Final draft ETS| ES 201 873-1 V4.2.1 (2010-05)

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1. TTCN-3 Core Language

D




2 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Reference
RES/MTS-00111-1 T3 ed421 core

Keywords
methodology, MTS, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI


http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Contents

INntellectual Property RIGNES........oiiiieeeees ettt b et b e bbb e 11
1= 11 o ST 11
1 o0 0= PP TR PRSP 12
2 L= £ 101 TR 12
21 NOFMEBLIVE FEFEIEINCES .....cueieeiteiterie ettt sttt h e h et et ee ekt s bt bt e ae e s e e e e s e b e sheeb e s Rt eaeene e s e abeseeebesaeenee e enrenes 12
2.2 INFOrMELIVE FEFEIEINCES..... . ittt bbb bbbt h e h et e e s e e b e s bt s a e e e e e et sheebesaeene e e ennees 13
3 Definitions and @DDreVIaLiONS...........ooveiiiririeses ettt 14
31 D= T 0T (0] 1 14
3.2 F Y o] 1= V7= 0] 1 17
4 1100 [ Tox £ o o PRSP 17
4.1 The core language and pPresentation FOrMEALS ..........ciieieire i e e e sneenaeenaesreesreas 18
4.2 Unanimity of the SPECITICALION .......cc.viiiceeic e e et e s te e e sneesreesneeseenseens 19
4.3 CONTOIIMNBICE ... ettt ettt eh sttt bt sh e bt bt eh e e ae e e e b e eE £ b e s Rt ehe e st e s e e e e sE e beAeeeb e e aeense e e ebenbesbeebeeneeneennen 19
5 BasiC 1anQUagE ElEMENTS ..ottt sttt s b e sbe e be s ae e e e be e e e e e sreenaenrenreas 19
51 [AENtITIErS AN KEYWOITS .......eceeitiieieete ettt bbbt bt bt s bt et b et b e e e 20
52 SCOPE FUIES ...ttt bbbt bt et b e s e et b e e e e e e bt AR e Rt eb e £ E e Rt e b e e E e Rt eb e b e Rt e b e e e e neebeneeneeb e s b et ebenneneeee 20
521 SCOPE Of FOIME PAFBIMELE'S ...ttt ettt sttt b e et b e et b et eb e et b et b e sbe e b e sbeneren 23
522 UNiQUENESS OF THENTITIENS ...ttt bbbt b e st b e 23
5.3 Ordering of [aNQUABGE ElEMIENLS..........ciieiieieece et e e e e s e sreesteesteeaeenseenteesaesneesreesrens 24
54 e 101 (= 74 (o] o O PUP T RPRUSTRSRPP 24
54.1 FOrMEl PAIAIMIELELS ......ecveeieesieeie ettt ettt et e st e et e st e e be e tesaeesaeesaeesae e seenaeanseeseensaesteesseeseenseeneenneennns 24
54.1.1 Formal parameters Of KinNG VAIUE. .........ceieeieeieese ettt snaesnaesneennees 25
54.1.2 Formal parameters of Kind teMPIELE. ........c.ecouvieieieeiec e snees 27
54.1.3 Formal parameters Of Kind tIMEN ..o et e eb e 28
5414 Formal parameters Of KinO PON..........coueeiiiiiniieeee ettt b s b e e eb e seenea 29
542 ACTUBl PBIBIMELEIS ... ettt ettt e bbb b b £ b b e bt b e e e bt b e e e a e b e bt eb e bt eb e b 29
55 CYClIC DEFINMITTIONS. ...ttt bbbt b et b e b e h e b e e bt b et b e et b e se et b e st et nb e e 32
6 TYPES @MU VBIUBS ...ttt ettt et e s be et e stesse e besseentesneeneeseeeneenteseeeneensenneensenseens 32
6.1 BaSIC LYPES N0 VAIUES.........ooceeeieeteee ettt ettt st e st et e e e e e estesseesaeesteenteeneesneeessesneesseesseesseeneeensenneennns 33
6.1.0 SIMPIe basiC tYPES AN VEIUES.........ccueeieeieiie sttt ettt e e e s ae e e s teenaeasaesneesre e tansseesteeseesesneesnns 33
6.1.1 BasiC StriNg tYPES @NA VAIUES........coiueeiie ettt sttt e e e s e te e be e teenteennenneennes 34
6.1.1.1 Accessing individual StrinNg EleMENES........ccveiieiieece et e ree e e e e sreenseenaeens 36
6.1.2 SUBLYPING OF DASIC LYPES ...ttt ettt et b e et b e bbb e b snenneren 36
6.1.2.1 LISES Of VAIUBS ...ttt e sttt ettt e s e e e seeebeeneenee e e nsesbeseeebeeneeneeneens 36
6.1.2.2 IR Yo Y o= TSSOSOV P SRR PT ST RPPR 36
6.1.2.3 RENGES......cee e e e e 37
6.1.24 SUNG 1ENGEN FESIITICIIONS ...ttt bbb 37
6.1.2.5 Pattern subtyping Of CharaCter SHNQ tYPES ......c.eiirieirireerie et eb e 38
6.1.2.6 Mixing SUDLYPING MECNANISIMS.......ccieiieieeiee st este e e e e e e e e teeteseesseesseesseesteenteensesseesseesseesaens 38
6.1.2.6.1 Mixing patterns, lIStS aNd FANJES ........eccvieeeceereee e se s e teste e s e sae e te e sreesra e te e teeteeaesneennes 38
6.1.2.6.2 Using length restriction with Other CONSLraiNS..........ccccevieiieiere e 39
6.2 SEHUCLUFEd tYPES ANA VAIUES........eceieeeeecieesieee et ste et ettt et e e et eestessaesaeesaeesteenseenseenseenseeneenneenseesnens 39
6.2.1 RECOIA tYPE @NU VBIUES........ceveieieciee ettt te e sra e st e st e teesteetesneesseesseensaesteesseeseeseeneenneennes 41
6.2.1.1 Referencing fields Of @ reCOrd tYP ....cuveiieieee et ennaesreesnees 42
6.2.1.2 Optional ElEmMENES IN @TECONM........eeuiiuieetertei ettt bbb e b nn e 42
6.2.1.3 Nested type definitions fOr fIeld LYPES .....c.oiireeiieee e 42
6.2.2 SELLYPE BNA VBIUES ...ttt ettt b e et b e bbbt e bt b e s e bt b e e e bt s b e e eb e s b e ne bt ebennenea 43
6.221 Referencing fields Of & S8t TYPE.....c.ciiriiiireee bbb bbb e ene 43
6.2.2.2 OpPtioNal ElEMENES TN @ SEL ...t b et b et nn s 43
6.2.2.3 Nested type definition for field tYPES.......cviv e e 43
6.2.3 RecOords and SetS Of SINGIE LYPES ....cviiiiee ettt et e e s s e te e be e seenteeneesnnesnes 43
6.2.3.1 NeSted tyPe AEfiNITIONS........cce e sae e ae et e neeenaesneesreesrees 45
6.2.3.2 Referencing elements of record of and Set Of tYPES .....cocveeiecieci e 45

ETSI



4 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.2.4 Enumerated tYPe @nU VBIUES .........coiee ettt sttt et et enaess e ste e beeteenteeneesneesnes 46
6.2.5 DO, ...ttt ettt et b bt b et e et h b e he ek oA e e e e E e SE £ b £ S H e eh £ e e e a R e AR e AR e Re Rt R e e Re e R e e e e Rt ebeeReebe e e ennennens 47
6.25.1 Referencing fields Of @ UNION TYPE .....cveeiieiiee et enne e reesreas 47
6.2.5.2 (@7 o 11T =T o U 0o o TS 47
6.2.5.3 Nested type definition for fIeld tYPES.......cvii e 47
6.2.6 LI S0 8 ST 47
6.2.7 N 1= Y TP U O 438
6.2.8 THE AEFAUIT LY ...ttt bbb bbbt bbbt bbb b 49
6.2.9 COMMUINI CALION POIT LYPES.....c.veieeteetereeteete sttt sttt sttt st sb e bt b se bt b e se bt b e se st beseebe et e see e ebesbe e ebesbennenens 50
6.2.10 COMPONENE TYPIES ...ttt ettt b bt se R s bt e h e e e e e e e se e Rt s bt eh e e e e s et e sreerenneene e e ennes 51
6.2.10.1 Component tYPE AEFINITION..........cuiiiiiieree e 51
6.2.10.2 REUSE Of COMPONENT LYPES ....vieeeceieciee sttt te ettt et e st e e e e e e e teseesaeesneesseesseenseensesneenseesseesrens 52
6.2.11 COMPONENE FEFEIEICES .......vi e ceeeeteete et st s e te e e st et e e e e e e atesaeesseesaeeseenteeneenseasseeseenteeneesneesnes 54
6.2.12 Addressing entitieS iNSIAE ThE SUT .......ccveiieice e s re e sae et e ae et e enaesneesraesnens 56
6.2.13 ST 04 o g To o s 0T LN =0 Y o= 57
6.2.13.1 Length subtyping of record of Sand Set Of S..........cceeiiiiiiii e 57
6.2.13.2 List subtyping of structured types and @nYLYPe.........ccceieeiieieeieee e nnees 57
6.2.13.3 Subtyping of the iterated type of record of Sand SEt OfS.........ccovireiiircine e 59
6.2.13.4 Mixing SUBLYPING MECNANISIMIS........coueiiiiitiriiiete sttt sttt b e et b e et et see e ebesrennenea 61
6.3 TYPE COMPELIDITTTY ..ttt b bbb b et b b se b e b e en e b neene s 61
6.3.1 Type compatibility Of NON-SLIUCIUIEd TYPES.......coveiriireeirtirere e e 61
6.3.2 Type compatibility Of StrUCTUIEA TYPES ......ovieiieiieree e 62
6.3.2.1 Type compatibility Of eNUMEraLEd tYPES......c.ciiriiirireerre e 62
6.3.2.2 Type compatibility of record and reCord Of tYPES .......ccuveiieieee e 62
6.3.2.3 Type compatibility of Set and Set Of LYPES.....c.uv e 64
6.3.24 Type compatiDility Of UNION TYPES ......eoieeeieeciee ettt e st e et teeeesneeenes 65
6.3.2.5 Type compatibility Of ANYLYPE tYPES....cc.eiieeeeeie et e teeeesneeenes 65
6.3.2.6 Compatibility DEtWEEN SUD-SIIUCLUIES..........cciiieeie et s enaesneesraesnees 66
6.3.3 Type compatibility Of COMPONENE LYPES.......eeiieieiee ettt e et e e s reene e e enaesraesreesnees 66
6.34 Type compatibility of COMMUNICaLioN OPEraLiONS ........c.ciuirieeriiieirier s 66
6.3.5 I 8L 0 1Y/ £ oo OO P PSPPSRV 67
6.4 IR 0 L=,/ 10 01 1 TR PR 67
7 0= 0] SO S ST RUPPRUPRP P 67
7.1 (07 = (0] £ T TSRS 68
711 F N L d g 0= T oo o= = (] =SSR 69
7.1.2 LIRS0 0= = () P 70
7.1.3 e 0] 7= e 0= = (o] = 70
714 (0T [Lor ] 1= 1 0] £ 72
7.15 BiTWISE OPEIGLIOIS ...ttt bbbt bt e h e b e he b s e h e e b e e bt bt b e et bbb n s 72
7.16 S ol R 0] o= = 0] £ TP P PO STPP PSPPI 73
7.1.7 L0z (ST 001 = (0] £ U PP 74
7.2 Field references and l1St BlEMENES. ... ..o et e st e b e ene e e e e es 74
8 17700 111 =TSRSS 75
8.1 DEfiNitionN Of @IMOGUIE .......ouiiiiiieiee et e b ettt et b e bt e b e et e e et sheebesaeene e e enrees 75
8.2 K0T LB 1T =X 0 TR Y] LS o = 76
821 Ko [N Lo 7= = 1< = S 76
8.2.2 L€ l0 1Y) o U=t 11T 0] =S 78
823 IMPOrtiNG FrOM MOTUIES ..ottt b et e b e et b e bbb 79
8231 General fOrmMat OF TMPOIT .......o.oiiiiiirieiet et b bbb e b nn e 79
8232 IMPOrting SINGIE AEfiNITIONS ......coiieiitere bbbt 84
8233 [MPOITING GFOUPS. ...ttt sttt sttt sttt se ettt se e st b se e st e b e s e eaeebese et eb e s e e st eb e s e eneebenb e st sbe e eneebenneneeee 84
8234 Importing definitions of the SAME KING ..ot e 85
8.2.35 Importing al definitions Of @MOAUIE............coee e 86
8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules...........cccccevvvervennns 87
8.2.3.7 Importing of import statements from TTCN-3 MOAUIES.........cccuvieiiiirieeeee e e 89
8.2.38 Compatibility of language SpecificationS iIN IMPOITS.......cccccuiieirieerieseee e 90
8.24 Definition of fFriend MOUIES............oiiiieei et sr bbb e e e 90
8.25 ViSiDility Of AEfiNITIONS......cciieeececeee et e e s e s reeteenteenaeeneesnaesaeas 91
8.3 MOAUIE CONEFOI PAIT.....c.eeueiteeeieetese ettt b e b bt e et b b e bt b e e bt b e s e st b e s e e bt b e e eb e ens 92
9 Port types, component types and test CONFIQUIaLIONS ..........cc.ererieieierirese e 93

ETSI



5 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

9.1 (o001 01070 T¥o= 1 o I o0 €= SRS 94
9.2 TESE SYSLEM INEEITACE. .....eceeieeeeee ettt bbbt bbb s bt b e s bt e bt et et e b e sbenbesbeeae e e enne e 96
10 DEClariNg CONSIANES .....coiviiieiticieeie ettt sttt e e st e et e b e s re et e s besaeestesaeetesbeessesbesssessesseensesresaeensenrenn 98
11 DeClaring VAADIES. .......ocueieeeeeeeeee ettt e et n e e n e n e 98
111 RV 0o = T o= S 99
11.2 TEMPIAIE VAITADIES ...ttt bbb et b e et b e et b e s b et bt s b e e eb e s b e neebeebennene s 99
R D T= o = 1o L1 1= £ T OSSPSR OR VRPN 100
G T B Tc o T o 0= o (S 101
14 Declaring ProCeAUIE SIGNAEUIES. ........coueruerereeeieeieeseaseste s se s s ee e esesse b sse b sre s e s e e e e eneesenseareneennennens 102
15  DEClaring tEMPIELES. ... .ceeeeeeieeieeieete ettt ettt b bbb e e s e e e et et e b nb e b e nn e n e 103
15.1 Declaring MeSSage tEMPIALES ........ocieeeeie et e te e e s re e ste e ae e teenreenteeneesraesneas 104
15.2 Declaring SIgNature tEMPIALES ... ..oc.eecieeeee et et e e e et esraesreesteesaeeteenseenseeneessaesnnas 105
15.3 (€1T0] o> =T o M LoTor= IR (14T o] F= 1= 106
154 T TSR I 00T 0 = 1SS 107
155 MOTITIE TEMPIALES. ...ttt bttt b e b bbbt b e bbbt e e s e bt e e st nn e enis 108
15.6 Referencing elements of templates or template fIelds........c.ooiieiiiini s 110
156.1 Referencing individual String @EMENTS.........co.ciiiieee bbb 110
15.6.2 Referencing record and set fIElUS. .. ..o 111
15.6.3 Referencing record of and set of ElEMENTS........ccocie i 112
15.7 Template Matching MECNANISITIS .........oiiiii et ettt b et b et b b 114
157.1 SPECIHTIC VBIUES ...ttt ettt sttt ettt s e s et s e e bt st e se e bt sbese e e ebe st e e ebesbeneesenbeneeneas 115
15.7.2 Special symbolsthat can be used instead Of VAIUES............ccveiiiiiiii i 115
15.7.3 Special symbolsthat can be used INSIAE VAIUES.........ccuiiieiierece et 116
15.74 Specia symbols which describe attributes Of ValUES.........c.ccceeieeveeie e 116
15.8 TEMPIALE RESIIICLIONS. ... .citieiieeite ettt e e e e e e saeesaeeaeeseeeseesse e teenteenseensesneesnnesseesseenseensenns 117
15.9 Y = (o 1@< 1 o] S 119
15.10 WV BIUEOT OPEIGLION ......veiieete ettt ettt b e et b e s et bt se e st bt se e st eb e se et ebesbeneebesbeneenesbeneenea 120
1511 Concatenating templates of String and liSt tYPES ........ooviiririiiiere e 120
16 FUNCtions, AltStePS @A LESICASES ... .oiuieierieieie ettt e st e e tesneeeeseesneeneeseeenes 121
16.1 FEUNCLIONS......c et e bt h et e e e se e bt h e eh e h e e ae e b e se e ke e b e eh e e e e e e ebeebeebeenees e e e eneenes 121
16.1.1 120 (T o R 0 0 R 123
16.1.2 PredefiNed FUNCLIONS ........coii et bt e bt et sb b bt eae e e 124
16.1.3 EXEEINEL TUNCLIONS. ...ttt e e bt bttt e e b e sb e s b e sbeene e e et e 126
16.1.4 Invoking functions from SPECITIC PIACES ........cueiiericece et eneens 126
16.2 F = 1= oL TSRS 127
16.2.1 INVOKING @IESEEIIS. ...ttt ettt bbb st bbb et bbb e e st b et e 128
16.3 LS = S = TP UPPTPPTPPPOP 130
A Y o o B 131
18  Overview of program statements and OPEratioNS...........ccceiuieieereiieie e re e e e saesreens 131
19  BasiC Program SIAEIMENTS. ......cciiieiiiie ettt st e e s beeae et e steeaaesbeere e besneeaeseesneennesrennes 133
191 F S T 10 1< 01K TP OSSPSR PR PRSPPSO 134
19.2 THE IT-€1S8 SEALEIMENL ...ttt st e et ae et e s e e se e beseeeseeneenteseeseesaeeneeneeneeneas 134
19.3 The SElECE CASE STALEIMENL ........ee ettt ettt s ee et ae e e et e eeseeebesaeebeeneenteseeseesaeeneeneenennees 135
194 QLI 0L = 07 | SRS 136
195 THE WHhIIE SEELEMENL.......ceeeeeeeeee ettt s e e te et ae e e et e seeseesaesmeeseeneenseseeseeseeeneeneeneeneas 136
19.6 The DO-WHIl@ SEALEIMENL ..ot bbb e bt eb et e et sbesbeeae e e e e enas 137
19.7 THE LADE] STAIEIMENL ..ot b e bt bt h e e b e b bt et e b e b sbenbesaeene e e eneas 137
19.8 TNE GOLO SEALEITIENL ...ttt sttt s e bt b et e et se e b e et e b e e e e s e beseeeb e s Rt eb e e ae e b e beseenbeeaeenee e ennes 138
19.9 The StOP EXECULION SLALEIMIENL..........eeieeieesteeteeee et e st e e e e et e see e e seeesseeeeeseeeseesseesseesseessesssesneesnnesseesseensennsenns 139
19.10 THE RELUIN SEBEEMIBNT. ...ttt sttt ettt et b e b et e e b seesb e s aeeb e et e b e besresbeeaeenee e ennas 139
1911 THE LOG SEBLEMENT ...ttt b e bt bbb e be s b e e bt b e b et eb e e et e b e s bt et et 140
19.12 I 2 = NS = 1= 1= L R 142
19.13 THe CONLINUE SEBEEIMENT ........eceeeieeeee sttt e sttt et e e e e se e teseestesseeneeneeseenbesaeeseeneenseseeseesseeneeneeneenees 142
19.14 SEAEMENT DIOCK ...ttt sttt st e et e e e st et e aesae et e e neeneeseensesaesaeeneeneeneeneens 143
20  Statement and operations for aternative DENAVIOUNS.............cocieiririinisese e 143

