f_comp(p_int1 := 1)

 // shall be expanded to
 f_comp(p_int1 := 1, p_int2 := 3);

8 Flow graph semantics of TTCN-3

8.0 General
The operational semantics of TTCN-3 is based on the interpretation of flow graphs. In this clause flow graphs are
introduced (see clause 8.1), the construction of flow graphs representing TTCN-3 module control, test cases, altsteps,
functions and component type definitions is explained (see clause 8.2), module and component states for the description
of the execution states of a TTCN-3 module are defined (see clause 8.3), the handling of messages, remote procedure
calls, replies to remote procedure calls and exceptions is described (see clause 8.4) and the evaluation procedure of
module control and test cases is explained (see clause 8.6).

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)30

8.1 Flow graphs

8.1.0 General

A flow graph is a directed graph that consists of labelled nodes and labelled edges. Traversing a flow graph describes
the possible flow of control during the execution of a represented behaviour description.

8.1.1 Flow graph frame

A flow graph shall be put into a frame defining the border of the flow graph. The name of flow graph follows the
keywords flow graph (these are not TTCN-3 core language keywords) and shall be put into the upper left corner of the
flow graph. As convention it is assumed that the flow graph name refers to the TTCN behaviour description represented
by the flow graph. A simple flow graph is shown in figure 10.

flow graph
MySimpleFlowGraph

inscription

Figure 10: A simple flow graph

8.1.2 Flow graph nodes

8.1.2.0 General

Flow graphs consist of start nodes, end nodes, basic nodes and reference nodes.

8.1.2.1 Start nodes

Start nodes describe the starting point of a flow graph. A flow graph shall only have one start node. A start node is
shown in figure 11(a).

(a) Flow graph start node (b) Flow graph end node

Figure 11: Start and end nodes

8.1.2.2 End nodes

End nodes describe end points of a flow graph. A flow graph may have several end nodes or in case of loops no end
node. Basic nodes (see clause 8.1.2.3) and reference nodes (see clause 8.1.2.4) that have no successor nodes shall be
connected to an end node to indicate that they describe the last action of a path through a flow graph. An end node is
shown in figure 11(b).

8.1.2.3 Basic nodes

A basic node describes an execution unit, i.e. it is executed in one step. A basic node has a type and, depending on the
type, may have an associated list of attributes. Two basic nodes are shown in figure 12.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)31

In the inscription of a basic node the attributes of a node follow the node type and are put into round parentheses. Type
and attributes are used to determine the action to be performed during execution of the represented language construct.
The attributes describe information to be retrieved from the corresponding TTCN-3 construct.

Attributes have values and the operational semantics will retrieve these values by referring to the attribute name. If
required, it is allowed to assign explicit values in basic nodes by using assignment ":=". An example is shown in
figure 12(b).

node-type

(attr1, attr2, … ,
attrn)

node-type

(attr1 := 7, … ,
attrn := 8.0)

(a) (b)

Figure 12: Basic nodes with attributes

8.1.2.4 Reference nodes

8.1.2.4.0 General

Reference nodes refer to flow graph segments (see clause 8.1.4) that are sub-flow graphs. The meaning of a reference
node is defined by its replacement by the referenced flow graph segment in the flow graph. The node inscription of the
reference node provides the reference to a flow graph segment. A reference node is shown in figure 13(a).

segment-reference

segment-reference1

OR
segment-reference2

OR
segment-reference3

(a) Single reference node (b) OR combination of three reference nodes

Figure 13: Reference node

8.1.2.4.1 OR combination of reference nodes

In some cases several flow graph segments may replace a reference node. For these cases an OR operator may be used
to refer to several flow graph segments (see figure 13(b)). In the actual flow graph representing the module control, a
test case or a function, one alternative is determined by the represented construct.

8.1.2.4.2 Multiple occurrences of reference nodes

In some cases the same kind of reference node may occur zero, one or more times in a flow graph. In regular
expressions the possible repetition of parts of a regular expression is described by using the operator symbols "+" (one
or more repetitions) and "*" (zero or more repetitions). As shown in figure 14, these operators have been adopted to
flow graphs by introducing double-framed reference nodes with associated operator symbols. A single flow
(see clause 8.1.3) line shall replace a reference node, in case of zero occurrences (using a double-framed reference node
with "*"-operator).

segment-reference

+
segment-reference

*

Figure 14: Repetition of reference nodes

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)32

An upper bound of possible repetitions of a reference node can be given in form of an integer number in round
parenthesis following the "*" or "+" symbol in the double framed reference node. The segment reference shown in
figure 15 may occur from zero up to 5 times.

segment-reference

*(5)

Figure 15: Restricted repetition of a reference node

8.1.3 Flow lines

Flow lines are represented by means of arrows. A flow line has an inscription of true or false which indicates a
condition under which the flow line is chosen during the flow graph interpretation. As a short hand notation it is
allowed to omit the true inscription. Examples of flow lines are shown in figure 15a.

 false

true

which is identical to

Figure 15a: Explicit and implicit inscriptions of flow lines

To support the joining of several flow lines into one flow line on a graphical level, a special join node is introduced.
The join node and an example for its usage are shown in figure 15b.

 join node:

usage of join node:

Figure 15b: Joining of flow lines

Drawing long flow lines in big diagrams as it is, for example, necessary to model the TTCN-3 constructs goto and
label, is awkward. For this purpose, labels for outgoing and incoming flow lines can be used. Examples are shown in
figure 15c.

Incoming flow line with label: in-label

Outgoing flow line with label: out-label

Figure 15c: Incoming and outgoing flow lines with labels

An outgoing flow line with a label is connected with an incoming flow line with a label, if the labels are identical. The
flow line labels for the incoming flow lines shall be unique. If there are several outgoing flow lines with the same label,
this is considered to be a join of lines to the incoming flow line with an identical label.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)33

8.1.4 Flow graph segments

Flow graph segments are sub-flow graphs. They are referenced in reference nodes and define the meaning of that
reference node. Flow graph segments may include further reference nodes.

As shown in figure 16, flow graph segments have precise interfaces that consist of incoming and outgoing flow lines.
There is only one unlabeled incoming and one or none unlabeled outgoing flow lines. In addition there might exist
several labelled incoming and outgoing flow lines. For example, the labelled incoming and outgoing flow lines are
needed to describe the meaning of TTCN-3 statements goto and alt.

Flow graph segments are put into a frame and the name of the flow graph segment shall follow the keyword segment
followed by the segment name in the upper left corner of the frame. The flow lines describing the flow graph segment
interface shall cross the flow graph segment frame.

segment-ref

segment SegmentName

inscription…

…

…

…

…
LI1
…
LIn

LO1 LO2 … LOm

Figure 16: Structure of a flow graph segment description

8.1.5 Comments

To improve readability and coherence a special comment symbol can be used to associate comments to flow graph
nodes and flow lines. The comment symbol and its usage are shown in figure 17.

 This is a comment in
a comment symbol

inscription

Comment related to
flow line

Comment related to
basic node

(a) Comment symbol (b) Usage of comment symbols

Figure 17: Flow graph representation of comments

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)34

8.1.6 Handling of flow graph descriptions

The evaluation procedure of the operational semantics traverses flow graphs that only consist of basic nodes, i.e. all
reference nodes have to be expanded by the corresponding flow graph segment definitions. The NEXT function is
required to support this traversal. NEXT is defined in the following manner:

actualNodeRef.NEXT(bool) := successorNodeRef where:

• actualNodeRef is the reference of a basic flow graph node;

• successorNodeRef is the reference of a successor node of the node referenced by actualNodeRef;

• bool is a Boolean specifying whether the true or the false successor is returned
 (see clause 8.1.3).

8.2 Flow graph representation of TTCN-3 behaviour

8.2.0 General

The operational semantics assumes that TTCN-3 behaviour descriptions are provided in form of a set of flow graphs,
i.e. for each TTCN-3 behaviour description a separate flow graph has to be constructed.

The operational semantics interprets the following kinds of TTCN-3 definitions as behaviour descriptions:

a) module control;

b) test case definitions;

c) function definitions;

d) altstep definitions;

e) component type definitions.

The module control specifies the test campaign, i.e. the execution order (possibly repetitious) of the actual test cases.
Test case definitions define the behaviour of the MTC. Functions structure behaviour. They are executed by the module
control or by the test components. Altsteps are used for the definition of default behaviour or in a function-like manner
to structure behaviour. Component type definitions are assumed to be behaviour descriptions because they specify the
creation, declaration and initialization of ports, constants, variables and timers during the creation of an instance of a
component type.

8.2.1 Flow graph construction procedure

The flow graphs presented in the figures 18 to 22 and the flow graph segments presented in clause 8 are only templates.
They include placeholders for information that has to be provided in order to produce a concrete flow graph or flow
graph segment. The placeholders are marked with "<" and ">" parenthesis.

The construction of a flow graph representation of a TTCN-3 module is done in three steps:

1) For each TTCN-3 statement in module control, test cases, altsteps, functions and component type definitions a
concrete flow graph segment is constructed.

2) For the module control and for each test case, altstep, function and component type definition a concrete flow
graph (with reference nodes) is constructed.

3) In a stepwise procedure all reference nodes in the concrete flow graphs are replaced by corresponding flow
graph segment definitions until all flow graphs only include one start node, end nodes and basic flow graph
nodes.

NOTE 1: Basic flow graph nodes describe basic indivisible execution units. The operational semantics for TTCN-3
behaviour is based on the interpretation of basic flow graph nodes. Clause 8.6 presents execution methods
for basic flow graph nodes only.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)35

The replacement of a reference node by the corresponding flow graph segment definition may lead to unconnected parts
in a flow graph, i.e. parts which cannot be reached from the start node by traversing through the flow graph along the
flow lines. The operational semantics will ignore unconnected parts of a flow graph.

NOTE 2: An unconnected part of a flow graph is a result of the mechanical replacement procedure. For the
construction of an optimal flow graph representation the different combinations of TTCN-3 statements
also has to be taken into consideration. However, the goal of the present document is to provide a correct
and complete semantics, not an optimal flow graph representation.

8.2.2 Flow graph representation of module control

Schematically, the syntactical structure of a TTCN-3 module is:

 module <identifier> <module-definitions-part> control <statement-block>

For the flow graph behaviour representation the following information is relevant only:

 module <identifier> <statement-block>

This is comparable to a function definition and therefore the flow graph representation of module control is similar to
the flow graph representation of a function (see clause 8.2.4). The semantics will access the flow graph representing the
module control by using the module name.

NOTE: The meaning of the module definitions part is outside the scope of this operational semantics. Module
parameters are defined as global constants at run-time. References to module parameters have to be
replaced by their concrete values on a syntactical level (see clause 8.3).

The scheme of the flow graph representation of the module control is shown in figure 18. The flow graph name
control identifies the flow graph representing the module control. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <stop-entity-op> covers the case
where no explicit stop operation is specified, i.e. the operational semantics assumes that a stop operation is
implicitly added.

flow graph control

<init-component-scope>

// The module control behaves like a
// component and therefore, its scope
// has to be initialised.

<statement-block>

// The body of the module control
// specifies the statements to be
// executed.

*(1)

<stop-entity-op>

// For the case that an explicit stop
// operation is missing at the end of
// module control

Figure 18: Flow graph representation of module control

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)36

8.2.3 Flow graph representation of test cases

Schematically, the syntactical structure of a TTCN-3 test case definition is:

 testcase <identifier> (<parameter>) <testcase-interface> <statement-block>

The <testcase-interface> above refers to the (mandatory) runs on and the (optional) system clauses in the
test case definition. The flow graph description of a test case describes the behaviour of the MTC. Variables, timers and
constants defined and declared in the component type definition are made visible to the MTC behaviour by the runs
on clause in the <testcase-interface>. The system clause is not relevant for the MTC and is therefore not
represented in the flow graph representation of a test case.

The scheme of the flow graph representation of a test case is shown in figure 19. The flow graph name
<identifier> refers to the name of the represented test case. The nodes of the flow graph have associated
comments describing the meaning of the different nodes. The reference node <stop-entity-op> covers the case
where no explicit stop operation for the MTC is specified, i.e. the operational semantics assumes that a stop
operation is implicitly added.

flow graph <identifier>

<parameter-handling>

// - Actual parameter values are
// assumed to be in the value stack
//
// - Formal parameters are handled
// like local variables and local
// timers

<statement-block>

// The body of the test case specifies
// the statements to be executed
// by the MTC.

*(1)

<stop-mtc>

// For the case that an explicit stop
// operation is missing at the end of
// the test case

<init-scope-with-runs-on>

// Considers scope information provided
// by the runs-on clause in the
// interface of the test case.
//

Figure 19: Flow graph representation of test cases

8.2.4 Flow graph representation of functions

Schematically, the syntactical structure of a TTCN-3 function is:

 function <identifier> (<parameter>) [<function-interface>] <statement-block>

The optional <function-interface> above refers to the (optional) runs on and the (optional) return clauses
in the function definition.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)37

The scheme of the flow graph representation of a function is shown in figure 20. The flow graph name
<identifier> refers to the name of the represented function. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the runs on clause in the
<function-interface>. A missing runs on clause means that definitions within the component type definition
are not known within the scope of the function. The operational semantics distinguishes these two cases by the
reference nodes <init-scope-with-runs-on> and <init-scope-without-runs-on>. The reference
node <return-without-value> covers the case where no explicit return statement is specified, i.e. the
operational semantics assumes that a return statement is implicitly added.

flow graph <identifier>

<parameter-handling>

// - Actual parameter values are
// assumed to be in the value stack
//
// - Formal parameters are handled
// like local variables and local
// timers

<statement-block>

// The body of the function specifies
// the statements to be executed
// by the component.

*(1)

<return-without-value>

// For the case that an explicit
// return statement is missing at the
// end of the function.

<init-scope-with-runs-on>
OR

<init-scope-without-runs-on>

// Considers the cases where either
// a runs-on clause is present or
// absent.
//

Figure 20: Flow graph representation of functions

8.2.5 Flow graph representation of altsteps

Schematically, the syntactical structure of a TTCN-3 altstep is:

altstep <identifier> (<parameter>) [<altstep-interface>]
 <constant-variable-timer-declarations>
 { <receiving-branch> | <else-branch> }*

NOTE: Only the alternatives up to the first else branch and the first else branch are taken into consideration.
Branches following the first else branch are unreachable.

The optional <altstep-interface> above refers to the runs on clause in the altstep definition.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)38

The scheme of the flow graph representation of an altstep is shown in figure 21. The flow graph name
<identifier> refers to the name of the represented altstep. Variables, timers, constants and ports defined and
declared in the component type definition are made visible to within the function by the runs on clause in the
<function-interface>. A missing runs on clause means that definitions made within the component type
definition are not known within the scope of the function. The operational semantics distinguishes these two cases by
the reference nodes <init-scope-with-runs-on> and <init-scope-without-runs-on>. The reference
node <return-without-value> covers the case where no else-branch is specified and none of the alternatives
can be selected.

*
// Constants, variables and timers
// may be declared and initialised

<constant-definition>
OR

<variable-declaration>
OR

<timer-declaration>

flow graph <identifier>

<parameter-handling>

// - Actual parameter values are
// assumed to be in the value stack
//
// - Formal parameters are handled
// like local variables and local
// timers

*(1)

<return-without-value>

// For the case where no else branch
// is specified and none of the
// alternatives can be selected.

// Alternative
// branches <receiving-branch> OR

<altstep-call-branch>
OR <else-branch>

+

<init-scope-with-runs-on>
OR

<init-scope-without-runs-

// Considers the cases where either
// a runs-on clause is present or
// absent.

Figure 21: Flow graph representation of altsteps

8.2.6 Flow graph representation of component type definitions

Schematically, the syntactical structure of a TTCN-3 component type definition is:

 type component <identifier> <port-constant-variable-timer-declarations>

The semantics will access flow graphs representing types by using the component type names.

The scheme of the flow graph representation of a component type definition is shown in figure 22. The flow graph
name <identifier> refers to the name of the represented component type.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)39

 flow graph <identifier>

<finalise-component-init>

// Ports are created

// Constants, variables and timers
// are declared and initialised

// The 'father' component waits for the
// completion of the component creation,
// i.e., is in a 'blocking' state.

// The created component gives the
// control back to the 'father' component.

// The new component goes into a
// 'blocking' state and waits to be
// started.

<port-declaration>
OR

<constant-definition>
OR

<variable-declaration>
OR

<timer-declaration>

*

<init-component-scope>

// The component scope is initialised

Figure 22: Flow graph representation of component type definitions

8.2.7 Retrieval of start nodes of flow graphs

For the retrieval of the start node reference of a flow graph the following function is required:

 The GET-FLOW-GRAPH function: GET-FLOW-GRAPH (flow-graph-identifier)

The function returns a reference to the start node of a flow graph with the name flow-graph-identifier. The
flow-graph-identifier refers to the module name for the control, to test case names, to function names, to altstep names
and to component type names.

8.3 State definitions for TTCN-3 modules

8.3.0 General

During the interpretation of flow graphs representing TTCN-3 behaviour, module states are manipulated. A module
state is a structured state that consists of several sub-states describing the states of module control and the different test
configurations. A test configuration state describes the states of test components and ports. Module states, configuration
states, component states and port states are introduced in this clause. In addition, functions to retrieve information from
and to manipulate states are defined.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)40

8.3.1 Module state

8.3.1.0 General

As shown in figure 23 a module state is structured into a module CONTROL state and a TEST-CONFIGURATION state.
The module CONTROL state describes the state of the module control. Module control is handled like a test component,
i.e. CONTROL is an entitiy state as defined in clause 8.3.2. The TEST-CONFIGURATION state represents the test
configurations that is instantiated when a test case is executed by module control.

CONTROL TEST-CONFIGURATION

Figure 23: Structure of a module state

8.3.1.1 Accessing the module state

The CONTROL state and the TEST-CONFIGURATION state of the module state can be addressed by using their names,
i.e. CONTROL and TEST-CONFIGURATION.

8.3.1a Configuration state

8.3.1a.0 Genral

As shown in figure 23a the configuration state is structured into ALL-ENTITY-STATES, ALL-PORT-STATES,
TC-VERDICT, DONE and KILLED. ALL-ENTITY-STATES represents the states of all instantiated test components
during the execution of a test case. The first element of ALL-ENTITY-STATES is the reference to the MTC of the
configuration. ALL-PORT-STATES describes the states of the different ports. TC-VERDICT stores the actual global test
verdict of a test case. DONE and KILLED are lists of component-verdict-states (CVSi). A component verdict state
denotes a stopped or killed component together with its local verdict at the point in time when the component was
stopped or killed.

NOTE 1: The number of updates of TC-VERDICT is identical to the number of test components that have
terminated.

NOTE 2: An alive-type test component is put into the DONE list each time when it is stopped and removed from
the DONE list each time when it is started. It is put into the KILL and the DONE list when it is killed.

NOTE 3: Port states may be considered to be part of the entity states. By connect and map ports are made visible
for other components and therefore, this operational semantics handles ports on the top level of the
configuration state.

ALL-ENTITY-STATES ALL-PORT-STATES TC-VERDICT DONE KILLED
 MTC ES1 … ESk P1 … Pl CVS1 … CVSm CVS1 … CVSn

Figure 23a: Structure of a configuration state

8.3.1a.1 Accessing the configuration state

The TC-VERDICT and the lists ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED can be accessed like
variables by their name.

For the handling of lists, e.g. ALL-ENTITY-STATES, ALL-PORT-STATES, DONE and KILLED in module states, the list
operations add, append, delete, member, first, last, length, next, random and change can be used. They have the
following meaning:

• myList.add(item) adds item as first element into the list myList and myList.add(sublist) adds the list sublist to
list myList, i.e. add can be used to add single elements or lists to lists;

• myList.append(item) appends item as last element into the list myList and myList.append(sublist) appends the
list sublist to list myList, i.e. append can be used to append single elements or lists to lists;

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)41

• myList.delete(item) deletes item from the list myList;

• myList.member(item) returns true if item is an element of the list myList, otherwise false;

• myList.first() returns the first element of myList;

• myList.last() returns the last element of myList;

• myList.length() returns the length of myList;

• myList.next(item) returns the element that follows item in myList, or NULL if item is the last element in myList;

• myList.random(<condition>) returns randomly an element of myList, which fulfils the Boolean condition
<condition> or NULL, if no element of myList fulfils <condition>;

• myList.change(<operation>) allows to apply <operation> on all elements of myList.

NOTE 1: The operations random and change are not common list operations. They are introduced to explain the
meaning of the keywords all and any in TTCN-3 operations.

NOTE 2: Arguments of the operations delete, member and next may include "-" symbols denoting a field not
relevant for the unique identification of an item. For example, for a list aList of 2-tuples containing the
tuple (A, B), aList.member(A, -) returns true if the field A uniquely identifies (A, B), otherwise false.

Additionally, a general copy operation is available. The copy operation copies and returns an item instead of returning a
reference to an item:

• copy(item) returns a copy of item.

8.3.2 Entity states

8.3.2.0 General

Entity states are used to describe the actual states of module control and test components. In the module state,
CONTROL is an entity state and in the configuration state, the test component states are handled in the list
ALL-ENTITY-STATES. The structure of an entity state is shown in figure 24.

STATUS
CONTROL-STACK

DEFAULT-LIST
DEFAULT-POINTER

VALUE-STACK
E-VERDICT

TIMER-GUARD
DATA-STATE
TIMER-STATE

PORT-REF
SNAP-ALIVE
SNAP-DONE

SNAP-KILLED
KEEP-ALIVE

Figure 24: Structure of an entity state

The STATUS describes whether the module control or a test component is ACTIVE, BREAK, SNAPSHOT, REPEAT or
BLOCKED. Module control is blocked during the execution of a test case. Test components are blocked during the
creation of other test components, i.e. when they call a create operation, and when they wait for being started. The
status SNAPSHOT indicates that the component is active, but in the evaluation phase of a snapshot. The status REPEAT
denotes that the component is active and in an alt statement that should be re-evaluated due to a repeat statement.
The BREAK status is set when a break statement is executed for leaving altstep. In this case, the alt statement in
which the altstep was directly or indirectly (i.e. by means of the default mechanism) called is immediately left.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)42

The CONTROL-STACK is a stack of flow graph node references. The top element in CONTROL-STACK is the flow
graph node that has to be interpreted next. The stack is required to model function calls in an adequate manner.

The DEFAULT-LIST is a list of activated defaults, i.e. it is a list of pointers that refer to the start nodes of activated
defaults. The list is in the reverse order of activation, i.e. the default that has been activated first is the last element in
the list.

During the execution of the default mechanism, the DEFAULT-POINTER refers to the next default that has to be
evaluated if the actual default terminates unsuccessfully.

The VALUE-STACK is a stack of values of all possible types that allows an intermediate storage of final or intermediate
results of operations, functions and statements. For example, the result of the evaluation of an expression or the result of
the mtc operation will be pushed onto the VALUE-STACK. In addition to the values of all data types known in a
module, the special value MARK has been defined. MARK is element of the stack alphabet. When leaving a scope
unit, the MARK is used to clean VALUE-STACK.

The E-VERDICT stores the actual local verdict of a test component. The E-VERDICT is ignored if an entity state
represents the module control.

The TIMER-GUARD represents the special timer, which is necessary to guard the execution time of test cases and the
duration of call operations. The TIMER-GUARD is modelled as a timer binding (see clause 8.3.2.4 and figure 28).

The DATA-STATE is considered to be a list of lists of variable bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of variable bindings describes the variables
declared in a certain scope unit and their values. Entering or leaving a scope unit corresponds to adding or deleting a list
of variable bindings from the DATA-STATE. A description of the DATA-STATE part of an entity state can be found in
clause 8.3.2.2.

The TIMER-STATE is considered to be a list of lists of timer bindings. The list of lists structure reflects nested scope
units due to nested function and altstep calls. Each list in the list of lists of timer bindings describes the known timers
and their status in a certain scope unit. Entering or leaving a scope unit corresponds to adding or deleting a list of timer
bindings from the TIMER-STATE. A description of the TIMER-STATE part of an entity state can be found in
clause 8.3.2.4.

The PORT-REF is considered to be a list of lists of port bindings. The list of lists structure reflects nested scope units
due to nested function and altstep calls. Nested scope units for ports are the result of port parameters in functions and
altsteps. Each list in the list of lists of port bindings identifies the known ports in a certain scope unit. Entering or
leaving a scope unit corresponds to adding or deleting a list of port bindings from the PORT-REF. A description of the
PORT-REF part of an entity state can be found in clause 8.3.2.6.

NOTE: The TTCN-3 semantics administrates ports globally in the module state. Due to port parameterization, a
test component may access a port by using different names in different scopes. The PORT-REF part of an
entity state is used to identify port states uniquely in the module state.

The SNAP-ALIVE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
ALL-ENTITY-STATES list of the module state will be assigned to SNAP-ALIVE, i.e. SNAP-ALIVE includes all entities
(test components and test control) which are alive in the test system.

The SNAP-DONE supports the snapshot semantics of test components. When a snapshot is taken, a copy of the DONE
list of the module state will be assigned to SNAP-DONE, i.e. SNAP-DONE is a list of component identifiers of stopped
components.

The SNAP-KILLED supports the snapshot semantics of test components. When a snapshot is taken, a copy of the
KILLED list of the module state will be assigned to SNAP-KILL, i.e. SNAP-DONE is a list of component identifiers of
terminated components.

The KEEP-ALIVE field indicates whether the entity can be restarted after its termination or not. It is set to true if the
entity can be restarted. Otherwise it is set to false.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)43

8.3.2.1 Accessing entity states

The STATUS, DEFAULT-POINTER, E-VERDICT and TIMER-GUARD parts of an entity state are handled like
variables that are globally visible, i.e. the values of STATUS, DEFAULT-POINTER and E-VERDICT can be retrieved or
changed by using the "dot" notation, e.g. myEntity.STATUS, myEntity.DEFAULT-POINTER and myEntity.E-VERDICT,
where myEntity refers to an entity state.

NOTE: In the following, it is assumed that the "dot" notation (with references and unique identifiers) is
applicable. For example, in myEntity.STATUS, myEntityState may be pointer to an entity state or be the
value of the <identifier> field.

The CONTROL-STACK, DEFAULT-LIST and VALUE-STACK of an entity state myEntity can be addressed by using the
"dot" notation myEntity.CONTROL-STACK, myEntity.DEFAULT-LIST and myEntity.VALUE-STACK.

CONTROL-STACK and VALUE-STACK can be accessed and manipulated by using the stack operations push, pop, top,
clear and clear-until. The stack operations have the following meaning:

• myStack.push(item) pushes item onto myStack;

• myStack.pop() pops the top item from myStack;

• myStack.top() returns the top element of myStack or NULL if myStack is empty;

• myStack.clear() clears myStack, i.e. pops all items from myStack;

• myStack.clear-until(item) pops items from myStack until item is found or myStack is empty.

DEFAULT-LIST can be accessed and manipulated by using the list operations add, append, delete, member, first,
length, next, random and change. The meaning of these list operations is defined in clause 8.3.1a.1.

For the creation of a new entity state the function NEW-ENTITY is assumed to be available:

• NEW-ENTITY (flow-graph-node-reference, keep-alive);

creates a new entity state and returns its reference. The components of the new entity state have the following values:

• STATUS is set to ACTIVE;

• flow-graph-node-reference is the only (top) element in CONTROL-STACK;

• DEFAULT-LIST is an empty list;

• DEFAULT-POINTER has the value NULL;

• VALUE-STACK is an empty stack;

• E-VERDICT is set to none;

• TIMER-GUARD is a new timer binding (see clause 8.3.2.4) with name GUARD, status IDLE and no default
duration;

• DATA-STATE is an empty list;

• TIMER-STATE is an empty list;

• PORT-REF is an empty list;

• SNAP-ALIVE is an empty list;

• SNAP-DONE is an empty list;

• SNAP-KILLED is an empty list;

• KEEP-ALIVE is set to the value of the keep-alive parameter.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)44

During the traversal of a flow graph the CONTROL-STACK changes its value often in the same manner: the top element
is popped from and the successor node of the popped node is pushed onto CONTROL-STACK. This series of stack
operations is encapsulated in the NEXT-CONTROL function:

myEntity.NEXT-CONTROL(myBool) {
 successorNode := myEntity.CONTROL-STACK.NEXT(myBool).top();
 myEntity.CONTROL-STACK.pop();
 myEntity.CONTROL-STACK.push(successorNode);
}

8.3.2.2 Data state and variable binding

As shown in figure 25, the data state DATA-STATE of an entity state is a list of lists of variable bindings. Each list of
variable bindings defines the variable bindings in a certain scope unit. Adding a new list of variable bindings
corresponds to entering a new scope unit, e.g. a function is called. Deleting a list of variable bindings corresponds to
leaving a scope unit, e.g. a function executes a return statement.

