ETS| ES 201 873-1 V4.16.1 (2024-10)

<. —

ETSI STANDARD

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language

2 ETSI ES 201 873-1 V4.16.1 (2024-10)

Reference
RES/MTS-201873-1v4.16.1

Keywords
language, methodology, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fithess
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fithess for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.
All rights reserved.

ETSI

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

3 ETSI ES 201 873-1 V4.16.1 (2024-10)

Contents

Intellectual Property RIGNES.... ..o 13
01 Yo (o SR 13
Modal VErDS tEMINOIOQYccveeeeitieeeie ettt e s re e et e s re e s e s aeeaeestesseesesreeaeesenrens 14
1 o0 0L S SST 15
2 L= £ 101 ST 15
21 NOIMBLIVE FEFEIENCES ...ttt ettt ettt ettt a et e se e be s eeebesaeeaeeneessenbesaeeteeneeneeneenseseeens 15
22 INfOrMELIVE FEFEIENCES. ...ttt st sttt et et e e seeeteeneeneeseeneesee e 16
3 Definition of terms, symbols and abbreviations.............ccceviiveieie e 18
31 1= 10O 18
3.2 Y 1210 S 24
3.3 ADDIEVIBLIONS ...ttt e bbbt se e b e bt b e e he e e e b et bt s Rt ene e e n e e erenns 24
4 100 1 Tox A o o TSSO 25
40 LT 07 PRSP 25
4.1 The core language and presentation fOIMELScuieeiireinir e 26
4.2 Unanimity of the SPECITICALIONcoviiiieieie e 27
43 (001070 7= o TSSO 27
5 BasiC 1angUagE ElEMENTSooe ettt s rer e ne e 27
50 GBNENEL ...ttt bbb h e h e R e Rt R R R R e e e R e R e R e bRt b e e e et e e e nbenaeeneas 27
51 [AENLITIErS AN KEYWOITSc.eeiceeeeieeiee ettt et e s e st e st este e aeeseeneeeseeeseeneeenseenseenansranas 28
5.2 o0 0= 1 - 29
5.2.0 LT 1 SRR 29
521 SCOPE Of FOrMEl PAFBMELEN'Seiueeeireieeeerte ettt bbbt bbb enes 31
522 UNiQUENESS OF THENTITIEIS ...ttt b e bbb sne e 31
53 Ordering Of 1aNQUAGJE ElEMENES........coi ittt b e b e eb e b e b sre e 32
54 01 (= 4= o] P 32
5.4.0 LT 1 SRR 32
54.1 FOrMEl PAIAIMIELESoveeieeiecee et s e te e e saeesaeesae e teen e estessaesseesreensesnnesneesaeenseenes 33
54.1.0 LC T o1 o SRS 33
54.1.1 Formal parameters Of KinNG VAIUE...........cccveiieiie ettt e 34
54.1.2 Formal parameters of Kind teMPIELe...........ccoueieerieieie e 37
5.4.2 F o 0= 7= =001 = £ T 39
54.3 RV = o (ol i 0= (TSP 44
55 CYClIC DEFINITIONS. ...ttt b bbb b bt b e bt b e sbene b e s b e e ebesbe e enenbe e 45
6 TYPES ANA VBIUES ...ttt sttt ettt e b e s be et e s beeseetesaeeneesbeensestesteennensenrens 45
6.0 LT 0T PR SURPR 45
6.1 BaSIC LYPES @NU VAIUES..........ocueieeiecieeieetee ettt et s et e st e s te e be e e e ntessaesseesaeesseenseenseenseensennenssenss 46
6.1.0 SiMple basiC tyPeS @NU VBIUES..........c..oiieiieiece sttt stae e eete e e e e saeenaeenneensesnannnanss 46
6.1.1 BasiC String tYPES N VAIUES........cooieiee ettt sttt et ettt teeaesnaesanesneenneenes 47
6.1.1.0 LC T o1 o SRS 47
6.1.1.1 Accessing individual String ElemMENES.........ccecieiieiieie e 49
6.1.2 SUBLYPING OF DASIC LYPES ...ttt 50
6.1.2.0 LT 0T PO SRRRPTR 50
6.1.2.1 LiStS Of LEMPIAIES ...ttt 50
6.1.2.2 LiSES OF LYDBS ..ttt ettt b e ekt b e et b e et b et Rt eb e b e b r e 50
6.1.2.3 RENGES......e e e 51
6.1.24 SUNG 1€NGEN FESIIICIIONS ...ttt 52
6.1.2.5 Pattern subtyping of charaCter StriNg tYPES ...ccuvv i 52
6.1.2.6 Mixing SUBLYPIiNG MECNANISIMS.......civiieeieere et se et e et e e e et e entessaesraesaeeneeeneas 52
6.1.2.6.1 Mixing patterns, liStS and FANQES.......cccvveuieiieiesee e ee e s sre e see e e e sre e s e beetesnaesraens 52
6.1.2.6.2 Using length restriction with Other CONSLraiNtS...........ccvvverieerieiere e 53
6.2 SErUCLUrEd tYPES @NA VAIUES........ocueeciee ettt e e ste s e s e sreesaeeaeenaeenaessaesseesteeneeennennees 53
6.2.0 LCT= 0T o TS 53
6.2.1 RECOId tYPE AN VAIUES......c.eeeiteeceete ettt ettt b e et b e et b e e e b e e e b nne e 55

ETSI

4 ETSI ES 201 873-1 V4.16.1 (2024-10)

6.2.1.0 LT 0T PSRN PR 55
6.21.1 Referencing fields Of AreCord tYPE.......c.ciuiriiiirieieie e 58
6.2.1.2 Optional ElemMENtS N @TECONM.........ciiiieiriirieert bbb 59
6.2.1.3 Nested type definitions fOr field LYPEScveiriieieric s 59
6.2.14 EmMDedded fIElaS. ..o 60
6.2.2 SELLYPE BN VAIUBS ...ttt sttt ettt e st et e e e e ntesaaesneesaeesseeseenseensesneennenss 60
6.2.2.0 GBINETEAL ...t R et nns 60
6.2.2.1 Referencing fields Of @ SEL LYPE......oiee e 61
6.2.2.2 Optional ElEeMENES TN @ SEL......cccieeieeeee et e e e be e e sreesreesreesaeenseenes 61
6.2.2.3 Nested type definition for field tYPES.........ocveriecieece e 61
6.2.24 EMDEAUEd FiElUS.ot 61
6.2.3 Records and SEtS Of SINGIE LYPEScouiiiiiiierieeete ettt bbb e re e 61
6.2.3.0 GBINENEL ...ttt b h bR bR bR bbb et b et b nene 61
6.23.1 Nested tyPe AEfiNITIONS........c.ciiiiie bbb 64
6.2.32 Referencing elements of record of and et Of tYPESccveiiiiiiric s 64
6.24 Enumerated type AN VAIUESc.coiiiiiiireeeeie ettt sttt b e 65
6.2.5 LT Ta] TSP PSP PRSPPSO 67
6.2.5.0 GBINETEAL ...ttt et 67
6.25.1 Referencing fields Of @ UNION TYPEcveeii e 68
6.2.5.2 107 o 1Ko 1= To U 9o o T 69
6.2.5.3 Nested type definition fOr fIeld tYPES.......veii e e 69
6.2.5.4 EMBDEAUE FIElUS. ..o 69
6.2.6 TRE BNYLYPE ..ottt b et b e e h e bR bt b et bRt b et b nene 70
6.2.7 N 1= Y TSP 70
6.2.8 THE AEFAUIT YR ...ttt et b e et b bbbt bbb a et ebe e 72
6.2.9 COMMUNI CALTON POIT LYPES......veeieeetereeeetere ettt ettt ettt bbb e bt e st sb e b s b s s b s se s neenes 72
6.2.10 COMPONENT TYPIES ...ttt et a e e E e sr e e Rt et e e e s e e e renresbeer e s se e e ennenrennenrens 74
6.2.10.1 Component tyPe defiNItioN...........c.ceiiiie e e 74
6.2.10.2 ReUSe Of COMPONENT TYPESueeieietieiiee et se sttt ee s rae e e s reesteeaeenseeneesseessenssesnaensenns 75
6.2.11 COMPONENE FEFEIEINCESvi e ceeeeteetee ettt s e et e et e e et e e teestessaesseesaeesseeseenseensennannnenns 77
6.2.12 Addressing entitieSiNSIAE the SUTocveiie e nne s 79
6.2.13 SubtypinNg Of SEHUCTUrE tYPESeveeieeieeie ettt ettt et e e e te e aeseesneesreesteenneensesnaenneens 8l
6.2.13.0 GBINEIEAL ...t e et r e n s 81
6.2.13.1 Length subtyping of record ofSand SEt OFSooeirireinee e 81
6.2.13.2 List subtyping of structured types and @nyLyPe.........cccoreerereererieene e 82
6.2.13.3 Subtyping of the iterated type of record ofs and set OfS.........ccocvviriiieieier e 85
6.2.13.4 Mixing SUbLYPING MECNANISIMS.........cueiiiieiiriiieieriee et sb e 86
6.2.14 TR EITIEY LY.ttt ettt b et b e e h e b st a e e b e e e bt b e e et b e nb et b e et b e e 86
6.2.15 MBI EYPIES ... e 87
6.2.15.0 GBINEIAL ...ttt e r et r e 87
6.2.15.1 LY=o T Y/ 0 T= 1 B = 11 11 o o 87
6.2.15.2 Indexed ASSIGNMENE NOLBLION........c.eciiieieiie e se et e e see e e e s reesseeseeneesraesnaens 87
6.2.15.3 (0 L0007z 1o o1 0 T NS 88
6.2.15.4 INOEX NOTBLION. ...ttt r e r e e b nr e r e nr e e r e sr e e er e nr e e erenre e 88
6.2.15.5 AcCessiNg the KeYS Of @M@ccciiiie ettt e naennee s 89
6.2.15.6 AccessiNg the ValUeS Of M@ccciiiire et eb e e 20
6.2.15.7 Referencing of EIementS of 8MaD........cociiiiiiieee e 20
6.2.15.8 Nested tyPe AefiNITIONS........c.oiiiie et 20
6.2.15.9 Optionality of Map ElemMeENnt VAIUES............ccoiiieiriiiereee et 91
6.2.16 THE OPEN LY ..ttt b bbbt b e b e bt b e R bt b e et b et b nne 91
6.3 TYPE COMPALIDITTITY ..ottt 91
6.3.0 LCT= 01 o= PSSRSO 91
6.3.1 Compatibility Of NON-SLrUCLUIEA tYPEScueeieeeieeeee e ees e e et sae e s e e naeeaeeneesraenneens 92
6.3.2 Compatibility Of SHUCLUFEA tYPES.......eeieeieeieeesie ettt eee st te e e s ettt e e seesaeesreenaeenaeenseenaenneess 93
6.3.2.0 GBINETEL ...ttt et n s 93
6.3.2.1 Compatibility Of enNUMErated tYPEScueiieiee ettt s ne e s 93
6.3.2.2 Compatibility of record and record Of TYPEScccerireirire e 94
6.3.2.3 Compatibility Of Set and SEt Of TYPES......cueiiiieirier e e 96
6.3.24 Compatibility Of UNION TYPES.......ooviiiiiieeere e 96
6.3.25 Compatibility Of ANYLYPE TYPESvieeeirtiee sttt 97
6.3.2.6 Compatibility DEtWEEN SUD-SEFUCLUIES.........couiiiiii e 98
6.3.2.7 Compatibility Of the OPEN TYPE.......ceiieir e 98

ETSI

6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.4

6.5

7.0

7.1
7.1.0
711
712
7.13
714
7.15
7.1.6
7.1.7
7.1.8
7.1.8.0
7181
7182
7.1.83
7.184
7.2

8.2
8.2.0
821
8.2.2
8.2.3
8.23.0
8231
8232
8.233
8234
8.2.35
8.2.3.6
8.2.3.7
8.2.3.8
8.24
8.2.5
8.3

9.0
9.1
9.2

10

11

11.0
111
11.2

12

5 ETSI ES 201 873-1 V4.16.1 (2024-10)

Compatibility Of COMPONENE LYPES......civieiuirieietert ettt sb et 98

Type compatibility of communication and connection OPErationsS............ccvveereeeeereererieseese e 99

LY 0 LT o0 0177= = o o SO SO TR P SRR P SRR 99

Type compatiDility Of POt EYPES.....c.couiiiiici bbb 99

Type compatiDility Of TIMEN TYPES. ..o e 99

Type Compatibility Of MaP TYPES....cceeiee ettt e e e sne e re e re e benneesnaens 100

B 0135,V 010011 PSPPI 100
U110] 7= 1 o 1Y/ =S 100
EXIIIESSIONS....... ettt R R R R Rt n e n e e ns 101
LT 0T SRR 101
L0707 = 0] £ J TP TP PSPPSR PR 102
(€71 RSO PRRR 102
ATTENMELIC OPEIAEOIS ...ttt bbbt b bt b e ne st eb bbb 104

I oo = = (o OSSP ORVPUT PSPPI 104

e 0] 7= e 0= = (o] = 105
(oo Lo] 1= 1 0] £ 108

TN 0] 1= 1 o] 108

S TR 0] = o] S 109
0 = (0] 0 = o] £ T PO 110
Presence CheCKIiNG OPEIaLOrS.cueiveieeieere et ete st e st se e e et e et e et e saaesraesreesteeteeneennas 111
LT 0T T 111

THE ISPrESENE OPEIBLONceecveeieeetertee ettt bbbt bt st e et b e 111

The ISChOSEN OPEIEION ... bbbt 112

THE ISVBIUE OPEIELOT ...ttt bbbttt b et st e et b 113

The ISDOUNT OPEIELON.........eeitieeiiitirt ettt bbbt e 115

Field references and liSt BlEMENES.........coi i bbb 116
Decoded field FEFEIBINCE.........oo it bbb bbbt bt e e e b b ene s 116
17700 111 =SSR 117
GBNENEL ...tk b b bt e R R R R ae R e e e e R e Rt R e b e Rt ehe e e et nrenrenae e 117
DefiNition Of @MOGUIEcuiiiieeeeeee ettt e ee st tesreere e e enee e e snesaenneas 117
MOAUIE AEFINITIONS PAITeviueeeertieetertee ettt e bt b et b s b b eae e s 118
(€71 SRR 118
MOTUIE PAIBIMELEN'S ...tttk ettt ettt b et b e et b e et b e et b e s e et eb e b et sbenn et b e b 119
GrouPS OF AEFINITIONSc.eitieeiiiere et et et b e et b e e b e b e b b e 121
IMPOrting froM MOAUIESooieee et et tesraesre e teeteeneennas 122
GBNETEL ...t bbb R h R R Rt e e bRt R et eh e eb e et e e r e e 122

General format Of IMPOITooie e teeee e 122
IMporting SINGIE AEfiNITIONSeciicece e e e sre e e e e e e re e 128

IMPOTING GrOUDS. ... veeieeeieeesteete et eetesteestee e esteesesseesseesseesseeaseenseesseessessenssaesseesseesseasesssnessennsennes 129

Importing definitions of the SaMe Kindcccoove i 130

Importing all definitions of aMOAUIE...........ccooiiiiiii e 131

Import definitions from other TTCN-3 editions and from non-TTCN-3 modules..................... 132

Importing of import statements from TTCN-3 MOAUIES.........ccceerircirireese e 133
Compatibility of language Specifications in iMPOITS..........ooeerireirireereeere s 134
Definition of friend MOAUIES............eoiiieee e 135
VisiDility Of defiNitioNS.........cccoiiiiiie bbb 135

YKo L8N oo 011 e = o 137
Port types, component types and test CONfigUIatioNScovrirerererenenieeeesese e 138
GBNENEL ...tk b b bt e R R R R ae R e e e e R e Rt R e b e Rt ehe e e et nrenrenae e 138
COMIMUNICALION POITS ...ttt ettt sttt sttt et sb et b et b e b e se bt b et e bt s be e e bt s b et e bt e b et eb e s bese e st ebe s e e nbennens 138
TS SYSEEM INEEITACE. ...t bbbt b e nre e 141
DEClAriNG CONSEANLSueevertertiiiesiesie sttt sttt b e b s be st et et e e e e seeseenenteneeneneas 143
DEClaring VAITADIES.ccueceeee ettt sre e e beeresaeeresne e 144
GBNETEL ...t bt e h b h e h e e R R R R R R e e e e e e R Rt beeReehe e e e nnenre b nreeae 144
VAlUB VAITBIIES. ...ttt e e bt b e et b et e e e e be b b e e aeeaean 144
LIE 000 Y= o] (=S 145
(<ot =1 o I 0= S 147

ETSI

6 ETSI ES 201 873-1 V4.16.1 (2024-10)

13 DECIANNG MESSAGEScccueiieiueeiteeteeite st eee et e st e s teeaesteste e tesreeseesbesaeessesseeaseseeaaeentesreensessesneensensens 148
14 Declaring proCedUre SIGNALUIES.........c.vceeiieiieiecteeeesteeeestesreeeesteeeestesseestesteesesresreentesaeensessessens 148
15 DEClaring tEMPIELES.ceeeeieieetietestest ettt b e b b e e e e e s e nennenn s 150
15.0 LT 0T RSP 150
151 Declaring MeSSage tEMPIBEESc.iieiiiieiirtei ettt b ettt b et sbe e 151
152 Declaring SIgNature tEMPIBEEScoueeiiirieerieieeri ettt bbb e et b et nbe b 152
153 Global and [0CEl LEMPIBLESc.eiveieieieeeet et b bbbt b e sb e 154
154 IN-1INE TEMPIBLES. ...ttt bbbt b bbb bbb et b e b eae e enee 155
155 MOTITIE TEMPIALES.......eeeeeeeeeeet bbbt b e b et b et nbe e 156
15.6 Referencing elements of templates or template fields..........covevveicicece e 160
15.6.0 (€= 0T o TP 160
15.6.1 Referencing individual String €lemMENtS..........ccveiiieiiece e 160
15.6.2 Referencingr ecor d and Set fieldS......ccooieviecieciccece e s 163
15.6.3 Referencingr ecor d of and set Of @ementS......cooo i 164
15.6.4 Referencing SIgNature ParaiMELErS.ciceicueieeeeeseestees e e e estesaeseesreesaeesseeteesseestesssesseesseensesnsesnnas 167
15.6.5 Referencing Uni 0N alterNaLiVES.........c.oiiiiiiieee et ere e 168
15.6.6 ReferenCing MAP ElEMENES.........coiiiie ettt et e e te e teeeesnaesnnennes 169
157 Template matching MECNENISIMIS ..ot eb e e ebenre e 170
15.7.0 (€71 OSSPSR 170
1571 SPECITIC VAIUES.......cceeeetet ettt b et b et b e et b e s bbb e bt b e nnene b e 171
15.7.2 Specia symbolsthat can be used instead Of VAIUES............cceeveiieiieciece e 172
15.7.3 Special symbolsthat can be used iNSIAE VAIUES..........covevieii e 173
15.74 Specia symbols which describe attributes of ValUES..........ccvecv v 173
15.8 I 00 S (=S ok e S 174
15.8.1 o Lo ===t o o 174
15.8.2 Implicit restrictions for template fields, alternatives and elements..........ccccccveveeceveesceeseesescee e, 177
159 IMIBECH OPEIBLION. ...ttt ettt bbb st bbbt et b b et bbbt b e s ne bbb b 177
15.10 WV BIUEOF OPEIGLION ...ttt b et b bbbt b et b e bbbt e s 178
1511 Concatenating templates of String and lISt LYPESeeeirieiriree e 179
15.12 THE OMIT OPEIELION ...ttt ettt b e e b b e bt b e se et s e et et e se bt sb e e ebenbeneenenre e 182
15.13 THE PrESENt OPEIELION ...ttt et ettt se et b e et b e s e et eb e s b e e ebesbeneeneere e 182
15.14 PrESENNESS CONVEISION.......iieieeieieie sttt ettt e sttt sttt e e e e ee st e besaeebe e e e e e seessesbesaeesesneeneeeeeeseesnennes 183
15.15 THE VAIUB EXIFBCLION.cieieeiieeee et b ettt e e bbbt ne e b nnesne s 184
16 Functions, altStePS aNA LESICASESoivveeeereerie ettt e se et e e neeneesne e 184
16.0 LC T o1 - SRS 184
16.1 L Tox 0] 1 TR 184
16.1.0 GIBINEFA ...ttt a et et e e e Ee Rt Rt e Rt et e EeeeeeReeReeReereeneenteneenrenaeeneeneen 184
16.1.1 [NVOKING FUNCLIONS ...ttt bbbt b et sb e nne 187
16.1.2 Predefined fFUNCHIONScc.eeeee et st b e s et seeseeenas 187
16.1.3 = = 0 o o = T 190
16.1.4 Invoking functions from SPECITIC PlACESccoi e 190
16.1.5 EXPliCit CONIOl FUNCLIONS.......coiiiiie ettt st ettt et esbeesreenneennas 192
16.1.6 The not-implemented fUNCLION............ooiieeee e esneennee s 192
16.2 = 1= o LTSS SPRTOSPIN 193
16.2.0 (€= 0T o TSRS 193
16.2.1 10V 0 g0 = L= oL 195
16.3 LIS A= S =SSOSR 196
A Y o o B 197
18 Overview of program statements and OPEratioNS...........coerereereererieresere e e 197
19 BasiC Program SIAEMENTS.coeriirerrereerreeeieeee sttt sre e se e e e s e bbb e se e s e s e e e e e e eseesennennenes 199
19.0 LC T o1 -SSR 199
191 F oS T 10 11< 01K TSSOSO 200
1911 BaSIC BSSIGINIMENES. ...ttt ettt b e bbb e et b e bt bt s b et b e b e st s be e et b e e 200
19.1.2 Shorthand 8SSIGNIMENLESc.eitiieiie bbb bt et ne et b e e b e e ene b e 202
19.2 The IT-€1S8 SALEIMENL ..ottt sttt et e e et e beseesteeneeneeneeeenaeeneas 202
19.3 THE SEIECE STALEIMENESeeeieiereee ettt e st et st esaesa e et e s e e neeseebeseeseeeneeneeneeneesaenneas 203
19.31 The SElECt CASE STALEIMENLccueieiee ettt see et e e ese e e e e e neesteseesneas 203
19.3.2 The SEleCt UNION SEBLEIMENLceeieiereiite ettt se bbbt e e e et snesne b sneas 204

ETSI

7 ETSI ES 201 873-1 V4.16.1 (2024-10)

194 THE FOF SEBEMENES ...ttt ettt e e e e st et e s besaeese e e e eeseesbesaesaestesneeneensensesaeeneas 205
1941 THE COUNTET 1OOP ...ttt bbbt bbb et eb bbb 205
194.2 The range-DESEO 100Dc.eruieeiirtii bbb et b bbb 206
195 THe WHhIl@ SEEEEMENL.......c.eeeeeeree et sttt a et e e e e seesbesaeesesteeneeneeneeneenaeeneas 207
19.6 The DO-WhIl@ SEAEEMENL ..ottt se e e et sreebeeneenee e e nsesaeeneas 208
19.7 The LaDE] STAIEIMENL ..ottt e b et e e et st e se e e e b snesae s 208
19.8 TNE GOLO SEALEIMIENL ...ttt e e b s et e e e se e eb e s bt e b e e se e e e bese e et e s aeesee s enbenresaeas 209
19.9 The StOP EXECULTION SLALEIMENL........cveeeeeeeeteesteeeeie e see e e s e e ste et e s e s e saeesreeseenteeseeesaesseesseesseenseenseennen 210
19.10 THE RELUIN SEBEEMIENT.c.eeee ettt e bt bbbt e e e b bt sbeeb e s it e nee e e nbenresne s 210
19.11 QLIS 0 R = =101 | S 211
19.12 R 2 = NS = 1= 1= 0L SRS 213
19.13 The CONtINUE SEBEEMENTeiteeeeeeie ettt st et e st e st e beseeebeeseeseeneeseeseesaesteeneeneeneensesaesneas 213
19.14 SEAEMENT DIOCK ...ttt e st et ne e st e e e e neeseesresreeneeneen 214
20 Statement and operations for aternative behaviours...........cccccveeeviiicie e 214
20.0 LC T o1 - SRS 214
20.1 The SNaPShOt MECHANISIM........eeiieie e et eeaeesre e re e reenreenreennas 215
20.2 TRE AIT SEALEIMENT ...ttt e bbbt bt e st et e e e b et e sb e et e saeennene e beneeeneas 215
20.3 The REPEAL SLALEIMENTocvieieeie et e sttt e et e s e saeesre e aeeeeenseeseeese e seesseesseenneeseennen 220
204 The INtErTEAVE SLALEMENToiiee bbbt e bbbt bt st e e e e b e sne s 220
20.5 [0 1 =10 =T g S 223
20.5.0 (€= 0T - TR 223
20.5.1 The default MEChANISMottt s e e e b ae e e e neeseeseenneas 223
20.5.2 THE ACHVELE OPEIALION. ... ettt ettt b bt b e ne et bbb b 224
20.5.3 The DEACIVALE OPEIEIIONcueiviieeirteeeiert ettt bbbt b et b et b st nbe e 225
21 Configuration OPEIaLiONS..........ccouierieriererieieeeesie e st seestesee e se e s e sbesaesbesse e e e eneesessessensenens 226
21.0 LC T o1 -SSR 226
21.1 CONNECLION OPEIALIONS. ... uicvieeieeeeesieesteesee e este e e st e s te e teeeeesaesseesseesseesteeseaseesseesseasseenseensennsesssnssenss 227
21.1.0 (€= 0T o TSRS 227
21.1.1 The Connect and Map OPEIAtiONSccuieiierieieseeseeseeste e e srae e e sreesteessesaeseesseesseeseensessenssenss 228
2112 The Disconnect and UNMmap OPEratioNScoueeririereririeieesieiee e ene e 230
21.2 TESE CASE OPEIBLIONS. ...t ettt ettt ettt ettt eb bt b e sb et eb e sb e e eb e sh e e eb e eb et eb e s b e e eb e sb e e ebesreneenenre e 231
21.2.0 (€= 0T - TSRS 231
2121 TESE CASE SLOP OPEFBLION ...ttt bbbt b et b et b et b bbb 232
213 Test COMPONENT OPEFALTIONS........couieeieetereeeete sttt sttt sttt st et ettt se ettt se et et sbe e ebesee e ebesbeneenesreneas 232
21.3.0 (€= 0T o TSRS 232
21.3.1 THE Creale OPEIAliON......cceecieeieeiecieeee st se e ste e ste s e s e te e te e teesaessaesseesseesseeseeneesneesseeseenseensenneesnensn 232
21.3.2 The Start test COMPONENE OPEIALIONcc.eeieeieeie e cee et ee e te e ee e e e sreesreereenaesneesseeas 233
21.3.3 The Stop test BENAVIOUr OPEraLIONccviieeece ettt e e reesaesnaesneeas 235
21.34 The Kill test COMPONENE OPEFaLION.........ccceieeieeseereeceeeee st eseeeee e seesteesseeeeseesreesseenseessesseesnenss 236
21.35 LS A LAY 0] = = 1 o o RPN 236
21.3.6 The RUNNING OPEIEIIONcuetiiiitiieiiet ettt ettt bt bbb st nbe e 237
21.3.7 THE DONE OPEIBLION ...ttt ettt bbb st b et e bt b bt e bbbt b b 239
21.3.8 The KilTEO OPEIELIONc.eieieetieeeet bbbt bbb et 241
21.39 Summary of the use of any and all With COMPONENLScoirieiririiire e 243
21.3.10 The Call test component behaViour OPEIaLiONcceireriririeieerere e 243
22 COMMUNI CALION OPEFALTIONS. ... cuiiteeeeeieeeseesesiessestestesteseesseeesessessesbessesbestessense e eneesessessesseseeseeneens 245
220 LC T o1 - SR 245
221 The commUNICatioN MECNANISMSoviiteieieiieieie ettt et sb et e e e e bbb sbeeneseesre s 245
22.1.0 (€= 0T o TSRS 245
2211 Principles of message-based COMMUNICALION............ccoeiiiriiiiiine e 245
2212 Principles of procedure-based COMMUNICHIONcoveiiiriiiniree e 246
22.1.3 Principles of unicast, multicast and broadcast COmmMUNICatioN............cccovierereeenieereeree e 246
2214 General format of COMMUNICaLiON OPEFELIONSc.evvireeiiriirieierie ettt ebe e 247
22140 LT 01 | ST 247
22141 General format of the Sending OPEIaLiONScc.erveueririeererieer et 247
22.1.4.2 General format of the receiving OpErationS...........cccvveiieieece s s 248
22.2 M essage-based COMMIUNICALION.........coieriiecieieseese e e e e e seeesae e esse e teese e tesneessaesanesneesneenseenes 249
2220 (€= 0T - TSRS 249
22.2.1 THE SENA OPEFBLIONeeieeecte et et e e e et e et e et e eseessaesseesteeseensesneesaeesseeseenseensenneennensn 249
22.2.2 ThE RECEIVE OPEIGLIONeeivieiieieceieeteesee e e steste st e s e s e e te e teesaesaaesaeesteesseeseeneesaeesseasseenseensenneesnenss 250

ETSI

8 ETSI ES 201 873-1 V4.16.1 (2024-10)

22.2.3 THE THIQUEr OPEIELION ...ttt bbbttt b bt se et b bbb 254
223 Procedure-based COMMUNICEEION............cieeieieee ettt see st ene e e e eeseeseeenes 257
22.3.0 (© 7= 07 TSP 257
2231 THE Call OPEFALTON ...ttt bbb bt bene et b bbb 257
2232 The GELCall OPEIALION.cuieeeiriiiet bbbt bbb et bbb b 261
22.3.3 B LS R TS ¢ 1Y) 1= (o] TSP 264
22.34 The GELrePlY OPEIELIONccuieiicieceiecee ettt e te e srae e e s teesteetesaeesaeesseenseenseensenneesnenss 265
22.35 ThE RAISE OPEIGLIONeeieeeee ettt e s e et e et eeraesaeesteeste e teensesseesaeesneenseenseensenneennensn 268
22.3.6 I LSO (e p e 0T = 1 o o PSSR 269
22.4 LI LSO e 1o o 1= (o] o SR 273
225 Controlling COMMUNICALION POFTS.......cviuirieerrerieesie sttt se et se et st se et ebe b e sbennens 275
2250 (€71 SO PRRR 275
2251 The Clear POIt OPEIEHIONc.eiirieietereeeei ettt bbb bt se bbb e 275
2252 The Start POt OPErAHIONccuiieeiiiie ettt b et b 276
2253 The StOP POt OPEIBLION ...ttt sttt b bbbt b e b ae et bt b b 276
2254 The Halt POIT OPEIaLiON......c.ciuiieeiieieter ettt bbbt s b et bns 277
2255 The CheCKState POrt OPEFaLIONeceeiieeieeiesiesee st e se e e e e et e e et e e tesaesseesreesseenseenseensesneesnenss 277
22.6 Use of any and all With POIES........coiieiiee et sne e s reenne e 279
PG T 101 0] o (0] USSR 279
23.0 GENETAL ...ttt R R R e R e R et e Rt R Rt e b e 279
23.1 I TR (0 40= o 0= T o S SRRPR 280
23.2 The Start tiMer OPEIALION.ccoiveeiiieeerte ettt et et b e et b e et sb e b e b b e e enenre e 280
233 The StOP tiMEr OPEIBLIONc.eitieeiiitere ettt b e e b e et eb e et b e st eb e e b b e e ebe b e 281
234 The REad tIMEr OPEIELiONeoveeevirtieeterteeet ettt ettt b e bt b bt b b e et e sb e e b e b e nnenenre e 281
235 The RUNNING tIMEr OPEIALION.eiieiiie ettt ettt bbb e eb e sa e b nre e 282
23.6 The TIMEOUL OPEIBEIONcuveeiieeeieseeseee st e st et e et e e e st et e e estessaessaesseesseesseesesneesseesseanseensaesseessennseesennnen 283
23.7 Summary of use of any and all With tIMErS.........cccocee e e 284
P == V= (ool 0] = (0] 1RSSR 284
24.0 GENETAL ...ttt R AR R R R e R R e Rt R R Rt b e 284
24.1 The Verdict MECHENISM.........o.ei ettt se et st e s ne et eneesneeneas 284
24.2 The SEVErdiCt OPEIELIONc.eivieeiiitie ettt b ettt b e et b e bbb e b sre e 285
243 The GEtVErdiCt OPEIELION........ccveieeieiteieeieet ettt et b e bbbt b et b e et sr e ebesbennenesre e 286
P T A= 4= = o0 SR 287
P2 T Y/ o LN L= oo 1 o SRS 287
26.0 GENETAL ...ttt R AR R R R e R R e Rt R R Rt b e 287
26.1 The EXECULE STALEIMENL.......ccuiieieree ettt ettt sae et et e e st e seesbesaeetesneeneeneeneesnenaeas 288
26.2 TESE SUITE EXECULION ...ttt ettt et et e e se e besbeeaeeseeneensesseseeseeseestesneeneeneensenaenneas 289
27 SPECITYING @IIDULES.......c.eiiiieiicese ettt 291
27.0 LT 0T PSP 291
271 The AtribULE MEChENISM ..o e 291
27.1.0 GENENAL ...ttt bbb R R bR R bR R e e R Rt R bt r bt n e 291
27.1.1 SCOPE Of ELLITULES ... e st e s re e te s eesreesneesneenneenes 292
27.1.2 Overwriting ruleS for @ttriDULES............ccuiieeice e 293
27.1.20 GENETA ...ttt b bR R bRt bR 293
27121 Additional default overwriting rulesfor variant attributes...........cooooeiieninenneeeeeee 295
27122 Overwriting rules for multiple enCOdiNGcovviieiriiriereee e 296
2713 Changing attributes of imported language elemENtS.............covereirereienene e 296
27.2 THe WIith SEBEEIMENE ...ttt sttt e s e e e e e e seesbeeneeneeneensesaeeneas 297
27.3 DiSPlay GELITDULES.......ccueeeeeieeeetere ettt bbbt et b e bt b e se et b bt b e b e e 298
274 ENCOOING BILITDULES.......c.eeiieiecit et bbbt e e et b et nbe b 299
275 Varant EITIDULES.......c.ciiieciiirce e e nn et r et nn s 300
27.6 EXIENSION SIMDULES ...t 302
27.7 L@ 1Kol gF= I] o1 = USRI 302
27.8 RELNTEVING @tHDULE VEIUES.........ocee ettt e e st te s ae e sneesneenneenes 304
27.9 Dynamic configuration of encoding Used BY POITS........ccoceie e i 305
Annex A (normative): BNF and static SEMantiCS.......ccccoveieiieiiececiese e 307
AL TTON-BBINF ettt et b e bt e he e s st e st e e b e e beesbe e sbeesaeesanesaneennas 307

ETSI

9 ETSI ES 201 873-1 V4.16.1 (2024-10)

A.10 LT 0T PSP 307
A.ll Conventions for the SyNntax deSCrPLIONcooeiiireire e 307
A.l2 Statement terminator SYMDOIS.......c.coiiiiii bbb et 307
A.L.28 TrAlING COMIMBS. ... ettt sttt sttt sttt sttt b et b e bt eb e s bt e bt s b et eb e sb et eb e e b et ebesbeneebenb et ebenbe e eneee 307
A.1l3 0= 1) TSRS 307
A.l4 (0010110110 308
A.1l5 TTON-SEEIMINGIS ...ttt sttt st s e b et e se e st st e seeseebeseeseebeseebenee e ebenbeseenenbeneas 308
A.15.0 (€= 0T o USRS 308
A.151 Use of Whitespaces and NEWIINES...........ocieiieieeece et re e ne e 310
A.16 TTCN-3 syntaXx BNF ProdUCTIONSccoeeiecie ettt ne e 311
A.16.0 TTON-3MOUUIE.......eeeeieeeeee ettt s eeebe e e st e e e teseeseesbesneeseeneensenaensessesnens 311
A.1l6.1 MOdUlE dEfiNITIONS PAIT........eeeiteieeiete ettt b et s b et b e 311
A.1.6.1.0 LT 0T | ST 311
A.1l6.11 Typedef AEfiNITIONSc.oiici bbb 311
A.16.1.2 CONSLANt AEFINITTONS ...ttt se et neeneeseenee e e 313
A.16.1.3 TemMPlate defiNitiONS........coiieer bbb 313
A.16.14 FUNCLION AEFINITIONS ... bbbt 315
A.1.6.1.5 Lo g U1 =0 L= T 0] 316
A.16.1.6 TESICASE AEfINITIONS......ceiitiieieeieeee ettt seenn e 316
A.1.6.1.7 F N LS 1 oI L= 1T o] 316
A.1.6.1.8 oo 1= 1T o 316
A.1.6.1.9 (€00 0 X0 L= T a1 110 0 317
A.1.6.1.10 External function definitionS............cooooiiiiie s 317
A.1.6.1.11 Yoo TSRS 317
A.16.1.12 Module parameter defiNitioNScooiiiiiiiereee e 317
A.1.6.1.13 Friend module defiNitiONS ..ottt sre s 318
A.16.2 1Y/ Koo (B1T= oo 1o I 117 0ex i o] o IO 318
A.16.3 [0 To o U= 10T o 0SS 318
A.16.3.1 Variahl € INSEANTTBLIONeiueeieeiieieee et b bbbt e e e b b nneas 318
A.16.3.2 TIMEY INSEANETBLION ...ttt bttt et bbbt ae et e e e e e sre e 318
A.164 (001 10 Rt 318
A.164.1 COMPONENE OPEIBLIONSeeveeveeiee et eeeeee et et e st e e e testestesaesseesreesseeseenseesseeseesseessaesreesennsennns 318
A.1.6.4.2 POIt OPEIBLIONSeeceeeceieee ettt e e st et e e e e e estesseesaeesaeesseeseenseenteeneennennnenas 319
A.1.6.4.3 THMEE OPEFAIONS ...ttt bbbtk e et b e et b e e ae bbbt 321
A.1644 TESICASE OPEIGLION.......c.ecveeeeeeteteeet ettt bbbt eb b et bbb e 321
A.16.5 I3/ T O T O U UR U POPOTN 321
A.16.6 W BIUB. ...ttt ettt sttt bttt et n e et e e e Rt eReeRe Rt Rt et e eeeReeReebeeaeeRe et entenaearenrenneas 322
A.16.7 01 (= 1174 1 o] ST 323
A.16.8 = <007 01T SRR 323
A.1.6.8.1 WIth SEAEEIMENT ...ttt st sttt sttt sttt st et s be s be e ebentens 323
A.1.6.8.2 BEhaViOUr SEALEIMENTS ...t bbb bttt e e eesr e 324
A.1.6.8.3 BaSIC SEALEMENTS. ...ttt et h ettt et bbbt et b e e b et eae e e nenrenns 324
A.16.9 VS o= =TT o U LS oo LH o o L 327
Annex B (normative): MatChing VaIUEScooiiiceececee et 328
B.1 Template matching MeChaniSIMSooiiiiiiiieee s 328
B.1.0 LC T o1 - OSSR 328
B.1.1 MaLChiNG SPECITIC VAIUES ..ottt bbb 328
B.1.2 Matching mechanisms instead Of VAIUES ..o 328
B.1.2.0 (€= 3T - TSSO 328
B.1.21 TOMPIAIE TSE .t bbbt bbb bbb bbb b 328
B.1.2.2 Complemented tEMPIALE [ISoiiiieieee e 329
B.1.2.3 N YA =TSRSS 330
B.1.24 ANY VAU OF NMOME.....ccuiiieiie et eetestee e e e etestesseesaeesaeesseeteesseeseessaesseesseessesnsesneesneesseenseenseensenssnssensn 331
B.1.25 B2 LU S =0T PSR 332
B.1.2.6 IS0 TS 332
B.1.2.7 SUBSEL ...ttt et b e e Rt b et b e R et et et e e nente e eneeteneas 334
B.1.2.8 Omitting optional fields and MaP KEYS.......ccuv et 335
B.1.2.9 MatChing deCOTEd CONLENLcoueiitireeiite ettt ettt sb e 336
B.1.2.10 Matching enumerated value With VAU TStoovciiiiiiiee e 337
B.1.3 Matching mechaniSMS INSIAE VBIUEScoiuiiiirieiie bbb 337

ETSI

10 ETSI ES 201 873-1 V4.16.1 (2024-10)

B.1.3.0 (€71 SR 337
B.1.3.1 ANY ELOIMIENE. ...ttt bbb e bt b e a b e Rt bbbt b e ne bbb 337
B.1.3.1.0 LT 0T T 337
B.1.3.1.1 Using single charaCter WilACArdS...........co.cererieiririeiriseciesesee et 338
B.1.3.2 Any number of elementS Or NO ElEMENT ..ot e 338
B.1.3.2.0 LC T o1 - TR 338
B.1.3.2.1 Using multiple charaCter WildCards............occvveieieeiieeee e 338
B.1.33 LS £ 00101 o] o USROS OO 338
B.1.4 Matching attribDULES Of VAIUESoceeeiei et ne s 340
B.1.4.0 (€= 0T - TSSO 340
B.14.1 LeNGEN FESIFICIIONS ...ttt et b e et b e et b e bt b e e et b e nens 340
B.1.4.2 The IfPreSent INAICAEONcoe i sttt e et e s s e e eneeseeneesrenneas 341
B.1.5 MaLChiNG CAraCLEr PELLEIN......c.ecuiieieeeere bbbt b et sbe e 342
B.1.5.0 (€71 PR 342
B.1.51 SEL EXPIESSION ...ttt ettt ettt b et b e e st b e reeh e bt re ek e eb e s e ek e b e se e s e eh e ee e Rt e b e ne bt b e e e e bt Re e ene b e 344
B.1.5.2 REFEIENCE EXPIESSION ...ttt ettt bt bt a e b et b e e st b e s b et b e e et sbenae e ebe e 345
B.1.5.3 MatCh EXPreSSION NEIMIES ...c.vieieeie e et te e te e sreesaeesbe e teenteeseessaesse e teenseerennnas 346
B.1.54 Match areferenCed CharaCter SEL..........ccoi i s sr s 347
B.1.55 Type compatibility ruleS fOr PALLEINS.cccveiieeie et re e ereesneesneeas 348
B.1.5.6 Case insensitive pattern MatChing..........cocieiieieeie e sreesneenaeenes 348
Annex C (normative): Predefined TTCN-3fUNCLIONS.......ccccceeieiiceee e 349
C.0 Genera exception handling ProCEAUNES...........coiiiriririereeeeee et 349
C.1 CONVErSION FUNCLIONS........iiieiisiesiesiesiee e s e eee et eeste e eeseeeeeseeeseeteseeeneesseeneessesseeneeseeeneensessens 349
Cl1 INEEGEY L0 CNBIBCLEN ...ttt bttt e et b b 349
Cl1l2 Integer t0 UNIVErSal CharaCterco.coiiiieiie e 349
C.13 INEEGEN TO DITSIIINGeveteeeeet bbbttt b et bbb bt 349
Cl4 10 e = (= 18001 (o 350
C.15 T 100 = (o =6 1 1 o P 350
C.l6 RIS e = (o0 (= K= 1 o TSP 350
Cl1l7 10 e =g (o e 7= 1 o T 351
C.18 1100 = (o 1 [0 351
C.19 L L0z 0 (0 N1 o = 351
O e (O O = ot (= g (o I 1015 L= TSP PUPRSURN 351
C.111 CharaCter t0 OCLEISIIINGeveueerereeiertereeieete sttt sttt b ettt b et b e b e bt sbese bt b e e eb e sb e e et e sb e e ebesbeneebeene e 351
C.112 UNIversal CharaCter tO INTEOENoiiiieereeeete ettt bbb et e e e b sbeneebesne e 352
C.1A3 BItSHING T IMEEOEN ..ottt ettt ettt ettt b et b e et b e e bt b e se bt e b e se e b e sb e b e e ebesb e e eb e sbeneebenne e 352
C.114 BitStNG t0 NEXSIINGcitiietiitirieiiitiree ettt b et b e e b e et b et b et e e e b e eneneas 352
C.115 BitStriNG t0 OCLEISIIING ...t eveueeterteietirt ettt b et b bbb bttt b et b et e eb e b e st nean 352
L3050 G =1 €= T 0o R (o e 7= = 1 o 353
O Nt A o =TS (1 I (o111 = 353
LTt S o =TS (1T I (o o1 =1 o 353
C.119 HeXSIING 10 OCLELSIIING ...euveieeeeeiesteeie e ee st s se e te e ee e sre e te e e e steeseesreesseesteensesneesaeesseenseenseensennsnssenss 354
C.1.20 HEeXSIHNG 1O CRAISIIING .. .ccveieeesieeie ettt s e sttt te s e sseesteesteeeeenaesseesseenseenseensennensnenss 354
C.1.21 OCEELSIITNG T IMEEGEN . .c.ectitiueetertee ettt ettt ettt ettt e e b e st b e b bt e bt b e e eb e sb et e st eb et e e eb e b e e enenean 354
C.1.22 OCtetStriNg tO DITSIING.coveeeeirtiietireeeet ettt bbbttt b bbb et nnan 354
C.1.23 OCEELSLIING tO NEXSIITNG ...veveueitirieiiete sttt sttt ettt b e et b e e e bbb e sb e e ebesbeneebeene e 355
C.1.24 OCtetstring tO CharaCter SIINQcceiveriererieeeterteie ettt sttt b et b e st eb e et sb e ebesbe e ebesne e 355
C.1.25 Octetstring to character String, VEISION [lccoiiieiiiniiiiiieereeee et 355
C.1.26 CharStriNg 10 INTEOEN .. .c.eitireeeirtere ettt b et b et b et b e e et bt se et b et e st bt st e e eb e s e e e enenean 356
C.1.27 Character String t0 NEXSIIING ...ccvieieeiieieeies et see sttt e e s e sreesreesaeenseeseenaeenseensennensnenss 356
C.1.28 Character String 10 OCLELSIIINGccveeveeieeiesieseeseesteesteeeeeree st es e e e e tesseesseesseesseesseenseeseenseesseensessenssenss 356
C.1.29 Character StriNG IO flOBL.......cccveiieie e re e sae et e s aeenteenbeenteeneenneess 357
LT 0 B = o 1W< = 10 (o I 1= PSSP 357
C.1.31 Octetstring to UNiVersal CharaCler StHNQG.......ceiveieereereeceeeesees e e s e e sre e e e e sreeseenaessaesraeas 358
C.1.32 Universa character string tO OCLELSIIINGccoveiieieereecireee e ee e te e e e e et eaeenaeenaesnaeas 358
C.1.33 Vaueor template to universal Charstring........ccoeoeeereirereene e 359
C.2 Length/SIZE FUNCLIONSc.coeeiieiiitieiesie ettt sttt e 360
c21 Length Of StNGS @GN0 TISESc.eeeeieiieiiieec et 360
C.22 Number of elementsin astruCtured VBIUE.............ooiiiiiiiece e s 361

ETSI

11 ETSI ES 201 873-1 V4.16.1 (2024-10)

C.3 Presence checking fFUNCLIONScccieiiicce ettt s beereas 362
C.31 LY TSRS 362
C32 V00t et e e e t e t e e e e e t e h R R R R R e R AR R R e R R R Rt e bR Rt n e 362
C.33 V00t ee ettt R R R R R e R R R R AR R R Rt e bR Rt n R 362
C.34 LV L TSSOSO TSRS 362
C35 Matching MechaniSM AELECHION..........ccueiieie et sre e sneenae s 362
C.4 String/list handling fUNCLIONScc.eieieieieeeese e 364
c41 The REGEXP FUNCLION ...ttt ettt b et b b e bt e eb e b e b nre e 364
C4.2 The SUDSENG FUNCLION ...ttt et eb b e nr e 365
C43 The REPIACE FUNCHION.c.viectiieec ettt b et b e et b e eb e b e b b e 367
(O3 ST 700 (= o 110 {0 TSP 368
C51 QLI LS e o [o T o o o S 368
Cbh2 QLI (S0 e o [o I U o o 1S 368
Cb53 The encoding to universal charstring FUNCLIONccveieeiiiie e 369
C54 The decoding from universal charstring fUNCLION...........cove i 370
C55 The encoding t0 OCLELSIIING FUNCHIONoiveiiiieiie bbb 371
C5.6 The decoding from OCtEtStriNG FUNCLIONc.coviiiiiiiieeeiee e 372
C5.7 Retrieving the type of StriNg €NCOMINGooveiiiiiire e 372
C5.8 Removing BOMs of UCS encoding SChEMES..........coiiieiiiieini et 372
C.6 Oher fUNCLIONS. ... ccuiiiiieitesie ettt et sttt se b nbe s besbene e e esenseebenrens 373
C6.1 The random number generator fUNCLIONcviiriiiirceee e 373
C.6.2 The testCasenamMe FUNCLIONcoviiriiierceee e sr e nre e 373
C.6.3 The NOSHIA FUNCLION ..o r e nr e e nre e 374
Annex D (nor mative): PreprOCESSING MACT OS.......coverierierieriesieeeesessesiesseseesse e seeseesessessessessens 376
D 2O T = o1 SRS 376
D.1 Preprocessing Macro _ MODULE__ ..ot 376
D.2 Preprocessing macro FILE oottt st e 376
D.3 Preprocessing Macro _ BFILE_ ..o 376
D.4 Preprocessing Macro _ LINE .ot 376
D.5 Preprocessing macro SCOPE. ..ottt sttt st st b e sreen e ne e 377
Annex E (informative): Library of USEfUl TYPESccccoeeeieieerieriese e 379
R I 10 = 0 SR 379
E.2 USEfUl TTCN-BIYPES .. tiieieieieiiesiesieeie st steete st e e tesseestesseeaestesseentesneessesseenseseesseensesseeseensessens 379
E21 (01 U IS g0 Loy 7= s T 1Y o= 379
E.210 Signed and unsigned SiINGIE DYLE INTEJEISc.oiirciiieee e 379
E211 Signed and UNSIGNE SNOM INEEJEIS.....c.ciireiirereeeet ettt b e e b e e en e b sre e 379
E212 Signed and UNSIgNEd 10N INTEOETScoviiiiirierieeete ettt bbb et ebesre e 380
E213 Signed and unsigned 10NGIONG INEEGEN'Sc.eiuirieiiireere ettt eb e e 380
E214 L { o = £ 380
E.2.2 USeful CharaCter StHNG TYPESo.iieiirereeeet sttt nbe e 381
E.2.2.0 UTF-8 character String "Utf8SIIING™ccviiieeieice e 381
E221 BMP character string "DmMPStIiNg™coieee ettt re e ne e 381
E.2.2.2 UTF-16 character String "UtFLBSLING"ccveieeieeie et saae e s seene e 381
E.2.23 ISO/IEC 10646 character string "iSO8859SIIING"ecveeveeierie e see st steerte e eee e see s 381
E.2.24 Status values fOr TTCN-3 ODJECLS.......oociiiie et 382
E.2.25 Template Kinds Of TTCN-3 ODJECLSccviiieiiee et 382
E.2.3 USEFUL SEIUCTUPE TYES....e ettt bbbt bt bbbt e 382
E.2.30 Fixed-point deCimal [ITEIalccooieiiiiee e bbb e 382
E24 USEFUL BEOMIC SEING TYPES. ...ttt ettt b et b et e e et s b et nbennene 383
E241 Single Recommendation I TU-T T.50 charaCter type........ccooeeeieiere e 383
E24.2 Single UNiVErsal CharaCter TYPE......ccoui ittt st b e e ebe b 383
E.24.3 S 10 L= o 3o R 383
E.24.4 S T Te L= 0= G 1Y = S 383

ETSI

12 ETSI ES 201 873-1 V4.16.1 (2024-10)

E.245 S gTe X oot = B 1Y = TSP 383
Annex F (informative): Operationson TTCN-3 active ODjeCtS.........ccvvverereneneneeeeeeee 384
O T = o= o ST 384
N I 01 0 0] = T 384
F.11 TeSt COMPONENE FEFEIENCES......ecueeieeieee it et crte e et e e te s te s e s e saeesaeeeeenteesaesseessaesseeseeseenseennen 384
F.1.2 DynamicC DENAVIOUN OF PTCS....ccuviiiieice ettt sttt e st et e et e ntesne e seenteeneennas 385
F.1.3 Dynamic behaviour Of tNE M T C.......cuiie et e et enteereennas 387
A I 10T £ ST 387
G T o K= TP PRR 388
F.3.0 (T 0T P 388
F.3.1 CoNfiguration OPEIaliONS.ccuieieeieiiesieesee st esteeee st e se e e e be e e sseessaesseesreesseassessessseesseeseenseansesssnssenss 388
F.3.2 POrt ControlliNg OPEraLiONSc.ecueieeieeseesti e eee st et e e e e see s e sreesreeaeeeesseesseenteenteessesseesseesseenseennes 389
F.3.3 COomMMUNICatiON OPEIALiONS.....c..eeieeieieeseeseesteesteeee et e see e e ste e teesaessaesseesteesseesesessseesseenseenseensesssnssenss 390
Annex G (informative): Deprecated language fEatUreS.........coovvveveeveceese e, 391
G.1 Group style definition of MOdUIE PAraMELEN'S............coiririereiee e 391
(02 oo S 391
G.3 Usingal | inport type defiNitioNS..........ccciiuiiiiiiiie et 391
G.4 SIZeof TOr 1ENGN OF [ISES....ccuiiiiiiiee e e 391
(TR TY'o Lo S 391
LT T\ 1= o I oo S 391
L Y o Lo TP 391
[0S TV oo S 392
(e T Y 0T TP 392
(00 (O oo OSSPSR 392
(00 I Yoo SRS SSS 392
L0 Y oo SRS 392
G.13 Assignment of less restrictive templates to more restrictive templates.........cocoevvevevecceeviecneenen, 392
G.14 Mixing case and case else branchesin select Statements..........ccocvverireienesereseee e 392
G.15 Partidly initialized global and [ocal tEMPIELES............coeierieeireree e 393
G.16 Template modification of less restrictive templates to more restrictive templates....................... 393
G.17 Unredricted template fields, alternatives and €lements..........cccoeeveviece e, 393
Annex H (informative): Bibliographycooe i 394
L1 RSP 395

ETSI

13 ETSI ES 201 873-1 V4.16.1 (2024-10)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-member s, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM 2M ™ |ogo is atrademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part 3: "TTCN-3 Graphical presentation Format (GFT)";
Part4: "TTCN-3 Operational Semantics';

Part 5. "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7 "Using ASN.1 with TTCN-3";

Part8: "ThelDL to TTCN-3 Mapping";

Part9: "Using XML schemawith TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”;
Part 11: "Using JSON with TTCN-3".

NOTE 1: Part 2"TTCN-3 Tabular presentation Format (TFT)" of this multi-part deliverable isin status "historical”.

NOTE 2: Part 3 of this multi-part deliverable is not maintained.

ETSI

https://ipr.etsi.org/

14 ETSI ES 201 873-1 V4.16.1 (2024-10)

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

15 ETSI ES 201 873-1 V4.16.1 (2024-10)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of al types of
reactive system tests over avariety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA®
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. In addition to the textual format defined in the present document, while GFT (ETSI ES 201 873-3 [i.2])
defines a graphical presentation format for TTCN-3. The specification of these formats is outside the scope of the
present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilers into
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

[2] ISO/IEC 10646: "Information technology -- Universal Coded Character Set (UCS)".

[3] Void.

[4] Recommendation ITU-T T.50: "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information
interchange”.

NOTE: The corresponding I SO/IEC standard is ISO/IEC 646: "Information technology -- 1SO 7-bit coded
character set for information interchange”.

[5] Void.
[6] |IEEE 754™: "|EEE Standard for Floating-Point Arithmetic".

ETSI

https://docbox.etsi.org/Reference
https://www.etsi.org/deliver/etsi_es/201800_201899/20187304/
https://www.iso.org/advanced-search/x/title/status/P,U,W,D/docNumber/10646/docPartNo/docType/0/langCode/ics/currentStage/true/searchAbstract/true/stage/stageDateStart/stageDateEnd/committee/sdg
https://www.itu.int/rec/T-REC-T.50
https://ieeexplore.ieee.org/document/8766229

2.2

16 ETSI ES 201 873-1 V4.16.1 (2024-10)

Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE:

While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]
[i.2]

[i.3]

[i.4]

[i.5]

[i.6]

[i.7]

[.8]

[i.9]
[i.10]

[i.11]

[i.12]

[i.13]

[i.14]

[i.15]
[i.16]
[1.17]

[i.18]

[i.19]

Void.

ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification”.

Void.

Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics®. Version 2.6, FORMAL/01-12-01.

ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Configuration and Deployment Support”.

ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Advanced Parameterization”.

ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Behaviour Types'.

ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Real Time Testing".

Void.
Void.

ETSI ES201 873-1 (V1.1.2): "Methods for Testing and Specification (MTS); The Tree and
Tabular Combined Notation version 3; Part 1: TTCN-3 Core Language”, 2001.

ETSI ES 201 873-1 (V2.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2003.

ETSI ES201 873-1 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2005.

ETSI

[i.20]

[i.21]

[i.22]

[i.23]

[i.24]

[i.25]

[i.26]

[i.27]

[i.28]

[i.29]

[i.30]

[i.31]

[i.32]

[i.33]

[i.34]

[.35]

[i.36]

[i.37]

[i.38]

[i.39]

[i.40]

[i.41]

17 ETSI ES 201 873-1 V4.16.1 (2024-10)

ETSI ES 201 873-1 (V3.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2007.

ETSI ES201 873-1 (V3.3.2): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2008.

ETSI ES 201 873-1 (V3.4.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2008.

ETSI ES 201 873-1 (V4.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2009.

ETSI ES201 873-1 (V4.2.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2010.

ETSI ES201 873-1 (V4.3.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2011.

ETSI ES 201 873-1 (V4.4.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2012.

ETSI ES201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2013.

ETSI ES201 873-1 (V4.6.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1. TTCN-3 Core Language”, 2014.

ETSI ES 201 873-1 (V4.7.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2015.

ETSI ES201 873-1 (V4.8.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2016.

ETSI ES201 873-1 (V4.9.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2017.

ETSI ES 201 873-1 (V4.10.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2018.

ETSI ES201 873-1 (V4.11.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 20109.

ETSI ES201 873-1 (V4.12.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2020.

ETSI ES 201 873-1 (V4.13.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2021.

ETSI ES201 873-1 (V4.14.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language”, 2022.

ETSI ES 202 786: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Support of interfaces with continuous signals’”.

ETSI ES 203 022: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language extension: Advanced Matching".

ETSI ES 203 790: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Object-Oriented Features'.

Recommendation ITU-T X.292: "OSl conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - The Tree and Tabular Combined Notation
(TTCN)".

Recommendation ITU-T X.290: "OSI conformance testing methodol ogy and framework for
protocol Recommendations for ITU-T applications - General concepts'.

ETSI

18 ETSI ES 201 873-1 V4.16.1 (2024-10)

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in Recommendation I TU-T X.290 [i.41], Recommendation
ITU-T X.292 [i.40] and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

assignment notation: notation that can be used for record, set, record of and set of values, where the fields or the
elementsto which avalue is assigned are identified explicitly within a pair of curly brackets ("{" and "}") by the field
names or the positions of the elements

automatic type: notation used in variable, constant and module parameter declarations where the type part of the
declaration is missing and the type isimplicitly set by the provided initial value

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document

NOTE: Basictypes are referenced by their names.
behaviour definition: dynamic test behaviour, which iseither at est case, af uncti on, oranal t st ep definition
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO gqueue in the receiving direction. Ports can be
message-based or procedure-based.

compatible type: TTCN-3 isnot strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible types if conditionsin clause 6.3 are met.

completely initialized: value or template is completely initialized if it is not uninitialized and, if its type is a structured
type, all its required parts are completely initialized

NOTE 1: Additionally, templates are completely initialized if they are assigned a matching mechanism all parts of
which are completely initialized. If avalue or template is completely initialized, it fulfils the requirement
of being "at least partialy initialized".

NOTE 2: A vaue or template of asimple, conponent or def aul t typeiscompletely initialized if anything but
the unchanged symbol "-" has been assigned to it.
A value or template of auni on or anyt ype typeis completely initialized if one of its variants has been
completely initialized.
A value or template of ar ecor d or set type with only optional fields and the opt i onal
"inplicit omt" attribute attached, is completely initialized if the value "{ } " is assigned, as all
fieldsareimplicitly settoomi t .
A value or template of ar ecor d or set type with no fieldsis completely initialized with assignment of
thevalue"{}".
A value or template of ar ecor d of , set of or array typeiscompletely initialized if at least the first n
elements are completely initialized, where nis the minimal length imposed by the type length restriction
or array definition. Thusin case of n equals 0, the assignment of the value "{}" also completely initializes
sucharecord of,set of orarray.

component constant: constant defined in a component type

component data types: collection of all datatypes, component types and structured types whose sub-elements are
component data types

component port: port defined in a component type
component template: template defined in a component type

component timer: timer defined in a component type

ETSI

19 ETSI ES 201 873-1 V4.16.1 (2024-10)

component variable: variable defined in a component type

control behaviour: collection of module control functions with the name control and functions and altsteps called by
control directly or through other control functions or atsteps, and are used for the dynamic execution of test cases

NOTE: Such functions and altsteps are called control functions and control altsteps respectively. Module control
functions can be used as an entry point of executing atest suite. Declaring functions or atsteps with the
modifier @control explicitly allows to distinguish them from test case behaviour definitionsin their
specia role. Module control functions and behaviour definitions with the @control modifier are called
explicit control behaviour definitions, i.e explicit control functions and explicit control altsteps.

coretype: type that defines the structure and properties of values which is equal to the root type for al basic types,
special typesdef aul t, ti mer and the open type, to the type specifying the array dimensions in case of array types
and to such atype in the type hierarchy whose declaration directly references the root type in case of al other types

NOTE: Asaddr ess ismore apredefined type name than a distinct type with its own properties, the core type of
anaddr ess type and all of its derivativesisthe same as the core type was, if the type was defined with a
name different from addr ess.

data types: all types whose values or sub-elements cannot contain object references

NOTE: Datatypesinclude simple basic types, basic string types, and the special data type anytype. Data types
asoinclude al structured types where all their sub-elements are of a data type. All user defined types
based on a data type are data types as well. See more details in table 3 of the present document.

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

deterministic function: function that for the same input in the in and inout parameters always yields the same output
both for the return result as well as the inout and out parameters

NOTE 1. A non-deterministic function is one that is not deterministic.

NOTE 2: In generdl, it cannot be decided if afunction is deterministic or not. However, afunction can be specified
to be deterministic, i.e. the function is supposed to be deterministic. In this case, aviolation of the
determinism can be detected and handled accordingly. The handling however is tool-specific.

dynamic parameterization: form of parameterization, in which actual parameters are dependent on runtime events

EXAMPLE: The value of the actual parameter is a value received during runtime or depends on areceived
value by alogical relation.

exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, atstep, etc.) but at the time of invoking it

NOTE: Actua vaues or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

fuzzy value or template: value or template instance that is declared to be fuzzy and consequently the expression,
initializing or partly initializing it (including actual parameters passed toi n formal parameters), is subject to lazy
evaluation

NOTE: During execution, this expression is re-eval uated each time when the fuzzy object is referenced, except
when at the left hand side of an assignment or passing it to afuzzy or lazy formal parameters. The result
of this (re)evaluation is used as the actual value or template of the fuzzy instance. When new content is
assigned to afuzzy instance or to its subpart, the right hand side of the assignment is subject to lazy
evaluation again.

global visibility: attribute of an entity (module parameter, constant, template, etc.) whose identifier can be referenced

anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module

ETSI

20 ETSI ES 201 873-1 V4.16.1 (2024-10)

Implementation Confor mance Statement (ICS): See Recommendation ITU-T X.290 [i.41].
Implementation eXtra Information for Testing (1X1T): See Recommendation ITU-T X.290 [i.41].
Implementation Under Test (IUT): See Recommendation ITU-T X.290 [i.41].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is assigned to the
formal parameter when the parameterized object isinvoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1. Ini n parameterization, parameters are passed by value.
NOTE 2: The arguments are evaluated before the parameterized object is entered.

NOTE 3: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

index notation: notation to access individual elements of record of, set of, array and string values or templates, where
the element to be accessed isidentified explicitly by an index value enclosed in square brackets ("[" and "]") which
specifies the position of that element within the referenced value or template and the index value is either an integer
value, array of integers or record of integers

NOTE: Integer values used for indexing (either directly or as elements of the record of or array values) alwayslie
within the index range of the type of the referenced value or template. Except for those arrays which are
defined with an explicit index range, the index range always has 0 as the index for the first element.

initialization: value or template, or avalue or template field isinitialized when a content isfirst assigned to it

NOTE: The assignment may be explicit at the declaration of the given object, in which case the same restrictions
apply as for the right-hand side of the assignment operation, or at first use on the left-hand side of an
assignment, or may be implicit. Implicit initialization occurs when a yet uninitialized object is passed as
actual parameter to an out formal parameter of adirectly called testcase, function or altstep returns with a
non-uninitialized value or template that is assigned to the actual parameter; or when module parameters
not initialized in the TTCN-3 code get their runtime values before test suite execution.

inout parameterization: kind of parameterization that uses passing by reference, i.e. when the parameterized object is
invoked, the formal parameter is linked with the actual parameter and gets direct access to the same data content that is
currently represented by the actual parameter

NOTE 1. Theinvoked object uses the actual parameter directly, so that all changes made in the formal parameter
become immediately effective on the actual parameter. If the same actual parameter is passed to two
distinct formal parameters, a change in one formal parameter becomes immediately effective in the other
one (and in the actual parameter).

NOTE 2: Inout parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules,
e.g. dtsteps activated as defaults.

invalid expression/operation: expression or operation isinvalid if it does not follow the conditions and restrictions of
the present document and should cause a dynamic error during execution when they are evaluated, or might cause a
static error when they are statically analysed or possibly could be warned about during static analysis

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

lazy evaluation: evaluation of an expression, delayed during execution until the value or template instance, to which
the result of the eval uation should have been assigned or passed to as actual parameter, isfirst referenced at another
place than the left hand side of an assignment or an actual parameter passed to afuzzy or lazy formal parameter

ETSI

21 ETSI ES 201 873-1 V4.16.1 (2024-10)

NOTE: During execution, this delayed evaluation is carried out at the first actual reference, even when the result
isto be used in an expression that is also subject to lazy evaluation. For the eval uation the actual values at
the time of the evaluation are to be used (not the actual values at the time of the assignment or parameter
passing). Thisimplies that components of the expression may be uninitialized at the time, when execution
reaches the assignment or parameter passing, but may be initialized by the time of the evaluation that can
lead to successful evaluation. If, by the time of the evaluation, execution has |eft the scope unit, in which
one or more components of the expression is defined, the actual values of the component(s) at the time of
leaving the scope unit are to be stored for the purpose of the delayed evaluation (but only for that, i.e. the
values are not accessible for the user).

lazy value or template: value or template instance for which the expression, initializing or partly initidizing it
(including actual parameters passed to in formal parameters), is subject to lazy evaluation

NOTE: When, during execution, the delayed (lazy) evaluation is taking place, its result is stored in the lazy value
or template and the lazy instance is used further on like ordinary values and templates, until the next use
of the lazy variable or parameter on the left hand side of an assignment. When a new content is assigned
to alazy instance or to its subpart, the right hand side of the assignment is subject to lazy evaluation
again. If, during execution, no expression referencing the lazy object is evaluated, the lazy value or
template instance is never evaluated.

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands left to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or a template header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that itsidentifier can be referenced only within the
function, test case or atstep whereit is defined

Main Test Component (MTC): See Recommendation I TU-T X.292 [i.40].
object: instance of one of the object types (component, default, port and timer)

NOTE: Objects of type default, port or timer, which are owned by the component that instantiated them, are local
objects while objects of type component are global objects. Global objects can be referenced from other
component scopes while references to local objects can only be used by the component they are bound to.

object reference: special kind of value used for instances of component, default, port and timer types which represents
areference to an existing entity inthe TE

NOTE: When used in assignments or parameter passing, only the reference to the entity is copied, but not the
entity itself. An object reference can also be initialized with the specia value null in which case it does
not reference an object.

out parameterization: kind of parameterization where the actual parameter's content (the argument) is not passed to
the formal parameter when the parameterized object is invoked, but the content of the formal parameter is passed back
to the actual parameter when the invoked object completes, if the formal parameter has been initialized during the
invocation and the actual parameter is the reference evaluated at the time of the invocation

NOTE 1: Inout parameterization, parameters are passed by value.

NOTE 2: Out parameters can be used for functions, altsteps, and test cases only, if not restricted by further rules,
e.g. al t st epsactivated as defaults.

NOTE 3: Formal anout parameters are uninitialized (unbound) when the invoked object is entered.
Parallel Test Component (PTC): See Recommendation ITU-T X.292 [i.40].
parent type: type referenced in a subtype declaration.

NOTE: The subtypeis derived from the parent type, potentially adding contrains or additional attributes.

partially initialized: value or template is partialy initialized if initialization has taken place on it or to at least one of its
fields or elements

ETSI

22 ETSI ES 201 873-1 V4.16.1 (2024-10)

NOTE: A template variableisinitialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A templateisinitialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

passing by reference: ability to link an actual parameter with aformal parameter of afunction, altstep or test case and
to control its actual value within the function, altstep or test case by using the formal parameter reference, i.e. no copy
of the data content is made and the actual and formal parameters share the same data content

passing by value: ability to make a copy of a data content of an actual or formal parameter before passing it to aformal
or actual parameter, i.e. the actual and formal parameters do not share the same data content

NOTE: When passing object references by value, anew reference is created, but the referenced entity remains the
same.

gualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified name is the <module name>. For global definitions such as testcases,
functions, etc. the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: type represented by a TTCN-3 keyword which is the most basic type all other types defined in amodule are
derived or built from.

NOTE 1: Root types of types derived from TTCN-3 basic types are the respective basic types.

NOTE 2: Theroot type of user defined record typesisr ecor d, the root type of user defined record of and array
typesisrecord of, theroot type of user defined set typesisset , the root type of user defined set of
typesisset of . Theroot type of user defined union typesis union, the root type of anytypesis
anyt ype, the root type of enumerationsisenuner at ed and the root type of mapsismap. The root
types of special typesaredef aul t, conponent ,port,ti ner andany.

NOTE 3: Asaddr ess is more a predefined type name than a distinct type with its own properties, the root type of
an addr ess type and all of its derivatives is the same as the root type was, if the type was defined with a
name different from addr ess.

static parameterization: form of parameterization, in which actual parameters are independent of runtime events;
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter isto be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compiletime, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions

NOTE: Nested structured types used in variable, constant, formal parameter, template or modulepar declarations
have no type name associated with them. For that reason, values of these types cannot be used in
operations requiring strong typing.

super type: type that other types derive from is called a super type.
System Under Test (SUT): See Recommendation ITU-T X.290 [i.41].

ETSI

23 ETSI ES 201 873-1 V4.16.1 (2024-10)

template: TTCN-3 data objects are values or templates by definition. A TTCN-3 template identifies a subset of the
values of its type (where the subset may contain a single instance of the type, several instances or all instances) or the
matching mechanism oni t

NOTE: Templates are defined by global and local templates, template variable definitions, or formal template
parameters. Any of those are templates from the point of view of their usage, irrespective of their actual
content; for example, atemplate variable containing a specific value is atemplate.

template parameterization: ability to pass atemplate as an actual parameter into a parameterized object via atemplate
parameter

NOTE 1. Thisactual template parameter is added to the specification of that object and may completeit.
NOTE 2: Values passed to formal template parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case, function or altstep started on a test component when executing an execut e
orast art component statement and all functions and altsteps called recursively

NOTE: During atest case execution each test component has its own behaviour and hence several test behaviours
may run concurrently in the test system (i.e. atest case can be seen as a collection of test behaviour).

test case: See Recommendation ITU-T X.290 [i.41].
test case error: See Recommendation ITU-T X.290 [i.41].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control functions

test system: See Recommendation ITU-T X.290 [i.41].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type

EXAMPLE: At assignments, as actual parameters at calling a function, referencing atemplate, etc. or asa
return value of a function.

type context: "In the context of atype" meansthat at |east one object involved in the given TTCN-3 action (an
assignment, operation, parameter passing, etc.) identifies a concrete type unambiguously

NOTE: Either directly (e.g. an in-line template) or by means of atyped TTCN-3 object (e.g. viaa constant,
variable, formal parameter, etc.).

uninitialized: value or templateis uninitialized as long as no initialization of it or at least one of its parts has occurred

unqualified name: unqualified name of a TTCN-3 element isits name without any qualification

user -defined type: type that is defined by subtyping of a basic type or declaring or subtyping a structured type
NOTE: User-defined types are referenced by their identifiers (names).

valid expressiong/oper ations: expression or operation that follow the conditions and restrictions of the present
document and can be safely compiled and executed

value: TTCN-3 data objects are values or templates by definition. A TTCN-3 value is an instance of its type

NOTE: Valuesare defined by module parameters, constants, value variables, or formal value parameters. Any of
those are value objects from the point of view of their usage. A template containing only specific value
matching - though referring to a single instance of itstype - is not a value object, but is a template object.

value list notation: notation that can be used for record, set, record of and set of values, where the values of the
subsequent fields or elements are listed within a pair of curly brackets ("{" and "}"), without an explicit identification of
the field name or element position

ETSI

24 ETSI ES 201 873-1 V4.16.1 (2024-10)

value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE: Vauesmay be constants or variables.

value parameterization: ability to pass avalue as an actual parameter into a parameterized object viaavalue
parameter

NOTE: Thisactua value parameter is added to the specification of that object and may completeit.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Application Programming Interface
ASN Abstract Syntax Notation
ASP Abstract Service Primitive

NOTE: See Recommendation ITU-T X.290 [i.41].

ATS Abstract Test Suite

BER Basic Encoding Rules

BMP Basic Multilingual Plane

BNF Backus-Nauer Form

BOM Byte Order Mark

CORBA® Common Object Request Broker Architecture
ETS Executable Test Suite

FIFO First In First Out

GFT Graphical presentation Format

ICS Implementation Conformance Statement

IDL Interface Definition Language

IRV International Reference Version

ITU-T International Telecommunication Union - Telecommunication standardization sector
IuT Implementation Under Test

IXIT I mplementation eXtra Information for Testing
JSON JavaScript Object Notation

MCC Main Control Component

MTC Main Test Component

PCC Parrallel Control Component

PDU Protocol Data Unit

NOTE: See Recommendation ITU-T X.290 [i.41].

PTC Parallel Test Component

RHS Right Hand Side (of assignment)

SDL Specification and Description Language
SUT System Under Test

TCI TTCN-3 Control Interfaces

TE TTCN-3 Executable

NOTE: SeedsoETSI ES201873-5[i.3].

TFT Tabular presentation Format

TRI TTCN-3 Runtime Interfaces

TSI Test System Interface

TTCN-3 Testing and Test Control Notation version 3
UCs Universal Character Set

uiD Short identifier for character code point

ETSI

25 ETSI ES 201 873-1 V4.16.1 (2024-10)

NOTE: SeelSO/IEC 10646 [2], clauses 6.5 and 6.6.

usl UCS Short Identifier
UTF UCS Transformation Format
UTF-16 Unicode Transformation Format-16
UTF-16BE Unicode Transformation Format-16 big-endian
UTF-16LE Unicode Transformation Format-16 little-endian
UTF-32 Unicode Transformation Format-32
UTF-32BE Unicode Transformation Format-32 big-endian
UTF-32LE Unicode Transformation Format-32 little-endian
UTF-8 Unicode Transformation Format-8
XML eXtensible Markup Language

4 Introduction

4.0 General

TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA® based platforms,
API testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing
including interoperability, robustness, regression, system and integration testing.

NOTE 1: CORBA® isthe trade name of a product supplied by Object Management Group®. This information is

given for the convenience of users of the present document and does not constitute an endorsement by
ETSI of the product named. Equivaent products should be used if they can be shown to lead to the same
results.

TTCN-3 includes the following essential characteristics:

the ability to specify dynamic concurrent testing configurations,

operations for procedure-based and message-based communication;

the ability to specify encoding information and other attributes (including user extensibility);
the ability to specify data and signature templates with powerful matching mechanisms;
value parameterization;

the assignment and handling of test verdicts;

test suite parameterization and test case selection mechanisms;

combined use of TTCN-3 with other languages;

well-defined syntax, interchange format and static semantics;

different presentation formats (e.g. tabular and graphical presentation formats);

a precise execution algorithm (operational semantics).

NOTE 2: The present document uses the following model of concept description: concepts, principles and

mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF givenin clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 26.2) and annex A of the present
document, annex A hasthe priority.

ETSI

26 ETSI ES 201 873-1 V4.16.1 (2024-10)

4.1 The core language and presentation formats

The TTCN-3 specification is separated into severa parts (seefigure 1).
Thefirst part, defined in the present document, is the core language.
The third part, defined in ETSI ES 201 873-3 [i.2], isthe graphical presentation format.
The fourth part, ETSI ES 201 873-4 [1], contains the operational semantics of the language.
The fifth part, ETSI ES 201 873-5[i.3], definesthe TTCN-3 Runtime Interface (TRI).
The sixth part, ETSI ES 201 873-6 [i.4], defines the TTCN-3 Control Interfaces (TCI).
The seventh part, ETSI ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.
The eighth part, ETSI ES 201 873-8 [i.6], specifies the use of IDL definitions with TTCN-3.
The ninth part, ETSI ES 201 873-9 [i.7] specifiesthe use of XML definitions with TTCN-3.
The tenth part, ETSI ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.
The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asastandardized interchange format of TTCN-3 test suites between TTCN-3 toals;
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats will be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats should be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitions in other languages may be
used as alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other languages
with TTCN-3. The support of other languagesis not limited to those specified in the ETSI ES 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document apply.

ETSI

27 ETSI ES 201 873-1 V4.16.1 (2024-10)

Configuration Advanced Behavior Performance Continuous Advanced 00 .| TTCN-3
and deploy- Parameteri- Types and Real signals Matching Features Packages
ment support zation Time Testina
ASN.1 types .
and values
IDL types
STILG TTCN-3
es
P » Core < » TTCN-3 User
Language

JSON types >
& values "

; The shaded boxes are not

defined in the present

Other types & > document
values

Figure 1. User's view of the core language, its packages and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (ETSI ES 201 873-4 [1]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 26.2) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the latter
should take precedence.

4.3 Conformance

For an implementation claiming to conform to this version of the language, al features specified in the present
document should be implemented consistently with the requirements given in the present document and in ETSI
ES 201 873-4[1].

5 Basic language elements

5.0 General

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a set of definitions that define test components, communication ports, other kinds of types (see
clause 6), constants, test data templates, functions including the module control function, signatures for procedure calls
at ports, test cases, etc.

The module control function calls the test cases and controls their execution. The control function may also declare
(local) variables, etc. Program statements (such asi f -el se and do- whi | e) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

ETSI

28

ETSI ES 201 873-1 V4.16.1 (2024-10)

TTCN-3 has a number of predefined data types that include basic types (such asi nt eger , f | oat , bool ean,
ver di cttyt e and string types) as well as structured types (such as records, sets, unions, enumerated and map types

and arrays).

A specia kind of data structure called atemplate provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not

message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechani sms such as aternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/test | component
cases type
TTCN-3 module definition module
Import of definitions from other module |import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration” of variables, constants, types and other language elements are
used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.
5.1 Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

Specia TTCN-3 modifiers are identifiers prefixed with the @-symbol (see annex A). They modify the default
semantics of the language element they are applied to in the specified way. If more than one modifier is applied to a
language element, they may be applied in any order.

NOTE:

These modifiers are useful for refining or modifying existing language features, for example in the

context of the optional extension packages of TTCN-3 since they cannot lead to backward incompabilities
with existing reserved keywords or identifiers.