ETSI



6 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

20.1 The SNaPSNOL MECHANISIM.........oiie et e st e e te e e enteenseenaesnnesreesseanseensenns 144
20.2 TRE AIT SEALEIMENT ...t bbb et b e bt bt e h e e e e e se e ke s et eb e e e et e beebesbeeaeenee e enees 144
20.3 The REPEAL SLALEIMENT .......oiiiieecie et este e e et e e st e e s e e e s re e teesseestesseesseesseesseensesneesnnesneesseansennsenns 148
204 THE INtEITEAVE SLALEIMENT ...t ettt b e b et e et eb e et et e b b e ebeeae e e e neeees 149
20.5 [T = T0 =T g SR 150
20.5.1 The default MECHANISIM ..ot a bttt e et et b b st nee e ennas 151
20.5.2 THE ACHVELE OPEIGLION. .....ecvetieetirteeet ettt b bbbt b b e bt b e et bt e e e b nb e e ens 151
20.5.3 The DEACIVALE OPEIBLION ......cuiieiieitireeeete sttt ettt ettt e et b s a bt e et b e bt b e s e st b et e e ebesb e e ens 152
21 CoNfiguration OPEIELIONS........c.ciiitirterterteeeeeieie sttt st ss s s s et et be s e b e e e s e s e s e e eseesesseanenreasennennas 153
21.1 (o la] 01 oo g @] o= = 1 o 1 154
21.1.1 The Connect and Map OPEIALIONS .........ccveiieieeieeeseesee st e steesteeseeee e e e sreesteeste e teessesnsesseesreesseesseenseensenns 154
21.1.2 The Disconnect and UNMap OPEIaLIONS ........cc.eeiuerieiiieiieieeseesteesteeteessesseessaesseesseessesssesesssessseessessseensenns 155
21.2 =S e s e Yo 0= = 1)L 156
21.2.1 =S oIS o (o] 0o o L= = 1 o o S 156
21.3 Test COMPONENE OPEBLIONS. .......cieeieereeieeeteeeeesteesteesteesteseeseeseesseesseasseeseasseaseessaesseesseessessessnessseesseessennsenns 157
21.31 THE CreEate OPEIAION. ... eueeveieeeetert ettt ettt e bbbt e e bbbt b s b e s e e e e bt s b e e e st bt st e e ebenr e s ens 157
21.3.2 The Start test COMPONENE OPEIBLION ........eiveuirtireeierterieiest sttt b b b e s b b se b sn e ens 158
21.33 The Stop test BENAVIOUN OPEIELTION .......co.ieiiriieetereeeet et b b sn s 159
21.34 The Kill test COMPONENT OPEFELTION.........cueitiiitireieeterieeet ettt se e b et besn e enis 160
21.35 THE ALIVE OPEIGLION ...ttt b bbb e a bbbt e bt b e et bbbt nn s ens 161
21.3.6 The RUNNING OPEIEIION .....cviieiiitiieiietest ettt b et b e b e s bt e bt b e e eb e s e st b e b e e e bt nn e e ens 162
21.3.7 I (=] B0 g =T a o < = (o) o S 162
21.3.8 I SN SL N L= o e o = (oo S 164
21.39 Summary of the use of any and all With COMPONENLS .........c.cccviieiierieeee e 165
22 COMMUNICALiON OPEXBLIONS......ccveiuieieiieiuieste et ete st eeestesaeestesteesestesseesesseessessesasessesteenseseessaensesseensensens 165
22.1 The coOMMUNICatioN MECNANISMS .......uiieiieeeeieieee ettt st st e ae et st e e e seeseeseesbesaees e seesbesneeneeneenees 166
2211 Principles of message-based COMMUNICELION. ... e 166
2212 Principles of procedure-based COMMUNICALION ........c.couiieiiirieiriiere e 166
22.1.3 Principles of unicast, multicast and broadcast COmmMUNICaLION...........cccooeiiiiiiriee e 167
2214 General format of COMMUNICALiON OPEIELIONS ......ccueiveieiirieeeiestereete sttt 167
22.1.4.1 General format of the Sending OPEralioNS ..........cooviiieiee i sreenae e ens 167
22.1.4.2 General format of the reCeiVing OPEraioNS..........cceeieiceeieeiee st se e e e naeeeeens 168
22.2 M essage-based COMMIUNICALION.........ccuieiieieeeeseesee e s ee st et sre e te et esteeste e e essesseesaeesaeesaeeseenseessesneesransnens 169
22.2.1 I (SRS = 10 ] 1= 1o S 169
22.2.2 ThE RECEIVE OPEIGLION ......ceivieieeie i etestee st e st e e e e st e s e saeesaeesteeeeeseeeseesseesteeseessesssesnsesneesaeesneenseansennsenns 170
22.2.3 THE THIQUEN OPEIELION ...ttt b et b et b b a bt e st b e e et b e e et eb e b e e b nn e ens 172
22.3 Procedure-based COMMIUNICBLION............cieeieieeie ettt e e e teseesresae e e eneeseeseesneeseeeaneeses 174
2231 THE Call OPEIALTON ...ttt bbb bbb bbb bbb bbb e e bt st e bt e e s ens 174
2232 The GELCAIl OPEIELION. ... c.eeueitiieeiieteree ettt bbbt b bbb e e st b et benr e ens 178
22.33 THE REPIY OPEIBIION.....c.eeiitieeiiet ettt b e bbbt bt a bbb e s e bt b e e e st b e st e e e b nr e e ens 179
2234 The GELreply OPEIATON ......cueieieitireeeet ettt b et b bbbt b bt et b bbb ens 180
22.35 I ST R e TS ST 0] 0 = 1 o o S 182
22.3.6 QI SY O (e n e 0 = 1 o o S 183
22.4 LI (SNl Qo o == 1o o 185
22.5 Controlling COMMUNICALION POIS.......eitieieiieieeseeseeste et et e st e e e e etesseesreesreesseeeesseesseesseeseesseesseesseensesnesanes 186
2251 R SO T== T oo g ] o 1= 1 o] o S 186
22.5.2 The SEAI POt OPEFELION .....cveeieeieeee et eeetees et eese s et esteesteseesseesaeesae e seenseesseeseesseesnsesneesneesneanseansennsenns 187
2253 THe StOP POt OPEFBLION ....cuevieeieitereet ettt ettt b et b et b bbb bt b et b e e se bt e b sn e ens 187
2254 The Halt POIT OPEIALTON. .....c.eiiieeeiieiiet ettt b e bbbt b e bt b e st bbb e e ens 188
22.6 Use of any and @l With POITS.........oiei ettt e et ae e enee e e ee 188
23 TIMEN OPEIELIONS .....eeeeueeieeieeieeieete ettt sttt e e et s bt s bbb e s e e e e e e e st e bt eb e e bt e b e b e b e e e s eneebenr e enenbe s e nnennas 189
231 THE TIMEN MECNANISIM ...ttt et et b bbb et e b e se et e s bt eb e e st e b e besbesbeeneennennennes 189
23.2 R SRS T T 0= 0] o = 1 oo 189
23.3 R (SRS (e o R (] a0 T= e o == 1 O 190
234 The REa0 tiMEr OPEIELION ... ....oiie e ieeee et cee ettt e s e e e e teesteeee e e e eseaste e seenteenseensesneesneesseesseansennsenns 191
235 The RUNNING tIMEN OPEFBLION. ... .civiiieeieeee st et et e e s e s e st e seeesteeeesseeeseeese e seenseenseensesnaesnnesneesseensennsenns 191
23.6 The TIMEOUL OPEIGLION .......covieiiiete ettt ettt h e b et b e et b e b et b b e e b b 191
23.7 Summary of use of any and all WIth TIMErS.........c.coii e 192
24 TESEVEIAICE OPEIBIIONS ...t sttt ettt b et s e e ae et b e eb b b e s e e e e e e e st ebenb e anenr e s e nne e 192

ETSI



7 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

24.1 The VerdiCt MECNENISIM........ooii e bbb b bttt e st b sbe e e e e et 193
24.2 LI (SRS = Y= (o [ ot a0 o = 1 e o S 194
24.3 LI (=X €T AV o (Lot A 0] = £ o o T 194
P T A= 07 = o 0 OSSPSR 195
P2 T Y/ o LN = oo 1 (o ST 195
26.1 THe EXECULE SEALEIMENL.......coueeiieeiie ettt ettt sttt e et e eneeseeebesaeese e e e teseeseesaeeneeneeneeneas 196
26.2 THE CONEIOI PAMT ...ttt e bbb bbbt b e s e et bt s b et e bt b e e b et eb e b e st eb e s b et ebe b e e 197
S o= ot 1 Y o = ] o U1 199
27.1 The AttriDULE MECHANISIM ... bbb e bt eb et et e b b e ebesaeenee e e ees 199
27.1.1 oo 0= = 11 ] o1 (- 200
2712 OVeErwriting rUleS fOr @LITDULES............ciiiieeiie ettt s eb e bbb 200
27121 Additional overwriting rules for variant attribULES.............cceciiiiininee e 201
2713 Changing attributes of imported language &lemMENtS. ..........ccciiiiirein e 202
27.2 ISR AT LI = = 1T o S 202
27.3 DiISPIAY GELITDULES.......cuieeeireeeet et b et bbb e b b e h b e e st bt et e st eb et n et enis 203
274 ENCOOING BILITDULES. ...ttt bbbt b bbbt eb et b e e enis 204
275 VAITANT BIITDULES ...ttt e bbbt e e e e e b e se e eb e e ae e s e et et e b e sbeebeeaeenne e eneas 205
27.6 EXTENSION GIIITDULES ...ttt bbb se bbb et e e e b e s bt ebesaeen e e e e e e 206
27.7 (@] o1 Yoo I 1 o= 207
Annex A (nor mative): BNF and StatiC SEMaNTiCS.......coeveireeireseresiesee e 209
Nt N I O L = | 209
A.ll Conventions for the SYNtaX AESCHIPLION .........eiie i ae e reenreeeeeneeenes 209
A.l2 Statement terminator SYMIDOIS ..........oiiieiee bbb bbb 209
A.13 0TS 1 = PRSP 209
Al4 (001010101 011U 209
A.l5 LI B B £ 007 S 210
A.151 Use of WhitespaceS and NEWIINES. ..o bbb 211
A.16 TTCN-3 SyntaX BNF PrOOUCLIONS ......c..oieiiiiiieeiiiterieest sttt st st sb et b b 212
A.1.6.0 TTCON-3 MOUUIE. ...ttt sttt sttt st et et s s e e bt sees s eb e s s e e ebess e s eseebe s eneebestaneesesennsenes 212
A.l6.1 Koo [N F SN0 T TR ] LS o o S PR 212
A.1.6.1.0 (€T o1 - TP RPSPRPSN 212
A.16.1.1 Typedef AEfiNITIONS .......ocieeeee e e e sre e ae e teeateenteeneesnaesneesneas 213
A.16.1.2 CONSLANE AEFINITIONS ....c.veee ettt b e sb e sb e e e e b e bt b s et e se e e e b e 214
A.1.6.1.3 Template defiNITIONS.......ci e sae e s ae e ae e te et eentesnaesraesneas 214
A.l6.14 FUNCLION AEfINITIONS ...t sttt e et e e s tesaeene e e et ee 216
A.16.15 SIGNAEUNE AEFINITIONS ...ttt ettt b e st b e et b e b e b b e e b e sbenneneas 216
A.16.1.6 TESICASE AEfINITIONS. ..ottt sttt e et e tesbesaeene e e eneeneens 217
A.16.1.7 ASEED AEFINITTIONS ...t bbbt bbbt b e 217
A.1.6.1.8 IMPOIt AEfINITIONS. ...ttt bbbt bt a b et b et b b 217
A.1.6.19 GrOUP EFINITIONS ..ottt ettt b et b e b e bt b e se bt b e se b s b e e eb e s b e seebeebeneeneas 218
A.1.6.1.10 External function definitioNS...........coeiiiiiiii e e e 218
A.16.1.11 External constant definitionS.............ooiiiiiiireieeee e e 218
A.1.6.1.12 Module parameter AEfiNITIONS ..........cciiiiieeii e e et e sre e re e reenesneeenes 218
A.16.1.13 Friend module defiNiTiONS ..ottt sr et ne e 219
A.16.2 L0 011 0] o o USSR 219
A.1.6.20 LC = 0T TSRS 219
A.l1l6.2.1 NV ariahl € INSEANLTBLION ...ttt e e et e e e aeese e e e beseesaeeneeneeneeneas 219
A.16.22 LIS TS =g L= o) o P RRRS 219
A.1.6.2.3 COMPONENT OPEIALIONS ...ttt sttt ettt ettt et se st b e e st eb e se et ebeseese et e se e e ebesbe e ebesrenneneas 219
A.16.24 POIT OPEIBLIONS ...ttt ettt bt b et b e et b e e et b e s e et bt s b et e bt s e et e b e b et eb e s b e e e b et 220
A.1.6.25 THMIEE OPEFALTIONS ...ttt b bbbt b ettt eb e s bt s bt s e b e sb e s e bt b e e e st e bt st eneeb e n e e ens 221
A.1.6.3 I3 L= TSP 222
A.164 VAU ...ttt ettt st h et h bR Rt ARt Rt A e R e R e A e Rt R e R et e R e R e A e R e R et e Rt Rt e e neneeneenen 222
A.16.5 PArBMELEITZALION ... .ttt bt bt e bbbt bRt h et et e e R b aeene e nne e 223
A.1.6.6 WVITN SEBEEIMIEIL ...ttt e bbbttt e e e b e se e eb e bt ehe e e et e besbeebeeneenne e enras 223
A.16.7 BEhaVI OUI STAEEIMENES. ... ettt ettt e b et e et b e s et e b e e st e e e s e e sb e e b e sbeene e e enee e 224
A.1.6.8 BaSIC SLAIEIMENTS. ...ttt h bttt bbbt R e ae st e e e bt Rt b e e e e e e R R b aeene e e nne e 225
A.1.6.9 MiSCEllBNEOUS PIrOUUCTIONS .......veuvieeeiiieeiestee ettt bbb bbb et b b 227

ETSI



8 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Annex B (normative): Matching iNnCOMING VAIUES...........ccoceiuiceeieciese e 228
B.1 Template matching MECNANISIMS .........coiiiieie e st r e s re e reens 228
B.1.1 MEEChING SPECITIC VAIUBS ...ttt bbbt b et nn e ens 228
B.1.2 Matching mechanismsiNStead Of VAIUES .........c.ooiriiiiee s 228
B.1.2.1 RV 1L SR 228
B.1.2.2 ComPlEMENTE VBIUE TS ......ecueieeiiteeeeete et bbbt b et b e sn et b e 229
B.1.2.3 AANY VBIUB. ...ttt b et bbb bt e h e H e bbb ek Rt e e R Rt h e Rt e e s bbb e ns 229
B.1.24 F N VA= LU =X o gl oo o= S 229
B.1.25 RV U =T TS 229
B.1.2.6 Sl 0 £ PRSI 230
B.1.2.7 SUDSEL ... .eeteeeee sttt ettt e st e st e e e e e sae et eae e te et en et R e e eR e e Ee e EeeateanaeenaeeneeeReenneenteenteenteenaennaennes 230
B.1.2.8 (@ Tl gle e o0 Te g I = o 231
B.1.3 Matching MechaniSMS INSIAE VEIUES .........cc.iiiiiieiieeet et 231
B.1.31 E N Y= = 007 0| OSSR 231
B.1.3.1.1 Using single CharaCter WilACAIS...........coueirerieiieieee et 232
B.1.3.2 Any number of elementS Or NO ElEMENT .......o..oiiiie e 232
B.1.32.1 Using multiple charaCter WildCardS............couveiiereire e 232
B.1.33 [ 00101 o] o R 232
B.1.4 Matching attribDULES Of VAIUES .......cocueeiece ettt e et eeneennaenneas 233
B.1.4.1 (=10 |1 T === o o LSS 233
B.1.4.2 THE ITPIESENE INGICAION .........eteiee ettt bt e et e bbb e et e s et b e sb e e e e e e e eras 234
B.1.5 MatChing CharaCler PALLEIN.........ceeiieie ettt e e st e te e e e tesseesaeesaeesaeeteenseenteensesnaesnnes 234
B.1.5.1 IS S 0] == o o RSP S 236
B.1.5.2 REFEIENCE EXPIESSION .....eveeteeteetee e ee st e st e s e ettt e estesaaestaesteesseasseaneeaseeaseeaseanseesseenseansesneesneesneesnennseansenns 237
B.1.5.3 MBLCH EXPIESSION N EIMES ...ttt bbbttt bbbt b bbb 238
B.1.54 Match areferenCet ChAraCter SEL..........coo it sttt saesbesaeene e e eneeee 238
B.1.55 Type compatibility rUlES fOr PALLEINS.........coiiiieeere e 239
Annex C (normative): Pre-defined TTCN-3 fUNCLIONS........ccoiieieiiceececeee e 240
C.0 Genera exception handling ProCEAUIES ..........cciiieriieee e ettt see e ae e eesaesreeneesnens 240
(OF R U =0 = g (0 o g = = T 240
C.2 Integer tO UNIVErSal Charaller .......ccoiiiieeee et 240
C.3  INLEYEN L0 DITSIIING ...ttt b bbb e e et bbb e nenn e 240
C.4  INLEYEY 10 NEXSIIING. ...ttt ettt b e sb bbbt e e st e b eb e b e nr e nenne e 241
(ORI g1 =0 L= g (o oo = 1 1 oo TR S 241
(O T 1o 1= 0 = g (o o gT= = 1 0T ST 241
O A 10105 o= g (o1 0= APPSR URVRTOPPRTPTIN 241
(O S B (07 W (o111 o = ST P P T TSR S TSP VROPPRPRN 242
(O T Ot 7= - o (= g (0 1 1 1= = SO 242
C.10 CharaCter 10 OCLELSIIING ....coverueerertertersesseteiee et sttt se st e et se b e bbb e ss et e s e e e e esesbeenenre s e nnennas 242
C.11 Universal CharaCler 10 INEEOEN ........oiiieeerieeiesiesiestesteeste e seee e seeeseestesseeseesseesesteeneestesseeneensesseensessenns 242
(O Y1 ] Lo (o T T 1o = ST 243
C.13 BitStiNG 10 NEXSIIING.....ceuieiiiiietiiieie ettt st b st sb et et e e s b e sbesbeneenae e e 243
C.14 BitStriNg 10 OCLEISIING ... c.ceueeueeuirtirtestestestet ettt e e s s e et b e sb e b e s e e e e e e eaeesesbeene e nennennas 243
C.15 BitStriNg 10 CharSIING. ... c.ceeeirtirieriisiesiesierie ettt st sttt besbesbe s b et e st e s eseesessesbeseesaenneneas 244
(O ST o (o T gTo R (o 1 11= o = (PSR 244
(O A o 1o T e (o o1 = 1 T T 244
C.18 HEXSIIING 10 OCTELSIIING ....cvevitertetertee ettt sttt sb bt bbb e e e et enesb e enenr s e nne e 245
(O I o [ T gTo R (oot gT= s ] T SR 245

