ETS| ES 201 873-3 V3.1.1 (2005-06)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 3: TTCN-3 Graphical presentation Format (GFT)

D

2 ETSI ES 201 873-3 V3.1.1 (2005-06)

Reference
RES/MTS-00090-3 ttcn3 gft

Keywords
GFT, methodology, MSC, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI ES 201 873-3 V3.1.1 (2005-06)

Contents

Intellectual Property RIGNES.........oo et 6
0 Yo (o SRS 6
gLl [N o1 o] o [OOSR 6
1 o010 PR 8
2 L= £ 101 8
3 F N o] o=V (]SSPSR 8
4 L@ N YT T S 9
5 GFT [@NQUBOE CONCEPLS.eeueeueeueeieeieetesieate sttt ettt be bbb e s e ese e bt b e eb e b st e s e e e e eseabenb e s e nn e e 10
6 Mapping between GFT and TTCN-3 Core lanQUAagE..........cceoveeririreresiesieseeeeeeee e 12
7 AV o0 LS 1 0 (1 = OSSP 12
8 G SYMDOIS. ...ttt b bbbt e e e e e e et st nb e ab e b nenn e 14
9 (€1 I [F=To = 0 TSP SRST PR URURTPPPPRPIN 17
9.1 (@000 00 10] g TN o 0 o< (1= RS 17
91.1 DTz o = g 1= = TP 17
9.1.2 D=0 = g 7= o [o P 17
9.1.3 L T P 17
9.2 (00011 0] 0 [F=o =1 o 15 SR 18
9.3 TESE CASE GIAOIAIM ...ttt ettt b bt b e e e bt e e e bt s h et eb e se et eb e s e e neeb e s e et eb e sb e e ebesbeneebeebennene s 18
9.4 FUNCLION TIBOIMAIM. ...ttt bbb bbbt e s bt e b bt s b e bt bt b e bt b e eb e e e e ens 19
9.5 ATESEED TIBOIAIM ...ttt b et b e et b e s e et b e s e e st b e se e s e eb e s e e st ek e s b e e ebesb e e eb e sbeneebeebenneneas 20
10 INSANCESIN GFT QIAQIAIMIS. ...ccuiitiiieitiitee ettt sb b e e e e e e et e sena e b b nnenne e 21
10.1 CONEFOl TNSLANCE. ...ttt et b bt h e a et e st e se e bt s b e eh e e b e e e a e e se e b e e Rt eh e e e e b e besbeebeeneenne e entas 21
10.2 TeSt COMPONENT INSLANCES. ... oo iteeiieeieeee et e et et e e e e e tesee st e sreesseeteesseaseeaseesseesseenseaneesneesaeesseenseenseeneesneensenssens 21
10.3 POIT INSIANCES......ee ettt e bbbt bt et e se e b e bt eh e eb e e h e e he e e e b e sh e eb e e st ens e e e b e nbesbeebeeneennennen 22
11 ElementS Of GFT QiaQramsS........ccoiiiieieii ettt sttt e s aaesbesra e tesneeaesreeneensenrean 22
111 GENEIAl AFBWING TUIES ...ttt ettt et b e et b e et b e st b e e st b e et e b e st et b et et eb e b 22
1111 USA0E OF SEIMICOIONS ...ttt bbb bbbt b bbbt et b e ne et b b et b b 22
11.1.2 Usage Of aCtioN SYMIOIS. ..o bbbt b e et nb e 23
1113 (000101011 £SO 23
11.2 110 N Lo T I [T= =T 1S 23
1121 EXECULION OF TESE CASES......eeueeuteuie sttt ettt e bbb e s h e b she b et e se e e e st e besaeebeeneennennen 24
11.2.2 INVOCALTON OF TUNCLIONS ...ttt h et a e bbbt e e e e e se e besaesb e e e ennennens 24
11.2.3 INVOCELTON OF @TSEDS. ... e ieee et st e st e s te e be e be e tessaenteesse e reeseeneeennennns 25
11.3 DECIAIALIONS. ...ttt ettt bbbkttt se e bt Rt eh e e b e e s e e R e e sE e bt SR e eh e e Rt e s e e e e Rt beehenbe e e ennennen 25
11.3.1 Declaration of timers, constants and variables in action symbols............cccevvevcciccie s 25
11.3.2 Declaration of constants and variables within inline expression symbolS...........ccceveveineneineneienesee 26
11.33 Declaration of constants and variables within create SymbolS...........cocoveiiriinineiee e 26
11.34 Declaration of constants and variables within default SymbolS..........cooeoiiriiinii 26
11.35 Declaration of constants and variables within reference SymbolS ... 26
11.3.6 Declaration of constants and variables within execute test case Symbols..........coccovereiniinennieneneneseen 26
114 BaSiC PrOgram SEAIEMENTS.couiieiiiterieeetert ettt ettt b bbbt b et s e bbb et b et st b et e 27
11.4.1 LI ST 0 R = = 1.1 | S SS 27
1142 THe LA STAEEIMENL ...ttt bbbttt et b e bt bt et e e e b sb e b s st ene e e e e e 28
1143 TNE GO0 SEALEIMIENL ...ttt ettt b ettt bbbt b e e e e et e se e eb e s bt eb e e e e e e b e sb e ebesneene e e eneees 28
1144 THE IT-E1SE SAIEIMENL. ...ttt bbb h et e bbbt e e e e et sb e b st ene e e e e es 28
1145 TNE FOF SEBLEIMIEINTeeeeeeee ettt bttt bbbt bbb e et e e et e se e b e s bt eb e e e e s et e sbeebesneene e e enrees 29
1146 THE WHITE SEEIEIMENL ...ttt bbb b s r e bbb e et e e e b sb e nbesaeene e e eneees 29
11.4.7 The DO-WhIl@ SEAEEIMENEeieeeeeeee ettt e et et e e e e et e seesbesreeneeneeneees 30
115 Behavioural Program SEBIEMENTSccuciiieiriieerieiees et b e eb e et 30

ETSI

1151
1152
11521
11522
1153
1154
1155
116
1161
11.6.2
11.6.3
11.7
1171
11.7.2
11.7.3
11.7.4
11.7.5
11.7.6
11.8
1181
11.8.2
11.8.3
11831
11.8.3.2
118321
11.83.2.2
11.8.3.3
118331
11.8.3.3.2
11.84
11.84.1
118411
11.84.1.2
11.84.2
1184.21
11.84.2.2
11.84.3
11.84.4
118441
11.84.4.2
11.8.45
11.8.4.6
11.846.1
11.84.6.2
11.8.4.6.3
11.85
11851
11.85.2
11.86
11.86.1
11.8.6.2
11.8.6.3
11.8.6.4
119
1191
1192
1193
1194
1195
11.10
1111
11.12

4 ETSI ES 201 873-3 V3.1.1 (2005-06)

SeqUENTIAl BENAVIOUN ..ot e e et e e s e e re et e e beeteeneesneennes 30
AEINALTIVE BENAVIOUF ...ttt bbb et bbbt e e et bt b aeene e e e e s 31
Selecting/Desel eCting an AILEINALIVEccvevi et esraenrees 32

ElSe Branch iN @lEINELIVEScooiiiieec e e e et e b e 32

The REPEAL SLALEIMENTeeii ettt e s e et e et esse e s s e e te e beentesstessaesreesaeenseenseeneeensenneessnnsrens 32
INEEITEAVEA BENAVIOUc..eeieiieeieiteste ettt st b ettt e bbbt st e e e e e e e besaesb e e e ennenen 33
The REIUIN SEBEEIMENE ...ttt sttt et st s et e e e beseesbesaeeseeneensesseseesaesneeneeneensees 33
DEfAUIT NANAIING ...t bbb bbbt b et b et eb e b 34
DEFAUIT FEFEIENCES. ... e ettt et sttt a et e e s eeseeebesaeeseeneeneeneeseesbesneeseeneenseseeas 34
THE BCHIVALE OPEIBLION.c.eieeetieeiiet ettt b bbbt bbbt b e e st b et b e e 34
The deaCtiVate OPEIELION.........eiueirtiiee ettt b bbbt bt b et b e et besn et 34
CONfiQUIELiON OPEIELIONS.cceieeeeeteeteeieeesteseesee st e sseesteeeeessesseesseesseesteestesseessaesaeesseesseeseanseensenneesneessensses 35
L SO = Yo o< = 1) USSR 35
The Connect and Map OPEIALIONSccueeieeieiieseesee st e steete et e st e st e e e e e etesseessaesreesaeesseenseenseensessenssenssens 35
The Disconnect and UNMap OPEraLIONScueviueieeieeieesieesteetesseesseesseesseesseessesesssessseessesssesssessssssesssesssens 35
The Start test COMPONENE OPEIALIONccveiieerieieeiee et se et e e e e e ete e saesreesreenseesaeenseenaesreessaeseens 36
The Stop execution and Stop test COMPONENE OPEraLIONS.........ccveveriereeree e seeerre e s e seesreesre e seesreesees 36
THE DOMNE OPEIBLION ...ttt b bbbt bbb bt b et b e b e e e bt b e e st e b e s bt st enn et 37
COMIMUNI CALION OPEIBLIONS......eveueeteseeseete st et sttt et st se et besee st ebeseesesbesee st e bese e st sbeneebeebeneeneebese e st ebenbeneebenneneens 38
General format of the Sending OPEIaLIONS.co.eeetirieietirieiei ettt b bbb sreseenea 38
General format of the reCeIVING OPEILIONS.........c.cciiririeirierieierie ettt bbb e ebe e seenen 38
Message-based COMMUNICALTONoiviiierieeeie ettt b et b et b e et b bbb 39
THE SENA OPEIBIIONccveiieciie et bbbt b bbb et s b e e 39

The RECEIVE OPEIBLION.cveeieeieiie e seee st e ste ettt e st e st e st e e teesteseesseesaeesaeesseenteesteessesseesseessennseaneesnnesnes 40
RECEIVE @NY IMESSAGE ... eeuvieureeeieeeeseesee st esteeteaseesseesseesteeteestesseesseesseesseanseenseassessanssensennsessesnsesnes 41

e oS A< o =T 01 oo 41

ISRl e o 1= e o == (o o 41
TrIQUE ON @MY MIESSATE. .. e eteeuteeueeeueeseeesteesteesseasseesesaeeaseeaseesseeseeseetessessesssessssesseassesnseassnssenssenssens 42

I [0 T 0] 1=)V o o] SR 42
Procedure-based COMMUNICEEIONo.eiieieeieise ettt sre e e eneeseeseesbeseesbesneeneeneens 42
THE Call OPEIELION.c.ecuitieeetie e bbb bbb bbb et b et b nn e 42
Calling blOCKING PrOCEAUNES........c.ciuiieiitirieiei ettt et b e e 42

Calling NON-blOCKING PrOCEAUIES.........c.eitiieiiriirieiiriert ettt bttt b e 44

The GELCAll OPEIGLION.eeieiieiecre bbbt b e bbbt b e 44
oo o 11 0o IV o | 45

(€T Cor= | o a1V o o SRR 45

LIS R TS o] AV Ae o 1< = (o) o 1 46

RS T g= o Y] 1= 1o o I 46

Get any reply from any Callooeeeiieieie e e s re e 47

GEL ATEPIY ON @NY PO ...teiieiieiie et e st est e eeee st e s e sreesreeteeseeseeasaessaesseesseesseensesnnesreesseenseensenns 48

THE REISE OPEIGLION. ...ttt b bbbt ae b b se bt b e et e b bt b et 48

The CaLCh OPEIGLHIONeevieeeie ettt bbbt b et b et b e e 49

The TIMEOUL EXCEPLION.......c.eiuiieeiiite ettt ettt ettt b e et b e et b e bbb 50

CaCN @NY EXCEPLION ...ttt b et bbb e st b et b et be e e 50

CALCN ON BNY PO ..ttt b et b et h e b e s bbb e e st sb e st nbe b 51

THE ChECK OPEIELION ... ettt bbb b st bbb et b et nbenn et 52
The CheCK @ny OPEFELIONccueeieieieieesiee st esteeee et et et e e e e e tesseeseesaeesreesaeenteasseeneesseesseesseeneeeneesneesnes 52
(11 o1 Qo 110V 0 TS 53
Controlling COMMUNICALION POITS ...c.viiiieieiie e sttt eee ettt ee e e e e teeeeseesreesseeteesse e seenseesesneesnes 53
RSO L= T o e o < = (o] o 53

The Start POt OPEFELIONc..eeieeiecee et te s e sae e sae e saeesaeeaseesaeeseenseesseeseeseeneesneennes 53

LILLSES (e ol oo 0] < = 1 o o IO 54

Use of @any and all With POFES.........ceiiriiieieee et b e e eb e nnene 54

THMEE OPEFALTIONS ...ttt ettt b et b e et eb e se et eb e sh e e eb e s h e e eb e s b e e eb e s b e e ekt s e et ebenb e e ebesbe e ebesrennebens 54
The Start timer OPEIALIONoiveiruirie ettt bbb et b bt b et b e bt besn et 54
The StOP tIMEN OPEIEIIONcvieeiitiieeiet ettt bbbt bbb e et b et b e e 55
The TiMEOUL OPEIELION.vieeeeitirteeet ettt b et b et b bt b et b bt b e n et 55
The RE&0 tIMEr OPEIGLIONeeieeceeecieete e ee st e e ste et este e te e e e tesatesseesseesseenseenseenseenseensesseesseessens 56
Use of any and all With IMErSooei ettt e ae e e e sneeenes 56
=S A= o [oi l 0] o< = 4 o] SR 56
EXEENEI BCHIONS.ceeieeeieee ettt b bt h ettt et bbbt e ae e s e e e e se ekt s et eb e e ae e e e e e eb e ke ebeebeene e e e nnen 57
SPECITYING BIITIULES.eecveeieciec ettt et e st et e et e e teeseesaeesaeesaeesaeenseenseenteeneesneesnensnens 57

ETSI

5 ETSI ES 201 873-3 V3.1.1 (2005-06)

Annex A (normative): LTl = NSRS 58
Y R \V 1= = = o (U= o L= 0] A€ SR 58
A.2 Conventions for the Syntax dESCriPLIONc.eiiiiiiiei e e 58
A3 TNE GFT GIaITHTIAN ...ttt ettt b et s bbbt s s e e e s e e e st e bt e bt e b e ne e s e e e e e st eseebenb e nene e e e e ens 59
A.31 [110 = PSS 59
A311 (@e 011 (0] I [= =T 0 SR 59
A.3.1.2 L= (o= S = 1= =T o USSR 59
A.313 01 e T 10 1= o = o S 60
A3.14 ATESEED IBOTAIM. ...ttt bbbt bbbt b b st b et a e b e e bt e b e bt benn et 61
A.3.15 (000101011 £ USRS 61
A.3.1.6 (DI F="o =10 OSSP P TSP PT SR PSR 61
A.32 INSLBINCES. ...ttt ettt ettt ettt ettt ettt e bt e ae e e b et e s ae e e be e e ae e e b et e aae e e R et e eRe e e eh R e e eRe e e b e e e Re e e Re e e Ree e beeeaneeeaneeennneen 62
A3.21 COMPONENT INSLBNCES ...ttt sttt sttt st se et re st et e se e st b e seeaeebesbeseebesa e e ebesae e ebesb e e et e sbe e ebesbeneebesbenebens 62
A.3.2.2 POIT TNSIANCES ...ttt bbb e et bbb e e ae e e e e e s et b e sheeb e e st eme e e e et e nbesbeebe e e enteneea 62
A.3.2.3 CONEIOL INSEANCES ...ttt sttt ettt et b e bt e b et a e e se e b e s bt sh e eh e e aeea e e e e b e sb e ehe e e e s e besbeebeeneense s ennes 63
A3.24 INSEANCE BNA ...t h et b e ekt h e e b et e e e e e e et e bt sheeb e e aeen e e e e ne e besheebeeneennennen 63
A33 101 SO SPRPSN 64
A.34 X 1T o] o DTS TR PP 65
A.35 101V lor= o o FO TSP PR PRUSTORPP 66
A.351 Function and altstep invocation on component/Control INSLANCES.cccvierererereneree e 66
A.35.2 Function and altsStep iNVOCEL 0N ON POMTSceeuirieieiiiieeeie ettt st 66
A.353 ICS (0= S Y oG o1 o o PSSR 67
A.3.6 Activation/DeactiVation Of AEfaUITS..........oiiiiiieeee e et 67
A.3.7 TESE COMPONENTS.......eiiiiiiitie i s e s s e e s ae e s b e e b e e b e e b e s e e s e e sae e sae e sae e n e e e e saeesreesneenneas 67
A3.7.1 Creation Of ESE COMPOMENLS........c.eiterteieetereei et se ettt ettt b e et et se et b e e et bese et ebeseese et e sbe e ebesbe e ebesbennenen 67
A.3.7.2 SEArtinNg tESE COMPONENES. ... eeiveeieeesieeieeeeete et e e e e see s e s e e steeeeseesseesseenseesseassesseesseeseensesnsesseessnesseensennsenns 68
A.3.73 StOPPING LESE COMPONENES ... veiee e ceeeeteesees e et eee et e et e et e st e e e e teeteesteeseeeseesseesseesseesensseesseensennsenneesnns 68
A.3.8 1 gL 1= Lo 68
A.381 Inline expressions 0N COMPONENE INSIANCEScviiuireereereeeeteseeseeseesteeseeeeeseesreesseeteesseesseesesnsesneesnes 71
A.3.8.2 IN[INE EXPrESSIONS ON POTSevveveeiteesieesieerteeteeeesreeste e e e e esteastesseesseesaeesaeeseanseasseaseassensteesennsennsesnsesneesnes 72
A.38.3 Inline expressions 0N CONEIOl INSLAMCES..........ccuiicvieeeseeree e stesee e e sae et e e ee e re et e e te e be e seeteeneesneesnes 74
A.39 L0 0o [(o] o 1 PSSR 75
A39.1 Condition 0N COMPONENT INSEANCESc.eruerieieete ettt sttt sb et sb et sb et sb e et e b e e ebesbe e ebesbeneenens 76
A.3.9.2 CONAITION ON POMES ...ttt sttt sttt et e bt se st b e s e eheeb e se e bt e b e ne e bt e b e se e bt eb e sb e e eb e s b e e ebesbeneeneabennenen 76
A.310 Message-based COMMUNICALION.ci ittt ettt b et b et b et b et b e e 76
A.3.10.1 Message-based communication 0N COMPONENE TNSLANCEScoueiriereeeriereee e 77
A.3.10.2 M essage-based communiCation 0N POt INSIANCESccvvecieerierie et se et ee e e eeesneeenes 77
A.3.11 Signature-based COMMUNICALIONceeiuiiiiiieeies e ee e re et et e e e s ae e st e e te e teentesneesneesneesneesseeseensenns 77
A311.1 Signature-based communication 0N COMPONENTE INSTANCES.........eieereerierieeieeeeseeseeseeseeseeseeseesreenseeseens 79
A.3.11.2 Signature-based COMMUNICAtiON ON POITS.........ciiieieerieeieeeesteesteeeeesseeseeseesreesseeteesaesseesseesseenseensesnessnes 80
NG 5t I I T o = =T [o SRS 80
A.3.12.1 Trigger and check 0N COMPONENE INSIANCESveiieiieie e eee et et et este e e e sreesseeeesreesreeeseesraesseeseens 80
A.3.12.2 Trigger and check ON POIT INSTANCESc.couiiiiiiireeeeeree bbb b 81
A.3.13 Handling of communicCation frOm @NY POeoeeririeirireieesiees ettt 81
G I A = o= | 1T o OO OSSOSO P ST PTSOTRPPR 82
Annex B (informative): Reference GUIAeTor GFT ...ttt 83
Annex C (informative): =101 0] 1SS 105
C.1l TheReStaurant EXAMPIE.......cco ittt sttt e s be b e e e s reeae e besreeneestesreensenreens 105
C.2 THheINRES EXAMPIE.......oiiiieeeeee ettt b et e et a bbb nr e nenn e 114
(o 11 (TP 120

ETSI

6 ETSI ES 201 873-3 V3.1.1 (2005-06)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 3 of amulti-part deliverable. Full details of the entire series can be found in part 1 [1].

Introduction

The graphical presentation format of TTCN-3 (GFT) is based on the ITU-T Recommendation Z.120 [3] defining
Message Sequence Charts (MSC). GFT uses a subset of M SC with test specific extensions. The mgjority of extensions
are textual extensions only. Graphical extensions are defined to ease the readability of GFT diagrams. Where possible,
GFT isdefined like M SC, so that established M SC tools with slight modifications can be used for the graphical
definition of TTCN-3 test casesin terms of GFT.

The core language of TTCN-3 isdefined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and
operational semantics as well as a definition for the use of the language with ASN.1. The GFT presentation format
provides an aternative way of displaying the core language (see figure 1).

TTCN-3 < >

Core
ASN.1 Types Tabular
& Values » Language format < >
Other Types Graphical
& Values, > format < >

,,,,,,,,,,,,,,,,,,,, TTCN-3 User

Other Types Presentation The shaded boxes are not
& Values , > format, D — defined in this document

Figure 1. User's view of the core language and the various presentation formats

The core language may be used independently of GFT. However, GFT cannot be used without the core language. Use
and implementation of the GFT shall be done on the basis of the core language.

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI ES 201 873-3 V3.1.1 (2005-06)

The present document defines:
e thelanguage concepts of GFT;
e theguideinesfor the use of GFT;
e thegrammar of GFT,;
e the mapping from and to the TTCN-3 core language.

Together, these characteristics form GFT-the graphical presentation format of TTCN-3.

ETSI

8 ETSI ES 201 873-3 V3.1.1 (2005-06)

1 Scope

The present document defines the graphical presentation format for the TTCN-3 core language as defined in
ES 201 873-1[1]. This presentation format uses a subset of Message Sequence Charts as defined in ITU-T
Recommendation Z.120 [3] with test specific extensions.

The present document is based on the core TTCN-3 language defined in ES 201 873-1 [1]. It is particularly suited to
display testsas GFTs. It is not limited to any particular kind of test specification.

The specification of other formats is outside the scope of the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
http://docbox.etsi.org/Reference.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language".

2] ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

[3] ITU-T Recommendation Z.120 (2004): "M essage sequence chart (MSC)".

[4] I SO/IEC 9646-3 (1998): "Information technology - Open Systems I nterconnection - Conformance

testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:
BNF Backus-Naur Form
CATG Computer Aided Test Generation
GFT Graphical presentation Format of TTCN-3
MSC M essage Sequence Chart
MTC Main Test Component
PTC Parallel Test Component
SUT System Under Test
TFT Tabular presentation Format of TTCN-3
TTCN Testing and Test Control Notation

ETSI

http://docbox.etsi.org/Reference

9 ETSI ES 201 873-3 V3.1.1 (2005-06)

4

Overview

According to the OSI conformance testing methodology defined in 1SO/IEC 9646-3 [4], testing normally starts with the
identification of test purposes. A test purposeis defined as:

" A prose description of a well-defined objective of testing, focusing on a single conformance requirement or a set of
related conformance requirements as specified in the appropriate OS specification”.

Having identified all test purposes an abstract test suite is developed that consists of one or more abstract test cases. An
abstract test case defines the actions of the tester processes necessary to validate part (or al) of atest purpose.

Applying these terms to M essage Sequence Charts (M SCs) we can define two categories for their usage:

1)

2)

Using MSCs for the definition of test purposes - Typicaly, an MSC specification that is developed as a use-
case or as part of a system specification can be viewed astest purpose, i.e. it describes a requirement for the
SUT in the form of a behaviour description that can be tested. For example, figure 2 presentsasimple MSC
describing the interaction between instances representing the SUT and itsinterfaces A, B and C. Inarea
implementation of such a system the interfaces A, B and C may map onto service access points or ports. The
MSC in figure 2 only describes the interaction with the SUT and does not describe the actions of the test
components necessary to validate the SUT behaviour, i.e. it isatest purpose description.

msc TestPurposeExample
A SUT B C
L1 L1 I I | |
a »
b
<
P c
[] [] [] []

Figure 2: MSC describing the interaction of an SUT with its interfaces

Using MSCs for the definition of abstract test cases- An M SC specification describing an abstract test case
specifies the behaviour of the test components necessary to validate a corresponding test purpose. Figure 3
presents a simple M SC abstract test case description. It shows one Main Test Component (MTC) that
exchanges the messages a, b and ¢ with the SUT viathe ports PortA, PortB and PortC in order to reach the test
purpose shown in figure 2. The messages a and ¢ are sent by the SUT viathe ports A and B (figure 2) and
received by the MTC (figure 3) via the same ports. The message b is sent by the MTC and received by the
SUT.

NOTE: Theexamplesinfigures2 and 3 are only simple examplesto illustrate the different usages of MSC for

testing. The diagrams will be more complicated in case of a distributed SUT that consists of severa
processes or a distributed test configuration with several test components.

ETSI

10 ETSI ES 201 873-3 V3.1.1 (2005-06)

msc AbstractTestCaseExample

PortA MTC PortB PortC
a . a | a
s a s
i b | R
' 1 'l
' | '
i C i i
l—» 1]

(] (] (] (]

Figure 3: MSC describing the interaction of an MTC with SUT interfaces

In identifying these two categories of MSC usage two distinct areas of work can be identified (see figure 4):

a) Generation of abstract test cases from MSC test purpose descriptions - TTCN-3 core language or GFT may be
used to represent the abstract test cases. However, it is perceived that test case generation from test purposesis
non-trivial and involves the usage and development of Computer Aided Test Generation (CATG) techniques.

b) Development of a Graphical presentation format for TTCN-3 (GFT) and definition of the mapping between
GFT and TTCN-3.

generate

mappin
?él;SFC':I' t;z;;l;e < PPINg > TTCN-3 test case

Figure 4: Relations between MSC test purpose description, MSC test case descriptions and TTCN-3

The present document focuses on item b), i.e. it defines GFT and the mapping between GFT and the TTCN-3 core
language.

) GFT language concepts

GFT represents graphically the behavioural aspects of TTCN-3 like the behaviour of atest case or afunction. It does
not provide graphics for data aspects like declaration of types and templates.

GFT defines no graphical representation for the structure of a TTCN-3 module, but specifies the requirements for such a
graphical representation (see also clause 7).