ETSI

29 ETSI ES 201 873-1 V4.16.1 (2024-10)

5.2 Scope rules

520 General

TTCN-3 provides the following basic units of scope:
a module definitions part;
b) component types;
c) functions;
d) atseps;
€) test cases,
f) statement blocks;
g) templates,
h) user defined named types;
i) porttypes.
NOTE 1: Additional scoping rule for groupsis given in clause 8.2.2.
NOTE 2: Additional scoping rule for counters of f or loopsisgiven in clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-al one statement blocks, embedded
in another statement block or within compound statements, e.g. as body of awhile loop.

NOTE 4: Builtin TTCN-3 typeslikei nt eger, char stri ng, anyt ype, etc. are not scope units, but all named
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: functions (including the module control
function), test cases, altsteps and statement blocks may additionally specify some form of behaviour by using the
TTCN-3 program statements and operations (see clause 18).

Definitions made in the modul e definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and altsteps defined within the module. Identifiers imported
from other modules are also globally visible throughout the importing module.

Definitions made in atest component type may be used in a component type extending this component type definition,
and in functions, test cases and atsteps referencing that component type or a compatible test component type (see
clause 6.3.2.7) by ar uns on clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made inside their body have local visibility and shall only be used in the given test case, altstep or
function (e.g. adeclaration made in atest case is not visible in afunction called by the test case or in an altstep used by
the test case).

Stand-alone statement blocks and statements within compound statements, likee.g. i f - el se, whi | e, do-whi | e, or
al t statements may be used within test cases, altsteps, functions, or may be embedded in other statement blocks or
compound statements, e.g. ani f - el se statement that is used within awhi | e loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope unitsis shown in figure 2. Declarations of a scope unit at a higher hierarchical level arevisible
inal units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

ETSI

30 ETSI ES 201 873-1 V4.16.1 (2024-10)

module
definitions part

function without altstep without user defined

runs on-clause runs on-clause

module

component type template

named type

control part

statement block statement block statement block

testcase with

runs on-clause
and optional

system-clause

function with
runs on-clause

altstep with
runs on-clause

nested
statement block

nested
statement block

nested
statement block

statement block

statement block statement block

nested nested nested

statement block statement block statement block

Figure 2: Hierarchy of scope units

Examples

EXAMPLE 1: Loca scopes

modul e MyModul e

{ i:onst integer c_nyConst := 0; // c_nyConst is visible to f_nyBehavi our A and f_nyBehavi our B
%uncti on f_mnyBehavi our A()
{ i:onst integer c_a := 1; /1 The constant c_a is only visible to f_nyBehavi our A
}
function f_nyBehavi our B()
{ .const integer c_b := 1; /1 The constant c_b is only visible to f_nyBehavi ourB
}
}

EXAMPLE 2 Component type scopes

type conponent MyConponent Type {
const integer cc_nyConst := 1;

}

type conponent M/Ext endedConponent Type extends MyConponent Type {
var integer vc_nyVar:= 2 * cc_nyConst; // using cc_nyConst of MyConponent Type

ETSI

31 ETSI ES 201 873-1 V4.16.1 (2024-10)

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in afunction definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That is they
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. all identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

Theidentifier of a module (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types, enumerated
values and groups do not have to be globally unique, however in the case of enumerated values the identifiers, within
the same module, they shall only be reused for enumerated values within other enumerated types or asidentifiers for
fields of structured types. In addition, enumeration val ues shall not be used as names of value or template definitions of
imported enumeration types, defining the given enumeration value (see also clause 8.2.3.1, example 5). The rules of
identifier uniqueness shall also apply to identifiers of formal parameters.

Examples

EXAMPLE 1. Nested scopes
nodul e MyModul e

{ ;:onst integer c_a := 1,
iuncti on f_myBehavi our A()

.const integer c_a :=1; // |Is NOT allowed: clash with global constant c_a
if(.)
{ .

const boolean c_a :=true; // Is NOT allowed: clash with |local constant c_a

}
EXAMPLE 2: Independent scopes

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/1 (assuming there is no declaration of c_a in nodul e header)

function f_nyBehavi our A()

{ .

const integer c_a := 1;

}

function f_myBehavi our B()

{ é:onst integer c_a := 1;
}

EXAMPLE 3: Module scopes

nmodul e MyModul eB {
import from MyModul eA { ...}

function f_nyFunction() {
var integer MyModuleB :=1; // Is NOT allowed: clashing with nodule nane

}

type bool ean MyModul eA; // |Is NOT allowed: clashing with inported nodul e nane

ETSI

32 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 4: User defined type scopes

/1 The following IS allowed as the customtype definition provide an own scope
nmodul e A {

type record B{ // type provides an own scope for its field | abels

i nteger A
integer B

5.3 Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
abranchof ani f - el se statement, declarations (if any) can occur at any place where a statement can occur.

EXAMPLE:
/1 This is a legal mixing of TTCN-3 decl arations

Var MyVar Type v_nyVar2 : = 3;
const integer c_nyConst:= 1;
if (v_myVar2+c_myConst > 10)
{

var integer v_nyVarl:= 1;

v_nyVarl:= v_nyVarl + 10;
var integer v_nyVar2:= 2*v_nyVarl;

Declarations in the modul e definitions part and in a component type definition may be made in any order. However
inside test case definitions, functions, altsteps, and statement blocks, all required declarations shall be given before their
first place of usage. This meansin particular, local variables, local timers, and local constants shall never be used before
they are declared. The only exceptions to this rule are labels. Forward references to alabel may be used ingot o
statements before the label occurs (see clause 19.8).

5.4 Parameterization

54.0 General

TTCN-3 alows to parameterize modules, templates, functions, altsteps and testcases. Values, templates, timers, and
ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parametersis given in table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package [i.12].

ETSI

33

ETSI ES 201 873-1 V4.16.1 (2024-10)

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization |Static at start of runtime |all basic types, all user-defined types and addr ess
type.
template Value and template Dynamic at runtime all basic types, all user-defined types, addr ess type
parameterization and t enpl at e.
function Value and template Dynamic at runtime all basic types, all user-defined types, addr ess
parameterization type, conponent type, port type, def aul t,
tenplateandti ner.
altstep Value and template Dynamic at runtime all basic types, all user-defined types, addr ess
parameterization type, conponent type, port type, def aul t,
tenmplateandti ner.
testcase Value and template Dynamic at runtime all basic types and of all user-defined types,
parameterization addr ess type, conponent type andt enpl at e.
NOTE: Signatures are not shown in the table, because a signature declares parameters only. The templates for the

sighatures can be parameterized, however.

5.4.1

5.4.1.0

General

Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entitiesin the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

Formal parameters shall bei n, i nout or out parameters (seetermsin clause 3.1). If not stated otherwise, aformal
parameter isani n parameter. For all these three sorts of parameter passing, the formal parameters can both be read and
set (i.e. get new values being assigned) within the parameterized object. Formal parameters can be used directly as
actual parameters for other parameterized objects, e.g. as actual parameters in function invocations or as actual
parameters in template instances.

If parameters are passed by value (i.e. in case of i n and out parameters), type compatibility rules specified in
clause 6.3 apply. When parameters are passed by reference, strong typing is required. Both the actual and formal
parameter shall be of the same type.

Formal i n parameters may have default values. This default value is used when no actual parameter is provided.

NOTE 1: Although out parameters can be read within the parameterized object, they do not inherit the value of

their actual parameter; i.e. they should be set before they are read.

Formal value or template parameters may be declared lazy using the @ azy modifier. The behaviour of lazy
parametersis defined in clause 3.1, definition of lazy values or templates. See examplesin clause 5.4.1.1.

Formal value or template parameters may be declared fuzzy using the @ uzzy modifier. The behaviour of fuzzy
parametersis defined in clause 3.1, definition of fuzzy values or templates. See examplesin clause 5.4.1.1.

Formal value or template parameters that are declared lazy or fuzzy can be additionally declared deterministic using the
@let er m ni sti c modifier.

NOTE 2: The actual values of component variables used in the delayed evaluation of alazy or fuzzy parameter may

differ from their values at the time, when the parameterized function or alstep was called.

Assigning default values for lazy and fuzzy formal parameters does not change the parameters’ semantics: when the
default values are used as actual values for the parameters, they shall be evaluated the same way (i.e. delayed) asif an
actual parameter was provided.

ETSI

34 ETSI ES 201 873-1 V4.16.1 (2024-10)

Lazy and fuzzy properties are valid only in the scope, where the parameters' names are visible. For example, if afuzzy
parameter is passed to aformal parameter declared without a modifier, it losesits fuzzy feature inside the called
function. Similarly, if it is passed to alazy formal parameter, it becomes lazy within the called function.

54.1.1 Formal parameters of kind value

Values of al basic and user-defined types, address, component, port and timer types, and the default type can be passed
as val ue parameters.

Syntactical Structure

[(in] inout | out)] [(@azy | @uzzy) [@eternministic]]
TypeOr Nest edTypeDef Val ueParldentifier [ArrayDef] [":=" (Expression | "-")]

Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for examplein
expressions.

Value formal parameters may bein, inout or out parameters. The default for value formal parametersisi n
parameterization which may optionally be denoted by the keyword i n. Using of inout or out kind of parameterization
shall be specified by the keywordsi nout or out respectively.

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters
default value.

NOTE 1: If functions are used for theinitiaization of default values of i n parameters, it is strongly advised to
avoid side effects during the evaluation of default values. Side effects may cause non-deterministic test
executions. They can be avoided, e.g. by adhering to the rules defined in clause 16.1.4.

TTCN-3 supports val ue parameterization according to the following rules:

e thelanguage element nodul e allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
runtime (i.e. static at runtime). This means that, at runtime, module parameter values are globally visible but
not changeabl e (see more detailsin clause 8.2);

e thelanguage elementst enpl at e, t est case, al t st ep andf unct i on support dynamic value
parameterization (i.e. this parameterization shall be resolved at runtime).

NOTE 2: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
referencesthe TTCN-3 typedef aul t isthe type of the formal parameter.

Restrictions

a) Language elements which cannot be parameterized are: const ,var, timer,control, record of,
set of, enunerated, port, conponent and subtypedefinitions, group andi nmport.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
i n parameters.

¢) Restrictions on module parameters are given in clause 8.2.
d) Default values can be provided for i n parametersonly.

e) Theexpression of formal parameter's default val ue has to be compatible with the type of the parameter. The
expression may be any expression that is well-defined at the beginning of the scope of the parameterized
entity, but shall not refer to other parameters of the same parameter list.

f) Default values of component type formal parameters shall be one of the special valuesnul |, ntc, self,
orsystem

ETSI

35 ETSI ES 201 873-1 V4.16.1 (2024-10)

g) Default values of port, timer or default type formal parameters shall be the special valuenul | .

h) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

i) For formal vaue parameters of templates the restrictions specified in clause 15.0 shall apply.
i) Only in parameters can be declared lazy or fuzzy.

k) When parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
variables shall apply.

) Onlyfunctionandaltstep definitionswith the exception of functions or altsteps started as test
component behaviour (see clause 21.3.2) may have formal parameters of a port, timer or default type or of a
type that contains a direct or indirect element or field of a port, default or timer type.

m) Onlyfunction,altstepandtestcase definitions may have forma parameters of a component type or
of atype that contains a direct or indirect element or field of a component type.

n) If alazy or fuzzy value parameter is used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of globa non-fuzzy templates), it shall be declared @deterministic.

Examples

EXAMPLE 1: In, out and inout formal parameters

function f_nyFunctionl(in bool ean p_nyReferenceParaneter){ ...};
/'l p_nyReferenceParaneter is an in value paraneter. The parameter can be read. It can also be
I/l set within the function, however, the assignnent is local to the function only

function f_nyFunction2(inout bool ean p_nyReferenceParaneter){ ...};
/'l p_nyReferenceParaneter is an inout value paraneter. The paranmeter can be read and set
/1 within the function - the assignnent is not |ocal

function f_nyFunction3(out tenplate bool ean p_nyReferenceParaneter){ ...};
/'l p_nyReferenceParaneter is an out val ue paraneter. The parameter can be set within the
// function, the assignnent is not local. It can also be read, but only after it has been set.

EXAMPLE 2. Reading and setting parameters

type record MyMessage {
integer f1,
integer f2

}

function f_nyMessage (integer p_int) return M/Message {
var integer v_f1, v_f2;
v fl:=f _mlt2 (p_int);
/] paraneter p_int is passed on; as the paraneter of the called function f_nmult2 is
/1 defined as an inout paraneter, it passes back the changed value for p_int,
v_f2 := p_int;
return {v_f1, v_f2};

}
function f_mult2 (inout integer p_integer) return integer {
p_integer := 2 * p_integer;
/1 the value of the fornal paraneter is changed; this new value is passed back when
/1 f_mult2 conpletes
return p_integer-1
}

testcase TC 01 () runs on MIC _PT {

pl.send (f_nyMessage(5))
/1 the value sent is { f1:=9, f2 := 10}

ETSI

36 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 3: Function with default value for parameter

function f_conp (in integer p_intl, in integer p_int2 := 3) return integer {
var integer v_v := p_intl + p_int2;
return v_v;

}

function f_f () {
var integer v_w,

v_w:=f_conp(l); /1 sane as calling f_conp(1,3);
v_w:=f_conp(1,2); // value 2 is taken for paraneter p_int2 and not its default value 3
}
type conponent Conp { var integer i := 0}
function g(integer x :=f_conmp(i)) runs on Conp return integer {
/1 reference toi fromConp is allowed in default value of paranmeter x
return x;
}

function h(integer y := g()+i) runs on Conp {
Il reference to g is allowed because it has a conpatible runs on clause as h
}

EXAMPLE 4: Direct passing of formal parameters to functions

function f_nyFunc2(in bitstring p_refParl, inout integer p_refPar2) return integer {

function f_nyFuncl(inout bitstring p_refParl, out integer p_refPar2) return integer {
:ret urn f_myFunc2(p_refParl, p_refPar2);
/1 p_refParl and p_refPar2 can be passed directly to a function invocation
EXAMPLES: Lazy and fuzzy parameters
type conponent MyConp { var integer vc_int }

function f_MLazyFuzzy(in @azy integer p_lazy, in @uzzy integer p_fuzzy) runs on MyConp {
//When called from MyCal I'i ng:

ve_int =1,

log(p_lazy); //will log 2 as function double with actual parameter vc_int equals 1 is called
/lhere; 2 is stored in p_lazy (also, function double stores 2 in vc_int)

log(p_lazy); //will log 2 again as p_lazy is not re-eval uated

log(p_fuzzy);//will log 4 as function double with actual paranmeter vc_int equals 2 is called
/'l here (also, function double stores 4 in vc_int)

log(p_fuzzy) //will log 8 as function double is re-evaluated with actual paraneter 4

}

function f_double (in integer p_in) runs on MyConp return integer{
p_in :=2* p_in;

ve_int 1= p_in;

return p_in
}
testcase TC MyCal ling() runs on MyConp {
vc_int 1= 0;

f _nyLazyFuzzy (f_doubl e(vc_int), f_double(vc_int))
}

EXAMPLE 6: Difference between passing by value and passing by reference

function f_byValue (in integer p_intl, in integer p_int2) {
p_int2 := p_int2 + 1;
log(p_intl);
log(p_int2);

function f_byReference (inout integer p_intl, inout integer p_int2) {
p_int2 := p_int2 + 1;
log(p_intl);
log(p_int2);

}

ETSI

37 ETSI ES 201 873-1 V4.16.1 (2024-10)

function f_f () {
var integer v_int := 1;
f_byValue(v_int, v_int); // prints 1 and 2
log(v_int); // prints 1
f_byReference(v_int, v_int); // prints 2 and 2
log(v_int); // prints 2

}

EXAMPLE 7: Parameter of anested type

function f_getMax (record of integer p_data) return integer {

var integer v_len := lengthof(p_data), v_result;
if (v_len > 0) {
v_result := p_data[0];
%or (var integer i :=1; i <v_en; i =i + 1) {
if (p_data[i] > v_result) {
v_result := p_datafil];

}
}

return v_result;

54.1.2 Formal parameters of kind template
Template kind parameters are used to pass templates into parameterizabl e objects.

Syntactical Structure

[in] inout | out] TenplateMddifier [(@azy | @uzzy) [@eterministic]]
TypeOr Nest edTypeDef Val ueParldentifier [ArrayDef] [":=" (Tenplatelnstance | "-")]

Semantic Description

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword

t enpl at e shall be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may bein, inout or out parameters. The default for formal template parametersisi n
parameterization.

In parameters may have a default template, which is given by atemplate instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template. If a default templateis used, it is evaluated in the scope of the
parameterized entity, not the scope of the actual parameter list.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by therestrictionsormi t , pr esent , and val ue. Therestriction
tenpl ate (onit) canbereplaced by the shorthand notation omi t . The meaning of the restrictionsis explained in
clause 15.8.

Restrictions
a) Restrictions on module parameters are givenin clause 8.2.1.

b) Formal template parametersof t enpl at es and of al t st eps activated as defaults (see clause 20.5.2) shall
awaysbei n parameters.

c) Default templates can be provided for in parameters only.

ETSI

38 ETSI ES 201 873-1 V4.16.1 (2024-10)

d) The default template instance has to be compatible with the type of the parameter. The template instance may
be any template expression that is well-defined at the beginning of the scope of the parameterized entity, but
shall not refer to other parametersin the same parameter list.

€e) Default templates of component type formal parameters shall be built from the specia valuesnul |, nt c,
sel f,orsystem

f) Restrictions specified in clause 15.0 shall apply.

g) Thedash (don't change) symbol shall be used with formal parameters of modified templates only (see aso
clause 15.5).

h) Only in template parameters can be declared lazy or fuzzy.

i) When template parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
template variables shall apply.

i) If alazy or fuzzy template parameter is used in deterministic contexts (i.e. during the evaluation of a snapshot
or initialization of global non-fuzzy templates), it shall be declared @deterministic.

Examples

EXAMPLE 1: Template with template parameter

/1 The tenplate
tenpl ate MyMessageType mw_nyTenpl ate (tenplate integer p_nyFormal Param: =

{ fieldl := p_nyFornal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows

pcol.recei ve(mv_nyTenpl ate(?));

/1 or as follows

pcol.recei ve(mv_nyTenpl ate(omit)); // provided that fieldl is declared in M/MessageType as
/1 optional

EXAMPLE 2: Function with template parameter

function f_nyBehavi our (tenpl ate M/MsgType p_nyFor mal Par anet er)
runs on MyConponent Type

{ .

péol. recei ve(p_nyFor mal Par aneter);
}
EXAMPLE 3: Template with restricted parameter

/1 The tenplate
tenpl ate MyMessageType mwv_nyTenpl atel (tenplate (omit) integer p_nyFornal Paran): =

{ fieldl := p_nyFornal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows

pcol. recei ve(mv_nyTenpl atel(onit));

/1 but not as follows

pcol.recei ve(mv_nyTenpl atel(?)); // AnyValue is not within the restriction

/'l the sane tenplate can be witten shorter as
tenpl ate MyMessageType mw_nyTenpl ate2 (onmit integer p_myFornal Paran): =
{ fieldl := p_nyFor mal Par am

field2 := pattern "abc*xyz",

field3 := true

ETSI

39 ETSI ES 201 873-1 V4.16.1 (2024-10)

5.4.2 Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters. Actual
parameters can be provided both asalist in the same order as the formal parameters as well asin an assignment
notation explicitly using the associated formal parameter names or in a mixed notation where the first parameters are
givenin list notation and additional parameters in assignment notation.

Syntactical Structure

(Expression | /1 for val ue paraneter
Tenpl at el nst ance | /1 for tenpl ate paraneter
-t /1 to skip a paraneter with default
Paraneterld ":=" (Expression | Tenplatelnstance | TinerRef | Port))

Semantic Description

Actual parameters that are passed by valuetoi n formal value parameters shall be variables, literal values, module
parameters, constants, val ue variables, invocations of value returning (external) functions, formal value parameters (of
in, inout or out parameterization) of the current scope or expressions composed of the above.

Actual parametersthat are passed to out formal value parameters shall be (template) variables, formal (template)
parameters (of in, inout or out parameterization) or references to elements of (template) variables or formal (template)
parameters of structured types. Furthermore it is allowed to use the dash symbol "-" as an actual out parameter,
signifying that a possible result for that parameter will not be passed back.

Actual parametersthat are passed toi nout formal value parameters shall be variables or formal value parameters (of
in, inout or out parameterization) or references to elements of variables or formal value parameters of structured types.

NOTE 1. Referenceto astring element cannot be passed by reference as string types are not structured types.

Actual parametersthat are passed toi n formal template parameters shall be literal values, module parameters,
constants, variables, invocations of value or template returning (external) functions, formal value parameters (of in,
inout or out parameterization) of the current scope or expressions composed of the above, as well as templates, template
variables or formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parametersthat are passed to out formal template parameters shall be template variables, formal template
parameters or references to elements of template variables or formal template parameters of structured types.
Furthermore it is allowed to use the dash symbol "-" as an actual out parameter, signifying that a possible result for
that parameter will not be passed back.

Actual parametersthat are passed toi nout formal template parameters shall be template variables or formal template
parameters (of in, inout or out parameterization) of the current scope or references to elements of template variables or
formal template parameters of structured types.

When actual parameters that are passed to i n formal value or template parameters contain a value or template
reference, rules for using references on the right hand side of assignments apply. When actual parameters that are
passed toi nout and out formal value or template parameters contain a value or template reference, rules for using
references on the left hand side of assignments apply.

The values of out formal parameters are passed to the actual parametersin the same order asisthe order of formal
parameters in the definition of the parameterized TTCN-3 object. The value is passed back to the actual parameter only
if within the invoked object avalueisassigned toit. If no value is assigned, the actual parameter remains unchanged
when the invoked object completes.

It isallowed to pass elements of structured values or templates (record, set, record of, set of, union and anytype values
or templates) by reference. Modification of parameters passed this way affects the original structured value or template.
Before passing the actual parameter, the rules for referencing the element on the left hand side of assignments are
applied, expanding the structured value so that the referenced element becomes accessible (see clauses 6.2 and 15.6 for
more details).

NOTE 2: Because inout parameters are passed by reference and component variables are effectively also accessed
by reference within a called function or altstep, passing parts of a structured component variable as an
actual inout parameter may have confusing effects inside the parameterized behaviour: changing either
the inout parameter or the component variable may also change the other simultaneously, which might
break the intended algorithm. For this reason, such situations should be avoided.

ETSI

40 ETSI ES 201 873-1 V4.16.1 (2024-10)

When aformal parameter isan out parameter or has been defined with a default value or template, respectively, then it
is not necessary to provide an actual parameter. In such a case the default value or template is taken as actual parameter.

The actual parameters are evaluated in the order of their appearance. If for some formal parameters, no actual parameter
has been provided, if they are out parameters, the dash symbol "-" and for i n parameterstheir default values are taken.
Default values are evaluated after the evaluation of the actual parameters and the order of their evaluation corresponds
to their order in the formal parameter list.

NOTE 3: If assignment notation has been used for the actual parameter list, the order of the evaluation of actual
parameters may differ from the order of the parameters in the formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. al formal parameters use their default values.

Restrictions

a When using list notation, the order of elementsin the actual parameter list shall be the same astheir order in
the corresponding formal parameter list. For each formal i nout parameter and for each i n parameter without
adefault there shall be an actual parameter. The actual parameter of aformal out parameter or i n parameter
with default value can be skipped by using dash "-" as actual parameter. An actual parameter can also be
skipped by just leaving it out if no other actual parameter followsin the actual parameter list - either because
the parameter islast or because all following formal parameters are out parameters or have default values and
are left out. The number of actual parametersin the list notation shall not exceed the number of parametersin
the formal parameter list.

b) Void.

c) When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each assigned actual parameter there shall exist a corresponding formal parameter of the same name. For
each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of aformal parameter, no assignment for this specific parameter shall be provided.

d) Fori n formal parameters, the type of the actual parameter shall be compatible with the type of the formal
parameter. For out formal parameters, the type of the formal parameter shall be compatible with the type of
the actual parameter. Strong typing is required for i nout formal (parameters passed by reference). Fori n
formal template parameters, the template restriction of the actual parameter shall not be less restrictive than the
one of the formal parameter. For out formal template parameters, the template restriction of the actual
parameter shall not be more restrictive than the one of the formal parameter. For i nout formal template
parameters, the template restriction of the actual and the formal parameter shall be the same.

€) Actua parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

f) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) If theformal parameter list of TTCN-3 objectsf uncti on,t est case, al t st ep or ext er nal
functi on isempty, then the empty parentheses shall be included both in the declaration and in the
invocation of that object. In al other cases the empty parentheses shall be omitted.

NOTE 4: si gnat ur e objects also have formal parameters, see clauses 15.2 and 22.3 for their handling.
h) Void.
i) Restrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

1) Unless specified differently in the relevant clause(s), actual parameters passed to in or inout formal parameters
shall be at least partialy initialized (for an exemption see e.g. clause 16.1.2).

k) Functions, called by actual parameters passed to fuzzy or lazy formal parameters of the calling function, shall
not have inout or out formal parameters. The called functions may use other functions with inout or out
parametersinternally.

[) Actual parameters passed to out and inout parameters shall not be referencesto lazy or fuzzy variables.

ETSI

41 ETSI ES 201 873-1 V4.16.1 (2024-10)

m) Whenever avalue or template of arecord, set, union, record of, set of, array and anytype typeis passed as an
actual parameter to an inout parameter, none of the fields or elements of this structured value or template shall
be passed as an actual parameter to another inout parameter of the same parameterized TTCN-3 object. This
restriction applies recursively to all sub-elements of the structured value or template in any level of nesting.

n) If two or more actual parameters passed toi nout parameters of the same parameterized TTCN-3 object
contain areference to distinct alternatives of the same union or anytype value, an error shall be produced.

0) If the mixed notation is used, no value list notation shall be used following the first assignment notation and
the parameters given in assignment notation shall not assign parameters that already have an actual parameter
givenin list notation.

p) Actua parameters passed to @et er mi ni sti ¢ fuzzy or lazy formal parameters shall fulfill the restrictions
imposed on content of functions used in special places given in clause 16.1.4.

Examples

EXAMPLE 1. Formal and actual parameter lists have to match

/1 A function definition with a formal parameter |ist
function f_nyFunction(integer p_formal Parl, boolean p_formal Par2, bitstring p_formal Par3) { ...}

/1 A function call with an actual paranmeter |ist
f _myFunction(123, true,'1100'B);

/1 A function call with assignnent notation for actual paraneters
f_nyFunction(p_formal Parl := 123, p_fornalPar3 := '1100'B, p_fornal Par2 := true);

EXAMPLE 2: In parameters

function f_nyFunction(in tenplate MyTenpl at eType p_nyVal ueParaneter){ ...};
/'l p_nyVal ueParaneter is in paraneter, the in keyword i s optional

/1 A function call with an actual paraneter
f _myFuncti on(m_nyd obal Tenpl ate);

EXAMPLE 3: Inout and out parameters

function f_nyFunction(inout bool ean p_nyReferenceParaneter){ ...};
/1 p_nyReferenceParaneter is an inout paraneter

/1 A function call with an actual paraneter
f _myFuncti on(v_nyBool eanVari abl e) ;
/1 The actual paraneter can be read and set within the function

function f_myFunction(out tenpl ate bool ean p_nyRef erenceParanmeter){ ...};
/'l p_nyReferenceParaneter is an out paraneter

/1 A function call with an actual paraneter

f _myFuncti on(v_nyBool eanVari abl e) ;

/'l The actual parameter is initially unbound, but can be set and read within the function.
f_nyFunction(-); // the outcoming value is not assigned to a variable

type record of integer Rol;

function f_swapEl ements (inout integer p_intl, inout integer p_int2) {
var integer v_tnp := p_intl;
p_intl := p_int2;

p_int2 := v_tnp;

}

function f_testReferences (inout Rol p_roi, inout integer p_elem { ...}

var Rol v roi :={ 0, 1, 2, 3, 4 5}

f _swapEl enents(v_roi[0], v_roi[5]); // after the function call, v_roi is { 5 1, 2, 3, 4, 0}

f _testReferences(v_roi, v_roi[2]); // produces an error as elenents of v_roi are not allowed
/1l to be passed by reference if the parent structure (v_roi) is passed by reference too.

function f_changeAndl ncrenent (out integer p_e, in integer p_v, inout integer p_i) {
p_i = p_i + 1
p_e := p_v;

ETSI

42 ETSI ES 201 873-1 V4.16.1 (2024-10)
var integer v_i := 0;
f _changeAndl ncrenent(v_roi[v_i], 3, v_i); // increnents p_i, but still assigns 3 to v_roi[O0]
EXAMPLE 4: A side effect caused by passing part of a component variable as inout parameter

type conponent MyConp {
var RO v_rec :={ 0, 1}
}

testcase TC() runs on MyConp {
f_test(v_rec[1]) // passing 2nd el enent of conponent variable as inout paraneter
log(v_rec); //will log { 2, 2}

}

function f_test(inout integer p_int) runs on M/Conp {
v_rec :={ 2 }; /Il now, isbound(p_int) == false
p_int :=2; // now, v_rec =={ 2, 2}

}

EXAMPLES: Empty parameter lists

/1 A function definition with an enpty paraneter list shall be witten as
function f_nyFunction(){ ...}

/1 and shall be called as

f _nmyFunction();

/1l Atenplate definition with a default value for a formal parameter witten as
tenmpl ate MyRecord mnnytenplate (integer p_nyValue:= 1):={ ...}

/1 may be used wi thout actual paraneter list (i.e. the default value is used)
myPCO. send(m_nyt enpl at e)

EXAMPLE 6: Nested parameter lists

/1 G ven the nessage definition
type record MyMessageType

{
i nt eger fieldl,
charstring field2,
bool ean field3
}

/1 A message tenplate mght be
tenpl ate MyMessageType mw_nyTenpl at e(i nteger p_nyVal ue) : =

fieldl := p_nyVal ue,
field2 := pattern "abc*xyz",
field3 := true

}

/'l A test case paraneterized with a tenplate night be
testcase TC 001(tenpl ate MyMessageType p_rxMsg) runs on PTCL system TS1 {

ﬁyPCO. recei ve(p_rxmg);
}

/] When the test case is called in the control function and the paraneterized tenplate is
/] passed as an actual paraneter, the tenplate's actual paraneters shall be provided
control

execut e(TC_001(nw_nyTenpl ate(7)));
}

EXAMPLE 7: A typical use case for lazy parameterization
nmodul epar bool ean PX LOG MESSAGE : = true;

function f_l ogMsg(@azy charstring p_conplex) {
if (PX_LOG MESSAGE) {
| og(p_conpl ex);
}
}

ETSI

43 ETSI ES 201 873-1 V4.16.1 (2024-10)

function f_conputeConpl exMessage() return charstring {
/] sonme conplicated conputation
}

f _l ogMsg(f_conput eConpl exMessage()); // f_conputeConpl exMessage() is only invoked if
/1l PX_LOG MESSAGE is true

EXAMPLE 8: Actual parameters passed to lazy and fuzzy formal parameters
type record M/Message { integer id, float nunber }
type port MyPort Type nessage { inout MyMessage }

type conponent MyMIC {
var integer vc_id;
port MyPortType p;

testcase TC shooti ngMessages () runs on MyMIC {
connect (sel f: p,self:p);
f _sendLazy({vc_id, rnd()}
f _sendFuzzy({vc_id, rnd()
}

function f_sendLazy(@azy MyMessage p_pdu) runs on MyMIC {
for (vc_id :=1; vc_id<9; vc_id:=vc_id+1){
p.send(p_pdu); // the actual paraneter passed to the formal paraneter p_pdu is evaluated only
/1 in the first loop;let say rnd() returns 0.924946;
/1 the nessage { 1, 0.924946 } is sent out 8 tines

/Inote that at this point vc_id is unintialized yet

)
b

setverdi ct (pass, "nmessages has been sent out")

}

function f_sendFuzzy(@uzzy MyMessage p_pdu) runs on MyMIC {
for (vc_id :=1; vc_id<9; vc_id:=vc_id+l){
p. send(pdu); // the actual paraneter passed to the formal paraneter p_pdu is evaluated in each
/'l loop; let say rnd() returns 0.924946, 0.680497, 0.630836, 0.648681, 0.428501,
/1 0.262539, 0.646990, 0.265262 in subsequent calls; the messages 1, 0.924946 },
/1 {{ 2, 0.680497 }, { 3, 0.630836 }, { 4, 0.648681 }, { 5, 0.428501 },
/1 { 6, 0.262539 }, { 7, 0.646990 } and { 8, 0.265262 } are sent out in sequence

setverdi ct (pass, "nmessages has been sent out")

}
EXAMPLE9: Order of out parameters

function f_i
p_parl :
p_par2 :

nitVal ues (out integer p_parl, out integer p_par2) {
1;
2;

function f_f(){
var integer v_varl,
f_initValues(p_par2 := v_varl, p_parl := v_varl);
/1 After this function call, v_varl will contain 2, as paraneters are assigned in
/1 the sane order as in the definition of the f_initValues function. Thus p_parl is
/1 assigned first to v_varl and p_par2 after that overwiting the previous val ue.

}
EXAMPLE 10: Skipped actual parameters

function f_skip (out integer p_parl, in integer p_par2 := 2) {
p_parl := 1 + p_par2,

function f_f(){
/1 the following statenents all have the sane senantics :
f_skip (-,-); // p_par2 is initialized with default value 2 and
/1 the result of p_parl is not assigned to any variable
f_skip (p_parl := -, p_par2 := -);
f_skip (p_par2 :=-); // skip p_parl
f_skip (-) ; [// skip p_par2 because it is the |ast
f_skip () ; /1 skip p_parl because all followi ng are al so ski pped

ETSI

44 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 11: Mixed notation

function f_m xed (out integer p_parl, in integer p_par2 := 2, inout integer p_par3) {
p_parl := 1 + p_par2,

function f_f(){
var integer v := 0;
/1 the following statements all have the sanme semantics:
f_mxed(-,2,v);

f_mxed(-,p_par2 := 2, p_par3 :=vV);

f_mxed(-,-,p_par3 :=v);

f_mxed(-,p_par3 :=v, p_par2 := 2);

/1 not allowed:

f_mxed(-,2,p_par3 :=v, p_par2 :=5); // p_par2 is already assigned in list notation

543 Variadic Parameters

Thefinal formal parameter of at enpl at e, functi on,external function,altsteportestcase may
have a suffix with ... (ellipsis). Such formal parameter is called variadic parameter and accepts zero or more values of
the specified type.

Inside the parameterized scope, the type of the formal variadic parameter isar ecor d of the specified type.
There are three ways of passing an actual parameter to the formal variadic parameter when using the list notation:

. The actual parameter isnot present in the list of actual parameters or skipped by using the dash symbol. The
actual parameter isequal to an empty r ecor d of value or template in this case.

. Using 1..N comma-separated values of the specified type as the actual parameter. The actual parameter is
equal toar ecord of valueor template that contains all the comma-separated valuesin their declaration
order.

. Using asingle parameter of acompatibler ecor d of the specified type followed by The actual parameter
is passed directly to the formal variadic parameter in this case.

When using the assignment notation for an actual variadic parameter, the actual parameter shall be a value or template
of acompatibler ecor d of the specified type without any additional ellipsis. The actual parameter is passed directly
to the formal variadic parameter in this case.

Restrictions

a) Thevariadic formal parameter shall be ani n parameter. Using of i nout or out kind of parameterization for
variadic parametersis forbidden.

b) Usingthedlipsisinadeclaration of aformal parameter that is not the last in the list of parameters shall produce
an error.

EXAMPLES:

/1 variadic paraneter definitions

function fl(integer a...); // type of ais record of integer
function f2(integer a[3]...); // type of ais record of integer[3]
function f3(integer a, integer b...);

function f4(integer a..., integer b...); // ERROR two variadic paraneters

function f5(integer a..., integer b); // ERROR variadic paraneter is not at final position
function f6(integer a := 10, integer b... :={1,2,3});

external function printf(universal charstring format, any args ...);

/1 invoking functions with variadic paraneters
f1(); // value of a: {}

f1(1); // value of a: {1}

f1(1,2,3); // value of a: {1,2,3}

f3(); // ERROR f3 requires a value for paraneter a
f3(100); // value of b: {}

f3(100,1,2,3); // value of b: {1,2,3}

f3(a:=10, b :={1,2,3}); // assignment notation
f3(b :={1,2,3}, a := 10); // assignnment notation

ETSI

45 ETSI ES 201 873-1 V4.16.1 (2024-10)

f3(10, b :={1,2,3}); // nmixed notation

f6(); // value of a: 10, value of b: {1,2,3}

f6(1); // value of a: 1, value of b: {1,2, 3}

f6(1,2); // value of a: 1, value of b: {2}

fé(-) // value of a: 10, value of b: {1,2,3}

f6(-,1) // value of a: 10, value of b: {1}

f6(-,-) // value of a: 10, value of b: {1,2,3}

f6(-,-,-) // ERROR f6 has only two fornal paraneters to skip.

var record of integer a := {1, 2, 3};
fl(a...); // passing a record of pareneter directly

5.5 Cyclic Definitions

Direct and indirect cyclic definitions are not allowed with the exception of the following cases:
a) for recursive type definitions (see clause 6.2);
b) function and altstep definitions (i.e. recursive function or altstep calls);
c) cyclicimport definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be aresult of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples

EXAMPLE 1. Module with cyclic constant definition that is not allowed
modul e MyModul e {
iype record ARecordType { integer a, integer b };

I/ The following two lines include a cycle that is not allowed
const ARecordType c_cConst :={ 1, c_dConst.b}; // c_cConst refers to c_dConst
const ARecordType c_dConst :={ 1, c_cConst.b}; // c_dConst refers to c_cConst
}

EXAMPLE 2: Modules with cyclic import that is allowed

nmodul e MyModul eA {
i mport from MyModul eB { type Myl nteger }
type record of Myl nteger Myl ntegerlList;

}

modul e MyModul eB {
type integer Myl nteger;
import from MyModul eA { type Myl ntegerlList }

6 Types and values

6.0 General

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such asi nt eger, bool ean and string types, as well as some TTCN-3 specific ones such as
ver di ctt ype. Structured types such asr ecor d types, set typesand uni on types can be constructed from these
basic types. enuner at ed types are specific structured types being constructed of enumerated values.

The specia datatype anyt ype isdefined as the union of all known data types and the addr ess type defined within a
TTCN-3 module. In any specific module context, only the known types can be accessed in a value or template of type

anyt ype.

ETSI

46 ETSI ES 201 873-1 V4.16.1 (2024-10)

Specia types associated with test configurations such asaddr ess, port and conmponent may be used to define the
architecture of the test system (see clause 21).
The special type def aul t may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list
float range, list
boolean List
verdicttype List
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
map list (see note)
Special data type anytype list
Special configuration types address
port
component
Special default type default
Array notation [1 list (see note)
NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour typesfor TTCN-3 are defined in the optional package[i.13].

6.1 Basic types and values

6.1.0 Simple basic types and values
TTCN-3 supports the following basic types:

a) i nteger: atypewith distinguished values which are the positive and negative whole numbers, including
Zero:

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
value is 0; the value zero shall be represented by a single zero.

b) fl oat: atypeto describe floating-point numbers and special float values:
In general, floating point numbers can be defined as.<mantissa> x <base> <exponent>

where <mantissa> is apositive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

In TTCN-3, the floating-point number value notation is restricted to a base with the value of 10. Floating
point val ues can be expressed by using two forms of value notations:

L] the decimal notation with a dot in a sequence of numbers like, 1,23 (which represents 123 x 10°2),
2,783 (i.e. 2 783 x 10°3) or -123,456789 (which represents -123 456 789 x 10°6); or

ETSI

a7 ETSI ES 201 873-1 V4.16.1 (2024-10)

by two numbers separated by E where the first number specifies the mantissa and the second

specifies the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which
represents -123 x 1079).

NOTE 1: In contrast to the general definition of float values, the mantissa of in theT TCN-3 value notation, beside
integers, allows decimal numbers as well.

The special values of the float type consist of i nf i ni ty (positiveinfinity), - i nfi ni ty (negative infinity) and the
valuenot _a_nunber . For the ordering of special values see clauses7.1.1 and 7.1.3.

NOTE 2: - not _a_nunber (i.e. minus not a number) is not to be used.
¢) bool ean: atype consisting of two distinguished values:

Values of boolean type shall be denoted by t r ue and f al se.
d) verdicttype: atypefor use with test verdicts consisting of 5 distinguished values. Values of
ver di ctt ype shal be denoted by pass,fail,i nconc,noneanderror.

6.1.1 Basic string types and values

6.1.1.0 General

TTCN-3 supports the following basic string types:

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits:

Values of typebi t st ri ng shal be denoted by an arbitrary number (possibly zero) of the bit digits:
01, preceded by asingle quote (') and followed by the pair of characters 'B.

Within the quotes any number of whitespaces or any sequence of the following CO control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50 [4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by abacksash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

Examples

EXAMPLE 1: 'o1101'B
‘0110 1001'B
'0110\
1001' B

b) hexstri ng: atype whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits:

Values of type hexst ri ng shal be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by a single quote (") and followed by the pair of characters 'H; each hexadecimal digit is used
to denote the val ue of a semi-octet using a hexadecimal representation.

Within the quotes any number of whitespaces or any sequence of the following CO control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50[4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by a backdash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

EXAMPLE 2: ' AB0O1D H
"ab01d' H
' AbO1D H
"Ab 01 DH
" Ab\
01\
D H

ETSI

48 ETSI ES 201 873-1 V4.16.1 (2024-10)

oct et st ri ng: atype whose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight hits):

Values of typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by a single quote (') and followed by the pair of characters* o, each hexadecimal digit is used
to denote the value of a semi-octet using a hexadecimal representation.

Within the quotes any number of whitespaces or any sequence of the following CO control characters: LF(10),
VT(11), FF(12), CR(13) which constitutes a newline (see Recommendation ITU-T T.50 [4]) (jointly called
newline characters, see clause A.1.5.1) may be included. The newline shall be preceded by a backdash ("\").
Such whitespaces, control characters and backslash will be ignored for the value and length calculation.

EXAMPLE 3: ' FF96' O

d)

'ff96' O
' Ff96' O
'"Ff 96' O
" FfA
96' O

char stri ng: are types whose distinguished values are zero, one, or more characters of the version of
Recommendation ITU-T T.50 [4] complying with the International Reference Version (IRV) as specified in
clause 8.2 of Recommendation ITU-T T.50 [4].

NOTE 1. ThelRV version of Recommendation ITU-T T.50 [4] is equivalent to the IRV version of the International

Reference Alphabet (former International Alphabet No.5 - |A5), described in Recommendation ITU-T
T.50[4].

Values of char st ri ng type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote (). Graphical characters
include the range from SP(32) to TILDE (126). Vaues of char st ri ng type can also be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

NOTE 2: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" iswritten in TTCN-3 code as in the following constant declaration. Each of

€)

the 3 quote characters that are part of the string is preceded by an extra quote character and the

whole character string is de||m|ted by quote characters eg.
const charstring c_char: "ab""cd"'

The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from | SO/IEC 10646 [2].

uni ver sal char stri ng values can aso be denoted by an arbitrary number (possibly zero) of characters
from the relevant character set, preceded and followed by double quote ("), calculated using a predefined
conversion function (see clause C.1.2) with the positive integer value of their encoding as argument, by a
"quadruple’ or using the USI-like notation.

NOTE 3: If applying the double quote format all characters from any character set defined in ISO/IEC 10646 [2]

are alowed. Users should be aware of the character set capabilities of their editing tool and the TTCN-3
module transfer syntax UTF-8 (see clause 8).

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (") the character is
represented by a pair of double quotes on the same line with no intervening space characters.

ETSI

49 ETSI ES 201 873-1 V4.16.1 (2024-10)

The"quadruple” is only capable to denote a single character and denotes the character by the decimal values of
its group, plane, row and cell according to |SO/IEC 10646 [2], preceded by the keyword char included into a
pair of brackets and separated by commas (e.g. char (0, O, 1, 113) denotes the Latin small letter u with double
acute: "i"). In cases where it is necessary to denote the character double quote () in a string assigned
according to the first method (within double quotes), the character is represented by a pair of double quotes on
the same line with no intervening space characters. The two methods may be mixed within a single notation for
a string value by using the concatenation operator.

EXAMPLES: The expression: "the Braille character" & char (0, 0, 40, 48) & "looks like this' represents the
literal string: the Braille character & looks like this.

The UCS sequence identifier-like (USI-like) notation (see also clause 6.6 of 1SO/IEC 10646 [2]) can be used to
denote 1..N characters, using their short identifiers of code point (similar to UIDs described in clause 6.5 of
ISO/IEC 10646 [2]). The USI-like notation is composed of the keyword char followed by parentheses. The
parentheses enclose a comma-separated list of short identifiers . Each short identifier represents asingle
character and it shall be composed of aletter U or u followed by an optional "+" PLUS SIGN character,
followed by 1..8 hexadecimal digits. The hexadecimal digits represent the numeric code point of the character.
(e.g.char (U0171) denotesthe Latin small letter u with double acute: "i"). In the USI-like notation, the
leading zeroes can be omitted, (i.e. char (U171) isequa tochar (U0171)).

EXAMPLE 6: The expression: char (U4E2D, U56FD) represents the literal string: FE.

NOTE 5: Control characters can be denoted by using the predefined conversion function, the quadruple form or the
USl-like notation.

By default, uni ver sal char st ri ng shall conform to the UTF-32 encoding specified in clause 9.3 of
ISO/IEC 10646 [2].

NOTE 6: UTF-32 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The useful
character string types utf8string, bmpstring, utf16string and iso8859string using these attributes are defined in
annex E.

The general term string or string typein TTCN-3 refersto bi t st ri ng, hexstri ng,octetstri ng,
charstringanduni versal charstring.

The general term binary string or binary string typein TTCN-3 referstobi t stri ng, hexstri ng, octetstring.
The general term character string or character string typein TTCN-3 refersto char st ri ng and uni ver sal
charstring.

6.1.1.1 Accessing individual string elements

Individual elementsin astring type may be accessed using an array-like syntax.

Units of length of different string type elements are indicated in table 4.

For accessing individual string elements the following rules apply:

. Only single elements of the string may be accessed. Trying to assign strings with length O or morethan 1to a
string element using the array-like syntax shall cause an error.

. Indexing shall begin with the value zero (0).

e Theindex shall be between zero and the length of the string minus one for retrieving an element from a string.
Trying to retrieve an element from a string with an index outside this range shall cause an error.

. For assigning an element to the end of a string, the length of the string should be used asindex. Trying to
assign an element to the end of a string with an index larger than the length of the string shall cause an error.

ETSI

50 ETSI ES 201 873-1 V4.16.1 (2024-10)

. For initializing an uninitialized string with a single element, the index value zero (0) can be used as index.
Trying to assign a single element to an uninitialized string with an index which is not zero (0) shall cause an
error.

Examples

EXAMPLE 1: Accessing an existing element

/1 Gven

v_nyBitString := '11110111' B;
/1 Then doi ng
v_nyBitString[4] :='1'B;

// Results in the bitstring '11111111'B

EXAMPLE 2: Specific cases

var bitstring v_nyBitStringA v_nyBitStringB, v_nyBitStringC v_nyBitStringD,

v_nyBitStringA := '010'B;

v_nyBitStringA[1] := '11'B; //causes an error as only individual elenents can be accessed
v_nyBitStringB :="'1"B;

v_nyBitStringB[4] := "1'B; //causes an error index is larger than the length of v_nyBitStringB
v_nyBitStringC := ''B;

v_nyBitStringC[0] :="1'B; // value of v_nyBitStringCis '1'B

v_nyBitString([1l] := "'0'B; // value of v_nyBitStringCis '10'B

/1 v_nyBitStringDis not initialized

v_nyBitStringD[0] :="'0"B; // value of v_nyBitStringDis '0'B

v_nyBitStringDf 1] "1'B; // value of v_nyBitStringDis '01'B

var charstring v_mnyChar String;

v_nyCharString[0] := "a" //initializing v_nmyCharString with a single character

v_nyChar String[1] " //causes an error as the length of the to-be-assigned string is O

v_nyChar String[1] "bc" //causes an error as the length of the to-be-assigned string is
//more than 1

6.1.2 Subtyping of basic types

6.1.2.0 General

User-defined types shall be denoted by the keyword t ype. With user-defined typesit is possible to create subtypes
(such as lists, ranges and length restrictions) on basic types, structured types and anytype according to table 3. Values of
a subtype shall fulfil conditions specified by its constraint and all constraints existing in all its direct and indirect parent
types up to the core type.

6.1.2.1 Lists of templates

TTCN-3 permits the specification of alist of distinguished templates as listed in table 3. The templatesin the list shall
be instances of the type being constrained and the set of values matching at least one of these templates shall be a subset
of the values defined by the type being constrained. The subtype defined by thislist restricts the allowed val ues of the
subtype to those values matching at least one of the templatesin the list. The templatesin the list shall only (directly or
indirectly) reference other templates or constant expressions. Constant expressions used (directly or indirectly) in the
template expressions shall meet with the restrictionsin clause 10 for constant expressions used in type definitions.

EXAMPLE:

type bitstring MListOFBitStrings ('01'B, '10'B, '11' B);
type float Pl (3.1415926);
type charstring MyStringList ("abcd", "rgy", "xyz");
type universal charstring Special Letters
(char(0, 0, 1, 111), char(O0, 0, 1, 112), char(0, 0, 1, 113));

6.1.2.2 Lists of types

ETSI

51 ETSI ES 201 873-1 V4.16.1 (2024-10)

TTCN-3 permits the specification of alist of subtypes aslisted in table 3 for valuelists. The typesin the list shall be
subtypes of the root type. The subtype defined by thislist restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

EXAMPLE:

type bitstring BitStringsl ('0'B, '1'B);
type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10' B);
type bitstring BitStrings_1_2 (Bitstringsl, Bitstrings2);

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for the typesi nt eger, charstring, uni versal
charstringandfl oat (or derivations of thesetypes). Fori nt eger andf | oat, the subtype defined by the
range restricts the allowed values of the subtype to the valuesin the range including or excluding the lower boundary
and/or the upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

In order to specify an infinite integer range, the keyword -i nfi ni ty ori nfi ni ty canbe used instead of avalue
indicating that there is no lower or upper boundary; - i nfi ni ty shall not be used as the upper bound andi nfinity
shall not be used as the lower bound for integer ranges.

Alsoforfl oat,-infinityorinfinity canbeusedastheboundsin range restrictions. Using the special

value- i nfi ni ty asthelower bound shall indicate that the allowed numerical values are not restricted downward and
the special value- i nf i ni ty isalsoincluded. If both the lower and upper bounds denote - i nfi ni ty, no numerical
values are included, only the specia value-i nfi ni ty. Using the special valuei nfi ni ty asthe upper bound shall
indicate that the allowed numerical values are not restricted upward and the special valuei nf i ni t y isalso included.
If both the lower and upper bounds denotei nf i ni t y, no numerical values areincluded, only the specia value

i nfinity.Ifexclusvebounds(!i nfinityor!-infinity) isusedinstead, only the respective numerical float
values areincluded in therange. In case of f | oat , the special valuenot _a_nunber isnot alowed in arange
constraint.

Inthecase of char stri ng anduni versal charstring types, the rangerestricts the allowed values for each
separate character in the strings. The boundaries shall eval uate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictionsin clause 10.

Examples
EXAMPLE 1:
type integer Myl ntegerRange (0 .. 255); /1 range fromO0..255
/1 (with inclusive boundaries)
type integer Myl ntegerRange (0 .. !256); /1 the sanme range as above (with left
/1 inclusive and right exclusive boundary)
type integer Myl ntegerRange (!-1 .. 255); /1 the same range as above(with |eft
/1 exclusive and right inclusive boundary)
type integer MylntegerRange (!-1 .. !256); /'l the sane range as above
/1 (w th exclusive boundari es)
type integer MylntegerRange (-infinity .. -1); // all negative integer nunbers
type float PiRange (3.14 .. 3142E-3);
type float LessThanPi (-infinity .. 3142E-3);
type float Nunbers (-infinity .. infinity); /lincludes all float values but not_a_nunber
type float Wong (-infinity .. not_a_nunber); /] causes an error as not_a_nunber is not

/1 allowed in range subtyping

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

/1 Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. !"z");

/Il Defines a string type of any length with each character within the range froma to y
/'l (character codes from97 to 121), I|ike "abxy";

/] strings containing any other character (including control characters), like

/1 "abc2" are disallowed.
type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));
/Il Defines a string type of any length with each character within the range specified using

ETSI

52 ETSI ES 201 873-1 V4.16.1 (2024-10)
/1 the quadruple notation

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In al cases, these boundaries shall be inclusive boundaries
only and evaluate to non-negative i nt eger values (or derivedi nt eger values).

EXAMPLE:
type bitstring MyByte | ength(8); /'l Exactly length 8
type bitstring MyByte length(8 .. 8); /1 Exactly length 8

type bitstring M/N bbl eToByte I ength(4 .. 8); /1 Mninmumlength 4, naxi numlength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nf i ni ty should also be used to indicate that thereis no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of char st ri ng and
uni ver sal char st ri ng types. The type constraint shall usethe pat t er n keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being sub typed. Constants used in the constant
expressions defining the values shall meet with the restrictionsin clause 10.

NOTE: Pattern subtyping can be seen as a special form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
/1 all permitted values of MyString have prefix abc and postfix xyz

type charstring MyStringCaseAgnostic (pattern @ocase "abc*xyz");
/1 all permtted values of MyStringCaseAgnostic have a
/1 prefix abc or Abc or aBc or abC or ABc or aBC or AbC or ABC, and a
/1 postfix xyz or Xyz or xYz or xyZ or XYz or XYZ or XyZ or XYZ

type universal charstring MUString (pattern "*\r\n")
/1 all permtted values of MyUString are term nated by CR/ LF

type charstring MyString2 (pattern "abc?\q{O0,0, 1, 113}");
/] causes an error because the character denoted by the quadruple {0,0,1,113} is not a
Il legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

/] causes an error because the type MyString does not contain a value starting with the
/'l character d

6.1.2.6 Mixing subtyping mechanisms

6.1.2.6.1 Mixing patterns, lists and ranges

Withini nt eger andf | oat (or derivations of these types) subtype definitionsit is allowed to mix lists and ranges. It
is possible to mix both template list and type list subtyping with each other and with range subtyping. Overlapping of
different constraintsis not an error.

ETSI

53 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

EXAMPLE 1:

type integer MylntegerRange (1, 2, 3, 10 .. 120, 99, 100);
type float LessThanPi AndNaN (-infinity .. 3142E-3, not_a_nunber);

Withinchar string and uni versal charstring subtypedefinitionsitisnot allowed to mix pattern, template
list, type list, or range constraints.

EXAMPLE 2:

type charstring MyCharStrO ("gr", "xyz");
/'l contains character strings gr and xyz;

type charstring M/CharStrl ("a".."z");
/1 contains character strings of arbitrary length containing characters a to z.

type charstring MyCharStr2 (pattern "[a-z]#(3,9)");
/1 contains character strings of length from3 to 9 characters containing characters a to z

6.1.2.6.2 Using length restriction with other constraints

Withinbi t stri ng, hexstring, octetstring subtype definitions lists and length restriction may be mixed in
the same subtype definition.

Withinchar stri ng and uni versal charstri ng subtypedefinitionsit isallowed to add alength restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value setsidentified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

type charstring MyCharStr5 ("gr", "xyz") length (1..9);
/1 contains the character strings gr and xyz;

type charstring M/CharStr6 ("a".."z") length (3..9);
/1 contains character strings of length from3 to 9 characters and containing characters

/Il atoz

type charstring MyCharStr7 (pattern "[a-z]#(3,9)") length (1..9);
/1 contains character strings of length from3 to 9 characters containing characters

/Il atoz

type charstring MyCharStr8 (pattern @ocase "[a-z]#(3,9)") length (1..8);
/1 contains character strings of length from3 to 8 characters containing characters

/[l atoz and Ato Z

type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
/1 contains any character strings of length from1l to 8 characters containing characters
/] ato z

type charstring MyCharStr10 ("gr", "xyz") length (4);
/1l causes an error as it contains no val ue

6.2 Structured types and values

6.2.0 General

Thet ype keyword is also used to specify structured types such asr ecor d types, r ecor d of types, set types, set
of types, enumer at ed types, uni on typesand map types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation or in a
mixed list and assignment notation.

ETSI

54 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

EXAMPLE 1:

/l assi gnnent notation

const MyRecordType c_nyRecordVal ue:

fieldl :="11001' B,
field2 := true,
field3 := "A string"
}
Il O
const MyRecordType c_nyRecordVal ue: = {' 11001'B, true, "A string"} //value list notation
/1 O
Const MyRecordType c_nyRecordValue := {'11001'B, field3 := "A string", field2 := true}

/1 m xed notation

The assignment and the mixed notation can be used for record, record of,set,set of andnmap vaue
notations and for arrays. In these notations each assigned field or index shall not appear more than once and
assignments to fields or indexes given in list notation are not allowed. The assignment notation can also be used for
union values. The value list notation can be used for r ecord, record of,set andset of value notations and
for arrays. The index notation as part of an assignment or mixed notation can be used as the | eft-hand side of element
assignmentsfor r ecord of ,set of and map value notations and for arrays. In this notation each index shall not
appear more than once and shall conform to the range of indices allowed by the type definition. See more detailsin the
subsequent clauses.

EXAMPLE 2:
var MyRecordType v_nyVari abl e: = // assi gnnent notation
{
fieldl := '11001' B,
/] field2 inplicitly unspecified
field3 := "A string"
}
/1l or
var MyRecordType v_nyVari abl e: = /l assi gnnent notation
{
fieldl := "'11001" B,
field2 := -, // field2 explicitly unspecified
field3 := "A string"
}
/1 or
var MyRecordType v_nyVariable:= {'11001'B, -, "A string"} //value list notation

It is allowed to mix the two value notations in the same (immediate) context only in such away that elementsin list
notation do not follow elements in assignment notation.

EXAMPLE 3:

/1 This is disallowed
const MyRecordType c_nyRecordVal ue: = {c_nyl ntegerValue, field2 :=true, "A string"}

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursionis
resolvable and that no infinite recursion occurs.

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 4:

/1 Valid recursive record type definition
type record MyRecordl

Fi el dTypel fieldi,
M/Recordl field2 optional,
Fi el dType3 field3

}

/1 Invalid recursive record type definition causing an error
type record MyRecord2

ETSI

55 ETSI ES 201 873-1 V4.16.1 (2024-10)

Fi el dTypel field1,
M/Record2 field2,
Fi el dType3 field3

}

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 5:

/1 Valid recursive union type definition
type uni on MyUni onl

MyUni onl choi cel,
charstring choice2

}

/1 Invalid recursive union type definition causing an error
type uni on MyUni on2

MyUni on2 choi cel,
MyUni on2 choi ce2

6.2.1 Record type and values

6.2.1.0 General

TTCN-3 supports ordered structured types known asr ecor d. Thefields of ar ecor d type may be of any TTCN-3
type. The values of ar ecor d shall be compatible with the types of ther ecor d fields. Thefield identifiers are local to
ther ecor d and shall be unique withinther ecor d (but do not have to be globally unique).

Examples

EXAMPLE 1:

type record MyRecordType

i nt eger fieldl,
MO her RecordType fiel d2 optional,
charstring field3

}
type record MyQ her Recor dType

bitstring fieldl,
bool ean field2

}

Records may be defined with no fields, i.e. as empty records.

EXAMPLE 2:
type record MyEnptyRecord {}

A record valueisassigned on anindividual field basis. The order of field valuesin the value list notation shall be the
same as the order of fieldsin the related type definition.

EXAMPLE 3:
var integer v_nylntegerValue := 1,
const MyQ her RecordType c_nmyQt her Recor dVal ue: =

fieldl :
field2 :

'11001' B,
true

}
var MyRecordType v_nyRecordVal ue : =

{
fieldl := v_nyl ntegerVal ue,
field2 := c_nyQ her Recor dVal ue,
field3 := "A string"

ETSI

56 ETSI ES 201 873-1 V4.16.1 (2024-10)

}

The same val ue specified with avalue list.

EXAMPLE 4:

v_nyRecordVal ue: = {v_nyl nteger Val ue, {'11001'B, true}, "A string"};

When the assignment notation is used for r ecor d-s, fields wished to be changed shall be identified explicitly and a
value, the not used symbol "-" or theom t keyword can be associated with them. The omi t keyword shall only be
used for optional fields. Itsresult isthat the given field is not present in the given value. Mandatory fields, not explicitly
referred to in the notation or explicitly unspecified using the not used symbol "-", shall remain unchanged. In particular,
when specifying partial values (i.e. setting the value of only a subset of the fields) using the assignment notation, at
initialization, only the fields to be assigned values shall be specified. Fields not mentioned are implicitly left
uninitialized. When re-assigning a previoudly initialized value, using the not used symbol or just skipping afieldin an
assignment notation, will cause that field to remain unchanged. Even when specifying partia values each field shall not
appear more than once.

NOTE 1: The difference can be seen between omitted and uninitialized fields. Omitted optional fields are not
present in the record or set value intentionaly, i.e. the field isinitialized and it does not prevent the whole
record or set from being completely initialized.

EXAMPLE 5:
type record MyRecordType
{
bitstring fieldl,
bool ean field2 optional,
charstring field3
}
var MyRecordType v_nyVariable : =
{
fieldl :="111' B,
field2 := fal se,
field3 := -
}
v_nyVariable : = '10111'B, -, - };

I/l after this, v_nyVariable contains:
/1 { '10111'B, false /* unchanged */, <undefined> /* unchanged */ }

v_nyVariable : =
field2 := true

/1 after this, v_mnyVariable contains:
/1 { '10111'B /* unchanged */, true, <undefined> /* unchanged */ }

v_nyVariable : =
fieldl :

field2 :
field3 :

fal se,

}

/1 after this, v_nyVariable contains:
/1 { '10111' B /* unchanged */, fal se, <undefined> /* unchanged */}

When the assignment notation is used in a scope, where the opt i onal attribute isimplicitly or explicitly set to
"explicit omt",optional and mandatory fields, not directly referred to in the notation shall remain unchanged.
When optional fields of variables are not assigned explicitly, they are uninitialized (i.e. the optional attribute shall not
have any effect on variables as described in clause 27.7 restriction a)).

When the assignment notation is used in a scope, wherethe opt i onal attributeissetto"inplicit omt",
optional fields, not directly referred to in the notation, shall implicitly be set to omit, while mandatory fields shall
remain unchanged (see also clause 27.7).

ETSI

57 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 6:

type record MyRecordType

bitstring fieldl,
bool ean field2 optional,
charstring field3
}
const MyRecordType c_nyConstl : =
fieldl :="111'B,
field3 := "A string"
Yy 1 { '10111' B, <undefined>, "A string"}

const MyRecordType c_nyConst2 : =

fieldl :="111'B,
field3 := "A string"
} with { optional "inplicit omt" }
/1 { '10111'B, omt /* because of the optional attribute */, "A string"}

When using the value list notation, all fields listed in the notation shall be specified either with avalue, the not used
symbol "-" or theomi t keyword. Theomi t keyword shall only be used for optional fields. Its result is that the given
field is not present in the given value. The first component of thelist (avalue, a"-" or oni t) isassociated with the first
field, the second list component is associated with the second field, etc. No empty assignment is allowed (i.e. two
commas, the second immediately following the first or only with white space between them). Fields to be left
unchanged, but followed by fields to which a value or template is assigned explicitly, shall be skipped by using the not
used symbol "-".

When using value list notation in a scope wherethe opt i onal attribute isimplicitly or explicitly setto " expl i ci t
om t", al remaining fields at the end of the type definition, missing from the value list notation, are |eft unchanged.

When using value list notation in a scope wherethe opt i onal attributeissetto"inplicit omit", optional fields
wished to be omitted by the implicit mechanism, but followed by fields to which avalue or template is assigned
explicitly, shall be skipped by using the not used symbol "-". When all remaining fields at the end of the type definition
are optional and they are wished to be omitted by the implicit mechanism, either the not used symbol "-" can be used for
some or all of them or they can simply be left out from the notation.

EXAMPLE 7:

type record R {
integer f1,
integer f2 optional,
i nteger f3,
integer f4 optional,
integer f5 optional

}

const Rc x :={ 1, -, 2} with { optional "inplicit omt" }

/Il after the assignnent v_x contains { 1, omt, 2, omt, omt }
constRc_x2 :={ 1, 2, 3, - }) with { optional "inplicit omt" }
/1 after the assignnent v_x2 contains { 1, 2, 3, onmit, onmit }

When using direct assignment notation in a scope wherethe opt i onal attributeissetto"inplicit onmit",the
uninitialized optional fieldsin the referenced value, shall implicitly be set to omit after the assignment in the new value,
while mandatory fields shall remain unchanged (see aso clause 27.7).

EXAMPLE 8:

const Rc x3 :={ 1, -, 2}

/1 after the assignment c_x3 contains { 1, <undefined> 2, <undefined> <undefined>}
const Rc_x4 :=c_x3 with { optional "inplicit omt" }

[/l after the assignnment c_x4 contains { 1, omt, 2, omt, onit }

A field assignment in arecord value or template can be prefixed by the @fuzzy modifier to declare that the right hand
side of the assignment shall only be evaluated when used in a matching, receiving or sending operation, as a non-lazy or
non-fuzzy operand to an expression, as a non-lazy or non-fuzzy actual parameter or on the right-hand-side of an
assignment to anon-lazy or non-fuzzy variable, template variable or template.

NOTE 2: The ruleson using @fuzzy field modifiers are described in clause 15.5.

ETSI

58 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 9:

type record R2 {
i nteger num
charstring str

}

tenmplate R mnsg := { num:=5, @uzzy str := testcasename() }

testcase TC 01() runs on C {

p.send(mnsg); // the sent value is { num:= 5, str := "TC 01" };
testcase TC 02() runs on C {
p.send(mnsg); // the sent value is { num:= 5, str := "TC 02" };
}
6.2.1.1 Referencing fields of a record type

Elements of ar ecor d shall be referenced by the dot notation Typel dOr Expr essi on. El enent | d, where
Typel dOr Expr essi on resolves to the name of a structured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. El ermrent | d shall resolve to
the name of afield in the structured type. Fields of record type definitions shall not reference themselves.

Examples

EXAMPLE 1:

v_nyVarl := v_nyRecordl. nyEl enent 1;
/1 If arecord is nested within another type then the reference nay look like this
v_nyVar2 : = v_nyRecordl. nyEl enent 1. nyEl enent 2;

EXAMPLE 2:
type record MyType
{
integer fieldl,
M/ Type. fi el d2 field2 optional, // this circular reference is NOT ALLONED
bool ean fiel d3

}

If afield in arecord type or asubtype of arecord type is referenced by the dot notation, the resulting type is the set of
values allowed for that field imposed by the constraints of the field declaration itself (i.e. any constraints applied to the
record typeitself are ignored).

EXAMPLE 3:

type record MyType2
{

integer fieldl (1 .. 10),
charstring field2 optional

}

type WType2 MyType3 ({1, onmit}, {2, "foo"}, {3, "bar"}) ;

type MyType3.fieldl MType4; /1 MyTyped is the integer type constrained to
/1 the values 1..10

type MyType3.fiel d2 MyType5; /'l MyType5 is the charstring type

type MyType2.fieldl MyType6; /1 MyTypeb6 is the integer type constrained to
/1 the values 1..10

type MyType2.field2 MyType7; /'l MyType7 is the charstring type

Referencing a subfield of an uninitialized or omitted record field or value on the right hand side of an assignment shall
cause an error.

EXAMPLE 4:

type record MyType4d
{

integer fieldl optional,
record

{
i nteger subfieldl,

ETSI

59 ETSI ES 201 873-1 V4.16.1 (2024-10)

i nteger subfield2
} field2 optional

}
var M/ Typed v_rec := { fieldl :=1, field2 := onit }
var integer v_int := v_rec.field2. subfieldi,;

/1 causes an error as v_rec.field2 is omtted

When referencing a field of an uninitialized record value or field or omitted field (including omitting afield at a higher
level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively be expanded up
to and including the depth of the referenced subfield as follows:

a) When expanding avaue or value field of record type, the subfield referenced in the dot notation shall be set to
present and all unreferenced mandatory subfields shall be |eft uninitialized; when the assignment isused in a
scope wheretheopt i onal attributeisequal to" explicit omt", al unreferenced optiona subfields
shall be left undefined. When the assignment is used in a scope where the optional attribute is equal to
"inplicit omt",al unreferenced optiona subfields shall besettooni t .

b) Expansionofrecord of/set of/array,uni on andset vauesand intermediate fields shall follow the
rules of item &) in clauses 6.2.7 and 6.2.5.1 and clause 6.2.2.1 correspondingly.

At the end of the expansion, the value at the right hand side of the assignment shall be assigned to the referenced
subfield.

EXAMPLE 5:
var MyType4 v_rec;
v_rec.field2.subfieldl :=5;

/Il after the assignnent v_rec is { fieldl := <undefined>, field2 := { subfieldl := 5,
/] subfield2 := <undefined> } }

6.2.1.2 Optional elements in a record
Optional elementsinar ecor d shall be specified using the opt i onal keyword.
Examples

EXAMPLE 1:

type record MyMessageType
{

Fi el dTypel fieldi,
Fi el dType2 field2 optional,

Fi el dTypeN fiel dN
}

Optional fields shall be omitted using the omit symbol.
EXAMPLE 2:
v_nyRecordVal ue: = {v_nyl ntegerValue, omt , "A string"};
/1 Note that this is not the sane as witing,

/'l v_nyRecordVal ue: = {v_nyl ntegerValue, -, "A string"};
/1 which would nean the value of field2 is unchanged

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within ther ecor d definition. Both the definition of
new structured types (r ecor d, set , enuner at ed, set of ,record of , uni on and map) and the specification of
subtype constraints are possible.

EXAMPLE:

I/l record type with nested structured type definitions
type record MyNest edRecor dType
{

record

{

ETSI

60 ETSI ES 201 873-1 V4.16.1 (2024-10)

i nt eger nestedFi el d1,
fl oat nestedFiel d2
} outerFieldi,
enuner at ed {
nest edEnumt,
nest edEnung
} outerField2,
record of bool ean outerFiel d3,
map fromcharstring to charstring outerfiel d4

}

/'l record type with nested subtype definitions
type record MyRecordTypeW t hSubt ypedFi el ds

i nt eger fieldl (1 .. 100),
charstring field2 length (2 .. 255)

6.2.1.4 Embedded fields

A field defined with atype reference but no explicit field nameis called an embedded field. The unqualified type name
actsasthe field name.

A field of an embedded field is called promoted if its name has no conflicts with other field names. Promoted fields act
like ordinary fields of arecord, except that they shall not be used as field names for assignment notations.

EXAMPLE:
import from Math all;

type record Pixel {

Mat h. Poi nt, /1 enbedded field with inplicit name Point
charstring col or,
float z
}
var Pixel p :={ Point := {4,8}, color := "red" };
log(p.Point.x); // explicit access to field x
log(p. Xx); /] access to pronoted field x
log(p. 2); /1 is NOT allowed: z is not a pronoted field. Explicit access is required.

nodul e Math {
type record Point { integer x, integer y, integer z }
}

6.2.2 Set type and values

6.2.2.0 General

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of the set fieldsis not significant.

EXAMPLE:
type set M/Set Type
i nt eger fieldl,
charstring field2
}

Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

NOTE: Whenthevaluelist notation is used for values of set types, the values are assigned to the fields in the
sequentia order of the fieldsin the type definition.

ETSI

https://go.dev/ref/spec

61 ETSI ES 201 873-1 V4.16.1 (2024-10)

6.2.2.1 Referencing fields of a set type

Elements of aset shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themselves. For referencing field types of set types, the same rules apply asin clause 6.2.1.1 for fields of
record types.

EXAMPLE:
v_nyVar3 : = v_nySet 1. nyEl enent 1,
/1 1f a set is nested in another type then the reference may | ook like this
v_nyVar4 : = v_nyRecordl. nyEl enent 1. nyEl enent 2;

/1 Note, that the set type, of which the field with the identifier 'nyElenent2' is referenced,
// is enbedded in a record type

6.2.2.2 Optional elements in a set

Optional elementsinaset shall be specified using the opt i onal keyword.

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.2.4 Embedded Fields

Embedded Fields with the set definition are similar to the mechanism for record types described in clause 6.2.1.4.
6.2.3 Records and sets of single types

6.2.3.0 General

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1: For the subtyping of record of and set of types seein clause 6.2.13.
Examples

EXAMPLE 1:

type set of boolean MySetOf Type; // is an unlinmited set of bool ean val ues

When the assignment notation isused for r ecord of -sand set of -s, elements wished to be changed are identified
explicitly and either avalue or the not used symbol "-" can be assigned to them. Other elements, not referred to in the
notation, shall remain unchanged. In particular, when specifying partial values (i.e. setting the value of only a subset of
the fields) using the assignment notation, for example, at initialization, only the elements to be assigned values shall be
specified: elements not mentioned are implicitly left uninitialized. It is also possible to leave fields explicitly
unspecified using the not used symbol "-". When re-assigning a previoudly initialized value, using the not used symbol
or just skipping afield or element in an assignment notation, will cause that field or element to remain unchanged.

EXAMPLE 2:

var MyRecordOf Type v_nyVariable : = {
[0] :='111"B,
[1] := '101'B,
[2] := -

}

v_nyVariable := { '10111'B, -, - };
/1 after this, v_nyVariable contains:
/1 { '10111'B, '101'B /* unchanged */, <undefined> /* unchanged */ }

v_nyVariable : =

ETSI

62 ETSI ES 201 873-1 V4.16.1 (2024-10)

[1] := '010'B,

/1 after this, v_nyVariable contains:
/1 { '10111' B/ * unchanged */, '010'B, <undefined>/* unchanged */ }

v_nyVariable : =

[0] :
[1]
[2] :

/Il after this, v_nyVariable contains:
/1 { '10111' B/ * unchanged */, '001' B, <undefined> /* unchanged */}

' 001' B,

When using the value list notation, all elementsin the structure shall be specified either with a value or the not used
symbol "-". The first member of the list is assigned to the first element, the second list member is assigned to the second
element, etc. No empty assignment is allowed (e.g. two commas, the second immediately following the first or only
with white space between them). Elements to be left out of the assignment shall be explicitly skipped in the list by use
of the not-used-symbol "-". Already initialized elements left without a corresponding list member in a value list notation
(i.e. a the end of alist) are becoming uninitialized. In this way, avalue with initialized elements can be made empty by
using the empty value list notation ("{}").

Index notation can be used on both the right-hand side and left-hand side of assignments. The index notation, when used
on the right-hand side, refersto the value of the identified element of ar ecord of oraset of . Whenitisused at
the left-hand side, only the value of the identified single element is changed, val ues assigned to other elements already
remain unchanged. The index of the first element shall be zero and the index value shall not exceed the limitation
placed by length subtyping.

If the value of the element indicated by the index at the right-hand of an assignment is undefined (uninitialized), this
shall cause a semantic or runtime error. Referencing an identified element of an uninitialized or omitted record of or set
of field or value on the right-hand side of an assignment shall cause an error.

If an indexing operator at the |eft-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an uninitialized value.

For nested record of or set of types, an array or record of integer restricted to a single size can be used as a short-hand
notation for a nested index notation.

When referencing an element of an uninitialized record of or set of value or field or omitted field (including omitting a
field at a higher level of the embedding hierarchy) on the left-hand side of an assignment, the reference shall recursively
be expanded up to and including the depth of the referenced element as follows:

a) When expanding avaue or valuefield of record of orset of type, the element referenced by the index
notation shall be set to present and all elements with a smaller index shall be created with an uninitialized
value.

b) Expansionof r ecor d, uni on and set values and intermediate fields shall follow the rules of item a) in
clauses 6.2.1.1 and 6.2.5.1 and clause 6.2.2.1 correspondingly.

c) Attheend of the expansion, the value at the right-hand side of the assignment shall be assigned to the
referenced element.

Uninitialized elements are permitted only in transient states (while the value remainsinvisible). Sending ar ecor d of
or set of valuewith uninitialized elements shall cause an error.

NOTE 2: When using on the right-hand side of an assignment for r ecor d of - sor set of - s, the assignment
notation and the indexed notation have similar effect, with the exception that the assignment notation is
able to address multiple elements in one notation, while the index notation is able to address asingle
element only.

ETSI

63 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 3:

/1 Gven

type record of integer MyRecord(;

type record of MyRecordO RoRol;

var integer v_nyVar;

/1 Using the value list notation

var M/Recorddf v_nyRecordOfvar := { 0, 1, 2, 3, 4},

/'l The sane record of, defined with the assignnent notation
var M/RecordOf v_nyRecor dOf Var Assi gnnent @ = {
[0] :

N
(IRRTRRTRNTINT
rWNPO

v:ar RoRol v_recof;

/1 Using an index notation
v_myVar := v_nyRecordO'Var[0]; // the first element of the "record of" val ue (integer 0)
/1 is assigned to v_nyVar

/1 Index notations are permitted on the left-hand side of assignments as well:
v_nmyRecordOf Var[1] := v_nyVar; // v_nyVar is assigned to the second el enent
/'l value of v_nyRecordOfvar is { 0, 0, 2, 3, 4}

/1 The assi gnnment

v_nyRecordOfVar :={ 0, 1, -, 2 };

/1 will change the value of v_nyRecordOfVar to{ 0, 1, 2 <unchanged>, 2};

/1 Note, that the 3¢ el ement woul d be undefined if had no previous assigned val ue.

/1 The assi gnment

v_nyRecordOf Var[6] : = 6;

/1 will change the value of v_nyRecordOf Var to

I/ {0, 1, 2, 2, <uninitialized> <uninitialized> 6 };

/1 Note the 5'" and 6t" el enments (with indexes 4 and 5) had no assigned val ue before this
/1 last assignnent and are therefore undefined.

v_nyRecordCf Var[4] := 4; v_nyRecordOfVar[5] := 5;
/1 will conplete v_nyRecordOfVar to the fully defined value { O, 1, 2, 2, 4, 5, 6 };

/1 Expansion of uninitialized record of val ue:
v_recof[1][2] := O;
/'l after the assignnent v_recof is { <undefined> { <undefined> <undefined> 0 } }

/1 Pls. Note the difference between the two index assignment notations in
/1 the foll owi ng exanple:

var M/Recorddf v_ix :={ 0,1,2 }

v_ix :={ [3] :=2*v_ix[2]+1 }

/1 the value of v_ix is: {0, 1, 2, 5}

/1 The same result can be achieved by using an index notation on the left hand side of
/'l the assignnent:

var MyRecordOf v_ix :={ 0,1,2 }

v_ix[3] := 2*v_ix[2]+1

/! the value of v_ix is: {0, 1, 2, 5}

NOTE 3: Theindex notation makesit possible e.g. to copy r ecor d of values element by element in afor loop.
For example, the function below reverses the elements of ar ecor d of vaue:

function reverse(in M/Recordd p_src) return MyRecordOt

{
var MyRecordOF v_dest;

var integer v_i, v_srcLength := I engthof (p_src);
for(v_i :=0; v_i <v_srcLength; v_i :=v_i + 1) {
v_dest[v_srcLength - 1 - v_i] := p_src[v_i];

return v_dest;

}

Embedded r ecord of andset of typeswill result in adata structure similar to multidimensional arrays
(see clause 15.8.2).

ETSI

64 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 4:

/1 Gven
type record of integer MyBasi cRecordOf Type;
type record of MyBasi cRecordO Type My2DRecordCf Type;

/1 Then, the variable nyRecordOfArray will have similar attributes to a two-dinensional array:
var My2DRecor dOf Type v_nyRecordOf Array;

/1 and reference to a particular elenent would | ook like this

/1 (value of the second el enent of the third ' MyBasi cRecordOf Type' construct)

v_nyRecordOf Array [2][1] := 3;

//with the short-hand notation this could al so have been witten as
var integer v_i[2] :={ 2, 1};

v_nyRecordOf Array [v_i] := 3;

/1 is the sane as assigning elenent v_nyRecordOf Array[v_i[O0]][v_i[1]]

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested withther ecor d of orset of definition. Both the
definition of new structured types (r ecor d, set , enuner at ed, set of andr ecor d of) and the specification of
subtype constraints are possible.