ETSI



9 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

(ORI 0 I ® (== (1o R (o N1 010=:0 = ST 245
(O3 R ® o (== (1o R (o] o1 T oo TSP 245
C.22 OCLELSIING 10 NEXSIIING ....cveeiteitit ettt b e b b e e e et bbb e nr e nenn e 246
C.23 OCtEtStriNg tO CaraCer SLIING ......eiverteieeieieieieieee ettt ss st sr bt s e e s n e e nenne e 246
C.24 Octetstring to character String, VESION [ .......ccouiiuiiieieciee ettt e 246
C.25 CharStriNG L0 INTEOET .. .o ettt s ettt b e bbb e ss e s e e e e eaeeseeb e enenr s e nnennas 247
C.26 CharaCter String 10 NEXSIIING .....coveivirieieiieieieieee ettt r b e sb e n e nr s nne e 247
C.27 Character String 10 OCLELSITING ....ccueeiviiiecie ittt ettt re et s re e e besreesresreentesreesaesaesresaeessesreens 247
C.28 Character StHNG IO FlOL.......cccveiiiceece et r e s et e s resre e e e resreereereens 248
C.29 Length Of SNGS 8N TISES ......couiiiiiiiitiieeieee bbb sr e nne e 248
C.30 Number of elementsin aStrUCIUIEd VAIUE...........ooviiriiiie et 250
C.31 The ISPreSENt FUNCHION. ..ottt ettt sttt b st bente e e e e 250
C.32 The ISChOSEN FUNCLION.......ceeiiieiee ettt s se e tesbeeneeseesneetesreeneensesreensennens 252
C.33 ThE REGEXP FUNCLION ...ttt bttt b bbb e s e b nr e b e nr e nenn e 253
C.34 The SUBSLING FUNCLION ..ottt e et e st e et e eaeesbesaeeseeneens 254
C.35 The REDIACE FUNCLION........cceeii ettt st et e e tesreentesreeaaesresreensenreens 255
C.36 Therandom number generator fUNCIION...........cooureiiiiriese et 255
(ORI = 001001 =0 R (0] ] 1= = ST 256
C.38 THe ISV AU TUNCIION ...ttt sttt ettt b et e bt ae e e 256
C.39 The enCodiNg FUNCEION. ......c..oiiiiiiie ittt b b s e b b en e nr e nenn e 258
C.40 The deCoiNg FUNCEION. ......c.iiiiiieiet et b bbb b e e bbb nr e nenn e 258
C.41 ThetestCasenamMe FUNCHION .......coiiiiireieeee ettt sttt e bt a e e 258
Annex D (normative): PreproCESSING MACT OS......c.cciuiiuieiiesieeiesteeeesteseesae e eee e sreesresreenesseeeesresnes 260
D.1 Preprocessingmacro . MODULE ...ttt et ene 260
D.2  Preprocessing MAacrO _ FILE_ ..o 260
D.3  Preprocessing Macro _ BFILE_ ..o 260
D.4  Preprocessingmacro  LINE ottt 260
D.5 Preprocessing Macro _ SCOPE__ ... 261
Annex E (informative): Library of USEfUl TYPES ...cuvceeecece ettt 263
0 I I 0 g = o R 263
o U = L I IO N B Y o= 263
E21 (01 U IS 0T o Lo 7= T 1Y o= S 263
E.2.1.0 Signed and unsigned SINGIE BYLE INEEJEIS .......ccuiiie et rae e sneas 263
E211 Signed and UNSIgNEd SNOM INEEJEIS........eccueiieiie e see st ese et et e et e e e esteetesaeseesreesseenseenseeneesnaesreesnens 263
E.2.1.2 Signed and UNSIgNEd [ONQ INTEJEIS .....cvieiieeece e see sttt e e sre e e ae e eeeseeesaesreenseeneeeneesseesneas 264
E213 Signed and unsSigNed 10NGIONG INEEJEIS ....coui it bbb 264
E214 TEEE 754 flOES.....ciuieie ettt sttt et et e b et e et e e st e s aeesaeesheesbeenteeateeabeeteesbaesbeesreeseennennns 264
E.2.2 USEFUL CharaCter StHNG TYPES ..ottt b et b et b et eb et nn e ens 265
E.220 UTF-8 character String "UtFBSIING" ......co.eoiiiriiieereeere et 265
E221 BMP character string "DMPSiNG"” ........ooueiiieee bbb 265
E.2.2.2 UTF-16 character String "UtFLBSLING" .......cveeierieeeeseese ettt e s e st tesaeseesaeesneenseeneens 265
E.2.2.3 ISO/IEC 8859-1 character string "iS08859StIING " .......civeieerreeie et see et sre et ee e ae e 265

ETSI



10 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

E.2.3 USEF UL SETUCIUNEA LYPES......ee ettt sttt e e st et e et e e s e sstessaesaeesaeesseenseenseeneeansensaennnns 266
E.2.3.0 Fixed-point deCIMal [HEEral .........ccoui et e e te e tesee s e e saeenreereens 266
E.24 (0L U= o0 Tl T o N o= S 266
E24.1 Single ISO/EC 646 CharaCler TYPE........iceeeeeeee ettt et ee et e s et eete e sae e e sreesseenteenseeneeenaesraesneas 266
E.24.2 SiNGIe UNIVErSal CRaraCler LY DB ... ettt s e st ste et e e neeeneeesaesraesneas 266
E.24.3 L0 L= o Y] oSS 266
E244 SINGIE NEX LY .ttt b et b et b e s h e b e h e bt et b e e bt b et b et b e e 267
E.245 S e = oot = B 1Y o= SRR 267
Annex F (informative): Operations on TTCN-3 active ObjECES.....ccceeveieeceieceeie e 268
F.1 T ESt COMPONENES. ... .coieiieeeeiti ettt r e e s e e s b e se e r e sseeneesre e s e sreeme e nesreenneene e e e neennes 268
F.1.1 TSt COMPONENE FEFEIEINCES ... vttt b e bbbt b e bt et b b et e b bt e b b 268
F.1.2 DyNamic DENAVIOUN OF PTCS ..ottt sttt bbb bbb et b et bt sb e b e sbenneneas 269
F.1.3 Dynamic behaviour Of tNE M T C.......oeeieece et e e s re e s ae et e et e ssaesraesraesaees 270
T 111 £ SR P 271
e T o K TSRS 271
F.3.1 CONfiQUIALION OPEIELIONS. ... .cueiteteieetirteeeiert ettt ettt b et b b e bbbt b e e e bt b e e e bt b e e e et e b e s e st eb et et ebe b e e 271
F.3.2 POrt CONLIOHTING OPEIEIIONS ......c.eevieeieetereeeete ettt sttt ettt b b e bt b e b b e e eb e s b e e b e sbe e ebesbeneeneebeneeneas 272
F.3.3 COMMUNICALION OPEIALIONS. ......veviueeterteaeetertee ettt rb et sbe et b et b et e bttt e b e b e e e s e b e e eb e e b e s e st s b et et sbenbe e 273
Annex G (informative): Deprecated language fEAtUr €S..........ooveceieeieie e 274
G.1 Group style definition of MOdUIE PAraMELEN'S............coiiirierieiee e 274
G.2  RECUIMSIVE IMPONT ....otiiteeiiitieee sttt e st e sttt e st e e te e te s te et e s be e st e sbesaeessesbeesaebesaeessesbeenseseesneentesteeasensesrnensensens 274
G.3 Usingall in port type defiNitiONS.........cccciiieiiiieiiieeie sttt s ae s re e e neeneens 274
G.4  SIZeOf TOr 1ENGEN OF TISES....cuiieiieiie et n e 274
G.5 sizeoftype predefined FUNCLION ..........coe oo n e re s 274
LT G 1= o I oo ST 274
T g = 7= o0 1 = ST 275
Annex H (informative): Bibliography ......oooii e e 276
[ 11 (TP 277

ETSI



11 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2:  "TTCN-3 Tabular presentation Format (TFT)";
Part 3:  "TTCN-3 Graphical presentation Format (GFT)";
Part 4:  "TTCN-3 Operational Semantics';

Part 5.  "TTCN-3 Runtime Interface (TRI)";

Part 6  "TTCN-3 Control Interface (TCI)";

Part 7:  "Using ASN.1 with TTCN-3";

Part 8. "ThelDL to TTCN-3 Mapping”;

Part9:  "Use XML with TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”.

ETSI


http://webapp.etsi.org/IPR/home.asp

12 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format

(ES 201 873-2i.1]) and agraphical presentation format (ES 201 873-3 [i.2]). The specification of these formatsis
outside the scope of the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilersinto
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.
[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.
[2] ISO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)".
[3] I SO/IEC 9646-3 (1998): "Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)".
[4] ISO/IEC 646 (1991): "Information technology - 1SO 7-bit coded character set for information
interchange”.
[5] ISO/IEC 6429 (1992): "Information technology - Control functions for coded character sets'.
[6] I SO/IEC 9646-1: "Information technology - Open Systems | nterconnection -Conformance testing
methodology and framework; Part 1. General concepts’.
[7] |EEE 754: "|EEE Standard for Floating-Point Arithmetic".
2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI


http://docbox.etsi.org/Reference

13 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

[i.2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[1.3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[i.4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[i.5] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.6] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.7] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Use XML with TTCN-3".

[i.8] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification”.

[1.9] ITU-T Recommendation T.50 (1992): "International Reference Alphabet (IRA) (Formerly
International Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for
information interchange".

[i.10] I SO/IEC 8859-1 (1998): "Information technology - 8-bit single-byte coded graphic character sets -
Part 1: Latin alphabet No. 1".

[i.11] Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics®. Version 2.6, FORMAL/01-12-01 .

[i.12] ETSI Draft ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment
Support".

[i.13] ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; TTCN-3 Language Extensions. Advanced Parameterization”.

[i.14] ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Behaviour Types".

[i.15] ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Real Time Testing".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in ISO/IEC 9646-1 [6], | SO/IEC 9646-3 [3]
and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE: Basic typesare referenced by their names.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based or procedure-based.

ETSI



14 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

compatibletype: TTCN-3 isnot strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible typesif conditionsin clause 6.3 are met.
completely initialized: values and templates of simple types are completely initialized if they are partialy initialized

NOTE: Vauesand templates of structured types and arrays are completely initialized if al their fields and
elements are completely initialized. In case of record of, set of, and array values and templates, this means
at least the first n elements shall be initialized, where nisthe minimal length imposed by the type length
restriction or array definition (thus in case of n equals 0, the value "{}" also completely initializesa
record of, aset of or an array).

data types. common name for simple basic types, basic string types, structured types, the special data type anytype and
all user defined types based on them (see table 3 of the present document)

defined types (defined TTCN-3 types): set of al predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

dynamic parameterization: form of parameterization, in which actual parameters are dependent on run-time events,
e.g. the value of the actual parameter is a value received during run-time or depends on a received value by alogical
relation

exception: in cases of procedure-based communication, an exception (if defined) is raised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, altstep, etc.) but at the time of invoking it

NOTE: Actua vaues or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

global visibility: attribute of an entity (module parameter, constant, template, etc.) that itsidentifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module

I mplementation Confor mance Statement (ICS): See ISO/IEC-9646-1 [6].
Implementation eXtra Information for Testing (IXIT): See | SO/IEC-9646-1 [6].
Implementation Under Test (IUT): See ISO/IEC-9646-1 [6].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is bound to the
formal parameter when the parameterized object isinvoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1: The arguments are evaluated before the parameterized object is entered.

NOTE 2: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

inout parameterization: kind of parameterization where the actual parameter is bound to the formal parameter when
the parameterized object is invoked

NOTE 1: Theinvoked object uses the actual parameter directly, so that all changes made on the formal parameter
become immediately effective on the actual parameter.

NOTE 2: Inout parameters can be used for functions, altsteps, and test cases only.

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

ETSI



15 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands |eft to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or atemplate header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that itsidentifier can be referenced only within the
function, test case or atstep whereit is defined

Main Test Component (MTC): See ISO/IEC 9646-3 [3].

out parameterization: kind of parameterization where the value of the actual parameter (the argument) is not bound to
the formal parameter when the parameterized object isinvoked, but the value of the formal parameter is passed back to
the actual parameter when the invoked object completes

NOTE 1: Out parameters can be used for functions, altsteps, and test cases only.
NOTE 2: Anout formal parameter is uninitialized (unbound) when the invoked object is entered.

NOTE 3: Thevalueis passed back to the actual parameter only if within the invoked object avalueis assigned to it.
If no value is assigned, the actual parameter remains unchanged when the invoked object compl etes.

Parallel Test Component (PTC): See ISO/IEC 9646-3 [3].

partially initialized: values are partialy initialized if a concrete value has been assigned to it or to at least one of its
fields or elements

NOTE 1. A template variableisinitialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A templateisinitialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

NOTE 2: Thus, constants and templates are always initialized at declaration. Variables (both value and template)
areinitialized if they, or at least one of their fields or elements has been used on the | eft hand side of an
assignment (including initial value assignment at declaration). Module parameters are initialized either at
declaration or by the test system before test execution.

port parameterization: ability to pass aport as an actual parameter into a parameterized object via a port parameter
NOTE: Thisactua port parameter is added to the specification of that object and may completeit.
qualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified name is the <module name>. For global definitions such as testcases,
functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

right hand side (of assignment): expression, template reference or signature parameter identifier which standsright to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (;=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: root types of types derived from TTCN-3 basic types are the respective basic types

NOTE 1: Theroot type of user defined record typesis record, the root type of user defined record of and array
typesisrecord of, theroot type of user defined set typesis set, the root type of user defined set of
typesisset of. Theroot type of user defined union typesisunion and the root type of anytypesis
anytype. Theroot types of special configuration typesare default or component, respectively.
Port types do not have aroot type.

ETSI



16 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE 2: Asaddress ismore a predefined type name than a distinct type with its own properties, the root type of
an address type and all of its derivatives are the same, as the root type was, if the type was defined
with aname different from address.

static parameterization: form of parameterization, in which actual parameters are independent of run-time events;
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter isto be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compiletime, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions
System Under Test (SUT): See ISO/IEC-9646-1 [6].

template: TTCN-3 templates are specific data structures for testing; used to either transmit a set of distinct values or to
check whether a set of received values matches the template specification

template parameterization: ability to pass atemplate as an actual parameter into a parameterized object via atemplate
parameter

NOTE 1: Thisactua template parameter is added to the specification of that object and may complete it.
NOTE 2: Values passed to template formal parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case or afunction started on atest component when executing an execute or a
start component statement and all functions and altsteps called recursively

NOTE: During atest case execution each test components have its own behaviour and hence several test
behaviour may run concurrently in the test system (i.e. atest case can be seen as a collection of test
behaviours).

test case: See |SO/IEC-9646-1[6].
test caseerror: See |SO/IEC-9646-1[6].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control parts

test system: See |SO/IEC-9646-1 [6].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

timer parameterization: ability to pass atimer as an actual parameter into a parameterized object via atimer
parameter

NOTE: Thisactua timer parameter is added to the specification of that object and may completeit.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type (e.g. at assignments, as actual parameters at calling a function, referencing atemplate, etc. or asareturn
value of afunction)

unqualified name: the unqualified name of a TTCN-3 element isits name without any qualification

user -defined type: type that is defined by subtyping of a basic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).

value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE: Vaues may be constants or variables.

value parameterization: ability to pass avalue as an actual parameter into a parameterized object viaavalue
parameter

ETSI



17 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE: Thisactua value parameter is added to the specification of that object and may completeit.

3.2

Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Application Programming Interface

ATS Abstract Test Suite

BMP Basic Multilingua Plane

BNF Backus-Nauer Form

CORBA Common Object Request Broker Architecture

ETS Executable Test Suite

FIFO First In First Out

ICS Implementation Conformance Statement

IRV International Reference Version

IuT Implementation Under Test

IXIT Implementation eXtra Information for Testing

MTC Main Test Component

PTC Parallel Test Component

SUT System Under Test

TSI Test System Interface

TTCN-3 Testing and Test Control Notation version 3
4 Introduction
TTCN-3isaflexible and powerful language applicable to the specification of all types of reactive system tests over a

variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, API
testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including

interoper
TTCN-3
[ ]

ability, robustness, regression, system and integration testing.

includes the following essential characteristics:

the ability to specify dynamic concurrent testing configurations,

operations for procedure-based and message-based communication;

the ahility to specify encoding information and other attributes (including user extensibility);
the ability to specify data and signature templates with powerful matching mechanisms;
value parameterization;

the assignment and handling of test verdicts;

test suite parameterization and test case selection mechanisms;

combined use of TTCN-3 with other languages;

well-defined syntax, interchange format and static semantics;

different presentation formats (e.g. tabular and graphical presentation formats);

a precise execution algorithm (operational semantics).

NOTE: The present document uses the following pattern of concept description: concepts, principles and

mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF givenin clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

ETSI



18 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A has the priority.

4.1 The core language and presentation formats

The TTCN-3 specification is separated into severa parts (seefigure 1).
Thefirst part, defined in the present document, is the core language.
The second part, defined in ES 201 873-2 [i.1], isthe tabular presentation format.
The third part, defined in ES 201 873-3 [i.2], isthe graphical presentation format.
The fourth part, ES 201 873-4 [1], contains the operational semantics of the language.
Thefifth part, ES 201 873-5 [i.3], defines the TTCN-3 Runtime Interface (TRI).
The sixth part, ES 201 873-6 [i.4], definesthe TTCN-3 Control Interfaces (TCI).
The seventh part, ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.
The eight part, ES 201 873-8[i.6], specifies the use of IDL definitions with TTCN-3.
The ninth part, ES 201 873-9 [i.7] specifies the use of XML definitions with TTCN-3.
The tenth part, ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.
The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asastandardized interchange format of TTCN-3 test suites between TTCN-3 tools,
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats shall be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitions in other languages may be
used as an alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other
languages with TTCN-3. The support of other languagesis not limited to those specified in the 201 873 series of
documents but to support languages for which combined use with TTCN-3 is defined, rules given in the present
document shall apply.

ETSI



19 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Deployment Advanced Behavior TTCN-3
and Parameteri- Types e Packages
Configuration

Support B ZatlonN/

TTCN-3 P

ASN.1 Types | Core D
& Vs "| Language Tabular

format B
IDL Types .

Graphical P ~
XML Types > format <

e TTCN-3 User

Other Types . Presentation | R The shaded boxes are not
& Values v format <« defined in this document

Figure 1. User's view of the core language, its packages and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (ES 201 873-4 [1]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 27) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the latter
shall take precedence.

4.3 Conformance

For an implementation claiming to conform to this version of the language, all features specified in the present
document shall be implemented consistently with the requirements given in the present document and in
ES 201 873-4[1].

5 Basic language elements

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test
Cases, €tC.

The control part of amodule calls the test cases and controls their execution. The control part may aso declare (local)
variables, etc. Program statements (such as i f-else and do-while) can be used to specify the selection and
execution order of individual test cases. The concept of global variablesis not supported in TTCN-3.

TTCN-3 has a number of pre-defined basic data types as well as structured types such as records, sets, unions,
enumerated types and arrays.

ETSI



20

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

A special kind of data structure called atemplate provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not

message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechanisms such as alternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module  [import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE:  The notions "definition" and "declaration” of variables, constants, types and other language elements are
used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.
5.1 Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in al lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

5.2 Scope rules

TTCN-3 provides nine basic units of scope:

a  module definitions part;
b)  control part of amodule;
C) component types;

d) functions;

ETSI



21 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

e atsteps,

f)  testcases;

g) statement blocks;

h)y templates;

i)  user defined named types.

NOTE 1: Additional scoping rule for groupsis given in clause 8.2.2.

NOTE 2: Additional scoping rule for counters of £or loopsisgivenin clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-al one statement blocks, embedded
in another statement block or within compound statements, e.g. as body of awhile loop.

NOTE 4: Builtin TTCN-3typeslike integer, charstring, anytype, €tc. are not scope units, but all named
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
altsteps and statement blocks may additionally specify some form of behaviour by using the TTCN-3 program
statements and operations (see clause 18).

Definitions made in the module definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including al functions, test cases and atsteps defined within the module and the control part.
Identifiers imported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in atest component type may be used in a component type extending this component type definition,
and in functions, test cases and altsteps referencing that component type or a compatible test component type (see
clause 6.3.3) by aruns on-clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
atstep or function (e.g. a declaration made in atest case is not visible in afunction called by the test case or in an
atstep used by the test case).