NOTE: The order and the grouping of definitions and declarations in the module definitions part define the
structure of a TTCN-3 module.

GFT defines no graphical representation for:
¢ module parameter definitions;
e import definitions;
e typedefinitions;

e signature declarations;

ETSI

11 ETSI ES 201 873-3 V3.1.1 (2005-06)

e template declarations;

e constant declarations;

e externa constant declarations; and
¢ externa function declarations.

TTCN-3 definitions and declarations without a corresponding GFT presentation may be presented in the TTCN-3 core
language or in the tabular presentation format for TTCN-3 (TFT) (ES 201 873-2 [2]).

GFT provides graphics for TTCN-3 behaviour descriptions. This means a GFT diagram provides a graphical
presentation of either:

e thecontrol part of a TTCN-3 module;
e aTTCN-3test casg
e aTTCN-3 function; or
¢ aTTCN-3 dtstep.
The relation between a TTCN-3 module and a corresponding GFT presentation is shown in figure 5.

GFT isbased on MSC (ITU-T Recommendation Z.120 [3]) and, thus, a GFT diagram maps onto an MSC diagram.
Although GFT uses most of the graphical MSC symbols, the inscriptions of some MSC symbols have been adapted to
the needs of testing and, in addition, some new symbols have been defined in order to emphasize test specific aspects.
Though, the new symbols can be mapped onto valid MSC.

» therepresentation of port instances;

e thecreation of test components;

¢ thestart of test components;

» thereturn from afunction call;

« therepetition of alternatives,

¢ thetime supervision of a procedure-based call;

» theexecution of test cases;

« theactivation and deactivation of defaults;

e thelabelling and goto; and

* thetimerswithin call statements.

A completelist of all symbols used in GFT is presented in clause 8.

ETSI

12 ETSI ES 201 873-3 V3.1.1 (2005-06)

TTCN-3 module GFT presentation
in core language

o > Requirements for the graphical

module structur .
LM STISTE presentation of the modul e structure

module parameter definitions,
import definitions,

type definitions,

signature declarations, S >
template declarations,
constant declarations,

external constant declarations,
external function declarations

No graphical representation

e > Graphical representation

module control (Control diagram)

Graphical representation
testcase P S >| e ep

(Test case diagram)
N P Graphical Representation
function < > (Function diagram)
altstep R 5| Graphical Representation

(Altstep diagram)

Figure 5: Relation between TTCN-3 core language and the corresponding GFT description

6 Mapping between GFT and TTCN-3 Core language

GFT provides graphical means for TTCN-3 behaviour definitions. The control part and each function, altstep and test
case of a TTCN-3 core language modul e can be mapped onto a corresponding GFT diagram and vice versa. This
means:

« the module control part can be mapped onto a control diagram (see clause 9.2) and vice versa;

e atest case can be mapped onto atest case diagram (see clause 9.3) and vice versa;

« afunction in core language can be mapped onto a function diagram (see clause 9.4) and vice versa;
¢ an atstep can be mapped onto an atstep diagram (see clause 9.5) and vice versa.

NOTE 1: GFT provides no graphical presentations for definitions of module parameters, types, constants,
signatures, templates, external constants and external functions in the module definitions part. These
definitions may be presented directly in core language or by using another presentation format, e.g. the
tabular presentation format.

Each declaration, operation and statement in the module control and each test case, altstep or function can be mapped
onto a corresponding GFT representation and vice versa.

The order of declarations, operations and statements within a module control, test case, altstep or function definitionis
identical to the order of the corresponding GFT representations within the related control, test case, altstep or function
diagram.

NOTE 2: The order of GFT constructsin a GFT diagram is defined by the order of the GFT constructsin the
diagram header (declarations only) and the order of the GFT constructs along the control instance (control
diagram) or component instance (test case diagram, altstep diagram or function diagram).

7 Module structure

Asshowninfigure 6, a TTCN-3 module has atree structure. A TTCN-3 module is structured into a module definitions
part and a module control part. The module definitions part consists of definitions and declarations that may be
structured further by means of groups. The module control part cannot be structured into sub-structures; it defines the
execution order and the conditions for the execution of the test cases.

ETSI

13 ETSI ES 201 873-3 V3.1.1 (2005-06)

declaratlon/deflnltlon(l)

declaratlon/deflnltlon(n)

deflnltlons part declaratlon/deflnmon(11)

declaratlon/deflnltlon(1n)
group(l) .
roup(ll) .

roup(ll))
group(m) §

module

control part

Figure 6: Structure of TTCN-3 modules

GFT provides diagrams for all "behavioura" |eaves of the module tree structure, i.e. for the module control part, for
functions, for altsteps and for test cases. GFT defines no concrete graphics for the modul e tree-structure, however
appropriate tool support for GFT requires a graphical presentation of the structure of a TTCN-3 module. The TTCN-3
modul e structure may be provided in form of an organizer view (figure 7) or the MSC document-like presentation
(figure 8). An advanced tool may even support different presentations of the same object, e.g. the organizer view in
figure 7 indicates that some definitions are provided within several presentation formats, e.g. function
MySpecialFunction is available in core language, in form of a TFT table and as GFT diagram.

MyModule
i Definitions
— = MyType
=]
[J
[J
hd MyCompType
=]
TFT
[J
[J
[J . .
MySpecialFunction
=]
TFT
A
Control ’
=]
7

Figure 7: Various presentation formats in an organizer view of a TTCN-3 module structure

ETSI

14

ETSI ES 201 873-3 V3.1.1 (2005-06)

module MyModule

types

{ datatype MyType]

{ component MyCompType

functions

function MySpecialFunction]

altsteps

altstep MyAltStep]

testcases

testcase MyTestCase]

control

[control]

Figure 8: Graphical MSC document-like presentation of a TTCN-3 module structure

8 GFT symbols

This clause presents al graphical symbols used within GFT diagrams and comments their typical usage within GFT.

Table 1

GFT Element

Symbol

Description

Frame symbol

Used to frame GFT diagrams

Reference symbol

Used to represent the invocation of functions
and altsteps

ETSI

15 ETSI ES 201 873-3 V3.1.1 (2005-06)

GFT Element Symbol Description

Port instance symbol Used to represent port instances

Component instance
symbol

Used to represent test components and the
control instance

Used for textual TTCN-3 declarations and
statements, to be attached to a component
symbol

Action box symbol

Condition symbol Used for textual TTCN-3 boolean expressions,
verdict setting, port operations (start, stop and
clear) and the done statement, to be attached

to a component symbol

Labelling symbol Used for TTCN-3 labelling and goto, to be

attached to a component symbol

Goto symbol Used for TTCN-3 labelling and goto, to be

attached to a component symbol

Used for TTCN-3 if-else, for, while, do-while,
alt, call and interleave statement, to be
attached to a component symbol

Inline expression symbol

ol lo Mgl —

Default symbol Used for TTCN-3 activate and deactivate
statement, to be attached to a component
symbol

Stop symbol Used for TTCN-3 stop statement, to be

attached to a component symbol

X

Return symbol Used for TTCN-3 return statement, to be
attached to a component symbol

X

Repeat symbol Used for TTCN-3 repeat statement, to be
attached to a component symbol

®

ETSI

16

ETSI ES 201 873-3 V3.1.1 (2005-06)

GFT Element

Symbol

Description

Create symbol

Used for TTCN-3 create statement, to be
attached to a component symbol

Start symbol

Used for TTCN-3 start statement, to be
attached to a component symbol

Message symbol

v

Used for TTCN-3 send, call, reply, raise,
receive, getcall, getreply, catch, trigger and
check statement, to be attached to a
component symbol and a port symbol

Found symbol

v

Used for representing TTCN-3 receive, getcall,
getreply, catch, trigger and check from any
port, to be attached to a component symbol

Suspension region symbol

Used in combination with a blocking call, to be
within a call inline expression and attached to a
component symbol

Start timer symbol

Used for TTCN-3 start timer operation, to be
attached to a component symbol

Timeout timer symbol

Used for TTCN-3 timeout operation, to be
attached to a component symbol

Stop timer symbol

Used for TTCN-3 stop timer operation, to be
attached to a component symbol

Start implicit timer symbol

Used for TTCN-3 implicit timer start in blocking
call, to be within a call inline expression and
attached to a component symbol

Timeout implicit timer
symbol

Used for TTCN-3 timeout exception in blocking
call, to be within a call inline expression and
attached to a component symbol

Execute symbol

Used for TTCN-3 execute test case statement,
to be attached to a component instance symbol

Text symbol

Used for TTCN-3 with statement and
comments, to be placed within a GFT diagram

Event comment symbol

Used for TTCN-3 comments associated to
events, to be attached to events on component
instance or port instance symbols

ETSI

17 ETSI ES 201 873-3 V3.1.1 (2005-06)

9 GFT diagrams

GFT provides the following diagram types:
a) control diagram for the graphical presentation of a TTCN-3 module control part;
b) test casediagram for the graphical presentation of a TTCN-3 test case;
c) altstep diagramfor the graphical presentation of a TTCN-3 altstep; and
d) function diagram for the graphical presentation of a TTCN-3 function.

The different diagram types have some common properties.

9.1 Common properties

Common properties of GFT diagrams are related to the diagram area, diagram heading and paging.

9.1.1 Diagram area

Each GFT contral, test case, altstep and function diagram shall have a frame symbol (also called diagram frame) to
define the diagram area. All symbols and text needed to define a complete and syntactically correct GFT diagram shall
be made inside the diagram area.

NOTE: GFT hasno language constructs like the M SC gates, which are placed outside of, but connected to the
diagram frame.

9.1.2 Diagram heading

Each GFT diagram shall have a diagram heading. The diagram heading shall be placed in the upper left-hand corner of
the diagram frame.

The diagram heading shall uniquely identify each GFT diagram type. The general rule to achieve thisisto construct the
heading from the keywords testcase, altstep or function followed by the TTCN-3 signature of the test case, altstep or
function that should be presented graphically. For a GFT control diagram, the unique heading is constructed from the
keyword module followed by the module name.

NOTE: InMSC, the keyword msc. always precedes the diagram name to identify M SC diagrams. GFT diagrams
do not have such acommon keyword to identify GFT diagrams.

9.1.3 Paging

GFT diagrams may be organized in pages and alarge GFT diagram may be split into several pages. Each page of a split
diagram shall have a numbering in the upper right hand corner that identifies the page uniquely. The numbering is
optional if the diagram is not split.

NOTE 1: The concrete numbering scheme is considered to be atools issue and is therefore outside the scope of the
present document. A simple numbering scheme may only assign a page number, whereas an advanced
numbering scheme may support the reconstruction of a diagram only by using the numbering information
on the different pages.

NOTE 2: Paging requirements beyond the general numbering are considered to be tools issues and are therefore
outside the scope of the present document. For readability purposes, the diagram heading may be shown
on each page, the instance line of an instance that will be continued on another page may be attached to
the lower border of the page and the instance head of a continued instance may be repeated on the page
that describes the continuation.

ETSI

18 ETSI ES 201 873-3 V3.1.1 (2005-06)

9.2 Control diagram

A GFT control diagram provides a graphical presentation of the control part of a TTCN-3 module. The heading of a
control diagram shall be the keyword module followed by the module name. A GFT control diagram shall only include
one component instance (also called control instance) with the instance name contr ol without any type information. The
control instance describes the behaviour of the TTCN-3 module control part. Attributes associated to the TTCN-3
module control part shall be specified within atext symbol in the control diagram. The principle shape of a GFT control
diagram and the corresponding TTCN-3 core description are sketched in figure 9.

nodul e M/Modul e

control

I;I

var integer M/Var :=1

module MyModule {

control {
var integer MyVar :=1;
I execute(MyTestcase());

P
[execut e(M/Test case())]J
N\

Y end.control
}/ end module

GFT Core

Figure 9: Principle shape of a GFT control diagram and corresponding core language

Within the control part, test cases can be selected or deselected for the test case execution with the use of Boolean
expressions. Expressions, assignments, log statements, label and goto statements, if-else statements, for loop
statements, while loop statements, do while loop statements, stop execution statements, and timer statements can be
used to control the execution of test cases. Furthermore, functions can be used to group the test cases together with their
preconditions for execution, which are invoked by the module control part.

The GFT representation of those language features is as described in the respective clauses below except that for the
module control part the graphical symbols are attached to the control instance and not to a test component instance.

Please refer to clause 11.4 for the GFT representation of expressions, assignments, log, label and goto, if-else, for loop,
while loop, do while loop, and stop, to clause 11.9 for timer operations and to clauses 9.4 and 11.2.2 for functions and
their invocation.

9.3 Test case diagram

A GFT test case diagram provides a graphical presentation of a TTCN-3 test case. The heading of atest case diagram
shall be the keyword testcase followed by the complete signature of the test case. Complete meansthat at least test case
name and parameter list shall be present. The runs on clause is mandatory and the system clauseis optional in the core
language. If the system clause is specified in the corresponding core language, it shall also be present in the heading of
the test case diagram.

A GFT test case diagram shall include one test component instance describing the behaviour of the mtc (also called mtc
instance) and one port instance for each port owned by the mtc. The name associated with the mtc instance shall be
mtc. The type associated with the mtc instance is optional, but if the type information is present, it shall be identical to
the component type referred to in the runs on clause of the test case signature. The names associated with the port
instances shall be identical to the port names defined in the component type definition of the mtc. The associated type
information for port instances is optional. If the type information is present, port names and port types shall be
consistent with the component type definition of the mtc. The mtc and port types are displayed in the component or
port instance head symbol.

Attributes associated to the test case presented in GFT shall be specified within atext symbol in the test case diagram.
The principle shape of a GFT test case diagram and the corresponding TTCN-3 core description are sketched in
figure 10.

ETSI

19 ETSI ES 201 873-3 V3.1.1 (2005-06)

test case M/Test Case (inout integer MPar)
runs on MMQ ype system Syst enType
testcase MyTestCase (inout integer MyPar)
nic M/MQoor t
runs on MyMTCtype system SystemType
MMQ ype p pe {
| 5 var integer MyVar :=1;
var integer MVar =1 MyMTCPort.send(MyTemplate);
> }
MTenpl at e
L [
GFT Core

Figure 10: Principle shape of a GFT test case diagram and corresponding core language

A test case represents the dynamic test behaviour and can create test components. A test case may contain declarations,
statements, communication and timer operations and invocation of functions or altsteps.

9.4 Function diagram

GFT presents TTCN-3 functions by means of function diagrams. The heading of afunction diagram shall be the
keyword function followed by the complete signature of the function. Complete means that at |east function name and
parameter list shall be present. Thereturn clause and the runs on clause are optional in the core language. If these
clauses are specified in the corresponding core language, they shall also be present in the header of the function
diagram.

A GFT function diagram shall include one test component instance describing the behaviour of the function and one
port instance for each port usable by the function.

NOTE: The names and types of the ports that are usable by afunction are passed in as parameters or are the port
names and types that are defined in the component type definition referenced in the runs on clause.

The name associated with the test component instance shall be self. The type associated with the test component
instance is optional, but if the type information is present, it shall be consistent with the component type in therunson
clause.

The names and types associated with the port instances shall be consistent with the port parameters (if the usable ports
are passed in as parameters) or to the port declarations in the component type definition referenced in theruns on
clause. The type information for port instancesis optional.

Self and port names are displayed on top of the component and resp. port instance head symbol. The component types
and port types are displayed within the component and resp. port instance head symbol.

Attributes associated to the function presented in GFT shall be specified within atext symbol in the function diagram.
The principle shape of a GFT function diagram and the corresponding TTCN-3 core description are sketched in
figure 11.

ETSI

20 ETSI ES 201 873-3 V3.1.1 (2005-06)

functi on MyFunction (inout integer MyPar)
return integer runs on MyPTCtype

function MyFunction (inout integer MyPar)
sel f MyPTCpor t

M/PTCt ype
| var integer MyVar := 1,

return integer runs on MyPTCtype {

i nt Var := 1;
var integer Myvar MyPTCport.send(MyTemplate);

> :
MyTenpl at e .
& —
return MyVar+MyPar

MyVar +My Par

GFT Core

Figure 11: Principle shape of a GFT function diagram and corresponding core language

A function is used to specify and structure test behaviour, define default behaviour or to structure computation in a
module. A function may contain declarations, statements, communication and timer operations and invocation of
function or altsteps and an optional return statement.

9.5 Altstep diagram

GFT presents TTCN-3 atsteps by means of altstep diagrams. The heading of an atstep diagram shall be the keyword
altstep followed by the complete signature of the altstep. Complete means that at |east altstep name and parameter list
shall be present. Theruns on clauseis optional in the core language. If the runson clause is specified in the
corresponding core language, it shall also be present in the header of the altstep diagram.

A GFT atstep diagram shall include one test component instance describing the behaviour of the altstep and one port
instance for each port usable by the altstep.

NOTE: The names and types of the ports that are usable by an altstep are passed in as parameters or are the port
names and types that are defined in the component type definition referenced in the runs on clause.

The name associated with the test component instance shall be self. The type associated with the test component
instance is optional, but if the type information is present, it shall be consistent with the component type in therunson
clause.

The names and types associated with the port instances shall be consistent with the port parameters (if the usable ports
are passed in as parameters) or to the port declarations in the component type definition referenced in theruns on
clause. The type information for port instancesis optional.

self and port names are displayed on top of the component and resp. port instance head symbol. The component types
and port types are displayed within the component and resp. port instance head symbol.

Attributes associated to the altstep shall be specified within atext symbol in the GFT altstep diagram. The principle
shape of a GFT altstep diagram and the corresponding TTCN-3 core language are sketched in figure 12.

ETSI

21 ETSI ES 201 873-3 V3.1.1 (2005-06)

altstep MyAltstep ()
runs on M/MICtype altstep MyAltstep () runs on MyMTCtype {
sel f MyMTCpor t alt {
WMQype [] MyMTCport.receive(MyTemplate2) {
alt setverdict(inconc)
<
MWy Tenpl at e2
i nconc [] MyMTCport.receive(MyTemplate3) {
setverdict(fail)
<
MWy Tenpl at e3 }
< fail > }
Repeat
@ [}
GFT Core

Figure 12: Principle shape of a GFT altstep diagram and corresponding core language

An altstep is used to specify default behaviour or to structure the alternatives of anal t statement. An altstep may
contain statements, communication and timer operations and invocation of function or altsteps.

10 Instances in GFT diagrams

GFT diagramsinclude the following kinds of instances:
. control instances describing the flow of control for the module control part;

. test component instances describing the flow of control for the test component that executes atest case,
function or altstep;

. port instances representing the ports used by the different test components.

10.1 Control instance

Only one control instance shall exist within a GFT control diagram (see clause 9.2). A control instance describes the
flow of control of amodule control part. A GFT control instance shall graphically be described by a component
instance symbol with the mandatory name contr ol placed on top of the instance head symbol. No instance type
information is associated with a control instance. The principle shape of a control instance is shown in figure 13 a).

10.2 Test component instances

Each GFT test case, function or altstep diagram includes one test component instance that describes the flow of control
of that instance. A GFT test component instance shall graphically be described by an instance symbol with:

« the mandatory name mtc placed on top of the instance head symbol in the case of atest case diagram;
¢ the mandatory name self placed on top of the instance head symbol in the case of afunction or atstep diagram.

The optional test component type may be provided within the instance head symbol. It has to be consistent with the test
component type given after the runs on keyword in the heading of the GFT diagram.

The principle shape of atest component instance in atest case diagram is shown in figure 13 b). The principle shape of
atest component instance in afunction or altstep diagram is shown in figure 13 c).

ETSI

22 ETSI ES 201 873-3 V3.1.1 (2005-06)

10.3 Port instances

GFT port instances may be used within test case, atstep and function diagrams. A port instance represents a port that is
usable by the test component that executes the specified test case, altstep or function. A GFT port instance is graphically
described by a component instance symbol with a dashed instance line. The name of the represented port is mandatory
information and shall be placed on top of the instance head symbol. The port type (optional) may be provided within the
instance head symbol. The principle shape of a port instance is shown in figure 13 d).

control ntc
M cType
(a) GFT control instance (b) GFT test case instance in a test case diagram
sel f Por t Nane
Pt cType Port Type
i
|
[}
[}
[}
[}
I
[}
[}
|
(c) GFT test component instance in a function (d) GFT port instance
or altstep diagram

Figure 13: Principle shape of instance kinds in GFT diagrams

11 Elements of GFT diagrams

This clause defines general drawing rules for the representation of specific TTCN-3 syntax elements (semicolons,
comments). It describes how to display the execution of GFT diagrams and the graphical symbols associated with
TTCN-3 language elements.

11.1 General drawing rules

General drawing rulesin GFT are related to the usage of semicolons, TTCN-3 statements in action symbols and
comments.

11.1.1 Usage of semicolons

All GFT symbols with the exception of the action symbol shall include only one statement in TTCN-3 core language.
Only an action symbol may include a sequence of TTCN-3 statements (see clause 11.1.2).

The semicolon is optional if a GFT symbol includes only one statement in TTCN-3 core language (see figure 14 a) and
figure 14 b)).

Semicolons shall separate the statements in a sequence of statements within an action symbol. The semicolonis
optional for the last statement in the sequence (figure 14 ¢)).

A seguence of variable, constant and timer declarations may also be specified in plain TTCN-3 core language following
the heading of a GFT diagram. Semicolons shall also separate these declarations. The semicolon is optional for the last
declaration in this sequence.

ETSI

23 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.1.2 Usage of action symbols

The following TTCN-3 declarations, statements and operations are specified within action symbols. declarations (with
the restrictions defined in clause 11.3), assignments, log, connect, disconnect, map, unmap and action.

A sequence of declarations, statements and operations that shall be specified within action symbols variable can be

specified in asingle action symboal. It is not necessary to use a separate action symbol for each declaration, statement or
operation.

11.1.3 Comments
GFT provide three possibilities to put comments into GFT diagrams:

. Comments may be put into GFT symbols following the symbol inscription and using the syntax for comments
of the TTCN-3 core language (figure 14 d)).

. Comments in the syntax for comments of the TTCN-3 core language can be put into text symbols and freely
placed inthe GFT diagram area (figure 14 €)).

. The comment symbol can be used to associate commentsto GFT symbols. A comment in a comment symbol
can be provided in form of freetext, i.e. the comment delimiter "/ *","*/ " and"/ / " of the core language
need not to be used (figure 14 f)).

1

MyConp : = ConpType. create; MyDef := activate(M/AtStep())

{

r

(@) Component creation with an optional (b) Default activation without a
terminating semicolon terminating semicolon
L 1

{

nyFl oatVar := 10.0 * 7. 4; Initialisati
| ocal Verdict := getverdict; /% Pr ene;nbllae Iisnai/c;coaq(i)on -
action(redlight());
(c) Sequence of statements in an action symbol (d) Comment within a GFT reference symbol

I Thisis_a This comment is

/1 comment in a MResult := associated with a

Il text synbol execut e(TCL()) |[~ test execution
synbol

i

(f) Comment within a comment symbol associated
with an execution symbol

(e) Comment in a text symbol

Figure 14: Examples for the effects of the general drawing rules

11.2 Invoking GFT diagrams

This clause describes how the individual kinds of GFT diagrams are invoked. Since there is no statement for executing
the control part in TTCN-3 (asit is comparable to executing a program via main and out of the scope of TTCN-3), the
clause discusses the execution of test cases, functions, and altsteps.

ETSI

24 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.2.1 Execution of test cases

The execution of test casesis represented by use of the execute test case symbol (see figure 15). The syntax of the
execute statement is placed within that symbol. The symbol may contain:

e anexecute statement for atest case with optional parameters and time supervision;
e optionaly, the assignment of the returned verdict to a ver dicttype variable; and

e optionaly, theinline declaration of the verdicttype variable.

MyVerdict: =
[execut e(M/Test Case(M/Paraneter), 5. 0) MyVerdict := execute(MyTestCase(MyParameter),5.0);

GFT Core

Figure 15: Test case execution

11.2.2 Invocation of functions

Theinvocation of functionsis represented by the reference symbol (figure 16), except of external and predefined
functions (figure 17) and except where afunction is called inside a TTCN-3 language element that has a GFT
representation (figure 18).

The syntax of the function invocation is placed within the reference symbol. The symbol may contain:
e theinvocation of afunction with optiona parameters;
e anoptiona assignment of the returned value to a variable; and
e anoptiond inline declaration of the variable.

The reference symbol is only used for user defined functions defined within the current module. It shall not be used for
external functions or predefined TTCN-3 functions, which shall be represented in their text form within an action form
(figure 17) or other GFT symbols (see example in figure 18).

L 1
MyVar : =
MyFunct i on(MyPar ant, MyPar an®) MyVar:= MyFunction(MyParam1,MyParam2);
GFT Core

Figure 16: Invocation of user defined function

L

MyStr: = int2str(M/nt)

MyStr:= int2str(MyInt);

|
GFT Core

Figure 17: Invocation of predefined/external function

ETSI

25 ETSI ES 201 873-3 V3.1.1 (2005-06)

Functions called inside a TTCN-3 construct with an associated GFT symbol are represented as text within that symbol.

My Por t
1 1
: for(j:=0; j<10; j:= t(i
for(j:=0, | <10, [:=next(1))) or(j:=0; j<10; j:=next())) {
' MyPort.send(Templatel)
Tenpl at el :
' }
:
|
I []
GFT Core

Figure 18: Invocation of user defined function within GFT symbol

11.2.3 Invocation of altsteps

Theinvocation of altstepsis represented by use of the reference symbol (see figure 19). The syntax of the altstep
invocation is placed within that symbol. The symbol may contain the invocation of an altstep with optional parameters.
It shall be used within alternative behaviour only, where the altstep invocation shall be one of the operands of the
alternative statements (see also figure 32 in clause 11.5.2).

| I
{ M/Al t st ep(MyPar anil, MyPar an®) } MyAltstep(MyParam1,MyParam?2);
GFT Core

Figure 19: Altstep invocation

Another possibility isthe implicit invocation of altsteps via activated defaults. Please refer to clause 11.6.2 for further
details.