EXAMPLE:

type record of enunerated { red, green, blue } ColorlList;
type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParaneters;

6.2.3.2 Referencing elements of record of and set of types

It isalso alowed to reference theinner type of r ecor d of andset of typesby using theindex notation but with a
dash. The notation Typel d[-] , where Typel d resolvesto the name of ar ecord of orset of type, references
the inner type of Typel d. If the type definition restricts the element type of the record of or set of type, referencing
the inner type of that type yields a type which contains all values from the constrained type.

EXAMPLE:

/1 Provided the definitions bel ow
type record of integer MyRecordOf I nt;
type record of record {

integer f1,

set { integer s1, boolean s2 } f2
} MyRecor dOf Recor d;
type record of record of integer MyRecordO RecordOf I nt;
type record of record {

integer f1,

record of boolean f2
} MyRecor dOf Recor d2;

/1 Referencing the inner integer type
type MyRecordOfInt[-] Ml nteger;
const MyRecordOfInt[-] c_Mylnteger:= 5;

/'l Referencing the nested record type
type MyRecordOf Record[-] Myl nnerRecord;
const MyRecordOf Record[-] c_MyRecord :={ f1 =5; f2 :={ s1 :=0; s2 :=true }}

/1 Referencing the set type nested in the inner record
type MyRecordOf Record[-].f2 MyNestedSet;
const MyRecordOf Record[-].f2 ¢c_MWSet :={ sl :=0; s2 :=true}

/'l Referencing the innernost bool ean
type MyRecordOf Record[-].f2.s2 MyBool ean;
const MyRecordOf Record[-].f2.s2 ¢c_MyBool := fal se;

/'l Referencing the inner record of
type MyRecordOf RecordOf I nt[-] Myl nnerRecordOf I nt;
const MyRecordO RecordOfInt[-] c_MylnnerRecordOfInt :={ 0, 1, 2, 3 };

/'l Referencing the integer type within the inner record of

type MyRecordOf RecordOf Int[-]1[-] Ml nteger2;
const MyRecordOf RecordOfInt[-][-] c_Mylnteger2 := 1;

ETSI

65 ETSI ES 201 873-1 V4.16.1 (2024-10)

/'l Referencing the boolean type within the nested record
type MyRecordOf Record2[-].f2[-] Ml nnernost Bool ean;
const MyRecordOf Record2[-].f2[-] c_MylnnernostBool ean : = true ;

type record length (5) of record of integer Constrai nedRecordOfInt (1 .. 10);
type Constrai nedRecordOf I nt[-] Constrainedlnt;

/1 defines the type record of integer, where the integer values are restricted
// to the range 1 .. 10 but the record of has no length restriction

6.2.4 Enumerated type and values

TTCN-3 supports enuner at ed types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerated values. Each enumerated value shall have an identifier and
referencing the values shall only use these identifiers. References to enumerated val ues can occur in two forms:
unqualified and qualified. The unqualified form uses only the identifier of the enumerated value. The qualified form
consists of the enumerated type reference, followed by a dot and the enumerated value identifier. The identifiers of
enumerated val ues shall be unigque within the enumerated type (but do not have to be globally unique) and are
consequently visible in the context of the given type only. This means that for any instantiation or value reference of an
enuner at ed type, the given type shall be implicitly or explicitly identified.

NOTE 1: For example, if the enumerated type is an element or field of a user defined structured type, the
enumerated type isimplicitly referenced viathe given element/field (i.e. by the identifier of the field or
the position of the value in avalue list notation) at value assignment, instantiation, etc. Another example
is passing an enumerated value as actual parameter, in which case the type of the corresponding formal
parameter establishes the type context needed to make the enumeration value visible. The third example
is the comparison operators. if the type of one of the operands is uniquely identified, it is used as atype
context for the other operand (see example 2 below). The fourth example is the match operation, where
the type of the template parameter establishes the type context for the operation, if the type of the value
parameter is not identified (see example 2 in clause 15.8.2).

Theidentifiers of enumerated values, within the same module, shall only be reused within other structured type
definitions and shall not be used for identifiers of local or global visibility at the same or alower level of the same
branch of the scope hierarchy (see scope hierarchy in clause 5.2).

Examples

EXAMPLE 1. Declaration of enumerated types and values:

type enunerated MyFirstEnunType {
Monday, Tuesday, Wednesday, Thursday, Friday
b

type integer Mnday;
/1 This definition does not clash with the previous one
/1 as Monday in MyFirst EnunType is of |ocal scope

type enunerated MySecondEnuniType {
Saturday, Sunday, Monday

/} This definition is legal as it reuses the Monday identifier within
/1 a different enunerated type

type record MyRecordType {
i nt eger Monday

/} This definition is legal as it reuses the Monday identifier within
/1 a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
M/Fi rst Enunifype firstField,
i nt eger secondFi el d

}s

var MyNewRecor dType v_newRecordVal ue := { Monday, 0 }
/Il MyFirstEnunType is inplicitly referenced via the firstField el enent of MyNewRecordType

ETSI

66 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2: Using enumerated types (see also example 5 of clause 8.2.3.1):

/1 Valid instantiations of MyFirstEnunType and MySecondEnunType woul d be
var MyFirst EnunType v_today := Tuesday;
var MySecondEnunilype v_t onorrow : = Monday;

/1 The follow ng statenents however cause an error as the two variables are instances
/1 of different enuneration types

v_today := v_tonorrow,

v_today == v_tonorrow,

/1 The followi ng operation is correct

if (v_today == Monday) {...}

/1 the type of variable v_today identifies the type context of MFirstEnunType for the
/1 equality operator

/1 But the foll ow ng causes an error

if (Tuesday == Wednesday) {...}

/1 there is no TTCN-3 type(d) object to establish the type context for the equality operator
/'l Please note that the values Tuesday and Wednesday are defined within the type

/'l MyFirstEnunType only, but this is not sufficient to establish the type context

/1 This kind of error can be fixed using the qualified formfor one of the enunerated val ues.
/1 The type referenced in the qualified formwill provide the required type context as shown
/1 in the follow ng condition

if (M/FirstEnunlype. Tuesday == Wednesday) {...}

Each enumerated value may optionally have a user-assigned integer expression or non-empty list of integer literal
values or ranges of integer literal values, which is defined after the name of the enumerated value in parenthesis. Each
user assighed expression shall be statically bound, known in compilation time, and evaluate to an integer value. Each
user-assigned integer value shall be distinct within asingleenuner at ed type, al ranges of all the values lists shall be
digoint and shall not include any of the used single integer values. For each enumerated value without an assigned
integer val ue, the system successively associates an integer number in the textual order of the enumerated values,
starting at the left-hand side, beginning with zero, by step 1 and skipping any number occupied by any of the
enumerated val ues with a manually assigned value or value list. These values are only used by the system to allow the
use of relational operators. Enumerated names with an associated value list shall only be used as val ues together with a
specific integer value, which shall be one from the associated list, in parenthesis after the name. They can be used as a
template of the enumerated type by adding alist of integer template(s) and ranges in parenthesis after the name. For
enumerated val ues with no value assigned or with a specific integer value assigned, the user shall not directly use
associated integer values, but can access them and convert integer values into enumerated values by using the
predefined functionsenun®i nt andi nt 2enum (see clauses 16.1.2, C.1.30 and C.1.4).

NOTE 2: Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributes to TTCN-3 items).

EXAMPLE 3: Enumeration example with associated integers:

type enunerated MyThirdEnunType {
Bl ue(0),
Yel l om(1),
G een(3),
O her (2, 4..255)
}

var MyThi rdEnunType v_color := Qther(5);
if (v_color == Gher(4)) { // is false

i}f (v_color > Gher(4)) { /] is true
}

if (match(v_color, Gher(?))) { // is true

i}f (match(v_color, Qher(6..10))) { // is false

%f (match(v_color, Gher((6..10), 15, (20..25)))) { // is false

i_col or := Blue(0) //causes an error as enunerated values with a specific integer val ue assigned

//shall not use the associated integer value

type enunerated MyEnum {

e_num (1),

e_expr (2+2), /] same as e_expr (4)
e_bin_conv (bit2int('0111'B)), // same as e_bin_conv(7)
e_oct_conv (oct2int('34'0), /'l same as e_oct_conv(52)

ETSI

67 ETSI ES 201 873-1 V4.16.1 (2024-10)

e_hex_conv (hex2int('AC H)) /] same as e_hex_conv(172)

}

When a TTCN-3 module parameter, formal parameter, constant, variable, non-parameterized template or parameterized
template with al formal parameters having default values of an imported enumerated type is defined, the name of that
definition shall not be the same as any of the enumerated val ues of that type.

6.2.5 Unions

6.2.5.0 General

TTCN-3 supportsthe uni on type. Theuni on typeisacollection of alternatives, each one identified by an identifier.
Only one of the specified aternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of afinite number of known types.

Examples

EXAMPLE 1:
type uni on MyUni onType

i nt eger nunber,
charstring string

}s

/1 A valid instantiation of MyUnionType would be
var MyUni onType v_age, v_oneYeard der;
var integer v_agel nMont hs;

v_age. hunber := 34; /1 value notation by referencing the field. Note, that this
/1 notation nmakes the given field to be the chosen one

v_oneYear O der := {nunber := v_age. nunber+1};

v_agel nMont hs : = v_age. nunber * 12;

The assignment notation shall be used for uni on-s, and the notation shall assign avalue to one field only. Thisfield
becomes the chosen field. Neither the not used symbol "-" nor ommi t isalowed in union value notations.

The value list notation shall not be used for setting values of uni on types.

At most one of the union alternatives can be declared as the default alternative by using the @lef aul t modifier before
the type of the aternative. For unions with a default alternative, special type compatibility rules apply (see

clause 6.3.2.4) which allow using the union value as compatible with the type of the default alternative. Therefore, the
assignment notation does not have to be used to denote a value of the union type if the union's default alternative isto
be chosen. Also, the default alternative selection does not have to be used to access the default alternative, if it is
chosen.

Thelist of effective fields of a union contains al alternative identifiers of the union. In addition to that, if the union
contains a default alternative of arecord or set type, the list of effective fields contains al field identifiers of that type
and if the union contains a default alternative of a union type, the list of effective fields contains the effective list of that
type.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) All identifiersinthelist of effective fields shall be distinct.
b) The@lef aul t aternative shall not be of theanyt ype.
EXAMPLE 2:

type uni on MyDef aul t Uni onType

@lef aul t i nteger nunber,
charstring string

ETSI

68 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 Avalid instantiation of MyDefaultUnionType woul d be
var MyDef aul t Uni onType v_age, v_oneYeard der;

v_age : = 34; [/ inplicit usage of the default alternative: the integer type is
/] conpatible with the default alternative; this is a shorthand notation
/1 for v_age.nunber := 34 or v_age :={ nunber := 34}

v_oneYearO der := v_age+l; // inplicit selection of the default alternative: the union
/] default alternative is conpatible with integer, so that it
/1 can be used as an integer expression; this is equivalent to:
/1 v_oneYear A der. nunber := v_age. nunber +1;

type uni on MyDefaul t Uni onType2 {
@lef aul t
MyDef aul t Uni onType agel nYears,
i nt eger agel nDays

}

var MyDef aul t Uni onType2 v_age2 : = 3; /'l nested default usage: 3 is conpatible with
/1 both alternatives, but only alternative agelnYears
/1l has @efault, so this is equivalent to
/1 v_age2 := { agelnYears := 3 } which is equival ent

/!l to v_age2 :={ agelnYears :={ nunber := 3} }
var integer v_result := v_age + v_age2; // v_result is 37 as the expression is equival ent
/1 to v_age.nunber + v_age2. agel nYears
v_age := {string := "1 feel young"};
v_result := v_age + v_agez; /] test case error: v_age would be treated as
/'l v_age. nunber, which is not the selected alternative

type uni on MyUni onTypeW t hDef aul t Err

@lef aul t

MyDef aul t Uni onType2 agel nYears,

charstring string /'l produces an error as the identifier "string"

}; /Il is inthe list of effective fields of
/1 the default alternative
/1 fromthe type of the default alternative of
/1 MyDef aul t Uni onType2
6.25.1 Referencing fields of a union type

Alternatives of auni on type shall be referenced by the dot notation Typel dOr Expr essi on. Al t er nati vel d,
where Typel dOr Expr essi on resolves to the name of a union type or an expression of a union type such as variable,
formal parameter, module parameter, constant, template, or function invocation. Al t er nat i vel d shal resolve to the
name of an aternative in the union type or in case of an anytype value or template Al t er nat i vel d shall resolveto
a known type name or a known type name qualified with a module name. Alternatives of union type definitions shall

not reference themsel ves.

Examples

EXAMPLE 1:

v_nyVar5 : = v_nyUni onl. nyChoi cel;

/1 If a union type is nested in another type then the reference nay look like this

v_nyVar6 : = v_nyRecordl. nyEl enent 1. nyChoi ce2;

/'l Note, that the union type, of which the field with the identifier 'nyChoice2' is referenced,
// is enbedded in a record type

If an alternative in aunion type or a subtype of a union type is referenced by the dot notation, the resulting type isthe
set of values allowed for that alternative imposed by the constraints of the alternative declaration itself (i.e. any
constraints applied to the union type itself are ignored).

When an alternative of a union type is referenced on the right hand side of an assignment an error shall occur if the
referenced alternative is not the currently chosen aternative or if the referenced union field or value is omitted or
uninitialized.

ETSI

69 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2:
type uni on MyUni on2

i nt eger choi cel,
charstring choice2

}
type record MyRecor dEnbedsUni on
{
MyUni on2 fieldl optional
}
var MyUnion2 v_un2 :={ choicel := 11}
var charstring v_char := v_un2.choice2; // causes an error as v_un.choice2 is not chosen
var MyRecor dEnbedsUnion v_rec := { fieldl := omt }
var integer v_int := v_rec.fieldl. choicel; // causes an error as v_rec.fieldl is onmtted

When referencing an aternative of a union type on the left hand side of an assignment, the referenced alternative shall
become the chosen one. Thisrule shall apply recursively if the reference contains alternatives of nested unions,
choosing all the referenced alternatives.

When referencing an aternative of an uninitialized union value or field or omitted field (including omitting afield at a
higher level of the embedding hierarchy) on the left hand side of an assignment, the reference shall recursively be
expanded up to and including the depth of the referenced alternative as follows:

a When expanding avaue or valuefield of uni on type, the alternative referenced in the dot notation becomes
the chosen one.

b) Expansionofrecord,record of,set,set of,and array valuesand intermediate fields shall follow
therules of item a) in clauses 6.2.1.1 and 6.2.7, and clause 6.2.2.1 correspondingly.

c) Attheend of the expansion, the value at the right hand side of the assignment shall be assigned to the
referenced aternative.

EXAMPLE 3:
type uni on MyUni on3
{

i nteger choi cel,
uni on

bi tstring subchoicel,
charstring subchoi ce2
} choice2

}

var MyUnion3 v_un3 := { choicel := 1 };
var MyRecor dEnbedsUnion v_rec2 := { fieldl := onit };

v_un3. choi ce2. subchoice2 := "Hello!";
/1 after the assignnent v_un3 equals to { choice2 := { subchoice2 := "Hello!" } }
v_rec2.fieldl.choicel := 10; // after the assignnent v_rec2 equals to

/1 { fieldl := { choicel := 10 } }

6.2.5.2 Option and union

Optiona fields are not allowed for the uni on type, which means that the opt i onal keyword shall not be used with
uni on types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union aternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

6.25.4 Embedded Fields

Embedded Fields with the union definition are similar to the mechanism for record types described in clause 6.2.1.4.

ETSI

70 ETSI ES 201 873-1 V4.16.1 (2024-10)

6.2.6 The anytype

The specia type anyt ype is defined as a shorthand for the union of all known data types and the addresstypein a
TTCN-3 module. The definition of the term data type and known typesis given in clause 3.1. The address type shall be
included if it has been explicitly defined within that module.

The fieldnames of the anyt ype shall be uniquely identified by the corresponding type names.

NOTE 1. Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from athird module) cannot be reached
viathe anytype of the importing module.

EXAMPLE:

/1 A valid usage of anytype woul d be
var anytype v_nyVar One, v_nyVar Two;
var integer v_nyVarThree;

v_nyVar One. i nteger := 34,
v_nyVarTwo : = {integer := v_nyVarOne.integer + 1};

v_mnyVar Three : = v_nyVarOne.integer * 12;

Theanyt ype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anyt ype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anyt ype "contains' all types imported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the
point of avariable, formal parameter or function return value declaration. Arrays may be declared as single or
multi-dimensional. Array dimensions shall be specified using constant expressions, which shall evaluate to a positive
i nt eger values. Constants used in the constant expressions shall meet with the restrictionsin clause 10.

Examples

EXAMPLE 1:

type integer MArrayTypel[3]; /1 Atype with 3 integer elenents
type record length (3) of integer M/Recordf Typel; // The corresponding record of

var MArrayTypel v_al:= { 7, 8, 9 };
var MyRecordOf Typel v_rl:= v_al, /1 MyArrayTypel and MyRecordOf Typel are conpati bl e

var integer v_nyArrayl[3]:= v_rl; /'l Instantiates an integer array of 3 elenents
/1 with the index 0 to 2
/'l being conpatible to M/ArrayTypel and MyRecor dOf Typel

var integer v_nyArray2[2][3]; /'l Instantiates a two-dinensional integer array of 2 x 3
/1 elenments with indexes from(0,0) to (1,2)

Array elements are accessed by means of the index notation ([1), which shall specify avalid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation. An array
or record of integer restricted to a single size can be used in the index notation as a short-hand for the repeated index
notation. Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

v_nyArrayl[1] := 5;
v_nyArray2[1][2] := 12;

v_nyArrayl[4] := 12; /] ERROR index shall be between 0 and 2
v_nyArray2[3][2] := 15; // ERROR first index shall be 0 or 1

ETSI

71 ETSI ES 201 873-1 V4.16.1 (2024-10)

Array dimensions may also be specified using ranges (with inclusive boundaries only). In such cases, the lower and
upper values of the range syntax define the lower and upper index values. The upper value shall not be lesser than the
corresponding lower value. Such an array is corresponding to arecord of with afixed length restriction computed as the
difference between upper and lower index bound plus 1 and indexing starting from the lower bound of the array
definition.

EXAMPLE 3:

type integer M/ArrayType2[2 .. 5]; // Atype with 4 integer elenents, indices starting with 2
type record length (4) of integer MyRecordOf Type2; // The correspondi ng record of

var integer v_nyArray3[1 .. 5]; // Instantiates an integer array of 5 elenents
/!l with the index 1 to 5

10; // Lowest index

50; // Highest index

v_nyArray3[1] :
v_nyArray3[5] :

var integer v_nyArray4[1 .. 5][2 .. 3 1]; /'l Instantiates a two-dinensional integer array of
/1 5 x 2 elenments with indexes from(1,2) to (5,3)

NOTE: Itisnot possibleto define an array type with a variable amount of elements. Neither isit possible to
define an unlimited array with alower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Vaues may be
assigned individually by avaue list notation or index notation or more than one or all at once by avalue list notation or
index assignment notation. For using the value list or assignment notation for arrays, the rules described in

clause 6.2.2.4 are valid for arrays as well.

Index notation can be used on both the right-hand side and left-hand side of assignments. The index of the first element
shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations given by
either the length or the upper bound of the index. If the value of the element indicated by the index at the right-hand of
an assignment is undefined or if the index notation is applied to an uninitialized or omitted array value on the right hand
side of an assignment, error shall be caused. Sending an array value with undefined elements shall cause an error. All
elementsin an array value that are not set explicitly are undefined. When referencing an element of an uninitialized
array value or field or omitted field on the left hand side of an assignment, the rules for record of values specified in
clause 6.2.2.4 apply.

For assigning values to multi-dimensiona arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array dlices of
multi-dimensional arrays, i.e. when the number of indexes of the array value isless than the number of dimensionsin
the corresponding array definition, is allowed. Indexes of array sices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice corresponds to the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4.
v_nyArrayl[0]:= 10;
v_nyArrayl[1]:= 20;
v_nyArrayl[3]:= 30;

/1 or using an value |ist
v_nmyArrayl: = {10, 20, -, 30};

v_nyArray4: = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
/1 the array value is conpletely defined

var integer v_nyArray5[2][3][4] :=

{
{
{1, 2, 3, 4}, /I assigns a value to v_nyArray5 slice [0][0]
{5, 6, 7, 8}, /] assigns a value to v_nyArray5 slice [0][1]
{9, 10, 11, 12} // assigns a value to v_nyArray5 slice [0][2]
}, /1 end assignnents to v_nyArray5 slice [0]
{

{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} I/ assigns a value to v_nyArray5 slice [1]
}
v_nyArray4[2] := {20, 20};

/1l yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
v_nyArray5[1] :={ {0, 0, O, 0}, {O, O, O, 0}, {O, O, O, 0O}};

ETSI

72 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1l yields {{{1, 2, 3, 4}, {5 6, 7, 8, {9, 10, 11, 12}},

/1 {{o, o, o, 0o}, {0, 0, O, 0}, {O, O, O, O}}};
v_nyArray5[0][2] := {3, 3, 3, 3};

/1l yields {{{1, 2, 3, 4}, {5 6, 7, 8, {3, 3, 3, 3}},

/1 {{o, o, o, o}, {0, O, O, 0}, {O, O, O, O}}};

var integer v_nyArraylnvalid[2][2];
v_nmyArraylnvalid := { 1, 2, 3, 4}

/1 causes an error as the dinension of the value notation

/] does not correspond to the dinensions of the definition
v_nyArraylnvalid[2] :={ 1, 2}

/1 causes an error as the index of the slice should be 0 or 1

6.2.8 The default type

TTCN-3 alows the activation of altsteps (see clause 16.2.1) as defaults to capture recurring behaviour. Default
references are unique references to activated defaults. Such a unique default reference is generated by a test component
when an altstep is activated as a default, i.e. adefault referenceisthe result of anact i vat e operation (see

clause 20.5.2).

Default references have the special and predefined type def aul t . Variables of type def aul t can be used to handle
activated defaultsin test components. The specia valuenul | represents an unspecific default reference, e.g. can be
used for theinitialization of variables of default type.

Default references are used in deact i vat e operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to a default variable in test component instance "al" of type"A" has no meaning in test component instance
"a2" of type"A".

The actual data representation of the def aul t type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

Values of thedef aul t type are object references and follow specific rules for this kind of values.

6.2.9 Communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword nessage and procedure-based ports shall be
identified by the keyword pr ocedur e within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywordsi n (for the in direction), out (for the out
direction) and i nout (for both directions). Operations allowed on a procedure present in the incoming port list are
getcal | ,reply andrai se. Operations allowed on a procedure present in the outcoming port list arecal | ,

get repl y and cat ch. Directions shall be seen from the point of view of the test component owning the port with the
exception of the test system interface, where directions shall be seen from the point of view of the test component port
mapped to the test system interface port. Thein list of the test system interface port contains message or procedure for
which the mapped test component port allows the following operations. r ecei ve,tri gger,getcal | ,reply or
rai se. Theout list of the test system interface port contains message or procedure for which the mapped test
component port allow the folowing operations: send, cal | , get r epl ay or cat ch.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

For configuration purposes the port type may have one map param and one unmap param declaration indicating the
allowed additional parameters for the respective operation. These formal parameters shall be value parameters.

ETSI

73 ETSI ES 201 873-1 V4.16.1 (2024-10)

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of all its

i nout and out parameters, its return type and its exception types are automatically part of thei n direction of this
port. Whenever asignatureis defined in thei n direction for a procedure-based port, the types of al itsi nout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition,
several address schemes may be supported by one SUT at different ports. To support such addressing schemes, TTCN-3
allowsto bind an addr ess typeto aport. Values of thistype may be used for addressing purposes in communication
operations (see clause 22.1) and be stored in variables. The handling of address types bound to different ports by means
of the dot notation is explained in clause 6.2.12.

Syntactical Structure

M essage-based port:
type port PortTypeldentifier nmessage "{"
{ (address Type ";") |
(map param " (" { Formal ValuePar [","] }+ ")") |
(unmap param " (" { Formal Val uePar [","] }+ ")") |
((in] out | inout) { MessageType [","]
Procedure-based port:
type port PortTypeldentifier procedure "{"
{ (address Type ";") |
(map param " (" { Formal ValuePar [","] }
(unmap param " (" { Formal Val uePar [","]
((in] out | inout) { Signature [","]

"y

TTCN-3 alows to define constants, variables and parameters of a port type. These constants, variables or parameters
can contain areference to an existing component port or aspecia value nul | . The specia value nul | represents an
unspecified port reference, i.e. it can be used to explicitly alow the referencing of no port.

Port type values are object references and follow specific rules for thiskind of values.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) At most one address type shall be bound to a port type.
b) At most one map parameter list shall be defined for a port type.
c) At most one unmap parameter list shall be defined for a port type.
d) Formal parameters of map param and unmap param declarations shall be value parameters of a data type.
€) MessageType shall beareferenceto adatatype.
Examples

EXAMPLE 1. Message-based port

/'l Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/'l sent via and any integer value to be send and received over the port

type port MyMessagePort TypeOne nessage

{

in MsgTypel, MsgType2;
out MsgTypes3;
i nout i nt eger

}

EXAMPLE 2: Procedure-based port

/'l Procedure-based port which allows the renote call of the procedures Procl, Proc2 and Proc3.
/1 Note that Procl, Proc2 and Proc3 are defined as signatures

type port MyProcedurePort Type procedure
{

out Procl, Proc2, Proc3

ETSI

74 ETSI ES 201 873-1 V4.16.1 (2024-10)

}
EXAMPLE 3: Message-based port with address type definition
type port MyMessagePort TypeTwo nessage

address integer; /] if addressing is used on ports of type My/MessagePort TypeTwo
/1 the addresses have to be of type integer
i nout MsgTypel, MsgType2;
}

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting
from expressions. Thus, the list restricting what may be used on a message-based port is simply alist of
type names.

EXAMPLE 4: Usage of paramin port declaration

/1 Message based port which allows MsgType4 to be send and received over the port
/1 and MsgType5 and MsgType6 as configuration paraneter type

type port MyMessagePort Type nessage

{

i nout MsgType4;
map param (in MsgType5 p_pl, out MsgType6 p_p2);
}

/1 Procedure based port which allows the renote call of the procedure Procl
/1 and MsgType5 as configuration paraneter type

type port MyProcedurePort Type procedure

{

out Procil;
unmap param (MsgType5 p_pl);

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port namesin a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall al have unique names. If not stated otherwise, ports
have the same semantics as constants of a port type.

PCO2 PCO3
MyMTC MyPTC p—
/I of MyMTCType f— Il of MyPTCType —
PCO4
pPCO1 PCO1

Figure 3: Typical components

Itisalso possible to declare constants, variables, templates and timerslocal to a particular component type. These
declarations are visible to all testcases, functions and altsteps that run on an instance of the given component type. This
shall be explicitly stated using ther uns on keyword (see clause 15.12) in the testcase, function or altstep header.
Component type definitions are associated with the component instance and follow the scope rules defined in

clause 5.2. Each new instance of a component type will thus have its own set of constants, variables, templates and
timers as specified in the component type definition (including any initial values, if stated). Constants used in the
constant expressions of type declarations for variables, constants or ports shall meet with the restrictionsin clause 10,
however constants used in the constant expressions of initial values for variables, constants, templates or timers do not
have to obey these restrictions.

ETSI

75 ETSI ES 201 873-1 V4.16.1 (2024-10)

Syntactical Structure

type conponent Conponent Typel dentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| Const Def
| Tenpl ateDef) }

"y
Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables, templates and timers during the creation of an instance of a component type. These instances can be used as
the main test component, as the test system interface or as a parallel test component. Every instance of a component
type has its own new instances of the ports, constants, variables, templates and timers defined in the component type
definition.

Component instances are object references and follow specific rules for this kind of values.
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.
Examples

EXAMPLE 1: Component type with port instances only
type conponent MyPTCType

port MyMessagePort Type pCOL, pCH4;
port M/ProcedurePort Type pCx2
}

EXAMPLE 2: Component type with variable, timer and port instance
type conponent MyMICType
{

var integer vc_nylLocal | nteger;
timer tc_nyLocal Tiner;
port MyMessagePort Type pCOL

}

EXAMPLE 3: Component type with port instance arrays
type conponent MyConpType
{

port MyMessagePort Type pCOn 3];

port MyProcedurePort Type pCOp[3] [3]

/1 Defines a conmponent type which has an array of 3 nessage ports and a two-di nensi onal
// array of 9 procedure ports.

6.2.10.2 Reuse of component types
It is possible to define component types as the extension of other component types, using the ext ends keyword.

Syntactical Structure

type conponent Conponent Typel dentifier extends Conponent Typel dentifier
{ "," ConponentTypeldentifier} "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| Const Def
| Tenpl ateDef) }

ETSI

76 ETSI ES 201 873-1 V4.16.1 (2024-10)

Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
ext ends keyword isreferred to as the supertype. The effect of this definition is that the extended type will implicitly
also contain al definitions from the supertype. It is called the effective type definition.

It is allowed to have one component type extending several supertypes in one definition, which have to be specified asa
comma-separated list of types in the definition. Any of the supertypes may also be defined by means of extension. The
effective component type definition of the extended type is obtained as the collection of al constant, variable, template,
timer and port definitions contributed by the supertypes (determined recursively if a supertype is also defined by means
of an extension) and the definitions declared in the extended type directly. The effective component type definition shall
be name clash free.

NOTE 1: Itisnot considered to be a different declaration and hence causes no error if a specific definitionis
contributed to the extended type by different supertypes (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference c of type CT1, which extends
CT2, iscompatible with CT2, and test cases, functions and altsteps specifying CT2 in their r uns on
clauses can be executed on ¢ (see clause 6.3.2.7).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a When defining component types by extension, there shall be no name clash between the definitions being
taken from the supertype and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the supertype (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

b) When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different supertypes, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the supertypes (directly or by means of extension). It is not considered
to be aname clash if a specific definition is contributed to the extended type via different extension paths.

c) Itisallowed to extend component types that are defined by means of extension, aslong as no cyclic chain of
definition is created.

Examples

EXAMPLE 1: A component type extension and its effective type definition
type conponent MyMICType
{

var integer vc_nylLocal |l nteger;
timer tc_nyLocal Tiner;
port MyMessagePort Type pCOL

type conponent M/Ext endedMICType extends MyMICType

var float vc_nyLocal Fl oat;

timer tc_nyQherLocal Tiner;

port MyMessagePort Type pCQ2;
}

/'l effectively, the above definition is equivalent to this one:
type conponent M/Ext endedMICType

/* the definitions from MyMICType */
var integer vc_nylLocal |l nteger;

timer tc_myLocal Tiner;

port MyMessagePort Type pCOLl

/* the additional definitions */

var float vc_nyLocal Fl oat;
timer tc_myQtherlLocal Timer;

ETSI

77 ETSI ES 201 873-1 V4.16.1 (2024-10)

port MyMessagePort Type pCQ2;

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

type conponent MICTypeA extends MICTypeB { /* ..*/ };
type conponent MICTypeB extends MICTypeC { /* ..*/ };
type conponent MICTypeC extends MICTypeA { /* ..*/ }
type conponent MICTypeD extends MICTypeD { /* ..*/ }

/1 ERROR - cyclic extension
/1 ERROR - cyclic extension

EXAMPLE 3: Component type extensions with name clashes
type conponent M/Ext endedMICType extends MyMICType

var integer vc_nylLocal | nteger; /1 ERROR - already defined in M/fMICType (see above)
var float tc_nyLocal Tiner; /1 ERROR - tiner with that nane exists in M/MICType
port MyQt her MessagePort Type pCOL; // ERROR - port with that name exists in MyMICType

type conponent MyBaseConponent { tinmer tc_mnyLocal Tiner };
type conponent Ml nteri nConponent extends MyBaseConponent { timer tc_nmyQherTiner };
type conponent MyExt endedConponent extends Myl nteri mConponent

timer tc_myLocal Timer; // ERROR - already defined in Myl nteri nConponent via extension
}

EXAMPLE 4: Component type extension from several supertypes

type conponent MyConpB { tiner tc_t };
type conponent MyConpC { var integer tc_t };
type conponent MyConpD ext ends MyConpB, MyConpC {}
/1 ERROR - nane cl ash between MyConpB and MyConpC

/1 MyConpB is defined above

type conponent MyConpE extends MyConpB {
var integer vc_nyVarl := 10;

}

type conponent MyConpF extends MyConpB {
var float vc_nyVar2 := 1.0;
}

type conponent MyConpG ext ends MyConpB, MyConpE, MyConpF {
/1 No name cl ash.
/1 Al three supertypes of MyConpG have a timer tc_t, either directly or via extension of
/1 MyConpB; as all these stem (directly or via extension) fromtiner tc_t declared in
/1 MyConpB, which nake this formof collision |egal.
/* additional definitions here */

6.2.11 Component references
Component references are unique references to the test components created during the execution of atest case.
Syntactical Structure
system | ntc | self | ObjectReference
Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
acr eat e operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
syst em(returns the component reference of the test system interface, which is automatically created when testcase
execution is started), nt ¢ (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel f (returns the component reference of the component in which sel f iscalled).

Component references are used in the configuration operations such asconnect , nap and st art (see clause 21) to
set-up test configurationsand inthef r omt 0 and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the specia value nul | isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

ETSI

78 ETSI ES 201 873-1 V4.16.1 (2024-10)

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that a variable for handling
component references shall use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the cr eat e operation.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theonly operations allowed on component references are assignment, equality and non-equality.
b) The ObjectReference shall be of a component type and shall not resolve to atemplate.

Examples

EXAMPLE 1: Component references with component type variables

/1 A conponent type definition

type conponent MyConpType {
port Port TypeOne pCOL;
port Port TypeTwo pCO2

}

/1 Declaring one variable for the handling of references to conponents of type My/ConpType
/1 and creating a conponent of this type

var MyConpType v_nyConpl nst := MyConpType. create,

EXAMPLE 2: Usage of component references in configuration operations

/1 referring to the conponent created above

connect (sel f: myPCOL, v_mnyConpl nst: pCQOL) ;

map(nyConpl nst: pCO2, system ext PCOL);
nyConpl nst . start (f _nyBehavi or (sel f)); /] self is passed as a paranmeter to f_nyBehavior

EXAMPLE 3: Usage of component referencesin from- and to- clauses
M/PCQOL. recei ve from v_nyConpl nst;
IVQ/PCOZ. recei ve(integer:?) -> sender v_nyConpl nst;
l\/:yPCOl. recei ve(mv_nyTenpl ate) from v_nyConpl nst;

M/PCOZ. send(integer:5) to v_myConplnst;
EXAMPLE 4: Usage of component references in one-to-many connections

/'l The foll owi ng exanpl e expl ains the case of a one-to-nany connection at a Port PCOL

/1 where values of type ML can be received from several conponents of the different types
/1 MyConpTypel, MyConpType2 and MyConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng schene nay be used:

var ML v_nyMessage, v_nyResult;

var MyConpTypel v_nylnstl := null;
var MyConpType2 v_nylnst2 := null;
var MyConpType3 v_nylnst3 := null;

ait {
[T pCOL. receive(M:?) from MyConpTypel: ? -> value v_nyMessage sender v_nylnstl {}
[1 pCOL.receive(M:?) from MyConpTypel: ? -> val ue v_nyMessage sender v_nylnst2 {}
[1 pCOL.receive(M:?) from MyConpTypel: ? -> val ue v_nyMessage sender v_nylnst3 {}
}

v._rTyResult .= f_nyMessageHandl i ng(v_nyMessage); // sone result is retrieved froma function
i f (v_nylnstl !'= nul {pCOL. send(v_nyResult) to v_nylnst1};

1)
if (v_nylnst2 !'= null) {pCOL.send(v_nyResult) to v_nylnst2};
if (v_nylnst3 !'=null) {pCOL. send(v_nyResult) to v_nylnst3};

ETSI

79 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLES: Usage of self

var MyConponent Type v_nyAddress;
v_nyAddress := self; // Store the current conponent reference

EXAMPLE 6: Usage of component arrays

/1 This exanpl e shows how to nodel the effect of creating, connecting and running arrays of
/] conponents using a | oop and by storing the created conponent reference in an array of
/1 conponent references.

testcase TC MyTest Case() runs on MM cType system MyTest Systemnl nterface
{

vér integer v_i;
var MyPTCTypel v_nyPtc[11];

fbr (v_i:=0; v_i<=10; v_i:= v_i+1)
v_nyPtc[v_i] := MyPTCTypel. create;
connect (sel f: ptcCoordi nati on, v_myPtc[v_i]: mtcCoordination);

v_nyPtc[v_i].start(MPtcBehaviour());

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually. The global addr ess type may be used if
only one typeis needed. If several types at different ports are needed for addressing SUT entities, the type used for
addressing via a port instance shall be declared in the corresponding port type definition.

Syntactical Structure

Tenpl at el nst ance
Semantic Description

The actual data representation of the global addr ess type isresolved either by an explicit global address type
definition within the test suite, address type definitions within port definitions, or externally by the test system (i.e. the
addr ess typeisleft as an open type within the TTCN-3 specification). This allows abstract test cases to be specified
independently of any real address mechanism specific to the SUT.

If anaddr ess typeisbound to aport type definition, addressing of SUT instances (i.e. t o- and f r omdirectivesin
communication operations) viainstances of that port type shall be restricted to values of the bound addr ess type.

If several address types exist within atest suite, ambiguities shall be resolved by means of the dot notation. For
example, atype reference within a variable definition used to store an SUT address may be prefixed by a port type
identifier or amodule identifier. If both a global address type definition and port definitions with an address type
definition exist in a module, the global address type shall only affect ports without an explicit address type definition.
The consistent use of explicit address type definitions within port definitions is recommended over the use of global
address type definitions.

Explicit SUT addresses for a globally defined address type shall only be generated inside a TTCN-3 module if the type
is defined inside the module itself. If the type is not defined inside the module, explicit SUT addresses for a global
address type shall only be passed in as parameters or be received in message fields or as parameters of remote
procedure calls.

In addition, the specia value nul | isavailable for theaddr ess type to indicate an undefined address, e.g. for the
initialization of variables of the address type.

If a port type definition includes the declaration of atype that shall be used for addressing SUT entities, only values of
that type shall beusedint o, f r omand sender parts of receive and send operations of port instances of that type
mapped to the test system interface.

ETSI

80 ETSI ES 201 873-1 V4.16.1 (2024-10)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Templatelnstance shall be of type addr ess or of the type of the address declaration in a port type definition.
If Templatelnstance is of type addr ess, it may be an address type value, an address type variable, etc.

b) For addressing purposes, the addr ess type shall only be used inthet o, f r omand sender parts of receive
and send operations of ports mapped to the test system interface.

c¢) Theaddr ess typeshall not beusedinthet o, f r omand sender parts of receive and send operations of
connected ports, i.e. ports used for the communication among test components.

Examples

EXAMPLE 1: Global addresstype

/1 Associates the type integer to the open type address
type integer address;

/) new address variable initialized with null
var address v_nySUTentity := null;

/1 receiving an address value and assigning it to variable M/SUTentity
pCO recei ve(address: ?) -> value v_nySUTentity;

/) usage of the received address for sending tenplate mnyResult
pCO send(m nyResult) to v_mySUTentity;

/) usage of the received address for receiving a confirmation tenplate
pCO. recei ve(nmv_nyConfirmation) fromv_nySUTentity;

EXAMPLE 2: Port type-specific address type

type record MyAddressType { /'l user-defined type
integer fieldl,
bool ean fiel d2;

}

type port MyPortType nessage {
address MyAddr essType; /1 address decl aration
i nout i nt eger;

}

type conponent MyConponent Type
port MyPort Type pCG

}
function f_nyFunction () runs on MyConponent Type {
var MyPort Type. address v_sUT_Address := {5, true}; // address value for addressing
/1 via ports of MyPort Type

bCO. send(integer: 5) to v_sUT_Address; /1 use of address value in to

bCO receive(integer: ?) fromv_sUT_Address; /'l use of address value in from

}
EXAMPLE 3: Elaborated address example
type AddressTypel address; /'l address type definition on nodule |evel

type port MyPort Typel nessage {
i nout MsgTypel,
}

/] address types bound to port types
type port MyPort Type2 nessage {
addr ess AddressType2; /1 val ues of type AddressType2 can be
/1 used to address SUT entities.
i nout MsgType2;

}
type port MyMessagePort3 nessage {
addr ess AddressType3; /1 val ues of type AddressType3 can be
/1 used to address SUT entities.
i nout MsgTypes3;
}

ETSI

81 ETSI ES 201 873-1 V4.16.1 (2024-10)

/] conponent type definition
type conponent MyConponent Type

port MyPort Typel pCOL;
port MyPort Type2 pCQ2;
port MyPort Type3 pCa3

/1 The foll ow ng behaviour is considered to be executed on an instance of My/Conponent Type.
/'l Furthernore, it is considered that the ports PCOL, PCO2 and PCO3 are napped ports, i.e.
/1 used for the communication with the SUT.

/1 new address variable initialized with null

var MyPort Typel. address v_nySUTentityl := null; // type of v_nySUTentityl is AddressTypel
var MyPort Type2. address v_nySUTentity2 := null; // type of v_nySUTentity2 is AddressType2
var MyPort Type3. address v_nySUTentity3 := null; // type of v_nySUTentity3 is AddressType3

/'l receiving address val ues and assigning themto variabl es

pCOL. recei ve(MsgTypel: ?) from address:? -> sender v_nySUTentityl,;
/1 Address type of nodul e scope,
/1 no prefix needed

pC2. recei ve(MsgType2: ?) from MyPort Type2. address: ? -> sender v_nySUTentity2;
/'l Resolution of address type
/1 by nmeans of a prefix

pCCB. recei ve(MsgType3: ?) from MyPort Type3. address: ? -> sender v_nySUTentity3;

/) usage of the received address val ues for addressing purposes
pCQOL. send(v_nyResult) to v_nmySUTentityl;

pCOZ. recei ve(mv_nyConfirmation) fromv_nySUTentity2;

pb&%. send(m_nmyRequest) to v_nySUTentity3;

6.2.13 Subtyping of structured types

6.2.13.0 General

TTCN-3 alows subtyping of structured types as given in table 3. Values of a subtype shall fulfil conditions specified by
its constraint and all constraints existing in all its direct and indirect parent types up to the core type.

6.2.13.1 Length subtyping of record ofs and set ofs
TTCN-3 permits constraining the number of elementsin instancesof r ecord of andset of types.

Thel engt h keyword followed by avalue or arange (with inclusive boundaries only) within brackets and used
betweenther ecord orset andtheof keywords, restrictsthe allowed number of elements for the givenr ecor d
of orset of type. Thevalue or the bounds within the brackets shall be non-negative integer val ues, except when the

i nfinity keywordisused at the place of the upper bound, in which case the maximum number of the elementsis not
constrained. In case of the range syntax the upper bound shall not be lesser than the lower bound value.

Record of and set of type definitions may be used to definenew r ecord of orset of subtypes. Inthiscasethe
rules of the previous paragraph apply, except that the | engt h keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictionsin clause 10.
Examples

EXAMPLE 1: Length restrictions of record of and set of types:

type record | ength(10) of integer MyRecordOf TypelO;
/Il is arecord of exactly 10 integers

type record | ength(0..10) of integer MyRecordOf TypeO_10;
/1 is a record of a maxi mumof 10 integers

type record length(10..infinity) of integer M/RecordO TypelOup;
/1 record of at least 10 integers

type record length(O..infinity) of integer MyRecordO TypeOup;

ETSI

82 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 an unrestricted record of integer type
EXAMPLE 2: Length subtyping of referenced record of types:

type record of charstring StringArray;
// is an unlinited record of, each elenent shall be a charstring

type StringArray StringArray34 length(4 .. 5);

I/l is arecord of 4 or 5 elenents, each elenent is a charstring
/1 it is equivalent to

/1 type record length(4 .. 5) of charstring StringArray34a;

type StringArray34 StringArray34again length(4 .. 5);
/'l the same as StringArray34

type StringArray34 StringArray6 | ength(6);
// causes an error as record ofs with 6 el enments are not |egal values of StringArray34

EXAMPLE 3: Length subtyping of referenced set of types:

type record MyCapsul e {
set of integer nySet Oflnt
}

type MyCapsul e.nySetOf I nt MySet Of I nt Sub | engt h(5..10);
/1 unordered list of 5 to 10 integers

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the core type (seetable 3).

Subtypes defined by alist subtyping restrict the allowed values of the subtype to the values matched by at least one of
the constraintsin the list. In case of list subtyping of r ecor d, set ,record of,set of,uni on,map and

anyt ype types, and arrays, the list may contain both subtypes and possibly partial templates of the core type. Subtype
references shall be resolved in arecursive way: the collection of templates denoted by the subtype(s) referenced in the
list become members of the new subtype definition with an expanded list containing only possibly partial templates. All
values present in the expanded list shall be valid values of the parent type. For partial (i.e. incomplete) values, al
following rules on templates apply. When constrainingr ecord of ,set of,uni on, map and anyt ype types, and
arrays, al templates of the expanded list (i.e. after resolving the subtype references) shall be valid (i.e. complete) values
and templates of the core type. When constraining r ecor d and set types, templates of the expanded list defined
using the value list notation shall be valid (i.e. complete) templates of the core type, while templates of the expanded list
defined using the field assignment notation may be partial (i.e. incomplete) templates of the core type. In the latter case,
the fields that are not explicitly present shall be considered as containing AnyValue for mandatory fields and
AnyValueOrNone for optional fields.

NOTE: Usersshould assign new valuesto single fields of values/templates based on types using list subtyping
cautioudly: it may happen that the new field value would be valid with other combination(s) of the rest of
the fields but causes an erroneous record/set value, when combining with the actual values of the other
fields. See example 1 below.

In case of enuner at ed types, the template list subtyping shall contain only values of the parent type.
Examples

EXAMPLE 1. List subtyping of record types:

type record MyRecord {
i nt eger f1 optional,
charstring f2,
charstring f3

}

type M/Record MyRecordSubl (
{ fl1:=omt, f2 := "user", f3 := "password" },
{ f1:=1, f2 := "User", f3 := "Password" }
) /1 a valid subtype of MyRecord containing 2 val ues

type M/Record MyRecordSub2 (

MyRecor dSub1,
{ f1:=2, f2 := "unane", f3 := "pswd" },

ETSI

83 ETSI ES 201 873-1 V4.16.1 (2024-10)

{ f1:=3, f2 :="Unanme", f3 := "Pswd" }
) // a valid subtype of MyRecord, containing 4 values; notice that val ues of
/1 MyRecordSubl are identified by referenci ng M/RecordSubl

{ f1:=1, f2 := "user", f3 := "password" },
{ fl1:=1, f2 :="User", f3 := "Password" }

) // invalid type as { f1 :=1, f2 := "user", f3 := "password" } is not a |legal value of
/'l MyRecordSubl (notice field f1)

type MyRecordSubl MyRecordSub3 (

type M/Record MyRecordSub4 (

{ f2 := "user", f3 := "password" },
{ f2 := "User", f3 := "Password" }
) // any valid value of MyRecord, where the conbination of f2 and f3 is
/] f2 := "user" AND f3 := "password" or f2 := "User" AND f3 : = "Password"

/Il i.e. field f1 is considered as if it was present and contai ned AnyVal ueOr None

type MyRecord MyRecordSub5 (
{ f2 := "user", f3 := pattern "password| Password" },
{f1:=(1.. 10), f2 := "User" }

) /1 a valid subtype of MyRecord containing all values which match one of the given
/1 tenpl ates

/1 { f1:=* f2 :="user", f3 := pattern "password| Password" } or
/1 {f1:=(1.. 10), f2 := "User", f3 :=721}

type record R { integer k, integer i, integer j }

type RR2 ({ ki=1, i :=2}, { k=2, i :=3})

function f_inc(inout integer p_p) {
p_p :=pp+ 1

function f() {
var RR v.x :={ 1, 2, 5}
v_x.k :=2; /] error, as the value {2,2,5} is not allowed

inc(v_x.i); [/l error, as the value {1,3,5} is not allowed
/1 (previous erroneous assignnment is ignored here)
inc(v_x.j); // allowed

EXAMPLE 2: List subtyping of record of types:
type record of charstring M/RecordCf;

type M/RecordO MyRecor dOf Subl(
{ "aa" },
{ "bbb", "cc" },
{ "ddd". "ee", "ff" }
); /1 valid subtype of MyRecordO

type MyRecor dOF Subl MyRecor dOF Sub2(
{ "aa" },
{ "bbb", "cc" }
); /1 valid subtype of MyRecordOf Subl

type MyRecor dOf Subl MyRecor dOf Sub3(
MyRecor dOf Sub2,
{ "ddd", "ee", "ff" }
); // valid, but equivalent to MyRecordOf Subl

type MyRecor dOF Subl MyRecor dOF Sub4(
MyRecor dOF Sub2,
{ "ddd", "ee", "fff" }

); I/ invalid type as { "ddd", "ee", "fff" } is not a value of MyRecordOf Subl
/1 (notice the extra character f in the third el enent)

EXAMPLE 3: List subtyping of union types:

type uni on MyUnion {
i nt eger cl,
charstring c2,
charstring c3

b

type MyUni on MyUni onSubl (
{ cl1:=01},
{cl:=1}

); // a valid subtype of MyUnion containing two val ues

ETSI

84 ETSI ES 201 873-1 V4.16.1 (2024-10)

type MyUni on MyUni onSub2 (

MyUni onSub1,
{ c2 :="mne" },
{ c3 :="yours" }

); // a valid subtype of MyUnion containing four values; notice that val ues of
/1 MyUnionSubl are identified by referenci ng M/Uni onSubl

type MyUni onSubl MyUni onSub3 (
{ cl:=01},
{cl:=2}
); // an invalid type as { cl1 := 2} is not a value of M/UnionSubl

EXAMPLE 4: List subtyping of enumerated types:
type enunerated MyfEnum { e_first, e_second, e_third, e_fourth, e_fifth };

type MyEnum EnunSubl (e_first, e_second, e_third);
/1 a valid subtype of MyEnum

type EnunBSubl EnuntSub2 (e_first, e_second);
/1 a valid subtype of EnunSubl

type EnunBubl EnuntBub3 (e_first, e_second, e_fourth);
/1 an invalid type as e_fourth is not a value of EnunfSubl

type MyEnum EnuntBub4 (EnunBubl, e_fourth);

/1 an invalid type as type references are not allowed in the tenplate |ist
/1 of enumerated types

EXAMPLES: List subtyping of anytype:

type anytype MyAnySubl (
{ integer := 51},

{ boolean := false },
{ bitstring := '0011'B },
{ charstring := "mne" },

{ MYEnum := first }
); // a valid subtype of anytype, consisting of 5 values

type MyAnySubl MyAnySub2 (
{ integer := 5},
{ boolean := false },
{ bitstring := '0011'B }
); /1l a valid subtype of MyAnySubl, consisting of 3 val ues

type anytype MyAnySub3 (
MyAnySub2,
{ octetstring :="'FF O}

); /1 a valid subtype of anytype, consisting of 4 values, 3 of which are defined
/1 by referring to MyAnySub2

type M/AnySubl MyAnySub4 (
{ integer :=5 1},
{ boolean := fal se },
{ MYEnum : = second }
); // an invalid type as { MyEnum:= second } is not a value of MyAnySubl

type MyAnySubl MyAnySub5 (

MyAny Sub3,
{ MJEnum:= first }
); // an invalid type as { octetstring :="'"FF O} (defined via referencing M/AnySub3) is

/1 not a value of MyAnySubl

EXAMPLE 6: List subtyping of arrays:
type charstring MArray[1 .. 2];
type MJArray MyArraySubl (

{ "aa", "cc" },

{ "bb", "cc" }
); /1 valid subtype of MyArray
type MyArraySubl MyArraySub2 (

{ "aa", "cc" }
); /1 valid subtype of MyArraySubl

type MyArraylListl MyArraySub3 (

ETSI

M/ArraySub2,
{ "bb", "cc" }

85 ETSI ES 201 873-1 V4.16.1 (2024-10)

); /1 valid, also equivalent to M/ArraySubl

type M/ArraySubl MyArraySub4 (
M/ArraySub2,
{ "dd", "cc" }

); // an invalid type as { "dd",

cc" } is not a value of MyArraySubl

/1 (notice the dd in the first el enent)

EXAMPLE 7: List subtyping of msp types:

type map fromcharstring to charstring M/Map;

type MyMap MyMapSubi(

{ ["X581S5"] := "John Doe", ["L54J2Y"] := "Marry Smth" },

{ ["7HFOQr"] := "Enma Jones", ["L54J2Y"] := "Jack WIliams" },

{ ["W59LL"] := "Jennifer WIlson", ["15EJ2F"] := "Janes Wl sh" }
); /1 valid subtype of MyMap
type MyRecor dOF Subl MyMapSub2(

{ ["X581S5"] := "John Doe", ["L54J2Y"] := "Marry Smth" },

{ ["7HFOQr"] := "Emma Jones", ["L54J2Y"] := "Jack WIliams" }

); // valid subtype of MyMapSubl

type MyMapSubl MyMapSub3(
MyMapSub2,

{ ["W59LL"] := "Jennifer WIIson",

["15EJ2F"]

;= "Janes Wl sh" }

); /1 valid, but equivalent to MyMapSubl

type MyMapSubl MyMapSub4(
MyRecor dOF Sub2,
{ ["EATH20"] := "Jacob Murphy",

[“4710H1"] ="

Charlotte Evans" }

); I/ causes an error as the map val ue specified with assignnent notation is not a val ue

/1 of MyMapSubl

6.2.13.3

Subtyping of the iterated type of record ofs and set ofs

A typerestriction following the identifier of anewly definedr ecord of orset of type(i.e. when the keywords
record and of orset andof areused in the definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is a basic type, the subtyping rulesin

clause 6.1.2 shall apply. If the innermost type is referencing a structured type or anyt ype, the rulesin clauses 6.2.13.1

and 6.2.13.2 shall apply.
Examples

EXAMPLE 1:

type record of charstring String23Array length(2 ..
each el enent shall

/1 is an unlimted record of,

Subtyping of basic innermost types of record ofs and set ofs

3);
be a charstring of 2 or 3 characters

type record | ength(0..10) of charstring Stringl2Arrayl10 | ength(12);

/1

type record of

/1 is a two-dinensional
type set length(5) of set
/1 is an unordered two-di nensional

/Il of 2 or 3 characters

const String23Array c_str23arr_a : =
/1 valid, all

const String23Array c_str23arr_b := { "a"

{ "aa",
charstrings are 2 or 3 characters |ong

is arecord of a maxi mumof 10 strings each with exactly 12 characters

record of charstring Stringl2Array2D | ength(12);
unlimted array of strings each with exactly 12 characters

I ength(6) of charstring String23Array2D56 |ength(2..3);
array of the size 5*6 strings,

each conposed

"bbb", "cc", "ddd", "ee", "ff" };

"bbbb", "cc", "ddd", "ee", "ff" };

/'l causes an error as "a" and "bbbb" are not 2 or 3 characters Iong

const Stri ng23Array2D56 c_stri12arr2D56_a :

"aaa", "bb", "bbb", "cc", "ccc"
{ "dd" "ddd“ "ee", "eee", "ff", "fff"
{" gg , ggg “hh", "hhh", "ii", "iii"
{" “iipt, "kk', Ukkk',otrbbt,otrprt
{" rmm‘ ,"nn", "nnn", "o0", "o000"

{

B e T

}

Yo o1 valld, a 5*6 matrix of charstrings being 2 or 3 characters |ong

ETSI

86 ETSI ES 201 873-1 V4.16.1 (2024-10)

const String23Array2D56 c_strl2arr2D56_b : =
{ "a", "aaa", "bb", "bbbb", "cc", "ccc" }
{ "dd", "ddd", "ee", "eee", "ff", "fff" }
{ "gg", "ggg", "hh", "hhh", "ii", "iii" }
{ ; h)
{

{

R B GO CUSE B B N
“m{, "mmi, "nn", "nnn", "oo", "ooo", "pp" }

}; /1 causes an error as "a" and "bbbb" are not 2 or 3 characters Iong and
/1 the 5th inner record of has 7 elenents

EXAMPLE 2: Length subtyping of structured innermost types of record ofs

type record of String23Array String23Array45 length(4 .. 5);

/1 is a two-dinensional array, the first dinension is unlinited,

/1 the second dinmension is restricted to 4 or 5 elenents and each el ement

/1 is a charstring of 2 or 3 characters. It is equivalent to:

/1 type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);

const String23Array45 c_str23arr45_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee". "fff". "gg". "hhh", "ii" }
}; /1 valid, 4 or 5 elements in the inner record of, all containing 2 or 3 characters

const String23Array45 c_str23arr45 b :={
{ "aa" , "bbb", "cc" }
}; //causes an error as there are only 3 elements in the inner record of

const String23Array45 c_str23arr45 c = {
{ "aa", "bbbb", "cc", "dd" }
}; //causes an error as "bbbb" contains 4 characters

type record length(O0 .. 1) of String23Array String23Array0145 length(4 .. 5);

/1 is a two-dinensional array, the first dimension is limted to O or 1 el enents,
/1 the second dinmension is restricted to 4 or 5 elenents, each elenent is a

/1 charstring of 2 or 3 characters.

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
}; /1 avalid 1*4 array of charstrings, each of 2 or 3 characters

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee", "fff", "gg", "hhh", "ii" }
}; I/ causes an error as there are two elenments in the outer record of

const String23Array0145 c_str23arr0145_b : = {
{ "aa" , "bbb", "cc" }
}; /1 causes an error as there are only 3 elenents in the inner record of
const String23Array0145 c_str23arr0145_c : = {
{ "aa", "bbbb", "cc", "dd" }
}; /1 causes an error as "bbbb" contains 4 characters
type record of String23Array45 String23Array6 | ength(6);

Il enpty type as String23Array45 is restricted to 4 or 5 el enents,
/1 thus length restriction 6 is outside the allowed range

6.2.134 Mixing subtyping mechanisms
In the case of structured types and the special type anyt ype, it isforbidden to mix different subtyping mechanisms

(e.g. list and length) in the same definition.

6.2.14 The timer type

TTCN-3 alowsto define timer constants, variables and parameters. These constants, variables or parameters can
contain areference to an existing timer or a special value nul | . The special value nul | represents an unspecified
timer reference, i.e. can be used for variablesto explicitly reference no timer.

Timer references have meaning only within the test component instances where the timer is defined, i.e. atimer
reference assigned to atimer variable in atest component instance "al" of type "A" has no meaning in atest component
instance "a2" of type"A".

The values of timer type are object references and follow specific rules for this kind of values.

ETSI

87 ETSI ES 201 873-1 V4.16.1 (2024-10)

6.2.15 Map types

6.2.15.0 General

TTCN-3 supports the specification of map types that map from a set of unique keysto a set of valuesin such away that
each value in the set of key is associated with exactly one value in the set of values.

6.2.15.1 Map Type Definition
Syntactical Structure

type map from Typeto Type Identifier
Semantical Description

The Type following the from keyword is the type of the keys of the map type. The Type following the to keyword is
the type of the values of the map type.

Restrictions
a) void
b) void

Examples

EXAMPLE:

type record Connection { |Padress addr, integer portNr }
type record dient { charstring name }
type map from Connection to Cient Connecteddients; // associate each connection with a client

6.2.15.2 Indexed Assignment Notation
Syntactical Structure

e T Index] =" Value !t 3
Semantic Description

Values of the map type can be denoted with the indexed assignment notation where the indices are values of the key
type of the map type and the right hand sides are values of the value type. Templates of the map type can use a specific
form of the mixed notation, where the first item is and asterisk representing the AnyElementsOrNone matching symbol,
followed by one or more indexed assignments (see clause B.1.3.2 for more details).

When using the indexed assignment notation on the right hand side of an assignment, elements for keys to be changed
areidentified explicitly and either avalue or the not used symbol "-" can be assigned to them. Other elements, not
referred to by keysin the notation, shall remain unchanged. Re-assigning a previously initialized value, using the not
used symbol or just skipping afield or element in an assignment notation, will cause that field or el ement to remain
unchanged.

Restrictions
a) Intheindex assignment notation, every index expression shall evaluate to a different value than all the other
ones.
Examples
EXAMPLE:

var Connectedd ients v_nyVariable:= {

[connection0] := clientO,
[connectionl] := clientl,
[connection2] := client2

ETSI

88 ETSI ES 201 873-1 V4.16.1 (2024-10)

v_nyVariable : =
[connectionl] := client3,

[/ after this, v_nyVariable contains:

/1 { [connection0] := clientO /* unchanged */,
[connecti onl] client3,
[connecti on2] client2 /* unchanged */ }

v_nyVariable : =

[connecti on0]
[connecti onl]
[connecti on2]

iientz,

Innn
(2]

/Il after this, v_nyVariable contains:

Il { [connectionO0] clientO /* unchanged */,
[connecti onl] client2,
[connecti on2] client2 /* unchanged */ }

6.2.15.3 Unmapping Keys

Syntactical Structure

unmap "(" ValueRef "," [SngleExpression | "*"] ")"
Semantic Description

To remove a mapping from a key to its associated value in avariable of amap type, the unnmap statement may be used.
If the map variable did not associate the given key with avalue, the operation has no effect.

Theunmap statement may be also used to remove the AnyElementsOr None matching symbol from a map template
variable. In this case, the second parameter of the statement shall be an asterisk literal. If the template variable does not
contain the AnyElementsOr None matching symbol, the operation has no effect.

Restrictions

a) VaueRef shal be aninitialized variable of map type and SingleExpression shall be a value compatible with
the key type of the map type of ValueRef.

EXAMPLE:

var tenplate ConnectedClients v_nyTenplate := {
*

[connecti on0]

[connecti onl]
[connecti on2]

clientO,
clientl,
client2

}

unmap(v_nyTenpl ate, connection0);

/1 changes the tenplate to { *, [connectionl] := clientl, [connection2] :=client2 }
ummap(v_nyTenpl ate, *);

/1 changes the tenplate to { [connectionl] := clientl, [connection2] := client2 }

6.2.15.4 Index Notation

Syntactical Structure

ValueRef "[" Index |"*" "]"

Semantic Description

Index notation can be used on both the right-hand side and left-hand side of assignments.

Theindex notation, when used on the right-hand side, refers to the value element that the map value or template
associates with the key given as the index or with the presence of the AnyElementsOrNone matching symbol if asterisk
isused instead of the index.

ETSI

89 ETSI ES 201 873-1 V4.16.1 (2024-10)

If akey isused, the following rules apply. When the index notation is used at the left-hand side, only the value
associated with the index key is changed, values with other keys remain unchanged. Using the index notation on the left
hand side of an assignment with akey that already has a value associated with it causes the key to be mapped to the
newly assigned value.

Presence of a mapping for akey can be checked by using thei sbound, i sval ue ori spresent operation with an
index notation as its argument.

If the asterisk literal is used instead of an index, the following rules apply. When the asterisk symbol is used at the
left-hand side of an assignment, only the presence of the AnyElementsOrNone within the template is changed, values
and keys remain unchanged. The right-hand side of the assignment shall resolveinto abool ean valuein this case.
When used at the right-hand side of an assignment, the notation returnsabool ean value indicating if the
AnyElementsOrNone is present within the map template.

Presence of the AnyElementsOrNone in a map template can be checked by using thei sbound or i spr esent
operation with an index notation containing the asterisk symbol asits argument.

Restrictions

a) Theindex expression used for index notation and index assignment notation shall be completely initialized and
compatible with the f r omtype of the map type.

b) When an index operation of a map value with akey as an index is used as the left-hand side of an assignment,
the assigned value shall be compatible with thet o type of the map type.

¢) Anindex notation used on the right hand side with a key that has no associated value shall result in an error.
Examples

EXAMPLE:

if (not isbound(v_nyVariabl e[connection0])) {
v_nyVari abl e[connection0] := newdient; // adds napping for connectionO to the nap

}

if (isbound(v_nyVariabl e[connection0])) {
unmap(v_nyVari abl e, connection0); // del etes mapping for connection0 fromthe map
f(v_nyVariabl e[connection0]); // results in a testcase error

}

if (not (v_nyTenplate[*])) {
v_nyTenpl ate[*] := true; // adds AnyEl enentsOrNone to the tenplate

}

6.2.15.5 Accessing the Keys of a Map
The set of keys that the map associates with a value can be accessed using the f r omselector.

Syntactical Structure

MapValue"." f r om
MapValueType"." f r om
Semantic Description

If the MapValueis avalue of type MapValueType defined asnap fromAt o B then MapValue.f r omyields aresult
compatible withtypeset of A that containsall the key values from MapValue. Thistype can aso be referenced as
MapValueTypef r om

Sincethereis at most one value mapped to each key in a map value, the valuesin the set of keyswill be unique. The
length of the map value is equal to the length of the set of keys.

NOTE: Itisunspecified in which order the keys of a map type value are enumerated.

EXAMPLE: Iterating over the keys of a map.

var MapVal ueType v_nap;
var MapVal ueType. fromv_keys := v_nap.from

ETSI

90 ETSI ES 201 873-1 V4.16.1 (2024-10)

for (var integer i :=0; i < lengthof(v_keys); i (=i + 1) {
/1 do sonething with v_nmap[v_keys[i]];
}

6.2.15.6 Accessing the Values of a Map

The set of values that the map contains can be accessed using thet o selector.
Syntactical Structure

MapVaue"."t o

MapVaueType"." t o

Semantic Description

If MapValueis avalue of type MapValueType defined asmap f r omAt o B then MapValuet o yields aresult
compatible withtypeset of B that containsall the values from MapValue. This type can aso be referenced as
MapValueTypet o;

Since two different keys might be mapped to the same value in a map value, the values in the set of values might not be
unique. The set of values will contain one value for each key value pair in the map. The length of the map valueis equal
to the length of the set of values.

NOTE: Itisunspecified in which order the values of a map type value are enumerated.
Examples

EXAMPLE 1. Iterating over the values of a map

var MapVal ueType v_nap;

var MapVal ueType.to v_values := v_nap.to;

for (var integer i :=0; i < lengthof(v_values); i :=i + 1) {
/1 do sonething with v_values[i];

}

EXAMPLE 2: Contents of the set of values

Type map fromcharstring to integer MapVal ueType;

var MapVal ueType v_map :={ ["a"] := 0, ["b"] :=0, ["c"] :=11};

var MapVal ueType.to v_values := v_nap.to;
mat ch(v_val ues, {0,1,0}) // yields true

6.2.15.7 Referencing of Elements of a Map

When referencing an element of an uninitialized map value or field or omitted field (including omitting afield at a
higher level of the embedding hierarchy) on the left-hand side of an assignment, the reference shall recursively be
expanded up to and including the depth of the referenced element as follows:

a When expanding avalue or value field of map type, the element referenced by the index notation shall be set to
present.

b) Expansion of record, record of and set of , union and set values and intermediate fields shall follow the rules of
item @) in clauses 6.2.1.1, 6.2.3.0 and 6.2.5.1 and clause 6.2.2.1 correspondingly.

¢) Attheend of the expansion, the value at the right-hand side of the assignment shall be assigned to the
referenced element.

6.2.15.8 Nested type definitions

TTCN-3 supports the definition of map types with nested structured types for the to part. The usage of structured types
(record, set,enumner at ed, set of ,record of ,uni on and nap) isallowed.

NOTE: Itisstrongly recommended that only basic types are used for the keys of map types.

ETSI

91 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE:

type map fromcharstring to map fromcharstring to charstring MapType;

6.2.15.9 Optionality of map element values

In map values, both keys and val ue fields associated with them are mandatory. The omi t symbol shall not be assigned
toamap key or value field.

NOTE: Theunmap operation isused for removing a key from a map.

Keys of map templates shall not contain matching symbols. Value fields associated with keys of map templates might
contain matching symbols including symbols for optional fieldssuchasomi t,* ori f pr esent (see Annex B for
more details).

6.2.16 The open type

The open type is represented by the keyword any. It shall only be used in formal parameters of external and predefined
functions. Vaues of al types can be directly passed as actual parameters to formal parameters of the open type without
the need to explicitly specify atype context.

Restrictions
a) The open type shall be used only in formal parameter of predefined or external functions.
NOTE: Theopentypeisforbiddeninal other TTCN-3 statements, e.g. in:
" Type declarations
" Variable declarations
" Template declarations
" Constant declarations
" Module parameter declarations

" Formal parameters of templates, test cases, altsteps, non-external functions, map and unmap
operations

] Return clauses of functions

EXAMPLE:
external function fx_printf(charstring p_format, any p_data);

1.‘;<._pri ntf("Nuneric value: %", 1);

6.3 Type compatibility

6.3.0 General

Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc. is caled value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which isto obtain the actual value of value"b" is called
type"A".

NOTE: Asaddress ismore apredefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an addr ess type and to its derivatives as the rules were if the type was
defined with a name different from addr ess.

ETSI

92 ETSI ES 201 873-1 V4.16.1 (2024-10)

6.3.1 Compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type "B" resolves to the sameroot type astype "A" (e.g. i nt eger) and it does not violate subtyping

(e.g. ranges, length restrictions) of type "A". Compatibility between charstring and universal charstring is defined
below.

Examples

EXAMPLE 1: Compatibility of integers:

/1 Gven
type integer MyInteger(1l .. 10);

var integer v_x;
var Myl nteger v_y;

/1 Then
v_y :=5; // is a valid assignnent
V_X 1= V_Y;

/1 is a valid assignment, because v_y has the same root type as v_x and no subtyping is viol ated

vx::20; /1 is a valid assignnent

V_y = V_X;

Il is NOT a valid assignnent, because the value of v_x is out of the range of M/l nteger
v_Xx :=5; //|savaI|daSS|gnnent

V_y 1= V_X;

/Il is a val id assignment, because the value of v_x is now w thin the range of M nteger

EXAMPLE 2. Compatibility of floats:

/1 Gven
type float PositiveFloats(0.0 .. infinity);

var PositiveFloats v_x;
var float v_y;

/1 Then
v.y :=5.0; // is a valid assignnent
V_X 1= V_y;

I/l is a valid assignnent, because v_y has the sane root type as v_x and no subtyping is violated

vV_y :=-20.0; // is a valid assignnment
V_X 1= V_y;
/] causes an error, because the value of v_y is out of the range of PositiveFl oats

not _a_nunber; // is a valid assignment

_ v_Yy;
| causes an error, because the value not_a nunber is out of the range of PositiveFloats

V_y
V_X
/

EXAMPLE 3: Compatibility of charstrings:

/1 G ven

type charstring MyChar length (1);

type charstring MySingleChar length (1);

var MyChar v_nyCharacter;

var charstring v_nyCharString;

var MySingl eChar v_nySingleCharString := "B";

/] Then

v_nyChar String : = v_nySingl eChar Stri ng;

/lis a valid assignnent as charstring restricted to length 1 is conpatible with charstring.
v_myCharacter := v_nySingl eCharString;

/lis a valid assignnent as two single-character-length charstrings are conpati bl e.

/1 G ven
v_myCharString := "abcd";

/] Then

v_nyCharacter := v_nyCharString[1];
/lis valid as the r.h.s. notation addresses a single element fromthe string

ETSI

93 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 G ven
var charstring v_nyCharacterArray [5] := {"A", "B", "C', "D', "E"}

/1 Then
v_myCharString := v_nyCharacterArray[1];
/lis valid and assigns the value "B" to v_nyChar String;

For variables, constants, templates, etc. of char st ri ng type, value 'b' is compatible with auni ver sal
char stri ng type'A' unlessit violates any type constraint specification (range, list or length) of type "A".

For variables, constants, templates, etc. of uni ver sal char st ri ng type, value'b' is compatible with a

char st ri ng type'A'if al characters used in value 'b' have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type char st ri ng and it does not violate any type constraint
specification (range, list or length) of type "A".

EXAMPLE 4: Compatibility of character and universal character strings:

/1 G ven
type charstring MyChar length (1);

var MyChar v_nyCharacter;
var charstring v_nyCharString;
var universal charstring v_nyUnivCharString;

/1 Gven
v_nyCharString := "abcd";

/1 Then

v_mnyUni vChar String := v_myChar String

/lis valid as charstring and universal charstring are conpatible
v_nyCharacter := v_nyUnivCharString [1];

/1 is valid as the r.h.s. notation addresses a single elenent of the string,
/1 containing a character conpatible with charstring

/1l Gven
v_nyUnivCharString := "bet" & char (0, 0, 1, 113);

/1 Then
v_nyCharString := v_nyUni vChar Stri ng;
/1 is invalid as v_nyUnivCharString contains a character not in | SO 646.

/'l Gven
var charstring v_nyCharacterArray [5] := {"A", "B", "C', "D, "E"}

/'l Then

v_myCharString := v_nyCharacterArray[1];
// is valid and assigns the value "B" to v_nyCharString;

6.3.2 Compatibility of structured types

6.3.2.0 General

This clause defines compatibility rules for structured types. In subsegquent clauses, "value "b"" is called the value to be
assigned, e.g. when passed as parameter, to an object of type "A".

6.3.2.1 Compatibility of enumerated types

Enumerated types are only compatible with other enumer ated types. An enumerated value "b" of an enumerated type
"B" is compatible with enumerated type "A" if the identifier of the value"b" isalso defined in"A" and the integer(s)
associated with value "b" are also associated with the same identifier in "A".

EXAMPLE: Assigning enumerated values:
/1 Gven

type enunerated EWeekDays {
Mon, Tue, Wed, Thu, Fri, Sat, Sun
}

type enunerated EWorkDays {
Mon, Tue, Wed, Thu, Fri

ETSI

6.3.2.2

94

b

type enuner ated EDesWeekDays {
Tue, Wed, Thu, Fri, Sat, Sun, Mn

b
type enunerated EConpl exVal ues {
e_num (1),
e_expr (2+2),
e_bin_conv (bit2int('0111'B)),
e_oct_conv (oct2int('34'0),
e_hex_conv (hex2int('AC H))
}
type enunerated ESi npl eVal ues {
e_num (1),
e_expr (4),
e_bin_conv (7),
e_oct_conv (52),
e_hex_conv (172)
}
var EWeekDays v_nmyWekDayMon : = Mon
var EWeekDays v_nyWekDaySun : = Sun

var EWorkDays v_nmyWr kDayMon : = Mn
var EDesWeekDays v_nyDesWekDayMon : = Mn

var EConpl exVal ues v_nyConpl exVal uedEnum : = e_bi n_conv;
var ESi npl eVal ues v_nySi npl eVal uedEnum : = e_bi n_conv;

v_nmyWor kDayMon : = v_nyWeekDayMn
/1 works

v_nySi npl eVal uedEnum : = v_nyConpl exVal uedEnum
/1 works

v_nyWor kDayMon : = v_nyWekDaySun

/'l causes an error as Sun is not a nenber of EWrkDays

v_nyDesWeekDayMon : = v_nmyWekDayMn

ETSI ES 201 873-1 V4.16.1 (2024-10)

/] causes an error as Mon in EDesWekDays and EWeekDays have different associated
/1 nunbers; since this is true for all enunerated values in EWekDays, these two

/1 types are fully inconpatible

Examples
EXAMPLE 1:
/1 Gven
type record AType {
i nt eger a(0..10) optional ,
i nt eger b(0..10) optional,
bool ean c
}
type record BType {
i nt eger a optional ,
i nt eger b(0..10) optional ,
bool ean c
}
type record CType { /1 type with different field nanmes
i nt eger d optional,
i nt eger e optional,
bool ean f
}

ETSI

Compatibility of record and record of types

r ecor d types are compatible if the number, and optional aspect of the fieldsin the textual order of definition are
identical, the types of each field are compatible and the value of each existing field of the value "b" is compatible with
the type of its corresponding field in type "A". The value of each field in the value "b" is assigned to the corresponding
field in the value of type "A".

95 ETSI ES 201 873-1 V4.16.1 (2024-10)

type record DType { /1 type with field c optional
i nt eger a optional,
i nt eger b optional,
bool ean c opti onal
}
type record EType { /l type with an extra field d
i nt eger a optional,
i nt eger b optional,
bool ean c,
fl oat d opti onal
}

var AType v_nyVarA :
var BType v_nyVarB :
var CType v_nyVarC :
var DType v_nyVarD :
var EType v_nyVarE :

-, 1, true};
omt, 2, true};
omt, true};
4, 4, true};

5, 5, true, omt};

I T T T |
w

/1 Then

v_nyVar A : = v_nyVar B; /1 is a valid assignnent,
/'l new value of MyVarAis (a :=omt, b:= 2, c:=true)

v_nyVarC : = v_nyVarB; /1 is a valid assignnent
/'l new value of My\VarCis (d :=omt, e:= 2, f:=true)

v_nyVar A : = v_nyVar D, /1 is NOT a valid assignment because the optionality of fields does not
/1 match

v_nyVarA := v_nyVarE; /1 is NOT a valid assignment because the nunber of fields does not match

v_nyVar C :

{ d:=20}; // actual value of MVarCis { d:=20, e:=2,f:=true }
v_nyVarA := v

_myVarC /1 is NOT a valid assignment because field 'd of MyVarC violates
/1 subtyping of field "a' of AType

recor d of typesand arrays are compatible if their element types are compatible and value "b" does not violate any
length subtyping of ther ecor d of type"A" or dimensions of the array type. Vaues of elements of the value "b" shall
be assigned sequentially to the instance of type"A", including undefined elements.

Two array types are compatible if their correspondingr ecor d of typesare compatible.

EXAMPLE 2:

/1 Gven

type record of integer |Type;
type record of float HType;

var HType v_nyVarH := { 1.0, onit, 2.0 };
var | Type v_nyVarl;
var integer v_nyArrayVar[2];

/'l Then

v_nyVarl :={ 3, 4};

v_nyArrayVar := v_nyVarl;

/1 is a valid assignnent as el enent types are conpatible and the assigned val ue
/1 doesn't violate length restriction set by array di nension

v_nyVarl2 := v_nyArrayVar;
/1 is a valid assignnent as el enent types are conpatible and the target variable type has
/1 no length restriction

v_nyVarl[2] :=5; // the value of v_nyVarl is { 3, 4, 5} now

v_myArrayVvar = v_nyVarl;

/1 is NOT a valid assignment as v_nyVarl contains nore el enents than the array di mension
/1 allows

v_nyVarH := v_nyVarl;
/1 is NOT a valid assignment as el ement types are not conpatible

ETSI

96 ETSI ES 201 873-1 V4.16.1 (2024-10)

6.3.2.3 Compatibility of set and set of types

set typesareonly compatible with other set typesand set of typesare only compatible with other set of types.
For set typesthe same compatibility rules shall apply astor ecor d typesand for set of typesthe same
compatibility rules shall apply astor ecor d of types.

NOTE 1: Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

NOTE 2: Inset valuesthe order of fields may be arbitrary, however this does not affect type compatibility asfield
names unambiguoudly identify, which fields of therelated set type correspond to which set value
fields.

EXAMPLE:

/1 Gven

type set FType {
integer a optional,
integer b optional,
bool ean ¢

}

type set Glype {
integer d optional ,
integer e optional ,
bool ean f

}

var FType v_nyVarF :

1, c:=true };
var GIype v_nyVarG : t

rue, d:=7};

{ a:
{f
/1 Then

v_nyVarF := v_nyVarG /1l is a valid assignnent as types FType and GIype are conpatible

v_nyVarF := v_nyVarA; /1 is NOT a valid assignment as v_nyVarA is a record type

6.3.2.4 Compatibility of union types
The compatibility rulesfor uni on types are the following:

e A unionvalue"b" of union type"B" is compatible with union type "A" if the alternative selected in "b" has a
corresponding alternative with identical namein"A" and the value of the selected alternativein "b" is
compatible to the type of the corresponding alternativein"A".

e Otherwise, the following rules apply. A union value "b" of union type "B" with a default alternative of type
"C" is compatible with an arbitrary type "A" if the alternative selected in "b" is the default alternative and the
value of the default alternative is compatibleto "A". A value "a" of an arbitrary type "A" is compatible with a
union type "B" with a default aternative of type"C" if value"a" is compatibleto "C".