Stand-alone statement blocks and statements within compound statements, likee.g. if-else, while, do-while, Or
alt statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in
other statement blocks or compound statements, e.g. an i £-else statement that is used within awhile loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope unitsis shown in figure 2. Declarations of a scope unit at a higher hierarchical level are visible
inal units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

ETSI



22 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

module
definitions part

module function without altstep without user defined
component type template
control part runs on-clause runs on-clause named type
statement block statement block statement block
testcase with
function with altstep with runs on-clause
runs on-clause runs on-clause and optional
system-clause
nested nested nested
statement block statement block statement block
E statement block statement block statement block E E
nested nested nested
statement block statement block statement block
' ' '
' ' '
' ' '
Figure 2: Hierarchy of scope units
EXAMPLE 1: Loca scopes
module MyModule
const integer MyConst := 0; // MyConst is visible to MyBehaviourA and MyBehaviourB
function MyBehaviourA ()
const integer A := 1; // The constant A is only visible to MyBehaviourA
function MyBehaviourB ()
const integer B := 1; // The constant B is only visible to MyBehaviourB

1
EXAMPLE 2 Component type scopes

type component MyComponentType {
const integer MyConst := 1;

}

type component MyExtendedComponentType extends MyComponentType {
var integer MyVar:= 2 * MyConst; // using MyConst of MyComponentType

ETSI



23 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in afunction definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That isthey
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires unigueness of identifiers, i.e. all identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

The identifier of amodule (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types,
enumeration values and groups do not have to be globally unique, however in the case of enumeration values the
identifiers shall only be reused for enumeration val ues within other enumerated types. The rules of identifier uniqueness
shall also apply to identifiers of formal parameters.

EXAMPLE 1:  Nested scopes

module MyModule
{ .

const integer A := 1;

function MyBehaviourA ()

{

const integer A := 1; // Is NOT allowed: clash with global constant A
if (..)

{

const boolean A := true; // Is NOT allowed: clash with local constant A

1
EXAMPLE 2:  Independent scopes

// The following IS allowed as the constants are not declared in the same scope hierarchy
// (assuming there is no declaration of A in module header)
function MyBehaviourA ()

{

const integer A := 1;

}

function MyBehaviourB ()
{ ;onst integer A := 1;
}
EXAMPLE 3: Module scopes

module MyModuleB {
import from MyModuleA { .. }

function MyFunction() {
var integer MyModuleB:= 1; // Is NOT allowed: class with module name

}

type boolean MyModuleA; // Is NOT allowed: class with imported module name

ETSI



24 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

5.3 Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
abranch of an i f-else statement, all declarations (if any), shall be made at the beginning of the statement block only.

EXAMPLE:

// This is a legal mixing of TTCN-3 declarations

var MyVarType MyVar2
const integer MyConst:
if (MyVar2+MyConst > 10)

3;
1;

var integer MyVarl:= 1;

MyVarl:= MyVarl + 10;

Declarations in the modul e definitions part may be made in any order. However inside the module control part, test case
definitions, functions, atsteps, and statement blocks, all required declarations must be given beforehand. This meansin
particular, local variables, local timers, and local constants shall never be used before they are declared. The only
exception to thisrule are labels. Forward references to a label may be used in goto statements before the label occurs
(see clause 19.8).

5.4 Parameterization
TTCN-3 alowsto parameterize modules, templates, functions, altsteps and testcases. Vaues, templates, timers, and

ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parametersis givenin table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package [i.13].

Table 2: Overview of parameterizable TTCN-3 objects

Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization Static at start of run-time |all basic types, all user-defined types and address
type.
template Value and template Dynamic at run-time  |all basic types, all user-defined types, address type
parameterization and template.
function Value, template, port and Dynamic at run-time  |all basic types, all user-defined types, address
timer parameterization type, component type, port type, default,
template and timer.
altstep Value, template, port and Dynamic at run-time  |all basic types, all user-defined types, address
timer parameterization type, component type, port type, default,
template and timer.
testcase Value, template, port and Dynamic at run-time |all basic types and of all user-defined types,
timer parameterization address type and template.

NOTE:  Signatures are not shown in the table, because a signature declares parameters only. The templates for the
signatures can be parameterized, however.

54.1 Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entitiesin the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

ETSI



25 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Formal parameters shall be in, inout or out parameters (see definitionsin clause 3.1). If not stated otherwise, a
formal parameter isan in parameter. For all these three sorts of parameter passing, the formal parameters can both be
read and set (i.e. get new val ues being assigned) within the parameterized object. Formal parameters can be used
directly as actual parameters for other parameterized objects, e.g. as actual parametersin function invocations or as
actual parametersin template instances.

Formal in parameters may have default values. This default value is used when no actual parameter is provided.

NOTE: Although out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.

541.1 Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value
parameters.

Syntactical Structure

[ ( in | inout | out ) ] Type ValueParIdentifier [ ":=" ( Expression n-no) ]
Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for examplein
expressions.

Value forma parameters may bein, inout or out parameters. The default for value formal parametersis in
parameterization which may optionally be denoted by the keyword in. Using of inout or out kind of parameterization
shall be specified by the keywords inout or out respectively.

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters
default value.

TTCN-3 supports value parameterization according to the following rules:

e thelanguage e ement module allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
run-time (i.e. static at run-time). This means that, at run-time, module parameter values are globally visible but
not changeable (see more detailsin clause 8.2);

. the language elements template, testcase, altstep and function support dynamic value
parameterization (i.e. this parameterization shall be resolved at run-time).

NOTE: Component and default references are also handled as value parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
references the TTCN-3 type default isthe type of the forma parameter.

Restrictions

a) Language elements which cannot be parameterized are: const, var, timer, control, record of,
set of, enumerated, port, component and subtypedefinitions, group and import.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
in parameters.

¢) Restrictions on module parameters are given in clause 8.2.
d) Default values can be provided for in parameters only.

€) Theexpression of the default value has to be compatible with the type of the parameter. The expression shall
not refer to elements of the component type of the optional runs on clause. The expression shall not refer to
other parameters of the same parameter list. The expression shall not contain the invocation of functions with a
runs on clause.

ETSI



26 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

f)  Default values of component type formal parameters shall be one of the special valuesnull, mtc, self,
or system.

g) Default values of default type forma parameters shall be the special valuenull.

h)  The dash (don't change) symbol shall be used with formal parameters of modified templates only (see al'so
clause 15.5).

i)  For formal value parameters of templates the restrictions specified in clause 15 shall apply.
Examples

EXAMPLE 1: In, out and inout formal parameters

function MyFunctionl (in boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an in value parameter. The parameter can be read. It can also be set
// within the function, however, the assignment is local to the function only

function MyFunction2 (inout boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an inout value parameter. The parameter can be read and set
// within the function - the assignment is not local

function MyFunction3 (out template boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an out value parameter. The parameter can be set within the function,
// the assignment is not local. It can also be read, but only after it has been set.

EXAMPLE 2. Reading and setting parameters

type record MyMessage ({
integer f1,
integer f2

}

function f MyMessage (integer p_int) return MyMessage {
var integer f1, f2;
f1 := £ mult2 (p_int);
// parameter p_int is passed on; as the parameter of the called function f mult2 is
// defined as an inout parameter, it passes back the changed value for p_int,
f2 := p int;
return {f1, f2};

}

function f mult2 (inout integer p integer) return integer ({
p_integer := 2 * p_ integer;
// the value of the formal parameter is changed; this new value is passed back when
// £ _mult2 completes
return p integer-1

}

testcase tc_01 () runs on MTC_PT

Pl.send (f MyMessage(5))
// the value sent is { f1 := 9 , f2 := 10 }

EXAMPLE 3:  Function with default value for parameter

function f comp (in integer p intl, in integer p_int2 := 3) return integer ({
var integer v := p_intl + p_int2;
return v;

function £ () {

var integer w;

w o
w o

f comp (1) ; // same as calling f comp(1,3);
f comp(1,2); // value 2 is taken for parameter p_int2 and not its default value 3

ETSI



27 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 4:  Direct passing of formal parametersto functions
function f MyFunc2(in bitstring p refParl, inout integer p refPar2) return integer

}

function f MyFuncl (inout bitstring p refParl, out integer p refPar2) return integer {
return f MyFunc2 (p_refParl, p_refPar2);

// p_refParl and p refPar2 can be passed directly to a function invocation

5.4.1.2 Formal parameters of kind template
Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[ in | inout | out ] template [ restriction ] Type ValueParIdentifier
[ ":=" ( TemplateInstance n-mo) ]

Semantic Description
Templates parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword
template shal be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well as the normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may bein, inout or out parameters. The default for formal template parametersisin
parameterization.

In parameters may have a default template, which is given by atemplate instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictions omit, present, and value. The restriction
template (omit) can be replaced by the shorthand notation omit. The meaning of the restrictions are explained in
clause 15.8.

Restrictions
a) Only function, testcase, altstep and template definitions may have formal template parameters.

b) Formal template parameters of templates, of functions started astest component behaviour
(see clause 21.2.2) and of altsteps activated as defaults (see clause 20.5.2) shall always be in parameters.

c¢) Default templates can be provided for in parameters only.

d) The default template instance has to be compatible with the type of the parameter. The template instance shall
not refer to elements of the component type in aruns on clause. The template instance shall not refer to other
parameters in the same parameter list. The template instance shall not contain the invocation of functions with
arunson clause.

e) Default templates of component type formal parameters shall be built from the special valuesnull, mte,
self, or system.

f)  Restrictions specified in clause 15 shall apply.

g) Thedash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

ETSI



28 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

EXAMPLE 1: Template with template parameter

// The template
template MyMessageType MyTemplate (template integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows

pcol.receive (MyTemplate(?)) ;

// Or as follows

pcol.receive (MyTemplate (omit)); // provided that fieldl is declared in MyMessageType as optional

EXAMPLE 2:  Function with template parameter

function MyBehaviour (template MyMsgType MyFormalParameter)
runs on MyComponentType

{ .

péol.receive(MyFormalParameter);
}
EXAMPLE 3: Template with restricted parameter

// The template
template MyMessageType MyTemplatel (template ( omit ) integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows

pcol.send (MyTemplatel (omit)) ;

// but not as follows

pcol.receive (MyTemplatel (?)); // AnyValue is not within the restriction

// the same template can be written shorter as
template MyMessageType MyTemplate2 (omit integer MyFormalParam) :=

{ fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true
1
5.4.1.3 Formal parameters of kind timer

Functions and atsteps can be parameterized with timers.

Syntactical Structure

[ inout ] timer TimerParIdentifier
Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve there current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continues to run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or atstep to which the timer is passed.

Formal timer parameters are identified by the keyword timer.
Restrictions
a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only function - with the exception of functions started as test component behaviour (see clause 21.2.2) -
and altstep definitions may have formal timer parameters.

ETSI



29 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples
// Function definition with a timer in the formal parameter list
function MyBehaviour (timer MyTimer)
{ .

MyTimer.start;

}

// could be used as follows
function MyBehaviour2 ()

{ :
timer t;
MyBehaviour (t) ;

5414 Formal parameters of kind port
Functions and altsteps can be parameterized with ports.

Syntactical Structure
[ inout ] PortTypeldentifier PortParIdentifier
Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by a runs on clause.

Ports passed in as parameters shall preserve there current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or altstep to which the port is passed to.

Restrictions
a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only function - with the exception of functions started as test component behaviour (see clause 21.2.2) -
and altstep definitions may have formal port parameters.

Examples

// Altstep definition with a port in the formal parameter list
altstep MyBehaviour (MyPortType MyPort)

{

[] MyPort.receive { setverdict(fail); stop; }

5.4.2  Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actual parameters. Actual
parameters can be provided both asalist in the same order as the formal parameters as well asin an assignment
notation explicitly using the associated formal parameter names.

Syntactical Structure

( Expression | // for value parameter
TemplateInstance | // for template parameter
TimerRef | // for timer parameter
Port | // for port parameter
ey // to skip a parameter with default
ParameterId ":=" ( Expression | Templatelnstance | TimerRef | Port ) )

ETSI



30 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Semantic Description

Actual parametersthat are passed by value to in formal value parameters shall be variables, literal values, module
parameters, constants, variables, value returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above.

Actual parametersthat are passed to inout or out formal value parameters shall be variables or formal value
parameters (of in, inout or out parameterization).

Actual parameters that are passed to in formal template parameters shall be literal values, module parameters,
congtants, variables, value or template returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above, as well as templates, template variables or
formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to inout or out formal template parameters shall be variables, template variables,
formal value or template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parameters that are passed to formal port parameters shall be component ports or formal port parameters of the
current scope.

When aformal parameter has been defined with a default value or template, respectively, then it is not necessary to
provide an actual parameter. The actual parameters are evaluated in the order of their appearance. If for some formal
parameters, no actual parameter has been provided, their default values are taken and evaluated in the order of the
formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. all formal parameters use their default values.

Restrictions

a  When using list notation, the order of elementsin the actual parameter list shall be the same as their order in
the corresponding formal parameter list. For each formal parameter without a default there shall be an actual
parameter. The actual parameter of aformal parameter with default value can be skipped by using dash "-" as
actual parameter. An actual parameter can also be skipped by just leaving it out if no other actual parameter
followsin the actual parameter list — either because the parameter is last or because al following formal
parameters have default values and are left out.

b)  Either list notation or assignment notation shall be used in asingle parameter list. They shall not be mixed.

€)  When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of aformal parameter, no assignment for this specific parameter shall be provided.

d) Thetype of each actual parameter shall be compatible with the type of each corresponding formal parameter.

€) Actua parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

f)  All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) If theformal parameter list of TTCN-3 objects function, testcase, signature, altstepor
external function isempty, then the empty parentheses shall be included both in the declaration and in
the invocation of that object. In all other cases the empty parentheses shall be omitted.

h)  Redtrictions on the use of signature parameters are given in clauses 15.2 and 22.3.

i)  Redtrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

ETSI



31 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples
EXAMPLE 1: Formal and actual parameter lists have to match

// A function definition with a formal parameter list
function MyFunction (integer FormalParl, boolean FormalPar2, bitstring FormalPar3) { .. }

// A function call with an actual parameter list
MyFunction (123, true, '1100'B);

// A function call with assignment notation for actual parameters
MyFunction (FormalParl := 123, FormalPar3 := '1100'B, FormalPar2 := true);

EXAMPLE 2:  In parameters

function MyFunction (in template MyTemplateType MyValueParameter){ .. };
// MyValueParameter is in parameter, the in keyword is optional

// A function call with an actual parameter
MyFunction (MyGlobalTemplate) ;

EXAMPLE 3:  Inout and out parameters

function MyFunction (inout boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an inout parameter

// A function call with an actual parameter
MyFunction (MyBooleanVariable) ;
// The actual parameter can be read and set within the function

function MyFunction (out template boolean MyReferenceParameter){ .. };
// MyReferenceParameter is an out parameter

// A function call with an actual parameter

MyFunction (MyBooleanVariable) ;
// The actual parameter is initially unbound, but can be set and read within the function.

EXAMPLE 4: Empty parameter lists

// A function definition with an empty parameter list shall be written as
function MyFunction(){ .. }

// and shall be called as
MyFunction () ;
// A record definition with an empty parameter list shall be written as

type record MyRecord ({

// and shall be used as
template MyRecord Mytemplate := { .. }

EXAMPLES: Nested parameter lists

// Given the message definition
type record MyMessageType

{

integer fieldl,
charstring field2,
boolean field3

}

// A message template might be
template MyMessageType MyTemplate (integer MyValue) :=

fieldl := MyValue,
field2 := pattern "abc*xyz",
field3 := true

}

// A test case parameterized with a template might be
testcase TCO0l (template MyMessageType RxMsg) runs on PTCl system TS1 {

MyPCO.receive (RxMsg) ;

ETSI



32 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

// When the test case is called in the control part and the parameterized template is
// passed as an actual parameter, the template's actual parameters must be provided
control

{

execute (TC001 (MyTemplate (7))) ;

5.5 Cyclic Definitions

Direct and indirect cylic definitions are not allowed with the exception of the following cases:
a) for recursive type definitions (see clause 6.2);
b) function and atstep definitions (i.e. recursive function or altstep calls);
c) cyclicimport definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be aresult of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples

EXAMPLE 1:  Module with cyclic constant definition that is not allowed
module MyModule {
éype record ARecordType { integer a, integer b };

// The following two lines include a cycle that is not allowed
const ARecordType cConst : { 1, dConst.b}; // cConst refers to dConst
const ARecordType dConst : { 1, cConst.b}; // dConst refers to cConst

1
EXAMPLE 2:  Modules with cyclic import that is allowed

module MyModuleA {
import from MyModuleB { type MyInteger }
type record of MyInteger MyIntegerList;

}

module MyModuleB {
type integer MyInteger;
import from MyModuleA { type MyIntegerList }

6 Types and values

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such as integer, boolean and string types, as well as some TTCN-3 specific ones such as
verdicttype. Structured types such as record types, set types and enumerated types can be constructed from
these basic types.

The specia datatype anytype isdefined as the union of all known data types and the address type within a module.

Special types associated with test configurations such as address, port and component may be used to define the
architecture of the test system (see clause 21).

The special type default may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

ETSI



33 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list
float range, list
boolean list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data type anytype list
Special configuration types address
port
component
Special default type default
NOTE:  List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour typesfor TTCN-3 are defined in the optional package [i.14].

6.1 Basic types and values

6.1.0 Simple basic types and values
TTCN-3 supports the following basic types:

a) integer: atype with distinguished values which are the positive and negative whole numbers, including
zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
valueis 0; the value zero shall be represented by a single zero.

b) float: atype to describe floating-point numbers and special float values.
In general, floating point numbers can be defined as;<mantissa> x <base> <exponent>

where <mantissa> is a positive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

In TTCN-3, the floating-point number value notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

L] the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x102),
2.783 (i.e. 2783 x 10°3) or -123.456789 (which represents -123 456 789 x 10°6); or

" by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which
represents -123 x 1079).

ETSI



34 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)
NOTE 1: In contrast to the genera definition of float values, the mantissa of in theT TCN-3 value notation, beside
integers, alows decimal numbers as well.

The specia values of the float type consist of infinity (positiveinfinity), -infinity (negative
infinity) and thevaluenot a number. For the ordering of special values see clauses 7.1.1 and 7.1.3.

NOTE 2: - not_a number (i.e. minus not a number) isnot to be used.
C) boolean: atype consisting of two distinguished values.
Values of boolean type shall be denoted by true and false.

d) verdicttype: atypefor use with test verdicts consisting of 5 distinguished values. VVal ues of
verdicttype shal be denoted by pass, fail, inconc, none and error.

6.1.1 Basic string types and values
TTCN-3 supports the following basic string types:

NOTE 1. The general term string or string typein TTCN-3 referstobitstring, hexstring, octetstring,
charstring anduniversal charstring.

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Values of typebitstring shal be denoted by an arbitrary number (possibly zero) of the bit digits:
01, preceded by asingle quote (') and followed by the pair of characters 'B.

EXAMPLE 1: 'o01101'B.

b) hexstring: atypewhose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexstring shal be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2: 'aBo1D'H
'ab01d'H
'Ab01D'H

C) octetstring: atypewhose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight hits).

Values of type octetstring shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by a single quote (') and followed by the pair of characters ' o; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 3: 'Fr96'0
"f£96'0
"F£96'0

d) charstring: aretypeswhose distinguished values are zero, one, or more characters of the version of
I SO/IEC 646 [4] complying with the International Reference Version (IRV) as specified in clause 8.2 of
ISO/IEC 646 [4].

ETSI



35 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE 2: ThelRV version of ISO/IEC 646 [4] isequivalent to the IRV version of the International Reference
Alphabet (former International Alphabet No.5 - IA5), described in ITU-T Recommendation T.50 [i.9].

Vaues of charstring type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote (). Graphical characters
include the range from SP(32) to TILDE (126). Vaues of charstring type can also be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (*) the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4:  The charstring "ab"cd" iswritten in TTCN-3 code as in the following constant declaration. Each of
the 3 quote characters that are part of the string is preceeded by an extra quote character and the

whole character string is delimited by quote characters, e.g.
var charstring vl char:= """ab""cd""";

€) The character string type preceded by the keyword universal denotes types whose distinguished values are
zero, one, or more characters from | SO/IEC 10646 [2].

universal charstring values can aso be denoted by an arbitrary number (possibly zero) of
characters from the relevant character set, preceded and followed by double quote ("), calculated using a
predefined conversion function (see clause C.2) with the positive integer value of their encoding as
argument or by a"quadruple”.