VariableBinding1

VariableBindingn

VariableBinding1

VariableBindingx

root

Figure 25: Structure of the DATA-STATE part of an entity state

The structure of a variable binding is shown in figure 26. A variable has a name, a <location> and a VALUE.
VAR NAME identifies a variable in a scope unit. The <location> is a unique identifier of the storage location of the
value of the variable. The VALUE part of a variable binding describes the actual value of a variable.

NOTE: Unique location identifiers should be provided automatically when a variable is declared.

VAR-NAME <location> VALUE

Figure 26: Structure of a variable binding

The distinction between variable name and location has been made to model function calls and the execution of test
cases with value and reference parameterization in an appropriate manner:

a) A parameter passed in by value is handled like the declaration of a new variable, i.e. a new variable binding is
appended to the list of variable bindings of the scope of the called function or executed test case. The new
variable binding uses the formal parameter name as VAR-NAME, receives a new location and gets the value
that is passed into the function or test case.

b) A parameter passed in by reference also leads to a new variable binding in the scope of the called function or
executed test case. The new variable binding also uses the formal parameter name as VAR-NAME, but receives
no new location and no new value. The new variable binding gets a copy of <location> and VALUE of the
variable that is passed in by reference.

When updating a variable value, e.g. in case of an assignment to a variable, the variable name is used to identify a
location and all variable bindings with the same location are updated at the same time. Thus, when leaving the scope
unit, the list of variables belonging to this scope unit can be deleted without further update. Due to the update
procedure, variables passed in by reference automatically have the correct value.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)45

8.3.2.3 Accessing data states

The value of a variable can be retrieved by using the "dot" notation myEntity.myVar.VALUE, where myEntity refers to
an entity state and myVar is the name of a variable.

For the handling of variables and variable scope the following functions are considered to be defined:

a) The VAR-SET function: myEntity.VAR-SET (myVar, myValue)

 sets the VALUE part of variable myVar in the actual scope of an entity myEntity to myVal. In addition, the
VALUE part of all variables with the same location as variable myVar will also be set to myVal.

b) The INIT-VAR function: myEntity.INIT-VAR (myVar, myVal)

 creates a new variable binding for a variable myVar with the initial value myVal in the actual scope unit of an
entity myEntity. Using the keyword NONE as myVal means that a variable with undefined initial value is
created. A new and unique <location> value is automatically created.

c) The GET-VAR-LOC function: myEntity.GET-VAR-LOC (myVar)

 retrieves the location of variable myVar owned by myEntity.

d) The INIT-VAR-LOC function: myEntity.INIT-VAR-LOC (myVar,myLoc)

 creates a new variable binding for a variable myVar with the location myLoc in the actual scope unit of
myEntity. The variable will be initialized with the value of another variable with the location myLoc.

NOTE: Variables with the same location are a result of parameterization by reference. Due to the handling of
reference parameters as described in clause 8.3.2.2 all variables with the same location will have identical
values during their lifetime.

e) The INIT-VAR-SCOPE function: myEntity.INIT-VAR-SCOPE ()

 initializes a new variable scope in the data state of entity myEntity, i.e. an empty list is added as first list in the
list of lists of variable bindings.

f) The DEL-VAR-SCOPE function: myEntity.DEL-VAR-SCOPE ()

 deletes a variable scope of the data state of myEntity, i.e. the first list in the list of lists of variable bindings is
deleted.

8.3.2.4 Timer state and timer binding

As shown in figures 27 and 25 the timer state TIMER-STATE and the data state DATA-STATE of an entity state are
comparable. Both are a list of lists of bindings and each list of bindings defines the valid bindings in a certain scope.
Adding a new list corresponds to entering a new scope unit and deleting a list of bindings corresponds to leaving a
scope unit.

TimerBinding1

TimerBindingn

TimerBinding1

TimerBindingx

root

Figure 27: Structure of the TIMER-STATE part of an entity state

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)46

The structure of a timer binding is shown in figure 28. The meaning of TIMER-NAME and <location> is similar to the
meaning of VAR-NAME and <location> for a variable binding (figure 26).

TIMER-NAME <location> STATUS DEF-DURATION ACT-DURATION TIME-LEFT SNAP-VALUE SNAP-STATUS

Figure 28: Structure of a timer binding

STATUS denotes whether a timer is active, inactive or has timed out. The corresponding STATUS values are IDLE,
RUNNING and TIMEOUT. DEF-DURATION describes the default duration of a timer. ACT-DURATION stores the
actual duration with which a running timer has been started. TIME-LEFT describes the actual duration that a running
timer has to run before it times out.

NOTE: DEF-DURATION is undefined if a timer is declared without default duration. ACT-DURATION and
TIME-LEFT are set to 0.0 if a timer is stopped or times out. If a timer is started without duration, the
value of DEF-DURATION is copied into ACT-DURATION. A dynamic error occurs if a timer is started
without a defined duration.

SNAP-VALUE and SNAP-STATUS are needed to support the snapshot semantics of TTCN-3. When taking a snapshot,
SNAP-VALUE gets the actual value of ACT-DURATION – TIME-LEFT. And SNAP-STATUS gets the same value as
STATUS. The evaluation of a snapshot will only be based on the values in SNAP-VALUE and SNAP-STATUS.

Timer can be only passed by reference into functions, i.e. the mechanism is similar to the mechanism for variables
described in clause 8.3.2.2. This means a new timer binding (with the formal parameter name) is created which gets
copies of <location>, STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS
from the timer that is passed in by reference. When updating a timer all timer bindings with the same <location> value
are updated at the same time.

8.3.2.5 Accessing timer states

The values of STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS of a
timer myTimer can be retrieved by using the dot notation:

• myEntity.myTimer.STATUS;

• myEntity.myTimer.DEF-DURATION;

• myEntity.myTimer.ACT-DURATION;

• myEntity.myTimer.TIME-LEFT;

• myEntity.myTimer.SNAP-VALUE;

• myEntity.myTimer.SNAP-STATUS.

The myEntity in the dot notation refers to an entity state representing the state of a test component or module control
that owns the timer myTimer.

For changing the values of STATUS, DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and
SNAP-STATUS of a timer timer-name, the generic TIMER-SET operation has to be used, for example:

• myEntity.TIMER-SET(myTimer, STATUS, myVal)

sets the STATUS value of timer myTimer in the actual scope of myEntity to the value myVal. In addition, the STATUS of
all timers with the same location as timer myTimer will also be set to myVal. The TIMER-SET function can also be used
to change the values of DEF-DURATION, ACT-DURATION, TIME-LEFT, SNAP-VALUE and SNAP-STATUS.

For the handling of timers, timer scope and snapshot the following functions have to be defined:

a) The INIT-TIMER function: myEntity.INIT-TIMER (myTimer, myDuration)

 creates a new timer binding for a timer myTimer with the default duration myDuration in the actual scope of an
entity myEntity. Using the keyword NONE as myDuration means that a timer without default duration is
created.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)47

b) The GET-TIMER-LOC function: myEntity.GET-TIMER-LOC (myTimer)

 retrieves the location of timer myTimer owned by myEntity.

c) The INIT-TIMER-LOC function: myEntity.INIT-TIMER-LOC (myTimer, myLocation)

 creates a new timer binding for a timer myTimer with the location myLocation in the actual scope unit of
myEntity. The timer will be initialized with the values of STATUS, DEF-DURATION, ACT-DURATION and
TIME-LEFT of another timer with the location <location>.

NOTE: Timers with the same location are a result of parameterization by reference. Due to the handling of timer
reference parameters as described in clause 8.3.2.3 all timers with the same location will have identical
values for STATUS, DEF-DURATION, ACT-DURATION and TIME-LEFT during their lifetime.

d) The INIT-TIMER-SCOPE function: myEntity.INIT-TIMER-SCOPE ()

 initializes a new timer scope in the timer state of entity myEntity, i.e. an empty list is added as first list in the
list of lists of timer bindings.

e) The DEL-TIMER-SCOPE function: myEntity.DEL-TIMER-SCOPE ()

 deletes a timer scope of the timer state of entity myEntity, i.e. the first list in the list of lists of timer bindings is
deleted.

f) The SNAP-TIMER function: myEntity.SNAP-TIMER ()

 makes an update of SNAP-VALUE and SNAP-STATUS, in all timers owned by myEntity , i.e.:

 myEntity.SNAP-TIMERS () {
 for all myTimer in TIMER-STATE {
 myEntity.myTimer.SNAP-VALUE := myEntity.myTimer.ACT-DURATION –
 myEntity.myTimer.TIME-LEFT;
 myEntity.myTimer.SNAP-STATUS := myEntity.myTimer.STATUS;
 }

8.3.2.6 Port references and port binding

As shown in figures 28a, 27 and 25 the port references PORT-REF, the timer state TIMER-STATE and the data state
DATA-STATE of an entity state are comparable. All three are a list of lists of bindings and each list of bindings defines
the valid bindings in a certain scope. Adding a new list corresponds to entering a new scope unit and deleting a list of
bindings corresponds to leaving a scope unit.

PortBinding1

PortBindingn

PortBinding1

PortBindingx

root

Figure 28a: Structure of the PORT-REF part of an entity state

The structure of a port binding is shown in figure 28b. A port has two names. PORT-NAME identifies a port in a scope
unit. COMP-PORT-NAME is the port name given in the component type to a port.

PORT-NAME COMP-PORT-NAME

Figure 28b: Structure of a port binding

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)48

NOTE: PORT-NAME and COMP-PORT-NAME are equal directly after the creation of a component.

Ports can be only passed by reference into functions and altsteps, i.e. the mechanism is similar to the mechanism for
variables described in clause 8.3.2.2. This means a new port binding (with the formal parameter name) is created which
gets a copy of COMP-PORT-NAME from the port that is passed in by reference. When accessing a port which is passed
in by reference, the corresponding port binding is used to retrieve the port name declared in the component type
definition.

8.3.2.7 Accessing port references

The value of COMP-PORT-NAME can be retrieved by using the dot notation:

• myEntity.myport.COMP-PORT-NAME

The myEntity in the dot notation refers to an entity state representing the state of a test component that owns the port
myPort.

For the handling of port parameters and port scopes the following functions have to be defined:

a) The INIT-PORT function: myEntity.INIT-PORT (myPort, myCompPortName)

 creates a new port binding for a port myPort with myCompPortName as value for COMP-PORT-NAME in the
actual scope of an entity myEntity.

b) The INIT-PORT-SCOPE function: myEntity.INIT-PORT-SCOPE ()

 initializes a new port scope in the port references of entity myEntity, i.e. an empty list is added as first list in
the list of lists of port bindings.

c) The DEL-PORT-SCOPE function: myEntity.DEL-PORT-SCOPE ()

 deletes a port scope of the port references of entity myEntity, i.e. the first list in the list of lists of port bindings
is deleted.

8.3.3 Port states

8.3.3.0 General

Port states are used to describe the actual states of ports. Within a module state, the port states are handled in the
ALL-PORT-STATES list (see figure 23). The structure of a port state is shown in figure 29. The COMP-PORT-NAME
refers to the port name that is used to declare the port in the component type definition of the test component OWNER
that owns the port. STATUS provides the actual status of the port. A port may either be STARTED, HALTED or
STOPPED.

NOTE: A port in a test system is uniquely identified by the owning test component and by the port name used in
the component type definition to declare the port.

The CONNECTIONS-LIST of a port state keeps track of the connections between the different ports in the test system.
The mechanism is explained in clause 8.3.3.1.

The VALUE-QUEUE in a port state stores the messages, calls, replies and exceptions that are received at this port but
have not yet been consumed.

The SNAP-VALUE supports the TTCN-3 snapshot mechanism. When a snapshot is taken, the first element in
VALUE-QUEUE is copied into SNAP-VALUE. SNAP-VALUE will get the value NULL if VALUE-QUEUE is empty or
STATUS is STOPPED.

COMP-PORT-NAME OWNER STATUS CONNECTIONS-LIST VALUE-QUEUE SNAP-VALUE

Figure 29: Structure of a port state

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)49

8.3.3.1 Handling of connections among ports

A connection between two test components is made by connecting two of their ports by means of a connect
operation. Thus, a component can afterwards use its local port name to address the remote queue. As shown in
figure 30, connection is represented in the states of both connected queues by a pair of REMOTE-ENTITY and
REMOTE-PORT-NAME. The REMOTE-ENTITY is the unique identifier of the test component that owns the remote
port. The REMOTE-PORT-NAME refers to the port name that is used to declare the port in the component type
definition of the test component REMOTE-ENTITY. TTCN-3 supports one-to-many connections of ports and therefore
all connections of a port are organized in a list.

NOTE 1: Connections made by map operations are also handled in the list of connections. The map operation:
map(PTC1:MyPort, system.PCO1) leads to a new connection (system, PCO1) in the port state of
MyPort owned by PTC1. The remote side to which PCO1 is connected to, resides inside the SUT. Its
behaviour is outside the scope of this semantics.

NOTE 2: The operational semantics handles the keyword system as a symbolic address. A connection
(system, myPort) in the list of connections of a port it indicates that the port is mapped onto the port
myPort in the test system interface.

REMOTE-ENTITY REMOTE-PORT-NAME

Figure 30: Structure of a connection

8.3.3.2 Handling of port states

The queue of values in a port state can be accessed and manipulated by using the known queue operations enqueue,
dequeue, first and clear. Using a GET-PORT or a GET-REMOTE-PORT function references the queue that shall be
accessed.

NOTE 1: The queue operations enqueue, dequeue, first and clear have the following meaning:

� myQueue.enqueue(item) puts item as last item into myQueue;

� myQueue.dequeue() deletes the first item from myQueue;

� myQueue.first() returns the first item in myQueue or NULL if myQueue is empty;

� myQueue.clear() removes all elements from myQueue.

The handling of port states is supported by the following functions:

a) The NEW-PORT function: NEW-PORT (myEntity, myPort)

 creates a new port and returns its reference. The OWNER entry of the new port is set to myEntity and
COMP-PORT-NAME has the value myPort. The status of the new port is STARTED. The CONNECTIONS-LIST
and the VALUE-QUEUE are empty. The SNAP-VALUE has the value NULL (i.e. the input queue of the new port
is empty).

b) The GET-PORT function: GET-PORT (myEntity, myPort)

 returns a reference to the port identified by OWNER myEntity and COMP-PORT-NAME myPort.

c) The GET-REMOTE-PORT function: GET-REMOTE-PORT (myEntity, myPort, myRemoteEntity)

 returns the reference to the port that is owned by test component myRemoteEntity and connected to a port
identified by OWNER myEntity and COMP-PORT-NAME myPort. The symbolic address SYSTEM is returned,
if the remote port is mapped onto a port in the test system interface.

NOTE 2: GET-REMOTE-PORT returns NULL if there is no remote port or if the remote port cannot be identified
uniquely. The special value NONE can be used as value for the myRemoteEntity parameter if the remote
entity is not known or not required, i.e. there exists only a one-to-one connection for this port.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)50

d) The STATUS of a port is handled like a variable. It can be addressed by qualifying STATUS with a GET-PORT
call:

 GET-PORT(myEntity, myPort).STATUS.

e) The ADD-CON function: ADD-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

 adds a connection (myRemoteEntity, myRemotePort) to the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

f) The DEL-CON function: DEL-CON (myEntity, myPort, myRemoteEntity, myRemotePort)

 removes a connection (myRemoteEntity, myRemotePort) from the list of connections of the port identified by
OWNER myEntity and COMP-PORT-NAME myPort.

g) The SNAP-PORTS function: SNAP-PORTS (myEntity)

 updates SNAP-VALUE for all ports owned by myEntity, i.e.

 SNAP-PORTS (myEntity) {
 for all ports p /* in the module state */ {
 if (p.OWNER == myEntity) {
 if (p.STATUS == STOPPED) {
 p.SNAP-VALUE := NULL;
 }
 else {
 if (p.STATUS == HALTED && p.first() == HALT-MARKER) {
 // Port is halted and halt marker is reached
 p.SNAP-VALUE := NULL;
 p.dequeue(); // Removal of halt marker
 p.STATUS := STOPPED;
 }
 else {
 p.SNAP-VALUE := p.first()
 }
 }
 }
 }
 }

NOTE 3: The SNAP-PORTS function handles the HALT-MARKER that may be put by a halt port operation into
the port queue. If such a marker is found, the marker is removed, the SNAP-VALUE of the port is set to
NULL and the status of the port is changed to STOPPED.

8.3.3a Component verdict states

Component verdict states are the elements of the DONE and KILLED lists in a configuration state. As shown in
figure 30a, a component verdict state consists of a component identifier (COMP-ID) and a verdict (FIN-VERDICT). In
DONE and KILLED, a component verdict state denotes a stopped or killed component together with its local verdict
when it was stopped or killed.

COMP-ID FIN-VERDICT

Figure 30a: Component Verdict State

8.3.4 General functions for the handling of module states

The operational semantics assumes the existence of the following functions for the handling of module states.

NOTE 1: During the interpretation of a TTCN-3 module, there only exists one module state. It is assumed that the
components of the module state are stored in global variables and not in a complex data object. Thus, the
following functions are assumed to work on global variables and do not address a specific module state
object.

a) The DEL-ENTITY function: DEL-ENTITY(myEntity)

 deletes an entity with the unique identifier myEntity. The deletion comprises:

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)51

- the deletion of the entity state of myEntity;

- deletion of all ports owned by myEntity;

- deletion of all connections in which myEntity is involved.

b) The UPDATE-REMOTE-REFERENCES function:

 UPDATE-REMOTE-REFERENCES (source, target)

 the UPDATE-REMOTE-REFERENCES updates variables and timers with the same location in both entities.
The values that will be used for the update are the values of variables and timers owned by source.

NOTE 2: The UPDATE-REMOTE-REFERENCES is used during the termination of test cases. It allows updating of
variables of module control, which are passed as reference parameters to test cases.

8.4 Messages, procedure calls, replies and exceptions

8.4.0 General

The exchange of information among test components and between test components and the SUT is related to messages,
procedure calls, replies to procedure calls and exceptions. For communication purposes these items have to be
constructed, encoded and decoded. The concrete encoding, i.e. mapping of TTCN-3 data types to bits and bytes, and
decoding, i.e. mapping of bits and bytes to TTCN-3 data types, is outside the scope of the operational semantics. In the
present document messages, procedure calls, replies to procedure calls and exceptions are handled on a conceptual
level.

8.4.1 Messages

Messages are related to message-based communication. Values of all (pre- and user-defined) data types can be
exchanged among the entities that communicate. As shown in figure 31, the operational semantics handles a message as
structured object that consist of a sender a type and a value part. The sender part identifies the sender entity of a
message, the type part specifies the type of a message and the value part defines the message value.

sender type value

Figure 31: Structure of a message

NOTE: The operational semantics only presents a model for the concepts of TTCN-3. Whether and how the
sender information is or has to be sent and/or received depends on the implementation of the test system,
e.g. in some cases the sender information may be part of the value part of a message and therefore is no
separate part of the message structure.

8.4.2 Procedure calls and replies

Procedure calls and replies to procedures are related to procedure-based communication. They are defined like values of
a record with components representing the parameters. The operational semantics also handles procedure calls and
replies to procedure calls like values in structured types. The structure of a procedure call and the structure of a reply
are presented in figures 32 and 33.

The sender and the procedure-reference parts have the same meaning in both figures. The sender part refers to the
sender entity of a call or the reply to a procedure call. The procedure-reference refers to the procedure to which call and
reply belong. The parameter-part of the procedure call in figure 32 refers to the in parameters and inout parameters
and the parameter- part of the reply in figure 33 refers to the inout parameters and out parameters of the procedure
to which call and reply belong. In addition, the reply has a value part for the return values in the reply to a procedure.

NOTE 1: As stated in the previous note, the operational semantics only presents a model for the concepts of
TTCN-3. Whether and how the information described in figures 32 and 33 is or has to be sent and/or
received depends on the implementation of the test system.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)52

NOTE 2: For a procedure call, out parameters are of no relevance and are omitted in figure 32. For a reply to a
procedure call, in parameters are of no relevance and are omitted in figure 33.

NOTE 3: The types of parameters and the type of the return value can always be derived unanimously from the
related signature definition.

sender procedure-reference parameter-part
 in-or-inout-parameter1 … in-or-inout-parametern

Figure 32: Structure of a procedure call

sender procedure-reference parameter-part value
 inout-or-out-parameter1 … inout-or-out-parametern

Figure 33: Structure of a reply to a procedure call

8.4.3 Exceptions

Exceptions are also related to procedure-based communication. The structure of an exception is shown in figure 34. It
consists of four parts. The sender part identifies the sender of the exception; the procedure-reference part refers to the
procedure to which the exception belongs, the type part identifies the type of the exception and the value part provides
the value of the exception. The procedure signature referred to in the procedure reference part defines the list of allowed
types of exceptions. A received exception shall comply with one of the listed types. In general it can be of any pre- or
user-defined TTCN-3 data type.

sender procedure-reference type value

Figure 34: Structure of an exception

8.4.4 Construction of messages, procedure calls, replies and exceptions

The operations for sending a message, a procedure call, a reply to a procedure call or an exception are send, call,
reply and raise. All these sending operations are built up in the same manner:

 <port-name>.<sending-operation>(<send-specification>) [to <receiver>]

The <port-name> and <sending-operation> define port and operation used for sending an item. In case of one-to-many
connections a <receiver> entity needs to be specified. The item to be sent is constructed by using the
<send-specification>. The send specification may use concrete values, template references, variable values, constants,
expressions, functions, etc. to construct and encode the item to be sent.

The operational semantics assumes that there exists a generic CONSTRUCT-ITEM function:

CONSTRUCT-ITEM (myEntity, <sending-operation>, <send-specification>)

 returns a message, a procedure call, a reply to a procedure call or an exception depending on the
<sending-operation> and the <send-specification> (both, <sending-operation> and the
<send-specification> refer to the corresponding parts in the TTCN-3 sending operation). The entity
reference myEntity is the sender of the item to be sent. This sender information is also assumed to be part of
the item to be sent (figures 31 to 34).

8.4.5 Matching of messages, procedure calls, replies and exceptions

The operations for receiving a message, a procedure call, a reply to a procedure call or an exception are receive,
getcall, getreply and catch. All these receiving operations are built up in the same manner:

 <port-name>.<receiving-operation>(<matching-part>) [from <sender>] [<assignment-part>]

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)53

The <port-name> and <receiving-operation> define port and operation used for the reception of an item. In
case of one-to-many connections a from-clause can be used to select a specific sender entity <sender>. The item to
be received has to fulfil the conditions specified in the <matching-part>, i.e. it has to match. The <matching-
part> may use concrete values, template references, variable values, constants, expressions, functions, etc. to specify
the matching conditions.

The operational semantics assumes that there exists a generic MATCH-ITEM function:

MATCH-ITEM (myItem, <matching-part>, <sender>)

 returns true if myItem fulfils the conditions of <matching-part> and if myItem has been sent by
<sender>, otherwise it returns false.

8.4.6 Retrieval of information from received items

Information from received messages, procedure calls, replies to procedure calls and exceptions can be retrieved in the
<assignment-part> (see clause 8.4.5) of the receiving functions receive, getcall, getreply and catch.
The <assignment-part> describes how the parameters of procedure calls and replies, return values encoded in
replies, messages, exceptions and the identifier of the <sender> entity are assigned to variables.

The operational semantics assumes that there exists a generic RETRIEVE-INFO function:

RETRIEVE-INFO (myItem, <assignment-part>)

 all values to be retrieved according to the <assignment-part> are retrieved and assigned to the variables
listed in the assignment part. Assignments are done by means of the VAR-SET operation, i.e. variables with the
same location are updated at the same time.

8.5 Call records for functions, altsteps and test cases

8.5.0 General

Functions, altsteps and test cases are called (or executed) by their name and a list of actual parameters. The actual
parameters provide references for reference parameter and concrete values for the value parameter as defined by the
formal parameters in the corresponding function, altstep or test case definition. The operational semantics handles calls
of functions, altsteps and test cases by using call records as shown in figure 35. The value of BEHAVIOUR-ID is the
name of a function or test case, value parameters provide concrete values <parId1> … <parIdn> for the formal

parameters <parId1> … <parIdn>. Variable and timer reference parameters provide references to locations of existing

variables and timers. Port reference parameters provide the port names declared in the component type definition of the
test component that calls the function or altstep. Before a function or test case can be executed an appropriate call
record has to be constructed.

NOTE: Port reference parameters can only appear in functions and altsteps which are executed on a test
component.

behaviour-id value-parameters variable and timer
reference-parameters

port
reference-parameters

 parId1 … parIdm parIdn … parIdr parIds … parIdz
 value1 … valuem locn … locr names … namez

Figure 35: Structure of a call record

8.5.1 Handling of call records

The function, altstep or test case name and the actual parameter values can be retrieved by using the dot notation,
e.g. myCallRecord.parIdn or myCallRecord.behaviour-id where myCallRecord is a pointer to a call record.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)54

For the construction of a call the function NEW-CALL-RECORD is assumed to be available:

NEW-CALL-RECORD(myBehaviour)

 creates a new call record for function, altstep or test case myBehaviour and returns a pointer to the new record.
The parameter fields of the new call record have undefined values.

myEntity.INIT-CALL-RECORD(myCallRecord)

 creates variables, timers and port references for the handling of value and reference parameters in the actual
scope of the test component or module control myEntity. The variables for the handling of value parameters
are initialized with the corresponding values provided in the call record. The variables and timers for the
handling of reference parameters get the provided location. In addition, they get a value of an existing variable
or timer in another scope unit of the component in which the call record was created. Port references get the
provided name as value for the COMP-PORT-NAME field.

8.6 The evaluation procedure for a TTCN-3 module

8.6.1 Evaluation phases

8.6.1.0 General

The evaluation procedure for a TTCN-3 module is structured into:

1) initialization phase;

2) update phase;

3) selection phase; and

4) execution phase.

The phases (2), (3) and (4) are repeated until module control terminates. The evaluation procedure is described by
means of a mixture of informal text, pseudo-code and the functions introduced in the previous clauses.

8.6.1.1 Phase I: Initialization

The initialization phase includes the following actions:

a) Declaration and initialization of variables:

- INIT-FLOW-GRAPHS(); // Initialization of flow graph handling. INIT-FLOW-GRAPHS is
 // explained in clause 8.6.2.

- Entity := NULL; // Entity will be used to refer to an entity state. An entity state either
 // represents module control or a test component.

- MTC := NULL; // MTC will be used to refer to the entity state of the main test component of
 // a test case during test case execution.

NOTE 1: The global variable CONTROL form the control state of a module state during the interpretation of a
TTCN-3 module (see clause 8.3.1).

- CONTROL := NULL; // CONTROL will be used to refer to the control state of a module state.

NOTE 2: The following global variables ALL-ENTITY-STATES, ALL-PORT-STATES, TC-VERDICT, DONE and
KILLED form the test configuration state of a module state during the interpretation of a TTCN-3 module
(see clause 8.3.1).