When considering the compatibility of two union types, initially the first rule (which is not dependent on the existence
of adefault alternative) shall be applied. The second rule shall only be used to check compatibility, when - using the
first rule - no compatibility has been determined. This order shall avoid ambiguity in case that a default alternative
would otherwise a so be compatible with the union itself.

NOTE 1: Itispossibleto have nested unions with default alternatives. The rules above make type compatibility
aong the default alternatives transitive, i.e. the outermost union type is compatible with the type of the
innermost default union alternative if al containing alternatives are also default alternatives.

NOTE 2: When aunion with adefault alternative is used in an expression it will be resolved to its long notation,
before the expression is eval uated.

Examples

EXAMPLE 1.

type union Ul {integer i};
type union U2 {integer i, boolean b};

ETSI

97 ETSI ES 201 873-1 V4.16.1 (2024-10)

var Ul v_ul := {i := 1};
var W2 v_u2 := v_ul; /1 correct as all alternatives of Ul exist in U2
v_ul:= v_u2; /1 correct as the alternative i is selected in v_u2 and is

/] conpatible toi in Ul
v_u2:={b := true};

v_ul:= v_u2; /'l incorrect as v_ul has no alternative b

var anytype v_x := v_ul; /1 incorrect as the anytype is not a union type.

EXAMPLE 2: Using union values of unions with default alternatives

type union U3 { @lefault integer i, boolean b }

type union W { integer i, @lefault boolean b }

var U3 v_u3 := 3 /1 correct as i in U3 is declared with @lefault

V_u3 = v_u2; /1 correct because all alternatives in U2 exist in U3
/1 and are conpatible

v_u2 :=3; /1 incorrect as 3 is not of a union type and there is
/1 no field in U2 declared with @lefault

V_u2 := v_u3; /1 also correct

v_u2 :=v_ul.i; /1 incorrect as U2 has no default alternative

v_u3 :=v_ul.i; /'l correct as the default alternative in U3 is conpatible with UL.i

var integer v_int :=v_u3 * 2 /1l v_int is 6 as v_u3 is treated as v_u3.i

var U3 v_u32 := {b := true};

var U4 v_ud := true;
v_int :=v_u4 *2; /1 incorrect as v_u4 is treated as a bool ean, and cannot be nultiplied
v_int :=v_u32 *2; /1 incorrect as "v_u32" would be treated as v_u32.i,
/1 which is not the selected alternative
log(v_u4); /Il results in "{ b:=true }" |ogged; for backward conpatibility when
/1 a union value is used in a log statenent directly, no conversion
Il is perforned.
6.3.2.5 Compatibility of anytype types

anytype types are only compatible with other anytype types. An anytype value "b" of anytype type "B" is compatible
with anytype type "A" if the alternative selected in "b" is also contained in "A".

NOTE:

Only anytype types that are constrained to afixed set of types vialist subtyping can be a potential cause
for anytype incompatibility, i.e. if the set of types contained in type "A" does not contain the type selected
in"b".

EXAMPLE:

nmodul e A {
type integer | (0..2);
type float F;
type anytype Atype ({I:=?},{F: =?},{integer:=?});

[anytype conposed of TTCN-3 built-in basic type integer, I, and F
}
modul e B {

type integer | (0..2);

type anytype Atype ({I:=?},{integer:=?},{float:=?});
modul e C {

import fromA all;
import fromB all;
type union U {
integer | (0..2)

cont

v_aa :
v_aa :
v_aa :

rol
var
var
var
var
var
var

{

A Atype v_aa;

A Atype v_aal :={ Al :=11} // typel is inported fromA and B

A Atype v_aaF :={ F:=1.0} // type Fis only inported fromA

B. Atype v_ba := { integer := 1}

B.Atype v_bal :={ B.l :=11} // typel is inported fromA and B

Uvu:={1 :=212}// 1 is afield nane in U

v_ba; /1 correct, the value of aal becones { integer := 1}

v_bal; /1 incorrect, type B.l is not present in the anytype A Atype

V_u; /'l incorrect, type of u is not anytype but a user defined union type

ETSI

98 ETSI ES 201 873-1 V4.16.1 (2024-10)

v_ba :={ float := 1.0 }; /] correct, assigning a literal value
v_ba := v_aal; /1 incorrect, type Al is not present in the anytype B. Atype
v_ba : = v_aaF; Il incorrect, type A F is not present in the anytype B. Atype
}
}
6.3.2.6 Compatibility between sub-structures

Therules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.
EXAMPLE:

/1l Gven

type record JType {
AType a,
integer b optional,
integer c

}
var JType v_nyVarJ,

/1 1f considering the declarations in clause 6.3.2.2, EXAMPLE 1 above, then

v_nyVarJd.a := v_nyVarA
/1 is a valid assignnent as the type of field a of JType and AType are conpati bl e

v_nyVarB : = v_nyVarJ. a;
/1 is a valid assignnent as BType and the type of field a of JType are conpatible

6.3.2.7 Compatibility of the open type

Values of al existing TTCN-3 types are compatible with the open type occurring in the left hand side of an assignment.
Values of open type occurring on the right hand side of an assignment are compatible with avalue "a" of atype"A", if
the actual value contained in the open type value is compatible with "A".

6.3.3 Compatibility of component types
Type compatibility of component types has to be considered in different conditions:

1) Compatibility of a component reference value with a component type (e.g. when passing a component
reference as an actual parameter to a function or an altstep or when assigning a component reference valueto a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if al definitions of "A" have identical definitionsin"B".

2) Runson compatibility: afunction or altstep referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if al the definitions of "A" have identical definitionsin
"B".

3) Mtc compatibility: afunction or altstep referring to component type " A" in its mtc clause may be called or
started in any context that has a mtc clause of type "B" or atestcase with aruns on clause of type "B" if al the
port definitions of "A" have identical definitionsin "B". If the type of the mtc is unknown in the calling
function, this can lead to runtime errors if the component type "A" is not mtc-compatible with the type of the
running mtc.

4) System compatibility: afunction or altstep referring to component type "A" in its system clause may be called
or started in any context that has a system clause of type "B" or atest case with a runs on clause of type "B"
and no system clause if al the port definitions of "A" have identical definitionsin "B". If the type of the
system is unknown in the calling function, this can lead to runtime errors if the component type "A" is not
system-compatible with the type of the system the current test case was started on.

Identity of definitionsin"A" with definitions of "B" is determined based on the following rules:
a) For port instances, both the type and the identifier shall be identical.

b) For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

ETSI

99 ETSI ES 201 873-1 V4.16.1 (2024-10)

¢) For variableinstances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variables this means that either the values are missing in both definitions or are the same).

d) For local template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.3.4 Type compatibility of communication and connection operations

The communication operations (see clause 22) send, recei ve,trigger,call,getcal |l ,reply,getreply
andr ai se and connection operationsconnect, map, di sconnect and unmap (see clause 21.1) are exceptions
to the weaker rule of type compatibility and require strong typing. The types of values or templates directly used as
parameters of the operationssend, r ecei ve andt ri gger shall also be explicitly defined in the associated port type
definition. The signature type of the parameter list given to the operationscal | ,get cal | ,repl y,getrepl y and
the signature type given to the operationscat ch and r ai se shall also be explicitly defined in the associated port type
definition. The types of values or templates directly used as exceptions to the operations catch and raise shall be
explicitly defined inthe except i ons part of the definition of the signature given to the operation.

EXAMPLE:
type record MRec {...} /'l user defined type
type MyRec MyRecAli as; /1 a type alias

type port MyPort nessage { inout M/Rec, MyRecAlias; } /1 port that can transport both types
type conponent MyConponent { port MyPort p; }

tenpl ate MyRecAlias mnyRecAlias:= {...} /1l a tenplate of the alias type
var MyConponent v_myConmpl : = MyConponent.create, v_nyConp2 := MyConponent. create,;
connect (v_nyConpl:p, v_nyConp2:p) /1 two connected PTCs via ports that can

/1 transport the user-defined and the alias type

/1 in v_nyConpl:

p.send (m nyRecAlias); /'l sending of tenplate of alias type
/1 in v_nyConp2:

p.receive (M/Rec:?);

/1 shall not nmatch as the transnitted tenplate is of the alias type and

/'l not of the user-defined type

Il in v_nyConp2:

var MyRec v_x;

p.receive (M/RecAlias:?) -> value v_x;

/'l shall not cause an error since storing the value requires no strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

I/l To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring : = int2hex(123, 4);

6.3.6 Type compatibility of port types

For variables, constants and parameters of port types, the referenceto a port "b" of type "B" is compatible to type "A" if
type "B" and type " A" are equal or synonym types.

6.3.7 Type compatibility of timer types

For variables, constants and parameters of timer types, the reference to atimer is compatible with any other timer
reference.

ETSI

100 ETSI ES 201 873-1 V4.16.1 (2024-10)

6.3.8 Type Compatibility of Map Types

map types are only compatible with other map types. A value"b" of anap type"B" is compatible with anap type "A"
if thef r omtype of "A" iscompatible with thef r omtype of "B" and thet o type of "B" is compatible with thet o
type of "A".
EXAMPLE:
type map fromcharstring to universal charstring Mapl;
type map fromuniversal charstring to charstring Map2;

/'l every value of Map2 can be used in a variable of Mapl but access to val ues
/] associated with keys that are not charstring values is not possible

6.4 Type synonym

A type can be defined as a synonym to another type. Type synonyms can be defined for al kinds of types. Synonym
types are compatible.

EXAMPLE:

type My Typel MyType2; // MyType2 is synonymto M/Typel

6.5 Automatic type

Automatic types are used in variable, constant and module parameter declarations. When used, the type part of these
declarations is skipped and the type is provided implicitly. The automatic type is equal to the type of an expression or
template body on the right-hand side of an assignment of the declaration. The type of the expression or template body
used for automatic typing shall be implicitly unambiguous.

The expression or template body shall be one of the following:
a) Referenceto an existing variable, parameter, constant, template or afield or element inside of it.
b) Function cal returning a value, including predefined functions.
c¢) TTCN-3 operation returning avalue such asmat ch, val ueof , present, etc.

d) Expression composed of several operands where the type of the result can be unambiguously resolved using
the rules for expressions (clause 7) or automatic types.

€) Litera of thei nt eger,fl oat,bool ean,bitstring,hexstring,octetstring,verditctype
type.

f) Character string literal. If the literal contains only characters of the char st ri ng type, the automatic typeis
charstri ng, otherwiseitisuni ver sal charstring.

g) Inlinetemplate.
h) Qualified enumerated value.

i) Vauelist where al values have a common type shall provide an automatic typer ecor d of {common type}.
The common type shall fulfil requirements for automatic typing.

j) Field assignment notation where all values fulfil requirements for automatic typing shall provide an automatic
r ecor d type with the same number and order of fields asin the field assignment notation. The names of
record fields are equal to the field names from the notation and record field types are automatic types of the
field valuesin the notation. A record field is created asopt i onal if the value in the notation doesn't fulfil
requirements of the pr esent template restriction (see clause 15.8 for more details), otherwiseit is created
without the opt i onal property.

k) Index assignment notation where all indexes are of thei nt eger typeand al item values have a common
type shall provide an automatic typer ecor d of {common type}. The common type shall fulfil requirements
for automatic typing.

ETSI

101 ETSI ES 201 873-1 V4.16.1 (2024-10)

[) Index assignment notation where all indexes have a common type in case the type is different from the
i nt eger type and all item values have a common type shall provide an automatic typemap from
{common type of theindexes} t o {common type of the values}. The common type of the indexes and the
common type of the values shall fulfil requirements for automatic typing.

m) List of templates with two or more items and complemented list of templates where all templates have a
common type shall provide automatic type that is equal to the common type. The common type shall fulfil
requirements for automatic typing.

n) Vauerange. The automatic typeis egual to the the type of the bounds. If both boundsaresettoi nfinity,
thei nt eger typeisprovided.

0) Pattern. If the pattern contains only characters or references of the char st r i ng type, the automatic typeis
charstri ng, otherwiseitisuni ver sal charstring.

p) Superset and subset where all items have a common type shall provide an automatic type set of {common
type}. The common type shall fulfil requirements for automatic typing.

g) Any other TTCN-3 language operation that can occur on the right-hand side of an assignment where the type
context is unambiguous.

EXAMPLES:

function f_isEven(integer p_par) return boolean { return p_par nod 2 == 0; }
type enunerated Col our { yellow, red, blue, green }

var integer v_int := 1,

v_int; // autonatic integer type
f_isEven(5); // autonmtic bool ean type
match(5, ?); // automatic bool ean type
v_int + 6; // automatic integer type
'0010'B; // automatic bitstring type
"abc"; // automatic charstring type

var v_automaticA :
var v_automaticB :
var v_automaticC :
var v_automaticD :
var v_automaticE :
var v_automaticF :

var tenplate v_autonaticG := integer:?; // autonmtic integer type
var v_automaticH := Colour.red; // automatic enunerated type
var v_automaticl := {1, 2, 3, 4, 5}; // automatic record of integer type

/] automatic type: record { charstring description, integer val }

var v_automaticJ := { description := "description", val := 23 };

var v_automaticK := { [1] := 10, [2] :=8 }; // autonmtic record of integer type

/] automatic type: map fromcharstring to fl oat

var v_automaticL := { ["basePrice"] := 5.0, ["vat"] := 1.0, ["total"] := 6.0 };

var tenplate v_automaticErr := ?; // Causes an error as the ? synbol doesn't provide a type

7.0 General

TTCN-3 alows the specification of expressions. TTCN-3 expressions may be template references, val ue references or
literals (i.e. no operation isinvolved), and may be composed of the operators defined in clause 7.1.

NOTE: Templates can be used at the RHS of assignment, parameter passing and (predefined) functions where
template passing is explicitly allowed.

Syntactical Structure

Si ngl eExpressi on |
"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" | [/l conpound expression
“{" [{ (Expression | "-") [","]1 } 1 "}" /1 conmpound expression

Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have areturn clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

ETSI

102 ETSI ES 201 873-1 V4.16.1 (2024-10)

Assignment or list notations are used for expressions of record, set, record of, set of, array, union and anytype types.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Atthe point, when an expression is evaluated, the evaluated values of the operands used in expressions shall
be completely initialized except where explicitly stated otherwise in the specific clause of the operator.

b) Theroot types of the operands shall be the types specified for the appropriate operand.

C) With the exception of the equality and non-equality operators, the special value nul | shall not be used as an
operand of expressions (see clause 7.1.3).

This means also that all fields and elements of structured types referenced in an expression shall contain compl etely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or containomi t .

Examples
(c.x +c_y —f_increment(c_z))*3 /'l single expression
{ as=1, b:=true} /1 conmpound expression, assignment notation
{ 1, true} /1 conpound expression, list notation

7.1 Operators

7.1.0 General

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) list operator;
c) relational operators,
d) logica operators,
€) hitwise operators;
f) shift operators,
g) rotate operators;
h) presence checking operators.
Restrictions
In addition to the genera static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When an expression is evaluated, the evaluated val ues used as the operands of operators shall be completely
initialized, except for those operands for which it is explicitly allowed to be partialy initialized (see
clause 11.1).

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem

ETSI

103

ETSI ES 201 873-1 V4.16.1 (2024-10)

Category Operator Symbol or Keyword
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal =
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xor4b
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>
Presence checking operators |field presence check ispresent
chosen alternative check ischosen
value check isvalue
bound check isbound

The precedence of these operatorsis shown in table 6. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

NOTE:

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary ispresent, ischosen, isvalue, isbound
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xordb
Binary ordb
Binary <<, >> <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Lowest Binary xor
Binary or

Dot notation (". "), index notation (" [

] ") and the decoding notation (" => ") should be evaluated from

left to right, just after the evaluation of the parentheses (" () ") operator and before the evaluation of the
i spresent,i schosen,i sval ue,i shound operators.

Thatis: a. b[x] . d=>e. f

ETSI

isequivalentto ((((a.b)[x]).d)=>e).f

104 ETSI ES 201 873-1 V4.16.1 (2024-10)

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of i nt eger values (including derivations of i nt eger) or
floating-point numbers (including derivations of f | oat , containing numeric values only), except for mod and r em
which shall be used withi nt eger (including derivations of i nt eger) typesonly.

The usage of the special float valuesi nfinity,-infinityandnot_a_ nunber inarithmetic operators shall
follow the rules defined in IEEE 754 [6].

Withi nt eger types, the result type of arithmetic operationsisi nt eger . With float types, the result type of
arithmetic operationsisf | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the

plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) integer vauesgivesthewholei nt eger part of the value resulting from dividing the firsti nt eger by
the second (i.e. fractions are discarded);

b) numericf| oat valuesgivesthef | oat valueresulting from dividing the first f | oat by the second
(i.e. fractions are not discarded).

The operators r emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx remy andx nmod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operandsy . For positivex andy, both x r emy and x nod y have the same result but for
negative arguments they differ.

Formally, mod and r emare defined as follows:

X remy =x -y * (xly)

x mod y = x rem|y| when x >=0
=0 when Xx <0 and xrem|y|l =0
= |yl + x rem]y| when X <0 and xrem]|y|l <O

Table 7 illustrates the difference between the mod and rem operator.

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
xrem3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, r ecord of ,set of ,orarray of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE 1: In case of the list types, both the outer type (i.e.r ecord of ,set of orarray) andtheiterated inner
type need to have the same root type in arecursive manner.

NOTE 2: Itisalso possible to concatenate two or more value list notation expressionsiif the result isto be used asa
record of orarray of the same root type as the concatenated expressions.

ETSI

105 ETSI ES 201 873-1 V4.16.1 (2024-10)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Whenthelist concatenation operator is used for record of-s, set of-s and arrays, its operands shall be at least
partially initialized.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B
{1,2} & {3,4} & {5,6} gives the followi ng record of integer {1,2,3,4,5, 6}

7.1.3 Relational operators

The predefined relationa operators are equality (==), less than (<), greater than (>), non-equality to (! =), greater than
or equal to (>=) and less than or equal to (<=). Theresult type of all these operationsisbool ean.

Therelational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of typei nt eger (including derivationsof i nt eger), f | oat (including derivationsof f | oat),
or instances of the same enumer at ed type. It is not allowed to compare instances of different root types.

Theaddr ess typeisalowed for the equality (==) and non-equality (=) operators, independent of its actual type, but
when its actual type differs from the types specified above, it can be compared to the literal specia valuenul | only.

Operands of equality (==) and non-equality (!=) shall be completely initialized values or field references, and with the
exception of enuner at ed types, shall be of compatible root types. The values or field references being compared
shall obey the following rules. Thisimplies that instances of types not mentioned below shall not be operands of
equality and non-equality:

. Two field references are equal if the referenced fields are both opt i onal fieldsand both fields are set to
om t orif both referenced fields (regardlessiif they are optional or not) are initialized with values and these
values are equal. A field reference is equal to avalue if the referenced field isinitialized with a value and both
values are equal.

. Two integer values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

. Enumerated val ues of the same, or different types can be compared. In the case of different enuner at ed
types, expression "b" of type "B" can be compared with expression "a" of type"A" if the two types"A" and
"B" can be merged to a consistent larger enumerated type (i.e. where numbers are not associated with different
identifiers, see also clause 6.3.2.1). Two enumerated values are equa if and only if both their identifiers and
associated integer values (associated either explicitly or implicitly, see clause 6.2.4) are the same.

3 Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinct values (e.g. they are encoded differently in some standardized |anguages) and minus
zero isless than plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
special values-infinity, i nfinityandnot_a nunber areequa to themselvesonly. The special
value-i nfini ty islessthan any other float value. The special valuei nf i ni t y isgreater than any
numerical float valuesand - i nfi ni ty. The special valuenot _a_nunber isgreater than any other float
value (includingi nfi ni ty).

. Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at al positions are the same.

. For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

e Two record values, or set values are equal respectively if and only if they are mutually compatible with the
type of the other operand (see clause 6.3.2.2), the actual values of all present fields are equal to their
corresponding fields and all fields corresponding to omitted fields are also omitted in the peer value.

ETSI

106 ETSI ES 201 873-1 V4.16.1 (2024-10)

Two record of values, set of values or array values, respectively, are equal if and only if they are mutually
compatible with the type of the other operand (see clause 6.3.2.3), they both have the same length, and each
element of one valueis equal to the corresponding element of the other value. Record of values and array
values may also be compared, in which case the corresponding record of type of the array is being considered.

Vaues of the same union type, and values of different union typesin which at least one of the alternativesis
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible aternativeis
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative isidentical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal .

Values of the same or any two anytype types can be compared. For anytype values the same rule apply asto
union values, with the addition that names of user-defined types defined with the same name in different
modules do not denote the same type name of the selected alternatives.

Two default, two port, two timer or two component values are equal if and only if they both areinitialized with
the special valuenul | or they both contain areference to the same entity (i.e. they designate the same defaullt,
port, timer or test component, independent of the actual state of the denoted object).

It isalso possible to use compound expressions (field assignment or value list notation) directly as operands of
comparison operations of structured types. If there is a compound expression on both sides of the comparison
operator, they shall both be value list notation expressions where the elements shall be of the same root type
and they shall be compared like record of values with elements of that root type. If only one operand of the
comparison operation is a compound expression it shall be compatible with the root type of the other operand
and they shall be compared like values of that root type.

Two maps are equal if and only if they are mutually compatible with the type of the other operand (see

clause 6.3.2.2), they have the same number of key-value pairs and for each key-value pair in both maps there
isakey-value pair in the other map where the key from one pair is equal to the key from the other pair and the
value from one pair is equal to the value from the other pair.

Examples

EXAMPLE 1. Comparing enumerated val ues

/1 Gven
type enunerated EWeekDays {

}s

Mon, Tue, Wed, Thu, Fri, Sat, Sun

type enunerated EWrkDays {

b

Mon, Tue, Wed, Thu, Fri

type enunerated EDesWekDays {

b

var
var
var
var

Tue, Wed, Thu, Fri, Sat, Sun, Mon

EWeekDays v_nyWekDayMn : = Mn
EweekDays v_nyWekDaySun : = Sun
EWor kDays v_nyWr kDayMon : = Mon
EDesWeekDays v_mnyDesWekDayMon : = Mon

/1 Then

v_nyWeekDayMon == v_nyWor kDayMon;

/'l returns true

v_nyWeekDaySun == v_nyWor kDayMon;

/'l returns fal se, because Sun is not a possible value in EworkDays

v_nyDesWekDayMon == v_nyWekDayMon;

/'l returns false: though the identifiers in both enunerated types are the sane,
/1 but the integer values associated with the identifiers are different

ETSI

EXAMPLE 2: Comparing values of other structured types

/1 Gven

type set S1 {
integer al optional,
integer a2 optional,
integer a3 optional

}s

type set S2 {
integer bl optional,
integer b2 optional,
integer b3 optional

}s

type set S3 {
integer c1 optional,
integer c2 optional,

h
type set of integer SI;

type union Ul {
i nteger di,
i nteger d2,

}s

type uni on 2 {
i nteger el,
i nteger e2,

b

type uni on U3 {
i nteger di,
i nteger d2,
bool ean d3

}s

/1 And
const S1 c_s1 = {al :=0, a2

/1 Notice that the order of defin
const S2 c_s2a

const S2 c_s2b = { b2 :=0, b3
const S3 c¢_s3 = {cl:=0, c2
var Sl v_si:= {0, -, 21};
const Sl c_si = {0 2},
const Ul c_ul = { dl:= 0 };
const U2 c_u2 = { el:=0};
const U3 c_us3; = { d1:=0 };
/1 Then

c_sl1 == c_s2a;

/1 returns true
c_sl == c_s2b;

{ bl :=0, b3:

107

;= omt, a3

ETSI ES 201 873-1 V4.16.1 (2024-10)

=2},

ing values of the fields does not matter

=2, b2 :
=2, bl :
1=2 0},

omt };
omt };

/'l returns fal se, because neither al nor a2 are equal to their counterparts

Il (the corresponding elenent is
c_sl == c_s3;

not omtted)

/'l returns fal se, because the effective value structures of sl and s3 are not conpati bl e

c_sl == v_si;
/] causes test case error as v_si
/1 (2nd element is left uninitial
c_sl == c_si;

is not conpletely initialized

i zed)

/1 returns false, as the counterpart of the onmitted a2 is 2,

/1 but the counterpart of a3 is u
c_S3 == c_si;

/1l returns true
c_ul == c_u2;

ndefi ned

/1 causes error as UL and U2 have no common subset of alternatives

c_ul == c_u3;

/1 returns true, as alternatives with the sane nanmes are chosen and
/'l the actual values in the selected alternatives are equal

{ 0, omt, 2} ==c_sl,
/1 returns true

c_s2a =={ bl :=0, b2:=omt, b3 :=
/1 returns true

{ c_sl, c_s2b} == { c_s2a, c_sl};
Il returns fal se because c_s2b I=

{ c_sl1, c_s2b, c_s2a} == { c_sl1 };

2}

c_sl

ETSI

108 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 returns fal se because of different length
c_sl.al == c_s2a.bil;

Il returns true, both fields are initialized with values and the val ues are equal
c_sl.a2 == c_s2a.h2;

/1 returns true, both fields are omt
c_sl.al == c_s2a.b2;

Il returns fal se, value vs. omt
c_sl.al == omt;

/1 error, omt is neither a value nor a field reference
c_sl.a2 == 3;

/] false, omt vs. value

7.1.4 Logical operators

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor . Their
operands shall be of root type bool ean. The result type of logica operationsisbool ean.

Thelogical not isthe unary operator that returnsthe valuet r ue if its operand was of valuef al se and returnsthe
valuef al se if the operand was of valuet r ue.

Thelogical and returnsthe valuet r ue if both its operands aret r ue; otherwiseit returnsthe valuef al se.

Thelogical or returnsthevaluet r ue if at least one of itsoperandsist r ue; it returnsthe valuef al se only if both
operands aref al se.

Thelogica xor returnsthevaluet r ue if one of itsoperandsist r ue; it returnsthe value f al se if both operands are
f al se orif both operandsaret r ue.

Short circuit evaluation for boolean expressionsis used, i.e. the evaluation of operands of logical operatorsis stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto f al se, then the right
argument is not evaluated and the whole expression evaluatesto f al se. In the case of the or operator, if the left
argument evaluatestot r ue, then the right argument is not evaluated and the whole expression evaluatestot r ue.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise xor .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

NOTE: Toberead as"not for bit", "and for bit", etc.

Their operands shall be of root type bi t stri ng, hexstring oroctetstring.Inthecaseof and4b, or4b and
xor 4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 bitis
settoOand aObitissetto 1. That is:

not4b '1'B gives '0'B
not4b '0'B gives '1'B
Examples
EXAMPLE 1:
not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b ' 01A5' O gives ' FE5A' O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisalif both bits are set to 1, otherwise the value for the resulting bit isO. That is:

'"1'B and4b '1'B gives '1'B
"1'B and4b '0'B gives '0'B
'0'B and4b '1'B gives '0'B
'0'B and4b '0'B gives '0'B

ETSI

109 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2:

'1001' B and4b '0101'B gives '0001'B
"B'Hand4b '5'H gives '1'H
"FB' O and4b '15'O gives '11'0

The bitwise or 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bitis 1. That is:

ordb '1'B gives
or4b '0'B gives
or4db '1'B gives

B
B
B
B or4b '0' B gives

QRRR
W wWww

1
1
‘o
o'

EXAMPLE 3:

'1001' B or4b '0101'B gives '1101'B
"9'Hor4b '5Hgives 'DH
"A9'Oordb '"F5'O gives 'FD O

The bitwise xor 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 1. That is:

xordb '1'B gives '0'B
xor4b '0'B gives '
xordb '1'B gives

'1'B
'0'B
'0'B
"1'B xor4b '0'B gives

RREQ
W W W

EXAMPLE 4:

'1001' B xor4b '0101'B gives '1100'B
"9"H xor4b '5'H gives 'CH

'39'O xord4b "15' O gives '2C O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of root type bi tstring, hexstringoroctetstring. Their right-hand operand shall be a non-negative
i nt eger . The result type of these operators shall be the same as the root type of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentheshift unit appliedis1 bit;
b) hexstri ng then the shift unit applied is 1 hexadecimal digit;
Cc) oct et stri ng thenthe shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the |eft operand.

Examples

EXAMPLE 1:

'111001'B << 2 gives '100100'B
'12345'H << 2 gives '34500'H
'1122334455' O << (1+1) gives '3344550000'O

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the left-hand side of the |eft operand.

ETSI

110 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2:
'111001'B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H
' 1122334455' O >> (1+1) gives '0000112233' O

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotate right (@) operators. Their left-hand operand
shall be of root typebi t stri ng, hexstring,octetstring,charstring,universal charstring,
record of,orset of.Ther right-hand operand shall be anon-negativei nt eger . The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE 1: Note that the root types of arraysisr ecor d of , therefore arrays are alowed as |eft-hand operands of
rotate operators.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit appliedis 1 bit;

b) hexst ri ng thentherotate unit applied is 1 hexadecimal digit;

c) octetstring thentherotate unit appliedis 1 octet;

d) charstringoruniversal charstri ng thentherotate unit applied is one character;
e) record of, set of, or array thentherotate unit applied isone element.

The rotate left (<@ operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

ad When therotate operator isused for r ecor d of -s, set of -sand arrays, itsleft hand operand shall be at
least partialy initialized.

NOTE 2: Note that for the right hand operand restriction &) in clause 6.5 further on applies.
Examples

EXAMPLE 1:

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H

'1122334455' O <@ (1+2) gives '4455112233'0
"abcdefg" <@3 gives "defgabc"

The rotate right (@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or el ements)
are re-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @ 2 gives '011000'B

'12345'H @ 2 gives '45123'H

'1122334455' O @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

ETSI

111 ETSI ES 201 873-1 V4.16.1 (2024-10)

7.1.8 Presence checking operators

7.1.8.0 General

The presence checking operatorsincludei spresent ,i schosen,i sval ue andi sbound operators. The result
type of the presence checking operatorsisbool ean. The operand of these operators can be of any type.

Specific rules apply if the operand of a presence checking operator is a data object reference, function instance,
template instance or aresult of theval ueof operation followed by an ExtendedFieldReference. In these cases, if
resolving dot notation, index notation (see clause 7.2) or decoded field references (see clause 7.3) included in the
ExtendedFiel dReference would produce an error (e.g. if anindex isout of range, when referencing a sub-field of an
omitted field etc.), the following happens:

. No error is produced.

. Evaluation of all remaining unresolved fieldsin the ExtendedFieldReferenceis stopped. All remaining parts of
the ExtendedFieldReference that are located right from the operation that would normally produce an error up
to the end of the presence checking operator are not evaluated.

. The presence checking operator yields the valuef al se.

The rule on special handling of dot notation, index notation and decoded field referencesis not applied recursively.
Errors occurring during resolving a value of an index inside index notation or a value of an encoding format parameter
of a decoded field reference are not affected by thisrule.

7.1.8.1 The ispresent operator

Thei spresent operator checks whether areferenced field is present in a data object.

Syntactical Structure

i spresent " (" Tenpl atel nstance ")"
Semantic Description

Thei spresent operator returns:
. thevaluet r ue if the operand fulfils the (present) template restriction as described in clause 15.8;
. thevaluef al se otherwise.

NOTE 1: When the argument of i spresent isasubfield of atemplate field to which the"?" (AnyValue) matching
is assigned, the extension mechanism specified in clause 15.6.2 applies.

NOTE 2: This meansthat whenever i spresent (m nyTenpl at) returnstr ue:

" m nmyTenpl at e can safely be assigned to a non-optional field of the type of the templatein a
template variable;

L] m nyTenpl at e can safely be used as an actual template(present) parameter or assigned to avariable
of kind template(present).

Restrictions
Generd static rules of TTCN-3 givenin clause 5 apply.
Examples

EXAMPLE:

/1 Gven
type record MyRecord
{

record {

bool ean innerFi el dl optional,
i nteger innerField2 optional,

ETSI

112 ETSI ES 201 873-1 V4.16.1 (2024-10)

M/Record i nnerFi el d3 opti onal
} fieldl optional,

integer field2
}

var MyRecord v_nyRecord := { fieldl := {}, field2 :=51}
/1 type of fieldl is record with fields, therefore fieldl renains uninitialized
/1 after this assignnment (no value is assigned to any of the fields of vl_M/Record.fieldl)

var bool ean v_checkResult := ispresent(v_nyRecord.fieldl) // yields false

v_nyRecord.fieldl := omt

v_checkResult := ispresent(v_nyRecord.fieldl) // yields false
/1 and therefore, v_nyRecord.fieldl.innerFieldl is an inaccessible reference

v_checkResult := ispresent(v_mnyRecord.fieldl.innerField3.field2) // yields fal se because
/1 innerField3 is unintialized and therefore, v_nyRecord.fieldl.innerField3.field2 is an
/'l inaccessible reference

v_checkResult := ispresent(v_mnyRecord.fieldl.innerFieldl) // yields fal se because fieldl
/1 is omtted

var tenplate M/Record v_nyRecordT :={ fieldl :=?, field2 := 5}
v_checkResult := ispresent(v_nyRecordT.fieldl) // yields true

v_checkResult := ispresent(v_nyRecordT.fieldl.innerFieldl) // yields false because fieldl is
/1 AnyVal ue (pls. note, that at expansion of fieldl the optional field innerFieldl obtains "*"
/1 that can match both a present and an onmitted field

type record R{ integer f1 optional, integer f2 optional }
template Rmw tl := {f1 :=1, f2 :=(2 .. 4) }

template Rmw t2 := { f1 := omt, f2 := (5, 7) ifpresent }
tenplate Rmw t3 := {fl1 :=* f2 :=?}

v_checkResult := ispresent(nw tl.f1l) // yields true

v_checkResult := ispresent(nw t1.f2) // yields true

v_checkResult := ispresent(nmw t2.f1) // yields false

v_checkResult := ispresent(nmw t2.f2) // yields false

v_checkResult := ispresent(nmw t3.f1) // yields false

v_checkResult := ispresent(nw t3.f2) // yields true
7.1.8.2 The ischosen operator

Thei schosen operator checks whether areferenced aternative is present in a data object.
Syntactical Structure

i schosen " (" Tenpl atel nstance ")"
Semantic Description

This operator is allowed for data objects of all datatypesthat are a union-field-reference or atype aternative of an
anyt ype. The operator returns:

. thevaluet r ue if and only if the data object reference specifies the variant of the uni on type or the type
aternative of theanyt ype that isactualy selected for the given data object;

° in al other casesf al se.

Thei schosen operator is applicable to data objects of uni on typesor of anyt ype containing a specific value or a
valuelist. In case of avaluelist, the operator returnst r ue if al data objects present in the value list have the given
aternative selected. Theresult isf al se if thereis another alternative of the uni on type or anyt ype on which

i schosen would return true.

ETSI

113 ETSI ES 201 873-1 V4.16.1 (2024-10)
NOTE: Notethat in case of anyt ype-s, no type compatibility is considered when determining the selected
aternative; i.e. at the evaluation only the exact type chosen for the given value will satisfy the above
criteria
Restrictions

General static rules of TTCN-3 givenin clause 5 apply.

Examples
EXAMPLE 1: Usingi schosen for uni on types
/] inside nodule M

type union U { integer f1, octetstring f2 }
tenplate U mul := {f1 := 1}

tenplate Umv u2 := {f2 := ?}

template U mv u3 : = ?

tenplate Umu4 := ({ f1:=21}, {f2:="ABO})

tenplate Unmwv u5 := ({ f2 :='12?'0}, { f2 :='*34'0Olength(2) })

var bool ean v_checkResult := ischosen(mul.f1) // returns true

v_checkResul t

i schosen(mul.f2) // yields fal se

v_checkResult := ischosen(nw u2.f1) // yields fal se

v_checkResult := ischosen(nw u2.f2) // yields true

v_checkResult := ischosen(nw u3.f1l) // yields fal se

v_checkResult := ischosen(nw u3.f2) // yields false

v_checkResult := ischosen(mu4.f1) // yields fal se

v_checkResult := ischosen(mu4.f2) // yields false

v_checkResult := ischosen(nw u5.f1) // yields fal se

v_checkResult := ischosen(nw u5.f2) // yields true

type record R{ U u optional }
tenplate Rmrl :={ omt }

var bool ean v_checkResult := ischosen(mrl.u.fl) // yields false

EXAMPLE2: Usingi schosen for anyt ype
tenpl ate anytype mw.al :={ U:= nmvu5 }

tenplate anytype mw a2 :={ MU:={ f1 := mul.f1} }

var bool ean v_checkResult :=

i schosen(mwv_al. U)

/1 yields true

v_checkResul t
v_checkResul t
v_checkResul t

:= ischosen(nw_al. M U
= i schosen(mw_al. i nteger)
;= i schosen(nw_a2. U

/1 yields true
Il yields fal se
/'l yields true

EXAMPLE 3:

/1 Gven
type uni on MyUni on

{ PDU_t ypel p1,
PDU_t ype2 p2,
PDU_t ype p3

}

/1 and given that nw nyPDU is a tenplate of MyUnion type
/1 and v_receivedPDU is al so of MyUnion type

/1 then

myPort . recei ve(mv_nyPDU) -> val ue v_recei vedPDU

var bool ean v_checkResult := ischosen(v_recei vedPDU. p2)
Il yields true if the actual

7.1.8.3 The isvalue operator

Thei sval ue operator checks whether a referenced data object is a specific value.

ETSI

instance of nmw _nyPDU carries a PDU of the type PDU type2

114 ETSI ES 201 873-1 V4.16.1 (2024-10)

Syntactical Structure

i svalue "(" Tenpl atel nstance ")"
Semantic Description

Thei sval ue operator yieldst r ue, if the operand is completely initialized and resolves to a specific value. If the
operand isof r ecor d or set type, omitted optional fields shall be considered as initialized, i.e. the operator shall also
yield trueif optional fields of the operand are set to omit. The operator shall yield f al se otherwise.

The specific valuenul | is considered as concrete value.
Restrictions

General static rules of TTCN-3 givenin clause 5 apply.
Examples

EXAMPLE 1. Simple types:

tenpl ate charstring mcharO :
tenpl ate charstring mcharl :

"ABCD'; //tenplate containing a specific value matching
"AB?D'; //tenplate containing a specific value matching

/Inote, that "?" is not a matching synbol in this case
pattern "ABCD'; // a pattern matching a single value only
pattern "AB?D'; // pattern matching

tenpl ate charstring nw char2 :
tenpl ate charstring nw char3 :

tenpl ate charstring mchar4 := ("ABCD'); // tenplate containing a specific value (expression)
tenpl ate charstring nw char5 := ("ABCD',"EFCGH'); // a value list matching a single value only
var bool ean v_checkResult := isvalue(mchar0); // yields true

v_checkResult :
v_checkResul t
v_checkResul t
v_checkResul t
v_checkResul t

isvalue(mcharl1); // yields true
i sval ue(nmw_char2); // yields false
i sval ue(nmw_char3); // yields fal se
i svalue(mchard); // yields true
i sval ue(mv_char5); // yields fal se

EXAMPLE 2: Special types:

var default v_default := null;
var bool ean v_checkResult := isvalue(v_default); // yields true

EXAMPLE 3: Record/set types:

type record M/Rec {
integer f1 optional,
integer f2 optional

}

var MyRec v_nyRec;
var tenplate M/Rec v_nyRecT,;

v_checkResul t
v_checkResul t

i sval ue(v_nyRecT.f1); // yields false
i sval ue(v_nyRecT.f2); // yields true

var bool ean_checkResult := isval ue(v_nyRec); /'l yields fal se
v_checkResult : = isval ue(v_nyRecT); Il yields fal se

v_nyRec ={ fl:=5, f2:=ont }

v_nyRecT :={ fl:=72, f2:=51}

v_checkResult := isvalue(v_nyRec); /] yields true
v_checkResult := isvalue(v_nyRec.f2); [/ yields fal se;
v_checkResult :=

i
i
i sval ue(v_nyRecT); Il yields fal se
i
i

v_nyRecT.f2 := onmt;

v_checkResult := isvalue(v_nyRecT.f2); // yields false
EXAMPLE 4: Union types:

type union MyUnion {

i nteger chi,
i nteger ch2

}
tenplate MyUnion mnyUnion := { chl :=5}

ETSI

115 ETSI ES 201 873-1 V4.16.1 (2024-10)

tenplate MyUnion mw_nyUnion := { chl := ?}

var bool ean v_checkResult := isval ue(m.nnyUnion); /'l yields true
v_checkResul t : = isval ue(nw_nyUnion); /1 yields fal se
v_checkResult := isval ue(mw_nmyUnion.chl); // yields false

/1 note, this is different fromischosen(nw_nyUnion.chl) as isvalue checks the content of the
/1 choice chl, while ischosen is checking if chl has been sel ected or not
v_checkResult := isval ue(mw_nmyUnion.ch2); // yields fal se

EXAMPLE5: Nested types:

type record MyRecord {
MyUni on u opti onal

}

tenpl ate MyRecord m nyRecord ={ u:= mnyUnion }

tenpl ate MyRecord mw_nyRecord := { u := nw_nyUnion }

tenpl ate M/Record mnyRecord2 :={ u := omt }

var bool ean v_checkResult := isvalue(mnyRecord.u.chl); // yields true
v_checkResult := isvalue(mv_nyRecord.u.chl); // yields false

v_checkResul t
v_checkResul t

i sval ue(mw_nyRecord. u.ch2); // yields fal se
i sval ue(m nyRecord.u.ch2); // yields false

7.1.8.4 The isbound operator
Thei sbound operator checks whether areferenced data object is at least partially initialized.

Syntactical Structure
i sbound " (" Tenpl atel nstance ")"
Semantic Description

Thei sbound operator yieldst r ue, if the operand is at least partially initialized. If the operand isof ar ecor d or
set type, omitted optional fields shall be considered asinitialized, i.e. the operator shall also yield t r ue if at least one
optional field of the operand is set to omi t . The operator shall yield f al se otherwise. Inaccessible fields (e.g.
non-selected alternatives of uni on types, subfields of omitted record and set types or subfields of non-selected union
fields) shall be considered as uninitialized, i.e. isbound shall yield for them f al se.

The specific value nul | is considered as concrete value.
Examples

EXAMPLE 1. Simpletypes

var tenplate charstring v_char;

var bool ean_checkResult := isbound(v_char); // yields false as v_char is uninitialized
v_char := "AB?D'; /1 tenplate containing a specific value
checkResult := isbound(v_char); /'l yields true

v_char := pattern "AB?D'; /1 tenplate containing a pattern matching
checkResult := isbound(v_char); Il yields true

EXAMPLE 2: Special types

var default v_default := null;
var bool ean_checkResult := isbound(v_default); // yields true

EXAMPLE 3: Record/set types

type record M/Rec {
integer f1,
M/Rec f2 optional
}

var MyRec v_nyRec;
var bool ean_checkResult := isbound(v_nyRec); // yields false

v_nyRec.f2 := onmit;
checkResult : = isbound(v_nyRec); /1 yields true as v_nyRec is partially initialized,

ETSI

116 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1l field f2 is set to omt

v_nyRec :={ fl:=5 f2:=omt }

checkResul t := isbound(v_nyRec); /1 yields true as v_nyRec is conpletely initialized
checkResult : = isbound(v_nyRec.f2.f1); Il yields false as v_nyRec.f2.f1 is inaccessible
checkResult := isbound(v_nyRec.f1/0); /1 shall cause an error already during evaluating the

/| operand because the operand is not a reference and division by
/] zero causes a runtime error

type union MyUnion {

checkResult :
checkResult :

i sbound(v_nyUnion.ch2.f1); // yields false as the field f1 is inaccessible

i sbound(v_nyUni on.ch1/0); // shall cause an error already during evaluating the
/'l operand because the operand is not a reference and division by
/] zero causes a runtime error

i nteger chi,
M/Rec ch2
}
var tenplate MyUnion v_nyUnion;
checkResul t : = isbound(v_myUnion); /1 yields false, as v_nyUnion is uninitialized
checkResult : = isbound(v_myUnion. chl); Il yields false, as alternative chl is uninitialized
v_nyUnion :={ chl :=5 };
checkResult : = isbound(v_myUnion); /1 yields true
checkResult : = isbound(v_myUnion. chl); /'l yields true
checkResult : = isbound(v_myUnion. ch2); /1 yields false as the ch2 alternative is not selected

7.2 Field references and list elements

Within expressions, fields of record and set types are referenced with the dot notation " . f i el d" . Elements of record
of, set of, array and string types are referenced with the index notation " [i ndex] " . Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

7.3 Decoded field reference

Decoded field reference is a specific notation called decoding notation that can be applied to expressions of
bitstring,hexstring,octetstring,charstringoruniversal charstri ng types. Itisusedfor
accessing content of implicitly decoded payload fields.

Syntactical Structure

Ref erencedVal ue "=>" (PredefinedType | Typeldentifier |
("(" Type ["," Expression] *)"))

The ReferencedValue preceding the => symbol in a decoding notation shall be decoded into a value of the type
following the => symbol. Failure of this decoding shall cause atest case error. In case the ReferencedValue is of the
uni ver sal char stri ng type and the extended syntax with parentheses is used, the Type can be followed by an
optional parameter defining the encoding format. The parameter shall be of thechar st ri ng type and it shall contain
one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4). Any other value shall
cause an error. In case the ReferencedValueis not auni ver sal char st ri ng, the optional parameter shall not be
present.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If thetype following the => symbol is not enclosed into parentheses, only a built-in type or atype reference
consisting of asingle identifier can be used. Extended type references shall always use the extended syntax
with parentheses.

ETSI

117 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE:

type record PDU {
PduHeader header,
bi tstring outerPayl oad

}

type record CQuterPayl oad {
CQut er Payl oadHeader header,
uni versal charstring innerPayl oad

}

type record | nnerPayl oad {
i nteger datal,
charstring data2

}

var PDU v_pdu;
var | nnerPayl oad v_i nner;
. Il v_pduis filled with data;
v_i nner := v_pdu. out er Payl oad=>Cut er Payl oad. i nner Payl oad=>(| nner Payl oad, "UTF-8");
/1 v_pdu.outerPayload field is first decoded into a value of the QuterPayl oad type
/1 the innerPayload field of the decoding result is subsequently decoded into a val ue
/1 of the InnerPayl oad type (using UTF-8 format for conversion into a bitstring)

8 Modules

8.0 General

The principal building blocks of TTCN-3 are modules. A module may define a fully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module contains
definitions.

NOTE: Thetermtest suiteis synonymous with a complete set of TTCN-3 modules containing test cases and a
control function.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module

A module is defined with the keyword module.

NOTE 1: Thetreatment of TTCN-3 modulesin files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

nodul e Modul el dentifier [|anguage FreeText { "," FreeText }] "{"
[Modul eDefinitionsPart]
"y

Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitionsin a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.

NOTE 2: The moduleidentifier istheinformal text name of the module.

ETSI

118 ETSI ES 201 873-1 V4.16.1 (2024-10)

In addition, a module specification can carry an optional attribute identified by thel anguage keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

"TTCN- 3: 2001" - to be used with modules complying with V1.1.2 [i.17] of the present document.
"TTCN- 3: 2003" - to be used with modules complying with V2.2.1 [i.18] of the present document.
"TTCN- 3: 2005" - to be used with modules complying with VV3.1.1[i.19] of the present document.
"TTCN- 3: 2007" - to be used with modules complying with V3.2.1[i.20] of the present document.
"TTCN- 3: 2008" - to be used with modules complying with VV3.3.2 [i.21] of the present document.
"TTCN- 3: 2008 Amendnent 1" - to be used with modules complying with V3.4.1 [i.22] of the present document.
"TTCN- 3: 2009" - to be used with modules complying with V4.1.1 [i.23] of the present document.
"TTCN- 3: 2010" - to be used with modules complying with V4.2.1 [i.24] of the present document.
"TTCN- 3: 2011" - to be used with modules complying with V4.3.1[i.25] of the present document.
"TTCN- 3: 2012" - to be used with modules complying with VV4.4.1[i.26] of the present document.
"TTCN- 3: 2013" - to be used with modules complying with V4.5.1[i.27] of the present document.
"TTCN- 3: 2014" - to be used with modules complying with V4.6.1 [i.28] of the present document.
"TTCN- 3: 2015" - to be used with modules complying with V4.7.1 [i.29] of the present document.
"TTCN- 3: 2016" - to be used with modules complying with V4.8.1 [i.30] of the present document.
"TTCN- 3: 2017" - to be used with modules complying with VV4.9.1 [i.31] of the present document.
"TTCN- 3: 2018" - to be used with modules complying with V4.10.1 [i.32] of the present document.
"TTCN- 3: 2019" - to be used with modules complying with V4.11.1 [i.33] of the present document.
"TTCN- 3: 2020" - to be used with modules complying with V4.12.1 [i.34] of the present document.

"TTCN- 3: 2021" - to be used with modules complying with VV4.13.1 [i.35] of the present document.
"TTCN- 3: 2022" - to be used with modules complying with V4.14.1 [i.36] of the present document.
"TTCN- 3: 2023" - to be used with modules complying with the present document.

Furthermore, the optional attribute identified by thel anguage keyword may identify package versions being used by
this module. The package tags are defined in ETS| ES 202 781 [i.11], ETSI ES 202 782 [i.14], ETSI ES 202 784 [i.12],
ETSI ES202 785[i.13], ETSI ES 202 786 [i.37], ETSI ES 203 022 [i.38], and ETSI ES 203 790 [i.39]. The language
identifier and the package identifier are to be written as a comma-separated list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) At most one language string per module shall be given to define the core language version in which the
module is defined.

b) Per extension package, at most one extension package string of that extension package shall be used by a
module.

Examples

nodul e MyTest Suite | anguage "TTCN 3: 2003"
{3

8.2 Module definitions part

8.2.0 General

The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visibility rules are given in clause 8.2.5. Scope rules for declarations made in the module definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined ina TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible module definitions may be imported by other modules.

Syntactical Structure

[Visibility] (
TypeDef |
Const Def |

ETSI

119 ETSI ES 201 873-1 V4.16.1 (2024-10)

Tenpl at eDef |
Modul ePar Def |
Funct i onDef |
Si gnat ur eDef |
Test caseDef |
Al t st epDef |
I npor t Def |
G oupDef |
Ext Functi onDef |
Fri endDef |
Modul eCont r ol Def
) [WthStatenent]
["]
1+

Semantic Description
Definitions in the modul e definitions part may be made in any order.

Module definitions can be evaluated at runtime and can be evaluated in any order. A definition shall be evaluated latest
before the first reference to it.

NOTE: If adefinitionisnot used, it may not be evaluated at all.

Such definitions, i.e. top-level definitions outside of other scope units, are globally visible within the module. They may
be used el sewhere in the module. Thisincludes identifiers imported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in test cases, functions,
altsteps or component types.

TTCN-3 does not support the declaration of variablesin the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in atest component type may be used by all test cases, functions, etc.
running on components of that component type.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

modul e MyModul e
{ /1 This nodul e contains definitions only

.const i nteger MyConstant := 1;
type record MyMessageType { ...}

functi on TestStep(){ ...}

8.2.1 Module parameters

Module parameters are values or templates that may be supplied by the test environment at runtime. Module parameters
do not change during test execution. They can be used on the right hand side of assignments, in expressions, in actual
parameters, and in template definitions, but not within type definitions.

Syntactical Structure
[Visibility] nodul epar [TenplateModifier]
[TypeOr Nest edTypeDef]
{ Identifier [=" TeerlateBody] won }
Identifier [o=t Terrpl ateBOdy] W.on
Semantic Description

Module parameters behave as global constants or unparameterized templates at runtime. For module parameterization,
TTCN-3 only supports value parameterization which has to be resolved static at start of runtime.

Module parameters alow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign.

ETSI

120 ETSI ES 201 873-1 V4.16.1 (2024-10)

It isallowed to specify a default value or template for each module parameter as part of the mrodul epar declaration.

If the test system does not provide an actua runtime value or template for a module parameter, the given default value
or template shall be used during test execution, otherwise the actual value or template provided by the test system.

The type of the module parameter is either provided explicitly or implicitly according to the rules for automatic typing
specified in the clause 6.5. When automatic typing is used, the TypeOrNestedParDef part is missing and the typeis
equal to the type of the expression on the right-hand side of the assignment.

If functions are used for theinitialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Visible module parameters can be imported.

Optiona fields of record and set module parameters or module parameter fields can beinitialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an

opti onal attributewiththevalue"i nplicit omt" (seeclause 27.7) shal be associated with it either directly or
viathe attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) During test execution module parameters shall not be used as target of assignments or as actual out or i nout
parameters.

b) Module parameters shall not be of port, default, timer or component type and shall not be of a structured type
that contains a sub-element of port or timer type at any level of nesting.

c¢) A module parameter shall only be of type address if the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

€) More than one occurrence of module parameters declaration is alowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f) The TemplateBody of a module parameter shall respect the limitations given in clause 16.1.4. and shall be
compatible with the TypeOrNestedTypeDef of the declaration and conform to the given TemplateModifier. If
no TemplateModifier is present, the TemplateBody shall resolve to avalue.

g) Module parameters shall not be used in type or array definitions.

h) All sub-elementsof conponent or def aul t type of adefault value of a module parameter shall be
initialized with the specia valuenul | .

i) If the TypeOrNestedTypeDef part is missing from the declaration, the assignment part (i.e. ":=" TemplateBody)
shall be present.

Examples

nodul e MyTest Sui teWt hParaneters
{

/1 single type, single nodule paraneter, which is per default public
nmodul epar bool ean PX Par0 : = true;

/1 single type, nultiple nodule paraneters with an explicit public visibility
public nodul epar integer PX Parl, PX Par2 := 1 + char2int("a");

/] declaration using a nested structured type with no predefined val ue
nodul epar record of charstring PX HOSTS;

ETSI

121 ETSI ES 201 873-1 V4.16.1 (2024-10)

8.2.2 Groups of definitions

In the modul e definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure

[public] group Goupldentifier "{"
{ Modul eDefinition [";"] }
"y

Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This allows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. However, attributes given to a group by an associated with statement apply
to all elements of a group (see clause 27). Import statements may import groups so that all visible elements of a group
are imported (see clause 8.2.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiers and all group identifiers of subgroups of a single group shall be unique.

b) Only publ i c visihility can be defined for groups as they are always public.

Examples
nodul e MyModul e {

)/ A collection of definitions

group nmyG oup {
const integer c_nyConst:= 1;

type record MyMessageType { ...};

group nmyGoupl { /1 Sub-group with definitions
type record Anot her MessageType { ...};
const bool ean c_nyBool ean : = fal se

}

/1 A group of altsteps
group nySteplibrary {
group myG oupl { /1 Sub-group with the same nanme as the sub-group with definitions
altstep a_nyStepll() { ...}
altstep a_nyStepl2() { ...}

aitstep a_nyStepln() { ...}

}

group nmyGoup2 {
altstep a_nyStep21() { ...}
altstep a_nyStep22() {

éltstep a_nmyStep2n() { ...}

}

/1 An inport statement that inmports myGoupl within nyStepLibrary
import from MyMudul e {
group nyStepLi brary. nyG oupl

ETSI

122 ETSI ES 201 873-1 V4.16.1 (2024-10)

8.2.3 Importing from modules

8.2.3.0 General

It is possible to re-use visible definitions specified in different modules using thei nmpor t statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default publ i ¢ (see clause 8.2.5).

NOTE: Groupsarepubl i c only. Importing a group means that only the visible elements of the group are being
imported.

8.2.3.1 General format of import
An import statement can be used anywhere in the module definitions part.

Syntactical Structure
[Visibility] inport from Mdduleld [-> Local Modul eNane]

(all [except "{" ExceptSpec "}"])
I("{" InportSpec "}")
[":")]
Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name
(defines the identifier of the definition, e.g. a function name), a specification (e.g. atype specification or a signature of a
function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

Examples
EXAMPLE l1a
Name Specification Behaviour description
function |f _nmyFunction |(inout MyTypel p_nyPar) return MyType2 [{
runs on MyConpType const MyType3 c_nyConst := .;
: [/l further behaviour
}
Specification Name Specification
type record M/Recor dType [{
M/ Typed fieldl,
integer field2
}
Specification Name Specification
tenplate |MyTypeb m_nyTenpl at e = {
fieldl := 1,
field2 := c_nyConst, // c_nyConst is a nodul e constant
field3 := PX_Mdul ePar // PX_Mdul ePar is nodul e paraneter
}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to be invisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

ETSI

123 ETSI ES 201 873-1 V4.16.1 (2024-10)

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function [f myFunction |p_myPar MyTypel, MyType2, MyCompType
type MyRecordType |[fieldl, field2 MyType4, integer
tenplate |m_myTemplate MyType5, fieldl, field2, field3, c_myConst, PX_ModulePar

NOTE 1: Theloca definitions column refersto identifiers only that are newly defined in the importable definition.
Vaues assigned to individual fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: The referenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyTypeb.

Referenced definitions are also importable definitions, i.e. the source of a referenced definition can again be structured
into a name and a specification part and the specification part also containslocal and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all)
e enumerated type Concrete values
e structured type Field names, nested type Field types
definitions
e port type Message types, signatures
e component type Constant names, variable names, |Constant types, variable types, port types
timer names and port names
Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
Data Template Parameter names Template type, parameter types, constants, module
parameters, functions
Signature template Signature definition, constants, module parameters
functions
Function Parameter names Parameter types, return type, component type
(runs on clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (r uns
on clause)
Test case Parameter names Parameter types, component types (r uns on- and
syst emclause)

NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier

nodul e A {
type record M/Recl {
i nt eger fieldl,
charstring field2
}
}

ETSI

124 ETSI ES 201 873-1 V4.16.1 (2024-10)

nmodul e B {
import fromA all;
type record M/Rec2 {
M/Recl nyFieldl,
/1 "nyFieldl" is the local definition, "M/Recl" is a referenced definition;
/1 the nanme "MyRecl" shall be inported in this case as is directly referenced
bool ean nyFi el d2

}
}

nodul e C {
import fromB all;
const MyRec2 c_nyRec2 := {
myFieldl := { fieldl :=5, field2 :="A" },
/'l to define nyFieldl of M/Rec2 the nane "MyRecl" is not needed, the
/1 informati on necessary for the usage is its type information,
/1 i.e. names and types of its fields fieldl and field2
/1 which is enbeddded in the inported definition of M/Rec2
nyField2 := true

}
}

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

Theuseof i mport on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All'i mport statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by adot ("."). If the
type of the component referenced in a connection operation is known (either when the component referenceisa
variable or value returned from a function or the type is defined the runs on, mtc or system clause of the calling
function), the referenced port declaration shall be present in this component type.

There is one exception to thisrule: when in the context of an enumerated type (see clause 6.2.4), an enumerated value
is clashing with the name of a definition in the importing module, the enumerated val ue shall take precedence and the
definition in the importing module shall be referenced by using its qualified name (see example 5 below in this clause).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition. For the latter case, prefixing shall only be
used for definitions with global visibility for the module.

It is allowed to rename a module name during its import. The new name will be visible only in the importing module.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Animport statement shall only be used in the module definitions part and not be used within afunction
definition and alike.

b) Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at alower scope (e.g. local constants defined in a function) shall not
be imported.

c) A definition isimported together with its name and all local definitions.

ETSI

125 ETSI ES 201 873-1 V4.16.1 (2024-10)

NOTE5: A loca definition, e.g. afield name of a user-defined record type or an enumerated value, has only

d)

meaning in the context of the definitionsin which it is defined, e.g. afield name of arecord type can only
be used to access afield of the record type and not outside this context.

In particular, importing an enumerated type does not impose the restriction given in clause 6.2.4 on global
names defined in the importing module.

A definition isimported together with al information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If module C imports a definition from module B that uses a type reference defined in module A, the

corresponding information necessary for the usage of that type is automatically imported into module C
(see example 6 below in this clause). Identifiers of referenced definitions are not automatically imported.

In particular, if module C imports global value or template definitions (e.g. constants, module parameters,
templates) or local definitions (e.g. formal parameters of templates, functions, etc. or constants and
variables of component types) of an enumerated type from module B, the enumerated values of this type
(i.e. theidentifiers) areimplicitly and automatically imported to module C. That is, the enumerated values
are known when an enumerated value or template is used in module C (e.g. when an actual parameter is
passed or avalueis assigned to a component variable). Note that thisimplicit importing does not impose
the regtriction given in clause 6.2.4 on globa names defined in module C.

e) If thereferenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly from its source module or indirectly by importing the import statements of a module importing
it (seeclause 8.2.3.7).

f) Whenimporting a function, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

0) Thelanguage specification (see clause 8.1) of the import statement shall not override the language
specification of the importing module.

h) Thelanguage specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided alanguage specification is defined
in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

i) If animported module isrenamed in the import clause, the original module name is not imported and cannot
be used for referencing the imported module. The imported module can be referenced using the new local
name only.

j) If animported module isrenamed in the import clause, the new local name of the module shall be unique in
the scope of the importing module.

Examples

EXAMPLE 1. Selected import examples:

nodul e MyModul eA

{

)/ Scope of the inported definitions is global to MyMdul eA

inmport from MyModuleB all; // inport of all definitions from MyMdul eB

i mport from MyMddul eC { /1 inport of selected definitions from M/Mdul eC
type MyTypel, MyType2; [/ inport of types MyTypel and MyType2
tenplate all /] inport of all tenplates

}
functi on f_myBehavi our C()

[/ inport cannot be used here
}
control

/1 inmport cannot be used here

ETSI

126 ETSI ES 201 873-1 V4.16.1 (2024-10)

}
EXAMPLE 2: Use of imported definitions and visibility of definitions referenced by them:
nmodul e Modul eONE {
nodul epar integer MddParl := .,

type record RecordType_T1 {
integer Fieldl_T1,

}

type record RecordType_T2 {
RecordType_T1 Field1_T2,

}
const integer c_nyConst := .,

tenpl ate RecordType_T2 mt2 (RecordType_T1 p_tenpParT2):= { // paraneterized tenplate
Fieldl T2 := .,

}
} /1 end nodul e Modul eONE
nmodul e Modul eTWD {

i mport from Modul eONE {
tenplate mt2

/1l Only the nanes m T2 and p_tenpParT2 will be visible in Mdul eTWD. Please note, that

/1 the identifier p_tenmpParT2 can only be used when nodifying mt2. Al infornation

/'l necessary for the usage of mt2, e.g. for type checking purposes, are inported

/1 for the referenced definitions RecordType_T1, Fieldl T2, etc., but their identifiers are
/1 not visible in Mdul eTW

// This nmeans, e.g. it is not possible to use the constant c_nyConst or to declare a

/1 variable of type RecordType_T1 or RecordType_T2 in Mdul eTWD wi thout explicitly inporting
/'l these types.

i mport from Modul eONE {
nmodul epar MbdPar 2
}
/1 The nodul e paraneter MdPar2 of Mdul eONE is inported from Mbdul eONE and

/1 can be used |like an integer constant

} // end nodul e Modul eTWO

modul e Modul eTHREE {
import from Modul eONE all; // inports all definitions from Mdul eONE
type port MyPort Type nessage {
i nout RecordType_T2 /'l Reference to a type defined i n Mbdul eONE
}

type conponent MyConpType {
var integer v_nyConponentVar := MdPar?2;
/'l Reference to a nodul e paraneter of Mdul eONE

}
function f_myFunction () return integer {

return c_myConst /'l Reference to a nodul e constant of Mdul eONE
}

testcase TC MyTest Case (out RecordType_T2 p_nyPar) runs on MyConmpType {

M/Port .send(mt2); // Sending a tenplate defined in Mdul eONE

ETSI

127 ETSI ES 201 873-1 V4.16.1 (2024-10)
} /1 end Modul eTHREE

nodul e Modul eFOUR {
i mport from Modul eTHREE {
testcase TC _M/Test Case

/1 Only the nane TC MyTestCase will be visible and usable in Mdul eFOUR

/1 Type information for RecordType_T2 is inported via Mdul eTHREE from Modul eONE and

/1 Type information for MyConpType is inported from Modul eTHREE. All definitions

/1 used in the behaviour part of TC MyTestCase renmain hidden for the user of Mdul eFOUR

} /1 end Modul eFOUR
EXAMPLE 3: Handling of name clashes:
nodul e MyModul eA {

t;/pe bitstring MTypeA;

i mport from SoneMdul eC {

type M/ TypeA, /'l Where MyTypeA is of type character string
M/ TypeB /1 Where MyTypeB is of type character string
}
cbntrol {
vér SomeMbdul eC. MyTypeA v_nyVarl := "Test String"; [/ Prefix shall be used
var MyTypeA v_nyVar2 := '10110011' B; /1 This is the original MTypeA
vér My TypeB v_nyVar3 := "Test String"; /1 Prefix need not be used ...
var SoneMdul eC. MyTypeB v_nyVar3 := "Test String"; // ..but it can be if w shed
}

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

EXAMPLE 4: Renaming imported module:

nodul e MyModul eA {
i mport from VeryLongMdul eNaneB -> Short NaneB {

type M/ TypeA, /1 Where MyTypeA is of type character string
}
cbntrol {
var Short NaneB. M/TypeA v_nyVarl := "Test String"; Il I's correct
var VerylLongModul eNaneB. MyTypeA v_nyVar2 := "Test String"; /1 Causes an error
/1 as the original nodul e name cannot be used for referencing if the
/1 inmported nodul e has been renaned.
}

}
EXAMPLES5: Name clash between enumerated values and global definitions:

nodul e A {
type enunerated MyEnuniType {enumX, enuny}
type enunerated MyEnuniType2 {enuny, enunt}

nmodul e B {
import fromA all;
const MyEnunilype enun¥ := enunX; // this is not allowed as enunerated val ues restrict
/1 gl obal nanes (see clause 6.2.4)

const MyEnunilype2 enunX := enuny;// this is allowed as MyEnuntype2 does not contain enunX

const MyEnunilype enunt :
}

enunX; // allowed as MyEnunilype does not contain enun¥

ETSI

128 ETSI ES 201 873-1 V4.16.1 (2024-10)

modul e C {
import fromA all;
import fromB all;

const integer enunt :
const integer enuny :
const MyEnunilype2 enunX : = enun;

0;
1;

nmodul epar MyEnuniType PX_MyModul ePar1 : = enun¥

/1 the default value of the nodule paraneter will be the value enun¥, as the type of

/1 PX_MyModul ePar1 creates the context of MyEnunType and in this context enunerated val ues
/'l take precedence over global definition names; note that for the same context reason there
/1 is no name clash between the enunerated val ues defined in MyEnunType and i n MyEnuniType2

nodul epar MyEnuniType PX_M/Modul ePar2 : = B. enun¥
/1 the default value of the npbdul e paraneter will be the value enunX, as the prefix
/1 identifies the constant definition enunZ unanbi guously, which has the val ue enunX

nmodul epar integer PX_|IntegerPar := enuni;
/1 the default value of the nmpbdul e paraneter will be 0 as this assignment is not in the
/'l context of an enunerated type, hence no nane clash occurs

nodul epar MyEnuniType PX_MyMdul ePar3 : = C. enunX
/] causes an error as PX_M/Mdul ePar3 and the constant enunX in nodule C has different types

}
EXAMPLE 6: Importing local definitions transitively:

nmodul e A {
type enunerated MyEnuniType { enunX, enun¥, enunt}
type record M/Rec { integer a, integer b}
type conponent MyConp { var M/fRec v_rec :={ a:=51} }

nodul e B {
import fromA all;
nmodul epar MyEnuniType PX_M/Modul ePar : = enun;
type conponent MyConpUser extends MyConmp {}

}

modul e C {
import fromB all;
testcase TC() runs on MyConpUser {
if (PX_M/Mdul ePar == enun¥) {
/1 the enunerated value enunY is known in C without explicitly inporting it fromA
set verdi ct (pass)

if (v_rec.a == 5) {
v_rec.b := v_rec. a;
/1 Both the variable name v_rec and the record field names are known in C w thout
/1 explicitly inmporting themfromA
setverdi ct (pass)

}
}
}

8.2.3.2 Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of
single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type { TypeDefldentifier [""11) 1
(template { Tenplateldentifier [""11) 1
(const { Constldentifier ["1 31) I
(testcase { Testcaseldentifier ["1 31) I
(altstep { Altstepldentifier [""" T1T3Y) I
(function { Functionldentifier ["1 3r) I
(signature { Signatureldentifier ["," 1}) |
({ [11)

nodul epar Modul ePar | denti fi er

ETSI

129 ETSI ES 201 873-1 V4.16.1 (2024-10)

Semantic Description

See clause 8.2.3. Import of an invisible definition shall cause an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thedefinition to be imported shall be defined in the module from which it isto be imported and shall be
visible to the importing module.

b) Seetherestrictions givenin clause 8.2.3.

Examples

i mport from MyModul eA {
type MyTypel /1 inports one type definition from M/Mddul eA only

import from MyModul eB {

type My Type2, Mtype3, MType4; /1 inports three types,
tenpl ate m nyTenpl at el; /1 inmports one tenplate, and
const c_nyConst1l, c_nyConst2 /1 inmports two constants
}
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

It isallowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall belisted in the
exception list within a pair of curly brackets following the except keyword. Theal | keyword isalso alowed to be
used in the exception list; thiswill exclude all definitions of the same kind from the import statement.

Syntactical Structure
[Visibility] inport from Mduleld "{"
(group { Qualifiedldentifier [except "{" ExceptSpec "}" 1 ["," 1 })
["1

}
A A B

Semantic Description

The effect of importing agroup isidentical toani mport statement that lists al visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of thislist, only definitions are.

It isimportant to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this singlelist only.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thegroup to beimported shall be defined in the module from which it is to be imported.

ETSI

130 ETSI ES 201 873-1 V4.16.1 (2024-10)

b) Seetherestrictions givenin clause 8.2.3.

Examples
import from MyModule { group nmyGroup } // includes all visible definitions frommnmG oup

import from MyMddul e {
group nmyGoup except {
type My Type3, MyType5; // excludes the two types fromthe inport statenent,
tenplate all /'l excludes all tenplates defined in nyG oup
/1 fromthe inport statenent
/1 but inports all other visible definitions of myG oup

}

import from MyModul e {

group nyG oup
except { type MyType3 };// inports all visible types of myG oup except MyType3
type MyType3 /] inports MyType3 explicitly

8.2.34 Importing definitions of the same kind

Theal | keyword may be used to import all visible definitions of the same kind of a module. Theal | keyword used
withthe const ant keyword identifies all visible constants declared in the definitions part of the module the import
statement refersto. Similarly theal | keyword used with thef unct i on keyword identifies al visible functions, all
visible external functions defined and the visible module control function in the module the import statement denotes.

If some visible declarations of a kind are wished to be excluded from the given import statement, their identifiers shall
be listed following the except keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type all [except { TypeDefldentifier [“Tr1)
(template all [except { Tenplateldentifier [1111
(const all [except { Constldentifier """ 1%Yy1) 1
(testcase all [except { Testcaseldentifier [""1%Yy1) 1
(altstep all [except { Altstepldentifier [""" 13r1) 1
(function all [except { Functionldentifier [“1Y1) I
(signature all [except { Signatureldentifier [“Tr1) 1
(nmodul epar all [except { Mdul eParldentifier ["111)

["1

Semantic Description

The effect of importing definitions of the sasme kind isidentical to ani nport statement that lists al visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: If thelist of al visible definitions of that kind except of those that are listed in theexcept specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions
In addition to the genera static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictions givenin clause 8.2.3.

Examples

import from MyMddul e {
type all; /] inports all types of MyMdul e

ETSI

131 ETSI ES 201 873-1 V4.16.1 (2024-10)

tenpl ate all /1 inmports all tenplates of MyMdul e
}

import from MyMddul e {
type all except MyType3, MType5; /1 inports all types except MyType3 and MyTypeb
tenpl ate all /1 inmports all tenplates defined in Mynodul e

8.2.3.5 Importing all definitions of a module
All visible definitions of a module definitions part may be imported using theal | keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within apair of curly brackets following the except keyword. Theal | keyword is also alowed to be used in the
exception list; thiswill exclude all visible declarations of the same kind from the import statement.

NOTE 1: If thelist of al visible definitions of a module except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

NOTE 2: Importing al definitions of a module imports only definitions declared directly in that module including
the address type and module control function (if they are specified), but does not import the import
statements of that module (see also clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld

al |
[
{
except "{"
(group { Qualifiedldentifier [" 1%} al)|
(type { TypeDefldentifier [", 13| al)|
(tenplate { Tenplateldentifier [", 1%}] al)|
(const { Constldentifier [", 13}] al)|
(testcase { Testcaseldentifier """ 131 al)|
(altstep { Altstepldentifier """ 1%} al)|
(function { Functionldentifier [", 1%} al)|
(signature { Signatureldentifier [", 1%} al)|
(rmodul epar { Modul eParldentifier ["," 1%} al)
"y
["]
}

]
[

Semantic Description

The effect of importing all visible definitions of amodule isidentical to ani nmpor t statement that lists al importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If al visible definitions of a module are imported by using the all keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) Inthe set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) isallowed.

Examples
import from MyModul e al | ; /1 includes all definitions from M/Mddul e
inmport from MyModul e all except {
type MyType3, MType5; // excludes these two types fromthe inport statenent and
tenplate all /1 excludes all tenplates declared in M/Mdul e,

/1 fromthe inport statenent
/1 but inports all other definitions of MyMdule

ETSI

132 ETSI ES 201 873-1 V4.16.1 (2024-10)

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification (see clause 8.1) shall be used to denote the language (may be together
with a version number) of the source (e.g. module, package, library or even file) from which definitions are imported. It
consists of thel anguage keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from ETSI
ES 202 781 [i.11], ETSI ES 202 782 [i.14], ETSI ES 202 784 [i.12] and ETSI ES 202 785 [i.13] can be used in addition.
Identifiers for other languages are defined in the language mapping parts of TTCN-3, i.e. in ETSI ES 201 873-7 [i.5],
ETSI ES 201 873-8i.6] and ETSI ES 201 873-9[i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the language specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure

[Visibility] inport from Mdul eldentifier [LanguageSpec] ...[";"]
Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have aTTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when atemplate is defined based
on a structured type, the identifiers and types of fields of the core type shall be accessible and are used for the template
definition. In asimilar way, when a core type is aversioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of a versioned or foreign element means that part of the
information carried by that element, which is necessary to useit in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitionsin other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

e Toimport from a TTCN-3 module of another edition or from a non-TTCN-3 module, the import statement
shall contain an appropriate language identifier string.

e Only versioned or foreign elements with a TTCN-3 view of agiven edition areimportable into a TTCN-3
module of that edition.

Importing can be done automatically using the all directive, in which case all importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

When importing definitions from a non-TTCN-3 language, two principle approaches exist:

e With animplicit language mapping, non-TTCN-3 definitions are mapped internally in the TTCN-3 tool to the
respective TTCN-3 definitions as defined by the language mapping; the importing module works with the
internal representations of the imported definitions.

e With an explicit language mapping, non-TTCN-3 definitions are mapped directly to separate TTCN-3

definitions; the importing module imports the generated TTCN-3 and works with the mapped TTCN-3
definitions.

ETSI

133 ETSI ES 201 873-1 V4.16.1 (2024-10)

These lead to three options when using non-TTCN-3 language modulesin a TTCN-3 specification:

. The import statement imports the non-TTCN-3 module; the tool uses the internal representation of the implicit
mapping of the non-TTCN-3 module's definitions according to the language mapping specification of that
language.

e Theimport statement imports the non-TTCN-3 module; the tool imports from a TTCN-3 module whichisan
explicit mapping of the non-TTCN-3 modul€e's definitions according to the language mapping specification of
that language.

e Theimport statement imports the explicit TTCN-3 representation of the non-TTCN-3 module; the tool imports
the TTCN-3 module which is an explicit mapping of the non-TTCN-3 module according to the language
mapping specification of that language.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thelanguage specification should only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

b) Definitionsimported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ETSI ES 201 873-7 [i.5], ETSI
ES 201 873-8i.6] or ETSI ES 201 873-9 [i.7], respectively).

Examples

modul e MyNewibdul e {
import from Myd dMbdul e | anguage "TTCN 3: 2003" {

type My/Type
}
nodul e MyNewest Modul e {

i mport from MyNewhbdul e | anguage "TTCN 3: 2010" { inport all };
/'l the Il anguage specifications shall be identical, see clause 8.2.3.8

}

NOTE: Theimport mechanismis designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

8.2.3.7 Importing of import statements from TTCN-3 modules
Visibleimport statements of TTCN-3 modules can be imported by other TTCN-3 modules.
Syntactical Structure

[Visibility] inport from Mddul eldentifier [LanguageSpec]
(" import all [t 1)L

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that isimported by A using import
statements visible for module B, isalso imported by B. If another module C imports all import statements from B, then
Cimportsall what A isimporting - provided that the import statements are visible to modules B and C.

It is not possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

ETSI

134 ETSI ES 201 873-1 V4.16.1 (2024-10)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therestrictionsgivenin clause 8.2.3.1 apply.
b) Theredtrictionsgiven in clause 8.2.3.6 apply.

c) Importing of import statements is only possible from other TTCN-3 modules, i.e. the language specification
(see clause 8.1) shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

Examples

EXAMPLE: Importing of visible import statements

nodul e A {
type integer T1;
type integer T2;
tenplate T1 nw t1l :
tenplate T2 mw t2 :

modul e B {
public inmport fromA { type T1 }
type charstring T2;
tenplate T1 mtl :=(1, 2, 3);

}

nodul e C {
public inport fromB { inport all } // inports the inport statenments only
public inmport fromB { type T2 } /1 inmports the type B. T2

import fromA { tenplate all }

}
modul e D {
private inmport fromC { inport all } // inports the inport statenments only

nmodul e E {
import fromD{ inport all }

/1 yields the follow ng
/1 nodul e A knows

/1 AT1 (defined)

11 A T2 (defi ned)
/1 Amnv_tl (defined)

/1 A-mw_t2 (defined)

/1

/1 nodul e B knows

Il ATl (i mported)

/1 B. T2 (defi ned)

/I Bmtl (defined)

/1

/1 modul e C knows

Il ATL (inmported fromB inporting it fromA)
/1l B.T2 (i mport ed)

/1 Amw_tl (inported)
/1 Amw_t2 (inported)

/1

/1 nodul e D knows

/1 ATl (inmported fromC inporting it fromB inporting it fromA)

/1 B.T2 (inmported fromC inporting it from B)

/1 Amw tl and A mw t2 are not inported as their inports are private to C
/1

/1 nodul e E "knows" not hi ng
/1 as the inports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification (see clause 8.1) of the importing module, the
language specification of the import statement and the language specification of the source module, where the imported
definitions are defined, have to be compatible according to the following rules.

ETSI

135 ETSI ES 201 873-1 V4.16.1 (2024-10)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both a language specification, then they shall be
identical. If none of the two has alanguage specification, the language specification has to be known from
other sources, which istool specific.

¢) A TTCN-3 module shall only import from earlier or same editions of TTCN-3 but not from later editions,
e.g. the TTCN-3 language specification in an import statement has to be lower or equal to the TTCN-3
language specification of the importing module.

8.24 Definition of friend modules
Modules can define other modules to be friends.
Syntactical Structure
[private] friend modul e Modul el dentifier { ",” Mduleldentifier } ;"
Semantic Description

Friendship to modules is defined by the exporting module (the module that declares the definitions) not by the
importing module (the module that uses the module definitions of another module). Friendship can be cyclic.

If amoduleisfriend to a module from which it imports top-level definitions, all top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if afriend moduleis
missing.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Only private visibility can be defined for friend definitions as they are always private.

Examples

nodul e MyModul eA {
friend nodul e MyModul eB, MyModul eC;

}
/1 MyModul eB and MyMbdul eC are friends of MyMdul eA

nodul e MyModul eB {
friend nodul e MyModul eA;

}
/1 MyModul eA is friend of MyMdul eB

nmodul e MyModul eC {
}

8.2.5 Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
publ i c except for imported and friend definitions. Import definitions are by default pri vat e. Friend definitions are
pri vat e only. Group definitionsare publ i ¢ only.