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (*) the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The "quadruple” is only capable to denote a single character and denotes the character by the decimal
values of its group, plane, row and cell according to ISO/IEC 10646 [2], preceded by the keyword char
included into a pair of brackets and separated by commas (e.g. char (0, O, 1, 113) denotes the
Hungarian character "i"). In cases where it is necessary to denote the character double quote (") in a
string assigned according to the first method (within double quotes), the character is represented by a pair
of double quotes on the same line with no intervening space characters. The two methods may be mixed
within a single notation for a string val ue by using the concatenation operator.

EXAMPLES: Theassignment : "the Braille character” & char (0, O, 40, 48) & "looks like this' represents the
literal string: the Braille character £ looks like this.

NOTE 5: Control characters can be denoted by using the predefined conversion function or the quadruple form.

By default, universal charstring shall conform to the UCS-4 coded representation form
specified in clause 14.2 of 1SO/IEC 10646 [2].

NOTE 6: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The
following useful character string types utf8string, bmpstring, utf16string and iso8859string using these
attributes are defined in annex E.

ETSI



36 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.1.1.1 Accessing individual string elements

Individual elementsin a string type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0). The index shall be between zero and the length of the string minus one for
retrieving an element from a string. For assigning an element to the end of a string, the length of the string should be
used asindex.

EXAMPLE 1.  Accessing an existing element

// Given

MyBitString := '11110111'B;
// Then doing
MyBitString[4] := '1'B;

// Results in the bitstring '11111111'B

EXAMPLE 2:  Specific cases

var bitstring MyBitStringA, MyBitStringB, MyBitStringC;
MyBitStringA := '010'B;
MyBitStringA[l] := '11'B; //causes an error as only individual elements can be accessed

MyBitStringB := '1'B;
MyBitStringB[4] '1'B; //causes an error as the index is larger than the length of the lhs

MyBitStringC := ''B;
MyBitStringC[0] := '1'B; // value of MyBitStringC is '1'B
MyBitStringC[1l] := '0'B; // value of MyBitStringC is '10'B

6.1.2 Subtyping of basic types

User-defined types shall be denoted by the keyword type. With user-defined typesit is possible to create subtypes
(such aslists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

6.1.2.1 Lists of values

TTCN-3 permits the specification of alist of distinguished values as listed in table 3. The valuesin the list shall be
instances of the type being constrained and shall be a subset of the values defined by the type being constrained. The
subtype defined by thislist restricts the allowed values of the subtype to those values in the list. Constants used in the
constant expressions defining the values shall meet with the restrictionsin clause 10.

EXAMPLE:

type bitstring MyListOfBitStrings ('01'B, '10'B, '11'B);
type float pi (3.1415926);

type charstring MyStringList ("abcd", "rgy", "xyz");
type universal charstring Specialletters
(char(0, 0, 1, 111), char(o, 0, 1, 112), char(0, 0, 1, 113));
6.1.2.2 Lists of types

TTCN-3 permits the specification of alist of subtypes aslisted in table 3 for value lists. The typesin the list shall be
subtypes of the root type. The subtype defined by thislist restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

EXAMPLE:
type bitstring BitStringsl ('0'B, '1'B );

type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10'B);
type bitstring BitStrings 1 2 (Bitstringsl, Bitstrings2);

ETSI



37 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for thetypes integer, charstring, universal
charstring and £loat (or derivations of these types). For integer and f£loat, the subtype defined by the
range restricts the allowed values of the subtype to the valuesin the range including or excluding the lower boundary
and/or the upper boundary. In order to specify an infinite integer or float range, the keyword infinity may be used
instead of a value indicating that there is no lower or upper boundary. The upper boundary shall be greater than or equal
to the lower boundary. In case of £1loat, the special valuenot a number isnot alowed in arange constraint.

NOTE: The"value" for infinity isimplementation dependent. Use of this feature may lead to portability
problems.

Inthe case of charstring and universal charstring types, the range restrictsthe allowed values for each
separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictionsin clause 10.

EXAMPLE 1:
type integer MyIntegerRange (0 .. 255); ); // range from 0..255
// (with inclusive boundaries)
type integer MyIntegerRange (-infinity .. -1); // all negative integer numbers
type integer MyIntegerRange (0 .. 1256); // the same range as above (with left
// inclusive and right exclusive boundary)
type integer MyIntegerRange (!-1 .. 255); // the same range as above (with left
// exclusive and right inclusive boundary)
type integer MyIntegerRange (!-1 .. 1256); // the same range as above
// (with exclusive boundaries)
type float piRange (3.14 .. 3142E-3);
type float LessThanPi (-infinity .. 3142E-3);
type float Numbers (-infinity .. infinity); //includes all float values but not_ a number
type float Wrong (-infinity .. not_a number); // causes an error as not_a number is not
// allowed in range subtyping
EXAMPLE 2:
type charstring MyCharString ("a" .. "z");
// Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. ["z");

// Defines a string type of any length with each character within the range from a to y

// (character codes from 97 to 121), like "abxy";

// strings containing any other character (including control characters), like

// "abc2" are disallowed.

type universal charstring MyUCharString2 (char(0, 0, 1, 111) .. char(0, 0, 1, 113));

// Defines a string type of any length with each character within the range specified using
// the quadruple notation

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In al cases, these boundaries shall be inclusive boundaries
only and evaluate to non-negative integer values (or derived integer values).

EXAMPLE:
type bitstring MyByte length(8); // Exactly length 8
type bitstring MyByte length(8 .. 8); // Exactly length 8
type bitstring MyNibbleToByte length(4 .. 8); // Minimum length 4, maximum length 8

Table 4 specifies the units of length for different string types.

ETSI



38 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword infinity may also be used to indicate that there is no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of charstring and
universal charstring types. Thetype constraint shall usethe pattern keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being subtyped. Constants used in the constant
expressions defining the values shall meet with the restrictionsin clause 10.

NOTE: Pattern subtyping can be seen as a specia form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
// all permitted values of MyString have prefix abc and postfix xyz

type universal charstring MyUString (pattern "*\r\n")
// all permitted values of MyUString are terminated by CR/LF

type charstring MyString2 (pattern "abc?\g{0,0,1,113}");
// causes an error because the character denoted by the quadruple {0,0,1,113} is not a
// legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

// causes an error because the type MyString does not contain a value starting with the
// character d

6.1.2.6 Mixing subtyping mechanisms

6.1.2.6.1 Mixing patterns, lists and ranges

Within integer and £1loat (or derivations of these types) subtype definitionsit is allowed to mix lists and ranges. It
is possible to mix both value list and type list subtyping with each other and with range subtyping. Overlapping of
different constraintsis not an error.

EXAMPLE 1:
type integer MyIntegerRange (1, 2, 3, 10 .. 20, 99, 100);
type float lessThanPiAndNaN (-infinity .. 3142E-3, not_a number);

Within charstring and universal charstring subtype definitionsitisnot alowed to mix pattern, value
list, type list, or range constraints.

EXAMPLE 2:

type charstring MyCharStr0 ("gr", "xyz");
// contains character strings gr and xyz;

type charstring MyCharStrl ("a".."z");
// contains character strings of arbitrary length containing characters a to z.

type charstring MyCharStr2 (pattern "[a-z]#(3,9)");
// contains character strings of length form 3 to 9 characters containing characters a to z

ETSI



39 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.1.2.6.2 Using length restriction with other constraints

Withinbitstring, hexstring, octetstring subtype definitionslists and length restriction may be mixed in
the same subtype definition.

Within charstring and universal charstring subtype definitionsitisallowed to add alength restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value setsidentified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

type charstring MyCharStr5 ("gr", "xyz") length (1..9);
// contains the character strings gr and xyz;

type charstring MyCharStré ("a".."z") length (3..9);
// contains character strings of length from 3 to 9 characters and containing characters
// a to z

type charstring MyCharStr7 (pattern "[a-z]#(3,9)") length (1..9);

// contains character strings of length form 3 to 9 characters containing characters a to z

type charstring MyCharStr8 (pattern "[a-z]#(3,9)") length (1..8);
// contains character strings of length form 3 to 8 characters containing characters a to z

type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
// contains any character strings of length form 1 to 8 characters containing characters
// a to z

type charstring MyCharStrl0 ("gr", "xyz") length (4);

// causes an error as it contains no value

6.2 Structured types and values

The type keyword is also used to specify structured types such as record types, record of types, set types, set
of types, enumerated typesand union types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1.

const MyRecordType MyRecordValue: //assignment notation

{

fieldl := '11001'B,
field2 := true,
field3 := "A string"
1
// or
const MyRecordType MyRecordValue:= {'11001'B, true, "A string"} //value list notation

When specifying partial values (i.e. setting the value of only a subset of the fields of a structured variable) using the
assignment notation only the fields to be assigned values must be specified. Fields not mentioned are implicitly left
unspecified. It is also possible to leave fields explicitly unspecified using the not used symbol “-". Using the value list
notation all fields in the structure shall be specified either with a value, the not used symbol "-" or the omi t keyword.

EXAMPLE 2:
var MyRecordType MyVariable:= //assignment notation
{
fieldl := '11001'B,
// field2 implicitly unspecified
field3 := "A string"
}
// or
var MyRecordType MyVariable:= //assignment notation

{

ETSI



40 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

fieldl := '11001'B,
field2 := -, // field2 explicitly unspecified
field3 := "A string"
1
// Or
var MyRecordType MyVariable:= {‘llOOl‘B, -, "A string"} //value list notation

It isnot allowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

// This is disallowed
const MyRecordType MyRecordValue:= {MyIntegerValue, field2 := true, "A string"}

In both the assignment notation and value list notation, optional fields shall be omitted by using the explicit omi t value
for the relevant field. The omit keyword shall not be used for mandatory fields. When re-assigning a previously
initialized value, using the not used symbol or skipping afield in assignment notation will cause the relevant fieldsto
remain unchanged.

EXAMPLE 4:

var MyRecordType MyVariable :=

{

fieldl := '111'B,
field2 := false,
field3 := -
1
MyVariable := { '10111'B, -, - };

// after this, MyVariable contains { '10111'B, false /* unchanged */, <undefined> }

MyVariable

field2 := true
// after this, MyVariable contains { '10111'B, true, <undefined> }

MyVariable :=
{
fieldl
field2
field3

false,

// after this, MyVariable contains { '10111'B, false, <undefineds }

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursionis
resolvable and that no infinite recursion occurs.

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 5:

// Valid recursive record type definition
type record MyRecordl
{
FieldTypel fieldl,
MyRecordl field2 optional,
FieldType3 £field3

}

// Invalid recursive record type definition causing an error
type record MyRecord2
{

FieldTypel fieldl,

MyRecord2 field2,

FieldType3 field3

ETSI



41 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 6:

// Valid recursive union type definition
type union MyUnionl

MyUnionl choicel,
charstring choice2

}

// Invalid recursive union type definition causing an error
type union MyUnion2

{

MyUnion2 choicel,
MyUnion2 choice2

6.2.1 Record type and values

TTCN-3 supports ordered structured types known as record. The elements of arecord type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of a record shall be compatible
with the types of the record fields. The element identifiers are local to the record and shall be unique within the
record (but do not have to be globally unique).

EXAMPLE 1:

type record MyRecordType

{

integer fieldl,
MyOtherRecordType field2 optiomnal,
charstring field3

}

type record MyOtherRecordType
bitstring fieldl,
boolean field2
}
Records may be defined with no fields, i.e. as empty records.

EXAMPLE 2:

type record MyEmptyRecord {}

A record valueisassigned on an individual element basis. The order of field valuesin the value list notation shall be
the same as the order of fields in the related type definition.

EXAMPLE 3:
var integer MyIntegerValue := 1;
const MyOtherRecordType MyOtherRecordValue:=

fieldl :
field2

'11001'B,
true

}

var MyRecordType MyRecordValue :=

fieldl := MyIntegerValue,
field2 := MyOtherRecordvalue,
field3 := "A string"

1
The same value specified with avalue list.

EXAMPLE 4:

MyRecordvValue:= {MyIntegerValue, {'11001'B, true}, "A string"};

ETSI



42 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.2.1.1 Referencing fields of a record type

Elements of arecord shal be referenced by the dot notation Type IdOrExpression.ElementId, where
TypeIdOrExpression resolvesto the name of a structured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. E1ement 1d shall resolveto
the name of afield in the structured type. Fields of record type definitions shall not reference themselves.

EXAMPLE 1:

MyVarl := MyRecordl.myElementl;

// If a record is nested within another type then the reference may look like this
MyVar2 := MyRecordl.myElementl.myElement2;

EXAMPLE 2:

type record MyType

{

integer fieldl,
MyType.field2 field2 optional, // this circular reference is NOT ALLOWED

boolean field3

6.2.1.2 Optional elements in a record
Optiona elementsin arecord shall be specified using the optional keyword.

EXAMPLE 1.

type record MyMessageType

{

FieldTypel fieldl,
FieldType2 field2 optional,

FieldTypeN fieldN

1
Optional fields shall be omitted using the omit symbol.

EXAMPLE 2
MyRecordvValue:= {MyIntegerValue, omit , "A string"};

// Note that this is not the same as writing,
// MyRecordvalue:= {MyIntegerValue, -, "A string"};
// which would mean the value of field2 is unchanged

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the record definition. Both the definition of
new structured types (record, set, enumerated, set of, record of, and union) and the specification of
subtype constraints are possible.

EXAMPLE:

// record type with nested structured type definitions
type record MyNestedRecordType

{

record
{
integer nestedFieldl,
float nestedField2
} outerFieldl,
enumerated {
nestedEnuml,
nestedEnum?2
} outerField2,
record of boolean outerField3

}

// record type with nested subtype definitions
type record MyRecordTypeWithSubtypedFields

ETSI



43 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

integer fieldl (1 .. 100
(

)
charstring field2 length 2 .. 255 )

6.2.2 Set type and values

TTCN-3 supports unordered structured types known as set. Set types and values are similar to records except that the
ordering of the set fieldsis not significant.

EXAMPLE:
type set MySetType

{

integer fieldl,
charstring field2

1
Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).

The value list notation for setting values shall not be used for values of set types.

6.2.2.1 Referencing fields of a set type

Elements of a set shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themsel ves.

EXAMPLE:

MyVar3 := MySetl.myElementl;

// If a set is nested in another type then the reference may look like this
MyVar4 := MyRecordl.myElementl.myElement2;

// Note, that the set type, of which the field with the identifier 'myElement2' is referenced,
// is embedded in a record type

6.2.2.2 Optional elements in a set

Optiona elementsin aset shall be specified using the optional keyword.

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword o £. These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1. Subtyping of record of and set of types seein clause 6.2.13.

EXAMPLE 1:

type set of boolean MySetOfType; // is an unlimited set of boolean values

Thevalue notation for record of and set of can be both the value list notation and the assignment notation
(usable to address multiple elements) or an indexed notation (usable to address an individual element), which isthe
same value notation as for arrays (see clause 6.2.7). There is one exception from this general rule: in the case of
defining modified templates, the assignment notation is aso alowed to be used (see clause 15.5).

When the value list notation is used, the first valuein the list is assigned to the first element, the second list valueis
assigned to the second element, etc. No empty assignment is allowed (e.g. two commas, the second immediately
following the first or only with white space between them). Elements to be left out of the assignment shall be explicitly
skipped in the list by use of the not-used-symbol "-".

ETSI



44 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the
element indicated by the index at the right-hand of an assignment is undefined, this shall cause a semantic or run-time
error. If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the
value remainsinvisible). Sending arecord of or set of value with undefined elements shall cause adynamic
testcase error.

EXAMPLE 2:

// Given

type record of integer MyRecordOf;
var integer MyVar;

// Using the value list notation

var MyRecordOf MyRecordOfvar := { 0, 1, 2, 3, 4 };
// The same record of, defined with the assignment notation
var MyRecordOf MyRecordOfVarAssignment := {

[0] := O,

[1] := 1,

[2] := 2,

[3] := 3,

[4] := 4

}i

//Using an indexed notation
MyVar := MyRecordOfVar[0]; // the first element of the "record of" value (integer 0)
// is assigned to MyVar

// Indexed values are permitted on the left-hand side of assignments as well:
MyRecordOfVar [1] := MyVar; // MyVar is assigned to the second element
// value of MyRecordOfVar is { 0, 0, 2, 3, 4 }

// The assignment

MyRecordOfvar := { 0, 1, -, 2 };

// will change the value of MyRecordOfVar to{ 0, 1, 2 <unchangeds>, 2};

// Note, that the 3™ element would be undefined if had had no previous assigned value.

// The assignment

MyRecordOfvar[6] := 6;

// will change the value of MyRecordOfvVar to{ 0, 1, 2 , 2, <undefineds, <undefined>, 6 };
// Note the 5™ and 6™ elements (with indexes 4 and 5) had no assigned value before this

// last assignment and are therefore undefined.

MyRecordOfVar[4] := 4; MyRecordOfvar[5] := 5;
// will complete MyRecordOfVar to the fully defined value { 0, 1, 2 , 2, 4 , 5, 6 };

NOTE 2: Theindex notation makes it possible e.g. to copy record of values element by element in afor loop.
For example, the function below reverses the elements of arecord of vaue:

function reverse(in MyRecordOf src) return MyRecordOf

{

var MyRecordOf dest;

var integer i, srcLength := lengthof (src);
for(i := 0; i < srcLength; i:= i + 1) {
dest [srcLength - 1 - i] := srcli];

}

return dest;

}

Embedded record of and set of typeswill result in a data structure similar to multidimensional arrays
(see clause 6.2.7).

EXAMPLE 3:

// Given
type record of integer MyBasicRecordOfType;
type record of MyBasicRecordOfType My2DRecordOfType;

// Then, the variable myRecordOfArray will have similar attributes to a two-dimensional array:

var My2DRecordOfType myRecordOfArray;
// and reference to a particular element would look like this

ETSI



45 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

// (value of the second element of the third 'MyBasicRecordOfType' construct)
myRecordOfArray [2] [1] := 1;

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested with the record of or set of definition. Both the
definition of new structured types (record, set, enumerated, set of and record of) and the specification of
subtype constraints are possible.

EXAMPLE:

type record of enumerated { red, green, blue } ColorList;
type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParameters;

6.2.3.2 Referencing elements of record of and set of types

It isalso alowed to reference the inner type of record of and set of types by using the index notation but with a
dash. The notation TypeId (-], where TypeId resolvestothe nameof arecord of or set of type, references
the inner type of TypeId.