11.3 Declarations

TTCN-3 alows the declaration and initialization of timers, constants and variables at the beginning of statement blocks.
GFT usesthe syntax of the TTCN-3 core language for declarationsin several symbols. The type of a symbol depends
on the specification of the initialization, e.g. avariable of type default that is initialized by means of an activate
operation shall be specified within a default symbol (see clause 11.6).
11.3.1 Declaration of timers, constants and variables in action symbols
The following declarations shall be made within action symboals:
e timer declarations;
¢ declarations of variables without initialization;
e declarations of variables and constants with initialization;
- if theinitialization is not made by means of functions that include communication functions; or
- if adeclarationis:
" of acomponent type that is not initialized by means of a create operation;

" of type default that is not initialized by means of an activate operation;

ETSI

26 ETSI ES 201 873-3 V3.1.1 (2005-06)

. of type verdicttypethat is not initialized by means of an execute statement;
" of asimple basic type;

. of abasic string type;

" of the type anytype;

. of aport type;

" of the type address; or

" of auser-defined structured type with fields that fulfil all restrictions mentioned in this bullet for
"declarations of variables and constants with initialization".

NOTE: Pleaserefer to ES 201 873-1 [1], table 3 for an overview on TTCN-3 types.

A sequence of declarations that shall be made within action symbols can be put into one action symbol and need not to
be made in separate action symbols. Examples for declarations within action symbols can be found in figures 20 a) and
20 b).

11.3.2 Declaration of constants and variables within inline expression
symbols

Constants and variable declarations of a component type that are initialized within an if-else, for, while, do-while, alt
or interleave statement shall be presented within the same inline expression symbol.

11.3.3 Declaration of constants and variables within create symbols

Constants and variable declarations of a component type that are initialized by means of cr eate operations shall be
made within a create symbol. In contrast to declarations within action symbols, each declaration that isinitialized by
means of a create operation shall be presented in a separate create symbol. An example for a variable declaration within
acreate symbol is shown in figure 20 c).

11.3.4 Declaration of constants and variables within default symbols

Constants and variable declarations of type default that are initialized by means of activate operations shall be made
within adefault symbol. In contrast to declarations within action symbols, each declaration that is initialized by means
of an activate operation shall be presented in a separate default symbol. An example for a variable declaration within a
default symbol is shown in figure 20 d).

11.3.5 Declaration of constants and variables within reference symbols

Constants and variable declarations that are initialized by means of a function, which includes communication
operations, shall be made within reference symbols. In contrast to declarations within action symbols, each declaration
that isinitialized by means of afunction, which includes communication functions, shall be presented in a separate
reference symbol. An example for a variable declaration within areference symbol is shown in figure 20 €).

11.3.6 Declaration of constants and variables within execute test case
symbols

Constants and variable declarations of type verdicttype that areinitialized by means of execute statements shall be

made within execute test case symbols. In contrast to declarations within action symbols, each declaration that is

initialized by means of an execute statement shall be presented in a separate execute test case symbol. An example for a
variable declaration within an execute test case symbol is shown in figure 20 f).

ETSI

27

ETSI ES 201 873-3 V3.1.1 (2005-06)

|

var integer Myvar

F

T

var float MyFl oat Var;
const integer M/Const := 6;
var default MyDefault := null

——

(a) Variable declaration within
an action symbol

(b) Sequence of declarations
within an action symbol

|

var ConpType MyConp : =
ConpType. create

r

T

var default MyDefault :=
activate(M/A tstep())

-

(c) Variable declaration within
a create symbol

(d) Variable declaration within
a default symbol

i

var integer MyVar :=
MyFuncti on()

l

T

var verdicttype M/Verdict :=
execut e(MyTest Case())

i

(e) Variable declaration within
areference symbol

(d) Variable declaration within an
execute test case symbol

Figure 20: Examples for declarations in GFT

11.4

Basic program statements

Basic program statements are expressions, assignments, operations, loop constructs etc. All basic program statements
can be used within GFT diagrams for the control part, test cases, functions and atsteps.

GFT does not provide any graphical representation for expressions and assignments. They are textually denoted at the
places of their use. Graphicsis provided for the log, label, goto, if-else, for, while and do-while statement.

11.4.1 The Log statement

Thel og statement shall be represented within an action symbol (see figure 21).

I;I

| og(“Message x sent

to MyPort”) log('Message x sent to MyPort'");
GFT Core

Figure 21: Log Statement

ETSI

28 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.4.2 The Label statement

Thelabel statement shall be represented with alabel symbol, which is connected to a component instance. Figure 22
illustrates a simple example of alabel named MyLabel .

@ label MyLabel;

GFT Core

Figure 22: Label Statement

11.4.3 The Goto statement

The goto statement shall be represented with a goto symbol. It shall be placed at the end of a component instance or at
the end of an operand in an inline expression symbol. Figure 23 illustrates a simple exampl e of agoto.

1
goto MyLabel;
GFT Core

Figure 23: Goto Statement

11.4.4 The If-else statement

Theif-else statement shall be represented by an inline expression symbol labelled with thei f keyword and a Boolean
expression as defined in ES 201 873-1 [1], clause 19.6. The if-else inline expression symbol may contain one or two
operands, separated by a dashed line. Figure 24 illustratesan i f statement with a single operand, which is executed
when the Boolean expression x>1 evaluates to true. Figure 25 illustrates an if-else statement in which the top operand
is executed when the Boolean expression x>1 evaluatesto true, and the bottom operand is executed if the Boolean
expression eval uates to false.

My Por t
1 I|:I
] ’ if (x>1) {
if (X>1) :
|
Tenpl atel »{ MyPort.send(Templatel)
5)
}
)
] I
GFT Core

Figure 24: If-Statement

ETSI

29 ETSI ES 201 873-3 V3.1.1 (2005-06)
My Por t _
——— ——— IF o)
|
if(xo1)) ! MyPort.send(Templatel)
|
Tenpl at el »{ }
|
“““““““““““““ ':r““‘"““' else {
|
Tenpl at e2 >: MyPort.send(Template2)
|
[I }
GFT Core

Figure 25: If-else Statement

11.45 The For statement

Thefor statement shall be represented by an inline expression symbol labelled with af or definition asdefined in
ES 201 873-1[1], clause 19.7. The for body shall be represented as the operand of the for inline expression symboal.
Figure 26 represents asimple for 1oop in which the loop variable is declared and initialized within the f or statement.

My Por t

1

|
for(var integer j:=0;j<10;j:=j +1))

Tenpl at el

X

for(var integer j:=0;j<10;j:=j+1) {
MyPort.send(Templatel)

}

GFT

Core

Figure 26: For Statement

11.4.6 The While statement

Thewhi | e symbol shall be represented by an inline expression symbol labelled with awhi | e definition as defined in
ES 201 873-1 [1], clause 19.8. The while body shall be represented as the operand of the while inline expression

symbol. Figure 27 represents an example of awhi | e statement.

My Por t
' hil)
! while(j<10
whi | e(j <1oy : (t
| MyPort.send(Templatel)
Tenpl atel g
npl at e |
; }
!
L] I
GFT Core

Figure 27: While Statement

ETSI

30 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.4.7 The Do-while statement

Thedo- whi | e statement shall be represented by an inline expression symbol |abelled with ado- whi | e definition as
defined in ES 201 873-1 [1], clause 19.9. The do-while body shall be represented as the operand of the do-whileinline
expression symbol. Figure 28 represents an example of ado- whi | e statement.

My Por t
——1
| do {
do while(j <1oy :
] MyPort.send(Templatel);
Tenpl at el N} o
I } while(j<10);
|
|
[| I
GFT Core

Figure 28: Do-while Statement

11.5 Behavioural Program Statements

Behavioural statements may be used within test cases, functions and altsteps, the only exception being the return
statement, which can only be used within functions. Test behaviour can be expressed sequentialy, as a set of
alternatives or using an interleaving statement. Return and repeat are used to control the flow of behaviour.

11.5.1 Sequential Behaviour

Sequentia behaviour is represented by the order of events placed upon atest component instance. The ordering of
events is taken in atop-down manner, with events placed nearest the top of the component instance symbol being
evaluated first. Figure 29 illustrates a simple case in which the test component firstly eval uates the expression contained
within the action symbol and then sends a message to a port MyPor t .

My Por t

T

X:=x+1 x:=x+1;

>

My Tenpl at e(x)

|
|
|
I
I
I MyPort.send(MyTemplate(x));
|
|
|
|
|

[] []
GFT Core

Figure 29: Sequential behaviour
Sequencing can a so be described using references to test cases, functions, and altsteps. In this case, the order in which

references are placed upon a component instance axis determines the order in which they are evaluated. Figure 30
represents asimple GFT diagram in which MyFunct i onl iscaled, followed by MyFunct i on2.

ETSI

31

ETSI ES 201 873-3 V3.1.1 (2005-06)

_[

|

)

MyFunctionl() J

)

|
MyFunction2() }

I,

GFT

MyFunctionl();

MyFunction2();

Core

Figure 30: Sequencing using references

11.5.2 Alternative Behaviour

Alternative behaviour shall be represented using inline expression symbol withtheal t keyword placed in the top left
hand corner. Each operand of the alternative behaviour shall be separated using a dashed line. Operands are evaluated

top-down.

Note that an alternative inline expression should always cover al port instances, if communication operators are
involved. Figure 31 illustrates an alternative behaviour in which either a message event is received with the value
defined by Tenpl at el, or amessage event is received with the value defined by Tenpl at e2. The invocation of an

altstep in an alternative inline expression is shown in figure 32.

My Por t
— I
| : alt {
al't !
< Tonpl atel i [1 MyPort.receive(Templatel) {}
|
____________________ - [1 MyPort.receive(Template2) {}
|
|
< Tenpl at e2 1 g
|
i
[[]
GFT Core

Figure 31: Alternative behaviour statement

In addition, it is possible to call an atstep asthe only event within an alternative operand. This shall be drawn using a

reference symbol (see clause 11.2.3).

My Por t
C I:II
: alt {
alt :
| .
< Tenpl at el : [1 MyPort.receive(Templatel) {}
|
""""""""""" ---- [] MyAltStep()
[M/A tStep ()] ¥
| T
—— ——
GFT Core

Figure 32: Alternative behaviour with altstep invocation

ETSI

32 ETSI ES 201 873-3 V3.1.1 (2005-06)

11521 Selecting/Deselecting an Alternative

It is possible to disable/enable an aternative operand by means of a Boolean expression contained within a condition
symbol placed upon the test component instance. Figure 33 illustrates a simple alternative statement in which the first
operand is guarded with the expressionx > 1, and the second with the expressionx < 1.

My Por t
1 1
|
al t ! alt {
|
x>1 : .
< >] [x>1] MyPort.receive(Templatel) {}
4]
___________ 1; e_”_plf‘t_f{____i____ [x<=1] MyPort.receive(Template2) {}
x<=1 > E 4
|
|
< Tenpl at e2 i
[[
GFT Core
Figure 33: Selecting/deselecting an alternative
11.5.2.2 Else branch in alternatives

The el se branch shal be denoted using a condition symbol placed upon the test component instance axis labelled with
the el se keyword. Figure 34 illustrates a simple alternative statement where the second operand representsan el se
branch.

My Por t
—— —

[x>1] MyPort.receive(Templatel) {}

== [else]MyErrorHandler()

h

GFT Core

Figure 34: Else within an alternative

Note that the reference symbol within an else branch should always cover all port instances, if communication
operations are involved.

The re-evauation of an alt statement can be specified using a repeat statement, which is represented by the repeat
symbol (see clause 11.5.3).

Theinvocation of altsteps within alternatives is represented using the reference symbol (see clause 11.2.3).

11.5.3 The Repeat statement

Ther epeat statement shall be represented by arepeat symbol. This symbol shall only be used as last event of an
alternative operandinan al t statement or as last event of an operand of the top aternative in an altstep definition.
Figure 35 illustrates an aternative statement in which the second operand, having successfully received a message with
avaue matching Tenpl at e2, causes the aternative to be repeated.

ETSI

33 ETSI ES 201 873-3 V3.1.1 (2005-06)

My Por t
I L1
|
alt ' alt {
|
< Tenpl at el |
1 [1 MyPort.receive(Templatel) {}
I D 4
[}
< ! [] MyPort.receive(Template2) { repeat; }
Tenpl at e2 !
E B i 5
|
I
GFT Core

Figure 35: Repeat within an alternative

11.5.4 Interleaved Behaviour

Interleave behaviour shall be represented using an inline expression symbol with the inter leave keyword placed in the
top left hand corner (see figure 36). Each operand shall be separated using a dashed line. Operands are evaluated in a
top-down order.

My Por t
— [
! interleave {
interleave J :
! MyPort.receive(Templatel
oo [My (Template1) {}
[}
____________________________ P [1 MyPort.receive(Template2) {}
[}
[}
< Tenpl at e2 ' g
|
I I
GFT Core

NOTE: Aninterleave inline expression should always cover all port instances if communication operators are
involved.
Figure 36: Interleave statement

11.5.5 The Return statement

Ther et ur n statement shall be represented by areturn symbol. This may be optionally associated with areturn value.
A return symbol shall only be used in a GFT function diagram. It shall only be used as last event of a component
instance or as last event of an operand in an inline expression symbol. Figure 37 illustrates a simple function using a
return statement without a returning a value, and figure 38 illustrates a function that returns a value.

L 1

return;

X

GFT Core

Figure 37: Return symbol without a return value

ETSI

34 ETSI ES 201 873-3 V3.1.1 (2005-06)

return ReturnValue;

X

Ret ur nval ue
GFT Core

Figure 38: Return symbol with a return value

11.6 Default handling

GFT provides graphical representation for the activation and deactivation of defaults (see ES 201 873-1[1], clause 21).

11.6.1 Default references

Variables of type default can either be declared within an action symbol or within a default symbol as part of an
activate statement. Clauses 11.3.1 and 11.3.4 illustrate how avariable called My Def aul t Type isdeclared within
GFT.

11.6.2 The activate operation

The activation of defaults shall be represented by the placement of the activate statement within a default symbol (see
figure 39).

MyDef aul t Var : =
activate(MA tStep ())

——

GFT Core

MyDefaultVar:=activate(MyAltStep());

Figure 39: Default activation

11.6.3 The deactivate operation

The deactivation of defaults shall be represented by the placement of the deactivate statement within a default symbol
(seefigure 40). If no operands are given to the deactivate statement then all defaults are deactivated.

I_l_l

deact i vat e(MyDef aul t Var))
deactivate(MyDefaultVar);

——

GFT Core

Figure 40: Deactivation of defaults

ETSI

35 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.7 Configuration operations

Configuration operations are used to set up and control test components. These operations shall only be used in GFT
test case, function, and altstep diagrams.

The mtc, self, and system operations have no graphical representation; they are textually denoted at the places of their
use.

GFT does not provide any graphical representation for the running operation (being a Boolean expression). It is
textually denoted at the place whereit is used.
11.7.1 The Create operation

The create operation shall be represented within the create symbol, which is attached to the test component instance
which performs the create operation (see figure 41). The create symbol contains the create statement.

1

MyConp: =M/CType. creat e

—

GFT Core

MyComp:=MyCType.create;

Figure 41: Create operation

11.7.2 The Connect and Map operations

The connect and map operations shall be represented within an action box symbol, which is attached to the test
component instance which performs the connect or map operation (see figure 42). The action box symbol contains the
connect or map statement.

L 1

connect (MyConp: Port A, ntc:PortM; connect(MyComp:PortA, mtc:PortM);
map(MyConp: Port B, system PortC)

map(MyComp:PortB, system:PortC);

]
GFT Core

Figure 42: Connect and map operation

11.7.3 The Disconnect and Unmap operations

Thedi sconnect and unnmap operations shall be represented within an action box symbol, which is attached to the
test component instance which performsthedi sconnect or unnmap operation (see figure 43). The action box symbol
containsthe di sconnect or unnmap statement.

ETSI

36 ETSI ES 201 873-3 V3.1.1 (2005-06)

L 1

di sconnect (MyConp: PortA, ntc:PortM; disconnect(MyComp:PortA, mtc:PortM);
unmap(MyConp: Port B, system Port C)

unmap(MyComp:PortB, system:PortC);

|]
GFT Core

Figure 43: Disconnect and unmap operation

11.7.4 The Start test component operation

The start test component operation shall be represented within the start symbol, which is attached to the test
component instance that performs the start operation (see figure 44). The start symbol contains the start statement.

| I

MyConp. st ar t (MyConpBehavi our ())

MyComp.start(MyCompBehaviour());

GFT Core

Figure 44: Start operation

11.7.5 The Stop execution and Stop test component operations

TTCN-3 has two stop operations. The module control and test components may stop themselves by using a stop
execution operations, or atest component can stop other test components by using stop test component operations.

The st op execution operation shall be represented by a stop symbol, which is attached to the test component instance,
which performsthe st op execution operation (see figure 45). It shall only be used as last event of a component
instance or as last event of an operand in an inline expression symbol.

I

stop;

X

GFT Core

Figure 45: Stop execution operation

The stop test component operation shall be represented by a stop symbol, which is attached to the test component
instance, which performs the stop test component operation. It shall have an associated expression that identifies the
component to be stopped (see figure 46). The MTC may stop all PTCsin one step by using the stop component
operation with the keyword all (seefigure 47 a)). A PTC can stop the test execution by stopping the MTC (see

figure 47 b)). The stop test component operation shall be used as last event of a component instance or as last event of
an operand in an inline expression symboal, if the component stopsitself (e.g. sel f. st op) or stops the test execution

(e.g. nt c. st op) (seefigures 47 c) and d)).

NOTE: The stop symbol has an associated expression. It is not always possible to determine staticaly, if astop
component operation stops the instance that executes the stop operation or stops the test execution.

ETSI

37 ETSI ES 201 873-3 V3.1.1 (2005-06)

———1
/ I d .
K conponent Componentld.stop;
I
GFT Core

Figure 46: Stop test component operation

——— ——1]

al | ntc
I I
(a) Stopping all PTCs (b) Stop test case execution
——1] ———

sel f ntc
(c) Stop self execution (d) Stop test case execution

Figure 47: Special usages of the stop test component operation

11.7.6 The Done operation

The done operation shall be represented within a condition symbol, which is attached to the test component instance,
which performs the done operation (see figure 48). The condition symbol contains the done statement.

| I
My Conp. done > MyComp.done;
[]
GFT Core

Figure 48: Done operation

The any and all keywords can be used for the running and done operations but from the MTC instance only. They
have no graphical representation, but are textually denoted at the places of their use.

ETSI

38 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.8 Communication operations

Communication operations are structured into two groups:

a) Sending operations. atest component sends a message (send operation), calls a procedure (cal | operation),
replies to an accepted call (r epl y operation) or raises an exception (r ai se operation).

b) Receiving operations. a component receives amessage (r ecei ve operation), accepts a procedure call
(get cal | operation), receives areply for aprevioudly called procedure (get r epl y operation) or catches an
exception (cat ch operation).

11.8.1 General format of the sending operations

All sending operations use a message symbol that is drawn from the test component instance performing the sending
operation to the port instance to which the information is transmitted (see figure 49).

Sending operations consist of a send part and, in the case of a blocking procedure-based cal | operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the optional type and value of the information to be transmitted;

. gives an optional address expression that uniquely identifies the communication partner in the case of a
one-to-many connection.

The port shall be represented by a port instance. The operation name for the call, reply, and raise operations shall be
denoted on top of the message symbol in front of the optional type information. The send operation isimplicit, i.e. the
send keyword shall not be denoted. The value of the information to be transmitted shall be placed underneath the
message symbol. The optional address expression (denoted by the to keyword) shall be placed underneath the val ue of
the information to be transmitted.

test component instance port at which the specified
performing the sending operation _ sending operation shall take place
I“ E}A.— o
¥ My Por t
1
i nteger : optional type information

value of information
to be transmitted

to MyPeer i optional address expression

M/Vari able + Your'\:/ari able — 2 oo

Figure 49: General format of sending operations

The structure of the call operation is more specific. Please refer to clause 11.8.4.1 for further details.

11.8.2 General format of the receiving operations

All receiving operations use a message symbol drawn from the port instance to the test component instance receiving
the information (see figure 50).

A receiving operation consists of areceive part and an optional assignment part.

ETSI

39 ETSI ES 201 873-3 V3.1.1 (2005-06)

Thereceive part:
a) gpecifiesthe port at which the operation shall take place;

b) definesamatching part consisting of an optional type information and the matching val ue which specifies the
acceptable input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port shall be represented by a port instance. The operation name for the getcall, getreply, and catch operations
shall be denoted on top of the message symbol in front of (optional) type information. The receive operation is given
implicitly, i.e. it the receive keyword shall not be denoted. The matching value for the acceptable input shall be placed
underneath the message symbol. The (optional) address expression (denoted by the from keyword) shall be placed
underneath the value of the information to be transmitted.

The (optional) assignment part (denoted by the '->") shall be placed underneath the value of the information to be
transmitted or if present underneath the address expression. It may be split over several lines, for example to have the
value, parameter and sender assignment each on individual lines (see figure 51).

test component instance port at which the specified
performing the receiving operation _ receiving operation shall teke place
"
4 My Por t
L 1 [
integer <« optional matching type

from MyPeer < optional address expression

optional value assignment

“MyTenpl at (5, 7) < matching value
-> val ue MyVar '

Figure 50: General format of receiving operations with address and value assignment

test component instance port at which the specified
performing the receiving operation _ receiving operation shall take place
¥ MyPor t

getreply MyProc
{?} value 5 matching value

; optional matching type
-> par am (Vl) send:ér wpeer G optional pararn and wnder aﬁgnmmt

Figure 51: General format of receiving operations with param and sender assignment

11.8.3 Message-based communication

11.8.3.1 The Send operation

The send operation shall be represented by an outgoing message symbol from the test component to the port instance.
The optiona type information shall be placed above the message arrow. The (inline) template shall be placed
underneath the message arrow (see figures 52 and 53).

ETSI

40 ETSI ES 201 873-3 V3.1.1 (2005-06)

MWType

M/ Tenp

I ate(5, MyVat)

MyPort.send(MyType: MyTemplate(5,MyVar));

GFT

Core

Figure 52: Send operation with template reference

%Port
i nteger ‘i
5 MyPort.send(integer:5);
[] []
GFT Core

Figure 53: Send operation with inline template

11.8.3.2 The Receive operation

The receive operation shall be represented by an incoming message arrow from the port instance to the test component.
The optional type information shall be placed above the message arrow. The (inline) template shall be placed
underneath the message arrow (see figures 54 and 55).

(I

< WType

My Por t
]

MW Tenp

| ate(5, MyVar)

MyPort.receive(MyType: MyTemplate(5, MyVar));

GFT

Core

Figure 54: Receive operation with template reference

My Por t

|

| integer

5

MyPort.receive(integer:5);

GFT

Core

Figure 55: Receive operation with inline template

ETSI

41 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.8.3.2.1 Receive any message

The receive any message operation shall be represented by an incoming message arrow from the port instance to the test
component without any further information attached to it (see figure 56).

Por t
1

MyPort.receive;

[] []
GFT Core

Figure 56: Receive any message

11.8.3.2.2 Receive on any port

The receive on any port operation shall be represented by a found symbol representing any port to the test component
(seefigure 57).

I

M/Message C

any port.receive(MyMessage);

GFT Core

Figure 57: Receive on any port

11.8.3.3 The Trigger operation

The trigger operation shall be represented by an incoming message arrow from the port instance to the test component
and the keyword trigger above the message arrow preceding the type information if present. The optiona type

information is placed above the message arrow subsequent to the keyword trigger. The (inline) template is placed
underneath the message arrow (see figures 58 and 59).

My Por t
1 1
trigger WType
MTenpl ate MyPort.trigger(MyType: MyTemplate);
[| [|
GFT Core

Figure 58: Trigger operation with template reference

ETSI

42 ETSI ES 201 873-3 V3.1.1 (2005-06)

| My Por t
P trigger integer
5 MyPort.trigger(integer:5);
| | [
GFT Core

Figure 59: Trigger operation with inline template

11.8.3.3.1 Trigger on any message

The trigger on any message operation shall be represented by an incoming message arrow from the port instance to the
test component and the keyword trigger above the message arrow without any further information attached to it (see

figure 60).

M Por t
L]
trigger
MyPort.trigger;
| DN .
GFT Core

Figure 60: Trigger on any message operation

11.8.3.3.2 Trigger on any port

The trigger on any port operation shall be represented by a found symbol representing any port to the test component
(seefigure 61).

I

trigger
M/Message C

any port.trigger(MyMessage);

GFT Core

Figure 61: Trigger on any port operation

11.8.4 Procedure-based communication

11.8.4.1 The Call operation

11.8.4.1.1 Calling blocking procedures

The blocking call operation is represented by an outgoing message symbol from the test component to the port instance
with a subsequent suspension region on the test component and the keyword call above the message arrow preceding
the signature if present. The (inline) template is placed underneath the message arrow (see figures 62 and 63).

ETSI

43 ETSI ES 201 873-3 V3.1.1 (2005-06)

My Por t
L 1 1 _
— MyPort.call(MyProc: MyProcTemplate) {
call MyProc ...
. MyProcTenplate g
...
..
}
[] [|
GFT Core

Figure 62: Blocking call operation with template reference

MyPor t
MyPort.call(MyP {-, MyVar2}) {
yPort.call(MyProc:{ -, MyVar
call
call MyProc ...
-, Mvar2}
! ...
}
[] [
GFT Core

Figure 63: Blocking call operation with inline template

The cdl inline expression isintroduced in order to facilitate the specification of the alternatives of the possible
responses to the blocking call operation. The call operation may be followed by alternatives of getreply, catch and
timeout. The responses to acall are specified within the call inline expression following the call operation separated by
dashed lines (see figure 64).

My Por t
L 1 1
cal |
call MyProc _
{ -, MVar2} MyPort.call(MyProc:{ -, MyVar2}) {

[1 MyPort.getreply(MyProc:{?, ?})

. getreply MyProc
e
-> val ue MyResult

->value MyResult { }

[] MyPort.catch

(MyProc, MyExceptionType: MyException) { }
catch MyProc, MExcept|onType

MyExcepti on }
[] [
GFT Core

Figure 64: Blocking call operation followed by alternatives of getreply and catch

ETSI

44 ETSI ES 201 873-3 V3.1.1 (2005-06)

The call operation may optionally include atimeout. For that, the start implicit timer symbol is used to start thistiming
period. The timeout implicit timer symbol is used to represent the timeout exception (see figure 65).