ETSI

Syntactical Structure

[public | friend |

Semantic Description

private]

136

ETSI ES 201 873-1 V4.16.1 (2024-10)

The visibility controls whether atop-level definition or an import statement isimportable by another module.

Three visibilities are distinguished:

NOTE:

A top-level definition or an import statement with publ i ¢ visibility isimportable by any other module.

A top-level definition or an import statement with f r i end visibility isimportable by friend modules only

(seeclause 8.2.4).

A top-level definition or an import statement with pr i vat e visibility cannot be imported at al.

As specified in restriction €) of clause 8.2.3.1, this means that importabl e definitions are imported

together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definitionis
not visible in the importing TTCN-3 module.

The visibility of groupsisawayspubl i c. Thevisibility of imported definitionsis by default pri vat e. All other
module definitions are by default publ i c.

The visibility of atop-level definition or an import statement defines their importability by another module. If the
top-level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of atop-level definition by another module is summarized in table 9, the importability of
import statementsin table 10.

Table 9: Visibility and import of module definitions

Visibility of Module definition | Module definition | Module definition | Module definition
module definition importable importable importable via importable via
directly by a directly by a |group import by a|group import by a
non-friend friend module non-friend friend module
module module
public yes yes yes yes
friend no yes no yes
private no no no no
Table 10: Visibility and import of import statements
Visibility of Import imported | Import imported
import by a non-friend by a friend
module module
public yes yes
friend no yes
private no no
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

nmodul e MyModul eA {

friend nodul e MyModul eC;

private type integer M/ nteger;
/1l MyInteger is not visible to other nodul es
friend type charstring MyString;
/1l MyString is visible to friend nodul es
public type bool ean M/Bool ean;

/1 MyBoolean is visible to all

nodul es

ETSI

137 ETSI ES 201 873-1 V4.16.1 (2024-10)

nodul e MyModul eB {
import from MyModul eA al | ;
/1l MyString and Myl nteger are not visible and are not inported
/1 MyBool ean is inported

}
modul e MyModul eC {
import from MyModul eA al | ;

/'l Mylnteger is not visible and is not inported
/1 MyString and MyBool ean are inported

8.3 Module control part

The module control part is a shorthand notation to define a module control function.

Syntactical Structure

control Statement Bl ock
Semantic Description

The shorthand notation is equivalent to a module control function with the same statement block, no parameters, no
runs on clause and no return clause (see clause 16.1). It is equal to the following syntax:

Examples

EXAMPLE 1.

control {
execute(TC 01());
}

/1 is equal to:

function control () {
execut e(TC 01());
}

NOTE: Asthe control part isashort hand notation of a control function with the name "control”, at most 1
control part can be defined in a TTCN-3 module.

When not used as an entry point for execution of the test suite, the module control function can be invoked explicitly in
asimilar way as a standard function, using the cont r ol keyword instead of the identifier. In this case, thecont r ol
keyword may be optionally prefixed with a module identifier followed by a dot. If the referenced module control
function does not have any parameters, the parameter list may also be omitted at the place of invocation.

The rules for declaring and use of the module control function are described in clause 16.1. The mechanism of module
control is explained in more detail in clause 26.

EXAMPLE 2:

modul e MyTest Suite
{ /1 This nodul e contains definitions ...

const int eger c_nyConstant := 1;
type record M/MessageType { ...}
tenpl ate MyMessageType m nyMessage := { ...}

functi on f_nyFunctionl() { ...}
function f_nyFunction2() { ...}

festcase TC MyTestcasel() runs on MyMICType { ...}
testcase TC MyTestcase2() runs on MyMICType { ...}

/1 ...the nmodul e control function provides an entry point for test suite execution
control

{

var boolean v_nyVariable; // local control variable

éxecute(TC _MyTest Casel()); // sequential execution of test cases
execute(TC MyTest Case2());

ETSI

138 ETSI ES 201 873-1 V4.16.1 (2024-10)

}

EXAMPLE 3:

function control (integer p_par) return integer {
execute(TC 01(p_par)); /] typical use: test case execution
MyTest Suite.control (); /1 explicit execution of a control function froman inported

/1 nodul e

M/Test Sui te. control ; /1 shorthand call notation for control parts without paraneters
return -1,

b

9 Port types, component types and test COﬂfIgUI‘atIOI"IS

9.0 General

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short).
A configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additiona configuration and deployment support for TTCN-3 is defined in the optional package [i.11].

TTCN Test system

“«——»
MTC PTC,

‘l_, PTC, —T

+ Abstract Test System Interface v *

_J
Real Test System Interface

SUT

Figure 4: Conceptual view of atypical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of thecr eat e

operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop al PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

Test component types and port types, denoted by the keywords conponent and por t , shall be defined in the module
definitions part. The actua configuration of components and the connections between them is achieved by performing
creat e and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.1.1).

9.1 Communication ports

Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

ETSI

NOTE:

139 ETSI ES 201 873-1 V4.16.1 (2024-10)

While TTCN-3 ports areinfinitein principlein areal test system they may overflow. Thisisto be treated
as atest case error (see clause 24.1).

MTC [[EI «—— PTC

—

Figure 5: The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 6 (g) or (h)).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thefollowing connections are not alowed (see figure 7):

A port owned by a component A shall not be connected with two or more ports owned by the same
component (figure 7 (a) and (€)).

A port of atest system interface cannot have connection with more than one port owned by a
component A. This means, connections as shown in figure 7 (b) are not allowed.

A port owned by a component A shall not be connected with two or more ports owned by a component B
(seefigure 7 (c)).

A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figure 7 (d) are not allowed.

Connections within the test system interface are not allowed (see figure 7 (f)).

A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7 (Q)).

b) Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at runtime and shall lead to atest case error when failing.

ETSI

140 ETSI ES 201 873-1 V4.16.1 (2024-10)

SR test component

test component

Sl

test component
B

DRl

test system interface

(@ (b)
test system
test component test component test component
A [B
test system interface
(©) (d)
test component
test component] A
A [77
(e))
test component LR O test component | | test component
test component] B A B
A
Nl] —
C

test system interface

]test component 51 ;

(@) (h)

Figure 6: Allowed connections

ETSI

141 ETSI ES 201 873-1 V4.16.1 (2024-10)

test system

test component
test component

A

test system interface

@ (b)

(eSS StE test component
test component p
test component] B A
A
—

] test system interface (_(>_\

() (d)

(

test component

A

test system

test system interface /J\ A_\

(e) ®

test system
4 test component test component
A B
 — —]
H —

test system interface /\/
N

(9)

Figure 7: NOT allowed connections

9.2 Test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known asa
System Under Test or SUT. Inthe minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in ageneral way to mean either SUT or [UT.

Inarea test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition isidentical to acomponent definition, i.e. itisalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connectionsto the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unmap operations (see clause 21.1).

ETSI

142 ETSI ES 201 873-1 V4.16.1 (2024-10)

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure
The same as a component type definition (see clause 6.2.10.1).
Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interfaceissyst em This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thesame asfor component type definitions (see clause 6.2.10.1).

Examples

EXAMPLE 1: Explicit definition of atest system interface:
type conponent MyMICType
{

var integer vc_nylLocal | nteger;
timer tc_nyLocal Tiner;
port MyMessagePort Type pCOLl

}

type conponent MyTest System nterface
{

port MyMessagePort Type pCOL, pCO2;
port M/ProcedurePort Type pCa3

/'l MyTestSystenminterface is the test systeminterface
testcase TC MyTestcasel () runs on M/MICType system MyTest System nterface {
/'l establishing the port connections
map(ntc: pCOL, system pCQ2);
/'l the testcase behavi our
...

}
EXAMPLE 2: Implicit definition of atest system interface:

/'l MyMICType is the test systeminterface
testcase TC MyTestcase2 () runs on MyMICType {
/1l map statements are not needed
/'l the testcase behavi our
/o

ETSI

143 ETSI ES 201 873-1 V4.16.1 (2024-10)

10 Declaring constants

TTCN-3 constants are runtime constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure

const [TypeOrNestedTypeDef] { Constldentifier [ArrayDef] ":=" ConstantExpression [","] } [
"t

Semantic Description

A constant assigns a name to a fixed value. A valueis assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multiple timesin a TTCN-3 module.

The type of the constant is either provided explicitly or implicitly according to the rules for automatic typing specified
in the clause 6.5. When automatic typing is used, the TypeOrNestedParDef part is missing and the type is equal to the
type of the expression on the right-hand side of the assignment.

If functions are used for theinitiaization of constants, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Optional fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an opt i onal attribute withthevalue™i npli cit
omi t" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping) mechanism
(see clause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a Void.

b) Constant expressionsinitializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of rnd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this clause.

NOTE: Theonly value that can be assigned to global constants of default, component, port or timer type or
component constants of default or component typesisthe special valuenul | .

¢) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.7 and
6.2.3.0) for referencing a field, alternative or element of an addr ess value, which actual valueisnul | shall
cause an error.

d) Theright-hand side of the assignment that initializes a constant shall evaluate to an object that is at least
partially initialized.

€e) ConstantExpression shall evaluate to a value which is type compatible with TypeOrNested TypeDef.

f) If the TypeOrNestedTypeDef part is missing from the declaration, the ArrayDef part shall be missing as well
and the assignment part (i.e. ":=" ConstantExpression) shall be present.

Examples

1:

const integer c_nyConstl : ;
true, c_nyConst3 := fal se;

const bool ean c_nyConst2 :

ETSI

144 ETSI ES 201 873-1 V4.16.1 (2024-10)

11 Declaring variables

11.0 General

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variables to store templates.

Variables can be of simple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default, port or timer types.

The type of the variable is either provided explicitly or implicitly according to the rules for automatic typing specified
in clause 6.5. When automatic typing is used, the TypeOrNestedPar Def part of the declaration is missing and the type of
the variable is equal to the type of the expression or template body on the right-hand side of the assignment.

Variables can be declared and used in test cases, functions and altsteps. Additionally, variables can be declared in
component type definitions. These variables can be used in test cases, altsteps and functions which are running on a
given component type.

Variables can be declared lazy using the @ azy modifier.
Alternatively, variables can be declared fuzzy using the @ uzzy modifier.

If avariableisdeclared fuzzy or lazy they can additionally declared with the @let er mi ni st i ¢ modifier to indicate
that when used in a deterministic evaluation context, any evaluation of the variable would have no side effect and would
yield the same result.

Lazy and fuzzy features are valid only in the scope, where the variables names are visible. For example, if afuzzy
variableis passed to aformal parameter declared without a modifier, it loses its fuzzy feature inside the called function.
Similarly, if it is passed to alazy formal parameter, it becomes lazy within the called function.

Whenever alazy or fuzzy variable is assigned, the TE is reguired to save the lexical environment (the set of directly or
indirectly referenced values and templates) valid at the time of the assignment, so that it is possible to resolve the
expression at the time of evaluation of the lazy or fuzzy value or template. If the assignment was made on alower scope
than the evaluation, saving the lexical environment extends lifetime of the referenced variables defined on that lower
scope.

Examples

var @uzzy integer v_fuzzy := 1,
var integer v_var;
var bool ean v_condition := true;
if (v_condition) {
var integer v_local := 0;
v_fuzzy := v_local;
v_| ocal 10;

/1 although v_local is no longer valid at this point, v_fuzzy still evaluates to 10 because
/'l the lexical environnent is available to the fuzzy vari able:
v_var := v_fuzzy;

11.1 Value variables

A TTCN-3 vaue variable stores values. It is declared by the var keyword followed by atype identifier or a nested type
definition and avariable identifier. Aninitial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
r et ur n keyword in bodies of functions with areturn clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var [(@azy | @Quzzy) [@eterministic]] [TypeO NestedTypeDef]
{ Varldentifier [ArrayDef] [":=" Expression] ["," 1 }+ [";" 1]

ETSI

145 ETSI ES 201 873-1 V4.16.1 (2024-10)

Semantic Description

A value variable associates a name with the location of avalue. A value variable may change its value during test
execution several times. A value can be assigned several timesto avalue variable. The value variable can be referenced
multipletimesin a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Expression shall evaluate to a value which is type compatible with TypeOr Nested TypeDef.
b) Vauevariablesshall store values only.

c¢) Vauevariables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Useof uninitialized value variables at other places than the left hand side of assignments, in return statements,
or as actual parameters passed to formal parameters shall cause an error.

€) Theinitialization or assignment of afuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parametersinternally.

f) If alazy or fuzzy value variable is used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of globa non-fuzzy templates), it shall be declared @deterministic and the expression assigned to
the variable shall fulfill the restrictions imposed on content of functions used in special places givenin
clause 16.1.4.

g) Theexpression assigned to alazy or fuzzy variable might contain adirect or indirect reference to this variable.
Evaluation of such an expression shall cause adynamic error.

h) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clauses 6.2.7 and
6.2.3.0) for referencing afield, alternative or element of an addr ess value, which actual valueisnul | shall
cause an error.

i) Theexpression shall evaluate to avalue, whichisat least partialy initialized.

i) If the TypeOrNestedTypeDef part is missing from the declaration, the ArrayDef part shall be missing as well
and the assignment part (i.e. ":=" Expression) shall be present.

Examples

var integer v_nyVarO;

var integer v_nyVarl := 1;

var boolean v_nyVar2 := true, v_nyVar3 := fal se;

var @azy integer v_nylLazyVarl := v_nyVar1l+1,

var timer v_tinerl;

var record of integer v_nunbers := {1, 2, 3}; // declaration with a nested type
timer t_nyTinmerl,; v_myVarl := 2;

v_nyVarl := v_nylLazyVarl; // v_nylLazyVarl evaluates to 2 + 1

v_nylLazyVarl := v_nylLazyVarl + 1;

v_nyVarl := v_nylLazyVarl; // causes an error as v_nylLazyVarl references itself
v_timerl :=t_nyTimerl,

11.2 Template variables

A TTCN-3 template variable stores templates. They are declared by thevar t enpl at e keyword followed by atype
identifier and avariable identifier. Aninitial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.6.6).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
r et ur n keyword in bodies of functions defining a template-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign atemplate instance to atemplate
variable or atemplate variable field.

ETSI

146 ETSI ES 201 873-1 V4.16.1 (2024-10)

Syntactical Structure

var TenplateModifier [(@azy | @uzzy) [@eterministic]]
[TypeOrNestedTypeDef] { Varldentifier [ArrayDef] ":=" TenplateBody [","] }+ [";"]

Semantic Description

A template variable associates a name with the location of atemplate or avalue (as every value is also atemplate).
A template variable may change its template during test execution several times. A template or value can be assigned
several timesto atemplate variable. The template variable can be referenced multiple timesin a TTCN-3 module.

The content of atemplate variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

NOTE 1: String and list type templates can be concatenated, see clause 15.11.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shal not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be atemplate variable too.

¢) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: Whileitis not allowed to directly apply TTCN-3 operations to template variables, it is allowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Useof uninitialized template variables at other places than the left hand side of assignments, in return
statements, or as actual parameters passed to formal parameters shall cause an error.

e Void.

f) If thetemplate variable is restricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

g) Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

h) Restrictions on templatesin clause 15.0 shall apply.

i) Theinitialization or assignment of afuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

j) If alazy or fuzzy template variable is used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of globa non-fuzzy templates), it shall be declared @let er ni ni st i ¢ and the template body
assigned to the variable shall fulfill the restrictions imposed on content of functions used in special places
givenin clause 16.1.4.

k) Using the dot notation (see clauses 6.2.1.1, 6.2.2.1 and 6.2.5.1) and index notation (see clause 6.2.7) for
referencing afield, alternative or element of an addr ess value, which actual valueisnul | shall cause an
error.

) Thetemplate body at the right-hand side of the assignment symbol shall evaluate to a value or template,
which is type compatible with the variable being declared.

m) The template body at the right-hand side of the assignment symbol shall evaluate to an object that is at least
partially initialized.

n) If the TypeOrNestedTypeDef part is missing from the declaration, the ArrayDef part shall be missing as well
and the assignment part (i.e. ":=" TemplateBody) shall be present.

ETSI

147 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

var tenplate integer v_nyVarTenpl := ?;
var tenplate MyRecord v_nyVarTenp2 := { fieldl := true, field2 :=* },
v_nyVarTenp3d := { fieldl :=?, field2 := v_nyVarTenpl };
var tenplate @uzzy float v_fuzzTenpl := rnd(); // evaluated on every usage
var tenplate @uzzy MyRecord v_fuzzTenp2 := { rnd() < 0.5, float2int(rnd()) };
var tenplate @azy float LazyTenpl := v_fuzzTenpl; // evaluates v_fuzzTenpl
var tenplate @azy MyRecord v_l azyTenp2 : =
{ v_lazyTenpl < 0.5, float2int(v_fuzzTenpl) }; // evaluates v_lazyTenpl and v_fuzzTenpl
v_lazyTenp2.fieldl := true; // evaluates v_lazyTenp2 and overwites fieldl with true

12 Declaring timers

TTCN-3 provides atimer mechanism. Timers can be declared and used in test cases, functions and altsteps.
Additionally, timers can be declared in component type definitions. These timers can be used in test cases, functions
and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be anon-negative f | oat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can aso be declared. Default duration(s) of the elements of atimer
array shall be assigned using a value array. Default duration(s) assignment shall use the array value notation as specified
in clause 15.8.2. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it
shall explicitly be declared by using the not used symbol ("-").

Syntactical Structure
timer { Tinmerldentifier [ArrayDef] ":=" TimerValue ["," 1 } [";" 1]
Semantic Description

Timers are local to components. A component can start and stop atimer, check if atimer is running, read the el apsed
time of arunning timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

A timer declared and started in scope units such as functions ceases to exist when the scope unit isleft unlessthereisa
constant, variable or parameter defined in the current or higher scope unit or in an activated altstep that contains a
referenceto it. In this case, the timer is kept aslong as at least one constant, variable or parameter of the current or
higher scope unit or an activated altstep contain areferenceto it. If atimer ceasesto exigt, it stops running, will never
timeout and cannot be referenced via the any timer or all timer constructs.

If not stated otherwise, timers have the same semantics as constants of atimer type.
NOTE: Timersthat ceased to exist do not contribute to the test behaviour.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Incaseof asingletimer, the default duration value shall resolve to a non-negative numerical float value
(i.e. the value shall be greater or equal 0.0, infinity and not_a _number are disallowed).

b) Incaseof atimer array, it shall resolve to an array of float values obeying to restriction a) above of the same
size asthe size of the timer array.

Examples

EXAMPLE 1: Singletimer

timer t_nyTinerl := 5E-3;
/'l declaration of the tinmer t_nyTinerl with the default value of 5ns

tinmer t_nyTiner2; /1 declaration of t_nyTiner2 without a default tiner value i.e. a value has
/1 to be assigned when the tiner is started

ETSI

148 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2: Timer array

timer t_nytinerl[5] :={ 1.0, 2.0, 3.0, 4.0, 5.0}
/1 all elenments of the tiner array get a default duration.

timer t_nytinmer2[5] :={ 1.0, -, 3.0, 4.0, 5.0}
/1 the second tinmer (t_nytiner2[1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 is the ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the in/out/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15.0) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

/1 a structured, ordered nessage with two fields
type record ARecord { integer i, float f }

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. thetest system performsthe call) or in the test system (i.e. the SUT performsthe call).

Syntactical Structure
signature Signatureldentifier
"("{ [in] inout | out] Type ValueParldentifier [","] } ")"
[(return TypeOrNestedTypeDef) | nobl ock]
[exception "(" ExceptionTypelList ")"]
Semantic Description

For al used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure si gnat ur e shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the nobl ock keyword are assumed to be used for blocking procedure-based communication.

ETSI

149 ETSI ES 201 873-1 V4.16.1 (2024-10)

Signature definitions may have parameters. Parameters shall be of datatype only, i.e. of abasic type, a structured type
thereof or a subtype thereof. Within asi gnat ur e definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e. i n, out , ori nout . Thedirectioni nout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1: Thedirection of the parametersis as seen by the called party rather than the calling party.

A remote procedure may return avalue after itstermination. The type of the return value shall be of datatype only and
shall be specified by means of ar et ur n clausein the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as val ues of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the si gnat ur e definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usually only be distinguished by specific values of these types).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Signature definitions for non-blocking communication shall use the nobl ock keyword, shall only havei n
parameters and shall have no return value but may rai se exceptions.

b) Signature parameters and the return type shall be of a data type.

Examples
si gnature MyRenot eProcOne (); /1 MyRenoteProcOne will be used for bl ocking
/'l procedure-based conmunication. It has neither
/] paraneters nor a return val ue.
si gnature MyRenoteProcTwo () nobl ock; /! MyRenoteProcTwo will be used for non bl ocking

/'l procedure-based conmunication. It has neither
/] paraneters nor a return val ue.

signature MyRenoteProcThree (in integer Parl, out float Par2, inout integer Par3);

/1 MyRenoteProcThree will be used for blocking procedure-based comuni cati on. The procedure
/'l has three paraneters: Parl an in paraneter of type integer, Par2 an out paraneter of

/1 type float and Par3 an inout paraneter of type integer.

si gnature MyRenot eProcFour (in integer Parl) return integer;

/'l MyRenot eProcFour will be used for bl ocking procedure-based comuni cation. The procedure
/!l has the in paraneter Parl of type integer and returns a value of type integer after its
/1 term nation

signature MyRenoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2);
/1 MyRenoteProcFive will be used for bl ocking procedure-based communication. It returns a
/1 float value in the inout paraneter Parl and an integer value, or may raise exceptions of
/'l type ExceptionTypel or ExceptionType2

signature MyRenoteProcSix (in integer Parl) nobl ock

exception (integer, float);
/1 MyRenoteProcSix will be used for non-bl ocking procedure-based comruni cation. In case of
/1 an unsuccessful termination, M/RenoteProcSix raises exceptions of type integer or float.

si gnature MyRenot eProcSeven ()
exception (record { integer id, charstring description });
/1 MyRenot eProcSeven will be used for bl ocking procedure-based conmunication. It requires no
/] paraneters, doesn't return a value, but nmight throw an exception of a locally defined
/'l (nested) type.

ETSI

150 ETSI ES 201 873-1 V4.16.1 (2024-10)

15 Declaring templates

15.0 General

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:
a) they areaway to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A template can be declared fuzzy using the @ uzzy modifier.

NOTE: Using afuzzy template from a non-fuzzy template causes evaluation of the fuzzy template. Thus, for
unparameterized non-fuzzy templates, the result of the used fuzzy templates will stay the same for every

usage.

A fuzzy template can be declared deterministic using the @deterministic modifier. A deterministic template shall be
evaluated to the same result in the same deterministic evaluation context whenever it is evaluated.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
isapartia specification.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Templates shall be specified only for component data types and procedure signatures.
b) Void.

c) Theexpression or template body initializing atemplate shall evaluate to a value or template, which istype
compatible with the template being declared.

d) Theexpression or template body initializing a template shall evaluate to avalue or atemplate that is at |east
partialy initialized or to a matching mechanism.

€) Thebody of afuzzy template shall not contain function calls of functions with inout or out parameters. The
called functions may use other functions with inout or out parametersinternally.

f) Fuzzy features are valid only in the scope, where the templates names are visible. For example, if afuzzy
template is passed to aformal template parameter declared without a modifier, it losesits fuzzy feature inside
the called function.

g) For afuzzy template that is declared deterministic the template body shall fulfill the restrictions imposed on
content of functions used in special places givenin clause 16.1.4.

Examples

type record MyRecord {
defaul t def

}

type uni on MyUnion {
i nt eger choicel,

ETSI

151 ETSI ES 201 873-1 V4.16.1 (2024-10)

MyRecord choi ce2

}

tenpl ate MyUni on m.integerChosen := { choicel := 5}
/1 shall cause an error as the type MyUnion contains MyRecord, which includes
I/l a field of default type.

external function fx_garble(charstring p_str) return p_str;

tenplate @uzzy charstring mfuzzy := fx_garble("foobar"); // every usage of mfuzzy re-
/'l evaluates the function call

15.1 Declaring message templates

I nstances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match areceived message.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A template used in asend operation defines a complete set of field values comprising the message to be transmitted
over a port.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

Atemplateusedinar ecei ve,t ri gger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.6.6 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions
In addition to restrictionsin clause 15.0 General, the following restrictions apply:

a) Atthetimeof asend operation, the used template shall be completely initialized and all fields shall resolve to
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

At the time of areceiving operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of atemplate or atemplate field, an opt i onal attribute with the
value"inplicit omt" (seeclause27.7) shall be associated with it either directly or viathe attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1. Template for sending messages

/1 G ven the nessage definition
type record MyMessageType
{

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate could be
tenpl ate MyMessageType m nyTenpl ate: =

fieldl := omt,
field2 := "MW string",
field3 := true

}

/1 and a correspondi ng send operation could be
nmyPCO. send(m_nyTenpl ate) ;

ETSI

152 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2: Template for receiving messages

/1 G ven the nessage definition
type record MyMessageType
{

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate mght be
tenpl ate MyMessageType mw_nyTenpl ate: =

fieldl := ?,
field2 := pattern "abc*xyz",
field3 := true

}

/1 and a corresponding receive operation could be
nyPCO. r ecei ve(mw_nyTenpl at e) ;

EXAMPLE 3: Template for receiving messages

/] When used in a receiving operation this tenplate will natch any integer val ue
tenpl ate integer nw nyTenplate := ?;

/1 This tenplate will nmatch only the integer values 1, 2 or 3
tenpl ate integer nw nyTenplate := (1, 2, 3);

15.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A templateusedinacal | orrepl y operation defines a complete set of field valuesfor all i n and i nout
parameters. At thetime of thecal | operation, al i n andi nout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersissimply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used inaget cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions
In addition to restrictionsin clause 15.0 General, the following restrictions apply:

a) Atthetimeofacal | ,reply andrai se operation, the used template shall be completely initialized and all
i n/i nout parametersinacal |, al out /i nout parametersinar epl y orr ai se operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

Atthetimeof aget cal | ,get repl y and cat ch operation, the matching template shall be completely initialized.

ETSI

153 ETSI ES 201 873-1 V4.16.1 (2024-10)

c) Optional fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, anopt i onal attribute with thevalue" i npl i ci t
onm t" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping)
mechanism (see clause 27.1.1).

Examples

EXAMPLE 1. Templates for invoking and accepting procedures:

/1 signature definition for a renpte procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/1 exanpl e tenpl ates associated to defined procedure signature
tenpl ate RenoteProc s_tenpl atel: =

Parl := 1,
Par2 := 2,
Par3 := 3
}
tenpl ate RenoteProc s_tenpl ate2: =
Parl := 1,
Par2 := ?,
Par3 := 3
}
tenpl ate RenoteProc s_tenpl ate3: =
Parl := 1,
Par2 := 72,
Par3 := ?

}
tenpl ate RenoteProc s_tenpl at e4: =?;

EXAMPLE 2: In-line templates for invoking procedures:
/1 Gven exanple 1 in this clause

/1 Valid invocation since all in and inout paraneters have a distinct val ue
myPCO. cal | (Renot eProc: s_tenpl atel);

/1 Valid invocation since all in and inout paraneters have a distinct val ue
nyPCO. cal | (Renot eProc: s_tenpl ate2);

/1 Invalid invocation causing an error
/'l since the inout paraneter Par3 has a natching attribute not a val ue
nyPCO. cal | (Renot eProc: s_tenpl ate3);

/1 Tenpl ates never return values. In the case of Par2 and Par3 the values returned by the
/1 call operation shall be retrieved using an assignnent clause at the end of the call statenent

EXAMPLE 3: In-line templates for accepting procedure invocations:
/1l Gven exanple 1 in this clause

// Valid getcall, it will match if Parl == 1 and Par3 ==
nmyPCO. get cal | (Renot eProc: s_tenpl atel);

/1 Valid getcall, it will match if Parl == 1 and Par3 ==
nyPCO. get cal | (Renpt eProc: s_t enpl ate2);

/1 Valid getcall, it will match on Parl == 1 and Any val ue of Par3
nyPCO. get cal | (Renot eProc: s_t enpl at e3);

EXAMPLE 4: In-line templates for accepting procedure replies.
/1l Gven exanple 1 in this clause

/1 Valid getreply, in parameters will be ignored, matches if return value is 4
nmyPCO. get repl y(Renot eProc: s_tenpl ate2 val ue 4);

// Valid getreply, accepting any reply for RenoteProc
myPCO. get r epl y(Renot eProc: ?);

ETSI

154 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 Valid getreply, also accepting any reply for RenoteProc
nyPCO. get cal | (Renpt eProc: s_tenpl ate4 val ue ?);

15.3 Global and local templates
TTCN-3 alows defining global templates and local templates.

Syntactical Structure

tenplate [TenplateRestriction] [@uzzy | [@eternministic] [@bstract] Type
Tenpl atel dentifier
["(" Tenpl ateFormal ParList ")"] [nodifies TenplateRef] ":=" BaseTenpl at eBody

NOTE 1: The optional restriction part is covered by clause 15.8.
Semantic Description

Global templates shall be defined in the module definitions part. Local templates shall be defined in testcases, functions,
altsteps or statement blocks. Both global and local templates shall adhere to the scoping rules specified in clause 5.

Both global and local templates can be parameterized. The actual parameters of atemplate can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

Both global and local templates are initialized at the place of their declaration. This means, all template fields which are
not affected by parameterization shall receive avalue or matching mechanism. Template fields affected by
parameterization areinitialized at the time of template use.

If functions are used for theinitialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

At the time of their use (e.g. in communication operationssend, r ecei ve, cal | ,getcal I, etc.), itisalowed to
change template fields by in-line modified templates, to pass in values via value parameters as well asto passin
templates viatemplate parameters. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions
In addition to restrictionsin clause 15.0 General, the following restrictions apply:

a) Thedot notation such as myTemplateld.fieldld shall not be used to set or retrieve values in templatesin
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Redtrictions on referencing elements of templates or template fields are described in clause 15.6.

C) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

d) After completing initialization, global and local message templates that do not contain the @bst r act
modifier shall be fully initialized.

€) After completing initialization, global and local signature templates that do not contain the @bst r act
modifier shall fulfil at least one of the following conditions:

o All procedure parameters are fully initialized.

e Allinandi nout procedure parameters are completely initialized and al out procedure parameters are
either unitialized or marked as not relevant using the NotUsedSymbol. Templates declared this way are safe
tobeusedincal | andget cal | operations, but they shall not beusedinr epl y andgetrepl y
operations.

e All out and inout procedure parameters are completely initialized and all in procedure parameters are either
unitialized or marked as not relevant using the NotUsedSymbol. Templates declared this way are safe to be
used in reply and getreply operations, but they shall not be used in call and getcall operations.

NOTE 2: Initiaization of templates without parametersis completed at the place of their declaration. Initialization
of parameterized templates is completed at the time of their use.

ETSI

155 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

/1 The tenplate
tenpl ate MyMessageType mw_nyTenpl ate (integer p_mnyFornal Paran): =

fieldl := p_nyFornal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol. recei ve(mnv_nyTenpl at e(123));

15.4 In-line Templates
Templates can be specified directly at the place they are used. Such templates are called in-line templates.
Syntactical Structure

[Type ":"] Tenpl at eBody

NOTE 1: Anin-line template is an argument of a communication operation or an actual parameter of atestcase,
function or altstep call, i.e. it is dways placed within parenthesis and potentially separated with acomma.

Semantic Description
In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they cannot be referenced or reused. The lifetime of in-line templatesis
the TTCN-3 statement (an assignment, a testcase/function/al step invocation, a return from a function, a communication
operation), where they are defined.

Restrictions
In addition to restrictionsin clause 15.0 General, the following restrictions apply:
a Void.
b) Thetypefield should only be omitted when the type isimplicitly unambiguous.

NOTE 2: For literal in-line templates, the following types may be omitted: i nt eger , f | oat , bool ean,
bitstring,hexstring,octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

c) In-linetemplates containing instead of values or inside val ues matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. r ecei ve, tri gger, check,
getcal | ,getrepl y and cat ch), in arguments of themat ch and sel ect case operations, in actua
template parameters, at the right hand side of assignments (when there is atemplate variable at the left hand
side of the assignment) and in return statements of template returning functions. In-line templates not
contai ning matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall be in the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

€) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

nyPCO. r ecei ve(charstring: "abcxyz");

ETSI

156 ETSI ES 201 873-1 V4.16.1 (2024-10)

15.5 Modified templates

In cases where small changes are needed to specify anew template, it is possible to specify a modified template.
A modified template specifies modifications to particular fields of the original template, either directly or indirectly.
Aswell as creating explicitly named modified templates, TTCN-3 alows the definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

tenplate [TenplateRestriction] [@uzzy] [@leternministic] [@bstract]

Type Tenpl ateldentifier

["(" Tenpl ateFornal ParList ")"] nodifies (Tenpl ateRef | BaseTenpl ateBody) ":="
BaseTenpl at eBody

NOTE 1: The optional restriction part is covered by clause 15.8.

In-line modified template:

nmodi fi es BaseTenpl at eBody ": =" BaseTenpl at eBody
Semantic Description

The nodi f i es keyword denotes the parent template from which the new modified template shall be derived. This
parent template may be either an original template or a modified template or aso a matching mechanism.

In case that the BaseTemplateBody on the right hand side of the modified template contains references to variables,
these are eval uated before the modification and any uninitialized fields or elementsin these variables are treated as
unspecified, i.e. asif specified with the not used symbol "-" for the following modification agorithm.

The modifications occur in alinked fashion, eventually tracing back to the origina template:

a) Incaseof templates, template fields or list elements of simple types, uni on and enurrer at ed types, the
matching mechanism specified in the modified template is simply replacing its corresponding content in its
parent.

b) For templates, template fields and elements of r ecor d and set types, if ar ecord or set field and its
corresponding matching mechanism is specified in the modified template, then the specified matching
mechanism replaces the one specified in the corresponding field of the parent template. If ar ecor d or set
field or its corresponding matching mechanism is—implicitly or explicitly by using the not used symbol "-" -
left unspecified in the modified template, then the matching mechanism in the corresponding field of the
parent template shall be used. When the field to be modified is nested within atemplate field whichisa
structured field itself, no other field of the structured field is changed apart from the explicitly denoted one(s).

c) For templates, template fields and elements of r ecor d of andset of types, the above rules specified for
r ecor dsand set sapply with the following deviations:

- if the value list notation is used, only the number of elements listed in the modified template is inherited
from the parent (i.e. thelist is truncated at the last element of the list notation in the modified template);

- when individual values of a modified template or a modified template field of record of orset of
type wished to be changed, and only in these cases, the index assignment notation may also be used,
where the left hand side of the assignment is the index of the element to be altered.

Incaseof record of andset of typesfirst apply rule (c) to the complete structure (e.g. truncation) than apply
further rules for the remaining individual type structure elements (see example 3).

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if thisis denoted by the dash (don't change) symbol at the place
of the parameters default value or respectively template.

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.

ETSI

157 ETSI ES 201 873-1 V4.16.1 (2024-10)

A modified template or fields of a modified record or set template may also be declared fuzzy using the @ uzzy
modifier. A modified field with the @ uzzy modifier becomes fuzzy even if it wasn't fuzzy in the base template and
will be evaluated for fuzzy fields described in the clause 6.2.1.0. A modified field without the @ uzzy modifier that
was marked @ uzzy in the base template |oses fuzzy evaluation and the template on the right hand side of and
assignment shall be evaluated just once when the assignment is evaluated for the first time.

NOTE 2: If afuzzy modified template modifies a non-fuzzy unparameterized template, the inherited fields before

modification will be the same for every evaluation of the fuzzy template.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

b)

©)

d)

€)

f)

A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

If abase template has aformal parameter list, the following rules apply to al modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) thederived template shall not omit parameters and change types or names of parameters defined at any
of the modification steps between the base template and the actual modified template;

2) atemplate parameter restriction of a derived template specified at any of the modification steps between
the base template and the actual modified template can be changed to a stricter one (see table 13A in
clause 15.8);

3) aderived template can have additional (appended) parametersif wished;

4) if the dash (don't change) symbol is used at the place of a default value or default template, the
corresponding parameter of the parent template shall have a valid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

Restrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

Limitations on template restrictions described in clause 15.8 shall apply.

After completing initialization, modified global and local templates that do not contain the @bst r act
modifier shall be fully initialized.

If the base template has a restriction, the modified template derived from it shall have the same or less strict
template restriction (see table 13B in clause 15.8). If the base template does not have atemplate restriction, the
modified template derived from it shall not have a template restriction.

NOTE 3: Initiaization of modified templates without parametersis completed at the place of their declaration.

Initialization of modified parameterized templates is completed at the time of their use.

Examples

EXAMPLE 1. Modifying record templates (non-embedded case):

/1 Modifying records
type record MyRecordType
{

integer fieldl optional,
charstring field2,
bool ean fiel d3

}
tenpl ate MyRecordType m nyRecTenpl atel : =

}

fieldl := 123,
field2 := "A string",
field3 := true

/1 then writing
tenpl ate MyRecordType m nyRecTenpl ate2 nodi fi es m nyRecTenpl atel : =

fieldl :
field2 :

omt, /1 fieldl is optional but present in mnyTenplatel
"A nodified string"

ETSI

158 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 field3 is unchanged

I/l is the sane as witing
/'l tenplate M/RecordType m nyRecTenpl ate2 : =

Il {

11 fieldl := omt,

I/ field2 := "A nodified string",
/1 field3 := true

I}

tenpl ate MyRecordType m nyRecTenpl ate3 nodi fi es mnyRecTenpl atel := {omt, "A nodified string"}
//field3 is inplicitly left unchanged;
/I mnyRecTenpl at e3 has the sanme content as m nyRecTenpl at e2

tenpl ate MyRecordType m nyRecTenpl ate4 nodi fies mnyRecTenpl atel := {omt,"A nodified string",-}
//field3 is explicitly left unchanged;
/I m nyRecTenpl at e4 has the same content as mnyRecTenpl ate2 and m nyRecTenpl at e3

EXAMPLE 2: Modifying record of templates (non-embedded case):
type record of integer MyRecordOf Type;
tenpl ate MyRecordOf Type m nyBaseTenplate := { 0, 1, 2, 3, 4, 5 6, 7, 8 9};

tenpl ate MyRecor dOf Type m nyRecOf Tenpl at el nodi fi es m nyBaseTenpl ate : =
{-»-,3 2 -, -, -, -, -, -}
/1l mnyRecOf Tenpl atel contains { O, 1, 3, 2, 4, 5, 6, 7, 8 9}

tenpl ate MyRecordOf Type m nyRecOf Tenpl at e2 nodi fi es m nyBaseTenplate := { -, -, 3, 2 };
/'l mnmyRecOf Tenpl at e2 repl aces m nyBaseTenplate with: { 0, 1, 3, 2 };
/1 elenments 5 to 10 of mnyBaseTenpl ate are truncated

tenpl ate MyRecor dOf Type m nyRecOf Tenpl at e3 nodi fi es m nmyBaseTenplate := { [2] := 3,
/1 mnyRecOf Tenpl at e3 has the sane content as m nyMdlTenplate: { 0, 1, 3, 2, 4, 5

EXAMPLE 3: Modifying embedded record and record of templates:

/1 Modifying a record enbedded in a record of
type record of record {

i nteger a,

integer b
} MyLi st Type

tenpl ate MyLi st Type nw_nyBaseListTenplate :={ ?, { a:=1, b:=2}, ?, { a:=3, b:=41}}
tenpl ate MyLi st Type nw_nyLi st Tenpl at el nodi fi es mnv_nyBaselLi st Tenplate := { [1] :={ a :=42} }
/1 Content of field "a" of the second elenent is nodified,

//the content of mw nyListTenplatel is: { ?, { a:=42, b:=2}, ?, { a:=3, b:=41}}

tenpl ate MyLi st Type nw_nyLi st Tenpl ate2 nodi fi es mw_nyBaseListTenplate :={ -, { a:=42} ,- }

//Content of field "a" of the second elenent is nodified, and the
/lrecord of is truncated after the third elenent: { ?, { a:=42, b:=21}, ?}

EXAMPLE 4: Modified in-line template:

/1 Gven

tenpl ate MyRecordType msetup : =
fieldl := 75,
field2 := "abc",
field3 := true

}

/1 Could be used to define an in-line nodified tenplate of Setup
/1 pcol.send (nodifies msetup := {fieldl:= 76});

EXAMPLES: Modified parameterized template:

/1l Gven

tenpl ate MyRecordType m nyTenpl atel(i nteger p_nyPar):=
fieldl := p_nyPar,
field2 := "A string",
field3 := true

ETSI

159 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 then a nodification could be
tenpl ate MyRecordType m nyTenpl ate2(i nteger p_nyPar) nodifies mnyRecTenpl atel : =
// fieldl is paraneterized in mnyTenplatel and renains al so paraneterized in mnyTenpl at e2

field2 := "A nodified string"
}

EXAMPLE 6: Default values of modified parameterized templates:
/1 Gven

tenpl ate M/RecordType mnyTenpl atell (integer p_int :=5):=
/1 p_int has the default value 5

fieldl := p_int,
field2 := "A string",
field3 := true

}

/1 then possible tenplate nodifications are
tenpl ate MyRecordType m nyTenpl atel2(integer p_int) nodifies mnyTenpl atell : =
/1 p_int had a default value in mnyTenpl atell but has none in this tenplate

field2 := "B string"
}

tenpl ate MyRecordType m nyTenpl atel3(integer p_int := 0) nodifies mnmnyTenplatel2 := { }
/1 p_int has the default value 0
/1 no change is made to the tenplate's content, but only to the default value of p_int

tenpl ate MyRecordType m nyTenpl ateld(integer p_int := -) nodifies mnyTenplatel3 : =
[/ p_int inherits the default value O fromits parent mnyTenpl atel3
field2 := "C string"

}

tenpl ate MyRecordType m nyTenpl atel5(integer p_int := -) nodifies mnyTenplateld : =

I/l p_int inherits the default value O from mnyTenpl atel3 via mnyTenpl at el4

field2 := "D string"
}

tenpl ate MyRecordType m nyTenpl atel6(i nteger p_int) nodifies mnyTenplatel5 := { }
/1 p_int has no default value; no change in the tenplate's content

tenpl ate M/RecordType m nyTenpl atel7(integer p_int := -) nodifies mnyTenpl atel6 : =
/'l causes an error as p_int has no default value in the parent tenplate mnyTenpl atel6

field2 := "E string"
}

EXAMPLE 7: Modifieswith variables:
var tenplate MyRecordType v_nodification :=
field2 := "Gstring" // fieldl/field3 are uninitialized
iar tenpl ate MyRecordType v_nyTenpl ate : = nodifies mnyTenpl atel(5) := v_nodification;

/1 no nodification of fieldl/field3
Il results in{ fieldl :=5, field2 := "G string", field3 := true }

EXAMPLE 8: Modifies with restricted templ ates:

tenpl ate MyRecordType m nyUnrestrictedRecTenpl atel : =

fieldl := 123,
field2 := "A string",
field3 := true

}
tenpl at e(val ue) MyRecordType m nyVal ueRecTenpl atel :

fieldl := 123,
field2 := "A string",
field3 :=true

}

tenpl ate MyRecordType m nyUnrestrictedRecTenpl ate2 nodifies mnyUnrestrictedRecTenpl atel : =
{

ETSI

160 ETSI ES 201 873-1 V4.16.1 (2024-10)

field2 := "A nodified string" // fieldl, field3 is unchanged
}

tenpl at e(val ue) MyRecordType m nyVal ueRecTenpl ate2 nodifies mnyUnrestrictedRecTenpl atel : =

field2 := "A nodified string" // fieldl, field3 is unchanged
} // ERROR the nodified tenplate has different restriction fromthe base tenplate

tenpl at e(val ue) MyRecordType m nyVal ueRecTenpl at e3 nodi fi es m nyVal ueRecTenpl atel : =

field2 := "A nodified string" // fieldl, field3 is unchanged
}

tenpl ate MyRecordType m nmyUnrestrictedRecTenpl ate3 nodi fi es m nyVal ueRecTenpl atel : =

field2 := "A nodified string" // fieldl, field3 is unchanged
} /1 Alowed nodification as the nodified tenplate is less restrictive than the base tenplate

EXAMPLE 9:

/1 Modifying records
type record R2

{
i nteger num
charstring str
}
tenplate R2 mbase := { num:= 0, @uzzy str := testcasenane(); }
template R2 mnodifiedR nodifies mbase :={ num:=51} // mnodifiedR str is still fuzzy
tenplate R2 mnodifiedR2 nodifies mbase := { str := "foobar" } // mnodifiedR2.str is not fuzzy
tenplate R2 m nodifi edR3 nodi fies mbase : =
{ str := mbase.str & "_used" } // mbase.str is used in an expression in non-fuzzy assi gnnent

/1 so the right hand side of mbase.str is evaluated just once

tenplate R2 m nodifi edR4 nodi fies mbase : =
{ @uzzy str := mbase.str & "_used" } // here, mbase.str would only be eval uated
/1 whenever mnodifiedR4.str is evaluated
/1 (fuzzy field assignment overridden by new fuzzy assi gnnent)

15.6 Referencing elements of templates or template fields

15.6.0 General

This clause defines rules and restrictions for referencing elements of templates or template fieldsin case of unrestricted
templates or templates with the present restriction. When referencing elements of templates or templates fields with the
value or omit restriction, the rules for referencing elements of values are used.

15.6.1 Referencing individual string elements

Itisallowed to reference individua string elements inside templates or template fields if any of the following
conditionsis fulfilled:

. The template is of a character string type and it contains either a specific value, pattern or AnyValue or when
occurring on the left hand AnyValueOrNone. In case of patterns, metacharacters described in clause B.1.5.0 are
treated as a single item the for indexing purposes according to the rules specified in table B.1.

e Thetemplateis of abinary string type and it contains either a specific value, matching mechanism inside
values, AnyValue or AnyValueOrNone. If the referenced binary string contains a matching mechanisminside a
value, this matching mechanism is treated as a single item for indexing purposes.

e Thetemplateisof abinary string type and it contains a combined template. In this case, individual items of the
combined template are concatenated and the reference is applied to the result of this concatenation using the
rules described in this clause.

e |nany of the cases mentioned above, the reference template might containi f pr esent and| engt h
matching attributes.

ETSI

161 ETSI ES 201 873-1 V4.16.1 (2024-10)

When the reference occurs on the right hand side of an assignment, the result of the reference is always a template with
the following content:

a)

b)

f)

9)

h)

)

A specific value containing a single element if the referenced template is of abinary or character string type to
which a specific value is assigned and the index in non-negative and less than the number of itemsin the
specific value. The value can contain either a single item of the string type (bit, hex, octet or character) or a
matching mechanism inside a value (such as AnyElement or AnyElementOrNone).

A pattern containing either a single character or a single metacharacter, if the referenced templateis of a
character sting type to which a pattern is assigned and the index is non-negative and less than the number of
characters and indexable metacharacters inside the pattern.

A specific value containing a single AnyElement matching mechanism if the referenced template is of abinary
string type to which the AnyValue matching mechanism is assigned.

A specific value containing a single AnyElement matching mechanism with thei f pr esent matching
attribute attached to it if the referenced template is of a binary string type to which the AnyValueOrNone
matching mechanism is assigned.

A pattern containing a single ? metacharacter if the referenced template is of a character string type and
contains the AnyValue matching mechanism.

A pattern containing a single ? metacharacter with thei f pr esent matching attribute attached to it if the
referenced template is of a character string type and contains the AnyValueOrNone matching mechanism.

If the referenced template containsal engt h matching attribute, the reference shall be resolved only if the
referenced element is less than the maximum allowed length. The result of the reference shall be without the
| engt h attribute.

If the referenced template containsthei f pr esent matching attribute, the result of the reference shall
contain this attribute as well.

If the referenced template has the pr esent restriction, a matching symbol that fulfills the requirements of the
pr esent restriction or if the referenced field is unrestricted and represents a mandatory field of ar ecor d or
set orany field of auni on, anyt ype, record of , set of or array, the result shall have the pr esent
restriction.

If the referenced template hasthe val ue or omi t restriction, the result shall have theval ue restriction.

When the reference occurs on the left hand side of an assignement, the right hand side of the assignment shall contain
either a string value or specific value of a compatible type or a pattern. Both string value and specific value shall
contain exactly one indexable item (either a bit, hex, octet, character or matching mechanism inside avalue). The result
of the assignment is as follows:

a)

b)

d)

When referencing an item of a binary string template to which a specific value is assigned, if theindex is
non-negative and less than the number of items in the specific value, the referenced item shall be replaced with
the item from the right hand sign of the assignment.

When referencing an item at the index n of abinary string template to which a specific valueis assigned, if the
index is greater than or equal to the number of itemsin the specific valug, first as many AnyElement matching
symbols shall be appended to the specific value asis the difference between n and the number of itemsin the
specific value and then the item from the right hand side of the assignment shall be appended to the specific
value on the left hand side.

When referencing an item of a character string template to which a specific value is assigned, if the index is
non-negative and less than the length of the specific value and the right hand side contains a specific value, the
referenced item shall be replaced with the item from the right hand sign of the assignment.

When referencing an item of a character string template to which a specific valueis assigned, if theindex is
equal to the length of the specific value and the right hand side contains a specific value, the character from the
right hand side of the assignment shall be appended to the specific value on the left hand side.

ETSI

€)

f)

9)

h)

k)

162 ETSI ES 201 873-1 V4.16.1 (2024-10)

In all other cases of referencing an item of a character string template to which a specific value is assigned
using a non-negative index (i.e. the index is greater than the string length or the item on the right hand side of
the assignment is a pattern), the specific value shall be converted into a pattern that matches precisely the
specific value (i.e. automatically escaping the characters that would otherwise have a metacharacter meaning
by prefixing them with a backslash symbol). Then the rules for referencing an item of a pattern on the left
hand side of an assignment shall be applied to assign the right hand side of the assignmend to this pattern. The
modified pattern is then assigned to the referenced template.

When referencing an item of a character string template to which a pattern is assigned, if theindex is
non-negative and less than the number of itemsin the pattern, the referenced character or metacharacter shall
be replaced with the item from the right hand side of the assignment.

When referencing an item at the index n of a character string template to which a pattern is assigned, if the
index is greater than or equal to the number of itemsin the pattern, first as many ? metacharacters shall be
appended to the pattern asis the difference between n and the number of items in the pattern and then the item
from the right hand sign of the assignment shall be appended to the pattern.

If the right hand side of the assignment described in point €), f) and g) contains a pattern with more than one
item, this pattern shall be implicitly converted into a single group metacharacter (by enclosing it to
parentheses) before the assignment.

When referencing an item of a binary string template to which the AnyValue or AnyValueOrNone matching
symbol is assigned using a non-negative index, a binary string with length 0 is assigned to the referenced
template and procedures described in the point b are applied to finish the assignment. Then, if the referenced
template contained the AnyValueOrNone matching symbol, thei f pr esent matching attribute shall be added
to the referenced templateif it does not contain it.

When referencing an item of a character string template to which the AnyValue or AnyValueOrNone matching
symbol is assigned using a non-negative index, a pattern with length 0 is assigned to the referenced template
and procedures described in the point g are applied to finish the assignment. Then, if the referenced template
contained the AnyValueOrNone matching symbol, thei f pr esent matching attribute shall be added to the
referenced template if it does not contain it.

If the referenced template containsal engt h matching attribute and the index is greater or equal to the
maximum allowed length, the maximum allowed length shall be changed to the value of the index + 1.

If the referenced template containsthei f pr esent matching attribute, the attribute is not removed by the
assignment.

An error shall beissued in all other cases, i.e.:

If the referenced template (on the left hand side or right hand side) contains any other matching symbol than
those listed above, such as Omit, template list or a complemented template list.

If the index is a hegative number.

If theindex is used on the right hand side of an assignment and is greater than or equal to the maximum
allowed length.

If the index is used on the left hand side of an assignment and the right hand side contains a binary string value or
specific template with not exactly one indexable item.

EXAMPLE:
var tenplate charstring v_charl := "MCHAR',

v_char 2,

v_char3 := pattern "abc?[a-z]";
v_char2 := v_charl[1]; // v_char2 will be equal to "Y' after the assignnent
v_char2 :=v_char3[3]; // v_char2 will be equal to pattern "?" after the assignnment
v_char2 := v_char3[4]; // v_char2 will be equal to pattern "[a-z]" after the assignment
v_char3 := ?;
v_char2 := v_char3[0]; // v_char2 will contain pattern "?" after the assignnent
v_char3 : = pattern "abc?[a-z]";
v_char3[6] := pattern "x+"; // v_char3 will contain pattern "abc?[a-z]?x+" after the assi gnnent
v_char3 := "abc";
v_char3[4] := pattern "[a-f][g-k]"; // v_char3 will change to pattern "abc([a-f][g-k])"

ETSI

163 ETSI ES 201 873-1 V4.16.1 (2024-10)

v_char3[2] := "test"; // will produce an error as the character string contains nore than one
/'l character

var tenplate octetstring v_octl := '01234567890ABCDEF' O,
v_oct 2,
v_oct3 := '01??AB*' O
v_oct2 :=v_octl[1]; // v_oct2 will be equal to '23" O after the assignnent
v_oct2 :=v_oct3[2]; // v_oct2 will be equal to '?" O after the assignnent
v_oct3 1= *;
v_oct2 :=v_oct3[0]; // v_oct2 will contain '?"Oifpresent after the assignment
v_octl[2] :='?"Q [// v_octl will contain '0123?67890ABCDEF' O after the assi gnnent
v_oct3 :="'0123'Q
v_oct3[4] :="'FF O // v_oct3 will change to '0123??FF O
v_octl :="FFFF Q
v_oct2 := v_oct1[10] // will produce an error as the index is greater than the length of v_octl_

15.6.2 Referencing record and set fields

Both templates and template variables allow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases:

a Omit, AnyValueOrNone, template lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyValueOrNone, atemplate list or acomplemented list is assigned, at the right hand side of
an assignment, shall cause an error.

When referencing a subfield within a structured field to which AnyValueOrNone or omit is assigned, at the left
hand side of an assignment, the structured field isimplicitly set to be present, it is expanded recursively up to
and including the depth of the referenced subfield. During this expansion an AnyValue shall be assigned to
mandatory subfields and AnyValueOrNone shall be assigned to optional subfields. After this expansion the
value or matching mechanism at the right hand side of the assignment shall be assigned to the referenced
subfield.

When referencing a subfield within a structured field to which template lists or complemented template lists
are assigned, at the left hand side of an assignment, shall cause an error.

Examples

EXAMPLE 1.

type record Rl {
integer f1 optional,

R2 f2 optional
}
type record R2 {
i nteger g1,
R2 g2 optional
}
;/ar template R1 v_rl := {
fl1:=5,
f2 := omt

}
var tenplate R2 v_r2 := v_rl.f2.92;
/] causes an error as onit is assigned to v_rl.f2
vrl.f2 .:=%*;
v r2 :=v_rl.f2. g2
/] causes an error as * is assigned to v_rl.f2

v_rl = ({fl:=omt, f2:={gl:=0, g2:=omit}}, {f1l:=5 f2:={gl:=1, g2:={gl:=2, g2:=omit}}});
v_r2 :=v_rl.f2;

v_r2 :=v_rl.f2. 92;

v_r2 :=v_rl.f2.g2.g2;

/1 all these assignnents cause error as a tenplate list is assigned to v_rl

v_rl :=
conpl ement ({f1:=omt, f2:={gl:=0, g2:=omit}},{f1l:=5 f2:={gl:=1, g2:={gl:=2, g2:=onmit}}});

v r2 :=v_rl.f2;
v_r2 :=v_rl.f2.92;
v_r2 :=v_rl.f2. 9g2.92;
/1 all these assignnents cause errors as a conplenented list is assigned to v_rl

ETSI

164 ETSI ES 201 873-1 V4.16.1 (2024-10)

b) AnyValue: when referencing a subfield within a structured field to which AnyValueis assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyValueOrNone shall be
returned for optional subfields.

When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field isimplicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyValueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

v_rl := {fl1:=0, f2:=?}
v r2 :=v_rl.f2. 92;
/] after the assignnment v_r2 wll be {gl:=?, g2:=*}
v_rl.f2.92.92 := ({gl:=1, g2:=omit},{gl:=2, g2:=onmit});
/1 first the field v_r1.f2 has hypothetically be expanded to {gl:=?,92: ={gl:=?,g2: =*}}
/1 thus after the assignment v_rl will be:
I {f1:=0, f2:={gl:=?,92:={gl:=?,02:=({gl: =1, g2:=omit},{gl:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to whichi f pr esent isappended).

d) Specia valuenul | : referencing afield of an addr ess type, which actual valueisnul | shall cause an error.

15.6.3 Referencing record of and set of elements

Both templates and template variables allow referencing elementsof ar ecor d of , array or set of templateor field
using the index notation. However, a matching mechanism may be assigned to the template or field within which the
element is referenced. This clause provides rules on handling such cases:

a) Omit: referencing an element within arecord of, set of or array field to which omit is assigned shall follow the
rules specified in clause 6.2.3.

b) Templatelists, complemented lists, subset and superset: referencing an element within arecord of or set of
field to which a complemented list, a subset or a superset is assigned, shall cause an error.

Examples

EXAMPLE 1:
type record of integer Rol;

var tenplate Rol v_rol;
var tenplate integer v_int;
v_rol := ({},{0},{0,0},{0,0,0});
v_int := v_Rol[0];
/1 shall cause an error as tenplate list is assigned to v_rol

c) AnyValue: when referencing an element of ar ecord of orset of templateor field to which AnyValueis
assigned (without alength attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue, the index of the reference shall not violate the length attribute.
When referencing an element withinar ecord of orset of templateor field to which AnyValueis
assigned (without alength attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to all elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When a length attribute is attached to AnyValue, the attribute shall be conveyed to the new template or
field transparently. The index shall not violate type restrictionsin any of the above cases.

ETSI

165 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2:

type record of integer Rol;
type record of Rol RoRol;

var tenplate Rol v_rol;
var tenplate RoRol v_roRol;
var tenplate integer v_int;

;/_rol =2,
v_int :=v_rol[5];
/1 after the assignnent v_int will be AnyVal ue(?);
v_roRol := 7?;
v_rol := v_roRol[5];

/Il after the assignnent v_rol will be AnyVal ue(?);
v_int := v_roRol[5].[3];

/] after the assignnent v_int will be AnyVal ue(?);
v_rol :=? length (2..5);
v_int :=v_rol[3];

/1 after the assignnent v_int will be AnyVal ue(?);
v_int :=v_rol[5];

/1 shall cause an error as the referenced index is outside the length attribute
/1 (note that index 5 would refer to the 6'" el enment);

v_roRol[2] := {0, 0};

I/l after the assignnent v_roRol will be {?,?,{0,0},*};
v_roRol[4] := {1, 1};

/1 after the assignnent v_roRol will be {?,?,{0,0},?, {1, 1}, *};

v_rol[0] := -5
/Il after the assignnent v_rol will be {-5 *} length(2..5);
v_rol :=? length (2..5);
v_rol[1] :=1;
// after the assignnent v_rol will be {?,1,*} Iength(2..5);
v_rol[3] := 7%
/1 after the assignnent v_rol will be {?,1,?,?,*} length(2..5);
v_rol[5] :=5;
/1 after the assignnent v_rol wll be {?,1,?,?,?2,5*} length(2..5); note that v_rol

/1 becones an enpty set but that shall cause no error;

d) AnyValueOrNone: referencing an element within arecord of, set of or array field to which AnyValueOrNone
with or without alength attribute is assigned on the right hand side of an assignment shall cause an error.
When referencing an element within arecord of, set of or array field to which AnyValueOrNone is assigned on
the left hand side of an assignment, the rules for AnyValue shall apply (see item c) for more details).

EXAMPLE 3:

type record of integer Rol;
type record R

Rol fieldl optional
}
var tenplate Rmv t1 :={ fieldl :=* };
var tenplate integer nmw_ t2;
nv tl.fieldl[2] := 2; // after the assignnent, nwtl will be { fieldl :={ ?, ?2, 2, * } }
mv tl.fieldl := *;
mvt2 :=mvtl. fieldl[O];
/1 shall cause an error as nw_ tl.fieldl contains AnyVal ueOr None

e) Permutation: when referencing an element of ar ecor d of template or field, whichislocated inside a
permutation (based on itsindex), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyElementsOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 4:

v_rol:= {pernutation(O0,1,3,?),2,7?};
v_int :=v_rol[5];
// after the assignment v_int will be AnyVal ue(?)

v_rol:= {pernutation(O0,1,3,?),2,*};

v_int :=v_rol[5];
/1 after the assignment v_int will be * (AnyVal ueOr None)

ETSI

166 ETSI ES 201 873-1 V4.16.1 (2024-10)

v_int :=v_rol[2];
/] causes error as the third elenent (with index 2) is inside pernutation

v_rol:= {pernutation(O0,1,3,*),2,7?};

v_int :=v_rol[5];
/] causes error as the pernutation contains AnyVal ueOrNone(*) that is able to
/1 cover any record of indexes

f) Ifpresent attribute: referencing an element withinar ecord of orset of fieldtowhichthei f present
attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
i f present isappended).

g) AnyElementsOrNone: when referencing an element of arecord of or set of template or field that contains
AnyElementsOrNone, the result of an operation is dependent on the position of AnyElementsOrNone, the
referenced index and length attributes attached to AnyElementsOrNone.

When resolving the reference, atransformed form of the record of or set of template is used. The transformed
formisequal to the original value where all occurrences of AnyElementsOrNone with alength restriction are
replaced with a sequence of AnyElements of the same size as the lower bound. If the lower bound is greater
than the upper bound, the sequence shall be followed by a single AnyElementsOrNone symbol with alength
restriction. The lower bound of this restriction is zero and the upper bound is the difference between the lower
and upper bound of the original restriction.

EXAMPLE 5:

type record of integer Rol;

tenplate Rol mwrol := {1, * length(2), 5}; /1 transformed form {1, ?, ?, 5}

tenplate Rol mwrol := {1, * length(1..3), 5}; // transformed form {1, ?, * length(0..2), 5}

h) Specia valuenul | : referencing an element of an addr ess type, which actual valueisnul | shall cause an
error.

When the reference is used at the right hand side of the assignment, the following applies:

- If positions of all AnyElementsOrNone matching symbolsin the transformed form are greater than the
position of the referenced item, rules from the clause 6.2.3.2 are used for resolving the reference.

EXAMPLE 6:

type record of integer Rol;

Var tenplate Rol v_rol := {1, 2, * length(2), 5};
/l transformed form {1, 2, ?, ?, 5}
var tenplate integer v_int;

v_int :=v_rol[1]; // after the assignnent, v_int will be 2
v_int :=v_rol[2]; /] after the assignnent, v_int will be ?
- If the position of the referenced itemis greater or equal to the position of any AnyElementsOrNone
symbol in the transformed template, an error is generated.
EXAMPLE 7:

type record of integer Rol;

var tenplate Rol v_rol := {1, 2, *, 5};

var tenplate integer v_int :=v_rol[3]; // produces an error
v_rol := {1, 2, *};

v_int :=v_rol[2]; [/ produces an error

When the reference is used at the left hand side of the assignment, the following applies:

- If positions of all AnyElementsOrNone matching symbolsin the transformed form are greater than the
position of the referenced item the following rules are used. If the referenced item is not aresult of
transformation, the value or matching symbol at the right hand side of the assignment shall replace the
referenced symbol in the original template. If the referenced element was aresult of transformation, then
the AnyValueOrNone symbol in the original template is replaced with its transformed form and the
assignment is performed afterwards.

ETSI

167 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 8:

type record of integer Rol;

var tenplate Rol v_rol := {1, 2, * length(2), 5};

/l transformed form {1, 2, ?, ?, 5}
v_rol [1] := 10; /Il after the assignnment, v_Rol wll be {1, 10, * length(2), 5}
v_rol [2] :=3; /1 after the assignnent, v_Rol will be {1, 10, 3, ?, 5}

- If the position of the referenced item is greater or equal to the position of any AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone symbol is not the last element in the
template, an error is generated.

EXAMPLE 9:
type record of integer Rol;

Var tenplate Rol v_rol:= {1, 2, *, 5},
v_rol[3] :=4; // produces an error

- If the position of the referenced item is greater or equal to the position of an AnyElementsOrNone
symbol in the transformed form and this AnyElementsOrNone is the last symbol in the template, the
value or matching symbol at the right hand side of the assignment shall be assigned to the referenced
element. Then the AnyElementsOrNone symbol and all unbound values between it and the referenced
symbol shall be replaced with AnyElement symbols. If the AnyElementsOrNone symbol had a length
restriction, only as many AnyElement symbols can be added as is the value of the upper bound of the
restriction. Asthe last step, an AnyElementsOrNone symbol can be appended to the end of the template.
The symbol is always appended if the original AnyElementsOrNone symbol was unrestricted. If the
original AnyElementsOrNone had alength restriction, the symbol is appended only if the restriction
included items beyond the referenced item. In such a case, the appended symbol contains the original
length restriction adjusted by the difference between the size of the template before and after assignment.

EXAMPLE 10:

type record of integer Rol;

var tenplate Rol v_rol := {1, 2, * };
v_rol[4] :=5; /Il {1, 2, ?, ?, 5 *};
v_rol := {1, * length(1..2)};
v_rol[4] :=5; [/ {1, ?, ?, -, 5};

/1 short length restriction: only two ? synbols added and no * at the end
v_rol := {1, * length(1l..5)};

v_rol[2] :=3; /] {1, ?, 3, * length(0..3)};
/1 adjusted length restriction at the end

Theindex of the referenced item shall not violate type restrictionsin any of the above cases.

15.6.4 Referencing signature parameters

While signature templates do not allow referencing their parameters directly (e.g. using dot notation), such areference
is possible when modifying a signature template. However, there can be a matching mechanism assigned to the
signature template. This clause provides rules for such cases.

a) Vauelistsand complemented lists: referencing a parameter of a signature template to which avaluelist or a
complemented list is assigned, at the left hand side of an assignment, shall cause an error.

Examples
EXAMPLE 1:
signature MySignature(in integer parl, in integer par2);
tenplate MySignature s_nySignl := ({ parl :=1, par2 := 2}, { parl := 2, par2 :=11});

tenplate MySignature s_nySign2 nodifies s_nySignl := { parl := ? };
/1 shall cause an error as s_nySignl contains a value list tenplate

ETSI

168 ETSI ES 201 873-1 V4.16.1 (2024-10)

b) AnyValue: when referencing a parameter within a signature to which AnyValue is assigned, at the left hand
side of an assignment, the signature template isimplicitly expanded to the parameter level. During this
expansion an AnyValue shall be assigned to all parameters of the template. After this expansion the value or
matching mechanism at the right hand side of the assignment shall be assigned to the referenced parameter.

EXAMPLE 2:

tenpl ate MySignature s_nySign3 := ?;

tenpl ate MySignature s_nySign4 nodifies s_nySign3 :={ parl := 3 };
/1l s_nmySign3 is expanded to { parl :=?, par2 := ? }, then 3 is assigned to parl,
/1 thus s_nySign4 will be { parl := 3, par2 :=?

—-— .9

15.6.5 Referencing uni on alternatives

Both templates and template variables allow referencing alternatives inside a union template definition using the dot
notation. However, the referenced alternative may belong to template field containing a matching mechanism. This
clause provides rules for such cases.

a Omit, AnyValueOrNone, template lists and complemented lists: referencing an aternative of a union template
or template field to which Omit, AnyValueOrNone, atemplate list or acomplemented list is assigned, at the
right hand side of an assignment, shall cause an error.

When referencing an aternative of a union template or template field to which AnyValueOrNone or Omit is
assigned, at the left hand side of an assignment, the template field isimplicitly set to be present and the
referenced alternative becomes the chosen one. If the referenced aternative is not the last element of the dot
notation, rulesin clause 15.6.2 valid for AnyValue shall apply recursively for further expansion. After this
expansion the value or matching mechanism at the right hand side of the assignment shall be assigned to the
referenced subfield.

Referencing an alternative of a union template field to which template lists or complemented template lists are
assigned, at the left hand side of an assignment, shall cause an error.

Examples

EXAMPLE 1.

type record RL {
integer f1,
integer f2

}

type union U {
i nteger cl,
R1 c2

}

type record R2 {
i nteger g1,
U g2 optional

}

var tenplate R2 v_t1 := {
gl := 5,
g2 .=~

var tenplate integer v_t2;
v_tl.g2.f1 := 1,
/1 after the assignnent v_t2.92is { g2 :={ fl1l:=1, f2:=2?21}}
v_t1l.92 := onit;
v_t2 :=v_tl.g2. cl;
/] causes an error as onit is assigned to v_t1l.g2
var tenplate Uv_u := {cl := omt}; //causes an error as union alternatives can not be omtted
var tenplate Uv_u2 := onmit; // after the assignment v_u2 will be omt

ETSI

169 ETSI ES 201 873-1 V4.16.1 (2024-10)

b) AnyValue: when referencing an alternative of a union template or template field to which AnyValueis
assigned, at the right hand side of an assignment, AnyValue shall be returned.
When referencing an alternative of a union template or template field to which AnyValue is assigned, at the left
hand side of an assignment, the referenced alternative becomes the chosen one. If the referenced alternativeis
not the last element of the dot notation, rulesin clause 15.6.2 valid for AnyValue shall apply recursively for
further expansion. After this expansion the value or matching mechanism at the right hand side of the
assignment shall be assigned to the referenced subfield.

EXAMPLE 2:

var tenplate Uv_t3 := ?;
v_t2 :=v_t3.cl,
[/ after the assignnent v_t2 will be ?
v_t3.cl.f1 :=1;
/1 after the assignment v_t3 will be { c1:={ f1:=1, f2:=7?1}}

c) Ifpresent attribute: referencing an alternative of a union template field to which the ifpresent attribute is
attached, shall cause an error (irrespective of the value or the matching mechanism to whichi f pr esent is

appended).

d) Specia valuenul | : referencing an aternative of an addr ess type, which actual valueisnul | shall cause
anerror.

15.6.6 Referencing map elements

Both templates and template variables alow referencing elements of amap template or field using the index notation.
However, a matching mechanism may be assigned to the template or field within which the element is referenced. This
clause provides rules on handling such cases:

a) Omit: referencing an element within a map to which omit is assigned shall follow the rules specified in
clause 6.2.3.7.

b) Template lists and complemented lists: referencing an element within a map field to which alist or
complemented list is assigned, shall cause an error.

Examples

EXAMPLE 1:
type map fromcharstring to integer TMap;

var tenplate TMap v_nap;

var tenplate integer v_int;

v_map = ({["id"] := 1}, {["id"] :=?, ["active"] := 1});
v_int :=v_map [0];

/1 shall cause an error as tenplate list is assigned to v_nap

¢) AnyValue: when referencing an element of anap template or field to which AnyValue is assighed, at the
right- hand side of an assignment, AnyValueOrNone shall be returned.
When referencing an element within anap template or field to which AnyValue is assigned, at the left-hand
side of an assignment, the template or field isimplicitly expanded recursively up to and including, the depth of
the referenced subfield and AnyValue is assigned to the referenced field. Then the value or matching
mechanism at the right-hand side of the assignment shall be assigned to the referenced field and
AnyElementsOrNone shall be added to the map template.

EXAMPLE 2:
type map fromcharstring to integer TMap;

var tenplate TMap v_nap;
var tenplate integer v_int;

v_map = ?;

v_int := v_nap["test"];

/] after the assignment v_int will be AnyVal ueOr None(*)
v_map[“"test"] := 2;

/] after the assignnent v_nmap will be { *, ["test"] := 2}

ETSI

170 ETSI ES 201 873-1 V4.16.1 (2024-10)

d) AnyValueOrNone: referencing an element within amap template or field to which AnyValueOrNoneis
assigned on the right-hand side of an assignment shall cause an error. When referencing an element within a
map template or field to which AnyValueOrNone is assigned on the | eft-hand side of an assignment, the rules
for AnyValue shall apply (see item c) for more details).

EXAMPLE 3:
type map fromcharstring to integer TMap;
ilar tenpl ate TMap v_nap;
var tenplate integer v_int;

;/_map =K
v_int := v_nap["test"];
/1 shall cause an error as v_nap contains AnyVal ueOr None

e) Ifpresent attribute: referencing an element within armap template or field to which thei f pr esent attribute
is attached, shall cause an error (irrespective of the value or the matching mechanism to whichi f pr esent is
appended).

f) AnyElementsOrNone: when referencing an element of anmap template or field that contains
AnyElementsOrNone, if the referenced element is not present and the reference occurs on the right-hand side
of an assignment, AnyValueOrNone shall be returned.

When referencing an element of a map template or field that contains AnyElementsOrNone, if the referenced
element is not present and the reference occurs on the left-hand side of an assignment, the template or field is
implicitly expanded recursively up to and including, the depth of the referenced subfield and AnyValueis
assigned to the referenced field. Then the value or matching mechanism at the right-hand side of the
assignment shall be assigned to the referenced field and AnyElementsOrNone shall be added to the map
template.

EXAMPLE 4:

type map fromcharstring to integer TMap;
;/ar tenpl ate TMap v_nap;
var tenplate integer v_int;
v.mep i={ *, ["id"] :=1};
v_int := v_nmap["test"];
/] after the assignnent v_int will be AnyVal ueO None(*)
0) Specia valuenul | : referencing an element of an addr ess typethat is derived from amap type and whose

actual valueisnul | shall cause an error.

15.7 Template matching mechanisms

15.7.0 General

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Matching mechanisms may also be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:

specific values,
specia symbolsthat can be used instead of values,
special symbols that can be used inside values;

specia symbols which describe attributes of values.

Some of the mechanisms may be used in combination.

ETSI

171 ETSI ES 201 873-1 V4.16.1 (2024-10)

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
intable 11. The left-hand column of thistable lists all the TTCN-3 types to which these matching mechanisms apply.
A full description of each matching mechanism can be found in annex B.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) All other applications of matching mechanisms than the ones allowed in table 11 are forbidden.

Table 11: TTCN-3 Matching Mechanisms

Used with values|Value Instead of values Inside values Attributes
of
S O C T A A R S S P M A A P L |
p m o] e n n a u u a a n n e e f
e i m m y y n p b t t y y r n P
c t p p \% \% g e S t c E E m g r
i | | a a e r e e h | | u t e
f e a | | S t r e e t h S
i m t u u e n d m m a R e
c e e e e t e e e t e n
Vv n L | O c n n i s t
a t i r 0 t t 0 t
| e S N d (?) S n r
u d t o] e o i
e L n d r c
i e N t
S * c o] i
t 0 n o)
n e n
t *
e
n
t
boolean Yes | Yes! | Yes | Yes | Yes |Yes! Yes?!
integer Yes | Yes! | Yes | Yes | Yes |Yes!| Yes Yes?!
float Yes | Yes! | Yes | Yes | Yes |Yes!| Yes Yes?!
bitstring Yes | Yes! | Yes | Yes | Yes |Yes! Yes | Yes | Yes Yes | Yes!
octetstring Yes | Yes! | Yes | Yes | Yes |Yes? Yes | Yes | Yes Yes | Yest
hexstring Yes | Yes! | Yes | Yes | Yes | Yes! Yes | Yes | Yes Yes | Yest
character strings | Yes | Yes! | Yes | Yes | Yes | Yes!| Yes Yes | Yes | Yes? | Yes? Yes | Yest
record Yes | Yes! | Yes | Yes | Yes |Yes! Yes?!
record of Yes | Yes! | Yes | Yes | Yes |Yes! Yes | Yes | Yes | Yes | Yes!
array Yes | Yes! | Yes | Yes | Yes |Yes! Yes | Yes | Yes | Yes | Yes!
set Yes | Yes! | Yes | Yes | Yes |Yes! Yes?!
set of Yes | Yes! | Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes | Yes!
enumerated Yes | Yes! | Yes | Yes | Yes |Yes! Yes'
union Yes | Yes! | Yes | Yes | Yes |Yes! Yes?!
anytype Yes | Yes! | Yes | Yes | Yes |Yes! Yes?!

NOTE 1: Can be assigned to templates of any type as a whole or to optional fields of record and set templates. However
when matching, it shall be applied to optional fields of record and set types only (without restriction on the type of
that field).

NOTE 2: Have matching mechanism meaning within character patterns only.

15.7.1 Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms.

Syntactical Structure

Si ngl eExpr essi on

ETSI

172 ETSI ES 201 873-1 V4.16.1 (2024-10)

Semantic Description

The matching mechanism for a specific value is an expression that evaluates to a specific value.

For further details, refer to clause 6 and to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictionsgivenintable 11 and in annex B.

Examples

nmyPCO. r ecei ve(charstring: "abcxyz");
nyPCO. recei ve(' AAAA' O) ;

15.7.2 Special symbols that can be used instead of values
These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

omt |

"(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] } ")" |

conpl ement " (" { (Tenplatelnstance | all from Tenplatelnstance) [","] } ")" |
won |

"(" (ConstantExpression | -infinity) ".." (ConstantExpression | infinity) ")" |
superset "(" { (Tenplatelnstance | all from Tenplatelnstance) [","] } ")" |

subset "(" { (Tenplatelnstance | all from Tenpl atelnstance) [","] } ")" |

pattern [@ocase] Cstring

decmatch ["(" Expression]")"] Tenpl atel nstance

EnunVal uel dentifier "(" Tenpl ateBody {"," Tenpl at eBody} ")"

Semantic Description
The matching mechanisms for special symbols that can be used instead of values are:
. omit: the optional field, in which it is used, is not present;

NOTE 1: omit can be assigned to templates of any type as a whole or to optional fields of record and set types.
omit can only be used for matching optional fields.

. (...): alist of values or templates;

. complement (...): complement of alist of values or templates,

. ?:. wildcard for any value;

. *: wildcard for any value or no value at al, i.e. the field is not present;

NOTE 2: * can be assigned to templates of any type as awhole or to optional fields of record and set types. * can
only be used for matching optional fields.

. (lowerBound . . upperBound): arange of integer or float val ues between and including the lower- and upper
bounds;

. superset: at least al of the elementslisted, i.e. possibly more;

. subset: at most the elementslisted, i.e. possibly less;

. pattern: acharstring or universal charstring that matches this format;
. decmatch: used for matching of encoded payload fields;

. EnumValuel dentifier with list of templates: used for matching of enumerated values with associated value
list.

ETSI

173 ETSI ES 201 873-1 V4.16.1 (2024-10)
The matching mechanisms list, complemented list, subset, and superset can use the elements of atemplate using the all
from clause.
For further details, refer to annex B.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetheredtrictions givenintable 11 and in annex B.

b) All templates and values used in the matching mechanisms above (including the referenced ones, e.g. within a
pattern) shall be completely initialized.

Examples

nyPCO. recei ve (integer:conplenent(1l, 2, 3));

15.7.3 Special symbols that can be used inside values

These matching mechanisms allow to characterize value sets by varying valuesinside. The template containing a
matching mechanism inside a value notation syntax is called a combined template.

Syntactical Structure

Lt

p;rrrulatl on "(" { (TenplateBody | "?" "*" | all from Tenpl atelnstance)[","] } ")"
Semantic Description
The matching mechanisms for special symbols that can be used inside values are:

. ?: wildcard for any single element in astring, array, record of orset of;

. *: wildcard for any number of consecutive elementsin astring, array, record of orset of,orno
element at al (i.e. an omitted element);

. permutation: all of the elementslisted but in an arbitrary order (note, that ? and * are also allowed as
elements of the permutation list and all elements of atemplate can be added to permutation using the all from
clause).

For further details, refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictions givenintable 11 and in annex B.

b) All templates or values used in the permutation matching mechanism shall be completely initialized.

Examples
tenplate bitstring nwb :="'10???"B; /1 where each "?" nay either be 0 or 1
type record of integer R ;
tenplate R mwri := {1, ?, 3} /1 where ? nay be any integer val ue

15.7.4 Special symbols which describe attributes of values
These matching mechanisms define properties of values.

Syntactical Structure

length "(" ConstantExpression [".." (ConstantExpression | infinity)] ")" [ifpresent] |
i fpresent

ETSI

174 ETSI ES 201 873-1 V4.16.1 (2024-10)

Semantic Description
The matching mechanisms which describe attributes of values are:

. length: restrictions for string length of string types and the number of elementsfor r ecor d of ,set of
and arrays,

e ifpresent: for matching of optional field values (if not omitted).