- ALL-ENTITY-STATES := NULL;

- ALL-PORT-STATES := NULL;

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)55

- TC-VERDICT := none;

- DONE := NULL;

- KILLED := NULL;

b) Creation and initialization of module control:

- CONTROL := NEW-ENTITY (GET-FLOW-GRAPH (<moduleId>), false);
 // A new entity state is created and initialized with the start node of
 // the flow graph representing the behaviour of the control of the
 // module with the name <moduleId>. The Boolean parameter
 // indicates that module control cannot be restarted after it is
 // stopped.

- CONTROL.INIT-VAR-SCOPE(); // New variable scope

- CONTROL.INIT-TIMER-SCOPE(); // New timer scope

- CONTROL.VALUE-STACK.push(MARK); // A mark is pushed onto the value stack

8.6.1.2 Phase II: Update

The update phase is related to all actions that are outside the scope of the operational semantics but influence the
interpretation of a TTCN-3 module. The update phase comprises the following actions:

a) Time progress: All running timers are updated, i.e. the TIME-LEFT values of running timers are (possibly)
decreased, and if due to the update a timer expires, the corresponding timer bindings are updated,
i.e. TIME-LEFT is set to 0.0 and STATUS is set to TIMEOUT.

NOTE 1: The update of timers includes the update of all running TIMER-GUARD timers in module states.
TIMER-GUARD timers are used to guard the execution of test cases and call operations.

b) Behaviour of the SUT: Messages, remote procedure calls, replies to remote procedure calls and exceptions
(possibly) received from the SUT are put into the port queues at which the corresponding receptions shall take
place.

NOTE 2: This operational semantics makes no assumptions about time progress and the behaviour of the SUT.

8.6.1.3 Phase III: Selection

The selection phase consists of the following two actions:

a) Selection: Select a non-blocked entity, i.e. an entity that has not the STATUS value BLOCKED. The entity may
be CONTROL, i.e. module control, or a test component, i.e. an element of ALL-ENTITY-STATES.

b) Storage: Store the identifier of the selected entity in the global variable Entity.

8.6.1.4 Phase IV: Execution

The execution phase consists of the following two actions:

a) Execution step of the selected entity: Execute the top flow graph node in the CONTROL-STACK of Entity.

b) Check termination criterion: Stop execution if module control has terminated, i.e. CONTROL is NULL.
Otherwise continue with Phase II.

NOTE: The execution step of the selected entity can be seen as a procedure call. The check of the termination
criterion is done when the execution step terminates, i.e. returns the control.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)56

8.6.2 Global functions

The evaluation procedure uses the global function INIT-FLOW-GRAPHS:

a) INIT-FLOW-GRAPHS is assumed to be the function that initializes the flow graph handling. The handling may
include the creation of the flow graphs and the handling of the pointers to the flow graphs and flow graph
nodes.

The pseudo-code used the following clauses to describe execution of flow graph nodes use the functions
CONTINUE-COMPONENT, RETURN, ***DYNAMIC-ERROR***:

b) CONTINUE-COMPONENT the actual test component continues its execution with the node lying on top of
the control stack, i.e. the control is not given back to the module evaluation procedure described in this clause.

c) RETURN returns the control back to the module evaluation procedure described in this clause. The RETURN is
the last action of the "execution step of the selected entity" of the execution phase.

d) ***DYNAMIC-ERROR*** refers to the occurrence of a dynamic error. The error handling procedure itself is
outside the scope of the operational semantics. If a dynamic error occurs all following behaviour of the test
case is meant to be undefined. In this case resources allocated to the test case shall be cleared and the error
verdict is assigned to the test case. Control is given to the statement in the control part following the execute
statement in which the error occurred. This is modelled by the flow graph segment <dynamic-error>
(clause 9.18.5).

NOTE: The occurrence of a dynamic error is related to test behaviour. A dynamic error as specified by the
operational semantics denotes a problem in the usage of TTCN-3, e.g. wrong usage or race condition.

e) APPLY-OPERATOR used as generic function for describing the evaluation of operators (e.g. +, *, / or -) in
expressions (see clause 9.18.4).

9 Flow graph segments for TTCN-3 constructs

9.0 General
The operational semantics represents TTCN-3 behaviour in form of flow graphs. The construction algorithm for the
flow graphs representing behaviour is described in clause 8.2. It is based on templates for flow graphs and flow graph
segments that have to be used for the construction of concrete flow graphs for module control, test cases, altsteps,
functions and component type definitions defined in a TTCN-3 module. The definitions of the templates for the flow
graph segments can be found in this clause. They are presented in an alphabetical order and not in a logical order.

The flow graph segment definitions are provided in the form of figures. The flow graph nodes are presented on the left
side of the figures and comments associated to nodes and flow lines are shown on the right side. Descriptive comments
are presented for reference nodes and comments in form of pseudo-code are associated to basic nodes. The pseudo-code
describes how a basic node is interpreted, i.e. changes the module state. It makes use of the functions defined in clause 8
and the global variables declared and initialized in the evaluation procedure for TTCN-3 modules (see clause 8.6). An
overall view of all functions and keywords used by the pseudo-code can be found in clause 8.

9.1 Action statement
The syntactical structure of an action statement is:

 action (<informal description>)

The flow graph segment <action-stmt> in figure 36 defines the execution of the action statement.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)57

nop

segment <action-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

NOTE: The <informal description> parameter of the action statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

Figure 36: Flow graph segment <action-stmt>

9.2 Activate statement
The syntactical structure of the activate statement is:

 activate(<altstep-name>([<act-par-desc1>, … , <act-par-descn>]))

The <altstep-name> denotes to the name of an altstep that is activated as default behaviour, and
<act-par-descr1>, … , <act-par-descrn> describe the actual parameter values of the altstep at the time of

its activation.

It is assumed that for each <act-par-desc1> the corresponding formal parameter identifier <f-par-Id1> is

known, i.e. the syntactical structure above can be extended to:

 activate(<altstep-name>((<f-par-Id1>,<act-par-desc1>), … , (<f-par-Idn>,<act-par-descn>)))

The flow graph segment <activate-stmt> in figure 37 defines the execution of the activate statement. The
execution is structured into three steps. In the first step, a call record for the altstep <function-name> is created. In
the second step the values of the actual parameter are calculated and assigned to the corresponding field in the call
record. In the third step, the call record is put as first element in the DEFAULT-LIST of the entity that activates the
default.

NOTE: For altsteps that are activated as default behaviour, only value parameters are allowed. In figure 37, the
handling of the value parameters is described by the flow graph segment <value-par-calculation>, which
is defined in clause 9.24.1.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)58

// For each pair (<f-par-Idi>, <act-parameter-desci>) the
// value of <act-parameter-desci is calculated and
// assigned to the corresponding field <f-par-Idi>
// in the call record. The call record is assumed to be
// the top element in the value stack.

segment
<activate-stmt>

construct-call-record
(altstep-name)

Entity.VALUE-STACK.push(NEW-CALL-RECORD(function-name));
Entity.NEXT-CONTROL(true);
RETURN;

*

<value-par-calculation>

activate-default

Entity.DEFAULT-LIST.add(Entity.VALUE-STACK.top());
// We assume that only a reference to the call record has
// been pushed onto the value stack. This reference has
// not been removed from the value stack. It is the result
// of the activate statement.
Entity.NEXT-CONTROL(true);
RETURN;

Figure 37: Flow graph segment <activate-stmt>

9.2a Alive component operation

9.2a.0 General

The syntactical structure of the alive component operation is:

 <component-expression>.alive

The alive component operation checks whether a component has been created and is ready to execute or is already
executing a behaviour function. The component to be checked is identified by a component reference, which may be
provided in form of a variable or value returning function, i.e. is an expression. For simplicity, the keywords "all
component" and "any component" are considered to be special expressions.

The alive component operation distinguishes between its usage in a Boolean guard of an alt statement or blocking
call operation and all other cases. If used in a Boolean guard, the result of alive component operation is based on
the actual snapshot. In all other cases the alive component operation evaluates directly the module state information.

The result of the alive component operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <alive-component-op> in figure 37a defines the execution of the running component
operation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)59

decision

segment
<alive-component-op>

if (Entity.STATUS == ACTIVE) {
 Entity.NEXT-CONTROL(true);
}
else { // Entity is in a snapshot
 Entity.NEXT-CONTROL(false);
}
RETURN;

<expression>

// The expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

<alive-comp-act> <alive-comp-snap>

true false

Figure 37a: Flow graph segment <alive-component-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)60

9.2a.1 Flow graph segment <alive-comp-act>

The flow graph segment <alive-comp-act> in figure 37b describes the execution of the alive component
operation outside a snapshot, i.e. the entity is in the status ACTIVE.

alive-comp-act

segment
<alive-comp-act> if (Entity.VALUE-STACK.top() == 'all component') {

 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else {
 if (KILLED.length() == 0) { // no entity has terminated
 Entity.VALUE-STACK.push(true);
 }
 else { // at least one component has terminated
 Entity.VALUE-STACK.push(false);
 }
 }
}
else {
 if (Entity.VALUE-STACK.top() == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' is not allowed
 }
 else {
 if (ALL-ENTITY-STATES.length() > 1) {
 // at least one PTC is alive
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
 }
 else {
 if (ALL-ENTITY-STATES.member(Entity.VALUE-STACK.top())) {
 // Specified component is alive
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 37b: Flow graph segment <alive-comp-act>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)61

9.2a.2 Flow graph segment <alive-comp-snap>

The flow graph segment <alive-comp-snap> in figure 37c describes the execution of the alive component
operation during the evaluation of a snapshot, i.e. the entity is in the status SNAPSHOT.

alive-comp-snap

segment
<alive-comp-snap> if (Entity.VALUE-STACK.top() == 'all component') {

 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else {
 if (Entity.SNAP-KILLED.length() == 0) {
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
}
else {
 if (Entity.VALUE-STACK.top() == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' is not allowed
 }
 else {
 if (Entity.SNAP-ALIVE.length() > 1) {
 // at least one PTC was alive when the
 // snapshot has been taken
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
 }
 else {
 if (Entity.SNAP-ALIVE.member(Entity.VALUE-STACK.top())) {
 // Component was alive when the snapshot was taken
 Entity.VALUE-STACK.push(true);
 }
 else {
 // Component was not alive when the snapshot was taken
 Entity.VALUE-STACK.push(true);
 }
 }
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 37c: Flow graph segment <alive-comp-snap>

9.3 Alt statement

9.3.0 General

The alt statement is the most complicated and important statement of TTCN-3. It implements the snapshot semantics
and specifies the branching due to the reception of messages, replies, calls and exceptions, due to the occurrence of
timeouts and due to the termination of components. In addition, the evocation of the TTCN-3 default mechanism is also
related to the alt statement.

The flow graph representation of the alt statement in figure 38. The different alternatives due to the reception of
messages, replies, calls and exceptions, due to the occurrence of timeouts and due to the termination of components are
hidden in the flow graph segment <receiving-branch>.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)62

segment <alt-stmt>

alt-exit

<receiving-branch> OR
<altstep-call-branch>

OR <else-branch>

+

<default-evocation>

if (Entity.STATUS == ACTIVE) {
 Entity.NEXT-CONTROL(true);
}
else {
 if (Entity.STATUS == BREAK) {
 // altstep is left via a break statement.
 Entity.STATUS(ACTIVE);
 Entity.NEXT-CONTROL(true);
 }
 else {
 // A new snapshot needs to be taken, the
 // status of the entity is SNAPSHOT (none
 // of the alternatives could be selected
 // and executed) or REPEAT (due to a
 // repeat statement)
 Entity.NEXT-CONTROL(false);
 }
}
RETURN;

// A snapshot is taken <take-snapshot>

// The different alternatives
// are evaluated

// The default mechanism may
// be evoked.

true

false

Figure 38: Flow graph segment <alt-stmt>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)63

9.3.1 Flow graph segment <take-snapshot>

The flow graph segment <take-snapshot> in figure 39 describes the procedure of taking a snapshot. The snapshot
records values of ports, timers and stopped components.

segment <take-snapshot>

take-snapshot

// Take Snapshot
SNAP-PORTS(Entity); // Ports
Entity.SNAP-TIMER(); // Timer

Entity.SNAP-ALIVE := copy(ALL-ENTITY-STATES); // ALIVE
Entity.SNAP-DONE := copy(DONE); // DONE
Entity.SNAP-KILLED := copy(KILLED); // KILLED

Entity.STATUS := SNAPSHOT; // new component status
Entity.DEFAULT-POINTER := Entity.DEFAULT-LIST.first();

Entity.NEXT-CONTROL(true);
RETURN;

Figure 39: Flow graph segment <take-snapshot>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)64

9.3.2 Flow graph segment <receiving-branch>

The execution of the flow graph segment <receiving-branch> is shown in figure 40.

segment <receiving-branch>

<receive-op> OR
<getcall-op> OR
<getreply-op> OR
<catch-op> OR
<timeout-op> OR
<check-op> OR

<done-component-op>

Entity.NEXT-CONTROL(Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop();
RETURN;

<expression>

// Boolean expression that
// guards a branch

true

decision

// The receiving branch is only evaluated,
// if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; true

false

decision

false

// The operations may change the status of
// Entity, if the operation is successful.

<statement-block>

true

false

Figure 40: Flow graph segment <receiving-branch>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)65

9.3.3 Flow graph segment <altstep-call-branch>

The invocation of an altstep within an alt statement is described by the flow graph segment
<altstep-call-branch> in figure 41.

segment
<altstep-call-branch>

<altstep-call>

Entity.NEXT-CONTROL(Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop();
RETURN;

<expression>

// Boolean expression that
// guards a branch

true

decision

// The branch is only evaluated,
// if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; true

false

decision

false

// The altstep is called, the status of the
// entity may be changed inside the altstep
// by the different alternatives in the
// altstep.

decision

true

false

// STATUS of Entity is ACTIVE if
// one of the alternatives in the
// altstep has been executed
if (Entity.STATUS == ACTIVE) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<statement-block>

*(1

// Execution of optional statement
// block

Figure 41: Flow graph segment <altstep-call-branch>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)66

9.3.4 Flow graph segment <else-branch>

The execution of an else branch within an alt statement is described by the flow graph segment <else-branch>
in figure 42.

segment <else-branch>

<statement-block>

// An else-branch is always selected, i.e.,
// status of Entity will be set of ACTIVE
Entity.STATUS := ACTIVE;

decision

// The branch is only evaluated,
// if the entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; true

false

else-part

// The statement block in an else branch
// is always executed.

Figure 42: Flow graph segment <else-branch>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)67

9.3.5 Flow graph segment <default-evocation>

The evocation of defaults behaviour at the end of alt statements is described by the flow graph segment
<default-evocation> in figure 43.

segment <default-evocation>

<user-def-func-call>

// A call record in DEFAULT-LIST, identified by
// DEFAULT-POINTER is pushed onto the VALUE-STACK of
// Entity. Afterwards DEFAULT-POINTER is updated, i.e.,
// will point to the next record in DEFAULT-LIST. If
// DEFAULT-POINTER is NULL, the Entity status will not
// change and, thus, a new SNAPSHOT will be initiated in
// <alt-stmt>

if (Entity.DEFAULT-POINTER == NULL) {
 Entity.NEXT-CONTROL(false);
}
else {
 Entity.VALUE-STACK.push(Entity.DEFAULT-POINTER);
 Entity.DEFAULT-POINTER :=
 Entity.DEFAULT-LIST.next(Entity.DEFAULT-POINTER);
 Entity.NEXT-CONTROL(true);
}

RETURN;

decision

// A default is only evoked, if the
// entity is in status SNAPSHOT
if (Entity.STATUS == SNAPSHOT) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; true

false

call-record-handling

// The actual default altstep is invoked
// or called like a user defined function.

true
false

default-in

default-in

// Jump back to the beginning of the segment
// to check if the next default behaviour has
// to be invoked.

Figure 43: Flow graph segment <default-evocation>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)68

9.4 Altstep call
As shown in figure 44, the call of an altstep is handled like a function call.

segment <altstep-call>

<function-call>
// Reference to the flow graph segment
// describing the function call

Figure 44: Flow graph segment <altstep-call>

9.5 Assignment statement
The syntactical structure of an assignment statement is:

 <varId> := <expression>

The value of the expression <expression> is assigned to variable <varId>. The execution of an assignment
statement is defined by the flow graph segment <assignment-stmt> in figure 45.

segment <assignment-stmt>

assignment-stmt
(varId)

Entity.VAR-SET(varId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression is evaluated and the
// result is pushed onto the value stack

Figure 45: Flow graph segment <assignment-stmt>

9.5a Break statements in altsteps
The syntactical structure of the break statement in an altstep is:

 break

NOTE: The semantics of a break statement used for leaving a loop, an interleave or an alt statement is
defined in clause 7.8 as a shorthand form for using a pair of goto-label statements.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)69

Basically, the break statement used for leaving an altstep is a return statement without return value, which also
changes the entity status to BREAK. The status BREAK prevents the re-evaluation of the alt statement in which the
altstep has been called statement has been called and also prevents the execution of the optional statement block
following the altstep call in the alt statement. The break statement also works for altsteps called indirectly by the
default mechanism. In this case, the alt statement that invokes the default mechanism is left. The flow graph segment
<break-altstep-stmt> shown in figure 45a defines the execution of the break statement for leaving an altstep.

segment <break-altstep-stmt>

<return-without-value>

break-altstep-stmt
Entity.STATUS(BREAK);
RETURN;

Figure 45a: Flow graph segment <break-altstep-stmt>

9.6 Call operation

9.6.0 General

The syntactical structure of the call operation is:

 <portId>.call (<callSpec> [<blocking-info>]) [to <receiver-spec>] [<call-reception-part>]

The optional <blocking-info> consists of either the keyword nowait or a duration for a timeout exception. The
optional <receiver-spec> in the to clause refers to the receivers of the call. In case of a one-to one
communication, the <receiver-spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <receiver-spec> specifies a set or all test components
connected via the specified port with the calling component. The optional <call-reception-part> denotes the alternative
receptions in case of a blocking call operation.

The operational semantics distinguishes between blocking and non-blocking call operations. A call is non-blocking
if the keyword nowait is used in the call operation, or if the called procedure is non-blocking, i.e. defined by using
the keyword noblock. A blocking call has a <call-reception-part>.

The flow graph segment <call-op> in figure 46 defines the execution of a call operation. It reflects the distinction
between blocking and non-blocking calls.

<blocking-call-op>
OR

<non-blocking-call-op>

segment <call-op>

// A call operation may be blocking
// or non-blocking

Figure 46: Flow graph segment <call-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)70

For blocking and non-blocking call operations a receiver entity may be specified in form of an expression. The
possibilities are shown in figures 47 and 48.

<b-call-without-duration>
OR

<b-call-with-duration>

segment <blocking-call-op>

// A blocking call may or may not
// be supervised by TIMER-GUARD

Figure 47: Flow graph segment <blocking-call-op>

<nb-call-with-one-receiver> OR
<nb-call-with-multiple-receivers> OR

<nb-call-without-receiver>

segment <non-blocking-call-op>

// A non-blocking call may address one,
// multiple (multicast and broadcast) or
// no receiver entities.

Figure 48: Flow graph segment <non-blocking-call-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)71

9.6.1 Flow graph segment <nb-call-with-one-receiver>

The flow graph segment <nb-call-with-one-receiver> in figure 49 defines the execution of a non-blocking
call operation where one receiver is specified in form of an expression.

nb-call-with-one-receiver
(portId, callSpec)

segment <nb-call-with-one-receiver>

let {
 var receiver := Entity.VALUE-STACK.top();
 var remotePort :=
 GET-REMOTE-PORT(Entity, Entity.portId.COMP-PORT-NAME, receiver);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, call, callSpec));
 }
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference or
// address value

Figure 49: Flow graph segment <nb-call-with-one-receiver>

9.6.1a Flow graph segment <nb-call-with-multiple-receivers>

The flow graph segment <nb-call-with-multiple-receivers> in figure 49a defines the execution of a
non-blocking call operation where multiple receivers are addressed. In case of broadcast communication the keyword
all component is used as receiver specification. In case of multicast communication a list of expressions is
provided which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword all component) are pushed
onto the value stack of the calling entity. The number of references or address values stored in the value stack is
considered to be known, i.e. it is the parameter number of the basic flow graph node
nb-call-with-multiple-receivers in figure 49a. The number parameter is 1 in case of broadcast
communication, i.e. the keyword all component is top element in the value stack.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)72

nb-call-with-multiple-receivers
(portId, callSpec, number)

segment <nb-call-with-multiple-receivers>

let { //
 var i; // loop counter variable
 var connection; // variable for connections in port states
 var receiver; // variable for receiver component references or
 // receiver address values
 var localPort, remotePort; // variables for port references
 localPort := Entity.portId.COMP-PORT-NAME; // local port

 if (Entity.VALUE-STACK.top() == all component) {
 connection := localPort.CONNECTIONS-LIST.next(connection);
 while (connection != NULL) {
 remotePort := connection.REMOTE-PORT-NAME;
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, call, callSpec));
 }
 connection := localPort.CONNECTIONS-LIST.next(connection);
 }
 }
 else {
 for (i == 1; i <= number; i := i+1) {
 receiver := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop(); // clean value stack
 remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, call, callSpec));
 }
 }
 }
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// Each expression shall evaluate
// to a component reference or
// address value

+(number)

Figure 49a: Flow graph segment <nb-call-with-multiple-receivers>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)73

9.6.2 Flow graph segment <nb-call-without-receiver>

The flow graph segment <nb-call-without-receiver> in figure 50 defines the execution of a non-blocking
call operation without a to-clause.

nb-call-without-receiver-op

(portId, callSpec)

segment <nb-call-without-receiver-op>

let {
 var remotePort :=
 GET-REMOTE-PORT(Entity, Entity.portId.COMP-PORT-NAME, NONE);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, call, callSpec));
 }
} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure 50: Flow graph segment <nb-call-without-receiver>

9.6.3 Flow graph segment <b-call-without-duration>

Blocking calls are modelled by a non-blocking call followed by the body of the call, which handles the replies and
exceptions. The flow graph segment <b-call-without-duration> shown in figure 51 describes the execution
of a blocking call without a given duration as time guard.

segment <b-call-without-duration>

<nb-call-with-one-receiver> OR
<nb-call-with-multiple-receivers> OR

<nb-call-without-receiver>

// Call of remote procedure

<call-reception-part>
// Handling of replies and
// exceptions of the called
// procedure.

Figure 51: Flow graph segment <b-call-without-duration>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)74

9.6.4 Flow graph segment <b-call-with-duration>

The flow graph segment <b-call-with-duration> (see figure 52) describes the execution of a blocking call with
a duration as time guard.

segment <b-call-with-duration>

<nb-call-with-one-receiver> OR
<nb-call-with-multiple-receivers> OR

<nb-call-without-receiver>

// Call of remote procedure

<call-reception-part>
// Handling of replies and
// exceptions of the called
// procedure.

<expression>

// The expression shall evaluate
// to a float value which defines
// the duration of the guarding
// timer.

set-timer-guard

Entity.TIMER-GUARD.STATUS := IDLE;
Entity.TIMER-GUARD.ACT-DURATION :=
 Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

start-timer-guard

Entity.TIMER-GUARD.STATUS := RUNNING;
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

Figure 52: Flow graph segment <b-call-with-duration>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)75

9.6.5 Flow graph segment <call-reception-part>

The flow graph segment <call-reception-part> (see figure 53) describes the handling of replies, exceptions
and the timeout exception of a blocking call operation.

segment <call-reception-part>

b-call-exit

<receiving-branch> OR
<catch-timeout-exception>

+

if (
 Entity.STATUS == ACTIVE) {
 Entity.NEXT-CONTROL(true);
 // To assure a defined state of Entity
 Entity.TIMER-GUARD.STATUS := IDLE;
}
else { // A new snapshot needs to be taken, the
 // status of the entity is SNAPSHOT (none
 // of the alternatives could be selected
 // and executed)
 Entity.NEXT-CONTROL(false);
}
RETURN;

// A snapshot is taken<take-snapshot>

// Branches with getcall and catch
// operations related to the call and
// a timeout exception (if the call is
// guarded by a duration) are handled
// by this node

true

false

Figure 53: Flow graph segment <call-reception-part>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)76

9.6.6 Flow graph segment <catch-timeout-exception>

The flow graph segment <catch-timeout-exception> (see figure 54) is for the handling of a timeout exception
of a blocking call operation that is guarded by a duration.

segment <catch-timeout-exception>

<statement-block>

// To be executed, if the
// timeout exception occured

check-guard

if (Entity.TIMER-GUARD.STATUS == TIMEOUT) {
 Entity.NEXT-CONTROL(true);
 // To assure a defined state of Entity
 Entity.STATUS := ACTIVE;
}
else { // continue evaluation
 Entity.NEXT-CONTROL(false);
}

RETURN;

true
false

Figure 54: Flow graph segment <catch-timeout-exception>

9.7 Catch operation
The syntactical structure of the catch operation is:

 <portId>.catch (<matchingSpec>) [from <component_expression>] -> [<assignmentPart>]

Apart from the catch keyword this syntactical structure is identical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the catch operation in the same manner as the receive
operation. This is also shown in the flow graph segment <catch-op> (figure 55), which defines the execution of a
catch operation. The figure refers to flow graph segments related to the receive operation (see clause 9.37).

<receive-with-sender>
OR

<receive-without-sender>

segment <catch-op>

// Distinction due to the optional
// from-clause

Figure 55: Flow graph segment <catch-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)77

9.8 Check operation

9.8.0 General

The syntactical structure of the check operation is:

<portId>.check(receive|getcall|catch|getreply (<matchingSpec>)
 [from <component-expression>]) [-> <assignmentPart>]

The optional <component-expression> in the from clause refers to the sender entity. It may be provided in
form of a variable value or the return value of a function, i.e. it is assumed to be an expression. The optional
<assignmentPart> denotes the assignment of received information if the received information matches to the
matching specification <matchingSpec> and to the (optional) from clause.

The operational semantics handles the operations receive, getcall, catch and getreply in the same manner,
i.e. they are described by referencing the same flow graph segments <receive-with-sender> and
<receive-without-sender>. The check operation also handles the different operations in the same manner.
Thus the flow graph segment <check-op> in figure 56, which defines the execution of the check operation, also
references only two flow graph segments. The only difference to the flow graph segments
<receive-with-sender> and <receive-without-sender> is that the received items are not deleted after
the match.