My Por t MyPort.call(MyProc:{ -, MyVar2},20E-3) {

L 1 7
cal l ..
o0E-357___|_call MpProc R -

AN { -, Mvar2}

- [1 MyPort.catch(timeout) {

VAN

}

I I }

GFT Core

Figure 65: Blocking call operation followed by timeout exception

11.8.4.1.2 Calling non-blocking procedures

The non-blocking call operation shall be represented by an outgoing message symbol from the test component to the
port and the keyword call above the message arrow preceding the signature. There shall be no suspension region
symbol attached to the message symbol. The optional signature is represented above the message arrow. The (inline)
template is placed underneath the message arrow (see figures 66 and 67).

My Por t
I

call MyProc
M/ProcTenpl ate !

MyPort.call(MyProcTemplate, nowait);

I [
GFT Core

Figure 66: Non-blocking call operation with template reference

MyPor t
I I

call MyProc
{ MWyVarl, MyVar2}

MyPort.call(MyProc: {MyVar1,MyVar2}, nowait);

[| []
GFT Core

Figure 67: Non-blocking call operation with inline template

11.8.4.2 The Getcall operation

The getcall operation shall be represented by an incoming message arrow from the port instance to the test component

and the keyword getcall above the message arrow preceding the signature. The signature is placed above the message

arrow subsequent to the keyword getcall. The (inline) template is placed underneath the message arrow (see figures 68
and 69).

ETSI

45 ETSI ES 201 873-3 V3.1.1 (2005-06)

My Por t

_ getcall MyProc
M Tenpl at eRef (2) MyPort.getcall(MyProc: MyTemplateRef(2));
[| [|
GFT Core

Figure 68: Getcall operation with template reference

My Por t
l]
getcal |l MyProc
(5, MyVar2} MyPort.getcall(MyProc: { 5, MyVar2});
[| [|
GFT Core

Figure 69: Getcall operation with inline template

11.8.4.2.1 Accepting any call

The accepting any call operation shall be represented by an incoming message arrow from the port instance to the test
component and the keyword getcall above the message arrow. No further information shall be attached to the message
symbol (seefigure 70).

Port
EE— o
getcal |
- MyPort.getcall;
| [
GFT Core

Figure 70: Getcall on any call operation

11.8.4.2.2 Getcall on any port

The getcall on any port operation is represented by a found symbol representing any port to the test component and the
keyword getcall above the message arrow followed by the signature if present. The (inline) template if present shall be
placed underneath the message arrow (see figure 71).

I

| getcall MyProc
M/ Tenpl at eRef O

any port.getcall(MyProc: MyTemplateRef);

GFT Core

Figure 71: Getcall on any port operation with template reference

ETSI

46 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.8.4.3 The Reply operation

The reply operation shall be represented by an outgoing message symbol from the test component to the port instance
and the keyword r eply above the message arrow preceding the signature. The signature shall be placed above the
message arrow subsequent to the keyword reply. The (inline) template shall be placed underneath the message arrow
(seefigures 72 and 73).

Port
1
reply MyProc MyPort.reply(MyProc: MyTemplateRef value 20);
MyTenpl at eRef
val ue 20
[| [|
GFT Core

Figure 72: Reply operation with template reference

My Por t
reply MProc MyPort.reply(MyProc: {5, MyVar2} value 20);
{5, MyVar2}
val ue 20
[| [|
GFT Core

Figure 73: Reply operation with inline template

11.8.4.4 The Getreply operation

The getreply operation shall be represented by an incoming message arrow from the port instance to the test component
and the keyword getr eply above the message arrow preceding the signature. Within a call symbol, the message arrow
head shall be attached to a preceding suspension region on the test component (see figures 74 and 75). Outside a call
symbol, the message arrow head shall not be attached to a preceding suspension region on the test component (see
figures 76 and 77).

The signature shall be placed above the message arrow subsequent to the keyword getreply. The (inline) template shall
be placed underneath the message arrow.

ugetrepl y MyProc i

My Por t

MyPort.getreply(MyProc: MyTemplateRef value 20);

“ MTenpl at eRef
val ue 20 i
[]

GFT Core

Figure 74: Getreply operation with template reference (within a call symbol)

ETSI

47 ETSI ES 201 873-3 V3.1.1 (2005-06)

%Port

MyPort.getreply(MyProc: {-, ?}

L getreply MyProc

2 value ?) -> value MyResult;
val ue ?
-> val ue MyResul|t
[
GFT Core

Figure 75: Getreply operation with inline template (within a call symbol)

My Por t
I

MyPort.getreply(MyProc: MyTemplateRef

getreply MyProc value 20);
M/ Tenpl at eRef
val ue 20
[| [|
GFT Core

Figure 76: Getreply operation with template reference (outside a call symbol)

Por t

]

MyPort.getreply(MyProc: {-, ?)
P getreply MyProc

g value ?) -> value MyResult;
val ue ?
-> val ue MyResult
[| []
GFT Core

Figure 77: Getreply operation with inline template (outside a call symbol)

11.844.1 Get any reply from any call

The get any reply from any call operation shall be represented by an incoming message arrow from the port instance to
the test component and the keyword getr eply above the message. No signature shall follow the getreply keyword.
Within acall symbol, the message arrow head shall be attached to a preceding suspension region on the test component
(see figure 78). Outside a call symbol, the message arrow head shall not be attached to a preceding suspension region on

the test component (see figure 79).

%}f Por t

[1 MyPort.getreply from MyPeer { ... }

_ getreply
" from My Peer

[] []
GFT Core

Figure 78: Get any reply from any call (within a call symbol)

ETSI

48 ETSI ES 201 873-3 V3.1.1 (2005-06)

My Por t
1]
MyPort.getreply;
getreply
[| [|
GFT Core

Figure 79: Getreply from any call (outside a call symbol)

11.8.4.4.2 Get a reply on any port

The get areply on any port operation is represented by afound symbol representing any port to the test component. The
keyword getreply shall be placed above the message arrow followed by the signature if present. Within acall symbol,
the message arrow head shall be attached to a preceding suspension region on the test component (see figure 80).
Outside a call symbol, the message arrow head shall not be attached to a preceding suspension region on the test
component (see figure 81).

The signature if present shall be placed above the message arrow subsequent to the keyword getr eply. The optional
(inline) template is placed underneath the message arrow.

. getreply
*WQ value MyResult) { ... }

[] any port.getreply(MyProc: MyTemplateRef

val ue MyResul t

GFT Core

Figure 80: Get a reply on any port (within a call symbol)

I

any port.getreply(MyProc: MyTemplateRef

getreply MyPro
<—((M/Terrpl 2t oRef) value MyResult);

val ue Myresult

GFT Core

Figure 81: Get areply on any port (outside a call symbol)

11.8.4.5 The Raise operation
The raise operation shall be represented by an outgoing message symbol from the test component to the port instance.

The keyword raise shall be placed above the message arrow preceding the signature and the exception type, which are
separated by acomma. The (inline) template shall be placed underneath the message arrow (see figures 82 and 83).

ETSI

49 ETSI ES 201 873-3 V3.1.1 (2005-06)

My Por t

MyPort.raise(MyProc,
raise MyProc, MExceptionType

M/ Tenpl at eRef MyExceptionType: MyTemplateRef);
| |
GFT Core

Figure 82: Raise operation with template reference

My Por t
L 1
raise MyProc, integer MyPort.raise(MyProc, integer:5});
5 »>
s |
GFT Core

Figure 83: Raise operation with inline template

11.8.4.6 The Catch operation

The catch operation shall be represented by an incoming message arrow from the port instance to the test component
and the keyword cat ch above the message arrow preceding the signature and the exception type (if present). Within a
call symbol, the message arrow head shall be attached to a preceding suspension region on the test component (see
figures 84 and 85). Outside a call symbol, the message arrow head shall not be attached to a preceding suspension
region on the test component (see figures 86 and 87).

The signature and optiona exception type information are placed above the message arrow subsequent to the keyword
cat ch and are separated by acommaif the exception typeis present. The (inline) template is placed underneath the
message arrow.

My Por t
[i]

[1 MyPort.catch(MyProc, MyTemplate(5)) { ... }

catch MyProc i
b MyTenpl at e(5) i

E—
GFT Core

Figure 84: Catch operation with template reference (within a call symbol)

My Por t
[]

catch MProc, MiType [MyPort.catch(MyProc, MyType: MyVar) { ... }

My Var

[
GFT Core

Figure 85: Catch operation with inline template (within a call symbol)

ETSI

50 ETSI ES 201 873-3 V3.1.1 (2005-06)

MyPor t

catch MyProc MyPort.catch(MyProc, MyTemplate(5));

My Tenpl at e(5)

[] [
GFT Core

Figure 86: Catch operation with template reference (outside a call symbol)

MyPor t
I

catch MpProc, MType MyPort.catch(MyProc, MyType: MyVar);

N My Var

[] []
GFT Core

Figure 87: Catch operation with inline template (outside a call symbol)

11.8.4.6.1 The Timeout exception

The timeout exception operation shall be represented by a timeout symbol with the arrow connected to the test
component (see figure 88). No further information shall be attached to the timeout symbol. It shall be used within a call
symbol only. The message arrow head shall be attached to a preceding suspension region on the test component.

MyPor t
[]

l [MyPort.catch(timeout) { ... }

GFT Core

Figure 88: Timeout exception (within a call symbol)

11.8.4.6.2 Catch any exception

The catch any exception operation shall be represented by an incoming message arrow from the port instance to the test
component and the keyword catch above the message arrow. Within a call symbol, the message arrow head shall be
attached to a preceding suspension region on the test component (see figure 89). Outside a call symbol, the message
arrow head shall not be attached to a preceding suspension region on the test component (see figure 90). The catch any
exception shall have no template and no exception type.

ETSI

51 ETSI ES 201 873-3 V3.1.1 (2005-06)

i
<

. catch

%Port

GFT

[] MyPort.catch { ... }

Core

Figure 89: Catch any exception (within a call symbol)

Por t
MyPort.catch;
catch
] [
GFT Core

Figure 90: Catch any exception (outside a call symbol)

11.8.4.6.3

Catch on any port

The catch on any port operation is represented by a found symbol representing any port to the test component and the
keyword catch above the message arrow. Within a call symbol, the message arrow head shall be attached to a preceding
suspension region on the test component (see figure 91). Outside a call symbol, the message arrow head shall not be
attached to a preceding suspension region on the test component (see figure 92). The template if present is placed

underneath the message arrow.

I

catch MyProc
h MyTenpl at eRef

O

[] any port.catch(MyProc: MyTemplateRef) { ... }

GFT

Core

Figure 91: Catch on any port (within a call symbol)

L]

catch MyProc

MyTenpl at eRef

O

any port.catch(MyProc: MyTemplateRef);

GFT

Core

Figure 92: Catch on any port (outside a call symbol)

ETSI

52 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.8.5 The Check operation

The check operation shall be represented by an incoming message arrow from the port instance to the test component.
The keyword check shall be placed above the message arrow. The attachment of the information related to the
recei ve (seefigure93), get cal | , get repl y (seefigures 94 and 95) and cat ch follows the check keyword and
is according to the rules for representing those operations.

] My Por t
[J

check integer

<

5 MyPort.check(receive(integer: 5));

| |
GFT Core

Figure 93: Check a receive with inline template

T %Port

[1 MyPort.check(getreply(MyProc1:{MyVarl, MyVar2}

f check getreply l\zlﬁ/Pr oc value ?) -> val ue MyResult)
“{ MyVar1, MyVar2} |
val ue ? : {...}
-> val ue MyResult
_' :
GFT Core

Figure 94: Check a getreply (within a call symbol)

My Por t
MyPort.check(getreply(MyProcl:{MyVarl, MyVar2}
| check getreply l\/inroc value ?) -> val ue MyResult);
MyTenpl at eRef i
val ue 20 i
[| []
GFT Core

Figure 95: Check a getreply (outside a call symbol)

11.8.5.1 The Check any operation

The check any operation shall be represented by an incoming message arrow from the port instance to the test
component and the keyword check above the message arrow (see figure 96). It shall have no receiving operation
keyword, type and template attached to it. Optionally, an address information and storing the sender can be attached.

My Por t
] []

check

MyPort.check;

[] |
GFT Core

Figure 96: Check any operation

ETSI

53 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.8.5.2 Check on any port

The check on any port operation is represented by afound symbol representing any port to the test component and the
keyword check above the message arrow (see figure 97). The attachment of the information related to the receive,
getcall, getreply and catch follows the check keyword and is according to the rules for representing those operations.

I

check

My Tenpl at eRef O

any port.check(receive(MyTemplateRef));

GFT Core

Figure 97: Check a receive on any port

11.8.6 Controlling communication ports

11.8.6.1 The Clear port operation

The clear port operation shall be represented by a condition symbol with the keyword clear. It is attached to the test
component instance, which performs the clear port operation, and to the port that is cleared (see figure 98).

My Por t
[

MyPort.clear;
< cl ear >

I
GFT Core

Figure 98: Clear port operation

11.8.6.2 The Start port operation

The start port operation shall be represented by a condition symbol with the keyword start. It is attached to the test
component instance, which performs the start port operation, and to the port that is started (see figure 99).

My Por t
[

MyPort.start;
< start >

[B 000]
GFT Core

Figure 99: Start port operation

ETSI

54 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.8.6.3 The Stop port operation

The stop port operation shall be represented by a condition symbol with the keyword stop. It is attached to the test
component instance, which performs the stop port operation, and to the port that is stopped (see figure 100).

My Por t
[]

MyPort.stop;
< st op >

[B 000]
GFT Core

Figure 100: Stop port operation

11.8.6.4 Use of any and all with ports

The GFT representation of the any keyword for ports together with the receive, trigger, getcall, getreply, catch, and
check operationsis explained in the respective subclauses of clause 11.8.

The all keyword for ports together with the clear, start and stop operation is represented by attaching the condition
symbol containing the clear, start or stop operation to all port instances represented in the GFT diagram for atestcase,
function or altstep.

11.9 Timer operations
In GFT, there are two different timer symbols: one for identified timers and one for call timers (see figure 101). They
differ in appearance as solid line timer symbols are used for identified timers and dashed timer symbols for call timers.

An identified timer shall have its name attached to its symbol, whereas a call timer does not have a name. Identified
timers are described in this clause. The call timer isdealt in clause 11.8.4.

MyTi mer X V)Z’-
N

Figure 101: Identified timer and call timers

GFT does not provide any graphical representation for the running timer operation (being a Boolean expression). It is
textually denoted at the places of its use.

11.9.1 The Start timer operation

For the start timer operation, the start timer symbol shall be attached to the component instance. A timer name and an
optional duration value (within parentheses) may be associated (see figure 102).

My Ti mer (10. 0) MyTimer.st art (10.0);

GFT Core

Figure 102: The start timer operation

ETSI

55 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.9.2 The Stop timer operation

For the stop timer operation, the stop timer symbol shall be attached to the component instance. An optional timer name
may be associated (see figure 103).

M/ Ti mer MyTimer.st op;

GFT Core

Figure 103: The stop timer operation

The symbols for astart timer and a stop timer operation may be connected with a vertical line. In this case, the timer
identifier needs only be specified next to the start timer symbol (see figure 104).

L
Timer(10.0
W () MyTimer.start(10.0);
MyTimer.st op;
I
GFT Core

Figure 104: Connected start and stop timer symbols

11.9.3 The Timeout operation

For the timeout operation, the timeout symbol shall be attached to the component instance. An optiona timer name may
be associated (see figure 105).

MW Ti mer MyTimer.t i meout ;

GFT Core

Figure 105: The timeout operation

The symbols for a start timer and a timeout operation may be connected with a vertical line. In this case, the timer
identifier needs only be specified next to the start timer symbol (see figure 106).

MyTimer.st art (10.0);
My Ti ner (10. 0)

MyTimer.timeout;

GFT Core

Figure 106: Connected start and timeout timer symbols

ETSI

56 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.9.4 The Read timer operation

The read timer operation shall be put into an action box (see figure 107).

w%”‘:m .:r ead MyVar := MyTimer.read;
GFT Core

Figure 107: The read timer operation

11.9.5 Use of any and all with timers

The stop timer operation can be appliedto al | timers (see figure 108).

all timer.stop;

GFT Core

Figure 108: Stopping all timers

The timeout operation can be applied to any timer (see figure 109).

any timer.timeout;

GFT Core

Figure 109: Timeout from any timer

11.10 Test verdict operations

The verdict set operation set ver di ct isrepresented in GFT with a condition symbol within which the values pass,
fail,inconc ornone aredenoted (seefigure 110).

NOTE: Therulesfor setting a new verdict follow the norma TTCN-3 overwriting rules for test verdicts.

@ setverdict(pass);

GFT Core

Figure 110: Set local verdict

GFT does not provide any graphical representation for the getver dict operation (being an expression). It is textually
denoted at the places of its use.

ETSI

57 ETSI ES 201 873-3 V3.1.1 (2005-06)

11.11 External actions

External actions are represented within action box symbols (see figure 111). The syntax of the external action is placed
within that symbol.

action(
"Send MyTenpl ate action("Send MyTemplate on lower PCO ");
on lower PCO ")
*
GFT Core

Figure 111: External actions

11.12 Specifying attributes

The attributes defined for the module control part, testcases, functions and altsteps are represented within the text
symbol. The syntax of the with statement is placed within that symbol. An exampleis givenin figure 112.

testcase MyTestcase() {
testcase MyTestcase()

ext ensi on }
“MySpeci al Loggi ng()"

with {

extension 'MySpecialLogging()"

}
GFT Core

Figure 112: Specifying attributes

ETSI

58 ETSI ES 201 873-3 V3.1.1 (2005-06)

Annex A (normative):
GFT BNF

A.1 Meta-Language for GFT

The graphical syntax for GFT is defined on the basis of the graphical syntax of MSC (ITU-T Recommendation
Z.120[3]). The graphical syntax definition uses a meta-language, which is explained in clause 1.3.4 of ITU-T
Recommendation Z.120 [3]:

"The graphical syntax is not precise enough to describe the graphics such that there are no graphical variations. Small
variations on the actual shapes of the graphical terminal symbols are allowed. These include, for instance, shading of
the filled symbols, the shape of an arrow head and the relative size of graphical elements. Whenever necessary the
graphical syntax will be supplemented with informal explanation of the appearance of the constructions.

The meta-language consists of a BNF-like notation with the special meta-constructions: contains, is followed by, is
associated with, is attached to, above and set. These constructs behave like normal BNF production rules, but
additionally they imply some logical or geometrical relation between the arguments. Theis attached to construct
behaves somewhat differently as explained below. The left-hand side of all constructs except above must be a symbol.
A symbol isanon-terminal that produces in every production sequence exactly one graphical terminal. We will
consider asymbol that is attached to other areas or that is associated with atext string as a symbol too. The explanation
isinformal and the meta-language does not precisely describe the geometrical dependencies.”

See ITU-T Recommendation Z.120 [3] for more details.

A.2 Conventions for the syntax description

Table A.1 defines the meta-notation used to specify the grammar for GFT. It isidentical to the meta-notation used by
TTCN-3, but different from the meta-notation used by MSC. In order to ease the readability, the correspondence to the
MSC meta-notation is given in addition and differences are indicated.

Table A.1: The Syntactic Meta-Notation

Meaning TTCN-3 GFT MSC Differences
is defined to be n= n= =
abc followed by xyz abc xyz abc xyz abc xyz
Alternative | | |
0 or 1 instances of abc [abc] [abc] [abc]
0 or more instances of abc {abc} {abc} {abc}* X
1 or more instances of abc {abc} + {abc} + {abc} +
Textual grouping () () {.} X
the non-terminal symbol abc abc abc <abc> X
(for a GFT non-terminal)
or abc
(for a TTCN non-terminal)
a terminal symbol abc abc abc abc or X
<name> or
<character string>

ETSI

59 ETSI ES 201 873-3 V3.1.1 (2005-06)

A.3 The GFT grammar

A.3.1 Diagrams

A.3.1.1 Control diagram

Control Diagram : : =
Frame contains (Control Headi ng Contr ol BodyArea)

Control Heading :: =
TTCN3Modul eKeywor d TTCN3Mbdul el d
{ Local Definition [Semi Colon] }

Cont rol BodyArea :: =
{ Control I nstanceArea TextLayer Control EventLayer } set

Text Layer ::=
{ TextArea } set

Control Event Layer:: =
Control Event Area | Control Event Area above Control Event Layer

Control EventArea ::=

I nst anceTi ner Event Ar ea
| Cont rol Acti onArea
| I nst ancel nvocat i onAr ea
| Execut eTest caseAr ea
| Control I nl i neExpressi onArea)
[is associated with { Conment Area } set]

A.3.1.2 Testcase diagram

TestcaseDi agram : : =
Frame contains (TestcaseHeadi ng TestcaseBodyArea)

Test caseHeading :: =
Test caseKeywor d Test casel denti fi er
"('[TestcaseFormal ParList] ')’

Conf i gSpec
{ Local Definition [Sem Colon] }

Test caseBodyArea :: =
{ InstanceLayer TextLayer |InstanceEventLayer PortEventLayer ConnectorlLayer } set

I nstancelLayer ::=
{ InstanceArea } set

I nst anceEvent Layer ::=
I nstanceEvent Area | | nstanceEvent Area above | nstanceEvent Layer

I nstanceEvent Area ::=
(
I nst anceSendEvent Ar ea
| I nst anceRecei veEvent Ar ea
| I nst anceCal | Event Ar ea
| I nst anceGet cal | Event Ar ea
| I nst anceRepl yEvent Ar ea
| I nst anceCet r epl yW't hi nCal | Event Ar ea
| I nst anceGet r epl yQut si deCal | Event Ar ea
| I nst anceRai seEvent Ar ea
| I nst anceCat chW't hi nCal | Event Ar ea
| I nst anceCat chTi neout Wt hi nCal | Event Ar ea
| | nst anceCat chQut si deCal | Event Ar ea
| I nst anceTr i gger Event Ar ea
| I nst anceCheckEvent Ar ea
| I nst anceFoundEvent Ar ea
| I nst anceTi ner Event Ar ea
| I nst anceAct i onAr ea
| I nst anceLabel I i ngAr ea

ETSI

60 ETSI ES 201 873-3 V3.1.1 (2005-06)

| I nst anceCondi ti onAr ea

| I nst ancel nvocat i onAr ea

| I nst anceDef aul t Handl i ngAr ea

| I nst anceConponent Cr eat eAr ea

| I nst anceConponent St art Ar ea

| I nst anceConponent St opAr ea

| I nst ancel nl i neExpr essi onArea)

[is associated with { Conment Area } set]

/* STATIC SEMANTICS - a condition area containing a boolean expression shall be used within alt inline expression, i.e. AltArea, and
call inline expression, i.e. CallArea, only */

I nstanceCal | Event Area :: =
I nst anceBl ocki ngCal | Event Ar ea
| I nst anceNonBlI ocki ngCal | Event Ar ea

Port Event Layer ::=
Port Event Area | PortEvent Area above Port Event Layer

Port Event Area :: =
Port Qut Event Ar ea
| Port & her Event Ar ea

Port Qut Event Area :: =

Port Qut MsgEvent Ar ea

Port Get cal | Qut Event Area
Por t Get r epl yQut Event Ar ea
Port Cat chQut Event Ar ea
Port Tri gger Qut Event Ar ea
Por t CheckQut Event Ar ea

Port Ot her Event Area :: =

Port | nMsgEvent Ar ea

Port Cal | | nEvent Ar ea

Por t Repl yl nEvent Ar ea
Port Rai sel nEvent Ar ea
Port Condi ti onAr ea

Port | nvocati onArea

Port | nli neExpr essi onAr ea

Connect or Layer ::=
{
SendAr ea
| Recei veAr ea
| NonBlI ocki ngCal | Area
| Getcal | Area
| Repl yAr ea
| Getrepl yWthinCal |l Area
| Getrepl yQut si deCal | Area
| Rai seAr ea
| Cat chWt hi nCal | Area
| Cat chQut si deCal | Area
| TriggerArea
| CheckAr ea
| Condi ti onArea
| I nvocat i onAr ea
| I nl'i neExpr essi onAr ea
} set

A.3.1.3 Function diagram

Functi onDi agram : : =
Frame contains (FunctionHeadi ng Functi onBodyArea)

FunctionHeading :: =
Funct i onKeywor d Functi onl denti fi er
"('[FunctionFormal ParList] ")’
[RunsOnSpec] [ReturnType]
{ Local Definition [Sem Colon] }

Functi onBodyArea ::=
Test caseBodyAr ea

ETSI

61 ETSI ES 201 873-3 V3.1.1 (2005-06)

A.3.1.4 Altstep diagram

Al tstepDiagram:: =
Frame contains (Al tstepHeadi ng AltstepBodyArea)

Al tstepHeading :: =
Al t st epKeyword Al t st epl denti fier
"("[Al tstepFormal ParList] ")’

[RunsOnSpec]
{ Local Definition [Sem Colon] }

Al tstepBodyArea :: =
Test caseBodyAr ea

/* STATIC SEMANTICS - a altstep body area shall contain a single alt inline expression only */

A.3.1.5 Comments

TextArea ::=
Text Synbol
contains ({ TTCN3Comments } [MultiWthAttrib] { TTCN3Comments })

Note that there is no explicit rule for TTCN3 comments, they are explained in ES 201 873-1 [1], clause A.1.4.
/* STATIC SEMANTICS - within a diagram there shall be at most one text symbol defining a with statement */

Text Symbol ::=

Conment Area :: =
Event Conment Synbol contai ns TTCN3Conment s
Event Comment Synbol :: =

/* STATIC SEMANTICS - a comment symbol can be attached to any graphical symbol in GFT */

A.3.1.6 Diagram

Frame ::=

Local Definition ::=
Const Def
| Var | nst ance
| Ti ner |l nst ance

/* STATI C SEMANTI CS - decl arations of constants and variables with create, activate, and execute
statements as well as with functions that include comrmunication functions nmust not be made textually
wi thin Local Definition, but nust be nade graphically within create, default, execute, and reference
synbol s, respectively */