NOTE 1: ifpresent can be assigned to templates of any type as awhole or to optional fields of record and set types.
ifpresent can only be used for matching optional fields.

NOTE 2: Assigning ifpresent to atemplate that already matches the special value omit (i.e. it is either omit, an
ifpresent template or AnyValueOrNone) has no effect; the resulting template will match the same set of
values and the special value omit as the template the ifpresent is assigned to.

For further details, refer to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictionsgivenin table 11 and in annex B.
b) All values used in the length matching attribute shall be completely initialized.

Examples

type record R {
record of integer ri optional

tenplate R mnv r: =

{
ri :=* length (1 .. 6) ifpresent /1 any value containing 1, 2, 3, 4,

/1 5 or 6 elements, provided it is present

15.8 Template Restrictions

15.8.1 Explicit restrictions

Template restrictions allow to restrict the matching mechanisms that can be used with atemplate. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure

tenplate "(" (omit | present | value) ")" Type
Semantic Description
The restrictions mean in case of:

. (om t) thetemplate shall resolve to avalue matching mechanism (i.e. the fields of it shall resolveto a
specific value or omit, and the whole template may also resolve to omit). Such atemplate can be used to define
afield of arecord and set template and the latter one could still be used in asend statement.

. (val ue) thetemplate shall resolveto a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of arecord or
set template and the latter one could still be used in asend statement.

. (present) thetemplate as awhole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechanisms or matching attributes). Such atemplate can be used to define a
mandatory field of arecord or set template.

ETSI

NOTE:

175

ETSI ES 201 873-1 V4.16.1 (2024-10)

Template restrictions allow TTCN-3 tools to check more easily at compile time whether templates and

matching expressions are used correctly. Whether the checks are performed at compile time and invalid
code isrejected or whether the checks are performed at execution time and dynamic errors are raised, is

outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Matching mechanisms can be used within restricted templates according to table 12.
Table 12: Using matching mechanisms with restricted templates
Used with
template Value Instead of values Inside values Attributes
restriction
S o C T A A R S S P M A A P L |
p m o] e n n a u u a a n n e e f
e i m m y y n p b t t y y r n P
c t p p \% \% g e 5 t c E E m g r
i I I a a e r e e h I | u t e
f e a | | S t r e e t h S
i m t u u e n d m m a R e
c e e e e t e e e t e n
\% n L ? (0] c n n i S t
a t i r (o} t t o} t
| e S N d (? s n r
u d t o] e (0] i
e L n d r C
i e N t
S *) c o] i
t o} n o}
n e n
t *)
e
n
t
omit Yes | Yes
value Yes | Note
1
present Yes | Note | Yes | Yes | Yes |Note | Yes | Yes | Yes | Yes |Note| Yes | Yes | Yes | Yes | Note
1 1 2 1
NOTE 1: ltis allowed to use the matching mechanism in fields of the template, but the template as a whole shall not
resolve to this matching mechanism.
NOTE 2: The matching mechanism is allowed only if the template following the decmatch keyword is fulfilling the given
restriction.
b) Restricted and unrestricted templates maybe used as actual parameters of formal template parameters or

assigned to templates or template variables according to table 13.

ETSI

176 ETSI ES 201 873-1 V4.16.1 (2024-10)

Table 13: Restrictions of formal and actual template parameters

Actual Value Template Template Template Template
parameter/right (omit) (value) (present)
hand side of an
assignment
Formal
parameter/-
left hand
side of an
assignment
template(omit) Yes Yes Yes No No
template(value) Yes Rule 1 Yes No No
template(present) Yes No Yes Yes No
Template Yes Yes Yes Yes Yes
Rule 1: Not allowed with one exception: a template with an omit restriction is allowed to be used on the
right hand side of an assignment if the left hand side resolves into an optional field of a template
with a value restriction.

c) A forma template parameter of a modified template may have a stricter restriction than the same formal
parameter of the base template according to table 13A.

Table 13A: Changing restriction of formal parameters of modified templates

o Allowed parameter restrictions in modified template
Parameter restriction in
Template Template Template Template
base template .
(omit) (value) (present)

template(omit) Yes Yes No No
template(value) No Yes No No
template(present) No Yes Yes No
Template Yes Yes Yes Yes

d) A modified template may have aless strict restriction than the base template according to table 13B.

Table 13B: Changing restriction of modified templates

Allowed restrictions of modified template
Restriction of base template Template Template Template Template
(omit) (value) (present)
template(omit) Yes No No Yes
template(value) Yes Yes Yes Yes
template(present) No No Yes Yes
Template No No No Yes

Examples

/1 definitions of restricted tenplates
type record Exanpl eType {

i nteger a,

bool ean b optional

}

tenpl ate(onmit) Exanpl eType m exanpleQrit := onit;
tenpl ate(omit) Exanpl eType m exanpl eOnitValue:= { 1, true };
?;

tenpl ate(omt) Exanpl eType mwv_exanpl eOmitAny : = /'l incorrect

tenpl at e(val ue) Exanpl eType m exanpl eVal ueomit := onit; /'l incorrect
tenpl at e(val ue) Exanpl eType m exanpleValue := { 1, true };
tenpl at e(val ue) Exanpl eType m exanpl eVal ueOptional := { 1, omt };

// omt assigned to a field is correct

tenpl ate(present) Exanpl eType nw_exanpl ePresent := {1, ?};
tenpl ate(present) Exanpl eType nw_exanpl ePresent|fpresent := { 1, true } ifpresent;

/'l incorrect
tenpl at e(present) Exanpl eType mw_exanpl ePresent Any : = ?;

ETSI

177 ETSI ES 201 873-1 V4.16.1 (2024-10)

/] restricted tenplate usage

var tenplate (omt) ExanpleType v_omt;

var tenplate (present) Exanpl eType v_present;
var tenplate (val ue) Exanpl eType v_val ue;

v_omt := mexanpleOnt;
v_omt := mexanpl eVal ueOpti onal ;
v_onmit := nw_exanpl ePresent Any; /1 incorrect, not a specific value
v_present := mexanpleOnt; /1 incorrect, shall not be omt
v_present := mw_exanpl ePresent;
v_value := mexanpl eOnit; /'l incorrect, shall not be omt
v_val ue : = nw_exanpl ePresent Any; /1 incorrect, shall be a single value
15.8.2 Implicit restrictions for template fields, alternatives and elements

When referencing template fields, alternatives and elements using dot notation, indexes and by modifying templates, the
referenced item shall have an implicit template restriction according to the table 13C. All rules for templates with an
explicit restriction specified in the clause 15.8.1 are valid for template fields, alternatives and elements with an implicit
restriction as well.

Table 13C: Implicit restrictions

Restriction of the parent template, field, alternative or
Referenced field, alternative or element
element template template template template
(omit) (value) (present)
Mandatory field of a record or set, template template template template
alternative of an union or anytype, (value) (value) (present) (present)
element of a record of, set of, array,
map or parameters of a signature
template
Optional field of a record or set template template template template
(omit) (omit)

15.9

The mat ch operation allows to compare a value (specified in form of an expression) with atemplate.

Match Operation

Syntactical Structure

match " (" Expression "," Tenpl atel nstance ")"

Semantic Description

The mat ch operation returns a boolean value. It matches an expression, which shall denote avalue or afield of avalue
against atemplate instance. Types of the expression and the template instance shall be compatible (see clause 6.2.15).
The return value of the mat ch operation indicates whether the expression matches the specified template instance. In
the special case, matching a non-optional value expression (e.g. a value variable or non-optional field of avalue) with a
template instance that matches an omitted field (i.e. one of the matching mechanisms Omit, AnyValueOrNone,
IfPresent) shall be allowed and shall be treated asif the value expression were an optional field. Thus, matching avalue
expression against a template instance which evaluates to the omit matching mechanism shall return f al se.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The expression-parameter of the mat ch operation shall evaluate to a value or shall denote an omitted optional
field, i.e. the mat ch operation cannot be used to compare two templates.

b) The operands of the nat ch operation shall be completely initialized.

ETSI

178 ETSI ES 201 873-1 V4.16.1 (2024-10)

c) Thetype of the template instance-parameter shall be unambiguously identified. If the expression-parameter
evaluates to aliteral value without explicit or implicit identification of its type, the type of the template
instance-parameter shall be used as the type governor for the expression-parameter.

NOTE: Incaseof in-line templates, see restriction b) in clause 15.4.
Examples
EXAMPLE 1: Using the match operation
tenpl ate integer nw | essThanl0 := (-infinity..9);
:rryPort .receive(integer:?) -> value v_rxVal ue;

if(match(v_rxValue, nw|essThanl0)) { ...}
/1 true if the actual value of v_rxvalue is less than 10 and fal se otherw se

type record R { integer a, integer b optional, integer c optional }
const Rc_r :={ a:=1, b:=omt, ¢c:=11}
const integer c_c := 1;

function f_f(tenplate(onmit) integer p_o) {

match(c_c, omt) /1 returns false
mat ch(5, onit) /Il returns false
match(c_c, *) /'l returns true
mat ch(c_r, c_c) /1 error (different types)

match(c_r.a, p_o) /'l returns true if p_o evaluates to 1, false, otherw se

match(c_r.b, p_o) /'l returns true, if p_o is not present, false, otherw se

match(c_r.c, p_o) /'l returns true, if p_o evaluates to 1, false, otherw se

mat ch(c_c, p_o) /1 returns true, if p_o evaluates to 1, false, otherw se

match(c_c, 1) /1 returns true (the syntax of the tenplate paranmeter inplicitly
/1 identifies its type, see clause 15.4)

}

EXAMPLE 2: Using the match operation with enumerated types
type enunerated MyFirstEnunType { Monday, Tuesday, Wdnesday, Thursday, Friday };
type enunerated MySecondEnunType { Saturday, Sunday, Monday };

control {
var MyFirst EnunType v_today := Tuesday;
match (v_today, Sunday) // causes an error, as the value Sunday al one does not specifies
/'l the type context of the tenplate instance-paraneter
mat ch (v_today, MySecondEnunilype: Sunday) // returns fal se
mat ch (Monday, v_today)
//returns false; in this case v_today is governing the type context for the natch operation
/1 (MyFi rst EnunType), but its actual value is different from Mnday

15.10 Valueof Operation

Theval ueof operation allows to return the value specified within atemplate. The returned val ue can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure

val ueof "(" Tenpl atel nstance ")"
Semantic Description
Theval ueof operation returns the value of atemplate instance.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thetemplate shall be completely initialized and resolve to a specific value.

ETSI

179 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

EXAMPLE 1:
type record Exanpl eType

integer fieldl,
bool ean fi el d2

}
tenpl ate Exanpl eType m setupTenpl ate : =

fieldl := 1,
field2 := true
}
var Exanpl eType v_rxVal ue : = val ueof (m setupTenpl ate);
EXAMPLE 2:
function MyFunc() {
var tenplate integer v_tint := omit;
/lis ok, but to be used for optional record or set fields only
var integer v_int := valueof(v_tlnt)

//causes an error as onmt is not a value and shall not be an argunent of val ueof

15.11 Concatenating templates of string and list types

Templates of string and list types (bitstring, octetstring, hexstring, charstring, universal charstring, record of, set of, and
array) can be concatenated from severa single (in-line) templates using the concatenation operation. With the exception
of charstring and universal charstring templates, each single template shall have the same root type.

The single templates of binary string types shall evaluate only to the matching mechanisms specific value, combined
template, AnyValue without alength modifier, AnyValue or AnyValueOrNone, both constrained to a fixed length.

The concatenation of templates of binary string types results in the sequential concatenation of the single templates
from left to right, with two exceptions: matching symbol AnyValue without alength modifier shall be replaced by a
single AnyElementsOr None matching symbol before concatenation and matching symbols AnyValue and
AnyValueOrNone that are each constrained to a fixed length N shall be replaced by N AnyElement matching symbols
before concatenation.

The single templates of list types shall evaluate only to the matching mechani sms specific value, combined template,
AnyValue with or without alength modifier, AnyValueOrNone with alength modifier.

The concatenation of templates of list types results in the sequential concatenation of the single templates from left to
right, with two exceptions: before concatenation, an AnyValue matching symbol without a length modifier shall be
replaced by a single AnyElementsOrNone matching symbol and AnyValue and AnyValueOrNone matching symbols
with alength modifier shall be replaced by an AnyElementsOrNone matching mechanism with the same length
modifier.

Single templates of charstring and universal charstring types shall evaluate only to specific values, AnyValue with or
without alength modifier, AnyValueOrNone with alength modifier or pattern. When concatenating templates of
charstring and universal charstring types, each single template shall be either of the charstring or universal charstring
type. When templates of charstring and universal charstring type are both present in the concatenation, the charstring
values are implicitly converted to universal charstring values according to the rules specified in clause 6.3.1 before
concatenation and the resulting template is of the universal charstring type.

The concatenation of templates of character string types resultsin the sequential concatenation of the single templates
from left to right. In case all operands are specific values, the result of concatenation will be a specific value. In all other
cases, if possible, a pattern will be produced. When producing the pattern, the templates are first transformed to a
character string according to table 14. In the next step, the strings are concatenated and a pattern is created from the
concatenation result. If one of the single templates is a pattern with the @nocase modifier, then all other single
templates shall aso be patterns with the @nocase modifier and the resulting pattern will also have the @ocase
modifier.

ETSI

180 ETSI ES 201 873-1 V4.16.1 (2024-10)

Table 14: Transformation of character string templates before concatenation

Concatenation operand Transformed string
Specific values (character strings) The character string is escaped by inserting the "\"
character before each of the following characters: "#", "(",
B T ST U AU WU AURCAS S (AP A
?, ? length(0..infinity) or * length(O..infinity) *
? length(0) or * length(0) empty string
? length(1) or * length(1) e
? length(1 .. infinity) or * length(1 .. infinity) "o+
? length(n) or * length(n) "?#(n)"
? length(n .. infinity) or * length(n .. infinity) "?#(n,)"
? length(n .. m) or * length(n .. m) "?#(n,m)"
pattern "content" "content"

Concatenation of character strings in a pattern definition is described in clause B.1.5. Concatenation of character strings
in a pattern definition always takes precedence over concatenation of templates. If it is necessary to concatenate a
pattern definition with a following character string according to the template concatenation rules (thus automatically
escaping the string), the pattern definition shall be enclosed into parentheses.

The concatenation shall be performed completely before using the resulting template (e.g. for assignment or matching)
and the result shall be type-compatible with the place of its use.

The length matching attribute shall not follow a template or template field produced by concatenation directly, but in
this case the concatenation shall be placed within apair of parentheses.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) All operands of the concatenation operation shall be at least partialy initialized.

Examples

EXAMPLE 1: Composing templates of binary string types:

tenplate bitstring nwnybit :='010'B & ? & '1'B & ? length(1l) & '1'B;
Il results in the tenplate '010*1?71'B
/1 note that & ? & turns to * within the resulting bitstring as the original ?
/'l stands for a bitstring of any length

tenplate bitstring mnw nybit2 :='010'B & * length(2);
/] results in the tenplate '010??'B
/'l note that the ability of the AnyVal ueOrNone mat ching synbol to nmatch onmitted
/1 values is lost during concatenation

type bitstring ConstrainedBitString | ength(3);
/1 values of this type are always exactly 3 bits |ong

tenpl ate ConstrainedBitString nwnybit3 := ?;

tenplate bitstring nw_nybit4 :='010'B & mv_nybit3;
/1 results in the tenplate '010*' B
/1 note that the type constraint of the nw nybit3 tenplate has no inpact on the
/'l concatenation operation; the AnyValue synbol without a length nodifier is always
/1 replaced with a single AnyEl enent sOr None

tenpl ate octetstring mv_myoctl := "ABCD O & '"EF O & ? & ? length(l) & 'EF O
/1l results in the tenplate ' ABCDEF*?EF O
/Il note that & ? & turns to * within the resulting octetstring as the original ?
/1 stands for an octetstring of any length

tenpl ate octetstring nw.myoct2 := "ABCD O & ? length (2) & 'EF O
/Il results in the tenplate ' ABCD??EF O
/1l (i.e. a5 octets i.e. 10 hexadecimal digits |ong val ue)

tenpl ate octetstring nw nyoctWong := 'ABCD O & ? length(2) length (4);
/1 causes an error, no length matching attribute shall directly follow a concatenation

ETSI

181 ETSI ES 201 873-1 V4.16.1 (2024-10)

tenplate octetstring nw nyoct3 := (' ABCD O & ? length(2)) length (4);
I/l results in the tenplate ' ABCD??' O

teerI ate hexstring mv nyhexPar (integer N):=
"ABCH & ? length(N) & "EH & ? length(l) & 'F H
function f_myFunc() runs on MyConpType {
var integer v_int := 3;
var tenplate hexstring v_hstring;

v_hstring := "ABCH & ? length(v_int) & "EH&? length(l) &' 'F H
/lresults in the tenplate ' ABC???E?F H

p.recei ve (mv_nyhexPar (4));
/lactual content of nw_nmyhexPar is 'ABC????E?F H

}
EXAMPLE 2: Composing templates of list types:

type record of charstring Recof Char;
type set of integer Setoflnt;

tenpl ate Recof Char nw_nyRecof Char := {"ABC'} & {"D?", "EF'};
I/l results in the tenplate {"ABC', "D?", "EF" }

tenplate SetofInt mw nySetofint :={ 1, 2} &? length(2) &{ 3, 4 };
/Il results in the tenplate {1, 2, * length(2), 3, 4}

tenpl ate RecofInt mw nyRecofint :={ 1, 2} &{ * length(1..2), 3, 4 };
/l results in the tenplate {1, 2, * length(1..2), 3, 4}

tenpl at e Recof Char nw_nyRecof CharPar (integer N):={ "ABC' } & ? & * length(N & { "EF" };
function nyFunc2() runs on MyConpType{

var integer v_int := 3;

var tenpl ate Recof Char v_recof Char;

v_recofChar := { "ABC' } & ? length(v_int) & { "EF" };
/lresults in the tenplate { "ABC', * length(3), "EF" }
p.receive (mv_nmyRecof Char Par (3));
/lactual content of nw_nyRecof CharPar is { "ABC', *, * length(3), "EF" }
}

EXAMPLE 3: Composing templates of character string types.

tenpl ate charstring nw_nycharl := "ABC' & "DE*" & "F?";
/1 results in the tenpl ate " ABCDE*F?"
/Il please note that "*" and "?" denote the characters "*" and "?

tenpl ate charstring nw nychar2 := "ABC' & ? & "EF";
/] results in the tenplate pattern "ABCrEF"

tenpl ate charstring nw_nychar3 := "ABC' & * length(1 .. infinity) & "EF";
// results in the tenplate pattern "ABC?+EF"

tenpl ate charstring nw._nychar4 := "ABC' & * length(2 .. 5) & "EF";
/1 results in the tenplate pattern "ABC?#(2, 5) EF"

tenpl ate charstring nw nychar5 := pattern "ABC' & "?EF";
/1 results in the tenplate pattern "ABC?EF"

tenpl ate charstring nw_nychar6 := (pattern "ABC') & "?EF";
/1 results in the tenplate pattern "ABC\ ?EF"

tenpl ate charstring nw_nycharPar (integer p_val):=
"ABC' & ? length(p_val) & "E'" & ? length(1..10) & "F";
/1 the paraneterized tenplate is used inside the follow ng function;
/1 concatenation to a pattern is perforned during instantiation of the
/1 tenplate when all actual paraneter values as known

function f_myFunc3() runs on MyConpType {
var integer v_int := 3;
var tenplate charstring v_cstring;

v_cstring := "ABC' & ? length(v_int .. v_int + 2) &"E'" & ? length(1) & "F";
//results in the tenplate pattern "ABC?#(3, 5) E?F"

p.receive (nw_nycharPar (4));
/lactual content of nw_nmycharPar is pattern "ABC?#4E?#(1, 10) F"

ETSI

182 ETSI ES 201 873-1 V4.16.1 (2024-10)

15.12 The omit operation
Theom t operation checksif atemplate instance fullfils conditions of the omit restriction.

Syntactical Structure

omt "(" Tenplatelnstance ")"
Semantic Description
Theom t operation returns:

. A template with the omit restriction and with the same content as the operand, if the operand fulfils conditions
of the omit template restriction as described in clause 15.8.

e Any other situation shall cause an error.

NOTE: Thismeansthat the result of oni t (m nyTenpl at e) can be safely assigned to templates with the omit
restriction.

Restrictions
Generd static rules of TTCN-3 givenin clause 5 apply.

EXAMPLE:

/1 definitions of restricted tenplates
type record Exanpl eType {

i nteger a,

bool ean b opti onal

}

tenpl ate Exanpl eType moriginal Onit := om
tenpl at e Exanpl eType mori gi nal Val ue : = {

t;
= 1, true};
tenpl ate Exanpl eType morigi nal Any := ?;

tenpl ate(omt) ExanpleType mtargetOrit := omit(moriginal Ont);
tenpl ate(onmit) Exanpl eType mtargetVal ue: = omt(m.original Val ue);
tenpl ate(onmit) Exanpl eType mtargetAny : = omt(m.original Any); /'l causes error

15.13 The present operation

The pr esent operation checks if atemplate fullfils conditions of the present restriction.

Syntactical Structure

present "(" Tenpl atel nstance ")"
Semantic Description
The pr esent operation returns:

e A template with the present restriction and with the same content as the operand, if the operand fulfils
conditions of the present template restriction as described in clause 15.8.

. Any other situation shall cause an error.

NOTE: Thismeansthat the result of present (m nyTenpl at e) can be safely assigned to templates with the
present restriction.

Restrictions
General static rules of TTCN-3 givenin clause 5 apply.

ETSI

183 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE:

/1 definitions of restricted tenplates
type record Exanpl eType {

i nteger a,

bool ean b opti onal

}

tenpl ate Exanpl eType moriginal Onit := om
tenpl ate Exanpl eType mori gi nal Val ue : = {

t;
={ 1, true};
tenpl ate Exanpl eType morigi nal Any := ?;

tenpl ate(present) Exanpl eType mtargetOnit := present(mriginal Onit); //causes error
tenpl at e(present) Exanpl eType m targetVal ue: = present (m.ori gi nal Val ue);
tenpl ate(present) Exanpl eType m targetAny : = present(m.ori gi nal Any);

15.14 Presentness conversion

The conversion of a general (unrestricted) template to atemplate with the pr esent restriction can be achieved by
applying the . pr esent notation to the template.

Syntactical Structure

Tenpl atel nstance "." present

Applying the presentness conversion to atemplate expression with no restriction yields a template with the pr esent
restriction with the following content:

e AnyValueif the referenced template contained AnyValueOrNone.

o Matching mechanism without thei f pr esent attribute if the referenced template had this attribute attached
toit.

e TemplateList where all the alternatives that evaluate to o t are removed and the presentness conversion is
applied to al other alternatives.

. Unchanged template in all other cases.

NOTE: Other matching attributes such as| engt h are unaffected by the conversion, eg.* | engt h(2. . 10)
would be convertedto ? | engt h(2.. 10)

Applying the presentness conversion to atemplate expression that hasthe pr esent or val ue restriction yields the
same template with the same template restriction.

Applying the presentness conversion to atemplate expression with the om t template restriction yields the same
template with the val ue restriction.
Restrictions

a) Applying the presentness conversion to a template that only matches the special value omit shall result in an
error.

Examples

type record Exanpl eType {
i nteger a,
bool ean b optional

}

tenpl ate Exanpl eType mexanple := { 1, *}; // unrestricted

var tenpl ate(present) boolean v_field := mexanple.b.present; // mfield is set to ?
v_field := mexanple.b; // causes and error as assignnent of an unrestricted tenplate to

// a tenplate with the present restriction is not allowed

ETSI

184 ETSI ES 201 873-1 V4.16.1 (2024-10)

15.15 The Value Extraction

The extraction of the underlying value from a charstring pattern matching mechanism or atemplate with the omi t
restriction can be achieved with the . val ue notation applied to a Templatel nstance.

Syntactical Structure

Tenpl at el nstance "." val ue
Semantic Description

Applying this extraction to a pattern matching mechanism of the form pat t er n StringValue will yield the value
SringValue. If the pattern contains any matching attribute, the attribute shall be removed by the extraction.

Applying this extraction to atemplate that evaluatesto Valuei f pr esent will yield the value Value.
Applying this extraction to atemplate that contains a value will yield that value.
Restrictions

a) Applying the value extraction to a template that contains neither apat t er n nor avalue template with an
i f present matching attribute nor avalue shall result in an error.

Examples
var tenplate charstring v_pattern := pattern "ab\?#(1,1)";
v_pattern.val ue /1 yields "ab\?#(1,1)"
var tenplate charstring v_ifpresent := "abc" ifpresent;
v_ifpresent.val ue Il yields "abc"
var tenplate charstring v_any := ?;
v_any. val ue /1 shall result in an error

16 Functions, altsteps and testcases

16.0 General

In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module, etc. as described in the following clauses.

16.1 Functions

16.1.0 General

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computationin a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition.

Syntactical Structure

function [@leternministic | @ontrol] (Functionldentifier | control)
"(" [{ (Formal Val uePar | Formal TenplatePar) [","] } 1 ")"

[runs on Conponent Type]

[mtc Conponent Type]

[system Conponent Type]

[return [TenplateMoudifier] TypeO NestedTypeDef [ArrayDef]]

St at ement Bl ock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

ETSI

185 ETSI ES 201 873-1 V4.16.1 (2024-10)

Functions may return avalue or atemplate. Value return is denoted by ther et ur n keyword followed by atype
expression. Template return is denoted by ther et ur n keywords followed by a TemplateModifier and atype
expression. Execution of ar et ur n statement in the body of the function causes evaluation of the return value or
template, the function to terminate and to return the result to the location of the call of the function.

The behaviour of afunction can be defined by using statements and operations described in clauses 18 to 26.
Functions may be parameterized.

Functions may have an mtc clause. If afunction has an mtc clause, the type referenced by this clause shall be mtc-
compatible (see clause 6.3.2.7) with the type of the mtc component reference. If the mtc clauseis not present, the type
of the mtc component reference is unknown in the scope of this function.

Functions may have a system clause. If a function has a system clause, the type referenced by this clause shall be
system-compatible (see clause 6.3.2.7) with the type of the system component reference. If the system clauseis not
present, the type of the system component reference is unknown in the scope of this function.

Using the @let er nmi ni st i ¢ modifier, afunction can be declared to be deterministic. Deterministic functions are safe
to be used when called from specific places where non-determinism could lead to unexpected side effects (see
clause 16.1.4).

NOTE 0: The determination of determinism of afunction is a semi-decidable problem and as such can and will not
be exhaustively checked. As such, the annotation deterministic is mainly used for informational purposes
and for allowing certain functions to be used during snapshot evaluation. Principally, afunction can be
seen as deterministic if it does not violate any of the restrictions from clause 16.1.4 which does not mean
that violation of these restriction automatically leads to non-determinism.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A functionwithout r uns on clause shall never invoke afunction or altstep or activate an altstep as default
withar uns on clause localy.

b) Functions started by usingthe st art test component operation shall dways havear uns on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
thest art test component operation may be invoked within behaviour without ar uns on clause.

NOTE 1: Therestrictions concerning ther uns on clause are only related to functions and altsteps and not to test
cases.

¢) Functionscalled directly or indirectly from a module control function shall have no nt ¢ or syst emclause.

NOTE 2: Nevertheless, functions called directly or indirectly from the module control function are allowed to
execute test cases.

d) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.
e) Forreturn Tenpl at eModi fi er statements the restrictions specified in clause 15.0 shall apply.
f) Templater et ur n can berestricted to the matching mechanisms specific value and omi t , see clause 5.4.1.2.

g) Areturn statement in avalue returning function shall always have a value expression compatible to the type
specified in the function header return clause.

h) Areturn statement in atemplate returning function shall always have atemplate reference (including
calling avaue or template returning function)or template instance compatibl e to the type specified in the
function header return clause. If ther et ur n clause has atemplate restriction, this restriction shall be adhered
to by the returned template.

i) If thefunction header includes ar et ur n clause, the function, when terminating, shall do so by executing a
r et ur n statement. The function will cause atest case error if it terminates (i.e. reaches the end of the
function body) without executing ar et ur n statement.

ETSI

186 ETSI ES 201 873-1 V4.16.1 (2024-10)

j) If afunction references the names of definitions that are defined inside a component type definition, the
component type shall be referenced using the r uns on keywords in the function header. The one exception to
thisruleisif all the necessary component-wide information is passed in the function as parameters.

k) Theadditional restrictionsin clause 16.1.5 shall apply to al explicit control functions.The list of statements
and operations that are allowed to be used by control functionsis provided by table 15.

Examples

EXAMPLE 1. Function with return:

/1 Definition of f_nyFunction which has no paraneters
function f_nyFunction() return integer

{

return 7; /1 returns the integer value 7 when the function terninates

}
EXAMPLE 2: Function with template return:
/1 Definition of functions which nmay return natching synbols or tenpl ates
function f_nyFunction2() return tenpl ate integer
{
. return ?; /'l returns the natching nechani sm AnyVal ue

function f_nmyFunction3() return tenplate octetstring
{
return ' FF??FF G /1 returns an octetstring with AnyValue inside it

}
EXAMPLE 3: Function with runs on clause:

function f_nyFunction3() runs on M/PTCType {
/1 f_nyFunction3 does not return a val ue, but

var integer v_nyVar := 5; /'l does neke use of the port operation
pCOL. send(v_nyVar); /1 send and therefore requires a runs on
/1 clause to resolve the port identifiers
} /1 by referencing a conponent type

EXAMPLE 4: Parameterized function:

function f_nyFunction2(inout integer p_nyParl) {
/1 f_nyFunction2 does not return a val ue
p_nyParl := 10 * p_nyParl; // but changes the value of p_nyParl which
/1 is passed in by reference

EXAMPLE5: Function without return statement:

function f_nyFunction5(i nout integer p_nyParl) return integer {
if (p_nyParl > 5) {
p_nyParl :=5;
return p_nyPar1l,
}
/Il in case of p_nyParl <= 5, f_nyFunction5 does not termnate in a return statenent
/1 and will cause a test case error

}

EXAMPLE 6: Function with system and mtc:
type conponent McType { ... }

type conponent Systeniype { ... }

function f_nyFunction6() runs on M/PtcType ntc McType system Systeniype {
var McType v_ntc := ntc;
var Systenifype v_system:= system
f_nmyFunction3(); // allowed, f_nyFunction3() has no ntc and system cl ause
f_nyFunction6(); // allowed, f_nyFunction6() has conpatible ntc and system cl ause

}

function f_myFunction7() runs on MyPtcType system Systenilype {
var McType v_ntc := ntc; // not allowed, ntc type unknown
f_nyFunction6(); // possible runtine error, no ntc clause of f_nyFunction7

functi on MyFunction8() runs on MyPtcType ntc McType {

ETSI

187 ETSI ES 201 873-1 V4.16.1 (2024-10)

var SysteniType v_system:= system // not allowed, systemtype unknown
f_nyFunction6(); // possible runtine error, no systemclause of f_nyFunction8

16.1.1 Invoking functions
A function isinvoked by referring to its name and providing the actual list of parameters.

Syntactical Structure

FunctionRef "(" [{ ActualPar [","] } 1 ")"
Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked function is
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with areturn value), the test components continues its behaviour right after
the function invocation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Functionsthat do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) Therulesfor actual parameter lists shall be followed as defined in clause 5.4.

c) Specia restrictions apply to functions bound to test components using the st art test component operation.
These restrictions are described in clause 21.3.2.

d) Wheninvoking afunction, the compatibility to the test component type of the invoking test component as
described in clause 6.3.2.7 need to be fulfilled.

€) Restrictions on invoking functions from specific places are described in clause 16.1.4.

f) Wheninvoking a function, the mtc and system compatibility of the mtc and system components of the invoked
function with the actual mtc and system types of the running test case as described in clause 6.3.2.7 need to be
fulfilled.

g) Invoking afunction that returns an uninitialized value is allowed only if the function isinvoked directly asa
statement of a statement block or as the return value of areturn statement. In any other place, invoking a
function that returns an uninitialized value shall cause an error (e.g. in an expression, as an actual parameter or
on the right hand side of an assignment).

Examples

v_nyVar := f_nyFunction4(); // The value returned by f_nyFunction4 is assigned to v_nyVar.
/1 The types of the returned value and v_nyVar have to be conpati bl e

f _nyFunction2(v_nyVar2); /1 f_nyFunction2 does not return a value and is called with the
/1 actual paraneter v_nyVar2, which nay be passed in by reference

v_nyVar3 := f_nyFunction6(4) + f_nyFunction7(v_nyVar3); // Functions used in expressions

f _nyFunction7(); /!l Any return value is onmitted in case of direct invocation.

16.1.2 Predefined functions

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are
summarized in table 15.

ETSI

188

Table 15: List of TTCN-3 predefined functions

ETSI ES 201 873-1 V4.16.1 (2024-10)

Category Function Keyword

Conversion functions |Convert integer value to charstring value i nt 2char
Convert integer value to universal charstring value int 2uni char
Convert integer value to bitstring value int2bit
Convert integer value to enumerated value i nt 2enum
Convert integer value to hexstring value i nt 2hex
Convert integer value to octetstring value int 2oct
Convert integer value to charstring value int2str
Convert integer value to float value i nt 2f | oat
Convert float value to integer value fl oat 2i nt
Convert charstring value to integer value char 2i nt

char 2oct

Convert charstring value to octetstring value

Convert universal charstring value to octetstring value

uni char 2oct,

Convert universal charstring value to integer value

uni char 2 nt

Convert bitstring value to integer value bi t 2i nt
Convert bitstring value to hexstring value bi t 2hex
Convert bitstring value to octetstring value bi t 2oct
Convert bitstring value to charstring value bi t2str
Convert hexstring value to integer value hex2i nt
Convert hexstring value to bitstring value hex2bi t
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct 2i nt
Convert octetstring value to bitstring value oct 2bi t
Convert octetstring value to hexstring value oct 2hex
Convert octetstring value to charstring value oct2str
Convert octetstring value to charstring value, version I oct 2char
Convert octetstring value to universal charstring value oct 2uni char
Convert charstring value to integer value str2int
Convert charstring value to hexstring value str2hex
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2fl oat
Convert enumerated value to integer value enun®i nt
Convert value or template to universal charstring value any2uni str
Length/size functions [Return the length of a value or template of any string type, record |l.engt hof
of, set of or array
si zeof

Return the number of elements in a value or a template of a record
or set

Presence checking
functions

Determine if a template contains certain matching mechanism

i stenpl at eki nd

String/list handling Returns part of the input string matching the specified pattern group [€9eXp
functions within a character pattern
Returns the specified portion of the input string/list value or template [substr
Replaces a substring of a string with or inserts the input string into a |repl ace
string, and similarly for lists
Codec functions Encode a value into a bitstring encval ue
Decode a bitstring into a value decval ue
Encode a value into a universal charstring encval ue_uni char
decval ue_uni char

Decode a universal charstring into a value

Encode a value into a octetstring

encval ue o

Decode a octetstring into a value

decval ue o

Retrieve the type of string encoding

get stringencodi ng

Remove BOMs of UCS encoding schemes

renove bom

Other functions

Generate a random float number rnd
Returns the name of the currently executing test case {est casenane
hosti d

Returns the host id of the test component or module

ETSI

189 ETSI ES 201 873-1 V4.16.1 (2024-10)

Syntactical Structure

nt 2char " (" Singl eExpression ")" |
nt 2uni char " (" Singl eExpression ")" |

nt2bit "(" SingleExpression "," SingleExpression ")" |
nt 2enum " (" Si ngl eExpression "," Singl eExpression ")" |
nt 2hex "(" Singl eExpression "," SingleExpression ")" |
nt2oct " (" Singl eExpression "," SingleExpression ")" |

nt2str "(" Singl eExpression ")" |
nt2float "(" SingleExpression ")" |
float2int "(" SingleExpression ")" |
char2int "(" SingleExpression ")" |
char2oct " (" SingleExpression ")" |
uni char2int "(" SingleExpression ")"
uni char2oct " (" Singl eExpression ['
bit2int "(" SingleExpression ")"

|
" Singl eExpression] ")" |

|[,
bit2hex "(" Singl eExpression ")" |
bit2oct "(" SingleExpression ")" |
bit2str "(" SingleExpression ")" |
hex2int "(" SingleExpression ")" |
hex2bit "(" Singl eExpression ")" |
hex2oct " (" Singl eExpression ")" |
hex2str " (" Singl eExpression ")" |
oct2int "(" SingleExpression ")" |
oct2bit "(" SingleExpression ")" |
oct 2hex "(" SingleExpression ")" |
oct2str "(" SingleExpression ")" |

oct2char "(" SingleExpression ")" |

oct 2uni char " (" Singl eExpression ["," SingleExpression] ")" |
str2int "(" SingleExpression ")" |

str2hex "(" SingleExpression ")" |

str2oct "(" SingleExpression ")" |

str2float "(" SingleExpression ")" |

enunRint "(" SingleExpression ")" |

any2uni str "(" SingleExpression ["," SingleExpression] ")" |
| engt hof "(" Tenpl atel nstance ")" |

si zeof "(" Tenpl atelnstance ")" |

i stenpl atekind "(" Tenplatelnstance "," Tenpl atel nstance ")" |
regexp [@ocase] "(" Tenpl atel nstance"," Tenpl atel nstance"," Singl eExpression ")" |
substr "(" Tenplatelnstance "," SingleExpression "," SingleExpression ")" |
replace "(" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encval ue "(" Tenplatelnstance ["," SingleExpression] ["," SingleExpression] ")" |
decval ue "(" SingleExpression "," Singl eExpression
[*," SingleExpression] ["," SingleExpression] ["," SingleExpression] ")" |

encval ue_uni char "(" Tenpl atelnstance ["," Singl eExpression]

["," SingleExpression] ["," SingleExpression] ")" |
decval ue_uni char " (" Singl eExpression "," Singl eExpression

["," SingleExpression] ["," SingleExpression] ["," SingleExpression] ")" |
encval ue_o "(" Tenplatelnstance ["," SingleExpression] ["," SingleExpression] ")" |
decvalue_o "(" Singl eExpression "," SingleExpression ["," SingleExpression]

["," Singl eExpression] ")" |
get _stringencoding "(" SingleExpression ")" |
renove_bon(" Singl eExpression ") |
rnd "(" [SingleExpression] ")" |
testcasenane "()"
hostid "(" [SingleExpression] ")"
Semantic Description
The description of predefined functionsis given in annex C.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) When apredefined function is invoked:
1) thenumber of the actual parameters shall be the same as the number of the formal parameters; and
2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and
3) dlactualinandi nout parametersshall beinitialized with the following exceptions:

" any parameters of the functions| engt hof , subst r and r epl ace may be partialy initialized,;

ETSI

190 ETSI ES 201 873-1 V4.16.1 (2024-10)

" thei nval ue parameter of theany2uni st r function may be uninitialized or partially initialized;

" theencoded_val ue parameter of thedecval ue and decval ue_uni char function may be
uninitialized.

b) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

var hexstring v_h:= bit2hex ('111010111' B);
var octetstring v_o:= substr ('01AB23CD O, 1, 2);

16.1.3 External functions
A function may be defined within a module or be declared as being defined externally (i.e. ext er nal).

Syntactical Structure
external function [@etermnnistic | @ontrol] ExtFunctionldentifier

"(" [{ (Formal Val uePar | Formal TenplatePar) [","] } 1 ")"
[return [TenplateMdifier] Type]

Semantic Description

For an external function only the function interface has to be provided in the TTCN-3 module. The realization of the
external function is outside the scope of the present document.

Using the @ et er mi ni sti ¢ modifier, an external function can be declared to be deterministic. Deterministic
functions are safe to be used when called from specific places where non-determinism could lead to unexpected side
effects (see clause 16.1.4).

The @ont r ol modifier isused in the same way as described in clause 16.1.5.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Restrictions on invoking functions from specific places are described in clause 16.1.4.

NOTE: External functions should only exchange information with the test system via return values and parameter
passing. Side-effects that change the status of the test system and may influence the test outcome should
be avoided. Such side-effects can occur if an external function contains default handling, configuration,
communication or timer operations.

Examples

external function fx_nmyFunction4() return integer; // External function w thout paraneters
/1 which returns an integer val ue

external function fx_initTestDevices(); // An external function which only has an
/] effect outside the TTCN-3 nodul e

16.1.4 Invoking functions from specific places

If value returning functions are called in receiving communication operations (in templates, template fields, in-line
templates as actual parameters or when evaluating the port expression), in timeout operations (when eval uating the
timer expression), in test component operations (in guards or events of alt statements or altsteps, see clause 20.2), or in
initializations of altstep loca definitions (see clause 16.2.1), the following operations shall not be present in functions
called in the cases specified above, in order to avoid side effects that cause changing the state of the component or the
actual snapshot and to prevent different results of subsegquent evaluations on an unchanged snapshot:

a) All component operations, i.e.cr eat e, start (component), st op (component), kil l,
runni ng (component), al i ve, done andki | | ed (seenotes1, 3, 4 and 6).

ETSI

b)

d)

€)

f)
9)

m)

191 ETSI ES 201 873-1 V4.16.1 (2024-10)

All port operations, i.e. st art (port), st op (port), hal t,cl ear,checkst at e, send, recei ve,
trigger,call,getcall,reply,getreply,raise,catch,check, connect, di sconnect,
map and unmap (seenotes 1, 2, 3,4 and 6).

Theact i on operation (see notes 2 and 6).

All timer operations, i.e. st art (timer), st op (timer), runni ng (timer),r ead,ti neout (seenotes4
and 6).

Calling non-deterministic external functions, i.e. external functions where the resulting values for actual inout
or out parameters or the return value may differ for different invocations with the same actual in and inout
parameters (see notes 4 and 6).

Calling ther nd predefined function (see notes 4 and 6).

Changing of component variables, i.e. using component variables on the left-hand side of assignments, and in
the instantiation of out and i nout parameters (see notes4 and 6).

Cdlingtheset ver di ct operation (see notes 4 and 6).

Activation and deactivation of defaults, i.e. theact i vat e and deact i vat e statements (see notes 5 and 6).
Calling functions and deterministic external functionswith out ori nout parameters (see notes7 and 8).
Cdlling functions and external functionswith @ uzzy formal parameters and variables (see notes 4 and 9).
Theset encode operation (see note 8 and clause 27.9).

Referencing lazy or fuzzy variables, parameters or templates that have not been declared deterministic.

NOTE 1: The execution of the operationsst art, st op, done, ki |l | ed, hal t,cl ear,recei ve,tri gger,

getcal | ,getreply,catchandcheck can causechangesto the current snapshot.

NOTE 2: The use of operationssend, cal | ,repl y,rai se,andact i on causesan error, i.e. all

communication are to be made explicit and not as a side effect of another communication operation or the
evaluation of a snapshot.

NOTE 3: The use of operations nap, unnap, connect , di sconnect , cr eat e will lead to an error, i.e. al

configuration operations are to be made explicit, and not as a side effect of a communication operation or
the evaluation of a snapshot.

NOTE 4: Cdling of non-deterministic external functions, r nd, r unni ng, al i ve, r ead, checkst at e,

set ver di ct , referencing fuzzy objects and writing to component variables causes an error because this
may lead to different results of subsequent evaluations of the same snapshot, thus, e.g. rendering deadlock
detection impossible.

NOTE 5: Theuseof operationsact i vat e and deact i vat e causes an error because they modify the set of

defaults that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or i nout parameterization in restriction j) apply

recursively, i.e. it is disallowed to use them directly, or viaan arbitrary long chain of function
invocations.

NOTE 7: Therestriction of calling functions and deterministic external functionswith out or i nout parameters

does not apply recursively, i.e. calling functions that themselves call functions with out or i nout
parametersislegal.

NOTE 8: Usingout ori nout parametersand theset encode operation causes an error because this may lead

to different results of subsequent evaluations of the same snapshot.

NOTE 9: Calling functions and external functionswith @ uzzy parameters causes an error, because fuzzy objects

are re-evaluated each time referenced and this may lead to different results of subsequent evaluations of
the same snapshot.

ETSI

192 ETSI ES 201 873-1 V4.16.1 (2024-10)

16.1.5 Explicit control functions
Explicit control functions are declared either by use of the name cont r ol or by use of the @ ont r ol modifier.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and the general restrictions on functions given in
clause 16.1, the following restrictions apply to explicit control functions:

a No system and no mtc clause shall be declared.
b) The component type referenced in the runs on clause shall not contain any port definitions.

c) Parameters and the return type shall not be of a port type and shall not be of a structured type that contains
fields of a port type on any level of nesting.

d) Parametersand the return type of module control functions shall not be of a default type and shall not be of a
structured type that contais fields of a default type on any level of nesting.

€) Therestrictions on the use of statements and operations usable in control functions given in table 15 shall be
followed.

f) Module control functions used as an execution entry point shall have public visibility.

g) When invoking a module control function explicitly, the compatibility to the test component type of the
invoking control component as described in clause 6.3.2.7 need to be fulfilled.

16.1.6 The not-implemented function
??2? ["(" Expression ")"] [return any]

The not-implemented function ??? isatemporary place-holder for TTCN-3 source code that remainsto be
implemented. It can be used as value in any expression or as stand-al one statement (direct use).

The optional parameter can be used to provide contextual information. The parameter shall be of the uni ver sal
charstri ng type.

When ??? isinvoked the test environment may provide an actual implementation and continue execution. For example
the user may be prompted to enter arequired expression. The submitted implementation does not change during test
execution (similar to module parameters).

If the test environment cannot provide an actual implementation, an invocation of ??7? shall cause aruntime error to
indicate not yet implemented code.

Thisfunction isintended as helper for prototyping and interactive test development. It is therefore recommended that
TTCN-3 tools provide an option to warn about ??? usage in production code.

EXAMPLE:

/1 direct use of ??? as stand-al one statenent
function setupDB() {

???("TODO start up database server");
}

/] use of ??? in expression

function double(integer p := ???) return integer { return p*2 }

control {
| og(doubl e(8)); // Is okay, because default value for p has not been eval uated.
| og(doubl e()); // Runtinme error to indicate execution of not inplenented code.

ETSI

193 ETSI ES 201 873-1 V4.16.1 (2024-10)

16.2 Altsteps

16.2.0 General

TTCN-3 uses atsteps to specify default behaviour or to structure the aternatives of anal t statement.

Syntactical Structure

altstep [@ontrol] [interleave] Altstepldentifier

"(" [{ (Formal Val uePar | Fornmal TenplatePar) [","] }] ")"

[runs on Conponent Type]

[nmtc Conponent Type]

[system Conponent Type]

ng
{ (Varlnstance | Tinerlnstance | ConstDef | TenplateDef) [";"] }
Al t Guar dLi st

"y
Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
alternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of al t statements.

An altstep can also be used to define a named interleave statement by usage of the interleave keyword. In this case, the
syntax rules of the top alternatives are identical to the syntax rules of the alternatives of thei nt er | eave statements.

NOTE: Asaninterleave statement is semantically equivalent with the expanded alt statement, there are no further
restrictions on usages of interleave altsteps than on usages of normal altsteps. They can both be used as
activated default alternatives and as top-level alternativesin other alt statement blocks. The behaviour of
an altstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

Altsteps may have an mtc clause. If an altstep has an mtc clause, the type referenced by this clause shall be mtc-
compatible (see clause 6.3.2.7) with the type of the mtc component reference. If the mtc clauseis not present, the type
of the mtc component reference is unknown in the scope of this altstep.

Altsteps may have asystem clause. If an atstep has a system clause, the type referenced by this clause shall by
system-compatible (see clause 6.3.2.7) with the type of the system component reference. If the system clauseis not
present, the type of the system component reference is unknown in the scope of this altstep.

Altsteps with the @ ont r ol modifier are allowed to be executed only on the control component (see clause 26). The
restrictions specified for functions with the @ ont r ol modifier (see clause 16.1.5) are valid for these altsteps as well.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thelocal definitions of an altstep shall be defined before the set of alternatives.

b) Theevauation of formal parameters default values and initialization of local definitions by calling value
returning functions may have side effects. To avoid side effects that cause an inconsistency between the actual
snapshot and the state of the component, and to prevent different results of subsequent evaluations on an
unchanged snapshot, restrictions given in clause 16.1.4 shall apply to the formal parameters' default values and
the initialization of local definitions.

c) If anatstep includes port operations or uses component variables, constants or timers the associated
component type shall be referenced using the r uns on keywords in the altstep header. The one exception to
thisruleisif al ports, variables, constants and timers used within the altstep are passed in as parameters.

d) Analtstep without ar uns on clause shall never invoke afunction or altstep or activate an altstep as default
withar uns on clauselocally.

ETSI

194 ETSI ES 201 873-1 V4.16.1 (2024-10)

€) Analtstep that is activated as a default shall only havei n value or template parameters. An altstep that is only
invoked as an dternativein an al t statement or as stand-alone statement in a TTCN-3 behaviour description
may havei n, out andi nout parameters. The rules for formal parameter lists shall be followed as defined in
clause 5.4.

f) Altsteps started by using the start test component operation shall always have a runs on clause (see
clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However, the
start test component operation may be invoked within behaviour without a runs on clause.

g) Ifthedtstepisaninterleave astep, al restrictions of the interleave statement (see clause 20.4) apply to the top
alternatives of the altstep as well.

Examples

EXAMPLE 1: Parameterized altstep with runs on clause:

/1 Gven
type conponent MyConponent Type {
var integer vc_nylntVar := 0;

tinmer tc_nyTiner;
port nyPortTypeOne pCOL, pCQ2;
port nyPortTypeTwo pCCB;

}

/Il Altstep definition using pCOL, pC®2, vc_nylntVar and tc_nyTi mer of MyConponent Type
altstep a_altSet _A(in integer p_nyParl) runs on MyConponent Type {
[1 pCOL.receive(nw nyTenpl ate(p_nyParl, vc_nylntVar)) {
setverdi ct (i nconc);

}
[T pCR.receive {
if (p_nyParl != 0) {

r epeat
}
el se {

br eak
}

[T tc_nyTiner.tinmeout {
setverdict(fail);
st op
}

}
EXAMPLE 2: Altstep with local definitions:

altstep a_anotherAltStep(in integer p_nyParl) runs on MyConponent Type {
var integer v_nylLocal Var := f_nyFunction(); /1 local variable
const float c_nyFloat := 3.41; /1 local constant
[1 pCOL.recei ve(MyTenpl ate(p_nyParl, v_nylLocal Var)) {
setverdi ct (i nconc);

}
[T pCR.receive {
r epeat
}

}
EXAMPLE 3: Interleave Altstep:

altstep interleave a_interleaveAltStep(in integer p_nyParl, in integer p_nyPar?2)
runs on MyConponent Type {
var integer v_nylLocal Var := f_nyFunction(); /1 local variable
[1 pCOL.recei ve(MyTenpl ate(p_nyPar1l, v_nylLocal Var)) {}
[T pCOL. receive(MTenpl ate(p_nyPar2, v_nyLocal Var)) {}

//can be viewed as a shorthand for
altstep a_interleaveAl tStep(in integer p_nyParl, in integer p_nyPar?2)
runs on MyConponent Type {

var integer v_nylLocal Var := f_nyFunction(); /1 local variable
[T pCOL. receive(MTenpl ate(p_nyParl, v_mnylLocal Var)) {
alt {

[1 pCOL. recei ve(M/Tenpl ate(p_nyPar2, v_nylLocal Var))
}

ETSI

195 ETSI ES 201 873-1 V4.16.1 (2024-10)

[T pCOL. receive(MTenpl ate(p_nyPar2, v_nyLocal Var)) {
alt {
[1 pCOL.recei ve(M/Tenpl ate(p_nyPar1l, v_nylLocal Var))

16.2.1 Invoking altsteps

The invocation of an altstep isawaysrelated to an al t statement. The invocation may be done either implicitly by the
default mechanism (see clause C.5) or explicitly by adirect call withinanal t statement (see clause 20.2).

Syntactical Structure

[@odefault] AltstepRef "(" [{ ActualPar [","] }] ")"
Semantic Description

The invocation of an altstep causes no new snapshot and the evaluation of the top alternatives of an altstep is done by
using the actual snapshot of theal t statement from which the altstep was called.

NOTE 1: A new snapshot within an altstep will of course be taken, if within a selected top aternativeanew al t
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the atstep shall be activated as a default by
means of anact i vat e statement before the place of the invocation is reached.

An explicit call of an altstep withinanal t statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly withinan al t statement, the next alternative to be checked is the first alternative of
theal t st ep. The dternatives of theal t st ep are checked and executed the same way as alternatives of anal t
statement (see clause 20.1) with the exception that no new snapshot is taken when entering theal t st ep. An
unsuccessful termination of the altstep (i.e. al top aternatives of the al t st ep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last aternative of theal t statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with ast op statement, or a new snapshot and re-evaluation of theal t statement,

i.e. the atstep endswithr epeat (see clause 20.2) or acontinuation immediately after theal t statement, i.e. the
execution of the selected top aternative of the altstep ends with abr eak statement (see clause 19.12) or without
explicitr epeat or st op.

NOTE 2: Dueto the possibility of defining dynamic test configurations, an aternative in an explicitly invoked
altstep may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elementsin the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. This means, an explicitly invoked al t st ep may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing atest case error.

Anal t st ep can also be caled as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
theal t st ep can beinterpreted as shorthand for anal t statement with only one alternative describing the explicit call
of theal t st ep. If the @odef aul t modifier is placed before astand-alone al t st ep call, theimplicit al t
statement also contains the @odef aul t modifier.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Wheninvoking an atstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.2.7) need to be fulfilled.

b) Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.

¢) Wheninvoking an atstep, the mtc and system compatibility of the mtc and system components of the invoked
atstep with the actual mtc and system types of the running test case as described in clause 6.3.2.7 need to be
fulfilled.

ETSI

196 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

EXAMPLE 1. Implicit invocation of an atstep via a default activation

var defaul t v_nyDef Var Two : = activate(a_nySecondAl tStep()); // Activation of an altstep as
/1 default

EXAMPLE 2: Explicit invocation of an atstep within an alt statement

ait {
[1] pC3®.receive {

[T a_anotherAltStep(); [// explicit call of altstep a_anotherAltStep as an alternative
/1 of an alt statenent
[T t_nyTiner.tineout {}

}
EXAMPLE 3: Explicit, stand-alone invocation of an altstep

/1 The statenent
a_anotherAltStep(); // a_anotherAltStep is assuned to be a correctly defined altstep

/lis a shorthand for

alt {
[1 a_anotherAtStep();
}

16.3 Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typicaly startsin a stable testing state and ends in a stabl e testing state. It may involve one or more consecutive or
concurrent connectionsto the SUT. Thetest case shall be complete in the sense that it is sufficient to enable atest
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). The test
case shall be independent in the sense that it shall be possible to execute the derived executable test case in isolation
from other such test cases.

In TTCN-3, test cases are aspecial kind of function. Test cases define the behaviour, which have to be executed to
check whether the SUT passes atest or not. This behaviour is performed by the MTC which is automatically created
when atest case is being executed.

Syntactical Structure

testcase Testcaseldentifier

"(" [{ (Formal Val uePar | Fornal TenplatePar) [","] }] ")"
[runs on Conponent Type]

[system Conponent Type]

St at erent Bl ock

Semantic Description

A test case is considered to be a self-contained and compl ete specification that checks atest purpose. The result of atest
case execution isatest verdict.

A test case header has two parts:

a) interface part (optional): denoted by the keyword r uns on which references the required component type for
the MTC and makes the associated port names visible within the MTC behaviour. In case ther uns on clause
ismissing, the MTC created by the test case has no ports, and no component constants and variables; and

b) test system part (optional): denoted by the keyword sy st emwhich references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly if ther uns on clauseis present. If bothr uns on and syst emclauses are missing, the test system
interface has no ports;

ETSI

197 ETSI ES 201 873-1 V4.16.1 (2024-10)

c) al formal parameter types of the test case shall be of a data type.
The behaviour of atest case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed from control behaviour
definitions (see clause 26).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a function or altstep running on a control
component as defined in clause 26.

Examples
testcase TC MyTest CaseOne()
runs on MyM cTypel /1 defines the type of the MIC
system MyTest Syst enlype /1 makes the port nanes of the TSI visible to the MIC

/1 The behavi our defined here executes on the nmc when the test case invoked

}

/l or, a test case where only the MIC is instantiated
testcase TC _MyTest CaseTwo() runs on MyM cType2

/1 The behavi our defined here executes on the ntc when the test case invoked

17 Void

18 Overview of program statements and operations

The fundamental program elements of test cases, functions and altsteps are expressions, basic program statements such
as assignments, loop constructs, etc. behavioural statements such as sequentia behaviour, aternative behaviour,
interleaving, defaults, etc. and operations such assend, r ecei ve, cr eat e, etc.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and statement blocks).

Statements shall be executed in the order of their appearance, i.e. sequentialy, asillustrated in figure 8.

S1

s2 |:‘> S1; S2; S3;

S3

Figure 8: Illustration of sequential behaviour

The individual statementsin the sequence shall be separated by the delimiter ;".
EXAMPLE:

MyPort . send(Mynessage); MTiner.start; |og("Done!");

The specification of an empty statement block, i.e. { } , may be found in compound statements, e.g. abranchinan al t
statement, and implies that no actions are taken.

ETSI

198

ETSI ES 201 873-1 V4.16.1 (2024-10)

Table 16 gives an overview of the TTCN-3 expressions, statements and operations and restrictions on their usage.

Table 16: Overview of TTCN-3 expressions, statements and operations

Statement Associated keyword or Can be Can be invoked | Can be directly
symbol invoked by |by test behaviour| or indirectly
control invoked from
behaviour specific places
(see note 1)
Expressions (...) Yes Yes Yes
Basic program statements
Assignments = Yes Yes Yes (see note 3)
If-else if (..){.}else{.} Yes Yes Yes
Select case select case (...) { case Yes Yes Yes
(...){.}caseelse{..}}
For loop for (..){...} Yes Yes Yes
While loop while (...) {...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes (see note 4) Yes
Leaving a loop, alt, altstep or break Yes Yes Yes
interleave
Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes
Statements and operations for alternative behaviour
Alternative behaviour alt{...} Yes Yes
(see note 2)
Re-evaluation of alternative behaviour |repeat Yes Yes
Interleaved behaviour interleave {...} Yes Yes
(see note 2)
Activate a default activate Yes Yes
Deactivate a default deactivate Yes Yes
Configuration operations
Create parallel test component create Yes
Connect component port to connect Yes
component port
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interfacejunmap Yes
Get MTC component reference value |mtc Yes Yes
Get test system interface component |system Yes Yes
reference value
Get own component reference value |self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Terminating the testcase with an error |testcase.stop Yes Yes
verdict
Remove a test component from the |kill Yes
system
Check termination of a PTC behaviour|running Yes
Check if a PTC exists in the test alive Yes
system
Wait for termination of a PTC done Yes
behaviour
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote |reply Yes
entity
Raise exception (to an accepted call) |raise Yes
Receive message receive Yes
Trigger on message trigger Yes

ETSI

199

ETSI ES 201 873-1 V4.16.1 (2024-10)

Statement Associated keyword or Can be Can be invoked | Can be directly
symbol invoked by |by test behaviour| or indirectly
control invoked from
behaviour specific places
(see note 1)
Accept procedure call from remote getcall Yes
entity
Handle response from a previous call |getreply Yes
Catch exception (from called entity) |catch Yes
Check (current) message/call check Yes
received
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow stop Yes
receiving operations to match at a port
Disable sending and disallow halt Yes
receiving operations to match new
messages/calls
Check the state of a port checkstate Yes
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally [action | Yes | Yes |
Execution of test cases
Execute test case lexecute | Yes | |

NOTE 1: Specific places are defined in clause 16.1.4. Only operations that do not have any potential side effects on
snapshot evaluation are allowed.

NOTE 2: Can be used to control timer operations only.
NOTE 3: Changing of component variables is disallowed.
NOTE 4:

Can be used in functions and altsteps but not in test cases.

19

19.0 General

Basic program statements

Table 17 provides an overview of the TTCN-3 basic program statements.

ETSI

200 ETSI ES 201 873-1 V4.16.1 (2024-10)

Table 17: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{.}
Select case select case (...) { case (...) {...} case
else{...}}
For loop for (..){...}
While loop while (..) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt, altstep or |break
interleave
Next iteration of a loop continue
Logging log

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Unless specified differently in the relevant clause, al values and templates used in a basic program statement
shall be completely initialized (for exemption see e.g. clause 19.1).

NOTE: Note that the restriction applies to component of statements defined in the present document, like the
boolean condition of i f statements, but not to the content of statement blocks embedded into the
statements.

19.1 Assignments

19.1.1 Basic assignments

Values or templates may be assigned to variables or template variables (see clause 11). Thisisindicated by the symbol

Syntactical Structure

Val ueRef ":=" (Expression | Tenpl ateBody)
Semantic Description

During execution of an assignment, the right-hand side of the assignment shall evaluate to a value or template that is at
least partially initialized. The effect of an assignment isto bind the variable to the value of the expression or to a
template. Assignments use the rules of passing by value. If the variable being assigned is of atype whose values are
object references, only the referenceis copied, but the referenced object (e.g. component, timer or port) isnot. In al
other cases, the content being assigned shall be a copy of the evaluated right-hand side.

Assignments are processed from left to right, i.e. expressions in the left hand side are evaluated before those in the right
hand side. The evaluations obey the operator precedence defined in table 6. Unless the assignment isto alazy or fuzzy
variable or parameter, the right hand side is evaluated completely before the resulting value or template is bound to the
evaluated left-hand side of the assignment. Whenever assignments are used within the right hand side of an assignment
(due to assignment notation), these rules apply recursively.

A structured val ue on the right-hand side of the assignment shall be assigned completely to the variable on the left-hand
side of the assignment, If a partially initialized value is assigned to a completely initialized variable, fields uninitialized
at the right-hand side of the assignment shall also become uninitialized at the left-hand side.

When adirect or indirect element or field of alazy or fuzzy variable is assigned, the variable is a so evaluated as much
as necessary before assignment, i.e. if an ancestor of that element or field isinitialized with afunction call, it shall be
evaluated. Thus, if the variableisfully assigned, it does not need to be evaluated before assignment.

ETSI

201 ETSI ES 201 873-1 V4.16.1 (2024-10)

NOTE: If asub-field or sub-element of afuzzy variable is assigned that has an ancestor which was formerly
assigned a function call, this function call will be evaluated once before the assignment and replaced by
its result inside the variable. Thus, the other sub-fields and sub-elements of that ancestor, apart from the
field or element being assigned become non-fuzzy.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Theright-hand side of an assignment shall evaluate to a value, template, port or timer which is type compatible
with the variable at the left-hand side of the assignment.

b) When the right-hand side of the assignment evaluates to atemplate (global or local template, in-line templ ate,
template variable or a matching mechanism), the variable at the left hand side shall be atemplate variable.

¢) Theright-hand side of an assignment shall evaluate to an object that is at least partialy initialized.

d) If theleft-hand side of the assignment is a reference to a non-optional value object (i.e. avalue definition, a
mandatory field, arecord/set of/array element, a union aternative, avalue parameter), the right-hand side shall
not be areference to an omitted field or the omit symbol.

€) Using areference to an omitted field in the right-hand side of the assignment has the same effect as using the

oni t keyword.
Examples
EXAMPLE 1.
v_nyVariable := (¢c_x + c_y — f_increnment(c_z))*3;
EXAMPLE 2:

type record M/Record {
record { float x, float y } c,
integer a

}
var @azy MyRecord v_r := {
c := f_computeC(),
a := f_conputeA()
} /1 not eval uated here
v_r.c.x :=f_comuteX(); /1 first replaces field ¢ with result of f_conputeC(),
/1 then replaces field c.x with uneval uated f_conputeX()
// field while c.y renains fixed; field a renains uneval uat ed

EXAMPLE 3:

type record M/Record {
charstring fieldi,
charstring field2,
charstring field3

}
var MyRecord v_nyListl, v_nyList2, v_myList3;
v_nyListl := {"val uel", "value2", "value3" }; /Il v_nyListl is conpletely initialized
v_nyList2 := v_nyList1; /1l v_nyList2 is equal to {"valuel", "value2",
/1 "val ue3" }
v_nyList2.fieldl := "m ssing"; /1 only v_nyList2 value changes to
/1 {"mssing", "value2", "value3" };
/1 v_nyListl still contains {"valuel", "value2",
/1 "value3d" } after the assignment
v_nyList3.field2 := "newal ue"; /1 v_nyList3 is partially initialized
// fieldl and field3 renain uninitialized
v_nyListl := v_nyList3; /1 v_nyListl becone partially initialized,

/1 field2 has the value "newal ue"
/1l fieldl and field3 are uninitialized

ETSI

202 ETSI ES 201 873-1 V4.16.1 (2024-10)

19.1.2 Shorthand assignments

In addition to the basic assignmentsiit is possible to use shorthand assignments for integer variables that shall be
incremented by 1 or decremented by 1.

The statement "v_integer++" is a shorthand form of "v_integer ;= v_integer + 1" and the statement "v_integer--" isa
shorthand form of "v_integer := v_integer — 1".
Examples

var integer v_j;

for (v_j:=1; v_j<=10; v_j++) { ..}; // increnents v_j after each iteration
v_j--; /1 decrenents the variable v_j

19.2 The If-else statement
Thei f - el se statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure
if "(" [(Varlnstance | Assignment) ";"] Bool eanExpression ")" StatenentBl ock

{ elseif "(" [(Varlnstance | Assignnent) ";"] Bool eanExpression ")" StatenentBl ock }
[el se StatemnentBl ock]

NOTE 1: el se if "(" BooleanExpression")" StatementBlock [else SatementBlock] is a shorthand notation for
el se "{"if "("BooleanExpression")" StatementBlock [else SatementBlock] "}".

NOTE 2:if "(" (Varlnstance | Assignment) ";" BooleanExpression)" StatementBlock [else StatementBlock] is a shorthand
notation for
"{" (Varlnstance | Assignment) ";" i f "(" BooleanExpression ")" StatementBlock [else SatementBlock] "}".

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition eval uates to true. The optional else specifies a statement block
that will be executed if al the "if" and "else if" conditions before are false.

Boolean expressions may be preceded by an init statement (variable declaration or assignment), which executes before
the expression is evaluated.

The scope of variables declared within an init statement shall be limited to the if-statement, including its else branch.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples
if (v_date == "1.1.2005") { return (fail); }
v_nyVar * 10; log ("v_nyVar < 10"); }

if (v_nmyVar < 10) { v_nyVar :=
else { v_nyVar :=v_nyVar/5; }
{

if (var x :=rnd(); x < 0.1)
log(x, " < 0.1")

} elseif (var y :=rnd(); x <vy) {
log(x, " <",)

} else {
log(x,)
}
if (var x :=rnd(); x < 0.1) {
} elseif (var x :=rnd(); x < 0.5) {} // Is NOT allowed: clash with previous declaration of x

ETSI

203 ETSI ES 201 873-1 V4.16.1 (2024-10)

19.3 The Select statements

19.3.1 The Select case statement
Thesel ect case statement isan aternative syntactic form of thei f - el se statement.

Syntactical Structure

select "(" [(Varlnstance| Assignment) ";"] SingleExpression ")" "{"
{ case "(" { Tenplatelnstance[","] } ")" StatenentBl ock }+
[case el se StatenentBl ock]

"y
Semantic Description

Thesel ect case statementisan dternativetousingi f ..el sei f .. el se statements when comparing a value to
one or several other values. The statement contains a header part and one or more branches. Never more than one of the
branchesis executed.

In the header part of thesel ect case statement an expression shall be given. The expression may be preceded by an
init statement (variable declaration or assignment), which executes before the expression is evaluated. The scope of
variables declared within an init statement shall be limited tothesel ect case statement.

Each branch starts with the case keyword followed by alist of templatel nstance (alist branch, which may also contain
asingle element) or in the last branch the case keyword may be followed by the el se keyword (an else branch) and a
statement block.

All templatel nstancein al list branches shall be of atype compatible with the type of the expression in the header.

A list branch is selected and the statement block of the selected branch is executed only, if any of the templatel nstance
matches the value of the expression in the header of the statement. On executing the statement block of the selected
branch (i.e. not jJumping out by agot o statement), execution continues with the statement following the select case
statement.

The statement block of an else branch is always executed if no other branch textually preceding the else branch has
been selected.

Branches are evaluated in their textual order. If none of the templatel nstance-s matches the value of the expressionin
the header and the statement contains no el se branch, execution continues without executing any of thesel ect case
branches.

NOTE 1: Ingeneradl, it cannot be decided if templatel nstances overlap or not. However, it is advised to use in the
branches templatel nstances that don't overlap. In such situations tools might provide better runtime
performance. The handling however is tool-specific.

NOTE 2: When more than one branch could be selected (the templatel nstances overlap) the textually first will be
selected. For this reason overlapping is discouraged, handling however is tool-specific.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Thesel ect SngleExpression and the case Templatel nstance-s shall be type compatible.

b) When all templatel nstances of all branches can be statically evaluated in compile time to specific values or
value ranges no two branches shall match the same value.

ETSI

204 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples
sel ect (PX_MyModul ePar) // where PX_MyMdul ePar is of charstring type
{ case (charstring:"firstValue")
{I og ("The first branch is selected");
case}(v_nyCharVar, c_nyChar Const)
{I og ("The second branch is selected");
case} el se
{I og ("The value of the nodul e paranmeter PX_MyMdul ePar is sel ected");
, }

/1 the above select statenent is equivalent to the follow ng nested if-else statenent.
/1 Note: the follow ng textual replacenent of the select-case statenment is described in
/'l the operational semantics of TTCN 3.

{
var charstring v_mnyLocal Var := PX_My/Modul ePar ;

if (match(v_nyLocal Var , charstring:"firstValue")

log ("The first branch is selected");
else if (match(v_nyLocal Var , v_mnyCharVar) or match(v_nyLocal Var , c_nyChar Const))
log ("The second branch is selected");
el se
log ("The value of the nodul e paranmeter PX M/Mddul ePar is selected");

{
}
{
}

19.3.2 The Select union statement

To alow easier usage of the select statement for values of union types or anytype, a special form of the select statement
exists.

Syntactical Structure

sel ect union "(" [(Varlnstance|Assignnent) ";"] SingleExpression ")" "{"
{ case "(" ({ Identifier [","] } | { Typeldentifier [","] }) ")" StatementBl ock }+
[case else StatementBl ock]

"y
Semantic Description
The statement contains a header part and one or more branches. Never more than one of the branches is executed.

In the header part of thesel ect uni on statement atemplate instance of uni on type or anyt ype shall be given.
The expression in the header may be preceded by an init statement (variable declaration or assignment), which executes
before the expression is evaluated. The scope of variables declared within an init statement shall be limited to the

sel ect uni on statement.

If the template instance has a union type, each branch shall start with the case keyword followed by one or more
identifiers of the alternatives (fields) of the union type (alist branch) or in the last branch the case keyword may be
followed by the el se keyword (an else branch) and a statement block. If the template instance has type anyt ype,
each branch shall start with the case keyword followed by one or more type names (alist branch) or in the last branch
the case keyword may be followed by the el se keyword (an else branch) and a statement block. The StatementBlock
of the list branch containing the identifier or type identifier of the chosen alternative is executed. If no case exists for the
chosen alternative, the StatementBlock of the else branch, if it is present, is executed. Otherwise, thesel ect uni on
statement has no effect.

Restrictions

a) The SngleExpression in the header of thesel ect uni on statement shall be of auni on type. It shall be at
least partialy initialized.

ETSI

205 ETSI ES 201 873-1 V4.16.1 (2024-10)

b) Every ldentifier inacase of thesel ect uni on statement shall be an identifier of an alternative of the
uni on type of the template instance given to the statement's header.

¢) Notwocasesinasel ect uni on statement shall have the same case Identifier or Typeldentifier.

Examples

type uni on Messages {
M/MessageTypel nsgl
M/MessageType2 nsg2
M/ MessageType3 nsg3
M/MessageTyped nsgéd
MyMessageType5 nsg5
}

function f_f(in Messages p_nsg) {
sel ect union (p_nsg) {
case (msgl) { Iog(p_nmsg.nmsgl); }
case (msg2) { Iog(p_nmsg.nmsg2); }
case (nmsg3, nsg4) { log("either nsg3 or nsg4"); }
case el se { log("unhandl ed variant"); }

}

function f_g(in anytype p_nsg) {
sel ect union (p_nsg) {
case (integer) { log(p_nsg.integer); }
case (Messages) { f_f(p_nsg. Messages); }
case else { |og("unhandl ed anytype variant"); }

}

19.4 The For statements

19.4.1 The counter loop
The traditional form of thef or statement defines a counter loop.

Syntactical Structure

for "(" (Varlnstance | Assignnment) ";" Bool eanExpression ";" Assignnment ")"
St at emrent Bl ock

Semantic Description

Thef or statement contains two assignments and abool ean expression. The first assignment is necessary to initiaize
the index (or counter) variable of the loop. The bool ean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable isincreased, decreased or manipulated in such a manner that after a certain number of
execution loops atermination criteriais reached.

The termination criterion of the loop shall be expressed by abool ean expression. It is checked at the beginning of
each new loop iteration. If it evaluatesto t r ue, the execution continues with the statement block in the f or statement,
if it evaluatesto f al se, the execution continues with the statement which immediately followsthef or loop. If a

br eak statement is executed that is not within the body of an enclosed loop, al t , alststep or i nt er | eave, then the
loop is terminated, too.

The index variable of af or loop can be declared before being used inthe f or statement or can be declared and
initialized inthe f or statement header. If the index variable is declared and initialized in thef or statement header, the
scope of the index variable islimited to the loop body, i.e. it isonly visible inside the loop body.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

ETSI

206 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples
var integer v_j; /1 Declaration of integer variable v_j

for (v_j:=1; v_j<=10; v_j:=v_j+1) { ...} /] Usage of variable v_j as index variable of the
/1 for loop

for (var float v_i:=1.0; v_i<7.9; v_i:=v_i*1.35) { ...} // Index variable v_i is declared and
/1 initialized in the for |oop header. Variable
// v_i only is visible in the | oop body.

19.4.2 The range-based loop
The range-based loop iterates over the elements provided by arange expression.

Syntactical Structure

for "(" [var TypeO NestedTypeDef] Val ueRef in Expression ")"
St at erent Bl ock

Semantic Description

The range expression is evaluated once before beginning the loop and may be partialy initialized. The root type of the
range expression shall berecord of, set of, array, octetstring, hexstring, bitstring, charstring or universal
charstring.

Elements are iterated in sequential order. In each iteration the appropriate element is assigned to the iteration variable
and the statement block is executed.

If theiteration variableis declared in the for statement header, its scope and lifetimeis limited to the statement block,
i.e. anew iteration variableisinitialized in every iteration. If theiteration variable is declared outside the for
statement, after execution its value will be that of the last iteration.

NOTE 1: Theiteration order of map keys and map valuesis not specified and is not guaranteed to be the same from
one iteration to the next.

NOTE 2: The behaviour of lazy or fuzzy iteration variablesis not specified and should not be used to avoid future
compatibility issues.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples
EXAMPLE 1:
/Il lterate over the keys of a map
/1
var map fromcharstring to integer m:= {
["a"] =1,
["b"] =2,
["c"] := 3,
}
for (var charstring k in mfrom {
} log(k, "=", nlk]);
/1 Cutput:
/1 a=1
/1 b=2
/1 c=3
EXAMPLE 2

/1l lterate over the return value of a function
/1
external function generateNunbers(integer n) return record of integer

for (var x in generateNunbers(x)) { ... } // ERROR scope of x is linmted to statenent bl ock

ETSI

207 ETSI ES 201 873-1 V4.16.1 (2024-10)

for (var i in generateNunbers(2)) { // function is called only once
log(i);

}

/1 Cutput:

/1 0

/1 1

/1 2

EXAMPLE 3:

/] Iterate over partially initialized ranges

/1

var integer e, i :=0;

for (ein {1, -, -}) {
i ++;

log("final value:", e);

/1 Cutput:

/1 0

/1 1

/1 2

/1 final value: -

EXAMPLE 4:

/1 Iterate over string tenplates

/1

var tenplate hexstringt :='1*D H,

for (var eint) {
I og(e);

}

/1 Qutput:

/1 "1'H

/1 "*'H

/1 '"DH

EXAMPLE 5:

/1 Modify record of inside a |oop

/1

var record of integer a := {1, 2, 3}

for (var i ina) { // ais evaluated once, nodification has no effect.
a[lengthof(a)] :=3 + i;

}

I og(a);

/1 Cutput:

Il {1,2,3,4,5,6}

19.5 The While statement

A whi | e statement defines aloop that is executed as long as the loop condition holds.
Syntactical Structure

while "(" [(Varlnstance| Assignnent) ";"] Bool eanExpression ")" StatenentBl ock
Semantic Description

The loop condition may be preceded by aninit statement (variable declaration or assignment), which executes before
the expression is evaluated. The scope of variables declared within an init statement shall be limited to thewhi | e
statement.

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately follows the whi | e loop. If a
br eak statement is executed that is not within the body of an enclosed loop, al t , aststep or i nt er | eave, thenthe
loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5 and shown in table 16.

ETSI

208 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

while (v_j<10){ ...}

19.6 The Do-while statement

A do- whi | e statement defines aloop that is executed up until the loop condition does not hold.

Syntactical Structure

do StatementBl ock while "(" Bool eanExpression ")"
Semantic Description

Thedo- whi | e loopisidentical to awhi | e loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado- whi | e loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. If abr eak statement is executed that is not within the body of an enclosed
loop, al t , aststep ori nt er | eave, then the loop isterminated, too.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

do { ...} while (v_j<10);

19.7 The Label statement

Thel abel statement alows the specification of labelsin test cases, functions and altsteps.

Syntactical Structure

| abel Label Identifier
Semantic Description

A | abel marksastatement. The label isused by the got o statement (see clause 19.8) to transfer control to alabelled
statement.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a Al abel statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an alternative or top alternativeinanal t statement, i nt er | eave statement or al t st ep.

b) Labelsused following thel abel keyword shall be unique among al labels defined in the same test case,
function or altstep.

Examples
| abel MyLabel ; /1 Defines the | abel MyLabel
/1 The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment

| abel L1, /1 Definition of |abel L1
al t{
[T pCOL.receive(nw_nySigl)
{ | abel L2; /1 Definition of Iabel L2
pCQOL. send(m nySi g2) ;
pCOL. r ecei ve(mv_ySi g3)

ETSI

209 ETSI ES 201 873-1 V4.16.1 (2024-10)

[T pCR2.receive(mv_nySig4)
{ pC2. send(m nySi g5) ;
pC2. send(m nySi g6) ;
| abel L3; /1 Definition of |abel L3
pC2. recei ve(mv_nySi g7) ;

19.8 The Goto statement

A got o statement performsajumpto al abel .

Syntactical Structure

goto Label Identifier
Semantic Description
The got o statement can be used in functions, test cases and altsteps to transfer control to alabelled statement.

The got o statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. awhi | e loop) and to jump over several levels out of
nested compound statements (e.g. nested alternatives).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Itisnot alowed to jump out of or into functions, test cases and altsteps.

b) Itisnot alowed to jump into a sequence of statements defined in a compound statement (i.e. al t statement,
whi | e loop, for loop, i f -el se statement, do-whi | e loop and thei nt er | eave statement).

c) Itisnot alowed to usethe got o statement withinani nt er | eave statement.