EXAMPLE:

//Provided the definitions below
type record of integer MyRecordOfInt;
type record of record {

integer f1,

set { integer sl, boolean s2 } f2
} MyRecordOfRecord;
type record of record of integer MyRecordOfRecordOflInt;
type record of record

integer f1,

record of boolean f2
} MyRecordOfRecord2;

// Referencing the inner integer type
type MyRecordOfInt[-] MyInteger;
const MyRecordOfInt[-] c_MyInteger:= 5;

// Referencing the nested record type
type MyRecordOfRecord[-] MyInnerRecord;
const MyRecordOfRecord[-] c MyRecord := { f1 = 5; £2 := { sl := 0; s2 := true }}

// Referencing the set type nested in the inner record
type MyRecordOfRecord[-].£f2 MyNestedSet;
const MyRecordOfRecord[-].f2 c_MySet := { sl := 0; s2 := true }

// Referencing the innermost boolean
type MyRecordOfRecord[-].£f2.s2 MyBoolean;
const MyRecordOfRecord[-].f2.s2 c_MyBool := false;

// Referencing the inner record of
type MyRecordOfRecordOfInt [-] MyInnerRecordOfInt;
const MyRecordOfRecordOfInt[-] c MyInnerRecordOfInt := { 0, 1, 2, 3 };

// Referencing the integer type within the inner record of
type MyRecordOfRecordOfInt [-] [-] MyInteger2;
const MyRecordOfRecordOfInt [-] [-] c_MyInteger2 := 1;

// Referencing the boolean type within the nested record

type MyRecordOfRecord2([-].f2[-] MyInnermostBoolean;
const MyRecordOfRecord2[-].f2[-] c_MyInnermostBoolean := true ;

ETSI



46 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.2.4 Enumerated type and values

TTCN-3 supports enumerated types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerations. Each enumeration shall have an identifier. Operations on
enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering operators.
Enumeration identifiers shall be unique within the enumerated type (but do not have to be globally unique) and are
consequently visible within the context of the given type only. Enumeration identifiers shall only be reused within other
structured type definitions and shall not be used for identifiers of local or global visibility at the same or alower level of
the same branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1.

type enumerated MyFirstEnumType {
Monday, Tuesday, Wednesday, Thursday, Friday
i

type integer Monday;
// This definition causes an error as the name of the type has local or global visibility

type enumerated MySecondEnumType {
Saturday, Sunday, Monday
bi

// This definition is legal as it reuses the Monday enumeration identifier within
// a different enumerated type

type record MyRecordType {
integer Monday

// This definition is legal as it reuses the Monday enumeration identifier within
// a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
MyFirstEnumType firstField,
integer secondField

}i

var MyNewRecordType newRecordvValue := { Monday, 0 }
// MyFirstEnumType is implicitly referenced via the firstField element of MyNewRecordType

const integer Monday := 7
// This definition causes an error as it reuses the Monday enumeration identifier for a
// different TTCN-3 object within the same scope unit

Each enumeration may optionally have a user-assigned integer value, which is defined after the name of the
enumeration in parenthesis. Each user-assigned integer number shall be distinct within asingle enumerated type. For
each enumeration without an assigned integer value, the system successively associates an integer number in the textual
order of the enumerations, starting at the left-hand side, beginning with zero, by step 1 and skipping any number
occupied in any of the enumerations with a manually assigned value. These values are only used by the system to allow
the use of relational operators. The user shall not directly use associated integer val ues but can access them by using the
enum2int predefined function (see clauses 16.1.2 and C.37).

NOTE 1. Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributesto TTCN-3 items).

For any instantiation or value reference of an enumerated type, the given type shall beimplicitly or explicitly
referenced.

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated type isimplicitly
referenced viathe given element (i.e. by the identifier of the element or the position of the valuein a
value list notation) at value assignment, instantiation etc.

EXAMPLE 2:

// Valid instantiations of MyFirstEnumType and MySecondEnumType would be
var MyFirstEnumType Today := Tuesday;
var MySecondEnumType Tomorrow := Monday;

// The following statement however causes an error as the two enumeration types

// are not compatible
Today := Tomorrow;

ETSI



a7 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.2.5 Unions

TTCN-3 supports the union type. The union typeisacollection of aternatives, each oneidentified by an identifier.
Only one of the specified aternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of afinite number of known types.

EXAMPLE:

type union MyUnionType
integer number,
charstring string

}i

// A valid instantiation of MyUnionType would be
var MyUnionType age, oneYearOlder;
var integer ageInMonths;

age.number := 34; // value notation by referencing the field. Note, that this
// notation makes the given field to be the chosen one

oneYearOlder := {number := age.number+l};

ageInMonths := age.number * 12;

The value list notation for setting values shall not be used for values of union types.

6.25.1 Referencing fields of a union type

Alternatives of aunion type shall be referenced by the dot notation (see clause 6.2.1.1). Alternatives of union type
definitions shall not reference themselves.

EXAMPLE:

MyVar5 := MyUnionl.myChoicel;

// If a union type is nested in another type then the reference may look like this

MyVaré := MyRecordl.myElementl.myChoice2;

// Note, that the union type, of which the field with the identifier 'myChoice2' is referenced,
// is embedded in a record type

6.2.5.2 Option and union

Optiona fields are not allowed for the union type, which means that the optional keyword shall not be used with
union types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union alternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

6.2.6  The anytype

The specia type anytype is defined as a shorthand for the union of all known data types and the addresstypein a
TTCN-3 module. The definition of the term known typesis given in clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anytype shall be uniquely identified by the corresponding type names.

NOTE 1: Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from athird module) can not be reached
via the anytype of the importing module.

ETSI



48 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE:

// A valid usage of anytype would be
var anytype MyVarOne, MyVarTwo;
var integer MyVarThree;

MyVarOne.integer := 34;
MyVarTwo := {integer := MyVarOne.integer + 1};
MyVarThree := MyVarOne.integer * 12;

The anytype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anytype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anytype "contains' all types imported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the
point of avariable declaration. Arrays may be declared as single or multi-dimensional. Array dimensions shall be
specified using constant expressions, which shall evaluate to apositive integer vaues. Constants used in the constant
expressions shall meet with the restrictionsin clause 10.

EXAMPLE 1:

type integer MyArrayTypel [3]; // A type with 3 integer elements
type record length (3) of integer MyRecordOfTypel; // The corresponding record of

var MyArrayTypel al:= { 7, 8, 9 };
var MyRecordOfTypel rl:= al; // MyArrayTypel and MyRecordOfTypel are compatible

var integer myArrayl[3]:= rl; // Instantiates an integer array of 3 elements
// with the index 0 to 2
// being compatible to MyArrayTypel and MyRecordOfTypel

var integer myArray2[2] [3]; // Instantiates a two-dimensional integer array of 2 x 3 elements
// with indexes from (0,0) to (1,2)

Array elements are accessed by means of the index notation (1), which must specify a valid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation.
Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

MyArrayl[1] := 5;

MyArray2[1] [2] := 12;

MyArrayl [4] := 12; // ERROR: index must be between 0 and 2
MyArray?2 [3] [2] := 15; // ERROR: first index must be 0 or 1

Array dimensions may also be specified using ranges. In such cases the lower and upper values of the range define the
lower and upper index values. Such an array is corresponding to arecord of with afixed length restriction computed as
the difference between upper and lower index bound plus 1 and indexing starting from the lower bound of the array
definition.

EXAMPLE 3:

type integer MyArrayType2[2 .. 5]; // A type with 4 integer elements, indices starting with 2
type record length (4) of integer MyRecordOfType2; // The corresponding record of

var integer MyArray3 [l .. 5]; // Instantiates an integer array of 5 elements
// with the index 1 to &5

MyArray3 [1] := 10; // Lowest index
MyArray3 [5] := 50; // Highest index
var integer MyArray4[1 .. 5][2 .. 3 ]; // Instantiates a two-dimensional integer array of

// 5 x 2 elements with indexes from (1,2) to (5,3)

ETSI



49 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE: Itisnot possible to define an array type with a variable amount of elements. Neither isit possible to
define an unlimited array with alower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Values may be
assigned individually by avalue list notation or indexed notation or more than one or al at once by avalue list notation.
When the value list notation is used, the first value of thelist is assigned to the first element of the array (the element
with index 0 or the lower bound if an index range has been given), the second value to the next element, etc. Elements
to be left out from the assignment shall be explicitly skipped in the list by using dash.

Indexed value notation can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations
given by either the length or the upper bound of the index. If the value of the element indicated by the index at the right-
hand of an assignment is undefined, this shall cause an error. Sending an array value with undefined elements shall
cause an error. All elementsin an array value that are not set explicitly, are undefined.

For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array dlices of
multi-dimensional arrays, i.e. when the number of indexes of the array value isless than the number of dimensionsin
the corresponding array definition, is allowed. Indexes of array sices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice correspondsto the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4:
MyArrayl[0] := 10;
MyArrayl[1] := 20;
MyArrayl[3]:= 30;

// or using an value list
MyArrayl:= {10, 20, -, 30};

MyArray4:= {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
// the array value is completely defined

var integer MyArray5[2] [3] [4] :=

{
{

{1, 2, 3, 4}, // assigns a value to MyArray5 slice [0] [0]
{s, 6, 7, 8}, // assigns a value to MyArray5 slice [0] [1]
{9, 10, 11, 12} // assigns a value to MyArray5 slice [0] [2]
/

}l/

{
{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} // assigns a value to MyArray5 slice [1]

end assignments to MyArray5 slice [0]

}i

MyArray4 [2] := {20, 20};
// yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};
MyArray5[1] := { {o, o, o, o}, {o, o, o, 0}, {0, 0, O, O}};
// vields {{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}},
// {{O, 0, 0, O}, {O, 0, 0, O}, {O, 0, 0, O}}}i

MyArray5[0] [2] :=
// yields {{{1,
// {{o

var integer MyArrayInvalid[2] [2];
MyArrayInvalid := { 1, 2, 3, 4 }

// causes an error as the dimension of the value notation

// does not correspond to the dimensions of the definition
MyArrayInvalid([2] := { 1, 2 }

// causes an error as the index of the slice should be 0 or 1

6.2.8  The default type

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults to capture recurring behaviour. Default references
are unique references to activated defaults. Such a unique default reference is generated by atest component when an
atstep is activated as a default, i.e. a default referenceis the result of an activate operation (see clause 20.5.2).

ETSI



50 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Default references have the special and predefined type default. Variables of type default can be used to handle
activated defaults in test components. The special value null represents an unspecific default reference, e.g. can be
used for the initialization of variables of default type.

Default references are used in deactivate operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to adefault variable in test component instance "al" of type "A" has no meaning in test component instance
"a2" of type"A".

The actual data representation of the default type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

6.2.9 Communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword message and procedure-based ports shall be
identified by the keyword procedure within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywords in (for the in direction), out (for the out
direction) and inout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, where in identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view
of the test component connected to the test system interface port.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of al its
inout and out parameters, its return type and its exception types are automatically part of the in direction of this
port. Whenever asignature is defined in the in direction for a procedure-based port, the types of al its inout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Syntactical Structure

M essage-based port:
type port PortTypeldentifier message "{"
{ ( in | out | inout ) { MessageType [ "," 1 }+ ";" }
n } n
Procedure-based port:
type port PortTypeIdentifier procedure "{"
{ (in | out | inout ) { Sigmature [ "," ] }+ ";" }
n } n
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.
Examples

EXAMPLE 1: Message-based port

// Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
// sent via and any integer value to be send and received over the port
type port MyMessagePortType message

in MsgTypel, MsgType2;
out MsgType3;
inout integer

ETSI



51 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 2:  Procedure-based port

// Procedure-based port which allows the remote call of the procedures Procl, Proc2 and Proc3.
// Note that Procl, Proc2 and Proc3 are defined as signatures
type port MyProcedurePortType procedure

out Procl, Proc2, Proc3

}

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting from
expressions. Thus, the list restricting what may be used on a message-based port issimply alist of type
names.

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port namesina
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall al have unique names.

PCO2 PCO3
MyMTC MyPTC p—
Il of MyMTCType f— Il of MyPTCType
PCO4
PCO1 PCO1

Figure 3: Typical components

It is also possible to declare constants, variables and timers local to a particular component type. These declarations are
visible to all testcases, functions and atsteps that run on an instance of the given component type. This shall be
explicitly stated using the runs on keyword (see clause 16) in the testcase, function or atstep header. Component type
definitions are associated with the component instance and follow the scope rules defined in clause 5.2. Each new
instance of a component type will thus have its own set of constants, variables and timers as specified in the component
type definition (including any initial values, if stated). Constants used in the constant expressions of type declarations
for variables, constants or ports shall meet with the restrictionsin clause 10, however constants used in the constant
expressions of initial values for variables, constants or timers do not have to obey these restrictions.

Syntactical Structure

type component ComponentTypeldentifier "{"
{ ( PortInstance
| VarInstance
| TimerInstance
| ConstDef ) }

n } n
Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables and timers during the creation of an instance of a component type. These instances can be used as the main
test component, as the test system interface or as a parallel test component. Every instance of a component type hasits
own fresh copy of the port, constant, variable, and timer instances defined in the component type definition.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

ETSI



52 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

EXAMPLE 1.  Component type with port instances only

type component MyPTCType

{

port MyMessagePortType PCO1, PCO4;
port MyProcedurePortType PCO2;
port MyAllMesssagesPortType PCO3

}
EXAMPLE 2:  Component type with variable, timer and port instance
type component MyMTCType

var integer MyLocallnteger;
timer MyLocalTimer;
port MyMessagePortType PCOl

1
EXAMPLE 3: Component type with port instance arrays

type component MyCompType

{

port MyMessageInterfaceType PCO[3]

port MyProcedurelInterfaceType PCOm[3] [3]

// Defines a component type which has an array of 3 message ports and a two-dimensional
// array of 9 procedure ports.

6.2.10.2 Reuse of component types
It is possible to define component types as the extension of other component types, using the extends keyword.

Syntactical Structure

type component ComponentTypeldentifier extends ComponentTypeIdentifier "{"
{ ( PortInstance
| VarInstance
| TimerInstance
| ConstDef ) }

n } n
Semantic Description

In such a definition, the new type definition is referred to as the extended type, and the type definition following the
extends keyword isreferred to as the parent type. The effect of this definition is that the extended type will implicitly
aso contain all definitions from the parent type. It is called the effective type definition.

It is allowed to have one component type extending several parent typesin one definition, which have to be specified as
acomma-separated list of typesin the definition. Any of the parent types may aso be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of all constant, variable, timer
and port definitions contributed by the parent types (determined recursively if a parent type is aso defined by means of
an extension) and the definitions declared in the extended type directly. The effective component type definition shall
be name clash free.

NOTE 1: Itisnot considered to be a different declaration and hence causes no error if a specific definitionis
contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by
its effective component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends
CT2, iscompatible with CT2, and test cases, functions and altsteps specifying CT2 in their runs on
clauses can be executed on ¢ (see clause 6.3.3).

ETSI



53 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

b)

©)

When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the parent types (directly or by means of extension). It is not
considered to be a name clash if a specific definition is contributed to the extended type via different extension
paths.

It is allowed to extend component types that are defined by means of extension, aslong as no cyclic chain of
definition is created.

Examples

EXAMPLE 1: A component type extension and its effective type definition

type component MyMTCType

{

}

var integer MyLocallInteger;
timer MyLocalTimer;
port MyMessagePortType PCO1

type component MyExtendedMTCType extends MyMTCType

{

}

var float MyLocalFloat;
timer MyOtherLocalTimer;
port MyMessagePortType PCO2;

// effectively, the above definition is equivalent to this one:
type component MyExtendedMTCType

{

}

/* the definitions from MyMTCType */
var integer MyLocallInteger;

timer MyLocalTimer;

port MyMessagePortType PCO1l

/* the additional definitions */
var float MyLocalFloat;

timer MyOtherLocalTimer;

port MyMessagePortType PCO2;

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

type component MTCTypeA extends MTCTypeB { /*

type component MTCTypeB extends MTCTypeC { /* .
type component MTCTypeC extends MTCTypeA { /* .. *x/
type component MTCTypeD extends MTCTypeD { /*

w */
. *x/

7

e

; // ERROR - cyclic extension
i

.x/ // ERROR - cyclic extension

EXAMPLE 3:  Component type extensions with name clashes

type component MyExtendedMTCType extends MyMTCType

}

var integer MyLocallInteger; // ERROR - already defined in MyMTCType (see above)
var float MyLocalTimer; // ERROR - timer with that name exists in MyMTCType
port MyOtherMessagePortType PCOl; // ERROR - port with that name exists in MyMTCType

type component MyBaseComponent { timer MyLocalTimer };
type component MyInterimComponent extends MyBaseComponent { timer MyOtherTimer };
type component MyExtendedComponent extends MyInterimComponent

timer MyLocalTimer; // ERROR - already defined in MyInterimComponent via extension

ETSI



54 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 4:  Component type extension from several parent types

type component MyCompB { timer T };
type component MyCompC { var integer T };
type component MyCompD extends MyCompB, MyCompC {}
// ERROR - name clash between MyCompB and MyCompC

// MyCompB is defined above

type component MyCompE extends MyCompB {
var integer MyVarl := 10;

}

type component MyCompF extends MyCompB {
var float MyVar2 := 1.0;
}

type component MyCompG extends MyCompB, MyCompE, MyCompF {
// No name clash.
// All three parent types of MyCompG have a timer T, either directly or via extension of
// MyCompB; as all these stem (directly or via extension) from timer T declared in MyCompB,
// which make this form of collision legal.
/* additional definitions here */

6.2.11 Component references
Component references are unique references to the test components created during the execution of atest case.

Syntactical Structure

system | mtc | self | VariableRef | FunctionInstance
Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
acreate operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
system (returns the component reference of the test system interface, which is automatically created when testcase
execution is started), mtc (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel £ (returns the component reference of the component in which self iscalled).

Component references are used in the configuration operations such as connect, map and start (see clause 21) to
set-up test configurations and in the £rom, to and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the special valuenull isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that a variable for handling
component references must use the corresponding component type name in its declaration.

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the create operation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theonly operations allowed on component references are assignment, equality and non-equality.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

ETSI



55 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

EXAMPLE 1:  Component references with component type variables
// A component type definition
type component MyCompType {
port PortTypeOne PCO1;
port PortTypeTwo PCO2

1
// Declaring one variable for the handling of references to components of type MyCompType

// and creating a component of this type
var MyCompType MyCompInst := MyCompType.create;

EXAMPLE 2:  Usage of component referencesin configuration operations
// referring to the component created above
connect (self:MyPCOl1, MyCompInst:PCO1) ;

map (MyCompInst:PCO2, system:ExtPCOl) ;
MyCompInst.start (MyBehavior (self)); // self is passed as a parameter to MyBehavior

EXAMPLE 3:  Usage of component referencesin from- and to- clauses
MyPCOl.receive from MyCompInst;

M;PCOZ.receive(integer:?) -> sender MyCompInst;
M;Pcol.receive(MyTemplate) from MyCompInst;

MyPCO2.send (integer:5) to MyCompInst;

EXAMPLE 4:  Usage of component references in one-to-many connections

// The following example explains the case of a one-to-many connection at a Port PCO1l

// where values of type M1l can be received from several components of the different types
// CompTypel, CompType2 and CompType3 and where the sender has to be retrieved.

// In this case the following scheme may be used:

var M1 MyMessage, MyResult;

var MyCompTypel MyInstl := null;
var MyCompType2 MyInst2 := null;
var MyCompType3 MyInst3 := null;

alt

] PCOl.receive(M1:?) from MyInst2 -> value MyMessage sender MyInst2 {}

{
[] PCOl.receive(M1:?) from MyInstl -> value MyMessage sender MyInstl {}
[
[] PCOl.receive(M1:?) from MyInst3 -> value MyMessage sender MyInst3 {}

}

MyResult := MyMessageHandling(MyMessage) ; // some result is retrieved from a function
if (MyInstl != null) {PCOl.send(MyResult) to MyInstl};
if (MyInst2 != null) {PCOl.send(MyResult) to MyInst2};
if (MyInst3 != null) {PCOl.send(MyResult) to MyInst3};

EXAMPLES: Usage of self

var MyComponentType MyAddress;
MyAddress := self; // Store the current component reference

ETSI



56 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 6: Usage of component arrays
// This example shows how to model the effect of creating, connecting and running arrays of
// components using a loop and by storing the created component reference in an array of

// component references.

testcase MyTestCase() runs on MyMtcType system MyTestSystemInterface

{

var integer i;
var MyPTCTypel MyPtc[11];
for (i:= 0; i<=10; 1i:=1i+1)
{
MyPtc[i] := MyPTCTypel.create;

connect (self:PtcCoordination, MyPtc[i] :MtcCoordination) ;
MyPtc [1i] .start (MyPtcBehaviour()) ;

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually by use of the addr ess data type. Thisisthe
type to use with port operations in order to address SUT entities.

Syntactical Structure

TemplateInstance
Semantic Description

The actual data representation of address isresolved either by an explicit type definition within the test suite or
externally by the test system (i.e. the address typeisleft as an open type within the TTCN-3 specification). This
allows abstract test cases to be specified independently of any real address mechanism specific to the SUT.