ETSI

62 ETSI ES 201 873-3 V3.1.1 (2005-06)

A.3.2 Instances

A.3.2.1 Component instances

I nstanceArea :: =
Conponent | nst anceAr ea
| PortlnstanceArea

Conponent | nst anceArea :: =
Conponent HeadArea is followed by Conponent BodyArea

Conmponent HeadAr ea: : =

(Mroop | Selfop) .
is followed by (InstanceHeadSynbol [contains Conponent Type])

I nst anceHeadSynbol ::=

1

Conponent BodyArea :: =
I nst anceAxi sSynbol
is attached to { |InstanceEventArea} set
is foll owed by Conponent EndArea

I nst anceAxi sSynbol : : =

Conmponent EndArea :: =
I nst anceEndSynbol
| StopArea
| ReturnArea
| Repeat Synbol
| Cot oArea

[* STATIC SEMANTICS - the return symbol shall be used within function diagrams only */
[* STATIC SEMANTICS - the repeat symbol shall end the component instance of a altstep diagram only */

A.3.2.2 Portinstances

PortlnstanceArea ::=
Port HeadArea is fol |l owed by PortBodyArea

Por t HeadArea: : =
Por t
is followed by (InstanceHeadSynbol [contains PortType])

Port BodyArea ::=
Por t Axi sSynbol
is attached to { PortEventArea} set
is foll owed by | nstanceEndSynbol

Por t Axi sSynbol : : =

ETSI

63 ETSI ES 201 873-3 V3.1.1 (2005-06)

A.3.2.3 Control instances

Control | nstanceArea :: =
Control | nstanceHeadArea is foll owed by Control | nstanceBodyAr ea

Control | nstanceHeadArea :: =

Cont r ol Keyword
is foll owed by I nstanceHeadSynbol

Control | nst anceBodyArea: : =
| nst anceAxi sSynbol
is attached to { Control EventArea} set
is followed by ControllnstanceEndArea

Control | nstanceEndArea :: =
I nst anceEndSynbol

A.3.2.4 Instance end

I nst anceEndSynbol ::=

StopArea: : =
St opSynbol
is associated with (Expression)

/* STATIC SEMANTICS - the expression shall refer to either the mtc or to self */

StopSymbol::=
ReturnArea:: =
Ret ur nSynbol
[is associated with Expression]
ReturnSymbol::=

RepeatSymbol::

Cot 0Area: : =
Got oSynbol
contains Label Identifier

GotoSymbol::=

ETSI

64 ETSI ES 201 873-3 V3.1.1 (2005-06)

A.3.3 Timer

I nst anceTi mer Event Area: : =
I nstanceTi nmer St art Area
| I nstanceTi ner St opAr ea
| I'nstanceTi neout Area

I nstanceTinerStartArea ::=
Ti mer St art Synbol
is associated with (TinerRef ["(" TinerValue ")"])
is attached to | nstanceAxi sSynbol
[is attached to { TimerStopSynbol 2 | Ti meout Synbol 3 }]

Timer Start Synmbol ::=
TimerStart Synbol 1 | Ti mer Start Synbol 2

TimerStartSymboll ::=

X

TimerStartSymbol2 ::=

—X

I nst anceTi ner St opArea :: =
Ti mer St opAreal | Ti mer St opArea2

Ti mer St opAreal ::=
Ti mer St opSynbol 1
is associated with Ti mer Ref
is attached to | nstanceAxi sSynbol

Ti mer StopArea2 :: =
Ti mer St opSynbol 2
is attached to | nstanceAxi sSynbol
is attached to TinerStart Synbol

TimerStopSymboll ::

TimerStopSymbol2 ::

I nstanceTi neout Area :: =
Ti meout Areal | Ti meout Area2

Ti meout Areal ::=
Ti meout Synbol
is associated with Ti mer Ref
is attached to | nstanceAxi sSynbol

Ti meout Area2 :: =
Ti meout Synbol 3
is attached to | nstanceAxi sSynbol
is attached to TinerStart Synbol

Ti meout Synbol :: =
Ti meout Synbol 1 | Ti meout Synbol 2

ETSI

65 ETSI ES 201 873-3 V3.1.1 (2005-06)

TimeoutSymbol1l ::

X
<—

TimeoutSymbol2 ::

TimeoutSymbol3 ::

<

A.3.4 Action

I nstanceActi onArea ::=
Act i onSynbol
contains { ActionStaterment [Sem Colon] }+
is attached to | nstanceAxi sSynbol

ActionSymbol ::=

ActionStatenent ::=
SUTSt at enent s
Connect St at enent

MapSt at enent
Di sconnect St at enent

|

|

| UnmapSt at enent
| Const Def

| Varlnstance
|

|

[

|

Ti ner |l nst ance
Assi gnnent
LogSt at enent

LoopConst r uct
Condi ti onal Construct

/* STATIC SEMANTICS - declarations of constants and variables with create, activate, and execute statements as well as with function
invocations of user-defined functions must not be made textually within an action box, but must be made graphically within create,
default, execute, and reference symbols, respectively */

/* STATIC SEMANTICS - assignments with create, activate, and execute statements as well as with function invocations of user-defined
functions must not be made textually within an action box, but must be made graphically within create, default, execute, and reference
symbols, respectively */

[* STATIC SEMANTICS - only those loop and conditional constructs, which do not involve communication operations, i.e. those with
'data functions' only, may be contained in action boxes */

Control ActionArea ::=
Act i onSynbol
is attached to | nstanceAxi sSynbol
contains { Control ActionStatenent [Sem Colon] }+

Control ActionStatenent ::=
SUTSt at enent s
| Const Def
| Varl nstance
| Tinerlnstance
| Assignment
| LogSt at emrent

ETSI

66 ETSI ES 201 873-3 V3.1.1 (2005-06)

/* STATIC SEMANTICS - declarations of constants and variables with create, activate, and execute statements as well as with function
invocations of user-defined functions must not be made textually within an action box, but must be made graphically within create,
default, execute, and reference symbols, respectively */

/* STATIC SEMANTICS - assignments with create, activate, and execute statements as well as with function invocations of
user-defined functions must not be made textually within an action box, but must be made graphically within create, default, execute,
and reference symbols, respectively */

A.3.5 Invocation

I nvocationArea :: =
Ref er enceSynbol
contains Invocation
is attached to | nstanceAxi sSynbol
[is attached to { PortAxisSynbol } set]

/* STATIC SEMANTICS - all port instances have to be covered by the reference symbol for an invoked function if it has a runs on
specification, as well as for an invoked altstep */

/* STATIC SEMANTICS - only those port instances, which are passed into a function via port parameters, have to be covered by the
reference symbol for an invoked function without a runs on specification. Note that the reference symbol may be attached to port
instances which are not passed as port parameters into the function. */

I nvocation ::=
Functi onl nst ance
| Altsteplnstance
| Const Def
| Varlnstance
|

Assi gnnent

ReferenceSymbol ::=

()

A.3.5.1 Function and altstep invocation on component/Control instances

I nst ancel nvocati onArea :: =
I nst ancel nvocat i onBegi nSynbol
is followed by Instancel nvocati onEndSynbol
is attached to | nstanceAxi sSynbol
is attached to | nvocationArea

I nst ancel nvocat i onBegi nSynbol ::=
Voi dSynbol

I nst ancel nvocat i onEndSynbol :: =
Voi dSynbol

A.3.5.2 Function and altstep invocation on ports

Portl nvocati onArea ::=
Port | nvocat i onBegi nSynbol
is followed by Portlnvocati onEndSynbol
is attached to Port Axi sSynbol
is attached to | nvocationArea

/* STATIC SEMANTICS - only invocations with function instances and test step instances shall be attached to a port instance, in that
case all port instances have to be covered by the reference symbol for an invoked function if it has a runs on specification, as well as for
an invoked altstep */

Port | nvocat i onBegi nSynbol ::=
Voi dSynbol

Port | nvocati onEndSynbol ::=
Voi dSynbol

ETSI

67

A.3.5.3 Testcase execution

Execut eTest caseArea :: =
Execut eSynbol
cont ai ns Test CaseExecuti on
is attached to | nstanceAxi sSynbol

Test CaseExecution:: =
Test casel nst ance
| Const Def
| Varl nstance
| Assi gnnent

ETSI ES 201 873-3 V3.1.1 (2005-06)

/* STATIC SEMANTICS - declarations of constants and variables as well as assignments shall use as outermost right-hand expression

an execute statement */

ExecuteSymbol ::=

(

A.3.6 Activation/Deactivation of defaults

I nst anceDef aul t Handl i ngArea :: =
Def aul t Synbol
cont ai ns Def aul t Handl i ng
is attached to | nstanceAxi sSynbol

Def aul t Handl i ng: : =
Activat eQp
| Deacti vat eSt at enent
| Const Def
| Varlnstance
| Assi gnnent

/* STATIC SEMANTICS - declarations of constants and variables as well as assignments shall use as outermost right-hand expression

an activate statement */

DefaultSymbol ::=

A.3.7 Test components

A.3.7.1 Creation of test components

I nst anceConponent CreateArea :: =
Cr eat eSynbol
contains Creation
is attached to | nstanceAxi sSynbol

Creation ::=
CreateQp
| Const Def
| Varlnstance
| Assi gnnent

/* STATIC SEMANTICS - declarations of constants and variables as well as assignments shall use as outermost right-hand expression

a create statement */

CreateSymbol ::=

ETSI

68 ETSI ES 201 873-3 V3.1.1 (2005-06)

A.3.7.2 Starting test components

I nstanceConponent StartArea :: =
St art Synbol
contains StartTCSt at enent
is attached to | nstanceAxi sSynbol

StartSymbol ::=

A.3.7.3 Stopping test components

I nst anceConponent St opArea :: =
St opSynbol
is associated with (Expression | AllKeyword)
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - the expression shall refer to a component identifier */
/* STATIC SEMANTICS - the instance component stop area shall be used as last event of an operand in an inline expression symbol, if
the component stops itself (e.g. self.stop) or stops the test execution (e.g. mtc.stop). */

A.3.8 Inline expressions

I nl'i neExpressionArea :: =
I fArea
| ForArea
| Wil eArea
| DoWhil eArea
| AltArea
| I'nterleaveArea
| CallArea

IfArea :: =

I f1nlineExpressi onArea

is attached to | nstancel nlineExpressi onBegi nSynbol

[is attached to InstancelnlineExpressi onSepar at or Synbol]

is attached to | nstancelnlineExpressi onEndSynbol

[is attached to { PortlnlineExpressionBegi nSynbol } set
[is attached to { PortlnlineExpressi onSeparatorSynbol } set]
is attached to { PortlnlineExpressi onEndSynbol } set]

/* STATIC SEMANTICS - if a SeparatorSymbol is contained in the inline expression symbol, then
InstancelnlineExpressionSeparatorSymbols on component and port instances are used to attach the SeparatorSymbol to the
respective instances. */

I nst ancel nl i neExpr essi onBegi nSynbol ::=
Voi dSynbol

I nst ancel nl i neExpr essi onSepar at or Synbol : : =
Voi dSynbol

I nst ancel nl i neExpr essi onEndSynbol :: =
Voi dSynbol

Voi dSynbol ::=

I f1InlineExpressionArea ::=
I nl'i neExpr essi onSynbol
contains (|fKeyword ' (' Bool eanExpression ')’
is foll owed by QOperandArea
[is followed by Separator Synbol
is followed by OperandArea])

OperandArea :: =
Connect or Layer
/* STATIC SEMANTICS - the event layer within an operand area shall not have a condition with a boolean expression */

ETSI

69 ETSI ES 201 873-3 V3.1.1 (2005-06)

ForArea ::=
For I nl i neExpr essi onAr ea
is attached to | nstancel nlineExpressi onBegi nSynbol
is attached to | nstancelnlineExpressi onEndSynbol
[is attached to { PortlnlineExpressionBegi nSynbol } set
is attached to { PortlnlineExpressi onEndSynbol } set]

For I nli neExpressi onArea :: =
I nl'i neExpr essi onSynbol
contains (ForKeyword '(' Initial [Sem Colon] Final [Sem Colon] Step ')’
is followed by OperandArea)

Wil eArea :: =
Wi | el nl i neExpr essi onAr ea
is attached to | nstancel nlineExpressi onBegi nSynbol
is attached to | nstancelnlineExpressi onEndSynbol
[is attached to { PortlnlineExpressi onBegi nSynbol } set
is attached to { PortlnlineExpressi onEndSynbol } set]

Wi | el nl i neExpressi onArea :: =
I nl'i neExpr essi onSynbol
contains (Wil eKeyword ' (' Bool eanExpression ')’
is followed by OperandArea)

DoWi | eArea :: =
DoWhi | el nl i neExpr essi onAr ea
is attached to | nstancel nlineExpressi onBegi nSynbol
is attached to | nstancelnlineExpressi onEndSynbol
[is attached to { PortlnlineExpressionBegi nSynbol } set
is attached to { PortlnlineExpressi onEndSynbol } set]

DoWhi | el nl i neExpressi onArea :: =
I nl'i neExpr essi onSynbol
contains (DoKeyword Wil eKeyword ' (' Bool eanExpression ')’
is followed by OperandArea)

AtArea ::=

Al tInlineExpressi onArea

is attached to | nstancel nlineExpressi onBegi nSynbol

{ is attached to Instancel nlineExpressi onSepar at or Synbol }

is attached to | nstancelnlineExpressi onEndSynbol

[is attached to { PortlnlineExpressionBegi nSynbol } set
[is attached to { PortlnlineExpressi onSeparatorSynbol } set]
is attached to { PortlnlineExpressi onEndSynbol } set]

/* STATIC SEMANTICS - the number of InstancelnlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstancelnlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

Al tInlineExpressionArea ::=
I nl'i neExpr essi onSynbol
contains (A tKeyword
is foll owed by GuardedQper andArea
{ is followed by Separator Synbol
is foll owed by GuardedOperandArea }
[is followed by Separator Synbol
is foll owed by El seOperandArea])

Guar dedOperandArea :: =
GuardQpLayer is foll owed by
Connect or Layer

/* STATIC SEMANTICS - for the individual operands of an alt inline expression at first, either a InstanceTimeoutArea shall be given on
the component instance, or a GuardOpLayer has to be given */

Guar dOpLayer ::=
DoneAr ea
| Recei veArea
| TriggerArea
| Getcall Area
| CatchQutsideCall Area
| CheckArea
| Getrepl yQutsideCall Area

El seQperandArea :: =

El seCondi ti onArea
is foll owed by ConnectorLayer

ETSI

70 ETSI ES 201 873-3 V3.1.1 (2005-06)

Interl eaveArea ::=

I nterl eavel nl i neExpr essi onAr ea

is attached to | nstancel nlineExpressi onBegi nSynbol

{ is attached to Instancel nlineExpressi onSepar at or Synbol }

is attached to | nstancelnlineExpressi onEndSynbol

[is attached to { PortlnlineExpressi onBegi nSynbol } set
[is attached to { PortlnlineExpressi onSeparatorSynbol } set]
is attached to { PortlnlineExpressi onEndSynbol } set]

/* STATIC SEMANTICS - the number of InstancelnlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstancelnlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

I nterl eavel nl i neExpressi onArea ::=
I nl'i neExpr essi onSynbol
contains (Interl eavedKeyword
is followed by UnguardedOper andArea
{ is followed by Separator Synbol
is foll owed by UnguardedOperandArea })

Unguar dedOper andArea :: =
Unguar dedOplLayer is followed by
Connect or Layer

/* STATIC SEMANTICS - the connector layer within an interleave inline expression area may not contain loop statements, goto,
activate, deactivate, stop, return or calls to functions */

Unguar dedQpLayer :: =
Recei veAr ea
| TriggerArea
| Getcall Area
| CatchQutsideCall Area
| CheckArea
| Getrepl yQutsideCall Area

Call Area ::=

Cal I I nl i neExpr essi onAr ea

is attached to | nstancel nlineExpressi onBegi nSynbol

{ is attached to Instancel nlineExpressi onSepar at or Synbol }

is attached to I nstancelnlineExpressi onEndSynbol

[is attached to { PortlnlineExpressionBegi nSynbol } set
[is attached to { PortlnlineExpressi onSeparatorSynbol } set]
is attached to { PortlnlineExpressi onEndSynbol } set]

/* STATIC SEMANTICS - the number of InstancelnlineExpressionSeparatorSymbol per component and port instances has to adhere to
the number of SeparatorSymbols contained within the inline expression symbol: the InstancelnlineExpressionSeparatorSymbol on
component and port instances are used to attach the SeparatorSymbols to the respective instances. */

Cal I I nl i neExpressionArea ::=
I nl'i neExpr essi onSynbol
contains (Call OpKeyword ' (' Tenplatelnstance ')' [Tod ause]
is followed by |nstanceCal |l Event Area
{ is followed by Separator Synbol
is foll owed by GuardedCal | OperandArea })

Quar dedCal | OperandArea :: =
[QuardedConditionLayer is followed by]
Cal | BodyOpsLayer
is attached to Suspensi onRegi onSynbol
is foll owed by ConnectorLayer

/* STATIC SEMANTICS - for the individual operands in the GuardedCallOperandArea of a call inline expression at first, either a
InstanceCatchTimeoutWithinCallEventArea shall be given on the component instance, or a CallBodyOpsLayer has to be given */

Guar dedCondi ti onLayer ::=
Bool eanExpr essi onCondi ti onAr ea
| DoneArea

Cal | BodyQpsLayer ::=

Getrepl yWthinCal |l Area
| CatchWthinCallArea

ETSI

71

InlineExpressionSymbol ::=

/

SeparatorSymbol::=

A.3.8.1 Inline expressions on component instances

I nst ancel nl i neExpressi onArea :: =
I nst ancel f Area
| I nstanceFor Area
| I'nstanceWil eArea
| I nstanceDoWi | eAr ea
| I'nstanceAlt Area
| I'nstancel nterl eaveArea
| I'nstanceCall Area

Instancel fArea ::=

(I'nstancel nl i neExpressi onBegi nSynbol
{ is followed by InstanceEventArea }
{ is followed by Instancel nlineExpressi onSepar at or Synbol

{ is followed by InstanceEventArea }]

is foll owed by I nstancel nlineExpressi onEndSynbol)

is attached to | nstanceAxi sSynbol

is attached to |flnlineExpressionArea

I nstanceForArea ::=
(I'nstancel nl i neExpr essi onBegi nSynbol
{ is followed by InstanceEventArea }
is foll owed by I nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to ForlnlineExpressionArea

I nstanceWil eArea :: =
(I'nstancel nl i neExpr essi onBegi nSynbol
{ is followed by InstanceEventArea }
is followed by I nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to Wil el nlineExpressi onArea

I nstanceDoWi | eArea :: =
(I'nstancel nl i neExpressi onBegi nSynbol
{ is followed by InstanceEventArea }
is foll owed by I nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to DoWhil el nli neExpressi onArea

InstanceAltArea :: =
(I'nstancel nl i neExpr essi onBegi nSynbol
[is followed by I nstanceBool eanExpressi onConditi onArea]
is foll owed by | nstanceCuardArea
{ is followed by I|nstancel nlineExpressi onSepar at or Synbol
is followed by |nstanceGuardArea }
[is followed by Instancel nlineExpressi onSepar at or Synbol
is followed by I nstanceEl seGuardArea]
is foll owed by I nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to AltlnlineExpressionArea

I nstanceCuardArea :: =
(I'nstancel nvocati onArea
| I nstanceGuar dOpArea)
{ is followed by InstanceEventArea }
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - the instance invocation area shall contain a altstep instance only */

ETSI

ETSI ES 201 873-3 V3.1.1 (2005-06)

72 ETSI ES 201 873-3 V3.1.1 (2005-06)

I nst anceGuar dOpArea :: =

(I nst anceTi neout Ar ea

| I nst anceRecei veEvent Ar ea

| I nst anceTri gger Event Ar ea

| I nst anceCet cal | Event Ar ea

| I nst anceGet r epl yQut si deCal | Event Ar ea

| | nst anceCat chQut si deCal | Event Ar ea
| I nst anceCheckEvent Ar ea
| I nst anceDoneAr ea)
is attached to | nstanceAxi sSynbol

I nst anceEl seGuardArea :: =
El seCondi ti onArea
{ is followed by InstanceEventArea }
is attached to | nstanceAxi sSynbol

I nstancel nterl eaveArea :: =

(I'nstancel nl i neExpr essi onBegi nSynbol
is followed by |nstancel nterl eaveGuardArea
{ is followed by I|nstancel nlineExpressi onSepar at or Synbol

is followed by Instancelnterl|eaveGuardArea }

is followed by I nstancel nlineExpressi onEndSynbol)

is attached to | nstanceAxi sSynbol

is attached to Interleavel nlineExpressionArea

I nstancel nterl eaveQuardArea :: =
| nst anceGuar dOpAr ea
{ is followed by InstanceEventArea }
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - the instance event area may not contain loop statements, goto, activate, deactivate, stop, return or calls to
functions */

I nstanceCal | Area :: =

(I'nstancel nl i neExpressi onBegi nSynbol
[is followed by InstanceBool eanExpressi onConditi onArea]
[is followed by InstanceCall OpArea]
{ is followed by I|nstancel nlineExpressi onSepar at or Synbol

is followed by |nstanceCal | Guar dAr ea}

is followed by | nstancel nlineExpressi onEndSynbol)

is attached to | nstanceAxi sSynbol

is attached to CalllnlineExpressi onArea

I nstanceCal | OpArea :: =
I nst anceCal | Event Ar ea
is foll owed by Suspensi onRegi onSynbol
[is attached to InstanceCall TimerStartArea]
is attached to | nstanceAxi sSynbol
is attached to CalllnlineExpressionArea

SuspensionRegionSymbol ::=

I nstanceCal | GuardArea :: =
Suspensi onRegi onSynbol
[is attached to I nstanceGetrepl yWthinCall Event Area
| I nst anceCat chW't hi nCal | Event Ar ea
| I nst anceCat chTi neout Wt hi nCal | Event Area]
{ is followed by InstanceEventArea }
is attached to | nstanceAxi sSynbol
is attached to CalllnlineExpressi onArea

A.3.8.2 Inline expressions on ports

Port 1 nlineExpressionArea ::=
PortlfArea
| Port For Area
| Port Wil eArea
| Port Dowi | eAr ea
| PortAltArea
| Portlnterl eaveArea
| PortCallArea

ETSI

73

PortlfArea ::=

(PortlnlineExpressi onBegi nSynbol

{ is followed by PortEventArea }

[is followed by PortlnlineExpressi onSepar at or Synbol

{ is followed by PortEventArea }]

is followed by PortlnlineExpressi onEndSynbol)
is attached to Port Axi sSynbol
is attached to |flnlineExpressionArea

Port | nli neExpr essi onBegi nSynbol ::=
Voi dSynbol

Port | nl i neExpr essi onSepar at or Synbol : : =
Voi dSynbol

Port | nli neExpressi onEndSynbol : : =
Voi dSynbol

PortForArea ::=
(PortlnlineExpressi onBegi nSynbol
{ is followed by PortEventArea }
is followed by PortlnlineExpressi onEndSynbol)
is attached to Port Axi sSynbol
is attached to ForlnlineExpressionArea

Port Wil eArea :: =
(PortlnlineExpressi onBegi nSynbol
{ is followed by PortEventArea }
is followed by PortlnlineExpressi onEndSynbol)
is attached to Port Axi sSynbol
is attached to Wil el nlineExpressi onArea

Port DoWi | eArea :: =
(PortlnlineExpressi onBegi nSynbol
{ is followed by PortEventArea }
is followed by PortlnlineExpressi onEndSynbol)
is attached to Port Axi sSynbol
is attached to DoWhil el nli neExpressi onArea

PortAltArea :: =
(PortlnlineExpressi onBegi nSynbol
[is followed by PortQut Event Area]
{ is followed by PortEventArea }
{ is followed by PortlnlineExpressi onSepar at or Synbol
[is followed by PortQut Event Area]
{ is followed by PortEventArea } }
is followed by PortlnlineExpressi onEndSynbol)
is attached to Port Axi sSynbol
is attached to Al tlnlineExpressionArea

Portinterl eaveArea :: =

(PortlnlineExpressi onBegi nSynbol

[is followed by PortQut Event Area]

{ is followed by PortEventArea }

{ is followed by PortlnlineExpressi onSepar at or Synbol
[is followed by PortQutEvent Area]

{ is followed by PortEventArea } }

is foll owed by PortlnlineExpressi onEndSynbol)
is attached to Port Axi sSynbol
is attached to Interleavel nlineExpressi onArea

PortCal | Area :: =

(PortlnlineExpressi onBegi nSynbol

[is followed by PortCalllnEvent Area]

{ is followed by PortEventArea }

{ is followed by PortlnlineExpressi onSeparat or Synbol
[is followed by PortQutEvent Area]

{ is followed by PortEventArea } }

is foll owed by PortlnlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to CalllnlineExpressionArea

ETSI

ETSI ES 201 873-3 V3.1.1 (2005-06)

74

A.3.8.3 Inline expressions on control instances

Control I nlineExpressi onArea :: =
Control | fArea
| Control For Area
| Control Wil eArea
| Contr ol Dowi | eAr ea
| Control Al't Area
| ControllnterleaveArea

Control I fArea :: =
(I'nstancel nl i neExpressi onBegi nSynbol
[is followed by Control Event Area]
[is followed by Instancel nlineExpressi onSepar at or Synbol
is followed by Control Event Area]
is foll owed by I|nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to |flnlineExpressionArea

Control ForArea ::=
(I'nstancel nl i neExpressi onBegi nSynbol
[is followed by Control Event Area]
is followed by I nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to ForlnlineExpressionArea

Control Wil eArea :: =
(I'nstancel nl i neExpr essi onBegi nSynbol
[is followed by Control Event Area]
is foll owed by I nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to Wil el nlineExpressi onArea

Cont rol DoWhi | eArea :: =
(I'nstancel nl i neExpr essi onBegi nSynbol
[is followed by Control Event Area]
is foll owed by I|nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to DoWhil el nli neExpressi onArea