Examples

/1 The followi ng TTCN-3 code fragnent includes

iabel L1, [/l ...the definition of label L1,
mnyVar := 2 * mnyVar,;
if (mnyVar < 2000) { goto L1; } /1 ...a junp backward to L1,

m nyVar2 := f_nyFuncti on(m.nyVar);
if (mnyvVar2 > mnyVvar) { goto L2; } /1 ...a junp forward to L2,
pCOL. send(m nyVar) ;
pCQL. r ecei ve;
| abel L2; /1 ...the definition of |abel L2,
pCx2. send(i nteger: 21);
alt {
[T pCOL.receive { }
[1 pC®2.receive(integer: 67) {
| abel L3; /1 ...the definition of |abel L3,
pC2. send(m nyVar) ;
alt {
[1 pCOL.receive { }
[1 pC®2.receive(integer: 90) {
pC2. send(i nteger: 33);
pC2. recei ve(integer: 13);
goto L4; /1 ..a junmp forward out of two nested alt statenents,

}
[T pCR.receive(nw_nmyError) {
goto L3; /1 ...a junmp backward out of the current alt statenent,

[1 any port.receive {
goto L2; /1 ...a junmp backward out of two nested alt statenents,
}

}

[1 any port.receive {
goto L2; /1 ...and a long junp backward out of an alt statemnent.

ETSI

210 ETSI ES 201 873-1 V4.16.1 (2024-10)

}
}
| abel L4;

19.9 The Stop execution statement

The st op statement terminates execution of test components, atest case or atest control.
Syntactical Structure

st op
Semantic Description

The st op statement terminates execution in different ways depending on the context in which it is executed. When
executed in a control behaviour, it terminates the execution of the control component. When invoked in atest case,
atstep or function that are executed on atest component, it terminates the relevant test component.

NOTE: Thesemanticsof ast op statement that terminates atest component is identical to the stop component
operationsel f. st op (see clause 21.3.3).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.
Examples
modul e MyModul e {
: [/ Modul e definitions

téstcase TC MyTest Case() runs on MyMICType system MySyst enilype{
var MyPTCType v_ptc: = MyPTCType.create; // PTC creation

v_ptc.start(f_nyFunction()); /1 start PTC execution
: /] test case behaviour continued
st op /] stops the MIC, all PTCs and the whol e test case

}
function f_nyFunction() runs on MyPTCType {
sfop /'l stops the PTC only, the test case continues
control {
/] test execution
st op /] stops the test canpaign

} // end control
} /1 end nodul e

19.10 The Return statement

Ther et ur n statement terminates execution of functions or altsteps.
Syntactical Structure

return [Expression | Tenpl atel nstance]
Semantic Description

Ther et ur n statement terminates execution of afunction or altstep and returns control to the point from which the
function or altstep was called. When used in functions, ar et ur n statement may be optionally associated with areturn
value or template.

TTCN-3 alows optional statement blocks that may follow altstep callswithinal t statements. If thereis a statement
block, ther et ur n statement returns control to the beginning of this statement block and the statement block is
executed beforethe al t statement isleft. If there is no statement block, test execution continues with the first statement
following theal t statement.

The return value or template isfirst evaluated before returning.

ETSI

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions

apply:

211

ETSI ES 201 873-1 V4.16.1 (2024-10)

a) Thereturn statement shall not be present in testcase definitions.

Examples

function f_nyFunction() return bool ean {

if (v_date == "1.1.2005") {
/] execution stops on the 1.1.2005 and returns the bool ean fal se

/! true is returned

function f_nyTenpl ateFunction() return tenplate charstring {

return fal se;

}

'return true;

}

if (v_date == "1.1.2005") {
return "2005";

}

.return ?;

}

function f_nyBehaviour () return verdicttype {

if (f _nyFunction()) {

/1 the string of the year is returned

/1 the any tenplate is returned

setverdict(pass); // use of f_nyFunction in an if statenent

el se {
setverdi ct (i nconc);
}

return getverdict;

Il explicit

19.11 The Log statement

Thel og statement provides the means to write logging information to some logging device. The information that can

be logged is summarized in table 18.

return of the verdict

Table 18: TTCN-3 language elements that can be logged

Used in a log statement

What is logged

Comment

module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value

template instance

actual template or field
values and matching
symbols

variable identifier

actual value
or "UNINITIALIZED"

See notes 3 and 4.

sel f,ntc, systemor
component type variable
identifier

actual value and if
assigned the component
instance name
otherwise
"UNINITIALIZED"

On logging actual values see notes 2
to 4. Actual component states shall be
logged according to note 5.

create operation

actual state and the
component instance
name

The actual state is always set to Inactive.

running operation
(component or timer)

return value

true orf al se. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value

true or f al se. In case of arrays, array
element specifications shall be included.

checkstate operation

return value

trueor fal se.

ETSI

212 ETSI ES 201 873-1 V4.16.1 (2024-10)

Used in a log statement What is logged Comment

port instance actual state Port states shall be logged according to
note 6.

default type variable identifier actual state Default states shall be logged according

or "UNINITIALIZED" to note 7. See also notes 2 to 4.

activate operation activate operation The actual state is always set to
activated.

timer name actual state Timer states shall be logged according to
note 8.

read operation return value See clause 23.4.

match operation return value trueor fal se.

valueof operation return value

getverdict operation return value none, pass, i nconc,orfail.

predefined functions return value See annex C.

function instance return value Only functions with return clause are
allowed.

external function instance return value Only external functions with return clause
are allowed.

formal parameter identifier see comment column Logging of actual parameters shall follow
rules specified for the language elements
they are substituting. In case of value
parameters the actual parameter value,
in case of template-type parameters the
actual template or field values and
matching symbols, in case of component
type parameters the actual component
reference, etc. shall be logged.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.

NOTE 3: In case of array identifiers without array element specification, actual values and for
component references names of all array elements shall be logged.

NOTE 4: The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).

NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex F).

NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).

NOTE 7: Default states that can be logged are: Activated and Deactivated.

NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see
annex F).

NOTE 9: As the logging of the fields of structured values and templates is not standardized, tools
supplied by different vendors may differ in the logged information.

Syntactical Structure
log "(" { (FreeText | Tenplatelnstance) [","] } ")"
Semantic Description

Thel og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 18 or expressions composed of such log items.

It is strongly recommended that the execution of the | og statement has no effect on the test behaviour. In particular,
functions used in alog statement should not (explicitly or implicitly) change component variable values, port or timer
status, and should not change the value of any of itsinout or out parameters.

NOTE: Itisoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

ETSI

213 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

var integer v_nyVar:= 1;

log("Line 248 in PTC_ A ", v_nyVar, " (actual value of v_nyVar)");

[/l The string "Line 248 in PTC_A: 1 (actual value of v_nyVar)" is witten to sone |og device
/1 of the test system

19.12 The Break statement

A br eak statement causes the exit from aloop, from an altstep or fromanal t ori nt er | eave statement.
Syntactical Structure

br eak
Semantic Description

On executing abr eak statement the innermost, currently executed loop, al t statement or i nt er | eave statement is
left. Execution continues with the statement following the construct which isleft. Using br eak outside the body of a
loop (f or , whi | e, do-whi | e) or an dlternativeof anal t ori nt er| eave statement shall cause an error.

Altsteps are aways executed within a surrounding al t statement. If the execution of atop aternative of an altstep (see
clause 16.2.1) ends with abr eak statement, the altstep and the surrounding al t statement are left. Execution
continues with the statement following the surrounding al t statement.

NOTE: TTCN-3 alows optional statement blocks that may follow altstep calswithinal t statements. These
statement blocks are not executed when the altstep isleft by executing abr eak statement. Ar et ur n
statement has to be used, if such an optional statement block has to be executed (see clause 19.10).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples
do {

i f (v_condl) {
br eak; /1 the do-while loop is left
}

flér (var integer v_j:=1; v_j<=10; v_j:= v_j+1) {

|f (v_cond2) {
br eak; /1 the for-loop is left but the do-while Ioop is continued
}

\}/\lni le (v_j<10);

19.13 The Continue statement

A cont i nue statement causes the start of the next iteration of aloop.

Syntactical Structure
continue
Semantic Description

On executing acont i nue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using cont i nue outside the body of aloop (f or , whi | e, do-whi | e) shall
cause an error.

ETSI

214 ETSI ES 201 873-1 V4.16.1 (2024-10)

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples
do {

if (v_cond) {
conti nue; /] execution continues with the next iteration of the do-while-Ioop
}

flér (var integer v_j:=1; v_j<=10; v_j:= v_j+1) {

i f (v_cond2) ({
conti nue; /1 continues with the next iteration of the for-1oop
}

\}/\lni le (v_j<10);

19.14 Statement block

Statement blocks can be used like basic program statements to introduce alocal scope in the flow of control of TTCN-3
behaviour. The declarations and statements in a statement block are executed in the order of their appearance,
i.e. sequentially.

Syntactical Structure
"{" { LocalDefinition | Statenment } "}"
Semantic Description
A statement block defines alocal scope unit. Scoping rules for TTCN-3 are defined in clause 5.2.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples
var integer v_aVar:= O; /1 v_aVar is declared
{ /] start of a statenent bl ock
var integer v_nyVar:= 2; /1 v_nyVar is declared
v_aVar := 5 + v_nyVar; /'l v_nyVar is used in an assignment
/1 end of statement bl ock
/1 after leaving the statenent block, v_aVar is still known, but v_nyVar is not known anynore.

20 Statement and operations for alternative behaviours

20.0 General

Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both. An
interleaving operator allows the specification of interleaved sequences or alternatives. Table 19 summarizesthe
statements and operations for alternative behaviours.

ETSI

215 ETSI ES 201 873-1 V4.16.1 (2024-10)

Table 19: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements |repeat
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate

20.1 The snapshot mechanism

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated in figure 9.

S1;
S1 alt {
[1 s2{
alt {
[] 4{ sS7}
[1 S5
S8;
alt {
[1 s9 {}
[1 s10 {}
}
}
}
}
[] S3{ S6}

Figure 9: lllustration of alternative behaviour

Thisisdonewiththeal t statement.

When entering an al t statement, a snapshot is taken. A snapshot is considered to be a partial state of atest component
that includes al information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptions in the relevant
incoming port queues. Any test component, timer and port which isreferenced in at least one aternativein the al t
statement, or in atop alternative of an altstep that isinvoked as an alternativeintheal t statement or activated as
default is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ETSI ES 201 873-4 [1]).

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of theal t statement. The concrete
agorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard (ETSI
ES 201 873-4 [1]).

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot isinstantaneous, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditions is outside the scope of the present document.

20.2 The Alt statement

An alt statement expresses sets of possible alternatives that form atree of possible execution paths.

Syntactical Structure

alt [@odefault] "{"
{ (Varlinstance | Tinerlnstance | ConstDef | TenplateDef) [";"] }
{
"[" [Bool eanExpression] "]"
((TinmeoutStatenent |
Recei veSt at enent |
Tri gger St at emrent |

ETSI

216 ETSI ES 201 873-1 V4.16.1 (2024-10)

Get Cal | St at ement |

Cat chSt at ement |

CheckSt at ement |

CGet Repl ySt at emrent |

DoneSt at enent |

Ki |l edStatenment) StatenentBlock)

|
(Altsteplnstance [StatenentBlock])

["[" else "]" StatenentBl ock]

"y
Semantic Description

Theal t statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
recei ve,trigger,getcall,getreply,catch,check,tinmeout, doneandkilled.Thealt statement
denotes a set of possible events that are to be matched against a particular snapshot.

An alt statement may define some local definitions before its alternative branches. These can be used by all the
branches.

Execution of alter native behaviour:

When entering an al t statement, a snapshot is taken. If the alt statement contains local definitions before its first
branch, these are eval uated before the snapshot is taken. When the alt statements executes the repeat operation, the
whole alt statement, including the local definitions, is re-evaluated.

The aternative branchesin theal t statement and the top alternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The aternative branchesin active
defaults are reached by the default mechanism described in clause 20.5. If theal t statement contains the

@odef aul t modifier, all active default aternatives are ignored for the execution of thisal t statement.

Theindividual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [el se] .

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by boolean expressions either invoke an altstep (altstep-branch), or start with adone
operation (done-branch), aki | | ed operation (killed-branch), t i meout operation (timeout-branch) or areceiving
operation (receiving-branch), i.e.r ecei ve, tri gger,getcall ,getreply, catch oracheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluatesto t r ue. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the altstep isinvoked and the evaluation of the snapshot continues within the altstep. An
altstep-branch may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the atstep referenced in the atstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of killed
components of the snapshot. The selection causes the execution of the statement block following theki | | ed
operation. Theki | | ed operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified t i meout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block followingthet i meout operation.

ETSI

217 ETSI ES 201 873-1 V4.16.1 (2024-10)

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of thet ri gger operation the top message of the queue is also removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given alternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the eval uation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

NOTE 2: Dueto the possibility of defining dynamic test configurations, a receiving branch may refer to a
disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports belong to the receiving
component and matching is related to the top elements in the port queues. Dynamically unmapped and
disconnected ports contribute to a snapshot in the same manner as mapped and connected ports. This
means, the execution of receiving operations may empty the queues of unmapped and disconnected ports
without causing atest case error.

If none of the alternative branchesintheal t statement and top alternativesin the invoked altsteps and active defaults
can be selected and executed, theal t statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
alternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.0. because the MTC is stopped) or with adynamic error.

The test case shall stop and indicate a dynamic error if atest component is completely blocked. This means none of the
alternatives can be chosen, no relevant test component is running, no relevant timer is running and all relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 3: The repetitive procedure of taking a complete snapshot and re-evaluate all alternativesisonly a
conceptual means for describing the semantics of theal t statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alter native:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[...]") brackets of the alternative.

Else branch in alternatives:

Any branchinanal t statement can be defined as an el se branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of all alternatives unlessthe
@nodefault modifier is present. If an el se branch is defined, the default mechanism will never be caled, i.e. active
defaults will never be entered.

NOTE 4: Itisalso possibleto useel se in altsteps.
NOTES: Itisallowedtousear epeat statement withinan el se branch.

NOTE 6: It isallowed to define more than one else branch in an alt statement or in an altstep, however always only
the first else branch is executed.

Re-evaluation of alt statements:

There-evaluation of anal t statement can be specified by using ar epeat statement (see clause 20.3).

ETSI

218 ETSI ES 201 873-1 V4.16.1 (2024-10)

Invocation of altsteps as alter natives:

TTCN-3 alowstheinvocation of altsteps as alternativesinal t statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the altstep call shall also be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following theal t statement when one of the branches of theal t or
invoked defaultsis selected and completely executed, or abranch of anal t st ep used in an atsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following theal t statement if abr eak statement isreached in the
statement block of the selected branch of anal t statement, of anal t st ep used in an altstep-branch, or of an
al t st ep invoked as default.

Theal t statement can aso beleft by using agot o statement in the selected branch of theal t (i.e. no branches of
altsteps and defaults can be considered in this case), and execution continues with the statement following the label,
got o ispointing to.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Theopen and close square brackets ("[...]") shall be present at the start of each alternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an aternative shall not have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, the same
restrictions as the restrictions for the initialization of local definitions within altsteps (clause 16.1.5) and the
restrictions imposed on the contents of functions called from special places (clause 16.1.4) shall apply.

c¢) Theevaluation of the event of an alt branch shall not have side effects. To avoid side effects that cause an
inconsistency between the actual snapshot and the state of the component or introduce indeterminismin the
evaluation of the following alt branches or the re-eval uation of the same alt branch, the restrictions imposed on
the contents of functions called from specia places (clause 16.1.4) shall apply to expressions occurring in the
matching part of an alternative.

d) Theevaluation of an altstep invoked from an alt branch, if none of the alternativesin the altstep is chosen,
shall not have side effects. To avoid side effects the restrictions imposed on the contents of functions called
from special places (clause 16.1.4) shall apply to the actual parameters of the invoked atstep.

e Void.
f) Anal t statement used inside control behaviour shall only containt i meout statements.
Examples

EXAMPLE 1: Nested alternatives:

alt {
[T nmyPort.receive (mv_nyMessage) {

setverdi ct (pass);

t_nyTiner.start;

alt {

[T nyPort.receive (mv_nySecondMessage) {

t_nyTinmer. stop;
setverdi ct (pass);

[T t_nyTimer.timeout {
myPort.send (m.nyRepeat);
t_nyTiner.start;
alt {
[1 nyPort.receive (nw_nySecondMessage) {
t _nyTinmer. stop;
setverdi ct (pass)

ETSI

219 ETSI ES 201 873-1 V4.16.1 (2024-10)

[T t_nyTimer.tinmeout { setverdict (inconc) }
[1 nyPort.receive { setverdict (fail) }

}

[T nmyPort.receive { setverdict (fail) }

}

}
[T t_nyTiner.tineout { setverdict (inconc) }
[T nmyPort.receive { setverdict (fail) }

}
EXAMPLE 2: Alt statement with guards:

alt {
[v_x>1] |2.receive { /1 Bool ean guard/ expression
setverdi ct (pass);
[v_x<=1] |2.receive { /1 Bool ean guard/ expression
setverdi ct (inconc);
}
}

EXAMPLE 3. Alt statement with else branch:

/'l Use of alternative with Bool ean expressions (or guard) and el se branch
alt {

[el se] { /'l el se branch
f _nyErrorHandling();
setverdict(fail);
st op;

}
EXAMPLE 4: Re-evaluation with repeat:

alt {
[1] pC3®.receive {
v_count := v_count + 1;
repeat /'l usage of repeat

}
[] t_tl.tineout { }
[1 any port.receive {
setverdict(fail);
st op;

}
EXAMPLES: Alt statement with explicitly invoked altstep:

alt {
[T pC3B.receive { }
[1] a_anotherAltStep() { /1 Explicit call of altstep a_anotherAltStep as alternative.
setverdict(inconc) // Statement block executed if an alternative within
/1 altstep Another AltStep has been sel ected and execut ed.

}
[T t_nyTimer.timeout { }

}
EXAMPLE 6: Alt statement with forbidden function calls:
alt {
[] f_getPort().receive(t(p())) { } // forbidden if f_getPort, t or p has side effects
[T a_anotherAltStep(f()); /] forbidden if f has side effects
[T t_nyTimer[i(p())].tineout { } /] forbidden if i or p has side effects
[f_g()] f_getConponent(p()).done {} // forbidden if f_g, f_getConponent or p has side effects
}
EXAMPLE 7: Alt statement with local definition:
alt {
var integer currentTime := f_getCurrentTi me();
[T p-receive(Message:{ ..., ts := (currentTine-10 .. currentTine+10) }) { ... }
}

ETSI

220 ETSI ES 201 873-1 V4.16.1 (2024-10)

20.3 The Repeat statement
Ther epeat statement is used for are-evaluation of anal t statement.

Syntactical Structure

repeat
Semantic Description

Ther epeat statement, when used in the statement block of alternatives of al t statements, causes the re-evaluation of
theal t statement, i.e. anew snapshot is taken and the alternatives of theal t statement are evaluated in the order of
their specification.

When used in statement blocks of the response and exception handling parts of blocking procedure calls, the repeat
statement causes the re-eval uation of the response and exception handling part of the call (see clause 22.3.1).

If ar epeat statement isused in atop aternative in an atstep definition, it causes a new snapshot and the
re-evaluation of theal t statement from which the altstep has been called. The call of the atstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly intheal t statement (see clause 20.2).

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Therepeat statement shall only be used withinal t statements, cal | statements or altsteps.

Examples

EXAMPLE 1: Usage of repesat in an alt statement:

alt {
[T pC3. receive {
v_count := v_count + 1;
r epeat /'l usage of repeat

}

[T t_tl.tineout { }

[1 any port.receive {
setverdict(fail);
st op;

}
}

EXAMPLE 2: Usage of repeat in an altstep:

altstep a_anotherAltStep() runs on MyConponent Type {
[1 pCOL.receive{
setverdi ct (i nconc);
repeat /1 usage of repeat

[1 LCOZ receive {}

20.4 The Interleave statement

Thei nt er | eave statement allows to specify the interleaved occurrence and handling of receiving eventsincluding
done,kill ed,ti meout,receive,trigger,getcall,getreply,catchandcheck.

Syntactical Structure

interl eave [@odefault] "{"
{ "[1" (Tinmeout Statenent
Recei veSt at enent
Tri gger St at ement
Get Cal | St at emrent
Cat chSt at ement |
CheckSt at enent |
CGet Repl ySt at emrent |

ETSI

221 ETSI ES 201 873-1 V4.16.1 (2024-10)

DoneSt at enent |
KilledStatenment) StatementBl ock

"y
Semantic Description

Thei nt er | eave statement allows to specify the interleaved occurrence and handling of the statementsdone,
killed,timeout,receive,trigger,getcall,getreply,catchandcheck.

Interleaved behaviour can always be replaced by an equivalent set of nested al t statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard (ETSI
ES 201 873-4 [1]).

The rules for the evaluation of an interleaving statement are the following:

a) Whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement isreached, abr eak statement isreached, or the interleaved sequence ends.

NOTE 1. Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e.r ecei ve,
check,trigger,getcall,getreply,catch,done, killedandti meout.Non-reception
statements denote all other non-control-transfer statements which can be used withinthei nt er | eave
statement.

b) If none of the alternatives of thei nt er | eave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those atsteps that have been activated before entering thei nt er | eave statement. If the
i nt er| eave statement containsthe @ odef aul t modifier, all active default aternatives are ignored for
the execution of thisi nt er | eave statement.

NOTE 2: The complete semantics of the default mechanism withinani nt er | eave statement is given by
replacing thei nt er | eave statement by an equivalent set of nested al t statements. If the
i nt er| eave statement containsthe @ odef aul t modifier, it is equivalent with all replacement alt
statement having the @ odef aul t modifier. The default mechanism applies for each of these al t
statements.

c¢) Theevauation then continues by taking the next snapshot if no br eak statement was encountered.

d) Theevauation of thei nt er | eave statement isterminated if abr eak statement is executed.
The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ETSI ES 201 873-4 [1]).
Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Control transfer statementsact i vat e, deacti vat e, repeat , al calsof dtsteps and (direct and
indirect) calls of user-defined functions, which include reception statements, shall not be present in
i nt erl eave statements.

b) Inaddition, itisnot alowed to guard branches of ani nt er | eave statement with Boolean expressions
(i.e. the'[]' shall always be empty). It isalso not alowed to specify el se branchesin interleaved behaviour.

c¢) Aninterl eave usedinside control behaviour shall only containt i meout statementsin the event parts of
the alternatives.

d) Therestricted use of the control transfer statementsf or , whi | e, do- whi | e, and got o within
i nt er| eave statementsis allowed under the following conditions:

- The loop statementsf or , whi | e, and do- whi | e can be used within statements blocks that do not
contain reception statements.

- The got o statement can be used for defining jumps with statements blocks that do not contain reception
statements and for specifying jumpsout of i nt er | eave statements.

ETSI

222

EXAMPLE:

/1 The followi ng TTCN-3 code fragnent
interleave {
[T pCOL.recei ve(mv_nySigl) {
PCOL. send(m nySi g2) ;
PCOL. r ecei ve(nw_nySi g3) ;
}
[T pCo.receive(nw_nySig4) {
pCx2. send(m nySi g5) ;
pCx2. send(m nySi g6) ;
pC2. recei ve(mv_nySi g7) ;

}
}
/1 is a shorthand for
alt {

[T PCOL.receive(nw_nySigl) {
PCOL. send(m_nySi g2) ;
alt {
[T PCOL.receive(nw_nySig3) {
alt {
[T PCR.receive(nmwv_nySig4) {
PC®2. send(m nySi g5) ;
PCO2. send(m nySi g6) ;
PCQ2. recei ve(nw_nySi g7)

}

}
[T PCQ2.receive(nmw_nySig4) {
PCO2. send(m nySi g5) ;
PCO2. send(m nySi g6) ;
alt {
[T PCOL.receive(nw_nySig3) {
PC2. r ecei ve(nw_nySi g7) ;

}
[T PCQ2.receive(nmw_nySig7) {
PCOL. r ecei ve(mw_nySi g3) ;
}

}

}
[T pCR.receive(mv_nySig4) {

pC2. send(m nySi g5) ;

pC2. send(m nySi g6) ;

alt {

[1 pCOL.receive(nw nySigl) {
pCOL. send(m nySi g2) ;
alt {
[T pCOL.receive(nw _nySig3) {

pC2. recei ve(mv_nySi g7) ;

[1 LC@ recei ve(mv_nySi g7) {
pCOL. r ecei ve(mv_nySi g3) ;
}

}

}
[T pCRR.receive(nmw_nySig7) {
alt {
[1 pCOL.receive(nw_nySigl) {
pCQOL. send(m nySi g2) ;
pCOL. r ecei ve(mv_nySi g3) ;

ETSI

ETSI ES 201 873-1 V4.16.1 (2024-10)

223 ETSI ES 201 873-1 V4.16.1 (2024-10)

20.5 Default Handling

20.5.0 General

TTCN-3 alows the activation of altsteps (see clause 16.2.1) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activationi.e. the
last activated default isthe first element in the list of active defaults. The TTCN-3 operationsact i vat e (see

clause 20.5.2) and deact i vat e (see clause 20.5.3) operate on the list of defaults. If anact i vat e operation creates
anew default, it isinserted as the first element into the list. Re-activated defaults that were previously suspended retain
their position in thelist. Thedeact i vat e operation either removes a default from the list or suspends it in which case
the default remainsin the list, but istemporarily inactive. A default in the default list can be identified by means of
default reference that is generated as a result of the corresponding act i vat e operation.

20.5.1 The default mechanism

The default mechanism is evoked at the end of each al t statement not annotated with the @nodefault modifier, if due
to the actual snapshot none of the specified alternatives could be executed. An evoked default mechanism invokes the
first atstep in the list of defaults, i.e. the last activated default, and waits for the result of its termination. The
termination can be successful or unsuccessful. Unsuccessful means that none of the top alternatives of theal t st ep
(see clause 16.2.1) defining the default behaviour could be selected, successful means that one of the top alternatives of
the default has been selected and executed.

NOTE 1: Ani nterl eave statement is semantically equivalent to a nested set of al t statements and the default
mechanism also appliesto each of theseal t statements. This means, the default mechanism also applies
toi nt er| eave statements. Furthermore, the restrictions imposed on interleave statementsin
clause 20.4 do not apply to altsteps that are activated as default behaviour for interleave statements.

NOTE 2: Dueto the possibility of defining dynamic test configurations, an alternative in an altstep activated as
default may refer to a disconnected or unmapped port at the time of its evaluation. In TTCN-3, ports
belong to the receiving component and matching is related to the top elementsin the port queues.
Dynamically unmapped and disconnected ports contribute to a snapshot in the same manner as mapped
and connected ports. Thismeans, an al t st ep invoked as default may execute receiving operations that
empty the queues of unmapped and disconnected ports without causing a test case error.

In the case of an unsuccessful termination, the default mechanism invokes the next default in the list that is not in the
suspended state. If the last default in the list has terminated unsuccessfully, the default mechanism will return to the
placeintheal t statement in which it hasbeen invoked, i.e. at theend of theal t statement, and indicate an
unsuccessful default execution. An unsuccessful default execution will also be indicated if the list of defaultsis empty
or if it contains only suspended defaults.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked (see
clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of ast op statement, or
the main control flow of the test component will continue immediately after theal t statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluatethe al t statement. The latter has
to be specified by means of ar epeat statement (see clause 20.3). If the execution of the selected top aternative of the
default ends with abr eak statement or without ar epeat statement the control flow of the test component will
continue immediately after theal t statement.

NOTE 3: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of aprocessthat isimplicitly called at the end of each al t statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
called in the reverse order of their activation when the default mechanism has been invoked.

ETSI

224 ETSI ES 201 873-1 V4.16.1 (2024-10)

20.5.2 The Activate operation
Theact i vat e operation is used to activate altsteps as defaults.

Syntactical Structure

activate "(" AltstepRef "(" [{ ActualPar [","] }] ")" | ObjectReference ")"
Semantic Description

Anacti vat e operationif it is called with an AltstepRef will put the referenced altstep as the first element into the list
of defaults and return a default reference. The default reference is a unique identifier for the default and may be used in
adeact i vat e operation for the deactivation of the default. The actual parameters of a parameterized altstep (see
clause 16.2.1) that should be activated as a default, shall be provided in the corresponding act i vat e statement. This
means, the actual parameters are bound to the default at the time of its activation (and not e.g. at the time of its
invocation by the default mechanism).

If theact i vat e operation is called with an ObjectReference, it will re-activate the referenced default which was
previously suspended by adeact i vat e operation. In this case the referenced default shall remain in the same place in
thelist of defaults asit was beforetheact i vat e operation, and theact i vat e operation shall return with the same
ObjectReference asit received at calling.

The effect of anact i vat e operation islocal to the test component in which it is called. This means, atest component
cannot activate a default in another test component.

Theact i vat e operation can be called without saving the returned default reference. Thisform is useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of a default is done implicitly at
MTC termination.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a Void.

b) Void.

c) Anadtstep that is activated as adefault shall only havei n parameters.

d) The ObjectReference shall be of default type.

€) The ObjectReference shall refer to adefault that is marked as suspended in the list of defaults.
Examples

EXAMPLE 1. Activation where the default referenceis kept

Il Declaration of a variable for the handling of defaults
var default v_nyDefaultVar := null;

/) Decl aration of a default reference variable and activation of an altstep as default
var default v_nyDefVarTwo : = activate(a_nySecondAl tStep());

)/ Activation of altstep MJAItStep as a defaul t
v_nyDefaul tVar := activate(a_nmyAltStep()); // a_nmyAltStep is activated as default

/) Usage of v_nyDefaultVar for the deactivation of default a_nyDefAltStep
deactivat e(v_nyDef aul t Var) ;

EXAMPLE 2: Simple activation

/1 Activation of an altstep as a default, without assignnent of default reference
activat e(a_myComonDefaul t());

ETSI

225 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 3: Activation of a parameterized altstep

altstep a_nyAltStep2 (integer p_val uel, MyType p_val ue2,
MyPort Type p_port, timer p_timer)
{

function f_myFunc () runs on MyConpType
var defaul t v_nyDefaul tVar := null;

v_nyDefaul tVar := activate(a_nmyAtStep2(5, v_nyVar, vc_nyConpPort, tc_nyConpTiner);
/Il M/AltStep2 is activated as default with the actual paraneters 5 and
/'l the value of v_nyVar. A change of v_nyVar before a call of a_nyAltStep2 by
/'l the default nechanismwi |l not change the actual paraneters of the call.

X
EXAMPLE 4: Re-activation of a previously suspended default
var default v_defl :

var default v_def2 :
var default v_def3 :

acti vat e(a_mnyDef aul t Behavi our 1());
activat e(a_myDef aul t Behavi our2());
activat e(a_myDef aul t Behavi our 3());

deactivate(v_def2, true); // suspend the default tenporarily, with a second optional argument
alt {...} // alt block without the suspended default v_def2

/lactive defaults that are referred by v_def3, v_defl
activate(v_def2); // re-activate the default v_def2

/lactive defaults that are referred by v_def3, v_def2, v_defl

20.5.3 The Deactivate operation
Thedeact i vat e operation is used to deactivate or suspend defaults, i.e. previoudy activated altsteps.

Syntactical Structure

deactivate ["(" OnjectReference ["," Expression] ")"]
Semantic Description

A deact i vat e operation will remove the referenced default from the list of defaultsif the optional Expression
evaluates to false, otherwise it marks the referenced default in the list of defaults as suspended.

NOTE: A suspended default can be re-activated by anact i vat e operation.

The effect of adeact i vat e operation islocal to the test component in which it is called. This means, atest
component cannot deactivate or suspend a default in another test component.

A deact i vat e operation without parameter deactivates all defaults of atest component.

Callingadeact i vat e operation with the special valuenul | asits ObjectReference has no effect. Calling a
deact i vat e operation with an undefined default reference, e.g. an old reference to a default that has already been
deactivated or an uninitialized default reference variable, shall cause aruntime error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of default type.
b) Theoptional Expression shall be of boolean type and shall not resolve to atemplate. Its default valueis fal se.

c) Theoptiona Expression shall evaluate to avalue, which isinitialized.

ETSI

226

Examples

EXAMPLE 1. Simple deactivation

var default v_nyDefaultVar := null;
var default v_nyDefVarTwo : = activate(a_nySecondA tStep());

var default v_nyDefVarThree := activate(a_nyThirdAltStep());

v._rryDef aultVar := activate(a_nyAltStep());

déact ivate(v_nyDefaultVar); // deactivates a_nyAltStep
deactivate(v_nyDefaul tVvar, false); // sanme as above

ETSI ES 201 873-1 V4.16.1 (2024-10)

déactivate; /'l deactivates all other defaults, i.e. in this case a_nySecondAlt Step

/1 and a_mnyThirdAl t Step

EXAMPLE 2: Suspension of a default

deactivate(v_nyDefaul t Var, true); /1 suspends the default referred by v_nyDefault Var;

/1 which can be re-activated

activate(v_nyDefaul tVar);

21 Configuration Operations

21.0 General

Configuration operations are used to set up and control test components and their connections. They are summarized in

table 20.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) These operations shall only be used in:

- TTCN-3 test cases,

- behaviour invoked directly or indirectly from a test case or from behaviour started on a ptc.

b) They shal not be present in:
- control behaviour;

- declarations inside component type definitions; or

- functionsinvoked directly or indirectly from declarations inside component type definitions.

Table 20: Overview of TTCN-3 configuration operations

Operation | Explanation | Syntax Examples

Connection Operations

Connect Connects the port of one test connect (ptcl:pl, ptc2:p2);
component to the port of another test
component

Disconnect Disconnects two or more connected di sconnect (ptcl: pl, ptc2:p2);
ports

Map Maps the port of one test component to [mp(ptcl: g, systemsutPort1);

the port of the test system interface

Unmap Unmaps two or more mapped ports unmap(ptcl: g, systemsutPortl);

ETSI

227

ETSI ES 201 873-1 V4.16.1 (2024-10)

Operation

|

Explanation

Syntax Examples

Test Component Operations

Create

Creation of a normal or alive test
component, the distinction between
normal and alive test components is
made during creation

(MTC behaves as a normal test
component)

Non-alive test components:

var PTCType c¢ := PTCType. create;

Alive test components:

var PTCType c := PTCType.create alive;

Start

Starting test behaviour on a test
component, starting behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehaviour());

Stop

Stopping test behaviour on a test
component

c.stop;

Kill

Causes a test component to cease to
exist

c.kill;

Alive

Returns true if the test component has
been created and is ready to execute
or is already executingbehaviour;
otherwise returns false

if (c.alive)

Running

Returns true as long as the test
component is executing behaviour;
otherwise returns false

if (c.running)

Done

Checks whether the function running
on a test component has terminated

c. done;

Killed

Checks whether a component has
ceased to exist

c.killed { ..]

Test Case Operations

Stop

Terminates the test case with the test
verdict error

testcase.stop (

BE

Reference Operations

Mtc

Gets the reference to the MTC

connect(mtc:p, ptc:p);

component that executes this operation

System Gets the reference to the test system [map(c:p, system sutPort);
interface
Self Gets the reference to the test sel f. stop;

21.1

21.1.0 General

Connection Operations

The ports of atest component can be connected to ports of other components or to the ports of the test system interface
(seefigure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting atest component to atest system interface the map operation shall be used. The connect operation
directly connects one port to another with thei n side connected to the out side and vice versa. The map operation on
the other hand can be seen purely as a name trandlation defining how communications streams can be referenced.

ETSI

228 ETSI ES 201 873-1 V4.16.1 (2024-10)

Test system Connected Ports

[T =
MTC < PTC

v

out IN
our I N
Mapped Ports *
Abstract Test System |Interface aut i | I'N
O—C——

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

21.1.1 The Connect and Map operations

Theconnect operation isused to setup connections between test components. The map operation are used to setup
connections to the SUT.

Syntactical Structure

connect "(" ConponentRef ":" Port "," ConmponentRef ":" Port ")"
map " (" ConponentRef ":" Port "," ConponentRef ":" Port ")"
[param"(" [{ ActualPar [","] }+] ")"]

Semantic Description

With both the connect operation and the map operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mt ¢ identifiesthe MTC, the operation sy st emidentifies the test system interface and the operation
sel f identifiesthe test component in which sel f has been called (see clause 6.2.11). All these operations can be used
for identifying and connecting ports.

Both theconnect and map operations shall be only invoked from places specified in clause 21.0. Before either
operation is called, the components to be connected shall have been created and their component references shall be
known together with the names of the relevant ports.

Applying amap or connect operation to ports which are already mapped or connected has no effect on the test
behaviour or test configuration, i.e. test execution continues asif the operation has not been invoked.

NOTE 1: Note that also triMap or tciConnect respectively will not be invoked in such a case.

The map operation provides an optional parameter list for configuration purposes. This allows to pass values needed for
dynamic runtime configuration. If a parameter list is present, the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

Restrictions

In addition to the genera static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) For boththeconnect and map operations, only consistent connections are allowed.
Assuming the following:

1) ports PORT1 and PORT?2 are the ports to be connected or mapped;

ETSI

229 ETSI ES 201 873-1 V4.16.1 (2024-10)

2) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1,;
3) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;
4) inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and
5) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b) Theconnect operationisallowed if and only if:
1) outlist-PORT1 c inlist-PORT2 and outlist-PORT2 c inlist-PORT1; and
2) neither PORT1 nor PORT2 are system port references; and
3) atleast one of outlist-PORT1 or outlist-PORT2 is not empty.
¢) Thenap operation isallowed if and only if:
1) PORT1isacomponent port reference and PORT2 is a system port reference; and
2) outlist-PORT1 c outlist-PORT?2 and inlist-PORT2 c inlist-PORT1; and
3) atleast one of outlist-PORTL1 or inlist-PORT2 is not empty.

NOTE 2: Notethat PORT1 and PORT2 can occur in any order, thus the system adapter port can be either the first
or the second operand of the map operation.

d) Inall other cases, the operations shall not be allowed.

€) Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at runtime and
shall lead to atest case error when failing.

f) Inaddition, the restrictions on allowed and disallowed connections described in clause 9.1 apply.

g) Innmap operations, par amclauses are optional. If in anmap operation a par amclause is present, exactly one
of the components referenced by the operation shall be the sy st emcomponent reference, the type of the
system component shall be known in the context of the operation either viaasyst emclause or viaar uns
on clauseinat est case without syst emclause, the type of the system port to which the operation is
applied shall include amap par amdeclaration, and the actual parameters shall conform to the map param
clause of the port type declaration of the system port used.

h) If the type of the component referenced in a connection operation is known (either when the component
reference isavariable or value returned from a function or the type is defined in the runs on, mtc or system
clause of the calling function), the referenced port declaration shall be present in this component type.

Examples

EXAMPLE 1: Simple map and connect:

/1 1t is assuned that the ports Portl, Port2, Port3 and PCOL are properly defined and decl ared
/1 in the corresponding port type and conponent type definitions

vér MyConponent Type v_nyNewPTC,
v_nmyNewPTC : = MyConponent Type. cr eat e;

connect (v_nyNewPTC: port1l, ntc:port3);
map(v_nyNewPTC: port2, system pCOL);

/1 In this exanple a new conponent of type MyConponent Type is created and its reference stored
/1 in variable v_nyNewPTC. Afterwards in the connect operation, portl of this new conponent

/1 is connected with port3 of the MIC. By neans of the nmap operation, port2 of the new conponent
/1 is then connected to port pCOL of the test systeminterface

ETSI

230 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2: Parameterized map:

vér MyConfi gType v_nyConfig := { option := 1, lock := fal se};
rTﬁp(ntc:port4, system pCO2) param (v_nyConfig);

/1 In this exanple by means of the map operation, port4 of the MIC is connected to the port pCQ2
/1 of the test systeminterface, and additionally a paraneter containing configuration options
// for the connection is passed.

EXAMPLE 3: Port visibility:

type port P nessage { inout integer; }
type conponent Cl1 { port P p1; }
type conponent C2 { port P pl, p2; }

testcase TC runs on Cl system Cl
{
var Cl v_ptc := C2.create; // valid assignnent, instance of C2 is conpatible with ClL type
connect (self:pl, v_ptc:pl); // valid, pl is present in Cl type definition
di sconnect (self:pl, v_ptc:pl);
connect (self:pl, v_ptc:p2); // invalid, although the real instance in v_ptc is of the
/Il C2 type, the variable itself is of the Cl type naking the p2 port invisible to the
/1 connection operation
connect (v_ptc:pl, systempl); // invalid, connect paraneters shall not contain
/] a systemport reference

21.1.2 The Disconnect and Unmap operations
Thedi sconnect and unmap operations are the opposite operations of connect and map.

Syntactical Structure

di sconnect [("(" ComponentRef ":" Port "," ConmponentRef ":" Port ")") |
("(" PortRef ")") |
("(" ConmponentRef ":" all port ")") |
("(" all component ":" all port ")")]

unmap [("(" ConponentRef ":" Port "," ConponentRef ":" Port ")"

[param”(" [{ ActualPar [","] }+])" 1) |

("(" PortRef ")" [param" (" [{ ActualPar [","] }+1 ")" 1) |
("(" ComponentRef ":" all port ")") |
("(" all component ":" all port ")")]

Semantic Description

Thedi sconnect and unmap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and portsin the test system interface.

Both, thedi sconnect and unnmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A di sconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

Toeasedi sconnect and unmap operations related to all connections and mappings of a component or aport, itis
allowed to usedi sconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. Theal | port keyword can be used to denote all ports of a
component.

Theusage of adi sconnect or unnap operation without any parameters is a shorthand form for using the operation
with the parameter sel f: al | port . It disconnects or unmaps all ports of the component that calls the operation.

Theal I conponent keyword shall only be used in combination withtheal | port keyword, i.e. al |
conponent :al | port, and shal only be used by the MTC. Furthermore, theal | conponent :all port
argument shall be used as the one and only argument of adi sconnect or unmap operation and it allowsto release
all connections and mappings of the test configuration.

ETSI

231 ETSI ES 201 873-1 V4.16.1 (2024-10)

Similar to the map operation, unmap provides an optional parameter list for configuration purposes. If a parameter list
is present, the actual parameters shall conform to the unmap param clause of the port type declaration of the system
port used. It alows to pass values needed for dynamic runtime configuration.

Restrictions

In addition to the genera static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) Inanunmap operation, apar amclause shall only be present if the system port to which the par amclause
belongsto is explicitly referenced.

b) Inunmap operations, par amclauses are optional. If in an unmap operation apar amclause is present,
exactly one of the components referenced by the operation shall be the sy st emcomponent reference, the type
of the system component shall be known in the context of the operation either viaasyst emclause or viaa
runs on clauseinat est case without syst emclause, the type of the system port to which the operation
is applied shall include an unmap param declaration and the actual parameters shall conform to the unmap
param clause of the port type declaration of the system port used.

c) If thetype of the component referenced in a connection operation is known (either when the component
reference isavariable or value returned from a function or the type is defined the runs on, mtc or system
clause of the calling function), the referenced port declaration shall be present in this component type.

d) The disconnect operation parameters shall not contain a system port reference.
Examples

EXAMPLE 1. Disconnect/unmap for specific connections:

connect (myNewConponent : port1, ntc:port3);
map(nyNewConponent : port 2, system pCOl);

di sconnect (myNewConponent : port1, mtc:port3); /1 disconnect previously nade connection
unmap(nyNewConponent : port2, system pCOL); /1 unmap previously nade napping

EXAMPLE 2: Disconnect/unmap for a component:

di sconnect (myNewConponent : port1); /1 disconnects all connections of Portl, which
/1 is owned by conponent nyNewConponent.
unmap(nyNewConponent: al | port); /1 unmaps all ports of conponent nmyNewConponent

EXAMPLE 3: Disconnect/unmap for "self":

di sconnect; /1 is a shorthand formfor ..

di sconnect (self:all port); /1 which disconnects all ports of the conponent
/1 that called the operation

uhmap; /1 is a shorthand formfor ...

unmap(sel f:all port); /1 which unmaps all ports of the conponent
/1 that called the operation

EXAMPLE 4: Disconnect/unmap for "all component":

di sconnect (all conmponent:all port); /1 the MIC di sconnects all ports of all
/] conponents in the test configuration.

uhmap(all conmponent:all port); /1 the MIC unnaps all ports of all
/] conponents in the test configuration.

21.2 Test case operations

21.2.0 General

Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is
the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.

ETSI

232 ETSI ES 201 873-1 V4.16.1 (2024-10)

21.2.1 Test case stop operation

The testcase stop operation defines a user defined immediate termination of atest case with the test verdict er r or and
an (optional) associated reason for the termination. Such an immediate stop of atest case isrequired for cases where a
user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leadsto a
situation where the continuation of the test case makes no more sense.

Syntactical Structure
testcase "." stop ["(" { (FreeText | Tenplatelnstance) [","] } ")"]
Semantic Description

The test case stop operation causes an immediate stop of the entire test case behaviour with the verdict err or . In
addition, the test case stop operation provides the means to specify the reason for the immediate termination of atest
case by writing one or more items to some logging device associated with the test control or the test component in
which the operation is used. Items to be logged shall be identified by a comma-separated list in the argument of the test
case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of
the log statement (see clause 19.11).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16.

Examples

test case. st op(" Unexpected Term nation");
/1 The test case stops the an error verdict and the string "Unexpected Termi nation"
/1l is witten to sone |og device of the test system

21.3 Test Component Operations

21.3.0 General

Test component operations are used to create, start, stop and kill test components. They can also be used to check if test
components are alive, running, done or killed.

21.3.1 The Create operation
Thecr eat e operation is used to create test components.

Syntactical Structure

Conmponent Type "." create ["(" Expression ["," Expression] ")"] [alive]
Semantic Description

The MTC isthe only test component, which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by cr eat e operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of thetypei n or i nout it shall bein alistening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour only once and a PTC that is kept alive after
termination of a behaviour and can be therefore reused to execute another behaviour. The latter is created using the
additional al i ve keyword. An alive-type PTC shall be destroyed explicitly using the ki | | operation (see

clause 21.3.4), whereas anon-alive PTC is destroyed implicitly after its behaviour terminates. Termination of atest
casg, i.e. the MTC, terminates all PTCsthat still exist, if any.

Since al test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

ETSI

233 ETSI ES 201 873-1 V4.16.1 (2024-10)

The cr eat e operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in a variable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names 'MTC' to the MTC and 'SY STEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

Also optionally, a host id can be associated with the newly created component instance. If ahost id is provided, the
cr eat e operation shall cause atest case error, if the component cannot be deployed on the specified host.

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or as afield in a message.

Restrictions

In addition to the genera static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) Thename given by the first Expression shall be a charstring value and when assigned it shall appear asthe
first argument of the cr eat e function.

b) Thehost id given by the second Expression shall be a char string value and, when assigned, it shall appear as
the second argument of the cr eat e function.

Examples

/'l This exanpl e decl ares variabl es of type MyConponent Type, which is used to store the

/1 references of newy created conponent instances of type MyConponent Type which is the

Il result of the create operations. An associated nane is allocated to sone of the created
/'l conponent instances.

var MyConponent Type v_nyNewConponent ;

var MyConponent Type v_nyNewest Conponent ;

var MyConponent Type v_nyAl i veConponent ;

var MyConponent Type v_mnyAnot her Al i veConponent ;

var MyConponent Type v_nmnyDepl oyedConponent ;
v_nyNewConponent : = MyConponent Type. creat e;

v_nyNewest Conponent : = MyConponent Type. creat e(" Newest");
v_nyAl i veConponent : = MyConponent Type.create alive;

v_nyAnot her Al i veConponent : = MyConponent Type. creat e("Anot her Alive") alive;
v_nyDepl oyedConponent : = MyConponent Type. create(-, "Host4");

21.3.2 The Start test component operation

The start operation is used to associate a test behaviour to atest component, which is then being executed by that test
component.

Syntactical Structure
Ohj ect Reference "." start "(" (Functionlnstance | Altsteplnstance) ")"
Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
hasto be started. Thisis done by using thest ar t operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between cr eat e and st ar t isto allow connection operations to
be done before actually running the test component.

Thest art operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function or altstep.

ETSI

234 ETSI ES 201 873-1 V4.16.1 (2024-10)

An dive-type PTC may perform several behavioursin sequential order. Starting a second behaviour on anon-alive PTC
or starting a behaviour on a PTC that is still running resultsin atest case error. If abehaviour is started on an aive-type
PTC after termination of a previous behaviour, it uses variable values, timers, ports, and the local verdict as they were
left after termination of the previous behaviour. In particular, if atimer was started in the previous behaviour, the
subsequent behaviour should be enabled to handle a possible timeout event. In contrast to that, all active defaults are
deactivated when the behaviour of an alive-type PTC is stopped. This means no default is activated when a new
behaviour is started on an aive-type PTC.

NOTE 1: Thelifetime of variables and timersis bound to the scope in which they are declared. When an aive-type
component is stopped, only the component scope is left. This means only variable values and timers
declared in the component type definition of an alive-type PTC can be accessed by a behaviour with a
corresponding r uns on-clause that is started on an alive-type PTC.

Actual inout parameters will be passed to the function by value, i.e. like in-parameters.

If the function's formal parameter list includes any out parameter the actual parameter list may omit actual out
parameters using the dash symbol ("-") or be omitted in the same manner as for actual in parameters with default values
(seeclause 5.4.2), i.e. they can be omitted in the list notation if all following actual parameters are also omitted and
their assignment can be omitted altogether in assignment notation. If avariableis given as an actual out parameter, it
will remain unchanged by the started behaviour, even if the behaviour changes the formal parameter during its
execution.

Possible return values of afunctioninvoked inast art test component operation, i.e. templates denoted by r et ur n
keyword or i nout and out parameters, have no effect when the started test component terminates.

Restrictions

In addition to the genera static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to atemplate.

b) Thefunction or atstep invoked inast art test component operation shall have ar uns on definition
referencing a component type that is compatible with the newly created component (see clause 6.3.2.7).

c) All formal parameters of the function or altstep invoked inast ar t test component operation shall be of a
component data type.

NOTE 2: Asinandi nout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples

function f_nyFirstBehaviour() runs on MyConponent Type { ...}

function f_nySecondBehavi our() runs on MyConponent Type { ...}

function f_nyThirdBehavi our (out integer p_pl, inout integer p_p2) runs on MyConponent Type { ...}
altstep a_nyFourthBehaviour() runs on MyConponentType { ... }

;/ar My Conponent Type v_nyNewPTC,
var MyConponent Type v_nyAl i vePTC,

var integer v_int := 0;

;/_rryNewPTC : = MyConponent Type. creat e; I/l Creation of a new non-alive test conponent.
v_nyAl i vePTC : = MyConponent Type. create alive; /] Creation of a new alive-type test conponent
v_nyNewPTC. st art (f _nyFirst Behaviour()); /'l Start of the non-alive conponent.

v_nyNewPTC. done; /1 Wit for termnation

v_nmyNewPTC. st art (f _nySecondBehavi our ()); /] Test case error

;/_rTyAI i vePTC. start (f_nyFi rstBehaviour()); /1 Start of the alive-type conponent
v_nyAl i vePTC. done; /1 Wit for termination
v_nyAl i vePTC. start (f _nySecondBehaviour()); // Start of the next function on the same conponent

;/_rTyAI i vePTC. start (f_myThi rdBehavi our (-,v_int)); /1 v_int will not be changed by the function
v_nyAl i vePTC. done;
v_nyAl i vePTC. st art (a_nyFourt hBehavi our()); /1 Direct start of an altstep behavi our<>

ETSI

235 ETSI ES 201 873-1 V4.16.1 (2024-10)

21.3.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of atest component by itself or by another test
component.

Syntactical Structure

stop |
((ObjectReference | ntc | self) "." stop) |
(all conponent "." stop)

Semantic Description

By using the st op test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using asimple st op
execution statement (see clause 19.9) or by addressing itself in the st op operation, e.g. by usingthesel f operation.

NOTE 1: Whilethecreate,start,runni ng, done andki | | ed operations can be used for PTC(s) only, the
st op operation can aso be applied to the MTC.

Stopping atest component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the test behaviour that is
started on this component or by an explicit r et ur n statement. Thistermination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component isthe MTC, resources of al existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the st ar t operation). Stopping an alive-type component means that
al variables, timers and ports declared in the component type definition of the alive-type component keep their value,
contents or state. Furthermore, the local verdict of the component keeps its value. In contrast to that, all active defaults
are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an already running timer, the timer shall be left in the running state after
termination of the behaviour.

Theal | keyword can be used by the MTC only in order to stop all running PTCs but the MTC itself.
NOTE 2: A PTC can stop the test case execution by stopping the MTC.
NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the present document.
Restrictions

In addition to the genera static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to atemplate.
Examples

EXAMPLE 1: Stopping another test component and a test component by itself

var MyConponent Type v_nyConp : = MyConponent Type.create; // A new test conponent is created
v_nyConp. start (f_conpBehaviour()); /] The new conponent is started

ETSI

236 ETSI ES 201 873-1 V4.16.1 (2024-10)

if (v_date == "1.1.2005") {
v_nyConp. st op; /1 The conponent "v_nyConp" is stopped
}

if (va<vb) {

sélf.stop; /'l The test conponent that is currently executing stops its own behavi our
}
étop /1 The test conponent stops its own behavi our

EXAMPLE 2. Stopping all PTCsby theMTC

al | conponent. stop /1 The MIC stops all PTCs of the test case but not itself.

21.3.4 The Kill test component operation

Theki | | test component operation is used to destroy a component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components: stopping an aive
components stops the test behaviour only, the test component continues to exist. Killing atest component destroys the
test component.

Syntactical Structure

|
oj ect Reference | nmtc | self) "." kill) |
I

ki |
((
(all component "." kill)

Semantic Description

Theki | | operation applied on atest component stops the execution of the currently running behaviour - if any - of

that component and frees all resources associated to it (including all port connections of the killed component) and
removes the component from the test system. The ki | | operation can be applied on the current test component itself

by asimpleki | | statement or by addressing itself using the sel f operation in conjunction with the kill operation. The
ki I | operation can aso be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If theki | | operationisapplied onthe MTC, eg. nt c. ki | | , it terminates
the test case.

Theal | keyword can be used by the MTC only in order to stop and kill al running PTCs but the MTC itself.
Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to atemplate.
Examples

EXAMPLE 1: Killing another test component and atest component by itsel f

var PTCType v_nyAliveConp := PTCType.create alive; // Create an alive-type test conponent

v_nyAl i veConp. start (f_nyFirstBehaviour()); /1 The new conponent is started
v_nyAl i veConp. done; /1 Wit for termination

v_nyAl i veConp. start (f_nySecondBehavior()); /] Start the conponent a 2™ tine
v_nyAl i veConp. done; /1 Wait for termnation
v_nyAliveConp. Kkill; /] Free its resources

EXAMPLE 2 Killingal PTCsby the MTC

all conponent.kill; /Il The MIC stops all (alive-type and normal) PTCs of the test case first
/1 and frees their resources.

21.3.5 The Alive operation

Theal i ve operation isaBoolean operation that checks whether atest component has been created and isready to
execute or is executing aready a behaviour.

ETSI

237 ETSI ES 201 873-1 V4.16.1 (2024-10)

Syntactical Structure

(nj ectReference |

any conponent |

all component |

any from ConponentArrayRef) "." alive
["->" @ndex val ue Val ueRef]

Semantic Description

Applied on anormal parallel test component, theal i ve operation returns true if the component isinactive or running a
behaviour and false otherwise. Applied on an alive-type parallel component, the operation returns true if the component
isinactive, running or stopped. It returns false if the component has been killed. Applied on the nt ¢ the operation
returnst r ue.

Theal i ve operation can be used similar to ther unni ng operation (see clause 21.3.6). In particular, in combination
withtheal | keyword it returnstrueif al (alive-type or normal) PTCs are dive.

Theal i ve operation used in combination with the any keyword returnstrueif at least one PTC is dlive.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being inactive or running a function from innermost to outermost dimension from lowest to
highest index for each dimension. The first component to be found being inactive or running a behaviour causes the
alive operation to return thet r ue value. Theindex of the first component found alive can optionally be assigned to an
integer variable for single-dimensional component arrays or to an integer array or record of integer variable for
multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to atemplate.
b) The ComponentArrayRef shall be areferenceto acompletely initialized component array.

¢) Theindex redirection shall only be used when the operation is used on an any from component array
construct.

d) If theindex redirectionis used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

€) If theindex redirectionis used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall alow
storing the highest index (from all dimensions) of the array.

f) If avariablereferenced in the @ ndex clauseisalazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the al i ve operation, i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of theal i ve operation.

Examples
pTCL. done; /1 Waits for termnation of the conponent
if (pTCl.alive) { /1 If the conponent is still alive ...
pTCLl. start (f_anot her Function()); /1 ...execute another function on it.

21.3.6 The Running operation

Ther unni ng operation is a Boolean operation that checks whether a test component is already executing a behaviour.

Syntactical Structure

(nj ectReference |

any conponent |

all component |

any from Conmponent ArrayRef) "." running
["->" @ndex val ue Val ueRef]

ETSI

238 ETSI ES 201 873-1 V4.16.1 (2024-10)

Semantic Description

Ther unni ng operation alows behaviour executing on a test component to ascertain whether behaviour running on a
different component has completed. The running operation returnst r ue for the nt ¢ and PTCs that have been started
but not yet terminated or stopped. It returnsf al se otherwise. Ther unni ng operation is considered to be abool ean
expression and, thus, returnsabool ean value to indicate whether the specified test component (or all test
components) has terminated. In contrast to the done operation, the r unni ng operation can be used freely in

bool ean expressions.

Whentheal | keyword isused with ther unni ng operation, it will returnt r ue if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwiseit returnsf al se.

NOTE: The difference between ther unni ng operation applied to a single ptc and the usage of theal | keyword
leads to the situation that pt ¢. runni ng isf al se if the ptc has never been started but al |
conponent . runni ngistrue at the sametime asit considers only those components that ever have
been started.

When the any keyword is used with ther unni ng operation, it will returnt r ue if at least one PTC is executing its
behaviour. Otherwise it returnsf al se.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for executing currently from innermost to outermost dimension from lowest to highest index for
each dimension. The first component to be found executing causes the running operation to succeed. The index of the
matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of component type and shall not resolve to atemplate.
b) The ComponentArrayRef shall be areference to a completely initialized component array.

€) Theindex redirection shall only be used when the operation is used on an any from component array
construct.

d) If theindex redirection is used for single-dimensional component arrays, the type of the integer variable shall
alow storing the highest index of the respective array.

e) If theindex redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

f) If avariablereferenced inthe @ ndex clauseisalazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by ther unni ng operation. Later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of ther unni ng operation.

Examples

if (pTCL. running) /'l usage of running in an if statenent

/1 do sonet hi ng!

}

while (all conponent.running != true) { // usage of running in a | oop condition
f _mySpeci al Functi on()

ETSI

239 ETSI ES 201 873-1 V4.16.1 (2024-10)

21.3.7 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed. In addition, the done operation alows to retrieve the final local verdict of
completed test components, i.e. the value of the local verdict at the time of test component completion.

Syntactical Structure

[@odefault] (ObjectReference |
any conponent |
al | conponent |
any from ConponentArrayRef) "." done
["->" [value ValueRef] [@ndex val ue Val ueRef]]

Semantic Description

The done operation shall be used in the same manner as areceiving operation or at i neout operation. This meansit
shall not be used inabool ean expression, but it can be used to determine an dternativeinan al t statement or as
stand-alone statement in a behaviour description. In the latter case adone operation is considered to be a shorthand for
anal t statement with the done operation as the only alternative. If the @odef aul t modifier is placed before a
stand-alone done operation, the implicit al t statement also contains the @odef aul t modifier.

When the done operation is applied to a PTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

NOTE 1. The execution of adone operation does not change the state of the test component. Consecutive done
operations applied to the same test component will give the same result aslong as the test component
does not change its state (see clause F.1.2).

When the done operation is applied to a PTC and matches, the final local verdict of the PTC can be retrieved and
stored in avariable of the type ver di ct t ype. Thisis denoted by the symbol - >' the keyword value followed by the
name of the variable into which the verdict is stored.

Whentheal | keyword is used with the done operation, it matches if no one PTC is executing its behaviour. It aso
matches if no PTC has been created.

NOTE 2: The difference between the done operation applied to a single ptc and the usage of theal | keyword
leads to the situation that pt c. done does not match if the ptc has never been started but al |
conponent . done matches at the same time as it considers only those components that ever have been
started.

When the any keyword is used with the done operation, it matchesif at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE 3: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component alive in the test system. In both
cases the done operation matches.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being stopped or killed from innermost to outermost dimension from lowest to highest index

for each dimension. The first component to be found stopped or killed causes done operation to succeed. The index of

the matched component can optionally be assigned to an integer variable for single-dimensional arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the genera static rules of TTCN-3 givenin clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) Thedone operation can be used for PTCsonly.

b) The ObjectReference followed by the done keyword, i.e. used for identifying a specific PTC, shall be of a
component type and shall not resolve to atemplate.

¢) The ComponentArrayRef shall be areference to a completely initialized component array.

ETSI

240 ETSI ES 201 873-1 V4.16.1 (2024-10)

d) Thevariable usedinthe (optional) val ue clause for storing the final local verdict of a PTC shall be of the
typever di cttype.

€) The(optional) val ue clause for storing the final local verdict of a PTC shall not be used in combination with
al | conponent orany conponent.

f) Theindex redirection shall only be used when the operation is used on an any from component array
construct.

g) Iftheindex redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

h) If theindex redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

i) Ifavariablereferenced inthe @ ndex clauseisalazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by the done operation. Later evaluation of the lazy or fuzzy variable
does not lead to repeated invocation of the done operation.

i) The @odef aul t modifier isalowed only in stand-alone done statements.

Examples

/1 Use of done in alternatives
alt {
[T nyPTC. done {
set verdi ct (pass)

}
[T any port.receive {
r epeat
}

var MyConp v_c := MyConp.create alive;
v_c.start (f_nyPTCBehaviour());

;/_c. done;

/1 matches as soon as the function f_nmyPTCBehavi our (or function/altstep called by it) stops
v_c. done;

/1 matches again, even if the conponent has not been started again
if(v_c.running) {v_c.done}

/1 in case that some other conponent has started v_c in the neantine

/1 done here matches the end of the next behaviour only, not the previous one

/1 the followi ng done as stand-al one statenent:
@odefault all conponent. done;

/1 has the foll ow ng neaning:
alt @odefault {
[T all conponent.done {}

/1 and thus, blocks the execution until all parallel test conponents have term nated while
I/ ignoring all activated default alternatives

/'l Retrieving and using the final |ocal verdict of a conpleted PTC
var MyConp v_nyPTC := MyPTC. create alive;

var verdicttype v_nyPTCverdict := none;

v_nyPTC. start (f_myPTCBehavi our ());

alt {
[T v_nyPTC done -> value v_nyPTCverdict {
if (v_nmyPTCverdict == fail) {
setverdict(fail);
st op;

el se {
setverdi ct (pass);
}

}

[1 any port.receive {

ETSI

241 ETSI ES 201 873-1 V4.16.1 (2024-10)

r epeat

21.3.8 The Killed operation

Theki | | ed operation allows to ascertain whether a different test component is alive or has been removed from the
test system. In addition, the ki | | ed operation allows to retrieve the final local verdict of killed test components, i.e.
the value of the local verdict at the time when the test component was killed.

Syntactical Structure

[@odefault] (ObjectReference |
any conponent |
all component |
any from ConponentArrayRef) "." killed
["->" [value ValueRef] [@ndex val ue Val ueRef]]

Semantic Description

Theki | | ed operation shall be used in the same manner as receiving operations. This meansit shall not be used in
bool ean expressions, but it can be used to determine an alternativeinan al t statement or as a stand-alone statement
in a behaviour description. In the latter case aki | | ed operation is considered to be a shorthand for anal t statement
withtheki | | ed operation as the only alternative. If the @ odef aul t modifier is placed before a stand-alone

ki | | ed operation, theimplicit al t statement also contains the @rodef aul t modifier.

NOTE 1: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or hasbeen ki | | ed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.3.7). When checking alive-type test components, however, theki | | ed
operation matches only if the component has been killed using the ki | | operation. Otherwise the
ki | | ed operation is unsuccessful.

NOTE 2: The execution of aki | | ed operation does not change the state of the test component. Consecutive
ki I | ed operations applied to the same test component will give the same result as long as the test
component does not change its state (see clause F.1.2).

Whentheal | keyword is used with theki | | ed operation, it matchesif all PTCs of the test case have ceased to exist.
It also matchesif no PTC has been created.

Whentheki | | ed operationis applied to a PTC and matches, the final local verdict of that PTC can be retrieved and
stored in avariable of thetypever di ctt ype. Thisisdenoted by the symbol - >' the keyword value followed by the
name of the variable into which the verdict is stored.

When the any keyword is used with the ki | | ed operation, it matchesif at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

When the any from component array notation is used, the components from the referenced array are iterated over and
individually checked for being killed from innermost to outermost dimension from lowest to highest index for each
dimension. The first component to be found killed causes the killed operation to succeed. The index of the matched
component can optionally be assigned to an integer variable for single-dimensional component arrays or to an integer
array or record of integer variable for multi-dimensional component arrays.

Restrictions

In addition to the general static rules of TTCN-3 givenin clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) Theki | | ed operation can be used for PTCsonly.

b) The ObjectReference followed by theki | | ed keyword, i.e. used for identifying a specific PTC, shall be of a
component type and shall not resolve to atemplate.

¢) The ComponentArrayRef shall be areference to a completely initialized component array.

ETSI

242 ETSI ES 201 873-1 V4.16.1 (2024-10)

d) Thevariable usedinthe (optiona) val ue clause for storing the final local verdict of a PTC shall be of the
typever di cttype.

€) The(optional) val ue clause for storing the final local verdict of a PTC shall not be used in combination with
al | conponent orany conponent.

f) Theindex redirection shall only be used when the operation is used on an any from component array
construct.

g) Iftheindex redirection is used for single-dimensional component arrays, the type of the integer variable shall
allow storing the highest index of the respective array.

h) If theindex redirection is used for multi-dimensional component arrays, the size of the integer array or record
of integer type shall exactly be the same as the dimension of the respective array, and its type shall allow
storing the highest index (from all dimensions) of the array.

i) Ifavariablereferenced inthe @ ndex clauseisalazy or fuzzy variable, the expression assigned to this
variable is equal to the result produced by theki | | ed operationi.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of theki | | ed operation.

i) The @odef aul t modifier isallowed only in stand-alone ki | | ed statements.

Examples

var M/PTCType v_ptc := M/PTCType.create alive; // create an alive-type test conponent

timer t_T:= 10.0; /] create a tiner

t_T.start,; /1 start the tiner

v_ptc.start(f_nyTest Behavior()); /] start executing a function on the PTC

alt {

[1 v_ptc.killed { /1 if the PTC was killed during execution ...
t_T. stop; /] ..stop the timer and ...
setverdi ct (i nconc); /1 ..set the verdict to 'inconclusive'

}

[1 v_ptc.done { /1 if the PTC terminated regularly ...
t_T.stop; /] ..stop the timer and ...
v_ptc.start(f_anot her Function()); /] ..start another function on the PTC

[T t_T.tineout { /1 if the tineout occurs before the PTC stopped
v_ptc.kill; /1 ..kill the PTC and ...
setverdict(fail); /1 ..set the verdict to 'fail’

}
}

/'l Retrieving and using the final local verdict of a killed PTC
var MyConp v_nyPTC : = MyPTC. create alive;

var verdicttype v_nyPTCverdict := none;

v_nyPTC. start (f_nmyPTCBehavi our());

alt {
[T v_nyPTC. done { /] expected termnination
setverdict (pass);
) }
[T v_nyPTC killed -> value v_nyPTCverdict {
if (v_MyPTCverdict == none) { /1 v_nyPTC killed before verdi ct assi gnnent
setverdict(fail);
st op;
el se {
setverdi ct (inconc); /] further analysis is needed
st op;
}
}
[1 any port.receive {
r epeat
}
}

ETSI

243

ETSI ES 201 873-1 V4.16.1 (2024-10)

21.3.9 Summary of the use of any and all with components

The keywordsany and al | may be used with configuration operations as indicated in table 21.

Table 21: Any and All with components

Operation Allowed Example Comment
any (see note) | al | (see note)
create
start
runni ng Yes but from |Yes but from any conponent.running; |Isthere any PTC performing test
MTC only MTC only behaviour?
al | conponent.running; |Are all PTCs performing test
behaviour?
alive Yes but from |Yes but from any conponent. alive; Is there any alive PTC?
MTC only MTC only all conponent. alive, Are all PTCs alive?
done Yes but from Yes but from any conponent . done; Is there any PTC that completed
MTC only MTC only execution?
al | conponent . done; Did all PTCs complete their
execution?
killed Yes but from |Yes but from any conponent.killed; |Isthere any PTC that ceased to exist?
MTC only MTC only all conponent.killed; |Didall PTCs cease to exist?
stop Yes but from all conponent. st op; Stop the behaviour on all PTCs.
MTC only
kill Yes but from all component.kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any and al | referto PTCs only, i.e. the MTC is not considered.

21.3.10 The Call test component behaviour operation

The call operation is used start atest behaviour on atest component and wait until that behaviour has terminated.

Syntactical Structure

hj ect Reference "."

"o

[
[catch "("
[catch "("

stop ")"

Semantic Description

cal |

"(" (Functionlnstance | Altsteplnstance)
[*," SinpleExpression] ")"

[value Ref] [verdict Ref]]
timeout ")"

St at ement Bl ock]

St at ement Bl ock]

Similar to the start operation on test components which is not blocking, the blocking cal | operation implicitly usesa
st art operation, but waits until either the started behaviour has terminated or some timeout has occurred.

A timeout duration in seconds can be given explicitly in the form of a SmpleExpression as an additional parameter to
the call operation. If no timeout duration is given, an infinite timeout duration is used.

The actions taken by the call operation are dependent on whether the execution of the started behaviour is complete or
incomplete. Complete execution occurs when the started function is terminated by executing areturn statement or if it
reaches the end of the function body. If the started behaviour is terminated for any other reason, the execution is

incompl ete.

If the incomplete execution occurs because the called component was stopped or killed and acat ch st op clauseis
added to the call operation, the SatementBlock of that clause is executed before the call operation terminates.

If the started behaviour does not terminate in the given timeout durationand acat ch ti nmout clauseisadded to the
call operation, the called component isimplicitly stopped and the StatementBlock of thecat ch ti nmeout clauseis
executed before the call operation terminates.

In al other cases when the execution is incompl ete, the call operation ends with a test case error.

ETSI

244 ETSI ES 201 873-1 V4.16.1 (2024-10)

After complete execution of the started behaviour, theout and i nout actual parameters given to the actual parameter
list of the called function or altstep instance will be updated in the same manner asif it was a normal function/altstep
invocation.

Additionally, aredirect clause can be added to the operation which alows assignment of the return result (in case that
the called function has areturn clause) to avariable viathe val ue clause and aso the assignment of the termination
verdict of the called component viathever di ct clause.

In al cases of incomplete execution, the variables referenced in the value and verdict clause or inout andi nout
actual parameters will stay unchanged and no assignment will be made.

If the called component is not created alive and has aready been started or called once or if it has been killed, additional
call operations are not allowed.

Restrictions

In addition to the general static rules of TTCN-3 givenin clauses 5 and 21 and shown in table 16, the following
restrictions apply:

a) The ObjectReference shall be of a component type.

b) Thefunction or atstep invoked inacal | test component operation shall have ar uns on definition
referencing a component type to which the called component is compatible (see clause 6.3.2.7).

c) All formal parameters of the function or altstep invoked inacal | test component operation shall be of a
component data type.

d) Thereturn value of the function invoked fromacal | test component operation shall be of a component data
type.

€) Theoptional SmpleExpression representing the timer value shall be of afloat type.

f) Theoptional cat chti meout clause may be present only if the timeout value has been defined.
g) Thevariableinthe value clause shall be compatible with the return value of the invoked function.
h) Thevariablein the verdict clause shall be of type verdicttype.

Examples

function f_nyFirstBehaviour() runs on MyConponent Type { ...}
function f_nySecondBehavi our() runs on MyConponent Type { ...}
function f_nyThirdBehavi our(out integer p_pl, inout integer p_p2)
runs on MyConponent Type

return integer { ...}

altstep a_myFourthBehaviour() runs on MyConmponent Type { ... }

;/ar MyConponent Type v_nmyNewPTC;
var MyConponent Type v_nyAl i vePTC,

var integer v_out, v_inout := 0, v_result;

;/_rryNeV\PTC : = MyConponent Type. cr eat €; /1 Creation of a new non-alive test conponent.
v_nyAl i vePTC : = MyConponent Type. create ali ve; /Il Creation of a new alive-type test conponent
;/_nyNewPTC. cal | (f_nyFi rstBehaviour()); /1 Call to the non-alive conponent.
v_nyNewPTC. cal | (f _nySecondBehavi our()); /] Test case error

;/_rryAI i vePTC. cal | (f_nyFirstBehaviour()); /1 Call to the alive-type conponent

v_nyAl i vePTC. cal | (f _nySecondBehavi our ()); /1 Another call to the same conponent

;/_rTyAI i vePTC. cal | (f _nyThi rdBehavi our (v_out,v_inout)) // v_out/v_inout can be changed

-> value v_result verdict v_verdict; // v_result/v_verdict are assigned on successful
/1 term nation

v_myAl i vePTC. cal | (a_nyFourt hBehavi our()); /1 Direct call of an altstep behaviour

ETSI

245 ETSI ES 201 873-1 V4.16.1 (2024-10)

22 Communication operations

22.0 General

TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 alows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 22.

Table 22: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity |reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check | Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls
Check the state of a port checkstate Yes Yes

22.1 The communication mechanisms

22.1.0 General

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication (see
clause 22.1.3), aswell asthe general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER isblocked onther ecei ve operation until it
processes the received message.

In additionto ther ecei ve operation, TTCN-3 providesat r i gger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

ETSI

246 ETSI ES 201 873-1 V4.16.1 (2024-10)

send receive or trigger

SENDER » RECEIVER

Figure 11: lllustration of the asynchronous send, receive and trigger

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication isto call procedures in remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using thecal | operation. The CALLEE accepts the call by means of a

get cal | operation and reacts by either using ar epl y operation to answer the call or by raising (r ai se operation)
an exception. The CALLER handles the reply or exception by using get r epl y or cat ch operations. In figure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

cal | getcal |
: >
CALLER | i { | CALLEE
:< i
getreply or reply or
cat ch exception r ai se exception

Figure 12: lllustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using the cal | operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE acceptsthe call by means of aget cal | operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using acat ch operationinanal t statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

cal | getcal |
g
CALLER \ | CALLEE
< H
cat ch exception rai se exception

Figure 13: lllustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication
TTCN-3 supports unicast, multicast and broadcast communication:

. Unicast communication means one sender to one receiver.

e Multicast communication is from one sender to alist of receivers.

. Broadcast communication is from one sender to al receivers (being connected or mapped to the sender).

ETSI

247 ETSI ES 201 873-1 V4.16.1 (2024-10)

The terms unicast, multicast and broadcast communication are related to port communication. This means, it isonly
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can aso be used for mapped ports. In this case, one, severa or al entities within the SUT can be reached via
the specified mapped port.

22.1.4 General format of communication operations

22.1.4.0 General

Operations such assend and cal | are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls aprocedure (cal | operation), or repliesto an
accepted call (r epl y operation) or raises an exception (r ai se operation). These actions are collectively
referred to as sending operations;

b) acomponent receivesamessage (r ecei ve operation), awaitsamessage (t r i gger operation),accepts a
procedure call (get cal | operation), receivesareply for apreviously called procedure (get r epl y
operation) or catches an exception (cat ch operation). These actions are collectively referred to as receiving
operations.

22141 General format of the sending operations

Sending operations consist of a send part and, in the case of ablocking procedure-based cal | operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

. gives an (optional) address part that uniquely identifies one or more communication partnersto which a
message, call, reply or exception shall be sent.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by thet o
keyword) is optional and need only be specified in cases of one-to-many connections where:

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;

. broadcast communication is used and al entities connected to the specified port have to be addressed.

Examples
EXAMPLE 1:
Send part (Optional) response
and exception
Port and operation Value part (Optional) address part handling part
nyPl. send (v_nyVariable + v_yourVariable - 2) |to v_nyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the cal | operation isoptional and is required for cases where the called procedure returns a
value or hasout ori nout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of get r epl y and cat ch operations to
provide the required functionality.

ETSI

248 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
nyP1. cal | (MyProc: {s_mnyVar1})
[T nyPl.getreply(MProc:{s_nyVar2}) {}
[1 nyPl.catch(M/Proc, ExceptionOne) {}
22.1.4.2 General format of the receiving operations

A receiving operation consists of areceive part and an (optional) assignment part.
The receive part:
a) specifiesthe port at which the operation shall take place;
b) definesan optional matching part which specifies the acceptable input which will match the statement;

c) givesan optional address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name and operation name shall be present. The matching part needs only be present if the content of the
received communication shall be restricted. The identification of the communication partner (denoted by thef r om
keyword) is optional and need only be specified in cases of one-to-many connections where the receiving entity needs
to be explicitly identified.

The assignment part in areceiving operation is optional. For message-based portsit is used when it is required to store
received messages. In the case of procedure-based portsit isused for storing thei n andi nout parameters of an
accepted call, for storing the return value or for storing exceptions. For the message or parameter val ue assignment part
strong typing is not required, e.g. the variable used for storing a message shall be type-compatible to the type of the
incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, r epl y or
cal | toavariable. Thisis useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception shall be sent back to the original sending
component.

For receiving operations using the any port from a port array construction (see clause 22.2.2), the assignment part may
also be used to store the indices that identify the specific port instance where the receiving operation matched.

If areceiving operation is used as a stand-alone statement, the @ odef aul t modifier can be placed before it to
indicate that the implicit alt statement containing the operation as an alternative shall have the @odef aul t modifier.

EXAMPLE:
Receive part (Optional) assignment part
Port and (Optional) (Optional) (Optional) (Optional) (Optional) sender
operation Matching part address value parameter |value assignment
expression assignment value
assignment
nyPl.getreply |(AProc:{?} value 5) -> param (v_v1) sender v_aPeer
Receive part (Optional) assignment part
Port and (Optional) (Optional) (Optional) value (Optional) (Optional)
operation Matching part address assignment parameter |sender value
expression value assignment
assignment
nyP2.recei ve (mw_nyTenpl ate(5,7)) |fromv_aPeer -> |val ue v_nyVar

ETSI

249

ETSI ES 201 873-1 V4.16.1 (2024-10)

Receive part (Optional) assignment part
Port and (Optional) (Optional) (Optional) | (Optional) | (Optional) (Optional)
operation Matching part address value parameter sender port index
expression assignment value value assignment
assignment |assignment

any from (mv_nyTenpl ate(5, 7)) -> @ ndex
p.receive val ue v_i
22.2 Message-based communication

22.2.0 General

The operations for message-based communication via asynchronous ports are summarized in table 23.

Table 23: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

bj ect Reference "." send "(" Tenpl atel nstance ")"
[to Address]
NOTE: Address may be an AddressRef, alist of AddressRef-s or "all component”.

Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional t o clause in the send operation.
At o clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if thet o clause addresses one communication partner only. Multicast
communication is used, if thet o clause includes alist of communication partners. Broadcast is defined by using thet o
clausewithal | conponent keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) TheTemplatelnstance (and all parts of it) shall have a specific valuei.e. the use of matching mechanisms such
as AnyValueis not allowed.

b) When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

¢) Thesend operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

ETSI

250 ETSI ES 201 873-1 V4.16.1 (2024-10)

d) At o clauseshall be present in case of one-to-many connections.

€) All AddressRef itemsin theto clause shall be of type addr ess, conmponent or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced in the send operation. No AddressRef inthet o
clause shall contain the special value nul | at the time of the operation.

f) Applying asend operation to an unmapped or disconnected port shall cause atest case error.
0g) The ObjectReference shall be of a port type.
h) Templatelnstance shall be of a datatype.