<check-with-sender>
OR

<check-without-sender>

segment <check-op>

// Distinction due to the optional
// from clause

Figure 56: Flow graph segment <check-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)78

9.8.1 Flow graph segment <check-with-sender>

The flow graph segment <check-with-sender> in figure 57 defines the execution of a check operation where
the sender entity is specified in form of an expression.

segment
<check-with-sender>

let { // local scope for portRef and sender
 var portRef := NULL;
 var sender := Entity.VALUE-STACK.top(); // Sender
 Entity.VALUE-STACK.pop(); // Clean value stack
 if (portID == “any port”) {
 portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE,matchingSpec,sender)
 && OWNER == Entity);
 if (portRef == NULL) { // no 'matching' port found
 Entity.NEXT-CONTROL(false);
 RETURN;
 }
 }
 else {
 portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME) // Specified port
 }
 // MATCHING
 if (PortRef.first() == NULL) { // Port queue is empty, no match
 Entity.NEXT-CONTROL(false);
 RETURN;
 }
 else {
 if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, sender)) {
 // The message in the queue matches
 Entity.VALUE-STACK.push(portRef); // Saving port reference
 Entity.STATUS := ACTIVE; // successful match, Entity status is changed
 // from SNAPSHOT to ACTIVE
 Entity.NEXT-CONTROL(true);
 }
 else { // The top item in the queue does not match
 Entity.NEXT-CONTROL(false);
 }
 RETURN;
 }
} // End of scope of portRef and sender

<expression>

// The Expression shall evaluate
// to a component reference or
// address value. The result is
// pushed onto the VALUE-STACK.

check-with-sender
(portId, matchingSpec)

true

false

<receive-assignment>

*(1)

// optional value
// assignemt

clean-value-stack

Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

true

Figure 57: Flow graph segment <check-with-sender>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)79

9.8.2 Flow graph segment <check-without-sender>

The flow graph segment <check-without-sender> in figure 58 defines the execution of a check operation
without a from clause.

segment <check-without-sender>

let { // local scope
 var portRef := NULL;
 if (portID == “any port”) {
 portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE, matchingSpec, NONE)
 && OWNER == Entity);
 if (portRef == NULL) { // no 'matching' port found
 Entity.NEXT-CONTROL(false);
 RETURN;
 }
 }
 else {
 portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME) // Specified port
 }
 // MATCHING
 if (PortRef.first() == NULL) { // Port queue is empty, no match
 Entity.NEXT-CONTROL(false);
 RETURN;
 }
 else {
 if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, NONE)) {
 // The message in the queue matches
 Entity.VALUE-STACK.push(portRef); // Saving port reference
 Entity.STATUS := ACTIVE; // successful match, Entity status is changed
 // from SNAPSHOT to ACTIVE
 Entity.NEXT-CONTROL(true);
 }
 else { // The first item in the queue does not match
 Entity.NEXT-CONTROL(false);
 }
 RETURN;
 }
} // End of scope

check-without-sender
(portId, matchingSpec)

true

false

<receive-assignment>

*(1)

// optional value
// assignemt

clean-value-stack

Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

true

Figure 58: Flow graph segment <check-without-sender>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)80

9.8a Checkstate port operation

9.8a.0 General

The syntactical structure of the checkstate port operation is:

 <portId>.checkstate(<charstring-expression>)

The checkstate port operation allows to examine the state of a port. If a port is in the state specified by the
charstring parameter, the checkstate operation returns the Boolean value true. If the port is not in the
specified state, the checkstate operation returns the Boolean value false. Calling the checkstate operation
with an invalid argument leads to an error. For simplicity, the keywords "all port" and "any port" are
considered to be special values of <portId>.

The result of the checkstate port operation is pushed onto the value stack of the entity, which called the operation.

The flow graph segment <checkstate-port-op> in figure 58a defines the execution of the running component
operation.

kind-of-state
(portId)

segment
<checkstate-port-op>

let { //local scope
 var portState := Entity.VALUE-STACK.top();
 Entity.Value-STACK.push(portId);

 if (portState == “Started”
 or portState == “Halted”
 or portState == “Stopped”) {
 Entity.NEXT-CONTROL(true);
 }
 elseif (portState == “Connected”
 or portState == “Mapped”
 or portState == “Linked”) {
 Entity.NEXT-CONTROL(false);
 }
 else {
 DYNAMIC-ERROR // invalid state

 }
} // end local scope
RETURN;

<expression>

// The expression shall evaluate
// to a charstring value. The
// result is pushed onto VALUE-STACK

<check-port-status> <check-port-connection>

true false

Figure 58a: Flow graph segment <checkstate-port-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)81

9.8a.1 Flow graph segment <check-port-status>

The flow graph segment <check-port-status> in figure 58b describes the execution of the checkstate
component operation by checking for the STATUS field in port states (cf. clause 8.3.3).

check-port-status

segment
<check-port-status> let { // local scope

 var portId; // for storing the portId
 var checkstate-par; // checkstate parameter to be checked for
 var checkState; // port state to be checked for
 var result; // Boolean for intermediate results
 var port;

portId := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop();

checkstate-par := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop();

if (checkstate-par == “Started”) checkState := STARTED;
if (checkstate-par == “Halted”) checkState := HALTED;
if (checkstate-par == “Stopped”) checkState := STOPPED;

 if (Entity.PORT-REF == NULL) { // Entity has no ports
 result := false;
 }
 else if (portId == 'all port') {
 port := ALL-PORT-STATES.first();
 result := true;
 while (port != NULL and result == true) {
 if (port.OWNER == Entity) {
 if (port.STATUS != checkState) result := false;
 }
 port := ALL-PORT-STATES.next();
 }
 }
 else if (portId == 'any port') {
 port := ALL-PORT-STATES.first();
 result := false;
 while (port != NULL and result == false) {
 if (port.OWNER == Entity) {
 if (port.STATUS == checkState) result := true;
 }
 port := ALL-PORT-STATES.next();
 }
 }
 else {
 port := Entity.portId.COMP-PORT-NAME;
 if (port == NULL) {
 DYNAMIC-ERROR // port cannot be retrieved
 }
 else{
 if (port.STATUS == checkState) result := true;
 if (port.STATUS != checkState) result := false
 }
 }

 Entity.VALUE-STACK.push(result);
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 58b: Flow graph segment <check-port-status>

9.8a.2 Flow graph segment <check-port-connection>

The flow graph segment <check-port-connection> in figure 58c describes the execution of the checkstate
component operation by investigating the CONNECTIONS-LIST in port states (cf. clause 8.3.3).

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)82

check-port-connection

segment
<check-port-connection>

let { // local scope
 var portId; // for storing the portId
 var checkstate-par; // checkstate parameter to be checked for
 var result; // Boolean for intermediate results
 var isNotLinked := false; // Boolean for intermediate results
 var isMapped := false; // Boolean for intermediate results
 var isConnected := false; // Boolean for intermediate results
 var singleport := false; // Boolean for intermediate results
 var port;

portId := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop();

checkstate-par := Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop();

 if (portId == 'any port' or portId == 'all port') {
 singleport := false;
 port := ALL-PORT-STATES.first();
 }
 else {
 singleport := true;
 port := Entity.portId.COMP-PORT-NAME;
 }
 while (port != NULL) {
 if (port.OWNER == Entity) {
 if (port.CONNECTIONS-LIST == NULL) {
 isNotLinked := true; // unlinked port
 }
 if (port.CONNECTIONS-LIST.length() == 1) {
 if (GET-REMOTE-PORT(Entity,port,NONE) == SYSTEM) {
 isMapped := true; // mapped port
 }
 else {
 isConnected := true; // connected port
 }
 }
 else { // more than one connection
 isConnected := true; // connected port
 }
 }
 if (singleport == false) port := ALL-PORT-STATES.next();
 if (singleport == true) port := NULL;
 }
 if (portId == 'any port') {
 if (checkstate-par == "Connected") result := isconnected;
 if (checkstate-par == "Mapped") result := ismapped;
 if (checkstate-par == "Linked") result := (ismapped or isconnected);
 }
 else { // portId is a single port or 'all port'
 if (checkstate-par == "Connected") {
 result := (isconnected and not(ismapped or isNotLinked));
 }
 else if (checkstate-par == "Mapped") {
 result := (ismapped and not(isconnected or isNotLinked));
 }
 else { // checkstate-par == "Linked"
 result := (ismapped or isconnected) and not(isNotLinked);
 }
 }
 Entity.VALUE-STACK.push(result);
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 58c: Flow graph segment <check-port-connection>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)83

9.9 Clear port operation
The syntactical structure of the clear port operation is:

 <portId>.clear

The flow graph segment <clear-port-op> in figure 59 defines the execution of the clear port operation.

clear-port-op
(portId)

segment <clear-port-op>
let { // Begin of local scope
 var portRef := NULL
 var portState := NULL;

 if (portId == “all port”) {
 portState := ALL-PORT-STATES.first();
 while (portState != NULL) {
 if (portState.OWNER == Entity) {
 portState.VALUE-QUEUE.clear();
 }
 portState :=
 ALL-PORT-STATES.next(portState);
 }
 }
 else {
 portRef := Entity.portId.COMP-PORT-NAME;
 GET-PORT(Entity, portRef).clear();
} // End of socpe

Entity.NEXT-CONTROL(true);
RETURN;

Figure 59: Flow graph segment <clear-port-op>

9.10 Connect operation
The syntactical structure of the connect operation is:

 connect(<component-expression1>:<portId1>, <component-expression2>:<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component-expression1> and <component-expression2>. The references may be stored in variables or

is returned by a function, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

The execution of the connect operation is defined by the flow graph segment <connect-op> shown in figure 60.
In the flow graph description the first expression to be evaluated refers to <component-expression1> and the

second expression to <component-expression2>, i.e. the <component-expression2> is on top of the

value stack when the connect-op node is executed.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)84

<expression>

segment <connect-op>

<expression>

connect-op
(portId1,portId2)

let { // begin of a local scope
 var portOne, portTwo; // voriables for ports
 var comp2 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 var comp1 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 if (comp1 == Entity) {
 portOne := comp1.portId1.COMP-PORT-NAME;
 }
 else {
 portOne := portId1;
 }
 if (comp2 == Entity) {
 portTwo := comp2.portId2.COMP-PORT-NAME;
 }
 else {
 portTwo := portId2;
 }
 ADD-CON(comp1, portOne, comp2, portTwo);
 ADD-CON(comp2, portTwo, comp1, portOne);
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 60: Flow graph segment <connect-op>

9.11 Constant definition
The syntactical structure of a constant definition is:

 const <constType> <constId> := <constType-expression>

The value of a constant is considered to be an expression that evaluates to a value of the type of the constant.

NOTE: Global constants are replaced by their values in a pre-processing step before this semantics is applied
(see clause 9.2). Local constants are treated like variable declarations with initialization. The correct
usage of constants, i.e. constants should never occur on the left side of an assignment, should be checked
during the static semantics analysis of a TTCN-3 module.

The flow graph segment <constant-definition> in figure 61 defines the execution of a constant declaration where the
value of the constant is provided in form of an expression.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)85

var-declaration-init
(constId)

segment <constant-definition>

// NOTE: A constant definition is treated like a
// variable with inititialisation value

Entity.INIT-VAR(constId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The expression shall evaluate
// to a value of the type of the
// constant that is defined.

Figure 61: Flow graph segment <constant-definition>

9.12 Create operation
The syntactical structure of the create operation is:

 <componentTypeId>.create [alive]

A present alive clause indicates that the created component can be restarted after it has been stopped. Presence and
absence of the alive clause is handled as a Boolean flag in the operational semantics (see alive parameter of the basic
flow graph node create-op in figure 62).

The flow graph segment <create-op> in figure 62 defines the execution of the create operation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)86

segment <create-op>

let { // Local scope
 var newEntity := NEW-ENTITY(componentTypeID, alive);
 // Creation of the entity state for the
 // new entity.

 // The reference to the new entity is pushed onto the value stack of the
 // ‘father' entity.

 Entity.VALUE-STACK.push(newEntity);

 // The identifier of the 'father' entity is pushed onto the value stack of the
 // new entity. The identifier is needed to restore the status of the 'father'
 // entity after completion of the entity creation. The 'father' entity is
 // blocked until all ports, variables, timers specified in the component type
 // definition are instantiated. This instantiation is done by executing the
 // flow graph that represents 'componentTypeID' by the new entity.

 newEntity.VALUE-STACK.push(Entity);

 // The new entity is put into the module state

 ALL-ENTITY-STATES.append(newEntity);

} // End local scope

// The actual status of the 'father' entity is saved and the 'father' entity goes
// into a blocking state. Note the restoration of the status of the father entity
// is described in flow graph segment <finalize-component-init>.

Entity.VALUE-STACK.push(Entity.STATUS); // Saving the actual status
Entity.STATUS := BLOCKED;

Entity.NEXT-CONTROL(true); // Return of control
RETURN;

create-op
(componentTypeId, alive)

Figure 62: Flow graph segment <create-op>

9.13 Deactivate statement

9.13.0 General

The syntactical structure of a deactivate statement is:

 deactivate [(<default-expression>)]

The deactivate statement specifies the deactivation of one or all active defaults of the entity that executes the
deactivate statement. If one default shall be deactivated, the optional <default-expression> shall evaluate
to a default reference which identifies the default to be deactivated. The call of a deactivate statement without
<default-expression> deactivates all active defaults.

The execution of a deactivate statement is defined by the flow graph segment <deactivate-stmt> in
figure 63a.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)87

<deactivate-one-default>
OR

<deactivate-all-defaults>

segment <deactivate-stmt>

// A deactivate statement deactivates
// one or all active defaults

Figure 63a: Flow graph segment <deactivate-stmt>

9.13.1 Flow graph segment <deactivate-one-default>

The flow graph segment <deactivate-one-default> in figure 63b specifies the deactivation of one active
default. The value of the expression <default-expression> shall evaluate to a default reference. The expression
may be provided in form of a variable value or value returning function. The deactivate statement removes the
specified default from the DEFAULT-LIST of the entity that executes the deactivate statement.

segment
<deactivate-one-default>

deactivate-one-default

Entity.DEFAULT-LIST.delete(Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate to a
// default reference, which is pushed
// pushed onto the value stack.

Figure 63b: Flow graph segment <deactivate-one-default>

9.13.2 Flow graph segment <deactivate-all-defaults>

The flow graph segment <deactivate-all-defaults> in figure 63c specifies the deactivation of all active defaults. The
deactivate statement clears the DEFAULT-LIST of the entity that executes the deactivate statement.

segment
<deactivate-all-defaults>

deactivate-all-defaults

Entity.DEFAULT-LIST := NULL;
RETURN;

Figure 63c: Flow graph segment <deactivate-all-defaults>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)88

9.14 Disconnect operation

9.14.0 General

The syntactical structure of the disconnect operation is:

 disconnect(<component-expression1>:<portId1> [, <component-expression2>:<portId2>])

 <component-expression2>:<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test
components. The components to which the ports belong are referenced by means of the component references
<component-expression1> and <component-expression2>. The references may be stored in variables or

are returned by functions, i.e. they are expressions, which evaluate to component references. The value stack is used for
storing the component references.

The disconnect operation can be used with one parameter pair and with two parameters pairs. The usage of the
disconnect operation with one parameter pair may disconnect connections for one component or, if executed by the
MTC for all components. The usage of the disconnect operation with two parameter pairs allows to disconnect
specific connections.

Both usages are distinguished in the flow graph segment <disconnect-op> shown in figure 64, which defines the
execution of the disconnect operation.

<disconnect-one-par-pair>
OR

<disconnect-two-par pairs>

segment <disconnect-op>

// Distinction due to the usage of
// disconnect with one parameter pair
// and its usage with two parameter
// pairs.

Figure 64: Flow graph segment <disconnect-op>

9.14.1 Flow graph segment <disconnect-one-par-pair>

The flow graph segment <disconnect-one-par-pair> shown in figure 64a defines the execution of the disconnect
operation with one parameter pair. In the flow graph segment three cases are distinguished:

1) the mtc disconnects all connections of all components;

2) all connections of one component are disconnected; and

3) all connections of one port of one component are disconnected. In the flow graph segment the expression to be
evaluated refers to <component-expression1> (see syntactical structure of the disconnect
operation in clause 9.14).

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)89

decision

segment
<disconnect-one-par-pair>

if (Entity.VALUE-STACK.top() == “all port”) {
 Entity.VALUE-STACK.pop();
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; <disconnect-comp>

true
false

<disconnect-port>

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

disconnect-one
(portId)

if (Entity.VALUE-STACK.top() == “all component”) {
 if ((Entity != MTC) OR
 (Entity == MTC && portId != “all port”)) {
 DYNAMIC-ERROR
 }
 else {
 Entity.VALUE-STACK.pop();
 Entity.NEXT-CONTROL(true);
 }
}
else {
 Entity.VALUE-STACK.push(portId);
 Entity.NEXT-CONTROL(false);
}
RETURN;

<disconnect-all>

true
false

Figure 64a: Flow graph segment <disconnect-one-par-pair>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)90

9.14.2 Flow graph segment <disconnect-all>

The flow segment <disconnect-all> defines the disconnection of all components at all connected ports.

disconnect-all

segment <disconnect-all>

let { // local scope

 var port := ALL-PORT-STATES.first();
 var connection;

 while (port != NULL) {
 connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.REMOTE-ENTITY == system) {
 connection := NULL; // mapped port
 }
 else {
 port.CONNECTIONS.delete(connection);
 connection := port.CONNECTIONS.first();
 }
 }
 port := ALL-PORT-STATES.next(port);
 }
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 64b: Flow graph segment <disconnect-all>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)91

9.14.3 Flow graph segment <disconnect-comp>

The flow segment <disconnect-comp> defines the disconnection of all ports of a specified component.

disconnect-comp

segment <disconnect-comp>

let { // local scope
 var comp := Entity.VALUE-STACK.top();
 var connection;
 var port := ALL-PORT-STATES.first();

 while (port != NULL) {
 connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.REMOTE-ENTITY == system) {
 connection := port.CONNECTIONS.next(connection);
 }
 else if (connection.REMOTE-ENTITY == comp
 or (port.OWNER == comp) {
 port.CONNECTIONS.delete(connection);
 connection := port.CONNECTIONS.first();
 }
 else {
 connection := port.CONNECTIONS.next(connection);
 }
 }
 port := ALL-PORT-STATES.next(port);
 }
 Entity.VALUE-STACK.pop(); // clear value stack
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 64c: Flow graph segment <disconnect-comp>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)92

9.14.4 Flow graph segment <disconnect-port>

The flow segment <disconnect-port> defines the disconnection of a specified port.

disconnect-port

segment <disconnect-port>

let { // local scope

 var portId, rPortId;
 var comp, rComp;
 var port;

 portId := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 comp := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 port := GET-PORT(comp, portId);

 var connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.REMOTE-ENTITY == SYSTEM) {
 DYNAMIC-ERROR // port is not a connected port
 }
 else {
 rComp := connection.REMOTE-ENTITY;
 rPortId := connection.REMOTE-PORT-NAME;
 DEL-CON(comp, portId, rComp, rPortId);
 DEL-CON(rComp, rPortId, comp, portId);
 connection := port.CONNECTIONS.first();
 }
 }

} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 64d: Flow graph segment <disconnect-port>

9.14.5 Flow graph segment <disconnect-two-par-pairs>

The flow graph segment <disconnect-two-par-pairs> shown in figure 64e defines the execution of the disconnect
operation with two parameter pairs which disconnects specific connections. In the flow graph segment the first
expression to be evaluated refers to <component-expression1> (see syntactical structure of the

disconnect operation in clause 9.14)and the second expression to <component-expression2>, i.e. the

<component-expression2> is on top of the value stack when the disconnect-two node is executed.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)93

<expression>

segment
<disconnect-two-par-pairs>

<expression>

disconnect-two
(portId1,portId2)

let { // begin of a local scope
 var portOne, portTwo; // voriables for ports
 var comp2 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 var comp1 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 if (comp1 == SYSTEM) {
 DYNAMIC-ERROR // mapped port
 }
 else {
 portOne := comp1.portId1.COMP-PORT-NAME;
 }
 if (comp2 == SYSTEM) {
 DYNAMIC-ERROR // mapped port
 }
 else {
 portTwo := comp2.portId2.COMP-PORT-NAME;
 }
 DEL-CON(comp1, portOne, comp2, portTwo);
 DEL-CON(comp2, portTwo, comp1, portOne);
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 64e: Flow graph segment <disconnect-two-par-pairs>

9.15 Do-while statement
The syntactical structure of the do-while statement is:

 do <statement-block>
 while (<boolean-expression>)

The execution of a do-while statement is defined by the flow graph segment <do-while-stmt> shown in
figure 65.

if (Entity.VALUE-STACK.top()) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
Entity.VALUE-STACK.pop();
RETURN;

segment <do-while-stmt>

decision

false

true

<statement-block>

<expression>

// The expression shall evaluate to
// a Boolean value.

Figure 65: Flow graph segment <do-while-stmt>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)94

9.16 Done component operation

9.16.0 General

The syntactical structure of the done component operation is:

 <component-expression>.done [-> <assignmentPart>]

The done component operation checks whether a component is running or has stopped. Depending on whether a
checked component is running or has stopped the done operation decides how the flow of control continues. Using a
component reference identifies the component to be checked. The reference may be stored in a variable or be returned
by a function, i.e. it is an expression. For simplicity, the keywords "all component" and "any component" are
considered to be special expressions.

The optional <assignmentPart> allows the retrieval of the local verdict of the addressed component at the time of
its stopping. The assignment part identifies a variable of type verdicttype to which the retrieved verdict is assigned.

The flow graph segment <done-op> in figure 66 defines the execution of the done component operation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)95

done-component-op

segment <done-op>

let { // local scope
 var aliveNr := Entity.SNAP-ALIVE.length();
 var doneNr := Entity.SNAP-DONE.length();
 var killedNr := Entity.SNAP-KILLED.length();
 var nonWaitingNr := aliveNr – doneNr – killedNr;
 // number of alive entities which are executing a behaviour
 // or neither have stopped and nor have terminated.
 var doneEntity := Entity.VALUE-STACK.top();
 var doneVerdict := none;

 if (doneEntity == 'all component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else if (nonWaitingNr == 1) { // MTC is only active Entity
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // DONE is successful
 Entity.VALUE-STACK.push(error);
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
 }
 else if (doneEntity == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' not allowed
 }
 else if (doneNr > 0) {
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // DONE is successful
 Entity.VALUE-STACK.push(error);
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
 }
 else if(Entity.SNAP-DONE.member((doneEntity,-))) {
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // DONE is successful
 doneVerdict :=
 Entity.SNAP-DONE.random((doneEntity,-)).FIN-VERDICT;
 Entity.VALUE-STACK.push(doneVerdict);
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
} // end of local scope
RETURN;

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

true false

<done-assignment>

* (1) // optional verdict
// assignment

clean-value-stack

Entity.VALUE-STACK.pop(); // removal of doneVerdict
Entity.VALUE-STACK.pop(); // removal of expression
Entity.NEXT-CONTROL(true);

RETURN;

Figure 66: Flow graph segment <done-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)96

9.16.1 Flow graph segment <done-assignment>

The flow graph segment <receive-assignment> in figure 66a defines the retrieval of information from received
messages and their assignment to variables.

segment <done-assignment>

done-assignment
(assignmentPart)

if (Entity.VALUE-STACK.top() == error) {
 DYNAMIC-ERROR // usage with any or all component
}
else {
 Entity.VAR-SET(assignmentPart, Entity.VALUE-STACK.top())
 // assuming that assignmentPart denotes a variable
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 66a: Flow graph segment <receive-assignment>

9.17 Execute statement

9.17.0 General

The syntactical structure of the execute statement is:

 execute(<testCaseId>([<act-par1>, … , <act-parn>)]) [, <float-expression>])

The execute statement describes the execution of a test case <testCaseId> with the (optional) actual parameters
<act-par1>, … , <act-parn>. Optionally the execute statement may be guarded by a duration provided in form

of an expression that evaluates to a float. If within the specified duration the test case does not return a verdict, a
timeout exception occurs, the test case is stopped and an error verdict is returned.

NOTE: The operational semantics models the stopping of the test case by a stop of the MTC. In reality, other
mechanisms may be more appropriate.

If no timeout exception occurs, the MTC is created, the control instance (representing the control part of the TTCN-3
module) is blocked until the test case terminates, and for the further test case execution the flow of control is given to
the MTC. The flow of control is given back to the control instance when the MTC terminates.

The flow graph segment <execute-stmt> in figure 67 defines the execution of an execute statement.

<execute-without-timeout>
OR

<execute-timeout>

segment <execute-stmt>

// An execute statement may or may
// not be guarded by a timeout

Figure 67: Flow graph segment <execute-stmt>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)97

9.17.1 Flow graph segment <execute-without-timeout>

The execution of a test case starts with the creation of the mtc. Then the mtc is started with the behaviour defined in the
test case definition. Afterwards, the module control waits until the test case terminates. The creation and the start of the
MTC can be described by using create and start statements:

 var mtcType MyMTC := mtcType.create;
 MyMTC.start(TestCaseName(P1…Pn));

The flow graph segment <execute-without-timeout> in figure 68 defines the execution of an execute
statement without the occurrence of a timeout exception by using the flow graph segments of the operations create
and the start.

segment <execute-without-timeout>

init-test-case-state

MTC := Entity.VALUE-STACK.top();
TC-VERDICT := none;
DONE := NULL;

Entity.NEXT-CONTROL(true);
RETURN;

<create-op>

// Creation of the MTC

<start-component-op> // Start of MTC

wait-for-termination

Entity.STATUS := BLOCKED;
// MTC will set status to ACTIVE
// before it terminates
Entity.NEXT-CONTROL(true);
RETURN;

Figure 68: Flow graph segment <execute-without-timeout>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)98

9.17.2 Flow graph segment <execute-timeout>

The flow graph segment <execute-timeout> in figure 69 defines the execution of an execute statement that is
guarded by a timeout value. The flow graph segment also models the creation and start of the MTC by a create and a
start operation. In addition, TIMER-GUARD guards the termination.

false true

segment <execute -timeout>

init-test-case-state
MTC := Entity.VALUE-STACK.top();
TC-VERDICT := none;
DONE := NULL;

Entity.NEXT-CONTROL(true);
RETURN;

<create-op>

// Creation of the MTC

<start-component-op>

// Start of MTC

prepare-wait
Entity.STATUS := SNAPSHOT;
// MTC will set status to ACTIVE
// before it terminates
Entity.TIMER-GUARD.STATUS := RUNNING;
Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The Expression shall evaluate to a
// a float value. This value defines
// the duration of TIMER-GUARD

set-timer-guard

Entity.TIMER-GUARD.STATUS := IDLE;
Entity.TIMER-GUARD.ACT-DURATION :=
 Entity.VALUE-STACK.top();
Entity.VALUE-STACK.pop();

Entity.NEXT-CONTROL(true);
RETURN;

active-waiting

if (Entity.STATUS == SNAPSHOT and
 Entity.TIMER-GUARD.STATUS != TIMEOUT) {
 // Control waits
 Entity.NEXT-CONTROL(true);
}
else { // Test case terminated or
 // timer guard timed out
 Entity.NEXT-CONTROL(true);
}
RETURN;

stop-or-timeout

if (Entity.STATUS != SNAPSHOT) {
 // normal termination
 Entity.TIMER-GUARD.STATUS := IDLE;
 Entity.NEXT-CONTROL(true);
}
else { // guarding timer timed out
 Entity.NEXT-CONTROL(false);
}

RETURN;

falsetrue

<dynamic-error>
/* Stop test case */

Figure 69: Flow graph segment <execute-timeout>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)99

9.17.3 Flow graph segment <dynamic-error>

In case of a dynamic error the flow graph segment <dynamic-error> is invoked by the test system. In addition, the
flow graph segment <dynamic-error> is also used for describing the behaviour of the test case stop operation
(clause 9.53a). All resources allocated to the test case are cleared and the error verdict is assigned to the test case.
Control is given to the statement in the control part following the execute statement in which the error occurred.

The flow graph segment <dynamic-error> is invoked by the module control in case that a test case does not
terminate within the specified time limit (clause 9.17.2).

dynamic-error

segment <dynamic-error>

// Reset of configuration state

ALL-ENTITY-STATES := NULL;
ALL-PORT-STATES := NULL;
MTC := NULL;
TC-VERDICT := error;
DONE := NULL;
KILLED := NULL;

 // Update of the entity state of module control

 Control.TIMER-GUARD.STATUS := IDLE;
 Control.STATUS := ACTIVE;

 // Push error verdict (result of test case execution) onto
 // the stack of module control

 Control.VALUE-STACK.push(error);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 69a: Flow graph segment <dynamic-error>

9.18 Expression

9.18.0 General

For the handling of expressions, the following four cases have to be distinguished:

a) the expression is a literal value (or a constant);

b) the expression is a variable;

c) the expression is an operator applied to one or more operands;

d) the expression is a function or operation call.

NOTE: The cases b), c) and d) may require lazy or fuzzy evaluation. This operational semantics does not model
lazy and fuzzy evalution. It assumes that the correct evaluation is done implicitly.

The syntactical structure of an expression is:

 <lit-val> | <var-val> | <func-op-call> | <operand-appl>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)100

where:

 <lit-val> denotes a literal value;

 <var-val> denotes a variable value;

 <func-op-call> denotes a function or operation call;

 <operator-appl> denotes the application of arithmetic operators like +, -, not, etc.

The execution of an expression is defined by the flow graph segment <expression> shown in figure 70.

<lit-value>
OR

<var-value>
OR

<func-op-call>
OR

<operator-appl>

segment <expression>

// The four alternatives
// describe the four
// possibilities for
// expressions as
// described in this
// section.