Explicit SUT addresses shall only be generated inside a TTCN-3 module if the type is defined inside the module. If the
typeis not defined inside the module, explicit SUT addresses shall only be passed in as parameters or be received in
message fields or as parameters of remote procedure calls.

In addition, the specia valuenull isavailable to indicate an undefined address, e.g. for the initialization of variables
of the address type.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Templatelnstance shall be of address type and can be an address type value, an address type variable, etc.

b) The address datatype shall only be used in the to, from and sender parts of receive and send operations of
ports mapped to the test system interface.

Examples

EXAMPLE:

// Associates the type integer to the open type address
type integer address;

// new address variable initialized with null
var address MySUTentity := null;

// receiving an address value and assigning it to variable MySUTentity
PCO.receive (address:*) -> value MySUTentity;

// usage of the received address for sending template MyResult
PCO.send (MyResult) to MySUTentity;

// usage of the received address for receiving a confirmation template
PCO.receive (MyConfirmation) from MySUTentity;

ETSI



57 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.2.13 Subtyping of structured types

TTCN-3 alows subtyping of structured types as givenin table 3.

6.2.13.1 Length subtyping of record ofs and set ofs
TTCN-3 permits constraining the number of elementsin instances of record of and set of types.

The 1ength keyword followed by avalue or arange within brackets and used between the record or set andthe
of keywords, restricts the allowed lengths of the given record of or set of type. The value or the bounds within
the brackets shall be non-negative integer values, except whenthe infinity keyword is used at he place of the upper
bound, in which case the maximum number of the elementsis not constrained.

Record of and set of type definitions may be used to define new record of or set of subtypes. In thiscase the
rules of the previous paragraph apply, except that the 1length keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictionsin clause 10.

EXAMPLE 1:  Length restrictions of record of and set of types

type record length(10) of integer MyRecordOfTypelO;
// is a record of exactly 10 integers

type record length(0..10) of integer MyRecordOfTypeO 10;
// is a record of a maximum of 10 integers

type record length(10..infinity) of integer MyRecordOfTypelOup;
// record of at least 10 integers

type record length(0..infinity) of integer MyRecordOfTypeOup;
// an unrestricted record of integer type

EXAMPLE 2:  Length subtyping of referenced record of types

type record of charstring StringArray;
// is an unlimited record of, each element shall be a charstring

type StringArray StringArray34 length(4 .. 5);

// is a record of 4 or 5 elements, each element is a charstring
// it is equivalent to

// type record length(4 .. 5) of charstring StringArray34a;

type StringArray34 StringArray34again length(4 .. 5);
// the same as StringArray34

type StringArray34 StringArrayé length(6) ;
// causes an error as record ofs with 6 elements are not legal values of StringArray34

EXAMPLE 3:  Length subtyping of referenced set of types

type record MyCapsule ({
set of integer mySetOfInt

}

type MyCapsule.mySetOfInt MySetOfIntSub length(5..10);
// unordered list of 5 to 10 integers

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the first parent type (see table 3).

Subtypes defined by alist subtyping restrict the allowed val ues of the subtype to the valuesin the list. In case of list
subtyping of record, set, record of, set of,union and anytype types, the list may contain both values and
subtypes of the parent types of the type being constrained. The collection of values denoted by the type(s) referenced in
the list become instances of the new subtype. All values of the expanded list (i.e. after resolving the type references)
shall be valid values of the first parent type.

ETSI



58 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

In case of enumerated types, the value list subtyping shall contain only values of the parent type.

EXAMPLE 1: List subtyping of record types

type record MyRecord {

integer f1 optional,
charstring f£f2,
charstring £3

}

type MyRecord MyRecordSubl (
{ f1 := omit, f2 := "user", f3 := "password" },
{ f1 := 1, £2 := "User", £3 := "Password" }
) // a valid subtype of MyRecord containing 2 values

type MyRecord MyRecordSub2 (

MyRecordSubl,
{ f1 := 2, £2 := "uname", £3 := "pswd" },
{ £f1 := 3, £2 := "Uname", £3 := "Pswd" }

) // a valid subtype MyRecord containing 4 values; notice that values of
// MyRecordSubl are identified by referencing MyRecordSubl

type MyRecordSubl MyRecordSub3 (

{ f1 := 1, £2 := "user", £3 := "password" },
{ f1 := 1, £2 := "User", £3 := "Password" }
) // empty type as { f1 := 1, f2 := "user", f3 := "password" } is not a legal value of

// MyRecordSubl (notice field f1)

EXAMPLE 2:  List subtyping of record of types
type record of charstring StringArray;

type StringArray StringArrayListl (
{ "aa" },
{ "bbb", "cc" },
{ nddd", "ee", "ff" }

); // valid subtype of StringArray

type StringArrayListl StringArrayList2 (
{ nga" },
{ "bbb", nean }

); // valid subtype of StringArrayListl

type StringArraylListl StringArrayList3 (
StringArrayList2,
{ nddd", "eem, "ffn }

); // valid, but equivalent to StringArrayListl

type StringArraylListl StringArrayList4 (

StringArrayList2,
{ ndddn, neen, nEEFN }
); // empty type as { "ddd", "ee", "fff" } is not a value of StringArrayListl

// (notice the extra character f in the third element)

EXAMPLE 3:  List subtyping of union types

type union MyUnion ({

integer cl,
charstring c2,
charstring c3

}i

type MyUnion MyUnionSubl (
{ c1 :=0 1},
{ c1 :=1}
); // a valid subtype of MyUnion containing two values

type MyUnion MyUnionSub2 (

MyUnionSubl,
{ c2 := "mine" },
{ e3 := "yours" }

); // a valid subtype of MyUnion containing four values; notice that values of
// MyUnionSubl are identified by referencing MyUnionSubl

type MyUnionSubl MyUnionSub3 (

{ c1 :=0 },
{ c1 :=2}

ETSI



59 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

); // causes an error as { cl := 2 } is not a value of MyUnionSubl

EXAMPLE 4:  List subtyping of enumerated types
type enumerated MyEnum { first, second, third, fourth, fifth };

type MyEnum EnumSubl ( first, second, third );
// a valid subtype of MyEnum

type EnumSubl EnumSub2 ( first, second ) ;
// a valid subtype of EnumSubl

type EnumSubl EnumSub3 ( first, second, fourth );
// causes an error as fourth is not a value of EnumSubl

type MyEnum EnumSub4 ( EnumSubl, fourth);
// causes an error as type references are not allowed in the value list of enumerated types

EXAMPLES5:  List subtyping of anytype

type anytype MyAnySubl (

{ integer := 5 },

{ boolean := false },

{ bitstring := '0011'B },
{ charstring := "mine" },
{ MyEnum := first }

); // a valid subtype of anytype, consisting of 5 values

type MyAnySubl MyAnySub2 (

{ integer := 5 },
{ boolean := false },
{ bitstring := '0011'B }

); // a valid subtype of MyAnySubl, consisting of 3 wvalues

type anytype MyAnySub3 (
MyAnySub2,
{ octetstring := 'FF'O }
); // a valid subtype of anytype, consisting of 4 values, 3 of which are defined
// by referring to MyAnySub2

type MyAnySubl MyAnySub4 (

{ integer := 5 },
{ boolean := false },
{ MyEnum := second }
); // causes an error as { MyEnum := second } is not a value of MyAnySubl

type MyAnySubl MyAnySub5 (

MyAnySub3,
{ MyEnum := first }
); // causes an error as { octetstring := 'FF'O } (defined via referencing MyAnySub3) is

// not a value of MyAnySubl

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs

A type restriction following the identifier of anewly defined record of or set of type (i.e. when the keywords
record and of or set and of are used in the definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is a basic type, the subtyping rulesin clause
6.1.2 shall apply. If the innermost type is referencing a structured type or anytype, the rulesin clauses 6.2.13.1 and
6.2.13.2 shall apply.

EXAMPLE 1:  Subtyping of basic innermost types of record ofs and set ofs

type record of charstring String23Array length(2 .. 3);
// is an unlimited record of, each element shall be a charstring of 2 or 3 characters

type record length(0..10) of charstring Stringl2Arrayl0 length(12) ;
// is a record of a maximum of 10 strings each with exactly 12 characters

type record of record of charstring Stringl2Array2D length(12);
// is a two-dimensional unlimited array of strings each with exactly 12 characters

ETSI



60 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

type set length(5) of set length(6) of charstring Stringl2Array2D56 length(12) ;
// is an unordered two-dimensional array of the size 5%6 strings, each with
// exactly 12 characters

const String23Array c_str23arr_a := { "aa", "bbb", "cc", "ddd", "ee", "ff" };
// valid, all charstrings are 2 or 3 characters long

const String23Array c_str23arr b := { "a", "bbbb", "cc", "ddd", "ee", "ff" };
// causes an error as "a" and "bbbb" are not 2 or 3 characters long

{

const Stringl2Array2D56 c_strl2arr2D56_a

{ "aa", "aaa", "bb", "bbb", "cc", "ccc" },
{ nddr, "ddd", "ee", "eee", "ffn, wfffn },
{ "gg", "ggg", "hh", "hhh", "ii", "iiiv },
{ njjn, njjjn, nkkn, wkkkm", wllw, nwlllw },
{ "mm", "mmm", "nn", "nnn", "oo", "ooo" }

}; // valid, a 5%*6 matrix of charstrings being 2 or 3 characters long
const Stringl2Array2D56 c_strl2arr2D56 b {
{ "a" , "aaa" , "bb" , l|bbbbl| , "CC" , "CCC"

’

{ ndd", "ddd", "ee", "eee", "ff", "Effn %,
{ "gg", "ggg", "hh", "hhh", "ii", "iiiv },
{ njjn, njjjn, nkkn, wkkkm", ©wllw, nwlllw },
{ "mm", "mmm", "nn", "nnn", "oo", "ooo", "pp" }

}; // causes an error as "a" and "bbbb" are not 2 or 3 characters long and
// the 5th inner record of has 7 elements

EXAMPLE 2:  Length subtyping of structured innermost types of record ofs

type record of String23Array String23Array45 length(4 .. 5);

// is a two-dimensional array, the first dimension is unlimited,

// the second dimension is restricted to 4 or 5 elements and each element
// is a charstring of 2 or 3 characters. It is equivalent to:

// type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);
const String23Array45 c_str23arrd5 a := {

{ "aa", "bbb", "cc", "ddd" },

{ neen, Wfffm, "gg", "hhh", m"iin }

}; // valid, 4 or 5 elements in the inner record of, all containing 2 or 3 charecters
const String23Array45 c_str23arr45 b

{ "aa" , "bbb", nean }
}; //causes an erroras there are only 3 elements in the inner record of
const String23Array45 c_str23arr45_c

{
{ "aa", "bbbb", neet, ngdan }
}; //causes an erroras "bbbb" contains 4 characters

type record length(0 .. 1) of String23Array String23Array0145 length(4 .. 5);

// is a two-dimensional array, the first dimension is limited to 0 or 1 elements,
// the second dimension is restricted to 4 or 5 elements, each element is a

// charstring of 2 or 3 characters.

const String23Array0145 c_str23arr0145 a :=
{ "aa", "bbb", neet, ndddr },
}; // a valid 1*4 array of charstrings, each of 2 or 3 charecters

const String23Array0145 c_str23arr0145 a :=
{ "aa", "bbb", "cc", "ddd" },
{ neen, nfffn, nggn, nhhhn, niqin }
}; // causes an error as there are two elements in the outer record of

const String23Array0145 c_str23arr0145 b :=

{ "ga" , "bbb", "cc" }
}; // causes an error as there are only 3 elements in the inner record of
const String23Array0145 c_str23arr0145 c :=

{ "aa", "bbbb", "cc", "dd" }

}; // causes an error as "bbbb" contains 4 characters
type record of String23Array45 String23Arrayé length(6) ;

// empty type as String23Array45 is restricted to 4 or 5 elements,
// thus length restriction 6 is outside the allowed range

ETSI



61 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.2.13.4 Mixing subtyping mechanisms

In the case of structured types and the special type anytype, it isforbidden to mix different subtyping mechanisms
(e.g. list and length) in the same definition.

6.3 Type compatibility

Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., iscalled value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which is to obtain the actual value of value "b" is called
type"A".

NOTE: Asaddress ismore apredefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an address type and to its derivatives as the rules were if the type was
defined with a name different from address.

6.3.1 Type compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type"B" resolvesto the same root type astype "A" (e.g. integer) and it does not violate subtyping (e.g.
ranges, length restrictions) of type"A".

EXAMPLE 1: Compatibility of integers

// Given
type integer MyInteger(l .. 10);

var integer x;
var MyInteger y;

// Then

y :=5; // is a valid assignment

X 1= y;

// is a valid assignment, because y has the same root type as x and no subtyping is violated
X := 20; // is a valid assignment

y = X;

// is NOT a valid assignment, because the value of x is out of the range of MyInteger

X :=5; // is a valid assignment

y = X;

// is a valid assignment, because the value of x is now within the range of MyInteger

EXAMPLE 2.  Compatibility of floats

// Given
type float PositiveFloats (0.0 .. infinity);

var PositiveFloats x;
var float y;

:= 5.0; // is a valid assignment

HE '
// is a valid assignment, because y has the same root type as x and no subtyping is violated

// Then
Y
x

:= -20.0; // is a valid assignment

1=y
/ causes an error, because the value of y is out of the range of PositiveFloats

R

:= not_a number; // is a valid assignment

=Y
/ causes an error, because the value not_a number is out of the range of PositiveFloats

~N XN

ETSI



62 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 3:  Compatibility of charstrings

//Given

type charstring MyChar length (1) ;

type charstring MySingleChar length (1) ;
var MyChar myCharacter;

var charstring myCharString;

var MySingleChar mySingleCharString := "B";

//Then

myCharString := mySingleCharString;

//is a valid assignment as charstring restricted to length 1 is compatible with charstring.
myCharacter := mySingleCharString;

//is a valid assignment as two single-character-length charstrings are compatible.

//Given

myCharString := "abcd";

//Then

myCharacter := myCharString[1];

//is valid as the r.h.s. notation addresses a single element from the string

//Given

var charstring myCharacterArray [5] := {"A", "™, n"Cc", "D", "E"}
//Then

myCharString := myCharacterArray[1l];

//is valid and assigns the value "B" to myCharString;

For variables, constants, templates etc. of charstring type, value'b' is compatible with auniversal
charstring type'A' unlessit violates any type constraint specification (range, list or length) of type "A".

For variables, constants, templates etc. of universal charstring type, value'b'iscompatible with a
charstring type'A'if al characters used in value 'b" have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type charstring and it does not violate any type constraint
specification (range, list or length) of type "A".

6.3.2 Type compatibility of structured types

In the case of structured types (except the enumerated type) avalue"b" of type "B" is compatible with type "A", if
the effective value structures of type "B" and type "A" are compatible, in which case assignments, instantiations and
comparisons are allowed.

6.3.2.1 Type compatibility of enumerated types

Enumerated types are only compatible to synonym types (see clause 6.4) and not compatible with other basic or
structured types.

6.3.2.2 Type compatibility of record and record of types

For record types the effective val ue structures are compatible if the number, and optional aspect of the fieldsin the
textual order of definition are identical, the types of each field are compatible and the value of each existing field of the
value "b" is compatible with the type of its corresponding field in type "A". The value of each field in the value "b" are
assigned to the corresponding field in the value of type"A™.

EXAMPLE 1:
// Given
type record AType
integer a(0..10) optional,
integer b(0..10) optional,
boolean c

ETSI



63 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

type record BType

integer a optional,
integer b(0..10) optional,
boolean c
!
type record CType // type with different field names
integer d optional,
integer e optional,
boolean £
1
type record DType // type with field c optional
integer a optional,
integer b optiomnal,
boolean c optional
1
type record EType ( // type with an extra field d
integer a optional,
integer b optional,
boolean c,
float d optional
1
var AType MyVarA := { - , true};
var BType MyVarB := { omit, 2, true};
var CType MyVarC := { 3, om1t true};
var DType MyVarD := { 4, 4, true};
var EType MyVarE := { 5, 5, true, omit};
// Then
MyVarA := MyVarB; // is a valid assignment,
// new value of MyVarA is ( a :=omitted, b:= 2, c:= true)
MyVarC := MyVarB; // is a valid assignment
// new value of MyVarC is ( d :=omitted, e:= 2, f:= true)
MyVarA := MyVarD; // is NOT a valid assignment because the optionality of fields does not
// match
MyVarA := MyVarE; // is NOT a valid assignment because the number of fields does not match
MyVarC := { d:= 20 };// actual value of MyVarC is { d:=20, e:=2,f:= true }
MyVarA := MyVarC // is NOT a valid assignment because field 'd' of MyVarC violates subtyping

// of field 'a' of AType

For record of types and arrays the effective value structures are compatible if their component types are compatible
and value"b" of type "B" does not violate any length subtyping of the record of type or dimension of the array of
type "A". Vaues of elements of the value "b" shall be assigned sequentially to the instance of type"A", including
undefined elements.

Two array types are compatible if their corresponding record of types are compatible.

record of types and single-dimension arrays are compatible with record typesif their effective value structures are
compatible and the number of elements of value "b" of the record of type"B" or the dimension of array "b" is
exactly the same as the number of elements of the record type"A". Optionality of the record typefields has no
importance when determining compatibility, i.e. it does not affect the counting of fields (which means that optional
fields shall always be included in the count). Assignment of the element values of the record of type or array to the
instance of arecord type shall be in the textual order of the corresponding record type definition, including
undefined elements. If an element with an undefined value is assigned to an optional element of the record, thiswill
cause the optional element to be omitted. An attempt to assign an element with undefined value to a mandatory element
of the record shall cause an error.

NOTE: If therecord of type has no length restriction or the length restriction exceeds the number of elements
of the compared record type and the index of any defined element of the record of vaueislessor
equal than the number of elements of the record type minus one, than the compatibility requirement is

aways fulfilled.

ETSI



6.3.2.3

EXAMPLE 2:

// Given

type record HType
integer a,
integer b optional,
integer c

}

type record of integer IType

var HType MyVarH := { 1, omit, 2};

var IType MyVarI;
var integer MyArrayVar [2];

// Then

MyArrayVar := MyVarH;

64

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Values of arecord type can also be assigned to an instance of arecord of type or asingle-dimension array if no
length restriction of the record of typeisviolated or the dimension of the array is more than or equal to the number
of elements of the record type. Optional elements missing in the record value shall be assigned as elements with
undefined values.

// is a valid assignment as type of MyArrayVar and HType are compatible

// is a valid assignment as the types are compatible and no subtyping is violated

MyVarI := MyVarH;
MyVarI := { 3, 4 };
MyVarH := MyVarI;

// is NOT a valid assignment as the mandatory field

'c' of Htype receives no value

Type compatibility of set and set of types

set typesare only type compatible with other set typesand set of types. For set typesand for set of typesthe
same compatibility rules shall apply asto record and record of types.

NOTE 1: Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fields in the type definition is decisive.

NOTE 2: In set vauesthe order of fields may be arbitrary, however this does not effect type compatibility asfield
names unambiguously identify, which fields of the related set type correspond to which set value

fields.

EXAMPLE:

// Given

type set FType {
integer a optional,
integer b optional,
boolean c

}

type set GType ({
integer d optional,
integer e optional,
boolean f

}

var FType MyVarF := { a:=1, c:=true };

var GType MyVarG := { f:=true, d:=7};

// Then

MyVarF := MyVarG; // is a valid assignment as types FType and GType are compatible
MyVarF := MyVarA; // is NOT a valid assignment as MyVarA is a record type

ETSI



65 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.3.24 Type compatibility of union types

union types are only type compatible with other union types. A union value "a" of union type"A" is compatible with
union type "B" if the alternative selected in "a" has a corresponding alternative with identical namein "B" and the value
of the selected aternativein "a" is compatible to the type of the corresponding alternativein "B".