Control AltArea :: =
(I'nstancel nl i neExpr essi onBegi nSynbol
is followed by Control GuardArea]
is followed by Instancel nlineExpressi onSepar at or Synbol
foll oned by Control Guar dArea }
is foll owed by Instancel nlineExpressi onSepar at or Synbol
is foll owed by Control El seGuardArea]
is followed by I nstancel nlineExpressi onEndSynbol)
is attached to | nstanceAxi sSynbol
is attached to Al tlnlineExpressionArea

—_) Am—

Control GuardArea ::=
(I'nstancel nvocati onArea
| I nstanceTi neout Ar ea)
{ is followed by Control Event Area }
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - the instance invocation area shall contain a altstep instance only */

Control El seCuardArea ::=
El seCondi ti onArea
{ is followed by Control Event Area }
is attached to | nstanceAxi sSynbol

Control Interl eaveArea ::=

(I'nstancel nl i neExpressi onBegi nSynbol
[is followed by Controllnterl eaveGuardArea]
{ is followed by Instancel nlineExpressi onSepar at or Synbol

is followed by Controllnterl eaveGuardArea }

is foll owed by I nstancel nlineExpressi onEndSynbol)

is attached to | nstanceAxi sSynbol

is attached to Interleavel nlineExpressi onArea

Control I nterl eaveGuardArea :: =
I nst anceTi neout Ar ea
{ is followed by Control Event Area }
is attached to | nstanceAxi sSynbol

ETSI

ETSI ES 201 873-3 V3.1.1 (2005-06)

75 ETSI ES 201 873-3 V3.1.1 (2005-06)

/* STATIC SEMANTICS - the instance event area may not contain loop statements, goto, activate, deactivate, stop, return or calls to
functions */

A.3.9 Condition

ConditionArea ::=
Por t Oper at i onAr ea

Bool eanExpr essi onCondi ti onArea :: =
Condi ti onSynbol
cont ai ns Bool eanExpr essi on
is attached to | nstanceConditi onBegi nSynbol
is attached to | nstanceConditi onEndSynbol

/* STATIC SEMANTICS - boolean expressions within conditions shall be used as guards within alt and call inline expressions only They
shall be attached to a single test component or control instance only.*/

I nst anceCondi t i onBegi nSynbol ::=
Voi dSynbol

I nst anceCondi t i onEndSynbol ::=
Voi dSynbol

DoneArea :: =
Condi ti onSynbol
cont ai ns DoneSt at enent
is attached to | nstanceConditionBegi nSynbol
is attached to | nstanceConditi onEndSynbol

Set VerdictArea :: =
Condi ti onSynbol
contai ns Set Verdi ct Text
is attached to | nstanceConditi onBegi nSynbol
is attached to | nstanceConditi onEndSynbol

Set Verdi ct Text ::=
(SetVerdictKeyword "(" SingleExpression ")")
| pass
| fai
| inconc
| none

/* STATI C SEMANTI CS - Singl eExpression nust resolve to a value of type verdict */
/* STATI C SEMANTICS - the SetlLocal Verdict shall not be used to assign the value error */
/* STATIC SEMANTICS - if the keywords pass, fail, inconc, and fail are used, the formwth the
setverdi ct keyword shall not be used */
Port Qperati onArea ::=

Condi ti onSynbol

contai ns Port OperationText

is attached to | nstanceConditi onBegi nSynbol

is attached to | nstanceConditi onEndSynbol

is attached to { PortlnlineExpressi onBegi nSynbol }+ set

is attached to { PortlnlineExpressi onEndSynbol }+ set]
is attached to | nstancePort OperationArea
is attached to PortConditionArea

/* STATIC SEMANTICS - the condition symbol shall be attached to either to all ports or to just one port */

If the condition symbol crosses a port axis symbol of a port which is not involved in this port operation, its the port axis symbol is drawn
through:

Port OperationText ::=
d ear OpKeywor d
| StartKeyword
| StopKeyword

El seCondi ti onArea :: =
Condi ti onSynbol

cont ai ns El seKeyword
is attached to | nstanceAxi sSynbol

ETSI

76 ETSI ES 201 873-3 V3.1.1 (2005-06)

ConditionSymbol ::=

<)

A.3.9.1 Condition on component instances

I nstanceCondi ti onArea :: =
I nst anceDoneAr ea
| I'nstanceSet Verdict Area
| I nstancePort Operati onArea

I nst anceBool eanExpr essi onCondi ti onArea :: =
I nst anceCondi t i onBegi nSynbol
is followed by |nstanceConditi onEndSynbol
is attached to | nstanceAxi sSynbol
is attached to Bool eanExpressi onConditi onArea

I nstanceDoneArea ::=
I nst anceCondi t i onBegi nSynbol
is followed by InstanceConditi onEndSynbol
is attached to | nstanceAxi sSynbol
is attached to DoneArea

I nstanceSet Verdi ct Area ::=
I nst anceCondi t i onBegi nSynbol
is followed by |nstanceConditi onEndSynbol
is attached to | nstanceAxi sSynbol
is attached to SetVerdictArea

I nst ancePort Operati onArea ::=
I nst anceCondi t i onBegi nSynbol
is followed by InstanceConditionEndSynbol
is attached to | nstanceAxi sSynbol
is attached to Port OperationArea

A.3.9.2 Condition on ports

Port ConditionArea ::=
Por t Condi t i onBegi nSynbol
is followed by PortConditi onEndSynbol
is attached to Port Axi sSynbol
is attached to Port OperationArea

Por t Condi ti onBegi nSynbol ::=
Voi dSynbol

Por t Condi ti onEndSynbol ::=
Voi dSynbol

A.3.10 Message-based communication

SendArea ::=
MessageSynbol
[is associated with Type]
is associated with ([DerivedDef AssignnentChar] Tenpl at eBody
[ToCause])
is attached to | nstanceSendEvent Area
is attached to PortlnMsgEvent Area

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template shall be put underneath the message symbol */

/* STATIC SEMANTICS - a to clause, if existent, shall be put underneath the message symbol */

ETSI

77 ETSI ES 201 873-3 V3.1.1 (2005-06)

Recei veArea :: =
MessageSynbol
[is associated with Type]
is associated with ([[DerivedDef AssignmentChar] Tenpl at eBody]
[FronClause] [PortRedirect])
is attached to | nstanceRecei veEvent Area
is attached to Port Qut MsgEvent Area

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
[* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

MessageSymbol ::=

A.3.10.1 Message-based communication on component instances

I nst anceSendEvent Area :: =
MessageQut Synbol
is attached to | nstanceAxi sSynbol
is attached to MessageSynbol

MessageCQut Synbol :: =
Voi dSynbol

The VoidSymbol is a geometric point without spatial extension.

I nst anceRecei veEvent Area :: =
Messagel nSynbol
is attached to | nstanceAxi sSynbol
is attached to MessageSynbol

Messagel nSynbol :: =
Voi dSynbol

A.3.10.2 Message-based communication on port instances

PortlI nMsgEvent Area :: =
Messagel nSynbol
is attached to Port Axi sSynbol
is attached to MessageSynbol

Port Qut MsgEvent Area :: =
MessageQut Synbol
is attached to Port Axi sSynbol
is attached to MessageSynbol

A.3.11 Signature-based communication

NonBl ocki ngCal | Area :: =
MessageSynbol
is associated with Call Keyword [Signature]
is associated with ([DerivedDef AssignnentChar] Tenpl at eBody
[ToCause])
is attached to | nstanceCall Event Area
is attached to PortCalllnEvent Area

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template shall be put underneath the message symbol */

/* STATIC SEMANTICS - a to clause, if existent, shall be put underneath the message symbol */

ETSI

78 ETSI ES 201 873-3 V3.1.1 (2005-06)

Getcal |l Area ::=
MessageSynbol
is associated with Getcall Keyword [Signature]
is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[FronClause] [PortRedirectWthParam])
is attached to | nstanceGetcal | Event Area
is attached to PortGetcal | Qut Event Area

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
[* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

Repl yArea :: =
MessageSynbol
is associated with Repl yKeyword [Signature]
is associated with ([DerivedDef AssignnentChar] Tenpl at eBody
[ReplyValue] [ToClause])
is attached to I nstanceRepl yEvent Area
is attached to PortRepl yl nEvent Area

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template shall be put underneath the message symbol */

/* STATIC SEMANTICS - a reply value, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a to clause, if existent, shall be put underneath the message symbol */

GetreplyWthinCall Area :: =

MessageSynbol

is attached to Suspensi onRegi onSynbol

is associated with Getrepl yKeyword [Signature]

is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[Val uevat chSpec]
[FronClause] [PortRedirectWthParam])

is attached to | nstanceGetrepl yEvent Area

is attached to Port Getrepl yQut Event Area

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

Cetrepl yQutsi deCal | Area :: =

MessageSynbol

is associated with Getrepl yKeyword [Signature]

is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[Val ueMvat chSpec]
[FronClause] [PortRedirectWthParam])

is attached to | nstanceGetrepl yEvent Area

is attached to PortGetrepl yQut Event Area

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */

[* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

Rai seArea :: =
MessageSynbol
is associated with Rai seKeyword Signature [',' Type]
is associated with ([DerivedDef AssignnentChar] Tenpl at eBody
[ToCause])
is attached to | nstanceRai seEvent Area
is attached to PortRai sel nEvent Area

/* STATIC SEMANTICS - a signature shall be put on top of the message symbol */

/* STATIC SEMANTICS - an exception type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template shall be put underneath the message symbol */

/* STATIC SEMANTICS - a to clause, if existent, shall be put underneath the message symbol */

ETSI

79 ETSI ES 201 873-3 V3.1.1 (2005-06)

CatchWthinCall Area :: =

MessageSynbol
is attached to Suspensi onRegi onSynbol
is associated with CatchKeyword Signature [',' Type]

is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[FronClause] [PortRedirect])

is attached to | nstanceCat chEvent Area

is attached to Port Cat chQut Event Area

/* STATIC SEMANTICS - a signature shall be put on top of the message symbol */

/* STATIC SEMANTICS - an exception type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
[* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

Cat chQut si deCal | Area :: =
MessageSynbol
is associated with CatchKeyword Signature [',' Type]
is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[FronClause] [PortRedirect])
is attached to | nstanceCatchEvent Area
is attached to Port CatchQut Event Area

/* STATIC SEMANTICS - a signature shall be put on top of the message symbol */

/* STATIC SEMANTICS - an exception type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
[* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

A.3.11.1 Signature-based communication on component instances

I nst anceBl ocki ngCal | Event Area :: =
| nst anceSendEvent Ar ea
[is attached to InstanceCall TimerStartArea]
is attached to Suspensi onRegi onSynbol

InstanceCal I TinerStartArea ::=
Cal | Ti mer St art Synbol
is associated with Ti merVal ue
is attached to | nstanceAxi sSynbol
is attached to Suspensi onRegi onSynbol
[is attached to Cal |l Ti meout Synbol 3]

......

I nst anceNonBlI ocki ngCal | Event Area :: =
| nst anceSendEvent Ar ea

I nstanceCGet cal | Event Area :: =
I nst anceRecei veEvent Ar ea

I nst anceRepl yEvent Area :: =
I nst anceSendEvent Ar ea

I nst anceGetrepl yWt hi nCal | Event Area :: =
I nst anceRecei veEvent Ar ea
is attached to Suspensi onRegi onSynbol

I nst anceGet r epl yQut si deCal | Event Area :: =
I nst anceRecei veEvent Ar ea

I nst anceRai seEvent Area :: =
I nst anceSendEvent Ar ea

I nstanceCat chWthinCal |l EventArea ::=

I nst anceRecei veEvent Ar ea
is attached to Suspensi onRegi onSynbol

ETSI

80 ETSI ES 201 873-3 V3.1.1 (2005-06)

I nst anceCat chTi meout Wt hi nCal | Event Area :: =
Cal | Ti meout Synbol
is attached to Suspensi onRegi onSynbol
is attached to | nstanceAxi sSynbol

CallTimeoutSymbol ::=

LT .

I nst anceCat chQut si deCal | Event Area :: =
I nst anceRecei veEvent Ar ea

A.3.11.2 Signature-based communication on ports

Port Get cal | Qut Event Area: : =
Port CQut MsgEvent Ar ea

Port Getrepl yQut Event Area: : =
Port Qut MsgEvent Ar ea

Port Cat chQut Event Area: : =
Por t Qut MsgEvent Ar ea

Port Cal | I nEvent Area: : =
Port | nMsgEvent Ar ea

Port Repl yl nEvent Area: : =
Port | nMsgEvent Ar ea

Port Rai sel nEvent Area: : =
Port 1 nMsgEvent Ar ea

A.3.12 Trigger and check

A.3.12.1 Trigger and check on component instances

TriggerArea ::=
MessageSynbol
is associated with (Trigger OpKeyword [Type])
is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[FronClause] [PortRedirect])
is attached to ReceiveEvent Area
is attached to Port Qut MsgEvent Area

/* STATIC SEMANTICS - the trigger keyword shall be put on top of the message symbol */

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

CheckArea :: =
MessageSynbol
is associated with (CheckOpKeyword [CheckOplnformation])
is associated with CheckData
is attached to ReceiveEvent Area
is attached to Port Qut MsgEvent Area

/* STATIC SEMANTICS - the check keyword shall be put on top of the message symbol */
[* STATIC SEMANTICS - the check op information, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS - the check data, if existent, shall be put underneath the message symbol */

CheckOpl nformation :: =
Type
| (GetCall OpKeyword [Signature])
| (GetReplyOpKeyword [Signature])
I

(CatchOpKeyword Signature [Type])

ETSI

81 ETSI ES 201 873-3 V3.1.1 (2005-06)

CheckData :: =
([[DerivedDef AssignnmentChar] Tenpl ateBody [Val ueMatchSpec]]
[FronClause] [PortRedirect | PortRedirectWthParam])
| ([FronCO ause] [PortRedirectSynbol SenderSpec])

/* STATIC SEMANTICS - a value matching specification shall be used in combination with getreply only */
/* STATIC SEMANTICS - a port redirect with parameters shall be used in combination with getcall and getreply only */

I nstanceTri gger Event Area :: =
I nst anceRecei veEvent Ar ea

I nst anceCheckEvent Area :: =
I nst anceRecei veEvent Ar ea

A.3.12.2 Trigger and check on port instances

Port Tri gger Qut Event Area :: =
Port Qut MsgEvent Ar ea

Port CheckQut Event Area :: =
Port Qut MsgEvent Ar ea

A.3.13 Handling of communication from any port

| nst anceFoundEvent Area :: =
FoundSynbol
cont ai ns FoundEvent
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - the label identifier shall be placed inside the circle of the labelling symbol */

FoundEvent ::=
FoundMessage
| FoundTri gger
| FoundGet Cal |
| FoundCet Repl y
| FoundCat ch
| FoundCheck

FoundMessage :: =
FoundSynbol
[is associated with Type]
is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[FronClause] [PortRedirect])
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
[* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

FoundTrigger ::=
FoundSynbol
is associated with (Trigger OpKeyword [Type])
is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[FronClause] [PortRedirect])
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - the trigger keyword shall be put on top of the message symbol */

/* STATIC SEMANTICS - a type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
[* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

ETSI

82 ETSI ES 201 873-3 V3.1.1 (2005-06)

FoundGet Cal | ::=
FoundSynbol
is associated with Getcall Keyword [Signature]
is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[FronClause] [PortRedirectWthParam])
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

FoundGet Reply ::=
FoundSynbol
is associated with Getrepl yKeyword [Signature]
is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[Val uevat chSpec]
[FronClause] [PortRedirectWthParam])
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - a signature, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a value match specification, if existent, shall be put underneath the message symbol */
/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

FoundCatch :: =
FoundSynbol
is associated with CatchKeyword Signature [',' Type]

is associated with ([[DerivedDef AssignnentChar] Tenpl at eBody]
[FronClause] [PortRedirect])
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - a signature shall be put on top of the message symbol */

/* STATIC SEMANTICS - an exception type, if existent, shall be put on top of the message symbol */

/* STATIC SEMANTICS - a derived definition, if existent, shall be put underneath the message symbol */
[* STATIC SEMANTICS - a template, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a from clause, if existent, shall be put underneath the message symbol */

/* STATIC SEMANTICS - a port redirect, if existent, shall be put underneath the message symbol */

FoundCheck ::=
FoundSynbol
is associated with (CheckOpKeyword [CheckOplnformation])
is associated wi th CheckDat a
is attached to Recei veEvent Area
is attached to | nstanceAxi sSynbol

[* STATIC SEMANTICS - the check keyword shall be put on top of the message symbol */
/* STATIC SEMANTICS - the check op information, if existent, shall be put on top of the message symbol */
/* STATIC SEMANTICS - the check data, if existent, shall be put underneath the message symbol */

FoundSymbol ::=
0, >

A.3.14 Labelling

I nst anceLabel I i ngArea :: =
Label I i ngSynbol
contai ns Label | dentifier
is attached to | nstanceAxi sSynbol

/* STATIC SEMANTICS - the label identifier shall be placed inside the circle of the labelling symbol */

LabellingSymbol ::=

ETSI

83 ETSI ES 201 873-3 V3.1.1 (2005-06)

Annex B (informative):
Reference Guide for GFT

This annex lists the main TTCN-3 language elements and their representation in GFT. For a complete description of the
GFT symbols and their use please refer to the main text.

Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Module Definitions

TTCN-3 module nodul e No special GFT symbol, i.e.

definition the core language or another
presentation format may be
used.

Import of definitions i npor't No special GFT symbol, i.e.

from other module the core language or another
presentation format may be
used.

Grouping of group No special GFT symbol, i.e.

definitions the core language or another
presentation format may be
used.

Data type definitions |type No special GFT symbol, i.e.
the core language or another
presentation format may be
used.

Communication port |port No special GFT symbol, i.e.

definitions the core language or another
presentation format may be
used.

Test component conponent No special GFT symbol, i.e.

definitions the core language or another
presentation format may be
used.

Signature definitions ~ |si gnature No special GFT symbol, i.e.
the core language or another
presentation format may be
used.

External external No special GFT symbol, i.e.

function/constant the core language or another

definitions presentation format may be
used.

Constant definitions ~ [const const integer MyConst :=5; Textual constant declaration
in the header of a control, test
case, test step or function
diagram.

\—'—‘ Local constant declaration in
an action box.
const integer
MyConst := 5;
Data/signature tenpl ate No special GFT symbol, i.e.

template definitions

the core language or another
presentation format may be
used.

ETSI

84 ETSI ES 201 873-3 V3.1.1 (2005-06)
Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Control definitions control I GFT control diagram
contro cont rol represents the control part of
a TTCN-3 module.
execute(Testcasel())}
(MyHel per Functi on() }
Function definitions function function MyFunction() GFTfuncﬁon(ﬁagramsgue
used to represent functions.
sel f M/Port 1 MyPor t 2
CType ‘ ‘ PTypel ‘ ‘PTypeZ
—
@ I I
- - GFT function diagrams may
function MHel per Functi on() be defined to structure the
sel f behaviour of the control part
of a TTCN-3 module.
(execute(TestcaseZ()) }
Altstep definitions altstep GFT altstep diagrams are
altstep MTestStep() used to represent altsteps
sel f M/Port 1 MyPor t 2
’ CType ‘ ‘ PTypel ‘ ‘ PType2
al t i
@ I S
Test case definitions |t estcase Cost a GFT test case diagrams are
Lestcase MyTest Case used to represent test cases.
sel f MyPort 1 MyPort 2
CType ‘ ‘ PTypel ‘ ‘ PType2

A A

pass
I

ETSI

85 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

Usage of Component Instances and Ports

Port instance

My Por t

MyPor t Type

A Port in a test case, test step
and function diagram is
represented by and instance
with a dashed instance line.
The port name is specified
above and the (optional) port
type is described within the
instance header.

Test component
instance

nc sel f control

M cType H ConpType H

An mtc instance represents
the main test component in a
test case diagram.

A self instance represents a
test component in a test step
or function diagram.

A control instance
represents the instance that
executes the module control
part in a control diagram.

Declarations

Variable declarations

var

var integer MVar :=5

Textual variable declaration in
the header of a control, test
case, test step or function
diagram.

{

var integer
MyVar :=5

Variable declaration in an
action box.

var verdicttype
v: =execut e(MyTC())

Variable declaration within a
test case execution symbol.

Variable declaration within a
test component creation
symbol.

var default d:=
activate(TStep())

Variable declaration within a
default activation symbol.

ETSI

86 ETSI ES 201 873-3 V3.1.1 (2005-06)
Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Variable declaration within a
reference symbol.
var integer
v = MyFunction()
Timer declarations tinmer timer MyTimer Textual timer declaration in

the header of a control, test
case, test step or function
diagram.

s

timer MyTi mer

F

Timer declaration in an action
box.

Basic program statements

Expressions

()

No special GFT symbol, i.e.
the core language or another
presentation format may be
used.

Assignments

{

MyVar : =

(6]

Assignment in an action box.

i

v: =execut e(MyTC())

Assignment within a test case
execution symbol.

Assignment within a test
component creation symbol.

d: =
activate(TStep())

Assignment within a default
activation symbol.

ETSI

87 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Assignment within a
reference symbol.
v := MyFunction()
Logging I og \—’—‘ The log statement is put into
an action box.
l'og(“MLog")
Label and Goto I abel { Definition of a label.
goto I Go to label.
If-else if () {3 [E—
else {.} - -
if (j<10)
|
For |00p for (.) {.} —
for(j:=1; j<=9; j:=5j +1ﬂ
L]
While loop while (.) 1
- while (] <10)
|
Do while loop do {.} 1
while (.) : .
do while (J<10)J
|

ETSI

88 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Behavioural program statements
Alternative behaviour |al't {.}
al t
[MyTest St ep() J
]
< else >
Repeat repeat E To be used within alternative
behaviour and test steps.
Interleaved behaviour |[i nterleave
- interleave
I
Activate a default activate

MDefault :=
activate(TStep())

The activate statement is put
into a default symbol.

Deactivate a default

deactivate

deactivat e(MyDef aul t)

The deactivate statement is
put into a default symbol.

I
Returning control return [The optional return value is
attached to the return symbol.
MyVal ue
Configuration operations
create

Create parallel test
component

1

c:= MyCType.create

e

The create statement is put
into a test component
creation symbol.

ETSI

89 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword

Connect component |connect The connect statement is put

to component into an action box.

connect (.., ..)

Disconnect two di sconnect The disconnect statement is

components put into an action box.

di sconnect (.., ..)

Map port to test map The map statement is put into

system interface an action box.

map(.., ..)

Unmap port from test |unmap The unmap statement is put

system interface into an action box.

unmap(.., ..

Get MTC address ntc No special GFT symbol, used
within statements,
expressions or as test
component identifier.

Get test system system No special GFT symbol, used

interface address within statements or
expressions.

Get own address sel f No special GFT symbol, used

within statements,
expressions or as test
component identifier.

ETSI

90 ETSI ES 201 873-3 V3.1.1 (2005-06)
Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Start execution of test (start The start statement is put into
component a start symbol.
MyConp. start (MyFunc())
Stop execution stop The termination of mtc
of a test component terminates also all the other
by itself test components.
Port instances cannot be
stopped.
of another test ———1 The component identifier is
component put near to the stop symbol.
>< conponent | d
I
Check termination of |r unni ng No special GFT symbol, used
aPTC within expressions.
Wait for termination of |done The done statement is put
aPTC into a condition symbol.
M/PTC. done
Communication operations
send

Send message

I

My Tenpl at eRef

I

Send a message defined by a
template reference but
without type information.

The receiver is identified
uniquely by the (optional)

to P
MyPeer to-directive.
]]
]] Send a message defined _by a
My Ty pe template reference and with

My Tenpl at eRef

type information.

An (optional)

to-directive may be present to
identify the peer entity
uniquely.

Send a message defined by
an inline template definition.
An (optional)

to-directive may be present to
identify the peer entity
uniquely.

ETSI

91 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

Receive message

receive

1 /]

<

My Tenpl at eRef
from MyPeer
-> val ue MyVar
sender ASender

Receive a message with a
value defined by a template
reference but without type
information.

The (optional)

from-directive denotes that
the sender of the message
shall be identified by variable
My Peer .

The (optional)
value-directive assigns
received message to variable
My Var .

The (optional)
sender-directive retrieves the
identifier of the sender and
stores it in variable ASender .

I I
M/ Type

My Tenpl at eRef

Receive a message with a
value defined by a template
reference and with type
information.

Optional from-, value-and
sender-directives may be
present to identify the sender
of the message, to assign the
message to a variable or to
retrieve the identifier of the
peer entity.

Receive a message with a
value defined by an inline
template definition.

Optional from-, value-and
sender-directives may be
present to identify the sender
of the message, to assign the
message to a variable or to
retrieve the identifier of the
peer entity.

Receive any message

(no value and no type is
specified).

Optional from-, value-and
sender-directives may be
present to identify the sender
of the message, to assign the
message to a variable or to
retrieve the identifier of the
peer entity.

Receive any message

(no value and no type is
specified) from any port.

The message value to be
received from any port may
be restricted by means
referring to templates or by
using inline templates.
Optional from-, value-and
sender-directives may be
present to identify the sender
of the message, to assign the
message to a variable or to
retrieve the identifier of the
peer entity.

ETSI

92 ETSI ES 201 873-3 V3.1.1 (2005-06)
Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Trigger message trigger]] Trigger on a message with a
Cri value defined by a template
rigger

<

My Tenpl at eRef
from MyPeer
-> val ue MyVar
sender ASender

reference but without type
information.

The (optional)

from-directive denotes that
the sender of the message
shall be identified by variable
My Peer .

The (optional)
value-directive assigns
received message to variable
My Var .

The (optional)
sender-directive retrieves the
identifier of the sender and
stores it in variable ASender .

I

trigger MyType

I

My Tenpl at eRef

Trigger on a message with a
value defined by a template
reference and with type
information.

Optional from-,

value-and sender-directives
may be present to identify the
sender of the message, to

trigger MyType

&

{-}

[] [] assign the message to a
variable or to retrieve the
identifier of the peer entity.

]] Trigger on a message with a

value defined by an inline
template definition.

Optional from-,

value-and sender-directives
may be present to identify the
sender of the message, to
assign the message to a
variable or to retrieve the
identifier of the peer entity.

I

trigger

I

Trigger on any message

(no value and no type is
specified).