Figure 70: Flow graph segment <expression>

9.18.1 Flow graph segment <lit-value>

The flow graph segment <lit-value> in figure 71 pushes a literal value onto the value stack of an entity.

lit-value
(value)

segment <lit-value> Entity.VALUE-STACK.push(value);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 71: Flow graph segment <lit-value>

9.18.2 Flow graph segment <var-value>

The flow graph segment <var-value> in figure 72 pushes the value of a variable onto the value stack of an entity.

var-value
(var-name)

segment <var-value> Entity.VALUE-STACK.push(Entity.var-name.VALUE);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 72: Flow graph segment <var-value>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)101

9.18.3 Flow graph segment <func-op-call>

The flow graph segment <func-op-call> in figure 73 refers to calls of functions and operations, which return a
value that is pushed onto the value stack of an entity. All these calls are considered to be expressions.

<activate-stmt> OR <create-op> OR
<function-call> OR <mtc-op> OR

<read-timer-op> OR <running-timer-op> OR
<running-component-op> OR
<self-op> OR <system-op> OR

<verdict.get-op> OR <execute-stmt>

segment <func-op-call>

Figure 73: Flow graph segment <func-op-call>

9.18.4 Flow graph segment <operator-appl>

The flow graph representation in figure 74 directly refers to the assumption that reverse polish notation is used to
evaluate operator expressions. The operands of the operator are calculated and pushed onto the evaluation stack. For the
application of the operator, the operands are popped from the evaluation stack and the operator is applied. The result of
the operator application is finally pushed onto the evaluation stack. Both, the popping of operands and the pushing the
result are considered to be part of the operator application (Entity.APPLY-OPERATOR(operator) statement in
figure 74), i.e. are not modelled by the operational semantics.

operator-appl
(operator)

segment <operator-appl>

<expression>

+

// For an n-nary operator,
// n operands in form of
// evaluated expressions have
// to be pushed onto the
// value stack

Entity.APPLY-OPERATOR(operator);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 74: Flow graph segment <operator-appl>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)102

9.19 Flow graph segment <finalize-component-init>
The flow graph segment <finalize-component-init> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 75.

finalise-component-init

segment
<finalise-component-init>

// The status of the father entity is restored. The identifier of the 'father'
// entity is deleted from the VALUE-STACK.

Entity.VALUE-STACK.top().STATUS := Entity.VALUE-STACK.top().VALUE-STACK.top();
Entity.VALUE-STACK.top().VALUE-STACK.pop();
Entity.VALUE-STACK.pop();

// A mark is pushed on the value stack, the entity goes into a blocking state,
// i.e.,waits for being started) and control is given back to the module
// evaluation procedure

Entity.VALUE-STACK.push(MARK);
Entity.STATUS := BLOCKED;
Entity.NEXT-CONTROL(true);
RETURN;

Figure 75: Flow graph segment <finalize-component-init>

9.20 Flow graph segment <init-component-scope>
The flow graph segment <init-component-scope> is part of the flow graph representing the behaviour of a
component type definition. Its execution is defined in figure 76.

init-component-scope

segment <init-component-scope>

// New scopes for variables, timers
// and ports are created
Entity.INIT-VAR-SCOPE();
Entity.INIT-TIMER-SCOPE();
Entity.INIT-PORT-SCOPE();

Entity.NEXT-CONTROL(true);
RETURN;

Figure 76: Flow graph segment <init-component-scope>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)103

9.20a Flow graph segment <init-scope-with-runs-on>
The flow graph segment <init-scope-with-runs-on> is part of the flow graph representing the behaviour of
function and altstep definitions. It creates new scopes for variables, timers and ports, which include the names and
values declared in the component type definition referred to in the runs on-clause. The execution of the flow graph
segment is defined in figure 76a.

init-scope-with-runs-on

segment <init-scope-with-runs-on>

let { // local scope
 var actVarScope := copy(Entity.DATA-STATE.first());
 var actTimerScope := copy(Entity.TIMER-STATE.first());
 var actPORTScope := copy(Entity.PORT-REF.first());
 Entity.INIT-VAR-SCOPE();
 Entity.DATA-STATE.first().add(actVarScope);
 Entity.INIT-TIMER-SCOPE();
 Entity.DATA-TIMER.first().add(actTimerScope);
 Entity.INIT-PORT-SCOPE();
 Entity.PORT-REF.first().add(actPortScope)
 Entity.VALUE-STACK.push(MARK);
}

Entity.NEXT-CONTROL(true);
RETURN;

Figure 76a: Flow graph segment <init-scope-with-runs-on>

9.20b Flow graph segment <init-scope-without-runs-on>
The flow graph segment <init-scope-without-runs-on> is part of the flow graph representing the behaviour
of function and altstep definitions. It creates new empty scopes for variables, timers and ports. Functions and altsteps
without runs on-clause do not know the names and values declared in the component type definition of the invoking
component. The execution of the flow graph segment is defined in figure 76b.

init-scope-without-runs-on

segment <init-scope-without-runs-on>
Entity.INIT-VAR-SCOPE();
Entity.INIT-TIMER-SCOPE();
Entity.INIT-PORT-SCOPE();
Entity.VALUE-STACK.push(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 76b: Flow graph segment <init-scope-without-runs-on>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)104

9.21 Flow graph segment <parameter-handling>
The flow graph-segment <parameter-handling> is used in the beginning of flow graphs representing test cases,
altsteps and functions. It initializes a new scope and creates variables and timers for the handling of parameters. The
flow graph-segment <parameter-handling> assumes that the call record of the called test case, altstep or function
is the top of the value stack.

NOTE: Parameters may be declared to be lazy or fuzzy. This operational semantics does not model lazy and
fuzzy evalution. It assumes that the correct evaluation of such parameters is done internally.

The execution of flow graph-segment <parameter-handling> is shown in figure 77.

parameter-handling

segment
<parameter-handling> Entity.INIT-CALL-RECORD(VALUE-STACK.top());

 // parameters are initialized
Entity.VALUE-STACK.pop(); // removal of call record
Entity.VALUE-STACK.push(MARK); // for scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 77: Flow graph segment <parameter-handling>

9.22 Flow graph segment <statement-block>
The syntactical structure of a statement block is:

 { <statement1>; … ; <statementn> }

A statement block is a scope unit. When entering a scope unit, new scopes for variables, timers and the value stack have
to be initialized. When leaving a scope unit, all variables, timers and stack values of this scope have to be destroyed.

NOTE 1: A Statement block can be embedded in another statement blocks or can occur as body of functions,
altsteps, test cases and module control, and within compound statements, e.g. alt, if-else or
do-while.

NOTE 2: Receiving operations and altstep calls cannot appear in statement blocks, they are embedded in alt
statements or call operations.

NOTE 3: The operational semantics also handles operations and declarations like statements, i.e. they are allowed
in statement blocks.

NOTE 4: Some TTCN-3 functions, like e.g. system or self, are considered to be expressions, which are not
useful as stand-alone statements in statement blocks. Their flow graph representations are not listed in
figure 78.

The flow graph segment <statement-block> in figure 78 defines the execution of a statement block.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)105

// List of flow graph segments
// representing all possible
// statements and operations

exit-scope-unit

segment <statement-block>

Entity.DEL-VAR-SCOPE();
Entity.DEL-TIMER-SCOPE();
Entity.VALUE-STACK.clear-until(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

enter-scope-unit

let { // local scope
 var actVarScope := copy(Entity.DATA-STATE.first());
 var actTimerScope := copy(Entity.TIMER-STATE.first());
 Entity.INIT-VAR-SCOPE();
 Entity.DATA-STATE.first().add(actVarScope);
 Entity.INIT-TIMER-SCOPE();
 Entity.DATA-TIMER.first().add(actTimerScope);
 Entity.VALUE-STACK.push(MARK);
}

Entity.NEXT-CONTROL(true);
RETURN;

*

<action-stmt> OR <activate-stmt> OR <alt-stmt>
OR <assignment-stmt> OR <call-op> OR

<clear-port-op> OR <connect-op> OR <create-op>
OR <deactivate-stmt> OR <disconnect-op> OR

<do-while-stmt> OR <execute-stmt> OR <for-stmt>
OR <function-call> OR <getverdict-op> OR

<goto-stmt> OR <if-else-stmt> OR
<kill-component-op> OR <kill-exec-stmt> OR
<label-stmt> OR <log-stmt> OR <map-op> OR

<raise-op> OR <repeat-stmt> OR <reply-op> OR
<return-stmt> OR <send-op> OR <setverdict-op>
OR <start-component-op> OR <start-port-op> OR
<start-timer-op> OR <stop-component-op> OR

<stop-exec-stmt> OR <stop-port-op> OR
<stop-timer-op> OR <unmap-op> OR <while-stmt>

OR <statement-block>

// List of flow graph segments
// representing defintions
// and declarations.

* <constant-definition> OR
<timer-declaration> OR
<variable-declaration>

Figure 78: Flow graph segment <statement-block>

9.23 For statement
The syntactical structure of the for-statement is:

 for (<assignment>|<variable-declaration>, <boolean_expression>, <assignment>) <statement-block>

The initialization of the index variable and the corresponding manipulation of the index variable are considered to be
assignments to the index variable. It is also allowed to declare and initialize the index variable directly in the for
statement. The <boolean-expression> describes the termination criterion of the loop specified by the
for-statement and the <statement-block> describes the loop body.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)106

The execution of the for statement is defined by the flow graph segment <for-stmt> shown in figure 79. The initial
<assignment> or alternative variable declaration with assignment <var-declaration-init>
(see clause 9.57.1) describes the initialization of the index variable. The <assignment> in the true branch of the
decision node describes the manipulation of the index variable. The for statement is a scope unit for a newly
declared index variable, this is modelled by means of the nodes enter-var-scope and exit-var-scope.

// The index variable is only
// initialised (<assignment>)
// or declared and initialised
// (<var-declaration-init>)

Entity.INIT-VAR-SCOPE();
Entity.VALUE-STACK.push(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

if (Entity.VALUE-STACK.top()== true) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
Entity.VALUE-STACK.pop();
RETURN;

Entity.DEL-VAR-SCOPE();
Entity.VALUE-STACK.clear-until(MARK);

Entity.NEXT-CONTROL(true);
RETURN;

<assignment>
OR

<var-declaration-init>

segment <for-stmt>

decision

false

true

<statement-block>

<expression>

<assignment>

enter-var-scope

exit-var-scope

Figure 79: Flow graph segment <for-stmt>

9.24 Function call

9.24.0 General

The syntactical structure of a function call is:

 <function-name>([<act-par-desc1>, … , <act-par-descn>])

The <function-name> denotes to the name of a function and <act-par-descr1>, … , <act-par-descrn>

describe the description of the actual parameter values of the function call.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)107

NOTE 1: A function call and an altstep call are handled in the same manner. Therefore, the altstep call
(see clause 9.4) refers to this clause.

It is assumed that for each <act-par-desc1> the corresponding formal parameter identifier <f-par-Id1> is

known, i.e. the syntactical structure above can be extended to:

 <function-name>((<f-par-Id1>,<act-par-desc1>), … , (<f-par-Idn>,<act-par-descn>))

The flow graph segment <function-call> in figure 80 defines the execution of a function call. The execution is
structured into three steps. In the first step a call record for the function <function-name> is created. In the second
step the values of the actual parameter are calculated and assigned to the corresponding field in the call record. In the
third step, two situations have to be distinguished: the called function is a user-defined function
(<user-def-func-call>), i.e. there exists a flow graph representation for the function, or the called function is a
pre-defined or external function (<predef-ext-func-call>). In case of a user-defined function call, the control is
given to the called function. In case of a pre-defined or external function, it is assumed that the call record can be used
to execute the function in one step. The correct handling of reference parameters and return value (has to be pushed
onto the value stack) is in the responsibility of the called function, i.e. is outside the scope of this operational semantics.

NOTE 2: If the function call models an altstep call, only the <user-def-func-call> branch will be chosen,
because there exists a flow graph representation of the called altstep.

NOTE 3: The <function call> segment is also used to describe the start of the MTC in an execute
statement. In this case, a call record for the test case is constructed and only the
<user-def-func-call> branch will be chosen.

// For each pair (<f-par-Idi>, <act-parameter-desci>) the
// value of <act-parameter-desci is calculated and
// assigned to the corresponding field <f-par-Idi>
// in the call record. The call record is assumed to be
// the top element in the value stack.

segment
<function call>

// The called function may either be an external or
// predefined function, or a user-defined function.

construct-call-record
(function-name)

Entity.VALUE-STACK.push(NEW-CALL-RECORD(function-name));
Entity.NEXT-CONTROL(true);
RETURN;

*

<value-par-calculation>

// Retrieves the locations for variables and timers
// used as reference parameters and declared names of
// port parameters

*

<ref-var-par-calc> OR
<ref-timer-par-calc> OR
<ref-port-par-calc>

<predef-ext-func-call>
OR

<user-def-func-call>

Figure 80: Flow graph segment <function-call>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)108

9.24.1 Flow graph segment <value-par-calculation>

The flow graph-segment <value-par-calculation> is used to calculate actual parameter values and to assign
them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

 (<f-par-Idi>, <act-parameter-desci>)

has to be handled. <act-parameter-desci> that has to be evaluated and <f-par-Idi> is the identifier of a

formal parameter that has a corresponding field in the call record in the value stack.

The execution of flow graph-segment <value-par-calculation> is shown in figure 81.

parameter-assignment
(f-par-Id)

segment
<value-par-calculation>

let { // scope unit for parVal
 var parVal = Entity.VALUE-STACK.top();
 // parVal is a local variable that
 // stores the value of the expression

 Entity.VALUE-STACK.pop();
 // Removal of expression value.
 // Afterwards the call record is
 // again top of the value stack

 Entity.VALUE-STACK.top().f-par-Id := parVal;
 // Value assignment to call record
} // end of scope for parVal

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The expression represents <act-parameter-desci>
// The result of the evaluation of the expression
// is pushed onto the value stack.

Figure 81: Flow graph segment <value-par-calculation>

9.24.2 Flow graph segment <ref-par-var-calc>

The flow graph-segment <ref-par-var-calc> is used to retrieve the locations of variables used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

 (<f-par-Idi>, <act-pari>)

has to be handled. <act-pari> is the actual parameter for which the location has to be retrieved and

<f-par-Idi> is the identifier of a formal parameter that has a corresponding field in the call record in the value

stack.

The execution of flow graph-segment <ref-par-var-calc> is shown in figure 82.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)109

parameter-assignment
(f-par-Id, act-par)

segment
<ref-par-var-calc>

// Value assignment to call record
Entity.VALUE-STACK.top().f-par-Id :=
 Entity.GET-VAR-LOCATION(act-par);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 82: Flow graph segment <ref-par-var-calc>

9.24.3 Flow graph segment <ref-par-timer-calc>

The flow graph-segment <ref-par-timer-calc> is used to retrieve the locations of timers used as actual
reference parameters and to assign them to the corresponding fields in call records for functions, altsteps and test cases.

It is assumed that a call record is the top element of the value stack and that a pair of:

 (<f-par-Idi>, <act-pari>)

has to be handled. <act-pari> is the actual parameter for which the location has to be retrieved and

<f-par-Idi> is the identifier of a formal parameter that has a corresponding field in the call record in the value

stack.

The execution of flow graph-segment <ref-par-timer-calc> is shown in figure 83.

parameter-assignment
(f-par-Id, act-par)

segment
<ref-par-timer-calc>

// Value assignment to call record
Entity.VALUE-STACK.top().f-par-Id :=
 Entity.GET-TIMER-LOCATION(act-par);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 83: Flow graph segment <ref-par-timer-calc>

9.24.3a Flow graph segment <ref-par-port-calc>

The flow graph-segment <ref-par-port-calc> is used to retrieve the names of ports used as in the component
type definitions for the declaration of the port and to assign them to the corresponding fields in call records for
functions and altsteps.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)110

It is assumed that a call record is the top element of the value stack and that a pair of:

 (<f-par-Idi>, <act-pari>)

has to be handled. <act-pari> is the actual parameter for which the location has to be retrieved and

<f-par-Idi> is the identifier of a formal parameter that has a corresponding field in the call record in the value

stack.

The execution of flow graph-segment <ref-par-timer-calc> is shown in figure 83a.

parameter-assignment
(f-par-Id, act-par)

segment
<ref-par-port-calc>

// Value assignment to call record
Entity.VALUE-STACK.top().f-par-Id :=
 Entity.act-par.COMP-PORT-NAME;

Entity.NEXT-CONTROL(true);
RETURN;

Figure 83a: Flow graph segment <ref-par-port-calc>

9.24.4 Flow graph segment <user-def-func-call>

The flow graph-segment <user-def-func-call> (figure 84) describes the transfer of control to a called
user-defined function.

user-def-func-call
(function-name)

segment <user-def-func-call>

// Storage of return address
Entity.NEXT-CONTROL(true);
// Control is transferred to called function
Entity.CONTROL-STACK.push(GET-FLOW-GRAPH(function-name));

RETURN;

Figure 84: Flow graph segment <user-def-func-call>

9.24.5 Flow graph segment <predef-ext-func-call>

The flow graph-segment <predef-ext-func-call> (figure 85) describes the call of a pre-defined or external
function.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)111

<predef-ext-func-call>
(function-name)

segment <predef-ext-func-call>

let { // scope for argument variable
 var argument := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop(); // removal of call record
 // Application of function-name
 function-name(argument);
} // end of scope for argument
Entity.NEXT-CONTROL(true);
RETURN;

Figure 85: Flow graph segment <predef-ext-func-call>

9.25 Getcall operation
The syntactical structure of the getcall operation is:

 <portId>.getcall (<matchingSpec>) [from <component_expression>] -> [<assignmentPart>]

Apart from the getcall keyword this syntactical structure is identical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the getcall operation in the same manner as the receive
operation. This is also shown in the flow graph segment <getcall-op> (see figure 86), which defines the execution
of a getcall operation. The figure refers to flow graph segments related to the receive operation (see clause 9.37).

<receive-with-sender>
OR

<receive-without-sender>

segment <getcall-op>

// Distinction due to the optional
// from-clause

Figure 86: Flow graph segment <getcall-op>

9.26 Getreply operation
The syntactical structure of the getreply operation is:

 <portId>.getreply (<matchingSpec>) [from <component-expression>] [-> <assignmentPart>]

Apart from the getreply keyword this syntactical structure is identical to the syntactical structure of the receive
operation. Therefore, the operational semantics handles the getreply operation in the same manner as the receive
operation. This is also shown in the flow graph segment <getreply-op> (see figure 87), which defines the
execution of a getreply operation. The figure refers to flow graph segments related to the receive operation
(see clause 9.37).

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)112

<receive-with-sender>
OR

<receive-without-sender>

segment <getreply-op>

// Distinction due to the optional
// from clause

Figure 87: Flow graph segment <getreply-op>

9.27 Getverdict operation
The syntactical structure of the getverdict operation is:

 getverdict

The flow graph segment <getverdict-op> in figure 88 defines the execution of the getverdict operation.

getverdict-op

segment <getverdict-op>
// E-VERDICT is pushed onto VALUE-STACK
Entity.VALUE-STACK.push(Entity.E-VERDICT);
Entity.NEXT-CONTROL(true);
RETURN;

Figure 88: Flow graph segment <getverdict-op>

9.28 Goto statement
The syntactical structure of the goto statement is:

 goto <labelId>

The flow graph segment <goto-stmt> in figure 89 defines the execution of the goto statement.

nop

segment <goto-stmt>

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

<labelId>

Figure 89: Flow graph segment <goto-stmt>

NOTE: The <labelId> parameter of the goto statement indicates the transfer of control to the place at which a
label <labelId> is defined (see also clause 9.30).

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)113

9.28a Halt port operation
The syntactical structure of the halt port operation is:

 <portId>.halt

The flow graph segment <halt-port-op> in figure 89a defines the execution of the halt port operation.

halt-port-op
(portId)

segment <halt-port-op>
let { // Begin of local scope
 var portRef := NULL
 var portState := NULL;

 if (portId == “all port”) {
 portState := ALL-PORT-STATES.first();
 while (portState != NULL) {
 if (portState.OWNER == Entity) {
 portState.STATUS := HALTED;
 portState.enqueue(HALT-MARKER);
 }
 portState :=
 ALL-PORT-STATES.next(portState);
 }
 }
 else {
 portRef := Entity.portId.COMP-PORT-NAME;
 GET-PORT(Entity, portRef).STATUS := HALTED;
 GET-PORT(Entity, portRef).enqueue(HALT-MARKER);
 }
} // End of socpe

Entity.NEXT-CONTROL(true);
RETURN;

Figure 89a: Flow graph segment <halt-port-op>

NOTE: The HALT-MARKER that is put by a halt operation into the port queue is removed by the SNAP-PORTS
function (see clause 8.3.3.2) when the marker is reached, i.e. all messages preceding the marker have
been processed. The SNAP-PORTS function is called when taking a snapshot.

9.29 If-else statement
The syntactical structure of the if-else statement is:

 if (<boolean-expression>) <statement-block1>

 [else <statement-block2>]

The else part of the if-else statement is optional.

The flow graph segment <if-else-stmt> in figure 90 defines the execution of the if-else statement.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)114

<statement-block>

*(1)
// Optional else part

<expression>

segment <if-with-else-branch>

decision

falsetrue

<statement-block>

if (Entity.VALUE-STACK.top()) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
Entity.VALUE-STACK.pop();
RETURN;

Figure 90: Flow graph segment <if-else-stmt>

9.29a Kill component operation

9.29a.0 General

The syntactical structure of the kill component statement is:

 <component-expression>.kill

The kill component operation stops the specified component and removes it from the test system. All test
components will be stopped and removed from the test system, i.e. the test case terminates, if the MTC is killed
(e.g. mtc.kill) or kills itself (e.g. self.kill). The MTC may kill all parallel test components by using the all
keyword, i.e. all component.kill.

A component to be killed is identified by a component reference provided as expression, e.g. a value or value returning
function. For simplicity, the keyword "all component" is considered to be special values of
<component-expression>. The operations mtc and self are evaluated according to clauses 9.33 and 9.43.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)115

The flow graph segment <kill-component-op> in figure 90a defines the execution of the kill component
operation.

decision

segment <kill-component-op>

if (Entity.VALUE-STACK.top() == MTC) {
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<kill-mtc>

true
false

prepare-kill

if (ALL-ENTITY-STATES.member(Entity.VALUE-STACK.top())) {
 Entity.NEXT-CONTROL(true);
}
else {
 if (KILLED.member(Entity.VALUE-STACK.top())){
 // NULL operation, component already terminated
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(false);
 }
 else {
 // component id has not been allocated
 DYNAMIC-ERROR
 {
}
RETURN;

<kill-component>

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

decision

if (Entity.VALUE-STACK.top() == 'all component') {
 Entity.VALUE-STACK.pop(); // clean value stack
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all' not allowed
 }
 else {
 Entity.NEXT-CONTROL(true);
 {
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<kill-all-comp>

true
false

true

false

Figure 90a: Flow graph segment <kill-component-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)116

9.29a.1 Flow graph segment <kill-mtc>

The <kill-mtc> flow graph segment in figure 90b describes the killing of the MTC. The effect is that the test case
terminates, i.e. the final verdict is calculated and pushed onto the value stack of module control, all resources are
released, the KILLED and DONE lists of the module state are emptied and all test components including the MTC are
removed from the test system.

kill-mtc

segment <kill-mtc>

let { // local scope for variables

 var myEntity := ALL-ENTITY-STATES.first();

 // Update test case verdict and deletion of components
 while (myEntity != NULL) {
 if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }
 myEntity := ALL-ENTITY-STATES.next(myEntity);
 }

 // TC-VERDICT is the result of the execute operation
 CONTROL.VALUE-STACK.push(TC-VERDICT);

 // Update of test case reference parameters
 UPDATE-REMOTE-LOCATIONS(MTC, CONTROL);

 // Deletion of test components, release of resources, clearing lists
 ALL-ENTITY-STATES := NULL; // Deletion of Entity states
 ALL-PORT-STATES := NULL;
 DONE := NULL;
 KILLED := NULL;
 TC-VERDICT := none;
 MTC := NULL; // Deletion of the last reference to the MTC

 CONTROL.STATUS := ACTIVE; // Control continues
} // End of local scope
RETURN;

Figure 90b: Flow graph segment <kill-mtc-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)117

9.29a.2 Flow graph segment <kill-component>

The <kill-component> flow graph segment in figure 90c describes the stopping of a parallel test component
(i.e. not the MTC or module control) and its removal from the test system. The effect is that the test case verdict
TC-VERDICT and the lists of stopped and killed test components (DONE, and KILLED) are updated and that the
component is deleted from the module state. The <kill-component> flow graph assumes that the identifier of the
component to be stopped is on top of the value stack of the component that executes the segment.

kill-component

segment <kill-component>

let { // local scope for variable myEntity
 var myEntity := Entity.VALUE-STACK.top();

 // for test continuation, if kill is executed by another component
 if (Entity != myEntity()) {
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(true);
 }

 // Update test case verdict
 if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }

 // Deletion of test component
 DONE.append((myEntity, E-VERDICT)); // Update of DONE
 KILLED.append((myEntity, E-VERDICT)); // Update of KILLED
 DEL-ENTITY(myEntity); // Deletion of entity

} // End of local scope
RETURN;

Figure 90c: Flow graph segment <kill-component>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)118

9.29a.3 Flow graph segment <kill-all-comp>

The <kill-all-comp> flow graph segment in figure 90d describes the termination of all parallel test components of
a test case.

kill-all-comp

segment <kill-all-comp>

let { // local scope for variable myEntity
 var myEntity := ALL-ENTITY-STATES.next(MTC);

 // Update test case verdict
 while (myEntity != NULL) {
 if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }
 myEntity := ALL-ENTITY-STATES.next(myEntity);
 }

 // Deletion of test components
 myEntity := ALL-ENTITY-STATES.next(MTC);
 while (myEntity != NULL) {
 DONE.append((myEntity, TC-VERDICT)); // Update of DONE
 KILLED.append(myEntity. TC-VERDICT)); // Update of KILLED
 DEL-ENTITY(myEntity); // Deletion of entity
 myEntity := ALL-ENTITY-STATES.next(MTC); // Next component to delete
 }
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 90d: Flow graph segment <stop-all-comp>

9.29b Kill execution statement

9.29b.0 General

The syntactical structure of the kill execution statement is:

 kill

The effect of the kill execution statement depends on the entity that executes the kill execution statement:

a) If kill is performed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state.

b) If the kill is executed by the MTC, all parallel test components and the MTC stop execution. The global test
case verdict is updated and pushed onto the value stack of the module control. Finally, control is given back to
the module control and the MTC terminates.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)119

c) If the kill is executed by a test component, the global test case verdict TC-VERDICT and the global DONE
and KILLED lists are updated. Then the component disappears from the module.

The flow graph segment <kill-exec-stmt> in figure 90e describes the execution of the kill statement.

decision

segment <kill-exec-stmt>
if (Entity == CONTROL {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<kill-control>

true
false

decision

if (Entity == MTC) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.VALUE-STACK.push(Entity);
 Entity.NEXT-CONTROL(false);
}
RETURN;

true false

<kill-mtc> <kill-component>

Figure 90e: Flow graph segment <kill-exec-stmt>

9.29b.1 Flow graph segment <kill-control>

The <kill-control> flow graph segment in figure 90f describes the stopping of module control. The effect is that
CONTROL is set to NULL, i.e. the termination condition of the module evaluation procedure (see clause 8.6) is fulfilled.

kill-control

segment <kill-control>

CONTROL := NULL;
RETURN;

Figure 90f: Flow graph segment <kill-control>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)120

9.29c Killed component operation
The syntactical structure of the killed component operation is:

 <component-expression>.killed [-> <assignmentPart>]

The killed component operation checks whether a component is alive or has been removed from the test system.
Depending on whether a checked component is alive or has been removed from the test system, the killed operation
decides how the flow of control continues. Using a component reference identifies the component to be checked. The
reference may be stored in a variable or be returned by a function, i.e. it is an expression. For simplicity, the keywords
"all component" and "any component" are considered to be special expressions.