Examples

EXAMPLE 1: Simple send (receiver is determined from the test configuration)

myPort. send(m nyTenpl at e(5, v_nyVar)); /1 Sends the tenplate mnyTenplate with the actual
// paraneters 5 and v_nyVar via nyPort.

nyPort. send(5); /1 Sends the integer value 5 (which is an in-line tenplate)

EXAMPLE 2 Sending with explicit to clause

nyPort.send(charstring:"M string") to v_nyPartner;
/1 Sends the string "My string" to a conponent with a
/] conponent reference stored in variable v_nyPartner

nyPCO. send(v_nyVari abl e + v_yourVariable - 2) to v_nyPartner;
/1 Sends the result of the arithnetic expression to v_nyPartner.

nyPC2. send(m nyTenpl ate) to (v_nyPeer One, v_nyPeer Two);
/1 Specifies a nulticast comunication, where the val ue of
/1 mnyTenplate is sent to the two conponent references stored
/1 in the variables v_nmyPeer One and v_nyPeer Two.

nyPC3B. send(m nyTenpl ate) to all conponent;
/] Broadcast communication: the value of mnytenplate is sent to
/1 all components which can be addressed via this port. If
/1 myPCO3 is a mapped port, the conponents may reside inside
/1 the SUT.

22.2.2 The Receive operation
Ther ecei ve operationis used to receive a message from an incoming message port queue.

Syntactical Structure

[@odefault] (ObjectReference | any port | any fromPortArrayRef) "." receive
["(" Tenplatelnstance ")"]
[from Address]
["->" [value (Val ueRef|
("(" { ValueRef[":=" [@ecoded ["(" Expression ")"]]
Fi el dOr TypeReference 1[","]1 } ")")

)]
[sender Val ueRef]
[@ndex val ue Val ueRef]]

NOTE 1: Address may be an AddressRef, alist of AddressRef-s or "any component".
Semantic Description

Ther ecei ve operation isused to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

Ther ecei ve operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies al the matching criteria associated with ther ecei ve operation.

If the match is not successful, the top message shall not be removed from the port queuei.e. if ther ecei ve operation
isused as an alternative of an al t statement and it is not successful, the execution of al t statement shall continue with
its next alternative.

ETSI

251 ETSI ES 201 873-1 V4.16.1 (2024-10)

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and val ue of the message
to be received are determined by the argument of ther ecei ve operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteriato ther ecei ve operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE 2: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

Receiving from a specific sender

In the case of one-to-many connectionsther ecei ve operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 3: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

Storing the received message and parts of the received message

If the match is successful, the value is removed from the port queue and/or parts of this value can be stored in variables
or formal parameters. Thisis denoted by the symbol '->' and the keyword val ue.

When the keyword val ue isfollowed by a name of avariable or formal parameter, the whole received message shall
be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the
received message.

When the keyword val ue isfollowed by alist enframed by a pair of parentheses, the whole received message and/or
one or more parts of it can be stored. For each list element that consists only of a variable or formal parameter name the
whole message shall be stored in that variable or formal parameter. The type of the variable or formal parameter shall
be compatible with the type of the message. Each assignment notation member of the list allows storing the value of the
field or element of the received message, which is referenced on the right hand side of the assignment notation (:=), in
the variable or formal parameter on the left hand side. The variable or formal parameter shall be type compatible with
the type of the referenced field or element.

When assigning individual fields of a message, encoded payload fields can be decoded prior to assignment using the
@lecoded modifier. In this case, the referenced field on the right hand side of the assignment shall be one of the
bitstring,hexstring,octetstring,charstringoruniversal charstring types. Itshal be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause atest case error. In case the referenced field is of theuni ver sal char st ri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of thechar stri ng
type and it shall contain one of the strings allowed for thedecval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field isnot auni ver sal charstring, the optional
parameter shall not be present.

NOTE 4: The model of the behaviour of thisimplicit decoding is defined in clause B.1.2.9.

NOTE5: The @lecoded clauseistypically used together with the decnat ch matching mechanism in the
matching part of the receive statement. Since the decoding procedures for assignment and matching are
virtually the same, TTCN-3 tools can be optimized in such away that only one call to the decoder is
made when the receiving statement contains both decmat ch matching mechanism and @lecoded
assignment for the same payload field.

Storing the sender

It isalso possible to retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender .

When the message is received on a connected port, only the component referenceis stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

ETSI

252 ETSI ES 201 873-1 V4.16.1 (2024-10)

Receive any message

A r ecei ve operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if al other matching criteriaare fulfilled.

Receive on any port
Tor ecei ve amessage on any port, usetheany port keywords.
Receive on any port from a port array

Tor ecei ve amessage on any port from a specific port array, usetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possible to store the index of aport in asingle-
dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][Q], [O][1], [1][O], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other portsin the array would also meet the criteria.

Stand-alonereceive

Ther ecei ve operation can be used as a stand-alone statement in a behaviour description. In this latter case the
r ecei ve operation is considered to be shorthand for anal t statement with ther ecei ve operation as the only
aternative.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) Therecei ve operation shall only be used on message-based ports and the type of the value to be received
shall beincluded in the list of incoming types of the port type definition.

¢) No binding of the incoming values to the terms of the expression or to the template shall occur.
d) A message received by receive any message shall not be stored, i.e. the value clause shall not be present.

e) Type mismatch at storing the received val ue or parts of the received value and storing the sender shall cause an
error.

NOTE 6: An error due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the f r omclause is missing, but the type of the sender can be
determined and it is not type compatible with the typein the sender clause.

f) All AddressRef itemsin the from clause and all ValueRef itemsin the sender clause shall be of type
addr ess, conponent or of the address type bound to the port type (see clause C.5) of the port instance
referenced in ther ecei ve operation. No AddressRef inthe f r omclause shall contain the special value
nul | at the time of the operation.

g) ThePortArrayRef shall be areference to a completely initialized port array.
h) Theindex redirection shall only be used when the operation is used on an any from port array construct.

i) If theindex redirection is used for single-dimensional port arrays, the type of the integer variable shall alow
storing the highest index of the respective array.

j) Iftheindex redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall alow storing
the highest index (from all dimensions) of the array.

ETSI

253 ETSI ES 201 873-1 V4.16.1 (2024-10)

k) If avariablereferencedintheval ue, sender or @ ndex clauseisalazy or fuzzy variable, the expression
assigned to this variableis equal to the result produced by ther ecei ve operation i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of ther ecei ve operation.

[) If ther ecei ve operation contains both f r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause.

m) When assigning implicitly decoded message fields (by using the @lecoded modifier) in cases where the
value or template to be matched uses the MatchDecodedContent (decnat ch) matching for the field to be
stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of
the variable the decoded field is stored into.

n) The referenced value associated with ValueRef or the return type associated with Functionlnstance followed
by ther ecei ve keyword, shall be of aport type.

0) Templatelnstance shall be of a datatype.

p) The@odef aul t modifier isallowed only in stand-aloner ecei ve statements.

Examples

EXAMPLE 1: Basicreceive

nmyPort.recei ve(nw_nyTenpl ate(5, v_nyVar)); // Matches a nmessage that fulfils the conditions
/1 defined by tenplate mwv _nyTenpl ate at port myPort.

nyPort.receive(v_a<v_b); /1 Matches a Bool ean val ue that depends on the outcone of v_a<v_b

myPort . receive(integer:v_nyVar); /1 Matches an integer value with the value of v_nyVar
// at port nyPort

myPort . receive(v_nyVar); /1 Is an alternative to the previous exanple
EXAMPLE 2: Receiving from a sender, storing the message, parts of the message or the sender
type MyPayl oadType record {

i nt eger nmessagel d,
Cont ent Type cont ent

}

type MyType2 record {
Header header,
octetstring pay! oad

}

tenpl ate MyType mw_nyTenpl ate : = {
messagel d : = 42,
content .= ?

}

var MyPayl oadType v_nyVar;

var integer v_nyMessagel dVar, v_nylnteger Var;
var charstring v_nyCharstringVar;

var address v_nyPeer;

var octetstring v_nyVarOne := '00ff' Q

M/Port.receive(charstring: "Hello")fromv_nyPeer; /1 Matches charstring "Hello" from MyPeer

MyPort.recei ve(M/Type: ?) -> value v_nyVar; [/ The value of the received nessage is
/1 assigned to v_mnyVar.

MyPort.recei ve(MyType: ?) -> value (v_nyVar, v_nyMessagel dVar: = messagel d)
/'l The val ue of the received nessage is stored in the variable
/1 v_nyVar and the val ue of the nessageld field of the received
/1 message is stored in the variable v_nyMessagel dVar.

MyPort.recei ve(anytype: ?) -> value (v_nylntegerVar:= integer)
/1 1f the received value is an integer, it is stored in the variable
/1 v_nylntegerVar, a test case error otherw se.

MyPort.receive(charstring:?) -> value (v_mnyCharstringVar)

/'l The received value is stored in the variable v_nyCharstringVar;
/] Note that it is the sane as to wite "value v_nyCharstringVar"

ETSI

254 ETSI ES 201 873-1 V4.16.1 (2024-10)

M/Port.recei ve(A<B) -> sender v_nyPeer; /1 The address of the sender is assigned to v_nyPeer

M/Port.recei ve(M/Type: {5, v_nyVarOne }) -> value v_nyVar sender v_nyPeer;
/1 The received nessage value is stored in v_nyVar and the sender address is stored in
/'l v_nyPeer.
MyPort.recei ve(M/Type2: { header := ?, payload := decnatch nw_nyTenpl at e})
-> value (v_nyVar := @lecoded payl oad);
/1 The encoded payload field of the received nessage is decoded and natched with
/1 mnv_nyTenplate; if the matching is successful the decoded payload is stored in v_nyVar.

EXAMPLE 3: Receive any message

nmyPort.receive,; /1 Renoves the top value fromnyPort.
nyPort.recei ve from nyPeer; /'l Renoves the top nessage fromnyPort if its sender is
/'l nyPeer

myPort.receive -> sender v_nySenderVar; // Renoves the top message from nyPort and assigns
/'l the sender address to v_nySender Var

EXAMPLE 4: Receive on any port

any port.recei ve(mv_nyMessage);

EXAMPLES: Receive on any port from a port array

type port MyPort nessage { inout integer }
type conponent MyConponent {

port MyPort p[10][10];
}

var integer v_i[2];

any from p.receive(mv_nyMessage) -> @ndex value v_i;

/'l checking receiving mv_nmyMessage on any port of the port array p and storing the index of the
/1 port on which the matching was successful first; if, for exanple MyMessage is matched first
/1 on p[4,2], the content of i will be {4,2}

22.2.3 The Trigger operation
Thet ri gger operationis used to await a specific message on an incoming port queue.

Syntactical Structure

[@odefault] (ObjectReference | any port | any fromPortArrayRef) "." trigger
["(" Tenplatelnstance ")"]
[from Address]
["->" [value (Val ueRef|
("(" { ValueRef[":=" [@ecoded ["(" Expression ")"]]
Fi el dO TypeReference 1[","] } ")")

[sender Val ueRef]
[@ndex val ue Val ueRef]]

NOTE 1: Address may be an AddressRef, alist of AddressRef-s or "any component".
Semantic Description

Thetri gger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, thet ri gger operation behavesin the same manner asar ecei ve operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

Thetri gger operation requiresthe port name, matching criteriafor type and value, an optional f r omrestriction
(i.e. selection of communication partner) and an optiona assignment of the matching message and sender component to
variables.

Matching criteria

The matching criteria as defined in clause 22.2.2 apply also to thet r i gger operation.

ETSI

255 ETSI ES 201 873-1 V4.16.1 (2024-10)

Trigger from a specific sender

In the case of one-to-many connectionsthet ri gger operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

Trigger on any message

Atrigger operationwith no argument list shall trigger on the receipt of any message. Thus, its meaning isidentical
to the meaning of receive any message.

Trigger on any port
Totrigger onamessage at any port, usetheany port keywords.
Trigger on any port from a port array

To trigger on a message at any port from a specific port array, usetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possibleto store the index of aportina
single-dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching messages, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][Q], [O][1], [1][O], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other portsin the array would also meet the criteria.

If any port in the port array which is checked for matching contains a message that does not match, this messageis
removed and the containing al t statement is re-evaluated, regardless of whether or not other portsin the port array
would meet the trigger criteria.

Stand-alone trigger

Thet ri gger operation can be used as a stand-al one statement in a behaviour description. In this latter case the

tri gger operationis considered to be shorthand for anal t statement with two alternatives (one aternative expecting
the message and another alternative consuming all other messages and repeating the alt statement, see ETS

ES 201 873-4[1]).

Storing thereceived message, parts of the received message or the sender
Rulesin clause 22.2.2 shall apply.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a Thetri gger operation shall only be used on message-based ports and the type of the value to be received
shall be included in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to a variable.

c) Typemismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

NOTE 3: An error due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the f r omclause is missing, but the type of the sender can be
determined and it is not type compatible with the typeinthe sender clause.

d) All AddressRef itemsin the from clause and all ValueRef items in the sender clause shall be of type
addr ess, conponent or of the address type bound to the port type (see clause C.5) of the port instance
referenced inthet ri gger operation. No AddressRef inthe f r omclause shall contain the special value
nul | at the time of the operation.

ETSI

256 ETSI ES 201 873-1 V4.16.1 (2024-10)

€) ThePortArrayRef shall be areference to acompletely initialized port array.
f) Theindex redirection shall only be used when the operation is used on an any from port array construct.

g) If theindex redirectionis used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

h) If theindex redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from al dimensions) of the array.

i) Ifavariablereferenced intheval ue, sender or @ ndex clauseisalazy or fuzzy variable, the expression
assigned to thisvariable is equal to the result produced by thet r i gger operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of thet r i gger operation.

i) Ifthetri gger operation containsboth f r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause.

k) The ObjectReference shall be of a port type.
[) Templatelnstance shall be of a datatype.
m) The @odef aul t modifier isallowed only in stand-alonet ri gger statements.

Examples
EXAMPLE 1: Basictrigger

nmyPort.trigger(MType: ?);
/Il Specifies that the operation will trigger on the reception of the first nessage observed of
/1 the type MyType with an arbitrary value at port nyPort.

EXAMPLE 2: Trigger from a sender and with storing message or sender

nyPort.trigger(MType:?) from nyPartnner;

/1 Triggers on the reception of the first nmessage of type MyType at port nyPort

/'l received fromnyPartner.

nyPort.trigger(MType:?) fromnyPartner -> val ue v_nyRecMessage;

/1 This exanple is alnpbst identical to the previous exanple. In addition, the nessage which
/1 triggers i.e. all matching criteria are met, is stored in the variable v_nyRecMessage.
nyPort.trigger(MType:?) -> sender nyPartner;

/'l This exanple is alnost identical to the first exanple. In addition, the reference of the
/'l sender conponent will be retrieved and stored in variable nmyPartner.
nyPort.trigger(integer:?) -> value v_nyVar sender v_nyPartner;

/1 Trigger on the reception of an arbitrary integer value which afterwards is stored in
/1 variable v_nyVar. The reference of the sender conponent will be stored in variable M/Partner.

EXAMPLE 3: Trigger on any message
nmyPort.trigger;
nyPort.trigger from nyPartner;

nmyPort.trigger -> sender v_nySender Var;

EXAMPLE 4: Trigger on any port

any port.trigger

EXAMPLES5: Trigger on any port from port array

type port MyPort message { inout integer }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer v_i[2];
any fromp.trigger(mv_nyMessage) -> @ndex value v_i;

ETSI

257 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 Checking if mwv_nmyMessage has been received on any port of the port array p; if yes, the index
/1 of the port on which the matching was first successful is stored in the array v_i; if no port
/] succeeds, the top nessages are renoved and the port array is re-checked.

22.3 Procedure-based communication

22.3.0 General

The operations for procedure-based communication via synchronous ports are summearized in table 24.

Table 24: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity |reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/exception/reply received check

22.3.1 The Call operation
Thecal | operation specifies the call of aremote operation on another test component or within the SUT.

Syntactical Structure

hj ect Reference "." call "(" Tenplatelnstance ["," (CallTinmerValue | nowait)] ")"
[to Address]

NOTE: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
Thecal | operationis used to specify that a test component calls a procedure in the SUT or in another test component.

Theinformation to be transmitted in the send part of thecal | operation isasignature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptionsto a call

In case of non-blocking procedure-based communication the handling of exceptionsto cal | operationsis done by
using cat ch (see clause 22.3.6) operations as aternativesinal t statements.

If the nowai t option is used, the handling of responses or exceptionsto cal | operationsis done by using get r epl y
(see clause 22.3.4) and cat ch (see clause 22.3.6) operations as alternativesinal t statements.

In case of blocking procedure-based communication, the handling of responses or exceptionsto acall isdonein the
response and exception handling part of thecal | operation by meansof get r epl y (see clause 22.3.4) and cat ch
(see clause 22.3.6) operations.

The response and exception handling part of acal | operation looks similar to the body of anal t statement. It defines
aset of aternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an aternative by means of abool ean expression placed between the "[1"
brackets of the alternative.

The response and exception handling part of acall operation is executed likean al t statement without any active
default. This means a corresponding snapshot includes al information necessary to eval uate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

ETSI

258 ETSI ES 201 873-1 V4.16.1 (2024-10)

Handling timeout exceptionsto a call

Thecal | operation may optionally include atimeout. Thisis defined as an explicit value or constant of f | oat type
and defines the length of time after thecal | operation has started that at i meout exception shall be generated by the
test system. If no timeout value part is present inthecal | operation, not i neout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowai t instead of atimeout exception valueinacal | operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or atimeout exception.

If thenowai t keyword is used, a possible response or exception of the called procedure has to be removed from the
port queue by usingaget r epl y or acat ch operation in asubsequent al t statement.

Calling blocking procedureswithout return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have aresponse and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of anobl ock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using cat ch
operationsin subsequent al t ori nt er | eave statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 aso supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of thet o clause of acal | operationisfor
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
alist of addresses of a set of receivers and for broadcast callstheal | conponent keyword. In case of one-to-one
connections, thet o clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast cal | operation has been explained in
this clause under "Handling timeout exceptionsto acall". A multicast or broadcast cal | operation may cause several
responses and exceptions from different communication partners.

In case of amulticast or broadcast cal | operation of a non-blocking procedure, al exceptions which may be raised
from the different communication partners can be handled in subsequent cat ch, al t ori nt er | eave statements.

In case of amulticast or broadcast cal | operation of ablocking procedure, responses and exceptions can be handled in
several ways: one possibility isto handle only one response or exception in the response and exception handling part of
thecal | operation. All further responses and exceptions are handled in subsequent al t ori nt er | eave statements.
Alternatively, several or al responses and exceptions are processed in the response and exception handling part of the
cal | operation by means of nested alt statements or by using ther epeat operation causing the re-evaluation of the
call body. A further possibility isto usethe nowai t directive and to handle all responses and exceptions in subsequent
alt orinterl eave statements.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Thecal | operation shal only be used on procedure-based ports. The type definition of the port shall include
the name of the procedure to which the call operation belongsinitsout ori nout listi.e. it shall be alowed
to call this procedure at this port.

b) Alli nandi nout parametersof the signature shall have a specific valuei.e. the use of matching mechanisms
such as AnyValue is not allowed.

c¢) Only out parameters may be omitted or specified with a matching attribute.

ETSI

259 ETSI ES 201 873-1 V4.16.1 (2024-10)

d) Thesignature argumentsof thecal | operation are not used to retrieve variable namesfor out andi nout
parameters. The actual assignment of the procedure return value and out andi nout parameter valuesto
variables shall explicitly be made in the response and exception handling part of thecal | operation by means
of get r epl y and cat ch operations. This allows the use of signature templatesincal | operationsin the
same manner as templates can be used for types.

€) At o clauseshall be present in case of one-to-many connections.

f) All AddressRef itemsin the to clause shall be of type addr ess, conponent or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced inthe cal | operation. No AddressRef inthet o
clause shall contain the special value nul | at the time of the operation.

g) CallTimerValue shall be of type float.

h) The selection of the aternativesto acall shall only be based on get r epl y and cat ch operations for the
called procedure. Unqualified get r epl y and cat ch operations shall only treat replies from and exceptions
raised by the called procedure. The use of el se branches and the invocation of altstepsis not allowed.

i) Theevaluation of the Boolean expressions guarding the alternatives in the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
inal t statements shall be applied (see clause 20.2).

i) Thecall operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k) Incaseof amulticast or broadcast cal | operation of ablocking procedure, where the nowai t keyword is
used, al responses and exceptions have to be handled in subsequent al t or i nt er | eave statements.

) Thecal | operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowai t keyword.

m) Applyingacal | operation to an unmapped or disconnected port shall cause atest case error.
n) The ObjectReference shall be of a port type.
Examples

EXAMPLE 1: Blocking call with getreply:

/1 Gven ..
signature MyProc (out integer MyParl, inout bool ean MyPar?2);

/) a call of MyProc

nyPort.call (MyProc:{ -, v_nyVar2}) { /1 in-line signature tenplate for the call of M/Proc
[1 nyPort.getreply(MProc:{?, ?}) { }

}

/1 ...and another call of M/Proc
nyPort.call (s_nyProcTenpl ate) { /1 using signature tenplate for the call of M/Proc

[1 nyPort.getreply(MProc:{?, ?}) { }
}

nyPort.call (s_nyProcTenpl ate) to nyPeer { /1 calling M/Proc at nyPeer
[1 nyPort.getreply(MProc:{?, ?}) { }

EXAMPLE 2: Blocking call with getreply and catch:
/1 G ven

signature MyProc3 (out integer MyParl, inout bool ean MyPar2) return MyResultType
exception (ExceptionTypeOne, ExceptionTypeTwo);

/1 Call of MyProc3
nyPort.call (MyProc3:{ -, true }) to nyPartner {
[T nyPort.getreply(MyProc3:{?, ?}) -> value v_nyResult param (v_nyPar1Var,v_nyPar2Var) { }

[1 nyPort.catch(M/Proc3, MExceptionOne) {
setverdict(fail);

ETSI

260 ETSI ES 201 873-1 V4.16.1 (2024-10)

st op;

}
[1 nyPort.catch(M/Proc3, ExceptionTypeTwo : ?) {
setverdi ct (i nconc);

}
[MyCondi tion] mnyPort.catch(M/Proc3, MyExceptionThree) { }

EXAMPLE 3: Blocking call with timeout exception:
nyPort.call (MyProc: {5,v_nyVar}, 20E-3) {

[T nmyPort.getreply(MProc:{?, ?}) { }

[1 nyPort.catch(tineout) { /] tinmeout exception after 20ns
setverdict(fail);
st op;
}

}
EXAMPLE 4: Nowait call:

nyPort.call (MyProc: {5, v_nyVar}, nowait); /1 The calling test conponent will continue
/] its execution without waiting for the
/1 termination of MyProc

EXAMPLES: Blocking call without return value, out parameters, inout parameters and exceptions:

/Il Gven ..
signature MyBl ockingProc (in integer MyParl, in bool ean MyPar?2);

/) a call of MBI ocki ngProc
nmyPort. cal |l (MyBl ockingProc: { 7, false }) {
[1 nyPort.getreply(MyBlockingProc:{ -, - }) {}

EXAMPLE 6: Broadcast call, accepting the first response only from certain communication partners:

var bool ean v_al | PeersHandl ed : = fal se;
myPort.call (MyProc: {5,v_nyVar}, 20E-3) to all conponent { /'l Broadcast call of My/Proc
/1 Handl es the response from nmyPeer One
[1 nyPort.getreply(MProc:{?, ?}) from nyPeerOne {
}
/1 Handl es the response from nmyPeer Two
[T nyPort.getreply(MProc:{?, ?}) from nyPeer Two {

[1 nyPort.catch(tineout) { /1 tinmeout exception after 20ns
setverdi ct (i nconc);
st op;
}
}
alt {
[T nyPort.getreply(M/Proc:{?, ?}) { /1 Handles all other responses to the broadcast call
if (not(v_all PeersHandl ed)) {
r epeat
}
}
}

EXAMPLE7: Multicast call:
nyPort.call (MyProc: {5,v_nyVar}, nowait) to (nyPeerl, nyPeer2); // Milticast call of M/Proc
interleave {

[1 nyPort.getreply(MProc:{?, ?}) fromnyPeerl { } /1 Handl es the response of nyPeerl

[1 nyPort.getreply(MyProc:{?, ?}) fromnyPeer2 { } /1 Handl es the response of nyPeer2
}

ETSI

261 ETSI ES 201 873-1 V4.16.1 (2024-10)

22.3.2 The Getcall operation

Theget cal | operationis used to accept calls.

Syntactical Structure

[@odefault] (ObjectReference | any port | any from PortArrayRef) "." getcall
["(" Tenplatelnstance ")"]

[from Address]
[

"->" [param"(" { (ValueRef":=" [@lecoded ["(" Expression ")"]]
Paraneterldentifier) "," } |
{ (valueRef| "-") "," }

[sender Val ueRef]
[@ndex val ue Val ueRef]]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description

Theget cal | operation isused to specify that atest component accepts a call from the SUT, or another test
component.

Theget cal | operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to theget cal | operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteriafor the signature may either be specified in-line or be
derived from a signature templ ate.

The assignment of i n andi nout parameter values to variables shall be made in the assignment part of the get cal |
operation. This allows the use of signature templatesin get cal | operations in the same manner as templates are used
for types.

A get cal | operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The (optional) assignment part of theget cal | operation comprises the assignment of i n and i nout parameter
values to variables and the retrieval of the address of the calling component. The keyword par amis used to retrieve the
parameter values of acall.

When assigning individual parameters of a call, encoded parameters can be decoded prior to assignment using the
@lecoded modifier. In this case, the referenced parameter on the right hand sided of the assignment shall be one of
thebi t string, hexstring,octetstring,charstringoruniversal charstring types.Itshal be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause atest case error. In case the referenced field is of theuni ver sal char st ri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of thechar stri ng
type and it shall contain one of the strings allowed for thedecval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field isnot auni ver sal charstring, the optional
parameter shall not be present.

The keyword sender isused when it isrequired to retrieve the address of the sender (e.g. for addressing ar epl y or
exception to the calling party in a one-to-many configuration).

Accepting any call

A get cal | operation with no argument list for the signature matching criteriawill remove the call on the top of the
incoming port queue (if any) if al other matching criteria are fulfilled.

Getcall on any port

Toget cal | onany port isdenoted by the any keyword.

ETSI

262 ETSI ES 201 873-1 V4.16.1 (2024-10)

Getcall on any port from a port array

Toget cal | onany port from a specific port array, usetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It is aso possible to store the index of a port in asingle-
dimensional port array at which the operation was successful to a variable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching calls, the port indicesto be checked are iterated from lowest to highest. If the port
array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from lowest to
highest index for each dimension, e.g. [0][O], [O][1], [1][C], [1][1]. Thefirst port which matches all the criteria will
cause the operation to be successful even if other portsin the array would al so meet the criteria.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a Thegetcal | operation shall only be used on procedure-based ports. The type definition of the port shall
include the name of the procedure to which the getcall operation belongsinitsi n ori nout list.

b) Thesignature argument of the get cal | operation shall not be used to passin variable namesfor i n and
i nout parameters.

¢) The Parameterldentifiers shall be from the corresponding signature definition.
d) Thevalue assignment part shall not be used with the getcall operation.

€) Parameters of calls accepted by accepting any call shall not be assigned to avariable, i.e. the param clause
shall not be present.

f) All AddressRef itemsin the from clause and all ValueRef itemsin the sender clause shall be of type
addr ess, conponent or of the address type bound to the port type (see clause C.5) of the port instance
referenced intheget cal | operation. No AddressRef in the f r omclause shall contain the special value
nul | at the time of the operation.

g) ThePortArrayRef shall be areference to acompletely initialized port array.
h) Theindex redirection shall only be used when the operation is used on an any from port array construct.

i) If theindex redirection is used for single-dimensional port arrays, the type of the integer variable shall allow
storing the highest index of the respective array.

j) If theindex redirection is used for multi-dimensional port arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective array, and its type shall allow storing
the highest index (from al dimensions) of the array.

k) If avariablereferenced inthe par am sender or @ ndex clauseisalazy or fuzzy variable, the expression
assigned to thisvariable is equal to the result produced by theget cal | operation, i.e. later evaluation of the
lazy or fuzzy variable does not lead to repeated invocation of the get cal | operation.

) Iftheget cal | operation containsbothf r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause. If the operation contains a
sender clause but no f r omclause, the sender shall be type compatible with the type of the variable or
parameter referenced inthe sender clause.

NOTE 3: An error due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the f r omclause is missing, but the type of the sender can be
determined and it is not type compatible with the typeinthe sender clause.

m) When assigning implicitly decoded parameters (by using the @lecoded modifier) in cases where the value or
template to be matched uses the MatchDecodedContent (decnat ch) matching for the parameter to be stored,
the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of the
variable the decoded field is stored into.

n) The ObjectReference shall be of a port type.

ETSI

263 ETSI ES 201 873-1 V4.16.1 (2024-10)

0) The@odef aul t modifier isalowed only in stand-alone get cal | statements.
Examples

EXAMPLE 1. Basic getcall:
nyPort.getcal |l (M/Proc: s_nyProcTenplate(5, v_nyVar)); /1 accepts a call of MyProc at nyPort

myPort.getcall (MProc: {5, v_nyvar}) frommyPeer; // accepts a call of MyProc at myPort from
/'l myPeer

EXAMPLE 2: Getcall with matching and assignments of parameter valuesto variables:

nmyPort.getcal |l (MyProc: {?, ?}) fromnyPartner -> param (v_nyPar1lVar, v_nmnyPar2Var);
/1 The in or inout paraneter values of My/Proc are assigned to v_nyParlVar and v_nyPar2Var.

nmyPort.getcal | (MyProc: {5, v_nyVar}) -> sender v_nySender Var;
/1 Accepts a call of MyProc at nyPort with the in or inout paraneters 5 and v_nyVar.
/'l The address of the calling party is retrieved and stored in v_nySender Var.

/1l The followi ng getcall exanples show the possibilities to use matching attributes
/1 and onmit optional parts, which may be of no inportance for the test specification.

nyPort.getcal | (MyProc: {5, v_nyVar}) -> paran(v_nyVarl, v_nyVar2) sender v_nySender Var;
myPort.getcal |l (MProc: {5, ?}) -> paran(v_nyVarl, v_nyVar2);

nyPort.getcal |l (MyProc:{?, v_nyVar}) -> paran(- , v_nyVar2);
/1 The value of the first inout paraneter is not inportant or not used

/1 The followi ng exanples shall explain the possibilities to assign in and inout paraneter
/1 values to variables. The followi ng signature is assuned for the procedure to be called:

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
nyPort.getcal | (MyProc2:{?, ?, 3, - , ?}) -> param (v_nyVarA, v_nyVarB, - , -, v_nyVarE);

/1 The paraneters A B, and E are assigned to the variables v_nyVarA v_nyVarB, and

/1 v_nyVarE. The out paraneter D needs not to be considered.

nyPort.getcal |l (MyProc2:{?, ?, 3, -, ?}) -> param (v_nyVarA:= A v_nyVarB:= B, v_nyVarE: = E);
/1 Aternative notation for the value assignnent of in and inout paraneter to variables. Note,
/1 the names in the assignnent list refer to the nanes used in the signature of MyProc2

nyPort.getcal | (M/Proc2: {1, 2, 3, -, *}) -> param (v_nyVarE = E);
/1 Only the inout paraneter value is needed for the further test case execution

/'l The followi ng exanpl e denpnstrates the use of encoded paraneters:
signature MyProc3(in integer paranilype, octetstring encodedParan;
tenplate integer mv.int := ?;

var integer v_nyVarX;

myPort.getcal |l (M/Proc3: {1, decmatch nw_int}) -> param (v_nyVarX := @ecoded encodedParamn ;
/1 The paraneters encodedParamis decoded into an integer and assigned to v_nyVarX

EXAMPLE 3: Accepting any call:
nyPort. getcal l; /'l Renoves the top call fromnyPort.
myPort.getcall fromnyPartner; // Renoves a call fromnyPartner fromport nyPort

nyPort.getcall -> sender v_nySenderVar; // Renobves a call fromnyPort and retrieves
/1 the address of the calling entity

EXAMPLE 4: Getcall on any port:

any port.getcall (M/Proc: ?)

EXAMPLES: Getcall on any port from port array:

type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];

var integer v_i[2];

any fromp.getcall (M/Proc:?) -> @ndex value v_i;
/1 checking for an incoming call of the type M/Proc on any port of the port array p and storing

ETSI

264 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 the index of the port on which the matching was successful first

22.3.3 The Reply operation
Ther epl y operation isused to reply to acall.

Syntactical Structure

Ohj ect Reference "." reply "(" Tenplatel nstance [val ue TenplateBody] ")"
[to Address]

NOTE 1: Address may be an AddressRef, alist of AddressRef-sor "all component”.
Semantic Description
Ther epl y operation is used to reply to a previously accepted call according to the procedure signature.

NOTE 2: Therelation between an accepted call and ar epl y operation cannot always be checked statically. For
testing it isalowed to specify ar epl y operation without an associated get cal | operation.

The value part of ther epl y operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responsesto oneor morecal | operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of thet o clause
of ar epl y operation is for unicast responses the address of one receiving entity, for multicast responses a list of
addresses of a set of receivers and for broadcast responsestheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value or template shall be explicitly stated with the val ue keyword and is first evaluated before returning.
Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Areply operation shall only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which ther epl y operation belongsinitsi n ori nout list.

b) The Templatelnstanceinther epl y operation shall identify the signature definition and al signature
parameters of the procedure to which ther epl y operation belongs.

c) Allout andi nout parameters of the signature shall have a specific valuei.e. the use of matching
mechani sms such as AnyValue is not allowed.

d) At o clauseshall be present in case of one-to-many connections.

€) All AddressRef itemsin theto clause shall be of type addr ess, conponent or of the address type bound to
the port type (see clause 6.2.9) of the port instance referenced inthe r epl y operation. No AddressRef in the
t o clause shall contain the specia value nul | at the time of the operation.

f) Theoptiona val ue clause for areturn value shall only be present if the signature definition of the procedure
to which ther epl y operation belongs definesar et ur n type.

g) The TemplateBody intheval ue clause shall conform to the template(value) restriction and it shall be
type-compatible with the return type specified in the signature of the procedure to which ther epl y operation
belongs.

h) Applyingar epl y operation to an unmapped or disconnected port shall cause atest case error.

i) The ObjectReference shall be of a port type.

ETSI

265 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

nyPort.reply(MProc2:{ - ,5}); /'l Replies to an accepted call of MProc2.

myPort. repl y(M/Proc2: { ,5}) to nyPeer; // Replies to an accepted call of MyProc2 from nmyPeer

nyPort.reply(M/Proc2: { ,5}) to (nyPeerl, nyPeer2); // Milticast reply to nyPeerl and nyPeer2

,5}) to all conponent; // Broadcast reply to all entities connected
/1 to nyPort

myPort. repl y(M/Proc2: {

myPort.repl y(MyProc3: {5, v_nyVar} val ue 20); /'l Replies to an accepted call of M/Proc3.

22.3.4 The Getreply operation
Theget r epl y operation is used to handle replies from a previously called procedure.

Syntactical Structure

[@odefault] (ObjectReference | any port | any fromPortArrayRef) "." getreply
["(" Tenplatelnstance [val ue Tenplatelnstance]")"]
[from Address]
["->" [value (Val ueRef|
("(" { ValueRef[":=" [@ecoded ["(" Expression ")"]]
Fi el dO TypeReference 1[","] } ")")

)]
[param”(" { (ValueRef":=" [@lecoded ["(" Expression ")"]]
Parameterldentifier) "," } |
{ (ValueRef| "-") ", }

"y
[sender Val ueRef]
[@ndex val ue Val ueRef]]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "any component”.
Semantic Description
Theget r epl y operation is used to handle replies from a previously called procedure.

Theget r epl y operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteriaassociated to the get r epl y operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return value can be specified by using theval ue keyword.

A get r epl y operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The assignment of out and i nout parameter values to variables shall be made in the assignment part of the
get r epl y operation. This alows the use of signature templatesin get r epl y operations in the same manner as
templates are used for types.

The (optional) assignment part of the get r epl y operation comprises the assignment of out and i nout parameter
values to variables and the retrieval of the address of the sender of the reply. The keyword val ue isused to retrieve
return values and the keyword par amis used to retrieve the parameter values of areply. The keyword sender is used
when it isrequired to retrieve the address of the sender.

ETSI

266 ETSI ES 201 873-1 V4.16.1 (2024-10)

When assigning individual parameters or referenced fields of the return value of areply, encoded parameters can be
decoded prior to assignment using the @ecoded modifier. In this case, the referenced parameter or field of the return
value on the right hand sided of the assignment shall be one of thebi t st ri ng, hexstri ng, octetstri ng,
charstringoruni versal charstring types. It shal bedecoded into avaue of the same type as the variable
on the left hand side of the assignment. Failure of this decoding shall cause atest case error. In case the parameter or
referenced field of the return valueis of the uni ver sal char st ri ng type, the @ecoded clause can contain an
optional parameter defining the encoding format. The parameter shall be of the char st ri ng type and it shall contain
one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4). Any other value shall
cause an error. In case the parameter or referenced field of the return valueisnot auni ver sal char string, the
optional parameter shall not be present.

Get any reply

A get r epl y operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of acal | operation, it shall only treat replies from
the procedure invoked by the cal | operation.

Get areply on any port
To get areply on any port, usetheany port keywords.
Get areply on any port from a port array

To get areply on any port from a specific port array, usetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possible to store the index of aportina
single-dimensional port array at which the operation was successful to avariable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching replies, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [O][1], [1][O], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other portsin the array would also meet the criteria.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Agetreply operation shall only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the get r epl y operation belongs.

b) Thesignature argument of the get r epl y operation shall not be used to pass in variable names for out and
i nout parameters.

c) Parametersor return values of responses accepted by get any reply shall not be assigned to avariable, i.e. the
param and value clause shall not be present.

d) All AddressRef itemsin the from clause and all VValueRef itemsin the sender clause shall be of type
addr ess, conmponent or of the address type bound to the port type (see clause 6.2.9) of the port instance
referenced intheget r epl y operation. No AddressRef in the f r omclause shall contain the special value
nul | at the time of the operation.

€) ThePortArrayRef shall be areference to acompletely initialized port array.
f) Theindex redirection shall only be used when the operation is used on an any from port array construct.

g) If theindex redirection is used for single-dimensiona arrays, the type of the integer variable shall alow
storing the highest index of the respective port array.

h) If theindex redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

ETSI

267 ETSI ES 201 873-1 V4.16.1 (2024-10)

i) Ifavariablereferencedintheval ue, par am sender or @ ndex clauseisalazy or fuzzy variable, the
expression assigned to this variable is equal to the result produced by theget r epl y operation, i.e. later
evaluation of the lazy or fuzzy variable does not lead to repeated invocation of the get r epl y operation.

j) Ifthegetrepl y operation contains both f r omand sender clause, the variable or parameter referenced in
the sender clause shall be type compatible with the template in the f r omclause. If the operation contains a
sender clause but no f r omclause, the sender shall be type compatible with the variable or parameter
referenced inthe sender clause.

NOTE 3: Anerror due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the f r omclause is missing, but the type of the sender can be
determined and it is not type compatible with the typeinthesender clause.

k) When assigning implicitly decoded parameters or referenced fields of the return value (by using the
@ecoded modifier) in cases where the value or template to be matched uses the MatchDecodedContent
(decrmat ch) matching for the parameter to be stored, the type of the template in the MatchDecodedContent
matching shall be type-compatible to the type of the variable the decoded field is stored into.

) The ObjectReference shall be of a port type.
m) The @odef aul t modifier isalowed only in stand-alone get r epl y statements.
Examples

EXAMPLE 1: Basic getreply:

nyPort.getrepl y(M/Proc: {5, ?} value 20); /1 Accepts a reply of M/Proc with two out or
/1 inout paraneters and a return val ue of 20

nyPort.getrepl y(MyProc2:{ - , 5}) fromnyPeer; [/ Accepts a reply of MyProc2 from nyPeer

EXAMPLE 2: Getreply with storing inout/out parameters and return values in variables:

nyPort.getrepl y(M/Procl: {?, ?} value ?) -> value v_nyRetVal ue paran(v_nyParl, v_nyPar?2);

/1 The returned value is assigned to variable v_nyRetValue and the val ue

/1 of the two out or inout paraneters are assigned to the variables v_nyParl and v_nyPar2.
nyPort.getrepl y(M/Procl: {?, ?} value ?)-> value v_nyRetVal ue paran(- ,v_nyPar2) sender nySender;
/1 The value of the first paraneter is not considered for the further test execution and

/1 the address of the sender conponent is retrieved and stored in the variable nySender.

/1 The follow ng exanpl es describe sone possibilities to assign out and inout paraneter val ues
/1 to variables. The followi ng signature is assuned for the procedure which has been called

signature MyProc2(in integer A integer B, integer C, out integer D, inout integer E);
nyPort.getreply(s_aTenplate) -> paran(- , - , - , v_nyVarQutl, v_nyVarlnoutl);
myPort. getreply(s_aTenpl ate) -> paran{v_nyVarQutl: =D, v_nyVarQut2: =E);
nyPort.getreply(MProc2:{ - , - , -, 3, ?}) -> paran(v_nyVarlnout1: =E);

/1 The followi ng exanpl e denpnstrates the use of encoded paraneters:

signature MyProc3(out integer paranType, out octetstring encodedParan)j;

tenplate integer nwint := ?;

\'/.ér i nteger v_nyVarX;

myPort. getrepl y(MyProc3: {1, decmatch nw_.int}) -> param (v_nyVarX : = @ecoded encodedPar an)j ;
/'l The paraneters encodedParamis decoded into an integer and assigned to v_nyVarX

EXAMPLE 3: Get any reply:

nyPort. getreply; /'l Renoves the top reply fromnyPort.
nmyPort.getreply from nmyPeer; /1 Renoves the top reply received fromnyPeer fromnyPort.
nyPort.getreply -> sender v_nySender Var; /1 Renoves the top reply fromnyPort and retrieves

/'l the address of the sender entity

EXAMPLE 4: Get areply on any port:

any port.getreply(Mproc:?)

ETSI

268 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLEDS: Get areply on any port from port array:
type port MyPort procedure { inout MyProc }
type conponent MyConponent {

port MyPort p[10][10];
}

var integer v_i[2];

any fromp.getreply(MyProc:?) -> @ndex value v_i;

/] Getting a reply of the type MyProc on any port of the port array p and
/1 storing the index of the port on which the matching was successful first

22.3.5 The Raise operation
Exceptions are raised with ther ai se operation.

Syntactical Structure

bj ect Reference "." raise "(" Signature "," Tenpl atel nstance ")"
[to Address]

NOTE 1. Address may be an AddressRef, alist of AddressRef-s or "all component”.
Semantic Description
Ther ai se operation is used to raise an exception.

NOTE 2: Therelation between an accepted call and ar ai se operation cannot always be checked statically. For
testing it isalowed to specify ar ai se operation without an associated get cal | operation.

Thevalue part of ther ai se operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from atemplate conforming to
the template(value) restriction or be the value resulting from an expression (which of course can be an explicit value).
The optional type field in the value specification to ther ai se operation shall be used in cases where it is necessary to
avoid any ambiguity of the type of the value being sent.

Exceptionsto one or morecal | operations may be sent to one, severa or al peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of thet o clause
of ar ai se operationisfor unicast exceptions the address of one receiving entity, for multicast exceptions alist of
addresses of a set of receivers and for broadcast exceptionstheal | conponent keywords.

In case of one-to-one connections, thet o clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Anexception shall only beraised at a procedure-based port. An exception is a reaction to an accepted
procedure call the result of which leads to an exceptional event.

b) Thetype of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall include initsin or inout list the name of the procedure to which the exception belongs.

¢) A toclause shall be present in case of one-to-many connections.

d) All AddressRef itemsin the to clause shall be of type address, component or of the address type bound to the
port type (see clause 6.2.9) of the port instance referenced in the raise operation. No AddressRef in the to
clause shall contain the special value null at the time of the operation.

€e) Applying araise operation to an unmapped or disconnected port shall cause atest case error.
f) The Templatel nstance shall conform to the template(val ue) restriction (see clause 15.8).

g) The ObjectReference shall be of a port type.

ETSI

269 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

nyPort.rai se(M/Signature, v_nyVariable + v_yourVariable - 2);
/] Raises an exception with a value which is the result of the arithnetic expression
/1 at nyPort

nyPort.rai se(M/Proc, integer:5}); /'l Raises an exception with the integer value 5 for M/Proc

nmyPort.rai se(MySignature, "My string") to nyPartner;
/] Raises an exception with the value "My string" at nyPort for MySignature and
/1 send it to nyPartner

myPort.rai se(MySignature, "My string") to (nyPartnerOne, nyPartner Two);
/] Raises an exception with the value "My string" at nyPort and sends it to nyPartnerOne and
/1 nyPartnerTwo (i.e. nulticast communication)

myPort.rai se(MSignature, "My string") to all conponent;
/] Raises an exception with the value "My string" at nyPort for MySignature and sends it
// to all entities connected to nyPort (i.e. broadcast communication)

22.3.6 The Catch operation

The cat ch operation is used to catch exceptions.

Syntactical Structure

[@odefault] (ObjectReference | any port | any from PortArrayRef) "." catch
["(" (Signhature ["," Tenplatelnstance]) | TimeoutKeyword ")"]
[from Address]
["->" [value (Val ueRef|
("(" { ValueRef[":=" [@ecoded ["(" Expression ")"]]
Fi el dOr TypeReference 1[","]1 } ")")

)]
[sender Val ueRef]
[@ndex val ue Val ueRef]]

NOTE 1: Address may be an AddressRef, alist of AddressRef-s or "any component".
Semantic Description

Thecat ch operation is used to catch exceptions raised by a test component or the SUT as areaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different values of the same exception type. If a Sgnatureis given in the parameter list, it is possible to omit
the Templatelnstance part if the cat ch operation shall match any exception value of any of the exception types
declared in the definition of the referenced Sgnature.

The cat ch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies all the matching criteria associated with the cat ch operation.

A cat ch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the f r omkeyword followed by a specification of an address or component
reference, alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

The (optional) redirection part of the cat ch operation comprises of storing the exception value and/or one or more
parts of it and the retrieval of the address of the calling component. The keyword val ue isused to retrieve the val ue of
an exception and/or the parts of it and the keyword sender isused when it isrequired to retrieve the address of the
sender.

ETSI

270 ETSI ES 201 873-1 V4.16.1 (2024-10)

When assigning individual fields of an exception, encoded payload fields can be decoded prior to assignment using the
@ecoded modifier. In this case, the referenced field on the right hand sided of the assignment shall be one of the
bitstring,hexstring,octetstring,charstringoruniversal charstring types. Itshal be
decoded into a value of the same type as the variable on the left hand side of the assignment. Failure of this decoding
shall cause atest case error. In case the referenced field is of theuni ver sal char st ri ng type, the @ecoded
clause can contain an optional parameter defining the encoding format. The parameter shall be of thechar st ri ng
type and it shall contain one of the strings allowed for the decval ue_uni char function (specified in clause C.5.4).
Any other value shall cause an error. In case the referenced field isnot auni ver sal charstring, the optional
parameter shall not be present.

The cat ch operation may be part of the response and exception handling part of acal | operation or be used to
determine an aternativeinan al t statement. If the cat ch operation is used in the accepting part of acal | operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because thisinformation follows fromthecal | operation. However, for readability reasons (e.g. in case of complex
cal | statements) thisinformation shall be repeated.

The Timeout exception

Thereisone specia t i neout exception that can be caught by the cat ch operation. Thet i neout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(see clause 22.3.1).

Catch any exception

A cat ch operation with no argument list allows any valid exception to be caught. The most general case is without
using the f r omkeyword. CatchAnyException will also catchthet i meout exception.

Catch any exception for specific signature

A cat ch operation using only a Sgnature reference in the argument list allows any valid exception for that signature
to be caught.

Catch on any port
To cat ch an exception on any port use the any keyword.
Catch on any port from a port array

To cat ch an exception on any port from a specific port array, indices usetheany from Port ArrayRef syntax
where PortArrayRef shall bea referenceto a port array identifier. It isalso possibleto store the index of aportina
single-dimensional port array at which the operation was successful to avariable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for matching exceptions, the port indices to be checked are iterated from lowest to highest. If the
port array is multi-dimensional, then the ports are iterated over from innermost to outermost array dimension from
lowest to highest index for each dimension, e.g. [0][0], [O][1], [1][O], [1][1]. The first port which matches all the criteria
will cause the operation to be successful even if other portsin the array would also meet the criteria.

The catch on any port from a port array operation cannot be used to catch a call timeout.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The catch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b) Thetype definition of the port shall include in its out or inout list the name of the procedure to which the
exception belongs.

¢) No binding of the incoming values to the terms of the expression or to the template shall occur. The
assignment of the exception valuesto variables shall be made in the assignment part of the catch operation.

ETSI

d)

f)

9)

m)

271 ETSI ES 201 873-1 V4.16.1 (2024-10)

Catching timeout exceptions shall be restricted to the exception handling part of acall. No further matching
criteria (including a from part) and no assignment part is allowed for a catch operation that handles a timeout
exception.

Exception values accepted by catch any exception shall not be assigned to avariable, i.e. the value clause shall
not be present.

If CatchAnyException is used in the response and exception handling part of a call operation, it shall only treat
exceptions raised by the procedure invoked by the call operation.

All AddressRef itemsin the from clause and all ValueRef items in the sender clause shall be of type address,
component or of the address type bound to the port type (see clause 6.2.9) of the port instance referenced in the
catch operation. No AddressRef in the from clause shall contain the special value null at the time of the
operation.

The PortArrayRef shall be areference to a completely initialized port array.
The index redirection shall only be used when the operation is used on an any from port array construct.

If the index redirection is used for single-dimensiona arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

If the index redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

If avariable referenced in the value, sender or @index clause is alazy or fuzzy variable, the expression
assigned to this variableis equal to the result produced by the catch operation, i.e. later evaluation of the lazy
or fuzzy variable does not lead to repeated invocation of the catch operation.

If the catch operation contains both from and sender clause, the variable or parameter referenced in the sender
clause shall be type compatible with the template in the from clause. If the operation contains a sender clause
but no from clause, the sender shall be type compatible with the variable or parameter referenced in the sender
clause.

NOTE 3: Anerror due to atype mismatch may happen if the typesin the receive part are not compatible to the

typesin the assignment part or, if the from clause is missing, but the type of the sender can be determined
and it is not type compatible with the type in the sender clause.

n) When assigning implicitly decoded exception fields (by using the @decoded modifier) in cases where the
value or template to be matched uses the MatchDecodedContent (decmatch) matching for the parameter to be
stored, the type of the template in the MatchDecodedContent matching shall be type-compatible to the type of
the variable the decoded field is stored into.

0) Thereferenced value associated with Ref or the return type associated with Functionlnstance followed by the
catch keyword, shall be of a port type.

p) If no Templatelnstance is provided in the parameter list, then also no val ue clause shall be present in the
redirection part.

g) The@odef aul t modifier isalowed only in stand-alone cat ch statements.

Examples

EXAMPLE 1: Basic catch:

nmyPort.catch(M/Proc, integer: v_nyVar); /] Catches an integer exception of value

/1 v_nyVar raised by MyProc at port mnyPort.

nyPort. catch(M/Proc, v_nyVar); /1 I's an alternative to the previous exanple.

myPort. catch(M/Proc, v_a<v_b); /] Catches a bool ean exception

nyPort.catch(M/Proc, MyType:{5, v_nyVar}); // In-line tenplate definition of an exception val ue.

myPort. catch(M/Proc, charstring:"Hello")from nmyPeer; /] Catches "Hello" exception from nmyPeer

ETSI

272 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 2: Catch with storing value and/or sender in variables:

nyPort.catch(M/Proc, MyType:?) from nyPartner -> value v_nyVar;
/'l Catches an exception fromnyPartner and assigns its value to v_nyVar.

nyPort.catch(M/Proc, s_nyTenplate(5)) -> value v_nyVar Two sender nyPeer;
/'l Catches an exception, assigns its value to v_nyVarTwo and retrieves the
/1 address of the sender.

nyPort.catch(M/Proc, s_nyTenplate(5)) -> value (v_nyVarThree: = f1)
sender myPeer;
/'l Catches an exception, assigns the value of its field f1 to v_nyVarThree and retrieves the
/] address of the sender.
/1 Handling encoded exception payl oad:

type MyException record {

}

type CommonException record {
i nt eger exceptionl d,
octetstring payl oad

}

signature S() exception (ComonException);

var MyException v_nyVar;

myPort.catch (S, CommonException: {exceptionld := 25, payload : = decmatch MyException:? })

-> value (v_nyVar := @lecoded payl oad);
/1 The encoded payl oad field of the caught exception is decoded and matched wi th m excTenpl at e;
/1 if the matching is successful the decoded payload is stored in v_nyVar.

EXAMPLE 3: The Timeout exception:

myPort.call (MyProc: {5, v_nyVar}, 20E-3) {
[T nmyPort.getreply(MProc:{?, ?}) { }

[1 nyPort.catch(tineout) { /1 tinmeout exception after 20ns
setverdict(fail);
st op;
}

}

EXAMPLE 4: Catch any exception:
nyPort. catch;
myPort.catch from nyPartner;
nyPort.catch -> sender v_nySender Var;

myPort.catch(M/Proc); // catch any exception raised by procedure MyProc

EXAMPLES: Catch on any port:

any port.catch;

EXAMPLE 6: Catch on any port from port array:

type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];

var integer v_i[2];

any from p.catch(M/Proc, MyType:?) -> @ndex value v_i;

/'l Catching an incom ng exception of type MyType on any port in the port array p and
/1 storing the index of the port on which the matching was successful first

ETSI

273 ETSI ES 201 873-1 V4.16.1 (2024-10)

22.4 The Check operation

The check operation allows reading the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

[@odefault] (ObjectReference | any port | any fromPortArrayRef) "." check

["(
(PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchCp) |
([from Address]
["->" [sender Val ueRef]
[@ndex val ue Val ueRef]])
")

NOTE 1: Address may be an AddressRef, alist of AddressRef-s or "any component".
Semantic Description

Thecheck operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptions to be
caught and replies from previous calls at procedure-based ports.

The receiving operationsr ecei ve, get cal | , get r epl y and cat ch together with their matching and value, sender
or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the
information to be optionally extracted.

It isthe top element of an incoming port queue that shall be checked (it is not possible to ook into the queue). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving operation failsi.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the norma manner, i.e. the statement or alternative next to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the
value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of
it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are
stored in the associated variables.

If check isused as a stand-alone statement, it is considered to be a shorthand for an al t statement with thecheck
operation as the only alternative.

Check from a specific sender

In the case of one-to-many connections the check operation may be restricted to a certain communication partner. This
restriction shall be denoted using the f r omkeyword followed by a specification of an address or component reference,
alist of address or component references or any component.

NOTE 2: The one-to-one connection is considered to be a simple case of the one-to-many connections and allows
the usage of the from-clause.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
queue. The check any operation alows to distinguish between different senders (in case of one-to-many connections)
by using af r omclause and to retrieve the sender by using a shorthand assignment part with asender clause.

Check on any port

Tocheck onany port, usetheany port keywords.

ETSI

274 ETSI ES 201 873-1 V4.16.1 (2024-10)

Check on any port from a port array

To check on any port from a specific port array, indicesusetheany from Port ArrayRef syntax where
PortArrayRef shall bea referenceto a port array identifier. It isalso possible to store the index of aportina
single-dimensional port array at which the operation was successful to avariable of type integer or, in case of
multi-dimensional port arrays the index of the successful port to an integer array or record of integer variable. When
checking the port array for a matching message, call, reply or exception, the port indices to be checked are iterated from
lowest to highest. If the port array is multi-dimensional, then the ports are iterated over from innermost to outermost
array dimension from lowest to highest index for each dimension, e.g. [0][0], [O][1], [1][0], [1][1]. The first port which
matches al the criteriawill cause the operation to be successful even if other portsin the array would also meet the
criteria.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Usingthecheck operation in awrong manner, e.g. check for an exception at a message-based port shall
cause atest case error.

b) All AddressRef itemsin the from clause and all ValueRef itemsin the sender clause shall be of type
addr ess, conponent or of the address type bound to the port type (see clause C.5) of the port instance
referenced in the check operation. No AddressRef in the f r omclause shall contain the special valuenul | at
the time of the operation.

c) ThePortArrayRef shall be areference to acompletely initialized port array.
d) Theindex redirection shall only be used when the operation is used on an any from port array construct.

€) If theindex redirectionis used for single-dimensional arrays, the type of the integer variable shall allow
storing the highest index of the respective port array.

f) If theindex redirection is used for multi-dimensional arrays, the size of the integer array or record of integer
type shall exactly be the same as the dimension of the respective port array, and the its type shall allow storing
the highest index (from all dimensions) of the port array.

g) Ifavariablereferencedinthesender or @ ndex clauseisalazy or fuzzy variable, the expression assigned
to thisvariableis equal to the result produced by the check operation, i.e. later evaluation of the lazy or fuzzy
variable does not lead to repeated invocation of the check operation.

h) If thecheck operation contains both f r omand sender clause, the variable or parameter referenced in the
sender clause shall be type compatible with the template in the f r omclause. If the operation contains a
sender clause but no f r omclause, the sender shall be type compatible with the variable or parameter
referenced inthe sender clause.

i) The ObjectReference shall be of a port type.
i) The @odef aul t modifier isalowed only in stand-alone check statements.

NOTE 3: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

NOTE 4: An error due to atype mismatch may happen if the typesin the receive part are not compatible to the
typesin the assignment part or, if the from clause is missing, but the type of the sender can be determined
and it is not type compatible with the type in the sender clause.

Examples
EXAMPLE 1: Basic check:

nyPort 1. check(receive(5)); // Checks for an integer nessage of value 5.

nyPort 1. check(receive(charstring:?) -> value v_nyCharVar);
/1 Checks for a charstring nessage and stores the nessage if the nessage type is charstring

nyPort 2. check(getcal | (MyProc: {5, v_nyVar}) from nyPartner);

ETSI

275 ETSI ES 201 873-1 V4.16.1 (2024-10)

/1 Checks for a call of MyProc at port nyPort2 from nyPartner

nyPort 2. check(getrepl y(M/Proc: {5, v_nyVar} value 20));

/] Checks for a reply fromprocedure M/Proc at nyPort2 where the returned value is 20 and
/1 the values of the two out or inout paraneters are 5 and the value of v_nyVar.

nyPort 2. check(catch(M/Proc, s_nyTenplate(5, v_nyVar)));

nmyPort 2. check(getrepl y(M/Procl: {?, v_nyVar} value *)-> value v_nyReturnVal ue paran(v_nyParl,-));

nyPort.check(getcal |l (MyProc: {5, v_nyVar}) fromnyPartner -> param (v_nyPar1lVar, v_nyPar2Var));
nmyPort. check(getcal |l (MyProc: {5, v_nyVar}) -> sender v_nySenderVar);
EXAMPLE 2: Check any operation:
myPort . check;
nyPort. check(from nyPartner);

myPort. check(-> sender v_nySenderVar);

EXAMPLE 3: Check on any port:

any port.check;

EXAMPLE 4: Check on any port from port array:

type port MyPort procedure { inout MyProc }
type conponent MyConponent {
port MyPort p[10][10];
}
var integer v_i[2];
any from p.check(catch(M/Proc, MyType:?)) -> @ndex value v_i;
/1 Checking for an incoming exception of the type MyType on any port of the port array p and
/1 storing the index of the port on which the matching was successful first

22.5 Controlling communication ports

22.5.0 General

TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 25.

Table 25: Overview of TTCN-3 port operations

Port operations
Statement Associated keyword or symbol
Clear port clear
Start port start
Stop port stop
Halt port halt
Check the state of a port checkstate

22.5.1 The Clear port operation
Thecl ear port operation emptiesincoming port queues.

Syntactical Structure

(phjectReference | (all port)) "." clear
Semantic Description

Thecl ear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the cl ear operation.

If aport queue is already empty then this operation shall have no action on that port.

ETSI

276 ETSI ES 201 873-1 V4.16.1 (2024-10)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of a port type.

Examples

nyPort. cl ear; /1 clears port MyPort

22.5.2 The Start port operation
Thest art operation enables sending and receiving operations on the port(s).

Syntactical Structure

(hjectReference | (all port)) "." start
Semantic Description

If aport is defined as allowing receiving operationssuch asr ecei ve, get cal | , etc.thest art operation clearsthe
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such assend, cal | ,r ai se, etc. are aso alowed to be performed at that port.

By default, al ports of acomponent shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of a port type.

Examples

nmyPort.start; /] starts nmyPort

22.5.3 The Stop port operation
The st op operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure
(ObjectReference | (all port)) "." stop
Semantic Description

If aport is defined as allowing receiving operationssuch asr ecei ve and get cal | , thest op operation causes
listening at the named port to cease. If the port is defined to allow sending operations then st op port disallows the
operationssuch assend, cal | , r ai se, etc. to be performed.

To cease listening at the port meansthat all receiving operations defined before the stop operation shall be completely
performed before the working of the port is suspended.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of a port type.

ETSI

277 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

nyPort.receive (mv_nyTenpl atel) -> val ue v_recPDy,
/1 the received value is decoded, matched agai nst
/1 MyTenpl atel and the matching value is stored
/1 in the variable v_recPDU
nyPort. st op; /1 No receiving operation defined follow ng the stop
/] operation is executed (unless the port is restarted
/1 by a subsequent start operation)
nyPort.receive (mv_nyTenpl ate2); /'l This operation does not nmatch and will block (assum ng
/1 that no default is activated)

22.5.4 The Halt port operation

Thehal t operation is comparable to the st op operation, but allows entries being aready in the queue to be processed
with receiving operations.

Syntactical Structure

(hjectReference | (all port)) "." halt
Semantic Description

If aport allows receiving operationssuch asr ecei ve, t ri gger andget cal | ,thehal t operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
hal t operation at that port. Messages and procedure call elements that were already in the queue before the hal t
operation can still be processed with receiving operations. If the port allows sending operationsthen hal t port
immediately disallows sending operations such assend, cal | , r ai se, etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1: Theport hal t operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After al entriesin the
queue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If aport st op operation is performed on a halted port before al entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker is virtually
moved to the top of the queue).

NOTE 3: A portst art operation on ahalted port clears al entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It aso removes the marker.

NOTE 4: A port cl ear operation on ahalted port clears al entriesin the queue irrespectively if they arrived
before or after performing the port hal t operation. It also virtually puts the marker at the top of the
gueue.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of a port type.

Examples
nyPort. hal t; /1 No sending allowed on nyPort fromthis nonent on;
/'l processing of nmessages in the queue still possible.
myPort.receive (mv_nyTenpl atel); /1 1f a nessage was already in the queue before the halt

// operation and it natches nw nyTenplatel, it is processed;
/1 otherw se the receive operation bl ocks.

22.5.5 The Checkstate port operation
Thecheckst at e port operation allows to check the state of a port.

Syntactical Structure
(hjectReference | (all port) | (any port)) "." checkstate "(" SingleExpression ")"

ETSI

278 ETSI ES 201 873-1 V4.16.1 (2024-10)

Semantic Description

Thecheckst at e port operation allows to examine the state of a port. If aport isin the state specified by the
parameter, the checkst at e operation returns the Boolean valuet r ue. If the port is not in the specified state, the
checkst at e operation returns the Boolean value f al se. Calling the checkst at e operation with an invalid
argument leads to an error.

The checkstate operation allows to check for different dimensions of a port state. It allowsto check if aport is Started,
Halted or Stopped, but also if a port is Connected, Mapped or Linked (i.e. Connected or Mapped).

NOTE 1. The states Started, Halted and Stopped refer to the port states defined in the clauses F.3.1 and F.3.2. The
states Connected, Mapped and Linked are related to the application of the connection operations
connect, di sconnect, map and unnmap asdefined in clause 21.1.

Thecheckst at e port operation can beused withal | port andany port.Usingthecheckst at e operation
withany port alowstotestif at least one port of atest component isin the specified state. Using thecheckst at e
operationwithal | port alowsto check if al ports of acomponent are in the specified state.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The parameter of thecheckst at e operation shall be of type char st ri ng and shall have one of the
following values:

1) "Started"
2) "Hated"
3) "Stopped"

4) "Connected"
5 "Mapped"
6) "Linked"

NOTE 2: Clause E.2.2.4 includes the type definition obj St at e and the constant definitions STARTED, HAL TED,
STOPPED, CONNECTED, MAPPED, and L1 NKED. It is recommended to usethecheckst at e operation
in combination with this type and these constants to ease the checking of correct usage and to improve the
readability of test specs.

b) Cadlingthecheckst at e operation withachar st ri ng parameter not listed in @) shall lead to an error.
c) The ObjectReference shall be of a port type.
Examples

type conponent MyMICType // Conponent type definition for an MIC

port MyPort Type pCOL, pCQo2

type conponent MyTest Systemi nterface // Conponent type definition for a test systeminterface
port MyPort Type pC33, pCO4, pCOs;

/1 Test case definition

testcase TC MyTestcasel () runs on MyMICType system MyTest System nterface {
var bool ean v_nyPort St ate;
myPortState := all port.checkstate("Started"); // checkstate returns true, because all

/1 ports of a conponent are started after
/] conponent creation and start

ETSI

v_nyPortState :

map(nt c: pCOL,

v_nyPortState :
v_nyPortState :

v_nyPortState :

v_nyPortState :

al |

v_nyPortState :

v_nyPortState :

any port.checkstate("Linked");

279

/1

checkstate returns fal se,

ETSI ES 201 873-1 V4.16.1 (2024-10)

no port is

/1 either connected nor napped
system pCCB) ;
pCQOL. checkst at e(" Li nked") ; /'l checkstate returns true, pCOL is mapped
pCOL. checkst at e(" Mapped") ; /'l checkstate returns true, pCOL is napped
pCOL. checkst at e(" Connected"); [// checkstate returns false, pCOL i s nmapped
/1 and not connected
any port.checkstate("Mapped"); // checkstate returns true, pCOL is mapped

port. stop;

al |

/1l further testcase behaviour

/1

22.6

Use of any and all with ports

port.checkstate("Started");// checkstate returns false, all ports
/1 are stopped
pCOL. checkst at e(" St opped") ; /1 checkstate returns true, pCOL is stopped

The keywordsany and al | may be used with configuration and communication operations as indicated in table 26.

Table 26: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
di sconnect / unmap yes unmap(sel f all port)
start, stop, clear, halt yes all port.start
Checkstate yes yes any port.checkstate("Started")
al | port.checkstate("Connected")
NOTE: Portsare owned by test components and instantiated when a component is created. The keywords any
port andal | port addressall ports owned by atest component and not only the ports known in the

scope of the function or atstep that is executed on the component.

23

23.0

General

Timer operations

TTCN-3 supports a number of timer operations as given in table 27. These operations may be used in test cases,

functions and altsteps.

Table 27: Overview of TTCN-3 timer operations

Timer operations

Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

ETSI

280 ETSI ES 201 873-1 V4.16.1 (2024-10)

23.1 The timer mechanism

It is assumed that each test component and control component maintain their own running-timers list and timeout-list,
i.e. alist of al timersthat are actually running and alist of all timers that have timed out. The timeout-lists are part of
the snapshots that are taken when atest case is executed. The running-timerslist and timeout-list are updated if atimer
of the component is started, is stopped, times out or the component executesat i meout operation.

NOTE 1: The running-timers list and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may also be used.

NOTE 2: Conceptually, each test and control component maintain one running-timers list and one timeout-list only.
However, within a given scope unit only timers known in the scope unit can be accessed individually, i.e.
timersthat are declared in the scope unit, passed in as parameters to the scope unit or known viaaruns-on
clause. In some special cases (e.g. for re-establishing atest component during atest run), it can be
necessary to stop timerslocal to other scope units or to check if timerslocal to other scope units are
running or have already timed out. This can be done by using the keywordsal | and any in combination
with the timer operations st op, t i meout and r unni ng. Allowed combinations are defined in
clause 23.7.

When atimer expires, the timer becomesimmediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the component for which the timer has been declared. Only one entry for
any particular timer may appear in the timeout-list and running-timer list of the component for which the timer has been
declared.

All running timers shall automatically be cancelled when atest component is explicitly or implicitly stopped.

23.2 The Start timer operation
Thest art timer operation is used to indicate that atimer shall start running.

Syntactical Structure
Ohj ect Reference "." start ["(" ObjectReference ")"]
Semantic Description
When atimer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of thetimer, any later st art operations for thistimer, which do not specify a duration, shall use the default
duration.

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative
timer value, e.g. the timer value is the result of an expression, or without a specified timer value shall cause a runtime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.
Thest art operation may be applied to arunning timer, in which case the timer is stopped and re-started.

Thest art operation may be applied to atimer that has already expired; in this case, any entry in the timeout list for
this timer shall be removed.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The SingleExpression representing the timer value shall be a non-negative numerical f | oat number (i.e. the
value shall be greater than or equal to 0.0; infinity and not_a_number are disallowed).

b) The ObjectReference shall be of the timer type.

ETSI

281 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples
t_nyTinerl.start; /1 t_nyTinmerl is started with the default duration
t_nyTinmer2. start (20E-3); /1 t_nyTinmer2 is started with a duration of 20 ns

/Il Elenments of tiner arrays nay also be started in a |oop, for exanple
timer t_nyTiner [5];
var float v_tinerValues [5];

for (var integer v_i := 0; v_i<=4; v_i:=v_i+1)
{ v_tinmerValues [v_i] := 1.0}
for (var integer v_i :=0; v_i<=4; v_i:=v_i+1)

{t_nyTimer [v_i].start (v_tinmerValues [v_i])}

23.3 The Stop timer operation
The st op operation is used to stop arunning timer.

Syntactical Structure

(nj ectReference |
all timer) "." stop

Semantic Description

A st op operation removes a running timer from the list of running timers. A stopped timer becomes inactive and its
elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is a valid operation, although it does not have any effect. Stopping an expired timer causes
the entry for thistimer in the timeout-list to be removed.

Theal | keyword may be used to stop al timers that have been started on a test component or control component.
Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of the timer type.

Examples
t _nyTi ner 1. st op; Il stops t_nyTinerl
all timer.stop; /1 stops all running tiners

23.4 The Read timer operation

Ther ead operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

bj ect Reference "." read
Semantic Description

Ther ead operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of typef | oat .

Applying ther ead operation on an inactive timer, i.e. on atimer not listed on the running-timer list, will return the
float value zero (0.0).

ETSI

282 ETSI ES 201 873-1 V4.16.1 (2024-10)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) The ObjectReference shall be of the timer type.

Examples

var float v_nyVar;
v_nyVar :=t_nyTinerl.read; // assign to v_nyVar the tine that has el apsed since t_nyTinerl
/1 was started

23.5 The Running timer operation
Ther unni ng timer operation is used to check whether atimer isin the running-timer list.

Syntactical Structure

(ObjectReference) | any timer | any from T TinmerArrayRef) "." running
["->" @ndex val ue Val ueRef]

Semantic Description

Ther unni ng timer operation is used to check whether a specific timer visible in the given scope unit is listed on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
thevauet r ue if thetimer islisted onthelist, f al se otherwise.

The any keyword may be used to check if any timer started on a test component or control component is running.

When the any from Ti mer Ar r ayRef notation is used, where TimerArrayRef shall be atimer array identifier, the
timers from the referenced array are iterated over and their states are checked individually, from innermost to outermost
dimension from lowest to highest index for each dimension. The first timer to be found in the running state causes the
operation returning with thet r ue value. If no running timer is found in the array, the operation returns with the

f al se value. Theindex of the first timer found running can optionally be stored in an integer variable for a
single-dimensiona array, or to an integer array or record of integer variable for multi-dimensional timer arrays.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) TimerArrayRef shall be areference to a completely initialized timer array.
b) Theindex redirection shall only be used for any from timer array running operations.

c¢) If theindex redirection is used for single-dimensional timer arrays, the type of the integer variable shall alow
storing the highest index of the respective timer array.

d) If theindex redirectionis used for multi-dimensional timer arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective timer array, and its type shall alow
storing the highest index (from all dimensions) of the timer array.

€) The ObjectReference shall be of the timer type.
Examples

EXAMPLE 1: Checking if a specific timer is running:

if (t_nyTinmerl.running) { ...}

EXAMPLE 2: Checking if an arbitrary timer is running:

if (any tinmer.running) { ...}

ETSI

283 ETSI ES 201 873-1 V4.16.1 (2024-10)

EXAMPLE 3: Checking if an arbitrary timer from atimer array is running:

timer t_nyTinerArray[2][2];

var integer v_i[2];

if (any fromt_nyTinerArray.running -> @ndex value v_i;) { ...}
/1 checks if any tinmer fromarray is running

/'l assigns index of nmatched tiner to v_i

23.6 The Timeout operation

Thet i neout operation allows to check the expiration of timers.

Syntactical Structure

[@odefault] (ObjectReference | any timer | any from TimerArrayRef) "." timeout
["->" @ndex val ue Val ueRef]

Semantic Description

Thet i meout operation alows to check the expiration of a specific timer in the scope unit of atest component or
control component in which the timeout operation has been called or of any timer that has been started on atest
component or control component before entering the scope in which thet i meout operation has been called.

When at i neout operationisprocessed, if atimer name isindicated, the timeout-list is searched according to the
TTCN-3 scope rules. If there isatimeout event matching the timer name, that event is removed from the timeout-list,
andthet i meout operation succeeds.

Thet i nmeout can beused to determine an alternativein an al t statement or as stand-alone statement in a behaviour
description. Inthe latter caseat i neout operation is considered to be shorthand for anal t statement with the

ti meout operation asthe only alternative. If the @odef aul t modifier is placed before astand-alonet i meout
operation, theimplicit al t statement also containsthe @ odef aul t modifier.

Theany keyword used withthet i meout operation succeedsif the timeout-list is not empty. In this case arandomly
chosen timeout event is removed from the timeout-list.

When the any from Ti nmer Ar r ayRef notation is used, where TimerArrayRef shall be atimer array identifier, the
timers from the referenced array are iterated over and individually checked for timeout from innermost to outermost
dimension from lowest to highest index for each dimension. The first timer to be found in the timeout-list causes that
timer to be removed from the list and the timeout operation succeeds. The index of the matched timer can be optionally
stored in an integer variable for single-dimensional arrays or to an integer array or record of integer variable for multi-
dimensional timer arrays.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a Theti meout operation does not return any value and therefore shall not be used in an expression.
b) TimerArrayRef shall be areference to acompletely initialized timer array.
¢) Theindex redirection shall only be used for any from timer array timeout operations.

d) If theindex redirectionis used for single-dimensional timer arrays, the type of the integer variable shall allow
storing the highest index of the respective timer array.

e) If theindex redirection is used for multi-dimensional timer arrays, the size of the integer array or record of
integer type shall exactly be the same as the dimension of the respective timer array, and its type shall allow
storing the highest index (from all dimensions) of the timer array.

f) The ObjectReference shall be of the timer type.

g) The@odef aul t modifier isalowed only in stand-alonet i meout statements.

ETSI

284 ETSI ES 201 873-1 V4.16.1 (2024-10)

Examples

EXAMPLE 1. Timeout of aspecific timer:

t_nyTinerl.tineout; // checks for the tineout of the previously started timer MTinerl
EXAMPLE 2: Timeout of an arbitrary timer:

any timer.timeout; // checks for the tinmeout of any previously started tiner
EXAMPLE 3: Timeout of atimer from atimer array:

timer t_nyTinerArray[2][2];

var integer v_i[2];

any fromt_nyTimerArray.tinmeout -> @ndex value v_i;

/1 checks for the tineout of any tiner fromarray
/'l assigns index of nmatched tiner to v_i

23.7 Summary of use of any and all with timers

The keywordsany and al | may be used with timer operations as indicated in table 28.

Table 28: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running yes if (any timer.running) {...}
timeout yes any timer.timeout

24 Test verdict operations

24.0 General

Verdict operations given in table 29 allow to set and retrieve verdicts. These operations shall only be used in test cases,
altsteps and functions.

Table 29: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

24.1 The Verdict mechanism

Each test component of the active configuration shall maintain its own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. in the MTC and in each and every PTC).

Additionally, there is aglobal test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
totheget ver di ct andset ver di ct operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control component (e.g. assigned to avariable)
thenitislost.

ETSI

285 ETSI ES 201 873-1 V4.16.1 (2024-10)

Verdict returned y :
by the test case
when it terminates
MIC PTCL [y PTCh [y

Figure 14: lllustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values: pass,fai |l ,i nconc, none and err or, i.e. the distinguished val ues of
thever di ctt ype (seeclause 6.1).

NOTE 2: i nconc means an inconclusive verdict.
When atest component isinstantiated, itslocal verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. usingthe set ver di ct operation) the effect of this change shall
follow the overwriting ruleslisted in table 30. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting rules listed in table 30.

Table 30: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none
None pass inconc fail none
Pass pass inconc fail pass
Inconc inconc inconc fail inconc
Fail fail fail fail fail

Theer ror verdict isspecial inthat it is set by the test system to indicate that atest case (i.e. runtime) error has
occurred. It shall not be set by theset ver di ct operation and will not be returned by the getverdict operation. No
other verdict value can override an er r or verdict. Thismeansthat an er r or verdict can only be aresult of an
execut e test case operation.

Together with the local test verdict, each test component shall also maintain an implicit char st ri ng variable to store
information about the reasons for assigning the verdict. Theimplicit char st ri ng variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with theimplicit char st ri ng variable. The implicit

char st ri ng variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

24.2 The Setverdict operation

Thelocal verdict is set withtheset ver di ct operation.

Syntactical Structure

setverdict "(" SingleExpression { "," (FreeText | Tenplatelnstance) } ")"
Semantic Description

The value of the local verdict is changed with theset ver di ct operation. The effect of this change shall follow the
overwriting rules listed in table 30.

ETSI

286 ETSI ES 201 873-1 V4.16.1 (2024-10)

The optional parameters allow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in an implicit char st ri ng variable. On termination of the test
component, the actual local verdict islogged together with theimplicit char st r i ng variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

Astheresult of the setverdict operation, theimplicit char st ri ng variable is overwritten whenever the local verdict
of atest component is overwritten (i.e. anew value, which is different to the previous oneis assigned to it). A

set ver di ct operation with averdict only that overwrites the current local verdict, will also clear the implicit

char st ri ng variable. This means previoudly stored information gets lost.

Restrictions

In addition to the genera static rules of TTCN-3 given in clause 5 and shown in table 16, the following restrictions
apply:

a) Thesetverdi ct operation shal only be used with the valuespass, fai | ,i nconc and none. It shal not
be used to assign the value err or, thisis set by the test system only to indicate runtime errors.

b) SingleExpression shall resolve to avalue of type verdict.

c) For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of thel og
statement. Table 18 lists al language elements that can be used in a setverdict operation.

Examples
EXAMPLE 1:
setverdi ct (pass); /'l the local verdict is set to pass
éetverdict(fail); /1 until this line is executed, which will result in the val ue
/1 of the local verdict being overwitten to fail
/1 When the ptc terminates the test case verdict is set to fail
EXAMPLE 2:

var integer v_nyVar:= 1;

myPort.receive(integer:v_nyVar);// Mtches an integer value with the value of v_nyVar
// at port nyPort
setverdi ct (pass, "Value received: ", v_nyVar); // Provided the actual test component verdict is
/1 none: local verdict is set to pass, the inplicit
/1 charstring variable is set to "Value received: 5"
st op; /'l The test conponent terminates. The local test verdict and
[/ inplicit charstring variable are | ogged

EXAMPLE 3:
setverdict(fail, "Reason one"); /1 the local verdict is set to fail,

/1 the local charstring is set to "Reason one"
setverdi ct(fail, "Reason two"); /1 the local verdict does not change,

/'l therefore the local charstring renains "Reason one"
setverdi ct (pass, "Reason three"); /1 the local verdict does not change,

/'l therefore the local charstring remains "Reason one"

24.3 The Getverdict operation
The value of the local verdict may beretrieved using the get ver di ct operation.

Syntactical Structure

getverdi ct
Semantic Description

Theget verdi ct operation returns the actual value of the local verdict.

ETSI

287 ETSI ES 201 873-1 V4.16.1 (2024