Optional from-,

value-and sender-directives
may be present to identify the
sender of the message, to
assign the message to a
variable (of type anytype)
and to retrieve the identifier of
the peer entity.

ETSI

93

ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

I

trigger

Trigger on any message

(no value and no type is
specified) from any port.

The value of the message
that shall cause the trigger
from any port may be
restricted by means referring
to templates or by using inline
templates.

Optional from-,

value-and

sender-directives may be
present to identify the sender
of the message, to assign the
message to a variable (of
type anytype) and to retrieve
the identifier of the peer
entity.

Invoke blocking
procedure call

cal |

cal |

My Tenpl at eRef g
to peer

[

4getreply

|

catch ...

A

|

A

[

(SR S PR N N S

Invoking a blocking procedure
by using a signature
template.

The receiver is identified
uniquely by the (optional)
to-directive.

The call body, i.e. possible
getreply and catch
operations, is shown
schematically only.

call MyProc

My Tenpl at eRef

»!

4getreply

[

|

catch ...

A

|

A

[

(S T N G N R S,

Invoking a blocking procedure
by using a signature template
and signature information.

An (optional)

to-directive may be present to
identify the peer entity
uniquely.

The call body,

i.e. possible getreply and
catch operations, is shown
schematically only.

l l

call MyProc

{-}

»!

catch ...

getreply ... |
L :

Invoking a blocking procedure
by using an inline template.
An (optional) to-directive may
be present to identify the peer
entity uniquely.

The call body, i.e. possible
getreply and catch
operations, is shown
schematically only.

ETSI

94 ETSI ES 201 873-3 V3.1.1 (2005-06)
Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Invoke non-blocking [cal —] Call a remote procedure, the
procedure call call is defined by a template
call reference but without
> signature information.
Ny;l'gnpwlygggrRef The receiver is identified
uniquely by the (optional)
to-directive.
I]
—]] Call the remote procedure
" MyPr oc. The call is defined
call MProc by a template reference.
My/Tenpl at eRef An (optional)
to-directive may be present to
identify the peer entity
uniquely.
I |
—] —— Call the remote prpcedgre
¥ MyPr oc. The call is defined
call MProc R by an inline template.
) An (optional)
to-directive may be present to
identify the peer entity
uniquely.
I]
Reply to procedure . reply —] —— Reply to a remote prpcedure
call from remote entity call. The reply is defined by a
reply template reference and the
> ossible return value
My Tenpl at eRef p . .
val ue 20 (value-directive).
to MyPeer NOTE 1: The signature
information is part of the
template definition.
I] The receiver is identified
uniquely by the (optional)
to-directive.
—] —— Reply to a remote procedure
| call of MyPr oc. The reply is
reply MProc R defined by a template
Temol at eRef reference and the possible
M Var}pue 20 return value (value-directive).
An (optional)
to-directive may be present to
identify the peer entity
[]] uniquely.
—] —— Reply to a remote procedure
| call of MyPr oc. The reply is
reply MProc defined by an inline template
(.} and the possible return value
val ue 20 (value-directive).
An (optional)
to-directive may be present to
identify the peer entity
I] uniquely.

ETSI

95 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Raise exception (to raise —] —— Raise an exception to an
an accepted call)] accepted call of MyProc. The
raise MyProc exception is defined by a
> template reference.
Ny;l'gnpwlygggrRef NOTE 2: The type of the
exception is defined within
the template definition.
The receiver is identified
I I uniquely by the (optional)
to-directive.
] Raise an exception to an
] accepted call of MyProc. The
rai se MyProc exception is defined by its
Excepti onType (optional) type and a template
» reference.
MyTenpl at eRef An (optional)
to-directive may be present to
identify the peer entity
I | uniquely.
—] —— Raise an exception to an
accepted call of MyProc. The
rai se MyProc exception is defined by its
Excepti onType type and an inline template.
» An (optional)

{.} to-directive may be present to
identify the peer entity
uniquely.

I]
Accept procedure call [getcall —]] Accept a procedure call from
from remote entity a remote entity. The call
getcal | signature has to match the
< conditions defined by the
N?;rgmp:v;:::?:f template reference.

-> param (..)
sender ASender

NOTE 3: The signature
information is part of the
template definition.

The (optional)

from-directive denotes that
the sender of the call shall be
identified by variable MyPeer .
The (optional)
param-directive assigns in-
parameter values to
Variables.

The (optional)
sender-directive retrieves the
identifier of the sender and
stores it in variable ASender .

1
getcal |

L 1
MyPr oc

<

M/ Tenpl at eRef

Accept a procedure call from
a remote entity. The call
signature has to match the
conditions defined by
signature reference and the
template reference.

Optional from-,

param-and sender-directives
may be present to identify the
sender of the call, to assign
the

in-parameters to variables or
to retrieve the identifier of the
peer entity.

ETSI

96 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

L 1
getcal |

<

L 1
MyPr oc

{-}

Accept a procedure call from
a remote entity. The call
signature has to match the
conditions defined by
signature reference and the
inline template definition.
Optional from-,

param-and
sender-directives may be
present to identify the sender
of the call, to assign the
in-parameters to variables or
to retrieve the identifier of the
peer entity.

I

L 1
getcal |

Accept any procedure call
from any remote entity.
Optional from- and sender-
directives may be present to
identify the sender of the call
or to retrieve the identifier of
the peer entity.

getcal |

Accept any procedure call
from any remote entity at any
port.

The call to be received from
any port may be restricted by
means referring to templates
or by using inline templates.
Optional from-,

param-and
sender-directives may be
present to identify the sender
of the call, to assign the
in-parameters to variables or
to retrieve the identifier of the
peer entity.

Handle response from
a previous blocking
call

getreply

cal U

cal |

getreply

My Tenpl at eRef
-> val ue MyVal

sender ASender

from MyPeer

param (..)

catch ...

*

Receive a response from a
blocking call. The reply has to
match the conditions defined
by the template reference.
NOTE 4: The signature
information is part of the
template definition.

The (optional)

from-directive denotes that
the sender of the call shall be
identified by variable MyPeer .
The (optional)

value-directive assigns the
possible return value of the
procedure to variable MyVal .
The (optional)
param-directive assigns
out-parameter values to
Variables.

The (optional)
sender-directive retrieves the
identifier of the sender and
stores it in variable ASender .

ETSI

97 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element | Associated GFT symbols, if existent, and typical usage Note

Keyword
S :] Receive a response from a
blocking call. The reply has to

cal U cal | match the conditions defined
> by signature reference and
the template reference.
Optional from-,
getreply value-, param-and sender-
My Pr oc directives may be present to
< identify the sender of the
My Tenpl at eRef reply, to retrieve the return
value of the procedure, to
catch f':\ssign the .
_ in-parameters to variables or
HJ‘ : to retrieve the identifier of the

E— Em— | Poer eniity.

S S Receive a response from a
blocking call. The reply has to
cal |) call .. match the conditions defined
> by signature reference and
the inline template definition.
Optional from-, value-,
param-and

etrepl . .
gwpr gcy i sender-directives may be
<« present to identify the sender
{ ...} i of the reply, to retrieve the

return value of the procedure,
1 [caich to assign the in-parameters to

variables or to retrieve the
identifier of the peer entity.

S S Accept any response from a
blocking call.

cal U call ...

getreply

catch ...

A

ETSI

98 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

Handle response from
a previous non-
blocking call or
independent from a
call

getreply

L 1 L 1
getreply

My Tenpl at eRef
from MyPeer
-> val ue MyVal
param (..)
sender ASender
[] |

<

Receive a response from a
previous call. The reply has to
match the conditions defined
by the template reference.
NOTE 5: The signature
information is part of the
template definition.

The (optional)

from-directive denotes that
the sender of the call shall be
identified by variable MyPeer .
The (optional)

value-directive assigns the
possible return value of the
procedure to variable MyVal .
The (optional)
param-directive assigns out-
parameter values to
Variables.

The (optional)
sender-directive retrieves the
identifier of the sender and
stores it in variable ASender .

I B

getreply
MyPr oc

My Tenpl at eRef

Receive a response from a
previous call. The reply has to
match the conditions defined
by signature reference and
the template reference.
Optional from-, value-,
param-and
sender-directives may be
present to identify the sender
of the reply, to retrieve the
return value of the procedure,
to assign the

in-parameters to variables or
to retrieve the identifier of the
peer entity.

I B

getreply
MyPr oc

{3}

Receive a response from a
previous call. The reply has to
match the conditions defined
by signature reference and
the inline template definition.
Optional from-, value-,
param-and
sender-directives may be
present to identify the sender
of the reply, to retrieve the
return value of the procedure,
to assign the

in-parameters to variables or
to retrieve the identifier of the
peer entity.

L 1 L 1
getreply

Accept any response from
any previous call.

Optional from- and sender-
directives may be present to
identify the sender of the
reply or to retrieve the
identifier of the peer entity.

ETSI

99 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

I

getreply

Accept any response from
any previous call at any port.
The reply to be received from
any port may be restricted by
means referring to templates
or by using inline templates.
Optional from-, value-,
param-and
sender-directives may be
present to identify the sender
of the reply, to retrieve the
return value of the procedure,
to assign the in-parameters to
variables or to retrieve the
identifier of the peer entity.

Catch exception from
a previous blocking
call

catch

cal U

call

catch MyProc

My Tenpl at eRef
from MyPeer
-> val ue MyVval
sender ASender

SRS I SO AR

getreply ...

Catch an exception from a
previous call. The exception
has to match the conditions
defined by the template
reference.

NOTE 6: The type information
is part of the template
definition.

The (optional)

from-directive denotes that
the sender of the exception
shall be identified by variable
My Peer .

The (optional) value-directive
assigns the value of the
exception to variable MyVal .
The (optional)
sender-directive retrieves the
identifier of the sender and
stores it in variable ASender .

cal |

catch MyProc
Excepti onType

My Tenpl at eRef

getreply ...

Catch an exception from a
previous call. The exception
has to match the conditions
defined by the exception type
and the template reference.
Optional from-, value-, and
sender-directives may be
present to identify the sender
of the exception, to retrieve
the exception value or to
retrieve the identifier of the
peer entity.

cal l

\ 4

catch MyProc
ExceptionType

{ ..}

getreply ...

Catch an exception from a
previous call. The exception
has to match the conditions
defined by the exception type
and the inline template
definition.

Optional from-, value-, and
sender-directives may be
present to identify the sender
of the exception, to retrieve
the exception value or to
retrieve the identifier of the
peer entity.

ETSI

100 ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
S :] Accept any exception from a
, blocking call.
cal U cal l ; Optional from-, value- and
> sender-directives may be
present to identify the sender
of the exception, to retrieve
the exception value (and
cat ch assign it to a variable of type
< anytype) or to retrieve the
identifier of the peer entity.
HJ getreply ...
— —
Catch .exception from |[catch]] Catc.h an exception from a
a previous non- previous call. The exception
blocking call or catch MyProc has to match the conditions
independent from a MyTenpl at eRef defined by the template
call from MyPeer reference.

-> val ue MyVval
sender ASender

NOTE 7: The type information
is part of the template
definition.

The (optional)

from-directive denotes that
the sender of the exception
shall be identified by variable
My Peer .

The (optional)

value-directive assigns the
value of the exception to
variable MyVal .

The (optional)
sender-directive retrieves the
identifier of the sender and
stores it in variable ASender .

I B

catch MyProc
ExceptionType

My Tenpl at eRef

Catch an exception from a
previous call. The exception
has to match the conditions
defined by the exception type
and the template reference.
Optional from-, value-, and
sender-directives may be
present to identify the sender
of the exception, to retrieve
the exception value or to
retrieve the identifier of the
peer entity.

I B

catch MyProc
ExceptionType

{3}

<

Catch an exception from a
previous call. The exception
has to match the conditions
defined by the exception type
and the inline template
definition.

Optional from-, value-, and
sender-directives may be
present to identify the sender
of the exception, to retrieve
the exception value or to
retrieve the identifier of the
peer entity.

ETSI

101

ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

I B

catch

Catch any exception from any
previous call.

Optional from-, value- and
sender-directives may be
present to identify the sender
of the exception, to retrieve
the exception value (and
assign it to a variable of type
anytype) or to retrieve the
identifier of the peer entity.

catch

Catch any exception from any
previous call at any port.

The exception to be received
from any port may be
restricted by means referring
to templates or by using inline
templates.

Optional from-, value-, and
sender-directives may be
present to identify the sender
of the exception, to retrieve
the exception value or to
retrieve the identifier of the
peer entity.

Check (current)
message/call
received

check

l

check

MyTemplateRef

l | l |

check MyType

MyTemplateRef
[] I
I L 1
check
I I
L 1

check
MyTempl ateRef C

]
Can be used also in combination with getcall,
getreply, and catch

with template, without type

with template, with type

without template, without type
(any message from that port)

with template, without type,
without port (this message
from that port)

ETSI

102

ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

Check current
message, call, reply
or exception

check

I B

check

<

My Tenpl at eRef
from MyPeer
-> val ue MyVar
sender ASender

Check if a message with a
value defined by a template
reference has been received.
The syntax follows the syntax
for the reception of
messages.

NOTE 8: Check may also be
used in combination with
getcall, getreply and catch.

L 1 L 1
check MyType

My Tenpl at eRef

Check if a message with a
value defined by a template
reference has been received.
The syntax follows the syntax
for the reception of
messages.

NOTE 9: Check may also be
used in combination with
getcall, getreply and catch.

L 1 L 1
check MyType

{-}

<

Check if a message with a
value defined by an inline
template definition has been
received.

The syntax follows the syntax
for the reception of
messages.

NOTE 10: Check may also be
used in combination with
getcall, getreply and catch..

Check if any message (no
value and no type is
specified) has been received.
The syntax follows the syntax
for the reception of
messages.

NOTE 11: Check may also be
used in combination with
getcall, getreply and catch.

check

Check if any message (no
value and no type is
specified) has been received
at any port.

The syntax follows the syntax
for the reception of
messages.

NOTE 12: Check may also be
used in combination with
getcall, getreply and catch.

Clear port

cl ear

< dw

The clear port statement is
put into a condition symbol.
The condition shall cover the
instance of the port to be
cleared only.

ETSI

103 ETSI ES 201 873-3 V3.1.1 (2005-06)
Language Element | Associated GFT symbols, if existent, and typical usage Note
Keyword
Clear and give access (start l] . | The start port statement is put
to port into a condition symbol. The
i condition shall cover the
l instance of the port to be
< start > started only.
N
Stop access stop l I .] The stop statement is put into
(receiving & sending) a condition symbol. The
at port ; condition shall cover the
l instance of the port to be
< stop > stopped only.
N
Timer operations
Start timer start 1
My Ti mer
(20E-3)
I
Stop timer stop 1
NyTiner:><£447
I
Read elapsed time read No special GFT symbol, used
within statements or
expressions.
Check if timer running |runni ng No special GFT symbol, used
within statements or
_ expressions.
Timeout operation timeout I
o 5
I

Set local verdict

verdi ct. set

The verdict is put into a
condition symbol.

ETSI

104

ETSI ES 201 873-3 V3.1.1 (2005-06)

Language Element

Associated
Keyword

GFT symbols, if existent, and typical usage

Note

Get local verdict

verdi ct. get

No special GFT symbol, used
within statements or
expressions.

SUT operations

Remote action to be
done by the SUT

sut.action

{

sut. action
(“MyAction”)

F

The action statement is put
into an action box.

Execution of test cases

Execute test case execute The execute statement is put
into a testcase execution
symbol.

execute(MyTC())
Attributes

Definition of attributes |[Wi th The with statement is put into

for control, testcases, with { a text symbol.

teststeps and display “.7;

functions extension “.”

}
Comments

Comments within text

/* My several lines comment */
/I My single line comment

Can be used wherever text
can be placed.

Comments for
instance events

/* My instance
event coment */

Shall be attached to events
on a control, test component
or port instance

Comments control,
test case, function or
test step diagrams

/* My Comment
explains a
little bit
nore */

Shall be attached to events
on a control, test component
or port instance

ETSI

105

ETSI ES 201 873-3 V3.1.1 (2005-06)

Annex C (informative):
Examples

C.1

The Restaurant example

testcase MyTestCase

testcase MyTestCase (

(in boolean internetService, in bool ean phoneService, in boolean internetService, /1 SERVICES
in boolean restaurantService, in integer totalNrCreatedPTCs, in boolean phoneService,
in integer maxNrActivePTCs, inout integer nrPass, in boolean restaurantService,
inout integer nrFail, inout integer nrinc) in integer total NrCreatedPTCs, // TERM NATI ON
runs on M cType system TestSystemType in integer maxNrActivePTCs, /1 CONTROL
mt ¢ P1 cp inout integer nrPass, /1 RETURN
inout integer nrFail,
[McType | [_mPcotype | mCPtype inout integer nrinc
I | [l
[var reportType report; | ! ! runs on McType
) 1 system TestSystemType
var default def I ! {
= activate (StandardDefault(! H var ReportType report;
H '
[Fap(self PL. System mPco)] ! ! var default def := activate (StandardDefault());
[(internetservice) P H : map(self:Pl, system mPCO);
(newinternetPTC()) if (internetService) {
i T newl nternet PTC() ;
if (totalNrCreatedPTCs !'= createdPTCs and phoneService)] 1 }
[CmaxNractilveptcs == 1) J ! if (totalNrCreatedPTCs ! = createdPTCs
<=AT1 component.done H ! and phoneService) {
(mewPhonePTC()) if (maxNrActivePTCs == 1) {
all component.done;
H }
|
L ! newPhonePTC();
while (totalNrCreatedPTCs ''= createdPTCs)J 1 }
i]
alt |‘ Report Type 1) while (totalNrCreatedPTCs | = createdPTCs) {
|7 > value report i H
1 ' alt {
Teport.lverdict ! ' [] CP.receive(ReportType:?) -> value report {
TfT (report.lverdict H dict tol dict
s Ve i bass +Piss ' setverdict(report.lverdict);
H (Eigg;:iwir:‘rilai\ 1) ; it (report.lverdict pass) { nrPass + 1)
: ; i H it (report.lverdict fail) { nrFail + 1)
it (;§fg;‘ss‘f’f’:‘r;;s; R ! ! it (report.lverdict inconc) { nrinc + 1)
= ; i 1= activePTCs - 1;
activePTCs := activePTCs - 1; H [activePTcs activepres
if (maxNrActivePTCs == 1) J if (maxNrActivePTCs nd
all component.done;
<=1 component_done)
' if (report.kind == internet) {
if (report.kind internet) J H newl nternet PTC();
T 1 }
newl nternetPTC() if (report.kind == phone) {
newPhonePTC() ;
it (report.kind phone) }
it (report.kind == guest) ({
newPhonePTC() newGuest (1200.0) ;
}
it (report.kind guest) }
I L
(newGuest (1200.0)
___________ T———————————————— [else] {
!]
lelse > | H it (maxNrActivePTCs < activePTCs
and restaurantService) {
newGuest (1200.0);
}
}
}
}
Component.done
all component.done;
stop;

Figure C.1: Restaurant example - MyTestCase test case

ETSI

106

ETSI ES 201 873-3 V3.1.1 (2005-06)

function new nternet PTC()
runs on McType

sel f P1 cP

ey oy

var | nternetType newPTC : =
I nt er net Type. create;

I
connect (sel f: CP, newPTC: CP);
map(newPTC: P1, system i PCO)
T
newPTC, start
(internetUser())
I
activePTCs := activePTGCs + 1;
createdPTCs : = createdPTCs + 1;

function new nternet PTC ()
runs on McType {

var | nternetType newPTC : = | nternetType. create,

connect (sel f: CP, newPTC: CP);
map(newPTC: P1, system i PCO ;

newPTC. start (i nternetUser());

activePTGCs = activePTCs + 1,
creat edPTCs : = createdPTCs + 1;

return;

function aCGuest(in float eatingDur)
runs on CGuest Type

sel f P1
CGuest Type gPCQt ype

timer T1

var default def
;= activate (CuestDefaul t
Tvisit %

}
}
}
I
I
I
]
]
]
]
]
]
]
i
(wai t Pi zzaDur) standar dPi zzaOr der” !
I
|
|
|
|
|
|
|
|
|
|
|
|
I
I
|
|
|
T
|
|

4 PizzaType
T1 >@ ?
< pass >

% st andar dPaynent >

X

T1
(eatingDur)
T1

Report Type
{guest,

Y

getverdict)

CcP
pCPt ype
I

function aCuest (in float eatingDur)
timer T1;

var default def := activate(QuestDefault());
Tvisit.start; // conponent tiner
Tl.start(waitPizzaDur);

P1. send(st andar dPi zzaOr der) ;

P1.recei ve(Pi zzaType : ?);

T1. st op;

setverdi ct (pass);

P1. send(st andar dPaynent) ;

Tl.start(eatingDur); // eating
T1.timeout;

CP. send(Report Type : {guest, getverdict});
st op;

} /1 end function aGuest

runs on Quest Type {

Figure C.2: Restaurant example - newlInternetPTC and aGuest functions

ETSI

107

ETSI ES 201 873-3 V3.1.1 (2005-06)

function newCGuest (fl oat eatingTi me)

runs on McType
sel f

var Seat Assi gnment Type aSeat ;
var QuestType newPTC : = nul | ;
tiner T1 := maxWaitingTi ne;

var default def

;= activate (StandardDefaul t()

P1

st andar dSeat Request
T <

[
|

pe

alt

|, Seat Assi gnnent Type

)l

? -> val ue aSeat

newPTC : = Quest Type. create;

connect (sel f: CP, newPTC. CP);
map(newPTC: P1,
syst em gPCJ aSeat . nunber]);

newPTC. start
(aQuest (1200.0))

acti vePTCs : = activePTCs + 1;

cr eat edPTCs : = createdPTCs + 1;

function newQuest (float eatingTine) runs on McType {

var Seat Assi gnnent Type aSeat ;
var QuestType newPTC : = nul | ;
timer T1 := naxWaitingTi me;

var default def := activate(StandardDefault());
/1 Request for a seat
P1. send(st andar dSeat Request) ;
Tl.start;
alt {
[1 P1.receive(SeatAssignnment Type: ?) -> val ue aSeat {
newPTC : = Quest Type. create;

connect (sel f: CP, newPTC. CP);
map(newPTC: P1, system gPCO aSeat . nunber]);

newPTC. start (aCQuest (1200.0));

acti vePTCs = activePTCs+1; // Update MIC vari ables
createdPTCs : = creat edPTCs+1;

}

[1 P1.recei ve(Seat Rej ect Type: ?) { // No seat assigned
setverdi ct (i nconc);

}

[1Tl. timeout { // No answer on seat request
setverdi ct (i nconc);
}
}

return;

ETSI

Figure C.3: Restaurant example - newGuest function

ETSI ES 201 873-3 V3.1.1 (2005-06)

108
function internetUser() function internetUser () runs on Internet Type {
runs on Internet Type [xxx
self Pl cp __P2 /1 *** Purpose: Specifies the behaviour of an
[_TInternetType | dPQO ype [pCPtype | [iPCype /] *** internet guest
- . I ! ' i [xxx
timer Tvisit; ! i 1
var integer orderNr; ' | i . R
var PizzaDel iveryType thePizza; ' ' H timer Tvisit;
I ! ! ! var integer orderNr;
var default defl ! ! ! var PizzaDeliveryType thePizza;
;= activate (StandardDefault () | | |)
! : ! var default defl := activate(StandardDefault());
' : ! ! var default def2 := activate(InternetDefault());
var default def2 i ! ! Tvisit.start(Overall Duration);
.= activate (InternetDefault(1 | H
| | |
! ' ! P2. cal | (St andar dl Net Order, maxConnectTi ne) {
Lo ! ' H [1 P2.getreply (iNetOder:? value ?)
Tvisit i i i
(Overal | Durati op) : ' ! -> value orderr {
! ! ! set verdi ct (pass);
[call J ! : | } _
' 1 \ [1 P2.catch (i NetOrder, ReasonType : ?) {
1 1 ol
T T |
___________Sff‘f‘f’f‘ff’_'ﬂre_tg_d_e_r _______ S R setverdict(fail);
getreply !i Net Order ! .
2 i i [1 P2.catch (tineout) {
val ué ? | setverdi ct (i nconc);
-> value orderNr ! }
e e e EEEE }
if (getverdict == pass) {

if (getverdict == pass) J
|
Pi zzaDel i veryType |
{?, orderNr, ?} '
Report Type i »
{internet, getverdjct } g
1
1
|

R (O N R —— -

P1l.recei ve(Pi zzaDel i veryType
{ ?, orderNr, ?});
}

CP. send(Report Type :
st op;

{internet, getverdict});

Figure C.4: Restaurant example - internetUser function

ETSI

109

ETSI ES 201 873-3 V3.1.1 (2005-06)

al tstep CGuestDefault() al tstep QuestDefault() runs on GuestType {
runs on QuestType [xxx
sel f P1 cP /1 *** purpose: Default behaviour for
I:GJQS(IIT € /1 *** message based ports
1 ! || *x*
]]
alt S P charstring | i
? | i [1 Pl.receive(charstring : ?) {
SstandardConversation #E : P1. send(st andar dConver sati on);
= | | repeat ;
—————————————————————————————————————— bommommmo oo)
I]
<> ! :
-] 1 [1 any tiner.tinmeout {
< fail = i i setverdict(fail);
______________________________________ S DU }
| |
— | |
- ! ! [1 any port.receive {
i nconc ! ! setverdi ct (i nconc);
I i }
i i }
]] I
al tstep StandardDefaul t() altstep StandardDefaul t() runs on McType {
runs on McType [***
IﬂfEl P1 cP /1 *** Purpose: Default behaviour for
M cType IMI /| **** pessage based ports
1] // * k%
| |
Lalt charstring | |
) ? i ' [1 Pl.receive(charstring : ?) {
——p! ' P1. send(st andardConver sati on);
L] | ’
EE st andar dConver sati on ! ! repeat ;
_______________________________________ g }
| |
e a a
| i [1 any tiner.tineout {
< fail > i i setverdict(fail);
_______________________________________ S RO }
] |
«—O ' |
| ! [1 any port.receive {
<__inconc i ! setverdi ct (i nconc);
: |)
: :)
I I I