The optional <assignmentPart> allows the retrieval of the local verdict of the addressed component at the time
when the component was killed. The assignment part identifies a variable of type verdicttype to which the retrieved
verdict is assigned.

The flow graph segment <killed-op> in figure 90g defines the execution of the killed component operation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)121

killed-component-op

segment <killed-op>

let { // local scope
 var killedEntity := Entity.VALUE-STACK.top();
 var killedVerdict := none;

 if (killedEntity == 'all component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else if (Entity.SNAP-ALIVE.lenght() == 1) { // MTC is alive
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // KILLED is successful
 Entity.VALUE-STACK.push(error);
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
 }
 else if (killedEntity == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' not allowed
 }
 else if (Entity.SNAP-KILLED.length() > 0) {
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // KILLED is successful
 Entity.VALUE-STACK.push(error);
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
 }
 else if(Entity.SNAP-KILLED.member((killedEntity,-))) {
 Entity.NEXT-CONTROL(true);
 Entity.STATUS := ACTIVE; // KILLED is successful
 killedVerdict :=
 Entity.SNAP-killed.random((killedEntity,-)).FIN-VERDICT;
 Entity.VALUE-STACK.push(killedVerdict);
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
} // end of local scope
RETURN;

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

true false

<done-assignment>

* (1) // optional verdict
// assignment

clean-value-stack

Entity.VALUE-STACK.pop(); // removal of killedVerdict
Entity.VALUE-STACK.pop(); // removal of expression
Entity.NEXT-CONTROL(true);

RETURN;

Figure 90g: Flow graph segment <killed-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)122

9.30 Label statement
The syntactical structure of the label statement is:

 label <labelId>

The flow graph segment <label-stmt> in figure 91 defines the execution of the label statement.

NOTE: The <labelId> parameter of the label statement indicates the possibility that a label can be the target
for a jump by means of a goto statement (see also clause 9.28).

nop

segment <label-stmt>

// ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

<labelId>

Figure 91: Flow graph segment <label-stmt>

9.31 Log statement
The syntactical structure of the log statement is:

 log (<informal-description>)

The flow graph segment <log-stmt> in figure 92 defines the execution of the log statement.

NOTE: The <informal description> parameter of the log statement has no meaning for the operational
semantics and is therefore not represented in the flow graph segment.

nop

segment <log-stmt>

// inscription ‘nop’ means ‘no operation’
Entity.NEXT-CONTROL(true);
RETURN;

Figure 92: Flow graph segment <log-stmt>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)123

9.32 Map operation
The syntactical structure of the map operation is:

 map(<component-expression>:<portId1>, system:<portId2>)

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The component to which the <portId1> belongs is referenced by means of the component
reference <component-expression>. The reference may be stored in variables or is returned by a function, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

NOTE: The map operation does not care whether the system:<portId> statement appears as first or as second
parameter. For simplicity, it is assumed that it is always the second parameter.

The execution of the map operation is defined by the flow graph segment <map-op> shown in figure 93.

segment <map-op>

<expression>

map-op
(portId1,portId2)

let { // begin of a local scope
 var portRef;
 var comp1 := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 if (comp1 == Entity) {
 portRef := Entity.portId1.COMP-PORT-NAME;
 }
 else {
 portRef := portId1;
 }
 ADD-CON(comp1, portRef, system, portId2);
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 93: Flow graph segment <map-op>

9.33 Mtc operation
The syntactical structure of the mtc operation is:

 mtc

The flow graph segment <mtc-op> in figure 94 defines the execution of the mtc operation.

mtc-op

segment <mtc-op>

Entity.VALUE-STACK.push(MTC);
Entity.NEXT-CONTROL(true);
RETURN;

Figure 94: Flow graph segment <mtc-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)124

9.34 Port declaration
The syntactical structure of a port declaration is:

 <portType> <portName>

Port declarations can be found in component type definitions. The effect of a port declaration is the creation of a new
port when a new component of the corresponding type is created. Furthermore, a port reference is created in the actual
scope of the test component. In the newly created port reference, the values PORT-NAME and COMP-PORT-NAME are
equal. The flow graph segment <port-declaration> in figure 95 defines the execution of a port declaration.

port-declaration
(portName)

segment <port-declaration>

// A new port state and a port reference
// are created

ALL-PORT-STATES.append(NEW-PORT(Entity, portName);

Entity.INIT-PORT(portName, portName);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 95: Flow graph segment <port-declaration>

9.35 Raise operation

9.35.0 General

The syntactical structure of the raise operation is:

 <portId>.raise (<exceptSpec>) [to < receiver-spec>]

The optional <receiver-spec> in the to clause refers to the receivers of the exception. In case of a one-to one
communication, the <receiver-spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <receiver-spec> specifies a set or all test components
connected via the specified port with the calling component.

The flow graph segment <raise-op> in figure 96 defines the execution of a raise operation.

<raise-with-one-receiver-op> OR
<raise-with-multiple-receivers-op> OR

<raise-without-receiver-op>

segment <raise-op>

// A raise operation may adress one,
// multiple (multicast and broadcast)
// or no receiver entities.

Figure 96: Flow graph segment <raise-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)125

9.35.1 Flow graph segment <raise-with-one-receiver-op>

The flow graph segment <raise-with-one-receiver-op> in figure 97 defines the execution of a raise
operation where the receiver is specified in form of an expression.

raise-with-one-receiver-op
(portId, exceptSpec)

segment <raise-with-one-receiver-op>

let {
 var receiver := Entity.VALUE-STACK.top();
 var portRef := Entity.portId.COMP-PORT-NAME;
 var remotePort := GET-REMOTE-PORT(Entity, portref, receiver);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of exception
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, raise, exceptSpec));
 }
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The expression shall evaluate
// to a component reference or
// address value.

Figure 97: Flow graph segment <raise-with-one-receiver-op>

9.35.1a Flow graph segment <raise-with-multiple-receivers-op>

The flow graph segment <raise-with-multiple-receivers-op> in figure 97a defines the execution of a
raise operation where multiple receivers are addressed. In case of broadcast communication the keyword all
component is used as receiver specification. In case of multicast communication a list of expressions is provided
which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword all component) are pushed
onto the value stack of the calling entity. The number of references stored in the value stack is considered to be known,
i.e. it is the parameter number of the basic flow graph node raise-with-multiple-receivers-op in
figure 97a. The number parameter is 1 in case of broadcast communication, i.e. the keyword all component is top
element in the value stack.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)126

raise-with-multiple-receivers-op
(portId, exceptSpec, number)

segment <raise-with-multiple-receivers-op>

let { //
 var i; // loop counter variable
 var connection; // variable for connections in port states
 var receiver; // variable for receiver component references
 var localPort, remotePort; // variables for port references
 localPort := Entity.portId.COMP-PORT-NAME; // local port

 if (Entity.VALUE-STACK.top() == all component) {
 connection := localPort.CONNECTIONS-LIST.next(connection);
 while (connection != NULL) {
 remotePort := connection.REMOTE-PORT-NAME;
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, raise, exceptSpec));
 }
 connection := localPort.CONNECTIONS-LIST.next(connection);
 }
 }
 else {
 for (i == 1; i <= number; i := i+1) {
 receiver := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop(); // clean value stack
 remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, raise, exceptSpec));
 }
 }
 }
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// Each expression shall evaluate
// to a component reference or
// an address value.

+(number)

Figure 97a: Flow graph segment <raise-with-multiple-receivers-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)127

9.35.2 Flow graph segment <raise-without-receiver-op>

The flow graph segment <raise-without-receiver-op> in figure 98 defines the execution of a raise operation
without to-clause.

raise-without-receiver-op
(portId, exceptSpec)

segment <raise-without-receiver-op>

let {
 var portRef := Entity.portId.COMP-PORT-NAME;
 var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of exception
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, raise, exceptSpec));
 }
} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure 98: Flow graph segment <raise-without-receiver-op>

9.36 Read timer operation
The syntactical structure of the read timer operation is:

 <timerId>.read

The flow graph segment <read-timer-op> in figure 99 defines the execution of the read timer operation.

The read timer operation distinguishes between its usage in a Boolean guard of an alt statement or blocking call
operation and all other cases. If used in a Boolean guard, the result of the read timer operation is based on the actual
snapshot, i.e. the SNAP-STATUS and SNAP-VALUE entries of the timer binding, in all other cases, the STATUS,
ACT-DURATION and TIME-LEFT entries of the timer binding determine the result of the operation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)128

read-timer-op
(timerId)

segment <read-timer-op>

let { // local scope for variable myValue

 var float myValue;

 if (Entity.STATUS == SNAPSHOT) {
 if (Entity.timerId.SNAP-STATUS == RUNNING) {
 myValue := Entity.timerId.SNAP-VALUE;
 }
 else {
 myValue := 0.0;
 }
 }
 else {
 if (Entity.timerId.STATUS == RUNNING) {
 myValue := Entity.timerId.ACT-DURATION – Entity.timerId.TIME-LEFT;

 }
 else {
 myValue := 0.0;
 }
 }

 Entity.VALUE-STACK.push(myValue);

} // end local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 99: Flow graph segment <read-timer-op>

9.37 Receive operation

9.37.0 General

The syntactical structure of the receive operation is:

 <portId>.receive (<matchingSpec>) [from <component-expression>] [-> <assignmentPart>]

The optional <component-expression> in the from clause refers to the sender entity. It may be provided in
form of a variable value or the return value of a function, i.e. it is assumed to be an expression. The optional
<assignmentPart> denotes the assignment of received information if the received message matches to the
matching specification <matchingSpec> and to the (optional) from clause.

The flow graph segment <receive-op> in figure 100 defines the execution of a receive operation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)129

<receive-with-sender>
OR

<receive-without-sender>

segment <receive-op>

// Distinction due to the optional
// from clause

Figure 100: Flow graph segment <receive-op>

9.37.1 Flow graph segment <receive-with-sender>

The flow graph segment <receive-with-sender> in figure 101 defines the execution of a receive operation
where the sender is specified in form of an expression.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)130

segment
<receive-with-sender>

let { // local scope for portRef and sender
 var portRef := NULL;
 var sender := Entity.VALUE-STACK.top(); // Sender
 Entity.VALUE-STACK.pop(); // Clean value stack
 if (portID == “any port”) {
 portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE,matchingSpec,sender)
 && OWNER == Entity);
 if (portRef == NULL) { // no 'matching' port found
 Entity.NEXT-CONTROL(false);
 RETURN;
 }
 }
 else {
 portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME); // Specified port
 }
 // MATCHING
 if (PortRef.first() == NULL) { // Port queue is empty, no match
 Entity.NEXT-CONTROL(false);
 RETURN;
 }
 else {
 if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, sender)) {
 // The message in the queue matches
 Entity.VALUE-STACK.push(portRef); // Saving port reference
 Entity.STATUS := ACTIVE; // successful match, Entity status is changed
 // from SNAPSHOT to ACTIVE
 Entity.NEXT-CONTROL(true);
 }
 else { // The top item in the queue does not match
 Entity.NEXT-CONTROL(false);
 }
 RETURN;
 }
} // End of scope of portRef and sender

<expression>

// The Expression shall evaluate
// to a component reference or an
// address value. The result is
// pushed onto the VALUE-STACK.

receive-with-sender
(portId, matchingSpec)

true

false

<receive-assignment>

*(1)

// optional value
// assignemt

remove-from-port

// Removal of received item from port
Entity.VALUE-STACK.top().dequeue();
Entity.VALUE-STACK.pop();
Entity.NEXT-CONTROL(true);
RETURN;

true

Figure 101: Flow graph segment <receive-with-sender>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)131

9.37.2 Flow graph segment <receive-without-sender>

The flow graph segment <receive-without-sender> in figure 102 defines the execution of a receive
operation without a from clause.

segment <receive-without-sender>

let { // local scope
 var portRef := NULL;
 if (portID == “any port”) {
 portRef := ALL-PORT-STATES.random(MATCH-ITEM(SNAP-VALUE, matchingSpec, NONE)
 && OWNER == Entity);
 if (portRef == NULL) { // no 'matching' port found
 Entity.NEXT-CONTROL(false);
 RETURN;
 }
 }
 else {
 portRef := GET-PORT(Entity, Entity.portId.COMP-PORT-NAME); // Specified port
 }
 // MATCHING
 if (PortRef.first() == NULL) { // Port queue is empty, no match
 Entity.NEXT-CONTROL(false);
 RETURN;
 }
 else {
 if (MATCH-ITEM(portRef.SNAP-VALUE, matchingSpec, NONE)) {
 // The message in the queue matches
 Entity.VALUE-STACK.push(portRef); // Saving port reference
 Entity.STATUS := ACTIVE; // successful match, Entity status is changed
 // from SNAPSHOT to ACTIVE
 Entity.NEXT-CONTROL(true);
 }
 else { // The first item in the queue does not match
 Entity.NEXT-CONTROL(false);
 }
 RETURN;
 }
} // End of scope

receive-without-sender
(portID, matchingSpec)

true

false

<receive-assignment>

*(1)

// optional value
// assignemt

remove-from-port

// Removal of received item from port
Entity.VALUE-STACK.top().dequeue();
Entity.VALUE-STACK.pop();
Entity.NEXT-CONTROL(true);
RETURN;

true

Figure 102: Flow graph segment <receive-without-sender>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)132

9.37.3 Flow graph segment <receive-assignment>

The flow graph segment <receive-assignment> in figure 103 defines the retrieval of information from received
messages and their assignment to variables.

segment <receive-assignment>

receive-assignment
(assignmentPart)

RETRIEVE-INFO(Entity.VALUE-STACK.top().first(), assignmentPart, Entity);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 103: Flow graph segment <receive-assignment>

9.38 Repeat statement
The syntactical structure of the repeat statement is:

 repeat

Basically, the repeat statement is a return statement without return value, which also changes the entity status to
REPEAT. The status REPEAT will force the re-evaluation of the alt statement in which the repeat statement has been
executed. The flow graph segment <repeat-stmt> shown in figure 104 defines the execution of the repeat
statement.

segment <repeat-stmt>

<return-without-value>

repeat-stmt
Entity.STATUS(REPEAT);
RETURN;

Figure 104: Flow graph segment <repeat-stmt>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)133

9.39 Reply operation

9.39.0 General

The syntactical structure of the reply operation is:

 <portId>.reply (<replySpec>) [to <receiver-spec>]

The optional <receiver-spec> in the to clause refers to the receivers of the reply. In case of a one-to one
communication, the <receiver-spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <receiver-spec> specifies a set or all test components or
entities in the SUT connected via the specified port with the calling component.

The flow graph segment <reply-op> in figure 105 defines the execution of a reply operation.

<reply-with-one-receiver-op> OR
<reply-with-multiple-receivers-op> OR

<reply-without-receiver-op>

segment <reply-op>

// A reply operation may adress one,
// multiple (multicast and broadcast)
// or no receiver entities.

Figure 105: Flow graph segment <reply-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)134

9.39.1 Flow graph segment <reply-with-one-receiver-op>

The flow graph segment <reply-with-one-receiver-op> in figure 106 defines the execution of a reply
operation where the receiver is specified in form of an expression.

reply-with-one-receiver-op
(portId, replySpec)

segment <reply-with-one-receiver-op>

let {
 var receiver := Entity.VALUE-STACK.top();
 var portRef := Entity.portId.COMP-PORT-NAME;
 var remotePort := GET-REMOTE-PORT(Entity, portRef, receiver);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of reply
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, reply, replySpec));
 }
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The expression shall evaluate
// to a component reference or an
// address value.

Figure 106: Flow graph segment <reply-with-one-receiver-op>

9.39.1a Flow graph segment <reply-with-multiple-receivers-op>

The flow graph segment <reply-with-multiple-receivers-op> in figure 106a defines the execution of a
reply operation where multiple receivers are addressed. In case of broadcast communication the keyword all
component is used as receiver specification. In case of multicast communication a list of expressions is provided
which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword all component) are pushed
onto the value stack of the calling entity. The number of component references or address values stored in the value
stack is considered to be known, i.e. it is the parameter number of the basic flow graph node
reply-with-multiple-receivers-op in figure 106a. The number parameter is 1 in case of broadcast
communication, i.e. the keyword all component is top element in the value stack.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)135

reply-with-multiple-receivers-op
(portId, replySpec, number)

segment <reply-with-multiple-receivers-op>

let { //
 var i; // loop counter variable
 var connection; // variable for connections in port states
 var receiver; // variable for receiver component references or
 // address values
 var localPort, remotePort; // variables for port references
 localPort := Entity.portId.COMP-PORT-NAME; // local port

 if (Entity.VALUE-STACK.top() == all component) {
 connection := localPort.CONNECTIONS-LIST.next(connection);
 while (connection != NULL) {
 remotePort := connection.REMOTE-PORT-NAME;
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, reply, replySpec));
 }
 connection := localPort.CONNECTIONS-LIST.next(connection);
 }
 }
 else {
 for (i == 1; i <= number; i := i+1) {
 receiver := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop(); // clean value stack
 remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, reply, replySpec));
 }
 }
 }
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// Each expression shall evaluate
// to a component reference or an
// address value.

+(number)

Figure 106a: Flow graph segment <reply-with-multiple-receivers-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)136

9.39.2 Flow graph segment <reply-without-receiver-op>

The flow graph segment <reply-without-receiver-op> in figure 107 defines the execution of a reply
operation without to-clause.

reply-without-receiver-op
(portId, replySpec)

segment <reply-
-receiver-op>

let {
 var portRef := Entity.portId.COMP-PORT-NAME;
 var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of reply
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, reply, replySpec));
 }
} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure 107: Flow graph segment <reply-without-receiver-op>

9.40 Return statement

9.40.0 General

The syntactical structure of the return statement is:

 return [<expression>]

The optional <expression> describes a possible return value of a function. The execution of a return statement
means that the control leaves the actual scope unit, i.e. variables and timers only known in this scope have to be deleted
and the value stack has to be updated. A return statement has the effect of a stop component operation, if it is the
last statement in a behaviour description.

NOTE: Test cases and module control will always end with a stop component operation. This is due to their
flow graph representation (see clause 8.2). Only other test components may terminate with a return
statement.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)137

The flow graph segment <return-stmt> in figure 108 defines the execution of a return statement.

<return-with-value>
OR

<return-without-value>

segment <retun-stmt>

// A return statement may or may
// not return a value

Figure 108: Flow graph segment <return-stmt>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)138

9.40.1 Flow graph segment <return-with-value>

The flow graph segment <return-with-value> in figure 109 defines the execution of a return that returns a
value specified in form of an expression.

return-with-value

segment <return-with-value>

let {
 var return-value := Entity.VALUE-STACK.top();

 Entity.DEL-VAR-SCOPE();
 Entity.DEL-TIMER-SCOPE();
 Entity.DEL-PORT-SCOPE();
 Entity.VALUE-STACK.clear-until(MARK);
 Entity.VALUE-STACK.push(return-value);
} // end of scope of return-value

Entity.CONTROL-STACK.pop(); // return address
 // is lying on the control stack

if (Entity.CONTROL-STACK.top() == NULL) {
 // return is stop or kill
 Entity.VALUE-STACK.push(Entity);
 Entity.NEXT-CONTROL(false);
}
RETURN;

<expression>
// The expression shall evaluates
// to the return value

decision

<stop-alive-component> <kill-component>

true false

false

true

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true)) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

Figure 109: Flow graph segment <return-with-value>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)139

9.40.2 Flow graph segment <return-without-value>

The flow graph segment <return-without-value> in figure 110 defines the execution of a return statement
that returns no value.

return-without-value

segment <return-without-value>

let {
 var return-value := Entity.VALUE-STACK.top();

 Entity.DEL-VAR-SCOPE();
 Entity.DEL-TIMER-SCOPE();
 Entity.DEL-PORT-SCOPE();
 Entity.VALUE-STACK.clear-until(MARK);
} // end of scope of return-value

Entity.CONTROL-STACK.pop(); // return address
 // is lying on the control stack

if (Entity.CONTROL-STACK.top() == NULL) {
 // return is stop or kill
 Entity.VALUE-STACK.push(Entity);
 Entity.NEXT-CONTROL(false);
}
RETURN;

<expression>
// The expression shall evaluates
// to the return value

decision

<stop-alive-component> <kill-component>

true false

false

true

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true)) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

Figure 110: Flow graph segment <return-without-value>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)140

9.41 Running component operation

9.41.0 General

The syntactical structure of the running component operation is:

 <component-expression>.running

The running component operation checks whether a component is running or has either stopped or terminated and
been removed from the test system. The component to be checked is identified by a component reference, which may be
provided in form of a variable or value returning function, i.e. is an expression. For simplicity, the keywords "all
component" and "any component" are considered to be special expressions.

The running component operation distinguishes between its usage in a Boolean guard of an alt statement or
blocking call operation and all other cases. If used in a Boolean guard, the result of running component operation
is based on the actual snapshot. In all other cases evaluates directly the state information.

The result of the running component operation is pushed onto the value stack of the entity, which called the
operation.

The flow graph segment <running-component-op> in figure 111 defines the execution of the running component
operation.

decision

segment
<running-component-op>

if (Entity.STATUS == ACTIVE) {
 Entity.NEXT-CONTROL(true);
}
else { // Entity is in a snapshot
 Entity.NEXT-CONTROL(false);
}
RETURN;

<expression>

// The expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

<running-comp-act> <running-comp-snap>

true false

Figure 111: Flow graph segment <running-component-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)141

9.41.1 Flow graph segment <running-comp-act>

The flow graph segment <running-comp-act> in figure 112 describes the execution of the running component
operation outside a snapshot, i.e. the component is in the status ACTIVE.

running-comp-act

segment
<running-comp-act> let { // local scope

 var comp; // for storing a component reference
 var decision; // Boolean

 if (Entity.VALUE-STACK.top() == 'all component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else {
 if (DONE.length() == 0) { // all components are running
 Entity.VALUE-STACK.push(true);
 }
 else { // at least one component has been stopped
 Entity.VALUE-STACK.push(false);
 }
 }
 }
 else {
 if (Entity.VALUE-STACK.top() == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' not allowed
 }
 else {
 comp := ALL-ENTITY-STATES.next(MTC);
 while (comp != NULL and decision == false) {
 if (comp.STATUS == ACTIVE) {
 decision := true;
 }
 comp := ALL-ENTITY-STATES.next(comp);
 }
 Entity.VALUE-STACK.push(decision);
 }
 }
 else {
 if (ALL-ENTITY-STATES.member(Entity.VALUE-STACK.top())) {
 // Specified component is alive
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 112: Flow graph segment <running-comp-act>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)142

9.41.2 Flow graph segment <running-comp-snap>

The flow graph segment <running-comp-snap> in figure 113 describes the execution of the running component
operation during the evaluation of a snapshot, i.e. the component is in the status SNAPSHOT.

running-comp-snap

segment
<running-comp-snap> let { // local scope

 var comp; // for storing a component reference
 var decision; // Boolean

 if (Entity.VALUE-STACK.top() == 'all component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all component' is not allowed
 }
 else {
 if (Entity.SNAP-DONE.length() == 0) {
 Entity.VALUE-STACK.push(true);
 }
 else { // at least one component has been stopped
 Entity.VALUE-STACK.push(false);
 }
 }
 }
 else {
 if (Entity.VALUE-STACK.top() == 'any component') {
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'any component' not allowed
 }
 else {
 comp := Entity.SNAP-ALIVE.next(MTC);
 while (comp != NULL and decision == false) {
 if (comp.STATUS == ACTIVE) {
 decision := true;
 }
 comp := ALL-ENTITY-STATES.next(comp);
 }
 Entity.VALUE-STACK.push(decision);
 }
 }
 else {
 if (Entity.SNAP-ALIVE.member(Entity.VALUE-STACK.top())) {
 // Specified component is alive
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
}
Entity.NEXT-CONTROL(true);
RETURN;

Figure 113: Flow graph segment <running-comp-snap>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)143

9.42 Running timer operation
The syntactical structure of the running timer operation is:

 <timerId>.running

The flow graph segment <running-timer-op> in figure 114 defines the execution of the running timer
operation.

The running timer operation distinguishes between its usage in a Boolean guard of an alt statement or blocking
call operation and all other cases. If used in a Boolean guard, the result of running timer operation is based on the
actual snapshot, i.e. the SNAP-STATUS entry of the timer binding, in all other cases, the STATUS entry of the timer
binding determines the result of the operation.

The any keyword is handled as a special value of timerId.

running-timer-op
(timerId)

segment <running-timer-op>

let { // local scope for variables myStatus and myTimerList

 var myStatus; // for storing status values of timers
 var myTimerList; // for storing a list of timer Bindings

 if (timerId == “any timer”) {
 myTimerList := Entity.TIMER-STATE.first();
 timerId := NULL;
 if (Entity.STATUS) == SNAPSHOT) {
 while (myTimerList != NULL && timerId == NULL) {
 timerId := myTimerList.random(SNAP-STATUS == RUNNING);
 myTimerList := Entity.TIMER-STATE.next(myTimerList);
 {
 }
 else {
 while (myTimerList != NULL && timerId == NULL) {
 timerId := myTimerList.random(STATUS == RUNNING);
 myTimerList := Entity.TIMER-STATE.next(myTimerList);
 {
 }
 }

 if (timerId != NULL) {
 myStatus := Entity.timerId.STATUS;
 if (Entity.STATUS == SNAPSHOT) {
 myStatus := Entity.timerId.SNAP-STATUS;
 }

 if (myStatus == RUNNING) {
 Entity.VALUE-STACK.push(true);
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
 }
 else {
 Entity.VALUE-STACK.push(false);
 }
} // end local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 114: Flow graph segment <running-timer-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)144

9.43 Self operation
The syntactical structure of the self operation is:

 self

The flow graph segment <self-op> in figure 115 defines the execution of the self operation.

self-op

segment <self-op>

Entity.VALUE-STACK.push(Entity);
Entity.NEXT-CONTROL(true);
RETURN;

Figure 115: Flow graph segment <self-op>

9.44 Send operation

9.44.0 General

The syntactical structure of the send operation is:

 <portId>.send (<send-spec>) [to <receiver-spec>]

The optional <receiver-spec> in the to clause refers to the receivers of the message. In case of a one-to one
communication, the <receiver-spec> addresses a single entity (including the SUT or an entity within the SUT). In
case of multicast or broadcast communication, the <receiver-spec> specifies a set or all test components or
entities in the SUT connected via the specified port with the calling component.

The flow graph segment <send-op> in figure 116 defines the execution of a send operation.

<send-with-one-receiver-op> OR
<send-with-multiple-receivers-op> OR

<send-without-receiver-op>

segment <send-op>

// A send operation may address one,
// multiple (multicast and broadcast)
// or no receiver entities.

Figure 116: Flow graph segment <send-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)145

9.44.1 Flow graph segment <send-with-one-receiver-op>

The flow graph segment <send-with-one-receiver-op> in figure 117 defines the execution of a send
operation where the receiver is specified in form of an expression.

send-with-one-receiver-op
(portId, sendSpec)

segment <send-with-one-receiver-op>

let {
 var receiver := Entity.VALUE-STACK.top();
 var portRef := Entity.portId.COMP-PORT-NAME;
 var remotePort := GET-REMOTE-PORT(Entity, portRef, receiver);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of message
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, send, sendSpec));
 }
} // end of scope of receiver and remotePort

Entity.VALUE-STACK.pop(); // clean value stack

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a component reference or
// an address value.

Figure 117: Flow graph segment <send-with-one-receiver-op>

9.44.1a Flow graph segment <send-with-multiple-receivers-op>

The flow graph segment <send-with-multiple-receivers-op> in figure 117a defines the execution of a
send operation where multiple receivers are addressed. In case of broadcast communication the keyword all
component is used as receiver specification. In case of multicast communication a list of expressions is provided
which shall evaluate to component references or address values.