Figure C.5: Restaurant example - GuestDefaut and StandardDefault functions

ETSI

110

ETSI ES 201 873-3 V3.1.1 (2005-06)

altstep InternetDefaul t()
runs on InternetType

sel f P1 cP P2
[M cType | [dPXype | [_pCriype | [_1PCype |
|
al t getrepl y: i
I
I
i nconc !
__

o

Q

—

O

=
I i E

e S

al tstep InternetDefaul t()
runs on Internet Type {
// * k%
/1 *** Purpose: Default behaviour for
/1 **** the procedure based port
// * k%

[1 any port.getreply {
setverdi ct (i nconc);
}

[1 any port.catch {
setverdi ct (i nconc);

function basicCapabilityTests() return verdicttype

sel f
var verdicttype |ocal Verdict := pass;
var integer nrP := 0, nrF :=0, nrl := 0;
P I
| ocal Verdict := execute (MyTestCase (true, false,
false, 1, 1, nrP, nrF, nrl), 1800.0)
~ I
if (localVerdi clt == pass) J
l ocal Verdi ct : = execute (M/TestCase (false, true,
false, 1, 1, nrP, nrF, nrl), 1800.0)
I
I
if (local Verdi clt == pass) J
l ocal Verdict := execute (MyTestCase (false, false,
true, 1, 1, nrP, nrF, nrl), 1800.0)

| ocal éer di ct

function basicCapabilityTests ()
return verdicttype {
var verdicttype | ocal Verdict := pass;
var integer ntP := 0, nrF := 0, nrl = 0;

/1 *** | NTERNET ORDER ***
| ocal Verdi ct : = execute(MTest Case (true,false,
false, 1,1, nrP,nrF, nrl), 1800.0);

/1 *** PHONE ORDER

if (local Verdict == pass) {
| ocal Verdi ct : = execute(M/Test Case
(false,true,false, 1,1, nrP,nrF, nrl), 1800.0);

/] *** RESTAURANT ORDER ***
if (local Verdict == pass) {
| ocal Verdi ct : = execute(M/Test Case
(false,false,true, 1,1, nrP,nrF, nrl),1800.0);
}

return (local Verdict);

Figure C.6: Restaurant example - internetDefault altstep and basicCapabilityTests function

ETSI

111 ETSI ES 201 873-3 V3.1.1 (2005-06)

function | oadTests() return verdicttype function | oadTests () return verdicttype {

Iil var verdicttype |ocal Verdict := pass;
var integer nrP := 0, nrF := 0, nrl 1= 0;

var verdicttype local Verdict := pass; .
var integer nftP := 0, ntrF:=0, nrl := 0; [/ *** Mnimal |oad ***
| ocal Verdi ct : = execute(M/Test Case(
' true, true, true, 100,10, nrP, nrF nrl));
| ocal Verdi ct : = execute (MyTestCase(true, true,
[true, 100, 100, nrP, nrF, nrl)) H /1 *** Medium | oad ***
~ I if (local Verdict == pass) {
i == | ocal Verdi ct : = execut e(M/Test Case(
(true,true, true, 400,30,nrP,nrF,nrl));
l ocal Verdict : = execute (MyTestCase (true, true, }
true, 400, 30, nrP, nrF, nrl))
L - /1 *** Maxinal |oad ***
- — if (local Verdict == pass) {
if (localVerdi gt == pass) J | ocal Verdict := execute(MTest Case(
[| ocal Verdi ct := execute (MyTestCase (true, false,] true, fal se, true, 1000, 60, nrP, nrF nri));
: true, 1000, 60, nrP, nrF, nrl)) return (1 ocal Verdict);

s }
| ocal'Verdi ct

function servicelnterworkingTests() return verdicttype

function servicel nterworki ngTests ()

sel f return verdi cttype {
var verdicttype | ocal Verdict := pass;
- - var integer nrP := 0, nrF :=0, nrl :=0;
var verdicttype |ocal Verdict := pass;
var integer ntP:=0, nrF:=0, nrl :=0; /] *** | NTERNET ORDER & PHONE ORDER ***
p T | ocal Verdict := execute(MTest Case(
. true,true, false, 2,2, nrP,nrF, nri), 3000.0);
| ocal Verdi ct : = execute (MyTestCase(true, true,
f al se, 2, 2, ntP, nrF, nrli), 3000. 0) /] *** PHONE ORDER & RESTAURANT ORDER
- —T if (local Verdict == pass) {
if (local Verdi Clt == pass) J | ocal Verdi ct := execute(MTest Case(
2 false,true,true, 2,2, nrP,nrF, nrl), 3000.0);
| ocal Verdict := execute (MyTestCase (false, true, H
true, 2, 2, nrP, nrF, nrl), 3000.0)
) /] *** RESTAURANT ORDER & | NTERNET ORDER***
I if (local Verdict == pass) {
if (localVerdicgt == pass) J | ocal Verdi ct : = execute(MTest Case(
! N true,fal se,true, 2,2, nrP,nrF, nrl), 3000.0);
{ | ocal Verdict := execute (MyTestCase (true, false,] }
t , 2, 2, P, F, 1), 3000.0 .
- rue il nr nri)) y return (local Verdict);

$ |
loca rdict

Figure C.7: Restaurant example - loadTests and servicelnterworkingTests functions

ETSI

112

ETSI ES 201 873-3 V3.1.1 (2005-06)

function qualityAssuranceTests() return verdicttype

sel f
var verdicttype |ocal Verdict := pass;
var integer nrP := 0, nrF := 0, nrl :=0;

execut e
(MyTest Case (true, true, true,
100, 10, nrP, nrF, nrl))

if (nrF+nrl >5\I J

local Verdict := fail

execut e
(MyTest Case (true, true, true,
400, 30, nrP, nrF, nrl))

I
if (nrF+nrl > 253I J

local Verdict := fail
T

execut e
(MyTest Case (true, false, true,
1000, 60, nrP, nrF, nrl))

if (nrE+nrl > 75\I

|IocaIVerdict 1= fail |

=

| ocal Verdi ct

function qualityAssuranceTests ()
return verdicttype {

var verdicttype |ocal Verdict := pass;
var integer nrP := 0,

nrF := 0,

nrl = 0;

/1 *** Quality under Mninmal |oad ***
execut e(M/Test Case(true, true, true, 100, 10,
nrP,nrFnrl));

if (ntrF+nrl >5) {
| ocal Verdict := fail;

}

/1 *** Quality under Medium | oad ***
execut e(MyTest Case(true, true, true, 400, 30,
nrP,nrFnrl));

if (nrF+nrl >25) {
| ocal Verdict := fail;

}

/1 *** Quality under Maximal |oad ***
execut e(M/Test Case(true, fal se, true, 1000, 60,
nrP,nrFnrl));

if (nrF+nrl >75) {

| ocal Verdict := fail;

}

return (local Verdict);

} // end function qualityAssuranceTests

Figure C.8: Restaurant example - qualityAssuranceTests

ETSI

113

ETSI ES 201 873-3 V3.1.1 (2005-06)

nodul e Pi zzaHut Test

control |
I
| var verdicttype overallVerdict := pass:
if (capabilityTesting J
and overal | Verdi ct == pass)
1
[overal | Verdi ct := basi cCapabilityTests()
[
if (interworkingTesting J
and overal | Vgrdi ct == pass)
[over al I Verdict := servicelnterworkingTests()
I
I
if (loadTesting
and overal | Verdi ct == pass)
[overal I Verdict := |oadTests()
[
if (qualityTesting J
and overal | Verdi ct == pass)
1
[over al I Verdict := qualityAssuranceTests()
|

nmodul e PizzaHut Test (
bool ean capabi lityTesting,
bool ean i nterwor ki ngTesti ng,
bool ean | oadTest i ng,
bool ean qualityTesting) {

control {
var verdicttype overal |l Verdi ct := pass;

/] Basic Capability Tests

if (capabilityTesting and overal |l Verdict == pass) {
overal | Verdi ct := basicCapabilityTests();

}

/1 Interworking Tests
if (interworkingTesting and overall Verdict == pass) {
overal | Verdi ct := servicel nterworkingTests();

}

/1 Load Tests
if (loadTesting and overal |l Verdi ct == pass) {
overal |l Verdict := |oadTests();

}

/1 Quality Assurance Tests
if (qualityTesting and overall Verdict == pass) {
overal | Verdict := qualityAssuranceTests();

}

Figure C.9: Restaurant example - PizzaHutTest module

ETSI

114

ETSI ES 201 873-3 V3.1.1 (2005-06)

C.2

The INRES example

A Page 1(2)
testcase m _synchl () runs on MICType
m c | SAP1 MBAP2
[MrcType | [PCO Typel | | PCO Type? |
var default de i i
:=activate ! |
(Ctherwi seFail ()); i i
I CONr eq o! !
L] |
{} | i
alt < § [!
Medi um Connect i on_Request !
]
NDATT leq R
Medi um_Connectijon_Confirnation 'i
1
1]
al t P | CONconf i i
{} ! |
1 1
Dat a_Request (Testgl',u t ePar) !
]]
1 1
alt P | '
- Medi um_Dalt a_Transfer :
MDATT e J
cm _synchl >
I DI Sreq i E
{} g i
alt J[I DI Sind i :
DES s s
h Medi um D sconnect i on_Request !
pass ! !
i i
| |
| I
| I
““““ S S R
h Medi um Di scomnecti on_Request i
___IDsSind | ;
Bl | I
pass U | i
i i
| |
| |
| |
““““ [P SR R
hl Medi um Dat a_{Tr ansf er !
< nconc> | :
i i
]]
_____________________________ L _.

testcase m _synchl () runs on MICType {

Default activation */
var default def := activate(Q herwi seFail());

/* Inline tenplate definition */
| SAP1. send(| CONreq: {});

alt { /* altl */
[1 MSAP2.receive(Medium Connecti on_Request) {

MSAP2. send(MDATreq: Medi um Connection_Confirmation);

alt { /* alt2 */
[]1 I'SAP1. receive (I1CONconf:{}) {
| SAP1. send (Dat a_Request (Test SuitePar));

alt { /* alt3 */

/* use of a tenplate */

/*optional tenplate type*/

[1] MSAP2. receive(MediumData_Transfer) {
MSAP2. send (MDATreq: cm _synchl());
| SAP1. send (IDI Sreq:{});

alt { /* alt4 */
[1 I1SAP1l.receive (IDSind:{}) {
MBAP2. recei ve(
Medi um Di sconnecti on_Request);
setverdi ct (pass);
st op;

[T MSAP2. recei ve(
Medi um Di sconnecti on_Request){
| SAP1. receive(IDSind:{});
setverdi ct (pass);
st op;

[1 MSAP2. recei ve(Medi um Dat a_Transfer) {
setverdi ct (i nconcl usive);
st op;

}
} /* end alt4 */
}

Figure C.10: INRES example - mi_synch1l 1(2) test case

ETSI

ETSI ES 201 873-3 V3.1.1 (2005-06)

} /* End testcase m _synchl */

115
] Page 2(2)
testcase mi_synchl () runs on MICType /* testcase ni_synchl () continuation */
U 1) R, ~--LSAPL _____ - MBAP2
' _MICType ! 1 PCO Typel ! ! POO_;I'ypeZ !
________________ LY PEL LU lypes |
i i
|]
altlaltifal t) ! :
D Y B ImTTTTTTT T | [1 I'SAPl.receive(IDISind:{}) {
< 0 ! ! setverdi ct (i nconcl usive);
i nconc i i } stop;
|
>k E | } /* end alt3 */
|] }
L] E_ ____________________ :;____
MDAT| nd ! [1 MBAP2.receive(
Medi um Conhect i on_Request | MDATI nd: Medi um Connect i on_Request) {
i nconc i i setverdi ct (i nconcl usi ve) ;
i i st op;
| | }
: |
——————————————————————————————— ittt ittt Sttty))
. | 1 [1 I SAPl.receive(IDSind:{}) {
< | DI Si nd ; E setverdi ct (i nconcl usive);
{} | | stop;
i nconc ! i }
e e)
! ! } /* end alt2 */
____________________________________ i_____________________1:._____
< ID:.:}SInd : E [1 1SAPL. receive(IDISind:{}) {
%rz@ E E ztegvgr di ct (i nconcl usi ve) ;
1 | p;
] | }
| |
' ' } /* end altl */
i i
|]
| |

Figure C.11: INRES example - mi_synch1l 2(2) test case

ETSI

116 ETSI ES 201 873-3 V3.1.1 (2005-06)

testcase m _synch2 () runs on MICType testcase m _synch2 () runs on MICType {
ntc | SAP1 MBAP2
[wrcrype | [Poo Type1 PCO_Type2
var default def] ' var default def := activate(C herwiseFail());
:=activate ' 1 /* Default activation */
(Ctherwi seFail()); ' !
1 COVr eq o ! | SAP1. send(| CONreq: {});
O | g ! setverdi ct (pass);
< pass > | i
| — ; ! alt {
alt Medi um_Connect on_Request 1 [1 MBAP2.receive(Medi um Connection_Request) {
NDATrqu J MBAP2. send (MDATr eq: Medi um Connecti on_Confirmation);
Medi um Connecti on_Confirnati on gl alt { .
I CoNcont ' X [1 ISAP1l.receive (ICONconf:{}) {
al t < 0 ! ! | SAP1. send (Data_Request(TestSuitePar));
_ | 1 alt {
Dat a_Request (Test Sui t&f”) 1 [1 MBAP2.receive (MediumData_Transfer) {
> T] MSAP2. send (MDATreq: cmi _synchl);
| T 1 —
al t Medi um Dat a_fTr ansfer ! I'SAPL. send (IDISreq:{}):
MDATr eq | ! alt {
1Dl Sreq Cm—syﬁhl ! [] 1SAPL receive (IDISind:{}) { /* PASS */
0 » ! VBAP2. r ecei ve(
1 . q .
- Medi um Di sconnecti on_Request);
alt J| I DI Si nd 1 E) | _Req)
: {1 ' ! [1 MBAP2.receive(
< VEdi um Dl sconnect i on_Request T Medi um__D‘ sconnec_ti on_Request){
Iiniaininiatet - iniatatnteteiatatatn iniainatetatetetsiatatatntntutatatututel H====" I SAPl.receive(IDSind:{}); /* PASS */
-~ Medi um Di sconnecii on_Request | }
I
P 1 DI Si nd | |
l 7 ! ! [1 MSAP2.receive (MediumData_Transfer) {
i P i —— b il ity setverdi ct (i nconcl usive);
N Medi um Dat a_Tr ansf er ! }
i nconc ! ! }
<noone>> ! , }
""""" S L I T A []1 1SAPL.receive(IDISind:{}) {
7 ' ! set verdi ct (i nconcl usi ve);
< inconc > ! ! }
i ! }
""""""""""" TN e S } _ _ _ _
- Medi um Connect i pn_Request ! [1 MBAP2.receive(MDATI nd: Medi um Connection_Request) {
i nconc 1 | set verdi ct (i nconcl usi ve);
“““““ SOOI T } , ,
<4 7 ' ! [1 ISAPl.receive(IDSind:{}) {
<inconc > ' ! setverdi ct (i nconcl usi ve);
_____________________ — | }
P I Di Si nd i : }
_ 1= {1 | I }
@conc ! ! [1 ISAPLl.receive(IDISind:{}) {
: L set verdi ct (i nconcl usi ve);
: :)
— — stop; } /* End testcase ni_synch2 */

Figure C.12: INRES example - mi_synch?2 test case

ETSI

117

ETSI ES 201 873-3 V3.1.1 (2005-06)

testcase m _synch5 () runs on MICType
ntc | SAP1 MSAP2
MICType FCO_Typel PCO_TypeE]
1 I |
var defaul t |
def: =activate i
(Def aul t Wt hl nconcl usi ves()); !
! 1
: 1
|CONFeq ! i
0 ;
T Medi um_Conneo:ti on_Request |
MDATr eq i
Medi um Connect i dIm_Confi rmation |
I
| cONconf | i
O : i
I
Dat a| Request (Test gqi t ePar) i
! 1
Medi um Dat a_TEr ansfer i
1
MDATT €9 ;i
cmi _synichl g
IDISreq i i
{} T i
interl i ! i
inter eavﬂ <IDIS|nd i i
{} : 1
________________________________ [H I R
! 1
| :
Medi um Di sconE]ectl on_Request |
|
! l
i |
GO |
i |
l :

testcase m _synch5 () runs on MICType {

var default
def := activate(DefaultWthlnconclusives);
/* Default activation */
/* message ONE and response to ONE */
| SAP1. send(|1 CONreq: {});
MSAP2. r ecei ve(Medi um Connecti on_Request);

/* nmessage TWO and response to TWD */
MSAP2. send(

MDATr eq: Medi um Connecti on_Confirmation);
| SAP1. receive (| CONconf:{});

/* message THREE and response to THREE */
| SAP1. send (Data_Request(TestSuitePar));
MSAP2. recei ve (Medium Data_Transfer);

/* messages FOUR and FI VE */
MSAP2. send (MDATreq: cm _synchl);
| SAP1.send (ID Sreq:{});

interleave {
/* the two responses to nessages FOUR and
FIVE can arrive in any order */
[1 I'SAPl.receive(ID Sind:{}) {};
[1 MBAP2.receive(
Medi um Di sconnecti on_Request) {};
}

set verdi ct (pass);
st op;

} /* End testcase m _synch5 */

Figure C.13: INRES example - mi_synchb5 test case

ETSI

ETSI ES 201 873-3 V3.1.1 (2005-06)

118
al tstep Defaul t Wt hl nconcl usives()
sel f | SAP1 MBAP2
[MrCType | PCO_Typel | [Pco_Typez2 |
H T
]
al't P MDATi hd o =
" Medi um Conneciion_Request t|with { . .,
! 1 || display “default”;
i nconc : i
I
| :
! 1
! 1
! 1
! 1
----------------- T o
W | DI Si nd ! !
i 1 \
{1 | !
|
Linconc > ' i
l |
! 1
! 1
! 1
! 1
! 1
__________________________ S
]

< Medi um Dat a1|_Tr ansf er

]
]
]
I
1
1
}
}
}
}
}
[}
T
1
I
]
]
]
]
]
I
1
1
}
}
}
}
i
+
I
I
]
]
]
]
]
I
1
1
}
}
}
1
i
}
I

altstep Default Wthlnconclusives() {

/* | NCONCLUSI VE CASES */

[T MSAP2.receive(

setverdi ct (i nconcl usive);
st op;

[1 ISAPl.receive (IDSind:{}) {

setverdict (i nconcl usive);
st op;

[1 MSAP2.receive (MediumData_Transfer) {

setverdict (i nconcl usive);
st op;

/* FAIL CASES */
[T I SAPL.receive {

setverdict(fail);
st op;

[T MSAP2.receive {

setverdict(fail);
st op;

} with { display "default"; }

MDATi nd: Medi um Connect i on_Request)

—~

Figure C.14: INRES example - DefaultWithIinconclusives altstep

ETSI

119

ETSI ES 201 873-3 V3.1.1 (2005-06)

altstep Ot herw seFail ()

O~

sel f | SAP1 MSAP2
[MrcType | PCO_Typel |

TSR 5 5

— i Ulfwith {

fail > ' ! || display “default”;

| :
! |
! 1
! |
! |
__________________________ R O

altstep O herwi seFail () {

[1 1 SAPL. receive {
setverdict(fail);

st op;

[1 MSAP2. receive {

setverdict(fail);

st op;
}
} with { display "default"; }
nodul e | nresExanpl el
nodul e | nresExanpl el {
control T
I:l control InresExanple {
s N
a) execute (ni_synchl(), 5.0);
execute(m _synchl(), 5.0); execute (m_synch2(). 5.0):
> : y, execute (m _synch5(), 5.0);
e ™
} // end control part
execut e(m _synch2(), 5.0);)
A J
[
s N
execut e(m _synch5(), 5.0);
> 7

—

Figure C.15: INRES example - OtherwiseFail altstep and InresExamplel module definitions

ETSI

120

ETSI ES 201 873-3 V3.1.1 (2005-06)

History
Document history
V111 January 2001 Publication as TR 101 873-3
V112 June 2001 Publication as TR 101 873-3
V121 May 2002 Publication as TR 101 873-3
V221 February 2003 Publication
V222 April 2003 Publication
Vv3.0.0 March 2005 Membership Approval Procedure MV 20050527: 2005-03-29 to 2005-05-27
V311 June 2005 Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Abbreviations
	4 Overview
	5 GFT language concepts
	6 Mapping between GFT and TTCN-3 Core language
	7 Module structure
	8 GFT symbols
	9 GFT diagrams
	9.1 Common properties
	9.1.1 Diagram area
	9.1.2 Diagram heading
	9.1.3 Paging

	9.2 Control diagram
	9.3 Test case diagram
	9.4 Function diagram
	9.5 Altstep diagram

	10 Instances in GFT diagrams
	10.1 Control instance
	10.2 Test component instances
	10.3 Port instances

	11 Elements of GFT diagrams
	11.1 General drawing rules
	11.1.1 Usage of semicolons
	11.1.2 Usage of action symbols
	11.1.3 Comments

	11.2 Invoking GFT diagrams
	11.2.1 Execution of test cases
	11.2.2 Invocation of functions
	11.2.3 Invocation of altsteps

	11.3 Declarations
	11.3.1 Declaration of timers, constants and variables in action symbols
	11.3.2 Declaration of constants and variables within inline expression symbols
	11.3.3 Declaration of constants and variables within create symbols
	11.3.4 Declaration of constants and variables within default symbols
	11.3.5 Declaration of constants and variables within reference symbols
	11.3.6 Declaration of constants and variables within execute test case symbols

	11.4 Basic program statements
	11.4.1 The Log statement
	11.4.2 The Label statement
	11.4.3 The Goto statement
	11.4.4 The If-else statement
	11.4.5 The For statement
	11.4.6 The While statement
	11.4.7 The Do-while statement

	11.5 Behavioural Program Statements
	11.5.1 Sequential Behaviour
	11.5.2 Alternative Behaviour
	11.5.2.1 Selecting/Deselecting an Alternative
	11.5.2.2 Else branch in alternatives

	11.5.3 The Repeat statement
	11.5.4 Interleaved Behaviour
	11.5.5 The Return statement

	11.6 Default handling
	11.6.1 Default references
	11.6.2 The activate operation
	11.6.3 The deactivate operation

	11.7 Configuration operations
	11.7.1 The Create operation
	11.7.2 The Connect and Map operations
	11.7.3 The Disconnect and Unmap operations
	11.7.4 The Start test component operation
	11.7.5 The Stop execution and Stop test component operations
	11.7.6 The Done operation

	11.8 Communication operations
	11.8.1 General format of the sending operations
	11.8.2 General format of the receiving operations
	11.8.3 Message-based communication
	11.8.3.1 The Send operation
	11.8.3.2 The Receive operation
	11.8.3.2.1 Receive any message
	11.8.3.2.2 Receive on any port

	11.8.3.3 The Trigger operation
	11.8.3.3.1 Trigger on any message
	11.8.3.3.2 Trigger on any port

	11.8.4 Procedure-based communication
	11.8.4.1 The Call operation
	11.8.4.1.1 Calling blocking procedures
	11.8.4.1.2 Calling non-blocking procedures

	11.8.4.2 The Getcall operation
	11.8.4.2.1 Accepting any call
	11.8.4.2.2 Getcall on any port

	11.8.4.3 The Reply operation
	11.8.4.4 The Getreply operation
	11.8.4.4.1 Get any reply from any call
	11.8.4.4.2 Get a reply on any port

	11.8.4.5 The Raise operation
	11.8.4.6 The Catch operation
	11.8.4.6.1 The Timeout exception
	11.8.4.6.2 Catch any exception
	11.8.4.6.3 Catch on any port

	11.8.5 The Check operation
	11.8.5.1 The Check any operation
	11.8.5.2 Check on any port

	11.8.6 Controlling communication ports
	11.8.6.1 The Clear port operation
	11.8.6.2 The Start port operation
	11.8.6.3 The Stop port operation
	11.8.6.4 Use of any and all with ports

	11.9 Timer operations
	11.9.1 The Start timer operation
	11.9.2 The Stop timer operation
	11.9.3 The Timeout operation
	11.9.4 The Read timer operation
	11.9.5 Use of any and all with timers

	11.10 Test verdict operations
	11.11 External actions
	11.12 Specifying attributes

	Annex A (normative): GFT BNF
	A.1 Meta-Language for GFT
	A.2 Conventions for the syntax description
	A.3 The GFT grammar
	A.3.1 Diagrams
	A.3.1.1 Control diagram
	A.3.1.2 Testcase diagram
	A.3.1.3 Function diagram
	A.3.1.4 Altstep diagram
	A.3.1.5 Comments
	A.3.1.6 Diagram

	A.3.2 Instances
	A.3.2.1 Component instances
	A.3.2.2 Port instances
	A.3.2.3 Control instances
	A.3.2.4 Instance end

	A.3.3 Timer
	A.3.4 Action
	A.3.5 Invocation
	A.3.5.1 Function and altstep invocation on component/Control instances
	A.3.5.2 Function and altstep invocation on ports
	A.3.5.3 Testcase execution

	A.3.6 Activation/Deactivation of defaults
	A.3.7 Test components
	A.3.7.1 Creation of test components
	A.3.7.2 Starting test components
	A.3.7.3 Stopping test components

	A.3.8 Inline expressions
	A.3.8.1 Inline expressions on component instances
	A.3.8.2 Inline expressions on ports
	A.3.8.3 Inline expressions on control instances

	A.3.9 Condition
	A.3.9.1 Condition on component instances
	A.3.9.2 Condition on ports

	A.3.10 Message-based communication
	A.3.10.1 Message-based communication on component instances
	A.3.10.2 Message-based communication on port instances

	A.3.11 Signature-based communication
	A.3.11.1 Signature-based communication on component instances
	A.3.11.2 Signature-based communication on ports

	A.3.12 Trigger and check
	A.3.12.1 Trigger and check on component instances
	A.3.12.2 Trigger and check on port instances

	A.3.13 Handling of communication from any port
	A.3.14 Labelling

	Annex B (informative): Reference Guide for GFT
	Annex C (informative): Examples
	C.1 The Restaurant example
	C.2 The INRES example

	History