The component references or address values of the addressed entities (or the keyword all component) are pushed
onto the value stack of the calling entity. The number of references stored in the value stack is considered to be known,
i.e. it is the parameter number of the basic flow graph node send-with-multiple-receivers-op in
figure 117a. The number parameter is 1 in case of broadcast communication, i.e. the keyword all component is
top element in the value stack.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)146

send-with-multiple-receivers-op
(portId, sendSpec, number)

segment <send-with-multiple-receivers-op>

let { //
 var i; // loop counter variable
 var connection; // variable for connections in port states
 var receiver; // variable for receiver component references
 // or receiver address values
 var localPort, remotePort; // variables for port references
 localPort := Entity.portId.COMP-PORT-NAME; // local port

 if (Entity.VALUE-STACK.top() == all component) {
 connection := localPort.CONNECTIONS-LIST.next(connection);
 while (connection != NULL) {
 remotePort := connection.REMOTE-PORT-NAME;
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, send, sendSpec));
 }
 connection := localPort.CONNECTIONS-LIST.next(connection);
 }
 }
 else {
 for (i == 1; i <= number; i := i+1) {
 receiver := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop(); // clean value stack
 remotePort := GET-REMOTE-PORT(Entity, localPort, receiver);
 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of call
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, send, sendSpec));
 }
 }
 }
} // end of local scope

Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// Each expression shall evaluate
// to a component reference or an
// address value.

+(number)

Figure 117a: Flow graph segment <send-with-multiple-receivers-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)147

9.44.2 Flow graph segment <send-without-receiver-op>

The flow graph segment <send-without-receiver-op> in figure 118 defines the execution of a send
operation without to-clause.

send-without-receiver-op
(portId, sendSpec)

segment <send-without-receiver-op>

let {
 var portRef := Entity.portId.COMP-PORT-NAME;
 var remotePort := GET-REMOTE-PORT(Entity, portRef, NONE);

 if (remotePort == NULL) {
 DYNAMIC-ERROR; // Remote port cannot be found
 }
 if (remotePort == SYSTEM) {
 // Port is mapped onto a port of the test system
 // reception of the reply by the SUT is outside
 // the scope of the operational semantics
 }
 else { // sending of message
 remotePort.enqueue(CONSTRUCT-ITEM(Entity, send, sendSpec));
 }
} // end of scope of remotePort

Entity.NEXT-CONTROL(true);
RETURN;

Figure 118: Flow graph segment <send-without-receiver-op>

9.45 Setverdict operation
The syntactical structure of the setverdict operation is:

 setverdict(<verdicttype-expression> [, <verdict-reason>])

The <verdicttype-expression> parameter of the setverdict operation is an expression that shall evaluate
to a value of type verdicttype, i.e. none, pass, inconc or fail. The expression is evaluated before the
setverdict operation is applied.

The second optional parameter allows specifying a reason for setting a verdict. This reason does not contribute to the
test behaviour and is therefore not considered in the operational semantics.

The flow graph segment <setverdict-op> in figure 119 defines the execution of the setverdict operation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)148

setverdict-op

segment <setverdict-op>

if (Entity.E-VERDICT == fail or
 Entity.VALUE-STACK.top() == fail) {
 Entity.E-VERDICT := fail;
}
else {
 if (Entity.VALUE-STACK.top() == inconc or
 Entity.E-VERDICT == inconc) {
 Entity.E-VERDICT := inconc;
 }
 else {
 if (Entity.VALUE-STACK.top() == pass or
 Entity.E-VERDICT == pass) {
 Entity.E-VERDICT := pass;
 }
 }
}
Entity.VALUE-STACK.pop() // clear VALUE-STACK
Entity.NEXT-CONTROL(true);
RETURN;

<expression>

// The expression shall evaluate to a value
// of type verdicttype.
// The result of the evaluation is pushed
// onto the VALUE-STACK of Entity

Figure 119: Flow graph segment <setverdict-op>

9.46 Start component operation
The syntactical structure of the start component operation is:

 <component-expression>.start(<function-name>(<act-par-desc1>,…, <act-par-descn>))

The start component operation starts a component. Using a component reference identifies the component to be
started. The reference may be stored in a variable or be returned by a function, i.e. it is an expression that evaluates to a
component reference.

The <function-name> denotes to the name of the function that defines the behaviour of the new component and
<act-par-descr1>, …, <act-par-descrn> provide the description of the actual parameter values of

<function-name>. The descriptions of the actual parameters are provided in form of expressions that have to be
evaluated before the call can be executed. The handling of formal and actual value parameters is similar to their
handling in function calls (see clause 9.24).

The flow graph segment <start-component-op> in figure 120 defines the execution of the start component operation.
The start component operation is executed in four steps. In the first step a call record is created. In the second step the
actual parameter values are calculated. In the third step the reference of the component to be started is retrieved, and, in
the fourth step, control and call record are given to the new component.

NOTE: The flow graph segment in figure 120 includes the handling of reference parameters
(<ref-var-par-calc>). Reference parameters are needed to explain reference parameters of test
cases. The operational semantics assumes that these parameters are handled by the MTC.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)149

control-trans-to-component
(function-name)

segment <start-component-op>

let {
 var toBeStarted := Entity.VALUE-STACK.top();
 // toBeStarted is a local variable that stores the
 // identifier of the component to be started

 Entity.VALUE-STACK.pop();
 // Removal of component reference. Afterwards the
 // call record is on top of the value stack

 toBeStarted.VALUE-STACK.push(Entity.VALUE-STACK.top();
 // Call record is transferred to toBeStarted.

 Entity.VALUE-STACK.pop();
 // Removal of the call record from the value stack
 // of the starting component (= Entity).

 toBeStarted.CONTROL-STACK.push(GET-FLOW-GRAPH(function-name));
 // Control stack of toBeStarted is set to
 // the start node of its behaviour.

 toBeStarted.STATUS := ACTIVE;
 // Control is given to toBeStarted

 if (DONE.member(toBeStarted)) { // Update DONE list
 DONE.delete(toBeStarted);
 }

} // end of scope for variable toBeStarted

Entity.NEXT-CONTROL(true);

construct-call-record
(function-name)

Entity.VALUE-STACK.push(NEW-CALL-RECORD(function-name));
Entity.NEXT-CONTROL(true);
RETURN;

// The expression shall evaluate to a component reference.
// It refers to the component to be started <expression>

// For each pair (<f-par-Idi>, <act-parameter-desci>) the
// value of <act-parameter-desci is calculated and
// assigned to the corresponding field <f-par-Idi>
// in the call record. The call record is assumed to be
// the top element in the value stack.

*

<value-par-calculation>

*

<ref-var-par-calc>

// This flow graph segment is also used to explain
// the execute statemnt. Test cases are allowed to have
// reference parameters. The operational semantics
// assumes that these parameters are owned (and updated)
// by the MTC.

Figure 120: Flow graph segment <start-component-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)150

9.47 Start port operation
The syntactical structure of the start port operation is:

 <portId>.start

The flow graph segment <start-port-op> in figure 121 defines the execution of the start port operation.

start-port-op
(portId)

segment <start-port-op>
let { // Begin of local scope
 var portRef := NULL
 var portState := NULL;

 if (portId == “all port”) {
 portState := ALL-PORT-STATES.first();
 while (portState != NULL) {
 if (portState.OWNER == Entity) {
 portState.VALUE-QUEUE.clear();
 portState.STATUS := STARTED
 }
 portState :=
 ALL-PORT-STATES.next(portState);
 }
 }
 else {
 portRef := Entity.portId.COMP-PORT-NAME;
 GET-PORT(Entity, portRef).clear();
 GET-PORT(Entity, portRef).STATUS := STARTED;
} // End of socpe

Entity.NEXT-CONTROL(true);
RETURN;

Figure 121: Flow graph segment <start-port-op>

9.48 Start timer operation

9.48.0 General

The syntactical structure of the start timer operation is:

 <timerId>.start [(<float-expression>)]

The optional <float-expression> parameter of the timer start operation denotes the actual duration of the timer. If it is
not provided, the default duration will be used by the start operation. The expression that shall evaluate to a value of
type float. If provided, the expression shall be evaluated before the start operation is applied. The result of the
evaluation is pushed onto the VALUE-STACK of Entity.

The flow graph segment <start-timer-op> in figure 122 defines the execution of the start timer operation.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)151

<start-timer-op-default>
OR

<start-timer-op-duration>

segment <start-timer-op>

// A timer can be started with
// a default duration, or with
// a given duration.

Figure 122: Flow graph segment <start-timer-op>

9.48.1 Flow graph segment <start-timer-op-default>

The flow graph segment <start-timer-op-default> in figure 123 defines the execution of the start timer
operation with the default value.

start-timer-op-default
(timerId)

segment <start-timer-op-default>

// The timer reference <timerId> is copied into the node
// attribute‘timerId’

if (Entity.timerId.DEF-DURATION == NONE) {
 DYNAMIC-ERROR // Timer has no default duration
}
else {
 Entity.TIMER-SET(timerId, ACT-DURATION, Entity.timerId.DEF-DURATION);
 Entity.TIMER-SET(timerId, TIME-LEFT, Entity.timerId.DEF-DURATION);
 Entity.TIMER-SET(timerId, STATUS, RUNNING);
}

Entity.NEXT-CONTROL(true);
RETURN;

Figure 123: Flow graph segment <start-timer-op-default>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)152

9.48.2 Flow graph segment <start-timer-op-duration>

The flow graph segment <start-timer-op-duration> in figure 124 defines the execution of the start timer
operation with a provided duration.

start-timer-op-duration
(timerId)

segment <start-timer-op-duration>

// The timer reference <timerId> is copied into the node
// attribute ‘timerId’

Entity.TIMER-SET(timerId, ACT-DURATION, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, TIME-LEFT, Entity.VALUE-STACK.top());
Entity.TIMER-SET(timerId, STATUS, RUNNING);

Entity.VALUE-STACK.pop(); // clean VALUE-STACK

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a float. The result is pushed
// onto VALUE-STACK.

Figure 124: Flow graph segment <start-timer-op-duration>

9.49 Stop component operation

9.49.0 General

The syntactical structure of the stop component statement is:

 <component-expression>.stop

The stop component operation stops the specified component. All test components will be stopped, i.e. the test case
terminates, if the MTC is stopped (e.g. mtc.stop) or stops itself (e.g. self.stop). The MTC may stop all parallel
test components by using the all keyword, i.e. all component.stop.

Stopped components created with an alive clause in the create operation are not removed from the test system.
They can be restarted by using a start statement. Variables, ports, constants and timers owned by such a component,
i.e. declared and defined in the corresponding component type definition, keep their status. A stop operation for a
component created without an alive clause is semantically equivalent to a kill operation. The component is
removed from the test system.

A component to be stopped is identified by a component reference provided as expression, e.g. a value or value
returning function. For simplicity, the keyword "all component" is considered to be special values of
<component-expression>. The operations mtc and self are evaluated according to clauses 9.33 and 9.43.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)153

The flow graph segment <stop-component-op> in figure 125 defines the execution of the stop component
operation.

decision

segment <stop-component-op>

if (Entity.VALUE-STACK.top() == MTC) {
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<kill-mtc>

true
false

prepare-stop

if (ALL-ENTITY-STATES.member(Entity.VALUE-STACK.top())) {
 Entity.NEXT-CONTROL(true);
}
else {
 if (DONE.member(Entity.VALUE-STACK.top())){
 // NULL operation, component already stopped
 // or killed.
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(false);
 }
 else {
 // component id has not been allocated
 DYNAMIC-ERROR
 {
}
RETURN;

<stop-alive-component>

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

decision

if (Entity.VALUE-STACK.top() == 'all component') {
 Entity.VALUE-STACK.pop(); // clean value stack
 if (Entity != MTC) {
 DYNAMIC-ERROR // 'all' not allowed
 }
 else {
 Entity.NEXT-CONTROL(true);
 {
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<stop-all-comp>

true
false

true

false

decision

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true)) {
 Entity.NEXT-CONTROL(true); // Component is not
 // removed from the
 // test system
}
else {
 Entity.NEXT-CONTROL(false); // Component is killed
}
RETURN;

<kill-component>

true false

Figure 125: Flow graph segment <stop-component-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)154

9.49.1 Void

9.49.2 Flow graph segment <stop-alive-component>

The <stop-alive-component> flow graph segment in figure 126 describes the stopping of a parallel test
component, i.e. not the MTC or module control, which has been created with an alive clause. The effect is that the
test case verdict TC-VERDICT and the list of terminated test components (DONE) are updated and that the component
changes its status to BLOCKED. The <stop-alive-component> flow graph assumes that the identifier of the
component to be stopped is on top of the value stack of the component that executes the segment.

stop-alive-component

segment
<stop-alive-component>

let { // local scope
 var myEntity := Entity.VALUE-STACK.top();
 var compVarScope := copy(myEntity.DATA-STATE.first());
 var compTimerScope := copy(myEntity.TIMER-STATE.first());
 var compPortScope := copy(myEntity.PORT-REF.first());

 // for test continuation, if stop is executed by another component
 if (Entity != myEntity()) {
 Entity.VALUE-STACK.pop(); // clean value stack
 Entity.NEXT-CONTROL(true);
 }

 // Update test case verdict
 if (myEntitiy.E-VERDICT == fail or TC-VERDICT == fail) {
 TC-VERDICT := fail;
 }
 else {
 if (myEntity.E-VERDICT == inconc or TC-VERDICT == inconc) {
 TC-VERDICT := inconc;
 }
 else {
 if (myEntity.E-VERDICT == pass or TC-VERDICT == pass) {
 TC-VERDICT := pass;
 }
 }

 // Update of DONE
 DONE.append((myEntity, E-VERDICT)); // Update of DONE

 // Update of component state
 myEntity.STATUS := BLOCKED;
 myEntity.CONTROL-STACK := NULL;
 myEntity.DEFAULT-LIST := NULL;
 myEntity.VALUE-STACK := NULL;
 myEntity.VALUE-STACK.push(MARK); // for component scope
 myEntity.TIMER-GUARD.STATUS := IDLE;
 myEntity.DATA-STATE := NULL
 myEntity.DATA-STATE.add(compVarScope);
 myEntity.TIMER-STATE := NULL;
 myEntity.TIMER-STATE.add(compTimerScope);
 myEntity.PORT-REF := NULL
 myEntity.PORT-REF.add(compPortScope);
 myEntity.SNAP-ALIVE := NULL;
 myEntity.SNAP-DONE := NULL;
 myEntity.SNAP-KILLED := NULL;

} // End of local scope
RETURN;

Figure 126: Flow graph segment <stop-alive-component>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)155

9.49.3 Flow graph segment <stop-all-comp>

The <stop-all-comp> flow graph segment in figure 127 describes the stopping of all parallel test components of a
test case.

prepare-stop

segment
<stop-all-comp> let { // local scope

 var myEntity := ALL-ENTITY-STATES.next(MTC);

 Entity.VALUE-STACK.push(MARK)
 while (myEntity != NULL) {
 Entity.VALUE-STACK.push(myEntity);
 myEntity := ALL-ENTITY-STATES.next(myEntity);
 }
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

stop-or-kill

if (Entity.VALUE-STACK.top().KEEP-ALIVE == true) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}

RETURN;

<stop-alive-component> <kill-component>

stop-or-kill
if (Entity.VALUE-STACK.top() == MARK) {
 Entity.VALUE-STACK.pop(); // clean stack
 Entity.NEXT-CONTROL(true); // end of loop
}
else {
 Entity.NEXT-CONTROL(false);
}

RETURN;

true

true false

false

Figure 127: Flow graph segment <stop-all-comp>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)156

9.50 Stop execution statement
The syntactical structure of the stop execution statement is:

 stop

The effect of the stop execution statement depends on the entity that executes the stop execution statement:

a) If stop is performed by the module control, the test campaign ends, i.e. all test components and the module
control disappear from the module state. This is semantically similar to the execution of a kill statement by
the module control.

b) If the stop is executed by the MTC, the test case ends. All parallel test components and the MTC stop and are
removed from the test system. The global test case verdict is updated and pushed onto the value stack of the
module control. Control is given back to the module control. This is semantically similar to the execution of a
kill statement by the MTC.

c) If the stop is executed by a test component, the global test case verdict TC-VERDICT and the global DONE
list are updated. If the test component is created with an alive clause. The status of the component is set to
BLOCKED and it may be started again. Otherwise the component is removed from the test system.

The flow graph segment <stop-exec-stmt> in figure 128 describes the execution of the stop statement.

decision

segment <stop-exec-stmt>
if (Entity == CONTROL) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<kill-control>

true
false

decision

if (Entity == MTC) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

true false

<kill-mtc>

<kill-component>

decision

Entity.VALUE-STACK.push(Entity);
if (Entity.KEEP-ALIVE == true) {
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN;

<stop-alive-component>

Figure 128: Flow graph segment <stop-exec-stmt>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)157

9.51 Stop port operation
The syntactical structure of the stop port operation is:

 <portId>.stop

The flow graph segment <stop-port-op> in figure 129 defines the execution of the stop port operation.

stop-port-op
(portId)

segment <stop-port-op>
let { // Begin of local scope
 var portRef := NULL
 var portState := NULL;

 if (portId == “all port”) {
 portState := ALL-PORT-STATES.first();
 while (portState != NULL) {
 if (portState.OWNER == Entity) {
 portState.STATUS := STOPPED
 }
 portState :=
 ALL-PORT-STATES.next(portState);
 }
 }
 else {
 portRef := Entity.portId.COMP-PORT-NAME;
 GET-PORT(Entity, portRef).STATUS := STOPPED;
} // End of socpe

Entity.NEXT-CONTROL(true);
RETURN;

Figure 129: Flow graph segment <stop-port-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)158

9.52 Stop timer operation
The syntactical structure of the stop timer operation is:

 <timerId>.stop

The flow graph segment <stop-timer-op> in figure 130 defines the execution of the stop timer operation.

The all keyword is handled as a special value of timerId.

stop-timer-op
(timerId)

segment <stop-timer-op>

// The timer reference <timerId> is copied
// into the node attribute ‘timerId’

if (timerId == ‘all timer’) {
 Entity.TIMER-STATE.change.change(TIMER-SET(, STATUS, IDLE));
 Entity.TIMER-STATE.change.change(TIMER-SET(, ACT-DURATION, 0.0);
 Entity.TIMER-STATE.change.change(TIMER-SET(, TIME-LEFT, 0.0);
 // Note, the first parameter of the TIMER-SET function is
 // ommitted, because it is applied to all timers in the
 // actual scope unit.
}
else {
 Entity.TIMER-SET(timerId, STATUS, IDLE);
 Entity.TIMER-SET(timerId, ACT-DURATION, 0.0);
 Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);
}

Entity.NEXT-CONTROL(true);
RETURN;

Figure 130: Flow graph segment <stop-timer-op>

9.53 System operation
The syntactical structure of the system operation is:

 system

The flow graph segment <system-op> in figure 131 defines the execution of the system operation.

system-op

segment <system-op>

Entity.VALUE-STACK.push(system);
Entity.NEXT-CONTROL(true);
RETURN;

Figure 131: Flow graph segment <system-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)159

9.53a Test case stop operation
The syntactical structure of the test case stop operation is:

 testcase.stop (<informal-description>)

The behaviour of the test case stop operation is identical to the execution of a log statement (clause 9.31) followed by a
dynamic error (clause 9.17.3). Flow graph segment <test-case-stop-op> in figure 131a defines the execution of
the test case stop operation.

<log-stmt>

segment <test-case-stop-op>

<dynamic-error>

Figure 131a: Flow graph segment <test-case-stop-op>

9.54 Timer declaration

9.54.0 General

The syntactical structure of a timer declaration is:

 timer <timerId> [:= <float-expression>]

The effect of a timer declaration is the creation of a new timer binding. The declaration of a default duration is optional.
The default value is considered to be an expression that evaluates to a value of the type float.

The flow graph segment <timer-declaration> in figure 132 defines the execution of a timer declaration.

<timer-decl-default>
OR

<timer-decl-no-def>

segment <timer-declaration>

// A timer may be declared with
// or without a default duration

Figure 132: Flow graph segment <timer-declaration>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)160

9.54.1 Flow graph segment <timer-decl-default>

The flow graph segment <timer-decl-default> in figure 133 defines the execution of a timer declaration where
a default duration in form of an expression is provided.

timer-decl-default
(timerId)

segment <timer-decl-default>

Entity.INIT-TIMER(timerId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop(); // clean VALUE-STACK

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a value of type float

Figure 133: Flow graph segment <timer-decl-default>

9.54.2 Flow graph segment <timer-decl-no-def>

The flow graph segment <timer-decl-no-def> in figure 134 defines the execution of a timer declaration where
no default duration is provided, i.e. the default duration of the timer is undefined.

timer-decl-no-def
(timerId)

segment <timer-decl-no-def>

Entity.INIT-TIMER(timerId, NONE);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 134: Flow graph segment <timer-decl-no-def>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)161

9.55 Timeout timer operation
The syntactical structure of the timeout timer operation is:

 <timerId>.timeout

The flow graph segment <timeout-timer-op> in figure 135 defines the execution of the timeout timer
operation.

timeout-timer-op
(timerId)

segment <timeout-timer-op>

// The timer reference <timerId> is copied
// into the node attribute ‘timerId’

let { // local scope for variable myTimerList
 var myTimerList; // to store a list of timer Bindings

 if (timerId == ‘any timer’) {
 myTimerList := Entity.TIMER-STATE.first();
 timerId := NULL;
 while (myTimerList != NULL && timerId == NULL) {
 timerId := myTimerList.random(SNAP-STATUS == TIMEOUT);
 myTimerList := Entity.TIMER-STATE.next(myTimerList);
 {
 }

 if (timerId != NULL && Entity.timerId.SNAP-STATUS == TIMEOUT) {
 Entity.TIMER-SET(timerId, STATUS, IDLE);
 Entity.TIMER-SET(timerId, ACT-DURATION, 0.0);
 Entity.TIMER-SET(timerId, TIME-LEFT, 0.0);
 Entity.STATUS := ACTIVE;
 Entity.NEXT-CONTROL(true);
 }
 else {
 Entity.NEXT-CONTROL(false);
 }
} // end of local scope

RETURN;

false true

NOTE 1: A timeout operation is embedded in an alt statement. Its evaluation is based on the actual snapshot,
i.e. the decision is based on the SNAP-STATUS entry in the timer binding. If the timeout operation is
successful, i.e. SNAP-STATUS == TIMEOUT, the timer is set into an IDLE state and the component state
changes from SNAPSHOT to ACTIVE.

NOTE 2: When the timeout evaluates to true or false, either execution continues with the statement that
follows the timeout operation (true branch), or the next alternative in the alt statement has to be
checked (false branch).

NOTE 3: The any keyword is treated like as special value of timerId.

Figure 135: Flow graph segment <timeout-timer-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)162

9.56 Unmap operation

9.56.0 General

The syntactical structure of the unmap operation is:

 unmap(<component_expression>:<portId1> [,system:<portId2>])

The identifiers <portId1> and <portId2> are considered to be port identifiers of the corresponding test component
and test system interface. The components to which the <portId1> belongs is referenced by means of the component
reference <component-expression>. The reference may be stored in variables or is returned by a function, i.e. it
is an expression, which evaluates to a component reference. The value stack is used for storing the component
reference.

The unmap operation can be used with one parameter pair and with two parameters pairs. The usage of the unmap
operation with one parameter pair may unmap port mappings for one component or, if executed by the MTC for all
components. The usage of the unmap operation with two parameter pairs allows to unmap one specific mapped port.

The operational semantics does not model the ports in the abstract test system interface. Therefore, only the parameter
pair that identifies the component (or components, if the all component keyword is used) and the corresponding port (or
ports, if the all port keyword is used) has to be considered here.

In the flow graph segment three cases are distinguished:

1) the mtc unmaps all mapped ports of all components;

2) all mapped ports of one component are unmapped; and

3) one port of one component is unmapped.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)163

The execution of the unmap operation is defined by the flow graph segment <unmap-op> shown in figure 136.

decision

segment
<unmap-op>

if (Entity.VALUE-STACK.top() != “all port”) {
 Entity.VALUE-STACK.pop();
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(false);
}
RETURN; <unmap-comp>

true
false

<unmap-port>

<expression>

// The Expression shall evaluate
// to a component reference. The
// result is pushed onto VALUE-STACK

unmap-decision
(portId)

if (Entity.VALUE-STACK.top() == “all component”) {
 if ((Entity != MTC) OR
 (Entity == MTC && portId != “all port”)) {
 DYNAMIC-ERROR
 }
 else {
 Entity.VALUE-STACK.pop();
 Entity.NEXT-CONTROL(true);
 }
}
else {
 Entity.VALUE-STACK.push(portId);
 Entity.NEXT-CONTROL(false);
}
RETURN;

<unmap-all>

true
false

Figure 136: Flow graph segment <unmap-op>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)164

9.56.1 Flow graph segment <unmap-all>

The flow segment <unmap-all> defines the unmapping of all components at all mapped ports.

unmap-all

segment <unmap-all>

let { // local scope

 var port := ALL-PORT-STATES.first();
 var connection;

 while (port != NULL) {
 connection := port.CONNECTIONS.first();
 while (connection != NULL) {
 if (connection.REMOTE-ENTITY == system) {
 port.CONNECTIONS.delete(connection);
 connection := port.CONNECTIONS.first();
 }
 else {
 connection := NULL; // connected port
 }
 }
 port := ALL-PORT-STATES.next(port)
 }
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 136a: Flow graph segment <unmap-all>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)165

9.56.2 Flow graph segment <unmap-comp>

The flow segment <unmap-comp> defines the unmapping of all mapped ports of a specified component.

unmap-comp

segment <unmap-comp>

let { // local scope
 var comp := Entity.VALUE-STACK.top();
 var connection;
 var port := ALL-PORT-STATES.first();

 while (port != NULL) {
 if (port.OWNER == comp) { // port of comp
 connection := port.CONNECTIONS.first();
 if (connection.REMOTE-ENTITY == system) { // mapped port of comp
 port.CONNECTIONS.delete(connection);
 }
 }
 port := ALL-PORT-STATES.next(port);
 }
 Entity.VALUE-STACK.pop(); // clear value stack
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 136b: Flow graph segment <unmap-comp>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)166

9.56.3 Flow graph segment <unmap-port>

The flow segment <unmap-port> defines the unmap operation for a specific mapped port.

unmap-port

segment <unmap-port>

let { // local scope
 var portId;
 var comp;
 var port;
 var connection;

 portId := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 comp := Entity.VALUE-STACK.top();
 Entity.VALUE-STACK.pop();
 port := GET-PORT(comp, portId);

 connection := port.CONNECTIONS.first();
 if (connection.REMOTE-ENTITY != SYSTEM) {
 DYNAMIC-ERROR // port is not a mapped port
 }
 else if (connection != NULL){
 port.CONNECTIONS.delete(connection);
 }
 else {) // do nothing, port is neither connected nor mapped
} // End of local scope

Entity.NEXT-CONTROL(true);
RETURN;

Figure 136c: Flow graph segment <unmap-port>

9.57 Variable declaration

9.57.0 General

The syntactical structure of a variable declaration is:

 var <varType> <varId> [:= <varType-expression>]

The initialization of a variable by providing an initial value (in form of an expression) is optional. The initial value is
considered to be an expression that evaluates to a value of the type of the variable.

NOTE: Variables may be declared to be lazy or fuzzy. This operational semantics does not model lazy and fuzzy
evalution. It assumes that the correct evaluation of such variables is done internally.

The flow graph segment <variable-declaration> in figure 137 defines the execution of the declaration of a
variable.

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)167

<var-declaration-init>
OR

<var-declaration-undef>

segment <variable-declaration>

// A variable may be declared with
// or without initial value

Figure 137: Flow graph segment <variable-declaration>

9.57.1 Flow graph segment <var-declaration-init>

The flow graph segment <var-declaration-init> in figure 138 defines the execution of a variable declaration
where an initial value in form of an expression is provided.

var-declaration-init
(varId)

segment <var-declaration-init>

Entity.INIT-VAR(varId, Entity.VALUE-STACK.top());
Entity.VALUE-STACK.pop(); // clean VALUE-STACK;

Entity.NEXT-CONTROL(true);
RETURN;

<expression>
// The expression shall evaluate
// to a value of the type of the
// variable that is declared.

Figure 138: Flow graph segment <var-declaration-init>

9.57.2 Flow graph segment <var-declaration-undef>

The flow graph segment <var-declaration-undef> in figure 139 defines the execution of a variable declaration where no
initial value is provided, i.e. the value of the variable is undefined.

var-declaration-undef
(varId)

segment <var-declaration-undef>

Entity.INIT-VAR(varId, NONE);

Entity.NEXT-CONTROL(true);
RETURN;

Figure 139: Flow graph segment <var-declaration-undef>

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)168

9.58 While statement
The syntactical structure of the while statement is:

 while (<boolean-expression>) <statement-block>

The execution of a while statement is defined by the flow graph segment <while-stmt> shown in figure 140.

if (Entity.VALUE-STACK.top() == true)
{
 Entity.NEXT-CONTROL(true);
}
else {
 Entity.NEXT-CONTROL(true);
}
Entity.VALUE-STACK.pop();
RETURN;

// The expression shall evaluate to
// a Boolean value.

segment <while-stmt>

decision

falsetrue

<statement-block>

<expression>

Figure 140: Flow graph segment <while-stmt>

10 Lists of operational semantic components

10.1 Functions and states

Table 1

Name Description Clause
ACT-DURATION Duration with which an active timer has been started 8.3.2.4
add List operation: adds an item as first element to a list 8.3.1a.1
ADD-CON Adds a connection to a port state 8.3.3.2
ALL-ENTITY-STATES Component states in module state 8.3.1
ALL-PORT-STATES Port states in module state 8.3.1
append List operation: appends an item as last element to a list 8.3.1a.1
APPLY-OPERATOR Application of operators like +, - or / 8.6.2
change List operation: changes all elements of a list 8.3.1a.1
clear Stack operation "clear": clears a stack 8.3.2.1
clear Queue operation "clear": removes all elements from a queue 8.3.3.2
clear-until Stack operation "clear-until": pops items until a specific item is top element

in the stack
8.3.2.1

CONNECTIONS-LIST List of connections of a port 8.3.3
CONSTRUCT-ITEM Constructs an item to be sent 8.4.4
CONTINUE-
COMPONENT

The actual component continues its execution 8.6.2

CONTROL-STACK Stack of flow graph nodes denoting the actual control state of an entity 8.3.2
DATA-STATE Data state in an entity state 8.3.2

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)169

Name Description Clause
DEF-DURATION Default Duration of a timer 8.3.2.4
DEFAULT-LIST List of active defaults in an entity state 8.3.2
DEFAULT-POINTER Points to the actual default during the default evaluation 8.3.2
DEL-CON Deletes a connection from a port state 8.3.3.2
DEL-ENTITY Deletes an entity from a module state 8.3.4
DEL-TIMER-SCOPE Deletes a timer scope 8.3.2.5
DEL-VAR-SCOPE Deletes a variable scope 8.3.2.3
delete List operation: deletes an item from a list 8.3.1a.1
dequeue Queue operation: deletes the first element from a queue 8.3.3.2
DONE Identifiers of terminated test components (part of module state) 8.3.1
E-VERDICT Local test verdict of a test component 8.3.2
enqueue Queue operation: puts an item as last element into a queue 8.3.3.2
first Queue operation "first": returns the first element of a queue 8.3.3.2
first List operation: returns the first element of a list 8.3.1a.1
GET-FLOW-GRAPH Retrieves the start node of a flow graph 8.2.7
GET-PORT Retrieves a port reference 8.3.3.2
GET-REMOTE-PORT Retrieves the reference of a remote port 8.3.3.2
GET-TIMER-LOC Retrieves location of a timer 8.3.2.5
GET-UNIQUE-ID Returns a new unique identifier when it is called 8.6.2
GET-VAR-LOC Retrieves location of a variable 8.3.2.3
INIT-CALL-RECORD Initializes variables for parameters for procedure-based communication in

the actual scope unit of the test component
8.5.1

INIT-FLOW-GRAPHS Initializes the flow graph handling 8.6.2
INIT-TIMER Creates a new timer binding 8.3.2.5
INIT-TIMER-LOC Creates a new timer binding with an existing location 8.3.2.5
INIT-TIMER-SCOPE Initializes a new timer scope 8.3.2.5
INIT-VAR Creates a new variable binding 8.3.2.3
INIT-VAR-LOC Creates a new variable binding with an existing location 8.3.2.3
INIT-VAR-SCOPE Initializes a new variable scope 8.3.2.3
length List operation: returns the length of a list 8.3.1a.1
M-CONTROL Identifier of module control in module state 8.3.1
MATCH-ITEM Checks if a received message, call, reply or exception matches with a

receiving operation
8.4.5

member List operation: checks if an item is element of a list 8.3.1a.1
MTC Reference to MTC in module state 8.3.1
NEW-CALL-RECORD Creates a call record for a function call 8.5.1
NEW-ENTITY Creates a new entity state 8.3.2.1
NEW-PORT Creates a new port 8.3.3.2
NEXT Retrieves the successor node of a given node in a flow graph 8.1.6
next List operation: returns next element in a list 8.3.1a.1
NEXT-CONTROL Pops the top flow graph node from the control stack and pushes the next

flow graph node onto the control stack
8.3.2.1

OWNER Owner of a port 8.3.3
pop Stack operation "pop": pops an item from a stack 8.3.2.1
PORT-NAME Name of a port 8.3.3
push Stack operation "push": pushes an item onto a stack 8.3.2.1
random List operation: returns randomly an element of a list 8.3.1a.1
REMOTE-ENTITY Remote entity in a connection in a port state 8.3.3.1
REMOTE-PORT-NAME Name of a port in a connection in a port state 8.3.3.1
RETRIEVE-INFO Retrieves information from a received message, call, reply or exception 8.4.6
RETURN Returns the control to the module evaluation procedure 8.6.2
SNAP-DONE List of terminated test components at the time when a snapshot is taken 8.3.2
SNAP-PORTS Provides the snapshot functionality, i.e. updates the SNAP-VALUE 8.3.3.2
SNAP-STATUS Snapshot status of a timer 8.3.2.4
SNAP-TIMER Provides the snapshot functionality and updates SNAP-VALUE and SNAP-

STATUS
8.3.2.5

SNAP-VALUE Snapshot value of a timer 8.3.2.4
SNAP-VALUE For snapshot semantics, updated when a snapshot is taken 8.3.3
STATUS Status (ACTIVE, BREAK, SNAPSHOT, REPEAT or BLOCKED) of module

control or a test component
8.3.2

STATUS Status (IDLE, RUNNING or TIMEOUT) of a timer 8.3.2.4
STATUS Status (STARTED, HALTED or STOPPED) of a port 8.3.3
TC-VERDICT Test case verdict in module state 8.3.1
TIME-LEFT Time a running timer has left to run before it times out 8.3.2.4

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)170

Name Description Clause
TIMER-GUARD Timer that guards execute statements and call operations 8.3.2
TIMER-NAME Name of a timer 8.3.2.4
TIMER-SET Setting values of a timer 8.3.2.5
TIMER-STATE Timer state in an entity state 8.3.2
top Stack operation "top": returns the top item from a stack 8.3.2.1
UPDATE-REMOTE-
REFERENCES

Updates timers and variables with the same location in different entities to
the same value

8.3.4

VALUE Value of a variable. 8.3.2.2
VALUE-QUEUE Port queue 8.3.3
VALUE-STACK Stack of values for the storage of results of expressions, operands,

operations and functions
8.3.2

VAR-NAME Name of a variable 8.3.2.2
VAR-SET Setting the value of a variable 8.3.2.3
DYNAMIC-ERROR Describes the occurrence of a dynamic error 8.6.2
<identifier> Unique identifier of a test component 8.3.2
<location> Supports scope units, reference and timer parameters. Represents a

storage location for timers and variables
8.3.2.2, 8.3.2.4

10.2 Special keywords

Table 2

Keyword Description Clause
ACTIVE STATUS of an entity state 8.3.2
BLOCKED STATUS of an entity state 8.3.2
BREAK STATUS of an entity state 8.3.2
HALTED STATUS of a port 8.3.3
HALT-MARKER Used as marker in a port queue 8.3.3, 9.28a
IDLE STATUS of a timer state 8.3.2.4
MARK Used as mark for VALUE-STACK 8.3.2
NONE Used to describe an undefined value 8.3.2.3, 8.3.2.5, 8.3.3.2
NULL Symbolic value for pointer and pointer-like types to indicate that nothing

is addressed
8.3.1a.1, 8.3.2.1, 8.3.3,

8.3.3.2, 8.6.1.1
REPEAT STATUS of an entity state 8.3.2
RUNNING STATUS of a timer state 8.3.2.4
SNAPSHOT, STATUS of an entity state 8.3.2
STARTED STATUS of a port 8.3.3
STOPPED STATUS of a port 8.3.3
TIMEOUT STATUS of a timer state 8.3.2.4

10.3 Flow graphs of TTCN-3 behaviour descriptions

Table 3

 Reference
Figure Clause

Module control 18 8.2.2
Test cases 19 8.2.3
Functions 20 8.2.4
Altsteps 21 8.2.5
Component type definitions 22 8.2.6

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)171

10.4 Flow graph segments

Table 4

Identifier Related TTCN-3 construct Reference
Figure Clause

<action-stmt> action statement 36 9.1
<activate-stmt> activate statement 37 9.2
<alive-component-op> alive component operation 37a 9.2a
<alive-comp-act> alive component operation 37b 9.2a.1
<alive-comp-snap> alive component operation 37c 9.2a.2
<alt-stmt> alt statement 38 9.3
<altstep-call> invocation of an altstep 44 9.4
<altstep-call-branch> alt statement 41 9.3.3
<assignment-stmt> assignment 45 9.5
<b-call-with-duration> call operation 52 9.6.4
<b-call-without-duration> call operation 51 9.6.3
<blocking-call-op> call operation 47 9.6
<break-altstep-stmt> break statement (leaving an altstep) 45a 9.5a
<call-op> call operation 46 9.6
<call-reception-part> call operation 53 9.6.5
<catch-op> catch operation 55 9.7
<catch-timeout-exception> call operation 54 9.6.6
<check-op> check operation 56 9.8
<check-with-sender> check operation 57 9.8.1
<check-without-sender> check operation 58 9.8.2
<checkstate-port-op> checkstate operation 58a 9.8a
<check-port-status> checkstate operation 58b 9.8a.1
<check-port-connection> checkstate operation 58c 9.8a.2
<clear-port-op> clear port operation 59 9.9
<connect-op> connect operation 60 9.10
<constant-definition> constant definition 61 9.11
<create-op> create operation 62 9.12
<deactivate-all-defaults> deactivate statement 63c 9.13.2
<deactivate-one-default> deactivate statement 63b 9.13.1
<deactivate-stmt> deactivate statement 63a 9.13
<default-evocation> alt statement 43 9.3.5
<disconnect-op> disconnect operation 64 9.14
<disconnect-one-par-pair> disconnect operation 64a 9.14.1
<disconnect-all> disconnect operation 64b 9.14.2
<disconnect-comp> disconnect operation 64c 9.14.3
<disconnect-port> disconnect operation 64d 9.14.4
<disconnect-two-par-pairs> disconnect operation 64e 9.14.5
<do-while-stmt> do-while statement 65 9.15
<done-op> done component operation 66 9.16
<dynamic-error> execute statement 69a 9.17.3
<else-branch> alt statement 42 9.3.4
<execute-stmt> execute statement 67 9.17
<execute-timeout> execute statement 69 9.17.2
<execute-without-timeout> execute statement 68 9.17.1
<expression> expression 70 9.18
<finalize-component-init> used in component type definitions 75 9.19
<for-stmt> for statement 79 9.23
<func-op-call> expression 73 9.18.3
<function-call> call of a function 80 9.24
<getcall-op> getcall operation 86 9.25
<getreply-op> getreply operation 87 9.26
<getverdict-op> getverdict operation 88 9.27
<goto-stmt> goto statement 89 9.28
<halt-port-op> halt port operation 89a 9.28a
<if-else-stmt> if-else statement 90 9.29

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)172

Identifier Related TTCN-3 construct Reference
Figure Clause

<init-component-scope> used in component type definitions 76 9.20
<init-scope-with-runs-on> used in function and altstep definitions 76a 9.20a
<init-scope-without-runs-on> used in function and altstep definitions 76b 9.20b
<kill-all-comp> kill component operation 90d 9.29a.3
<kill-component> kill component operation 90c 9.29a.2
<kill-component-op> kill component operation 90a 9.29a
<kill-control> kill execution statement 90f 9.29b.1
<kill-exec-stmt> kill execution statement 90e 9.29b
<kill-mtc> kill component operation 90b 9.29a.1
<killed-op> killed component operation 90g 9.29c
<label-stmt> label statement 91 9.30
<lit-value> expression 71 9.18.1
<log-stmt> log statement 92 9.31
<map-op> map operation 93 9.32
<mtc-op> mtc operation 94 9.33
<nb-call-without-receiver> call operation 50 9.6.2
<nb-call-with-one-receiver> call operation 49 9.6.1
<nb-call-with-multiple-
receivers>

call operation 49a 9.6.1a

<non-blocking-call-op> call operation 48 9.6
<operator-appl> expression 74 9.18.4
<parameter-handling> handling of parameters of functions, altsteps and test cases 77 9.21
<port-declaration> port declaration 95 9.34
<predef-ext-func-call> call of a function (call of a pre-defined or external function) 85 9.24.5
<raise-op> raise operation 96 9.35
<raise-with-one-receiver-op> raise operation 97 9.35.1
<raise-with-multiple-receivers-
op>

raise operation 97a 9.35.1a

<raise-without-receiver-op> raise operation 98 9.35.2
<read-timer-op> read timer operation 99 9.36
<receive-assignment> receive operation 103 9.37.3
<receive-op> receive operation 100 9.37
<receive-with-sender> receive operation 101 9.37.1
<receive-without-sender> receive operation 102 9.37.2
<receiving-branch> alt statement 40 9.3.2
<ref-par-port-calc> call of a function (handling of port parameters) 83a 9.24.3.a
<ref-par-timer-calc> call of a function (handling of timer parameters) 83 9.24.3
<ref-par-var-calc> call of a function (handling of reference parameters) 82 9.24.2
<repeat-stmt> repeat statement 104 9.38
<reply-op> reply operation 105 9.39
<reply-with-one-receiver-op> reply operation 106 9.39.1
<reply-with-multiple-receivers-
op>

reply operation 106a 9.39.1a

<reply-without-receiver-op> reply operation 107 9.39.2
<return-stmt> return statement 108 9.40
<return-with-value> return statement 109 9.40.1
<return-without-value> return statement 110 9.40.2
<running-component-op> component running operation 111 9.41
<running-comp-act> component running operation 112 9.41.1
<running-comp-snap> component running operation 113 9.41.2
<running-timer-op> timer running operation 114 9.42
<self-op> self operation 115 9.43
<send-op> send operation 116 9.44
<send-with-one-receiver-op> send operation 117 9.44.1
<send-with-multiple-receivers-
op>

send operation 117a 9.44.1a

<send-without-receiver-op> send operation 118 9.44.2
<setverdict-op> setverdict operation 119 9.45
<start-component-op> start component operation 120 9.46
<start-port-op> start port operation 121 9.47

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)173

Identifier Related TTCN-3 construct Reference
Figure Clause

<start-timer-op> start timer operation 122 9.48
<start-timer-op-default> start timer operation 123 9.48.1
<start-timer-op-duration> start timer operation 124 9.48.2
<statement-block> block of statements in compound statements 78 9.22
<stop-component-op> stop component operation 125 9.49
<stop-alive-component> stop component operation 126 9.49.2
<stop-all-comp> stop component operation (all component.stop) 127 9.49.3
<stop-exec-stmt> stop execution statement 128 9.50
<stop-port-op> stop port operation 129 9.51
<stop-timer-op> stop timer operation 130 9.52
<system-op> system operation 131 9.53
<take-snapshot> alt statement 39 9.3.1
<test-case-stop-op> test case stop operation 131a 9.53a
<timer-declaration> timer declaration 132 9.54
<timer-decl-default> timer declaration 133 9.54.1
<timer-decl-no-def> timer declaration 134 9.54.2
<timeout-timer-op> timeout operation 135 9.55
<unmap-op> unmap operation 136 9.56
<unmap-all> unmap operation 136a 9.56.1
<unmap-comp> unmap operation 136b 9.56.2
<unmap-port> unmap operation 136c 9.56.3
<user-def-func-call> call of a function (call of a user-defined function) 84 9.24.4
<value-par-calculation> call of a function (handling of value parameters) 81 9.24.1
<var-declaration-init> variable declaration 138 9.57.1
<var-declaration-undef> variable declaration 139 9.57.2
<var-value> expression 72 9.18.2
<variable-declaration> variable declaration 137 9.57
<while-stmt> while statement 140 9.58

ETSI

ETSI ES 201 873-4 V4.5.1 (2016-07)174

History

Document history

V2.2.1 February 2003 Publication

V3.1.1 June 2005 Publication

V3.2.1 February 2007 Publication

V3.3.1 April 2008 Publication

V3.4.1 September 2008 Publication

V4.1.1 June 2009 Publication

V4.2.1 July 2010 Publication

V4.4.1 April 2012 Publication

V4.5.1 May 2016 Membership Approval Procedure MV 20160715: 2016-05-16 to 2016-07-15

V4.5.1 July 2016 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Structure of the present document
	6 Restrictions
	7 Replacement of short forms
	7.0 General
	7.1 Order of replacement steps
	7.2 Replacement of global constants and module parameters
	7.3 Embedding single receiving operations into alt statements
	7.4 Embedding stand-alone altstep calls into alt statements
	7.5 Replacement of interleave statements
	7.6 Replacement of trigger operations
	7.7 Replacement of select-case statements
	7.8 Replacement of simple break statements
	7.9 Replacement of continue statements
	7.10 Adding default parameters to disconnect and unmap operations without parameters
	7.11 Adding default values of parameters

	8 Flow graph semantics of TTCN-3
	8.0 General
	8.1 Flow graphs
	8.1.0 General
	8.1.1 Flow graph frame
	8.1.2 Flow graph nodes
	8.1.2.0 General
	8.1.2.1 Start nodes
	8.1.2.2 End nodes
	8.1.2.3 Basic nodes
	8.1.2.4 Reference nodes
	8.1.2.4.0 General
	8.1.2.4.1 OR combination of reference nodes
	8.1.2.4.2 Multiple occurrences of reference nodes

	8.1.3 Flow lines
	8.1.4 Flow graph segments
	8.1.5 Comments
	8.1.6 Handling of flow graph descriptions

	8.2 Flow graph representation of TTCN-3 behaviour
	8.2.0 General
	8.2.1 Flow graph construction procedure
	8.2.2 Flow graph representation of module control
	8.2.3 Flow graph representation of test cases
	8.2.4 Flow graph representation of functions
	8.2.5 Flow graph representation of altsteps
	8.2.6 Flow graph representation of component type definitions
	8.2.7 Retrieval of start nodes of flow graphs

	8.3 State definitions for TTCN-3 modules
	8.3.0 General
	8.3.1 Module state
	8.3.1.0 General
	8.3.1.1 Accessing the module state

	8.3.1a Configuration state
	8.3.1a.0 Genral
	8.3.1a.1 Accessing the configuration state

	8.3.2 Entity states
	8.3.2.0 General
	8.3.2.1 Accessing entity states
	8.3.2.2 Data state and variable binding
	8.3.2.3 Accessing data states
	8.3.2.4 Timer state and timer binding
	8.3.2.5 Accessing timer states
	8.3.2.6 Port references and port binding
	8.3.2.7 Accessing port references

	8.3.3 Port states
	8.3.3.0 General
	8.3.3.1 Handling of connections among ports
	8.3.3.2 Handling of port states

	8.3.3a Component verdict states
	8.3.4 General functions for the handling of module states

	8.4 Messages, procedure calls, replies and exceptions
	8.4.0 General
	8.4.1 Messages
	8.4.2 Procedure calls and replies
	8.4.3 Exceptions
	8.4.4 Construction of messages, procedure calls, replies and exceptions
	8.4.5 Matching of messages, procedure calls, replies and exceptions
	8.4.6 Retrieval of information from received items

	8.5 Call records for functions, altsteps and test cases
	8.5.0 General
	8.5.1 Handling of call records

	8.6 The evaluation procedure for a TTCN-3 module
	8.6.1 Evaluation phases
	8.6.1.0 General
	8.6.1.1 Phase I: Initialization
	8.6.1.2 Phase II: Update
	8.6.1.3 Phase III: Selection
	8.6.1.4 Phase IV: Execution

	8.6.2 Global functions

	9 Flow graph segments for TTCN-3 constructs
	9.0 General
	9.1 Action statement
	9.2 Activate statement
	9.2a Alive component operation
	9.2a.0 General
	9.2a.1 Flow graph segment <alive-comp-act>
	9.2a.2 Flow graph segment <alive-comp-snap>

	9.3 Alt statement
	9.3.0 General
	9.3.1 Flow graph segment <take-snapshot>
	9.3.2 Flow graph segment <receiving-branch>
	9.3.3 Flow graph segment <altstep-call-branch>
	9.3.4 Flow graph segment <else-branch>
	9.3.5 Flow graph segment <default-evocation>

	9.4 Altstep call
	9.5 Assignment statement
	9.5a Break statements in altsteps
	9.6 Call operation
	9.6.0 General
	9.6.1 Flow graph segment <nb-call-with-one-receiver>
	9.6.1a Flow graph segment <nb-call-with-multiple-receivers>
	9.6.2 Flow graph segment <nb-call-without-receiver>
	9.6.3 Flow graph segment <b-call-without-duration>
	9.6.4 Flow graph segment <b-call-with-duration>
	9.6.5 Flow graph segment <call-reception-part>
	9.6.6 Flow graph segment <catch-timeout-exception>

	9.7 Catch operation
	9.8 Check operation
	9.8.0 General
	9.8.1 Flow graph segment <check-with-sender>
	9.8.2 Flow graph segment <check-without-sender>

	9.8a Checkstate port operation
	9.8a.0 General
	9.8a.1 Flow graph segment <check-port-status>
	9.8a.2 Flow graph segment <check-port-connection>

	9.9 Clear port operation
	9.10 Connect operation
	9.11 Constant definition
	9.12 Create operation
	9.13 Deactivate statement
	9.13.0 General
	9.13.1 Flow graph segment <deactivate-one-default>
	9.13.2 Flow graph segment <deactivate-all-defaults>

	9.14 Disconnect operation
	9.14.0 General
	9.14.1 Flow graph segment <disconnect-one-par-pair>
	9.14.2 Flow graph segment <disconnect-all>
	9.14.3 Flow graph segment <disconnect-comp>
	9.14.4 Flow graph segment <disconnect-port>
	9.14.5 Flow graph segment <disconnect-two-par-pairs>

	9.15 Do-while statement
	9.16 Done component operation
	9.16.0 General
	9.16.1 Flow graph segment <done-assignment>

	9.17 Execute statement
	9.17.0 General
	9.17.1 Flow graph segment <execute-without-timeout>
	9.17.2 Flow graph segment <execute-timeout>
	9.17.3 Flow graph segment <dynamic-error>

	9.18 Expression
	9.18.0 General
	9.18.1 Flow graph segment <lit-value>
	9.18.2 Flow graph segment <var-value>
	9.18.3 Flow graph segment <func-op-call>
	9.18.4 Flow graph segment <operator-appl>

	9.19 Flow graph segment <finalize-component-init>
	9.20 Flow graph segment <init-component-scope>
	9.20a Flow graph segment <init-scope-with-runs-on>
	9.20b Flow graph segment <init-scope-without-runs-on>
	9.21 Flow graph segment <parameter-handling>
	9.22 Flow graph segment <statement-block>
	9.23 For statement
	9.24 Function call
	9.24.0 General
	9.24.1 Flow graph segment <value-par-calculation>
	9.24.2 Flow graph segment <ref-par-var-calc>
	9.24.3 Flow graph segment <ref-par-timer-calc>
	9.24.3a Flow graph segment <ref-par-port-calc>
	9.24.4 Flow graph segment <user-def-func-call>
	9.24.5 Flow graph segment <predef-ext-func-call>

	9.25 Getcall operation
	9.26 Getreply operation
	9.27 Getverdict operation
	9.28 Goto statement
	9.28a Halt port operation
	9.29 If-else statement
	9.29a Kill component operation
	9.29a.0 General
	9.29a.1 Flow graph segment <kill-mtc>
	9.29a.2 Flow graph segment <kill-component>
	9.29a.3 Flow graph segment <kill-all-comp>

	9.29b Kill execution statement
	9.29b.0 General
	9.29b.1 Flow graph segment <kill-control>

	9.29c Killed component operation
	9.30 Label statement
	9.31 Log statement
	9.32 Map operation
	9.33 Mtc operation
	9.34 Port declaration
	9.35 Raise operation
	9.35.0 General
	9.35.1 Flow graph segment <raise-with-one-receiver-op>
	9.35.1a Flow graph segment <raise-with-multiple-receivers-op>
	9.35.2 Flow graph segment <raise-without-receiver-op>

	9.36 Read timer operation
	9.37 Receive operation
	9.37.0 General
	9.37.1 Flow graph segment <receive-with-sender>
	9.37.2 Flow graph segment <receive-without-sender>
	9.37.3 Flow graph segment <receive-assignment>

	9.38 Repeat statement
	9.39 Reply operation
	9.39.0 General
	9.39.1 Flow graph segment <reply-with-one-receiver-op>
	9.39.1a Flow graph segment <reply-with-multiple-receivers-op>
	9.39.2 Flow graph segment <reply-without-receiver-op>

	9.40 Return statement
	9.40.0 General
	9.40.1 Flow graph segment <return-with-value>
	9.40.2 Flow graph segment <return-without-value>

	9.41 Running component operation
	9.41.0 General
	9.41.1 Flow graph segment <running-comp-act>
	9.41.2 Flow graph segment <running-comp-snap>

	9.42 Running timer operation
	9.43 Self operation
	9.44 Send operation
	9.44.0 General
	9.44.1 Flow graph segment <send-with-one-receiver-op>
	9.44.1a Flow graph segment <send-with-multiple-receivers-op>
	9.44.2 Flow graph segment <send-without-receiver-op>

	9.45 Setverdict operation
	9.46 Start component operation
	9.47 Start port operation
	9.48 Start timer operation
	9.48.0 General
	9.48.1 Flow graph segment <start-timer-op-default>
	9.48.2 Flow graph segment <start-timer-op-duration>

	9.49 Stop component operation
	9.49.0 General
	9.49.1 Void
	9.49.2 Flow graph segment <stop-alive-component>
	9.49.3 Flow graph segment <stop-all-comp>

	9.50 Stop execution statement
	9.51 Stop port operation
	9.52 Stop timer operation
	9.53 System operation
	9.53a Test case stop operation
	9.54 Timer declaration
	9.54.0 General
	9.54.1 Flow graph segment <timer-decl-default>
	9.54.2 Flow graph segment <timer-decl-no-def>

	9.55 Timeout timer operation
	9.56 Unmap operation
	9.56.0 General
	9.56.1 Flow graph segment <unmap-all>
	9.56.2 Flow graph segment <unmap-comp>
	9.56.3 Flow graph segment <unmap-port>

	9.57 Variable declaration
	9.57.0 General
	9.57.1 Flow graph segment <var-declaration-init>
	9.57.2 Flow graph segment <var-declaration-undef>

	9.58 While statement

	10 Lists of operational semantic components
	10.1 Functions and states
	10.2 Special keywords
	10.3 Flow graphs of TTCN-3 behaviour descriptions
	10.4 Flow graph segments

	History