EXAMPLE:

type union Ul {integer i};
type union U2 {integer i, boolean b};

var Ul ul := {i := 1};
var U2 u2 := ul; // correct
ul:= u2; // correct as the alternative i is selected in u2 and is compatible
// to i in Ul
u2:= {b := true};
ul:= u2; // incorrect as ul has no alternative b
var anytype x := ul; // incorrect as the anytype is not a union type.
6.3.2.5 Type compatibility of anytype types

anytype types are only type compatible with other anytype types. An anytype value "a" of anytypetype"A" is
compatible with anytype type "B" if the alternative selected in "a" has a corresponding alternative with identical name
in"B" and the value of the selected alternativein "a' is compatible to the type of the corresponding aternativein "B".
Identical alternative namesin this case mean the name of a TTCN-3 basic type or the name of the same user defined
type definition (considering also the module in which the type is defined).

EXAMPLE:

module A
type integer I (0..2);
type float F;
type anytype Atype //anytype composed of TTCN-3 built-in basic types, I, and F

}

module B {
type integer I (0..2);
type anytype Atype

}

module C
import from A all;
import from B all;
type union U ({
integer I (0..2)
}

control

var A.Atype aa;

var A.Atype aal := { I := 1 }

var A.Atype aaF := { F := 1.0 }

var B.Atype ba := { integer := 1 }

var B.Atype bal := { I :=1 }

var Uu := { I :=1 }
aa := ba; // correct, the value of aal becomes { integer := 1 }
aa := baI; // incorrect, type B.I is not present in the anytype A.Atype
aa := u; // incorrect, type of u is not anytype but a user defined union type
ba := { float := 1.0 }; // correct, assigning a literal value
ba := aal; // incorrect, type A.I is not present in the anytype B.Atype
ba := aaF; // incorrect, type A.F is not present in the anytype B.Atype

ETSI



66 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

6.3.2.6 Compatibility between sub-structures

The rules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.

EXAMPLE:
// Given
type record JType
HType H,

integer b optional,
integer c

}

var JType MyVard

// If considering the declarations above, then

MyVarJd.H := MyVarH;

// is a valid assignment as the type of field H of JType and HType are compatible

MyVarI := MyVardJ.H;
// is a valid assignment as IType and the type of field H of JType are compatible

6.3.3  Type compatibility of component types
Type compatibility of component types has to be considered in two different conditions:

1) Compatibility of acomponent reference value with a component type (e.g. when passing a component
reference as an actual parameter to afunction or an atstep or when assigning a component reference valueto a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if al definitions of "A" have identical definitionsin"B".

2)  Runson compatibility: afunction or altsteps referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if al the definitions of "A" have identical definitionsin
"B".

Identity of definitionsin"A" with definitions of "B" is determined based on the following rules:
a)  For port instances, both the type and the identifier shall be identical.

b)  For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

¢) For variable instances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variables this means that either the values are missing in both definitions or are the same).

d) For loca template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.3.4  Type compatibility of communication operations

The communication operations (see clause 22) send, receive, trigger, call, getcall, reply, getreply
and raise are exceptionsto the weaker rule of type compatibility and require strong typing. The types of values or
templates directly used as parameters to these operations must also be explicitly defined in the associated port type
definition. Strong typing also appliesto storing the received value, address or component reference during areceive
or trigger operation.

EXAMPLE:
type record MyRec {...} // user defined type
type MyRec MyRecAlias; // a type alias

template MyRecAlias t MyRecAlias:= {...} // a template of the alias type

connect (myComp:P1l myComp:P2) // two connected PTCs via ports that can transport
// the user-defined and the alias type

ETSI



67 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Pl.send (t_MyRecAlias); // sending of template of alias type
P2.receive (MyRec:?);

// shall cause an error as the transmitted template is of the alias type and
// not of the user-defined type

var MyRec r;

P2.receive (MyRecAlias:?) -> value x;
// shall cause an error as also storing the value requires strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

// To convert an integer value to a hexstring value use the predefined function int2hex
MyHstring := int2hex (123, 4);

6.4 Type synonym

A type can be defined as a synonym to another type. Type synonyms can be defined for all kinds of types. Synonym
types are compatible.

EXAMPLE:

type MyTypel MyType2; // MyType2 is synonym to MyTypel

7 Expressions

TTCN-3 alows the specification of expressions using the operators defined in clause 7.1.

Syntactical Structure

SingleExpression |
w{m { ( FieldReference ":=" ( Expression | "-" )) [","] } "}" | // compound expression
w{" [ { ( Expression | "-" ) [","] } 1 "} // compound expression

Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have areturn clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

Compound expressions are used for expressions of array, record, record of and set of types.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Operands of operators used in expressions shall be completely initialized.
b)  Theroot types of the operands shall be the types specified for the appropriate operand.

This means also that all fields and elements of structured types referenced in an expression shall contain compl etely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or contain omi t.

Examples
(x + y - increment (z)) *3 // single expression
{ a:= 1, b:= true } // compound expression, field expression list
{ 1, true } // compound expression, value list

ETSI



68 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

7.1 Operators

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) list operator;
c) relational operators;
d) logical operators;
€)  bitwise operators;
f)  shift operators,
g) rotate operators.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a)  Valuesused in operators shall be completely initialized.

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal 1=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xor4b
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

The precedence of these operatorsis shown in table 6. Within any row in thistable, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

ETSI



69 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xor4b
Binary ordb
Binary <<, >> <@, @>
Binary <, >, <=, >=
Binary == 1=
Unary not
Binary and
Binary xor
Lowest  |Binary or

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of integer values (including derivations of integer) or floating-
point numbers (including derivations of £1loat, containing numeric values only), except for mod and rem which shall
be used with integer (including derivations of integer) typesonly.

NOTE: Thespecial float valuesinfinity, -infinity andnot a number are not to be used with
arithmetic operators.

With integer types, the result type of arithmetic operationsis integer. With float types, the result type of
arithmetic operationsis float.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the

plus operator is the value of the operand, i.e. a positive value if the operand val ue was positive and a hegative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) integer valuesgivesthewhole integer part of the value resulting from dividing the first integer by
the second (i.e. fractions are discarded);

b) numeric £loat valuesgivesthe £loat value resulting from dividing the first £1loat by the second (i.e.
fractions are not discarded).

The operators rem and mod compute on operands of type integer and have aresult of type integer. The
operationsx rem y and x mod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operands y. For positive x and y, both x rem v and x mod y have the same result but for
negative arguments they differ.

Formally, mod and rem are defined as follows:

xremy =X -y * (x/y)

xmod y = x rem |y]| when x >= 0
=0 when x <0 and x rem |y| = 0
= |y| + x rem |y]| when x <0 and x rem |y| < 0

ETSI



70 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
x mod 3 0 1 2 0 1 2 0
xrem3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, record of, set of, or array of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE: Incase of thelist types, both the outer type (i.e. record of, set of or array) and theiterated inner
type need to have the same root type in a recursive manner.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B

7.1.3 Relational operators

The predefined relational operators are equality (==), lessthan (<), greater than (>), non-equality to (! =), greater than
or equal to (>=) and lessthan or equal to (<=). Theresult type of all these operationsisboolean.

Therelational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of type integer (including derivations of integer), £loat (including derivations of £loat),
or instances of the same enumerated type. It is not allowed to compare instances of different root types.

Operands of equality (==) and non-equality (!=) shall be values of the same root type and the val ues being compared
shall obey the following rules. Thisimplies that instances of types not mentioned below shall not be operands of
equality and non-equality.

NOTE: Asaddress ismore apredefined type name than a distinct type with its own properties, the same rules
apply to an address type and to its derivatives as the rules were if the type was defined with a name
different from address.

. Two integer values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

e  Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinc values (e.g. they are encoded differently in some standardized languages) and minus
zero isless than plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
gpecial values -infinity, infinity andnot_a number areequa to themselves only. The special
value -infinity islessthan any other foat value. The specia value infinity isgreater than any
numerical float valuesand -infinity. The special valuenot a number isgreater than any other float
value (including infinity).

e  Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at al positions are the same.

. For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

. Two record values, set values, record of values or set of values are equal if and only if their effective value
structures are compatible (see clause 6.3) and the actual values of al corresponding fields are equal. record
values may also be compared to record of values and set valuesto set of values. In these cases the same rule
applies asfor comparing two record or set values.

ETSI



71 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

. Vaues of the same union type, and values of different union typesin which at least one of the alternativesis
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible alternative is
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative isidentical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal .

e  Values of the same or any two anytype types can be compared. For anytype values the same rule apply asto
union values, with the addition that names of types defined with the same name in different modules do not
denote the same name of the selected alternatives.

e  Two default or two component values are equal if and only if they contain the same value (i.e. they designate
the same default or test component, independent of the actual state of the denoted object).

EXAMPLE:
// Given
type set s1
integer al optional,
integer a2 optional,
integer a3 optional
i
type set s2
integer bl optional,
integer b2 optional,
integer b3 optional
Vi
type set S3 {
integer cl optional,
integer c2 optional,
Vi
type set of integer SI;
type union Ul
integer di,
integer d2,
Vi
type union U2
integer el,
integer e2,
Vi
type union U3 {
integer di,
integer d2,
boolean d3
i
// And
const S1 sl := { al := 0, a2 := omit, a3 := 2 };
// Notice that the order of defining values of the fields does not matter
const S2 s2a := { bl := 0, b3 := 2, b2 := omit };
const S2 s2b := { b2 := 0, b3 := 2, bl := omit };
const S3 s3 := { cl :=0, c2 :=2 };
var SI v si:= {0, -, 2 };
const ST si := {0, 2 };
const Ul wul := { dl:= 0 };
const U2 u2 := { el:=0 };
const U3 u3; := { di:= 0 };
// Then
sl == s2a;
// returns true
sl == s2b;

// returns false, because neither al nor a2 are equal to their counterparts

// (the corresponding element is not omitted)
sl == s3;

// returns false, because the effective value structures of sl and s3 are not compatible
sl == v_si;

// causes test case error as v_si is not completely initialized

// (2nd element is left uninitialized)
sl == si;

ETSI



72 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

// returns false, as the counterpart of the omitted a2 is 2,
// but the counterpart of a3 is undefined
s3 == si;
// returns true
ul == u2;
// causes error as Ul and U2 have no common subset of alternatives
ul == u3;
// returns true, as alternatives with the same names are chosen and
// the actual values in the selected alternatives are equal

7.1.4 Logical operators

The predefined boolean operators perform the operations of negation, logical and, logical or and logical xox. Their
operands shall be of root type boolean. The result type of logica operationsisboolean.

Thelogical not isthe unary operator that returns the value true if its operand was of value £alse and returnsthe
value false if the operand was of value true.

Thelogical and returnsthe value true if both its operands are true; otherwiseit returnsthe value false.

Thelogica or returnsthe value true if at least one of its operandsis true; it returnsthe value £alse only if both
operands are false.

Thelogica xor returnsthe value true if one of itsoperandsis true; it returnsthe value false if both operands are
false orif both operands are true.

Short circuit evaluation for boolean expressionsis used, i.e. the evaluation of operands of logical operatorsis stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto £alse, then the right
argument is not evaluated and the whole expression evaluatesto false. In the case of the or operator, if the left
argument evaluates to true, then the right argument is not evaluated and the whole expression evaluates to true.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and bitwise xor.
These operators are known asnot4b, and4b, or4b and xor4b respectively.

NOTE: Toberead as"not for bit", "and for bit" etc.

Their operands shall be of root type bitstring, hexstring or octetstring. Inthe case of and4b, or4b and
xor4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 bit is
settoOand aOhitissetto 1. That is:

not4b 'l1'B gives '0'B
not4b '0'B gives '1'B

EXAMPLE 1.

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'ESA'H
not4b '01A5'O gives 'FE5A'O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisalif both bits are set to 1, otherwise the value for the resulting bit isO. That is:

'1'B and4b '1'B gives '1l'B

'1'B and4b '0'B gives '0'B

'0'B and4b '1'B gives '0'B

'0'B and4b '0'B gives '0'B

ETSI



73 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 2:

'1001'B and4b '0101'B gives '0001'B
'B'H and4b '5'H gives '1'H
'FB'O and4b '15'0 gives '11'0

The bitwise or4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bit is 1. That is:

'1'B or4b 'l1'B gives '1l'B

'1'B or4b '0'B gives 'l1l'B

'0'B or4b '1'B gives 'l1l'B

'0'B or4b '0'B gives '0'B

EXAMPLE 3:

'1001'B or4b '0101'B gives '1101'B
'9'H or4b '5'H gives 'D'H
'A9'0 or4b 'F5'0O gives 'FD'O

The bitwise xor4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bitsare set to 0 or if both bits are set to 1, otherwise the value for the resulting bit is 1. That is:

'1'B xor4b 'l1'B gives '0'B

'0'B xor4b '0'B gives '0'B

'0'B xor4b '1'B gives '1l'B

'1'B xor4b '0'B gives '1l'B

EXAMPLE 4:
'1001'B xor4b '0101'B gives '1100'B

'9'H xor4b 'S5'H gives 'C'H
'39'0 xor4b '15'0 gives '2C'O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of root type bitstring, hexstring or octetstring. Their right-hand operand shall be a non-negative
integer. Theresult type of these operators shall be the same as the root type of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thenthe shift unit appliedisl bit;
b) hexstring then the shift unit applied is 1 hexadecimal digit;
C) octetstring thenthe shift unit appliedis1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1.

'111001'B << 2 gives '100100'B
'12345'H << 2 gives '34500'H
'1122334455'0 << (1+1) gives '3344550000'0O

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, azero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand)
isinserted from the left-hand side of the left operand.

ETSI



74 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 2:
'111001'B >> 2 gives '001110'B

'12345'H >> 2 gives '00123'H
'1122334455'0 >> (1+1) gives '0000112233'0

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@) and rotate right (@>) operators. Their left-hand operand
shall be of root typebitstring, hexstring, octetstring, charstring, universal charstring,
record of, or set of. Their right-hand operand shall be anon-negative integer. The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE: Please note that the root types of arraysisrecord of, therefore arrays are allowed as | eft-hand
operands of rotate operators.

The rotate operators behave differently based upon the type of their |eft-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit appliedisl bit;

b) hexstring then the rotate unit applied is 1 hexadecimal digit;

C) octetstring thentherotate unit appliedisl octet;

d) charstringoruniversal charstring then the rotate unit applied isone character;
€) record of, set of, Or array thentherotate unit applied isone element.

Therotate left (<@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

EXAMPLE 1:

'101001'B <@ 2 gives '100110'B

'12345'H <@ 2 gives '34512'H

'1122334455'0 <@ (1+2) gives '4455112233'0
"abcdefg" <@ 3 gives "defgabc"

Therotateright (@>) operator accepts two operands. It rotates the left-hand operand by the number of shift units to the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or el ements)
are re-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @> 2 gives '011000'B

'12345'H @> 2 gives '45123'H

'1122334455'0 @> (1+2) gives '3344551122'0
"abcdefg" @> 3 gives "efgabcd"

7.2 Field references and list elements

Within expressions, fields of record and set types are referenced with the dot notation " . £ield". Elements of record
of, set of, array and string types are referenced with the index notation " [index] ". Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

ETSI



75 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

8 Modules

The principal building blocks of TTCN-3 are modules. A module may define afully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module consists of
a (optional) definitions part, and a (optional) module control part.

NOTE: Theterm test suite is synonymous with a complete TTCN-3 module containing test cases and a control
part.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module

A module is defined with the keyword module.

NOTE 1: Thetreatment of TTCN-3 modulesin files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

module ModuleIdentifier [ language FreeText { "," FreeText } ] "{"
[ ModuleDefinitionsPart ]
[ ModuleControlPart ]

n } n
Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitionsin a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.
NOTE 2: The moduleidentifier istheinformal text name of the module.

In addition, a module specification can carry an optional attribute identified by the Language keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

"TTCN-3:2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
"TTCN-3:2003" - to be used with modules complying with version 2.2.1 of the present document (see annex H).
"TTCN-3:2005" - to be used with modules complying with version 3.1.1 of the present document (see annex H).
"TTCN-3:2007" - to be used with modules complying with version 3.2.1 of the present document (see annex H).
"TTCN-3:2008" - to be used with modules complying with version 3.3.2 of the present document (see annex H).
"TTCN-3:2008 Amendment 1" - to be used with modules complying with version 3.4.1 of the present document
(see annex H).

"TTCN-3:2009" - to be used with modules complying with version 4.1.1 of the present document (see annex H).
"TTCN-3:2010" - to be used with modules complying with the present document.

Furthermore, the optional attribute identified by the language keyword may identify package versions being used by
this module. The package tags are defined in ES 202 781 [i.12], ES 202 782 [i.15], ES 202 784 [i.13], and
ES 202 785 [i.14]. The language identifier and the package identifier are to be written as a comma-separated list.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

module MyTestSuite language "TTCN-3:2003"

{.)

ETSI



76 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

8.2 Module definitions part

The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visibility rules are given in clause 8.2.5. Scope rules for declarations made in the modul e definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined ina TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible module definitions may be imported by other modules.

Syntactical Structure

{

[ Visibility 1 (
TypeDef |
ConstDef |
TemplateDef |
ModuleParDef |
FunctionDef |
SignatureDef |
TestcaseDef |
AltstepDef |
ImportDef |
GroupDef |
ExtFunctionDef |
FriendDef

) [ withStatement ]

[ n,.n ]

b

Semantic Description
Definitions in the modul e definitions part may be made in any order.

Such definitions, i.e. top level definitions outside of other scope units, are globally visible within the module. They may
be used elsewhere in the module. Thisincludes identifiers imported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in the control part, test cases,
functions, altsteps or component types.

TTCN-3 does not support the declaration of variablesin the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in a test component type may be used by all test cases, functions etc.
running on components of that component type and variables defined in the control part provide the ability to keep their
values independently of test case execution.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
module MyModule
{ // This module contains definitions only
const integer MyConstant := 1;

type record MyMessageType { .. }

function TestStep(){ .. }

8.2.1 Module parameters
Module parameters define a set of values that are supplied by the test environment at run-time. Module parameters do

not change their value during test execution. They can be used on right hand side of assignments, in expressions, in
actual parameters, and in template definitions, but not within type definitions.

ETSI



77 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Syntactical Structure
Single type, single module parameter form:
[ Visibility ] modulepar ModuleParType ModuleParIdentifier [ ":=" ConstantExpression ] ";"

Single type, multiple module parameter form:

[ Visibility ] modulepar ModuleParType
{ ModuleparIdentifier [ ":=" ConstantExpression ] "," }
ModuleParIdentifier [ ":=" ConstantExpression ] ";"

Semantic Description
Module parameters behave as global constants at run-time.

Module parameters alow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword modulepar.

It is allowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can merely be assigned at the place of the declaration of the module parameter.

If the test system does not provide an actual run-time value for a module parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system. Actual run-time values shall be literals
only.

Visible module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can beinitialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an
optional attribute withthevalue"implicit omit" (seeclause 27.7) shal be associated with it either directly or
viathe attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a)  During test execution these values shall be treated as constants.
b) Module parameters shall not be of port type, default type or component type.

¢) A module parameter shall only be of type addressif the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

€)  Morethan one occurrence of module parameters declaration is allowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f)  The constant expression for the default value of a module parameter shall respect the limitations given in
clause 16.1.4.

g) Module parameters shall not be used in type or array definitions.

Examples

module MyTestSuiteWithParameters

{
// single type, single module parameter, which is per default public
modulepar boolean TS Par0 := true;

// single type, multiple module parameters with an explicit public visibility
public modulepar integer TS Parl, TS Par2 := 1 + char2int("a");

ETSI



78 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

8.2.2 Groups of definitions

In the modul e definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the moduleif required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure
[ public ] group GroupIdentifier "{"

{ Modulepefinition [ ";" 1 }
n n
1

Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This allows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to al elements of a group (see clause 27). Import statements may import groups so that al visible
elements of a group are imported (see clause 8.2.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiersand all group identifiers of subgroups of a single group shall be unique.

b) Only public visibility can be defined for groups as they are always public.
Examples
module MyModule
}/ A collection of definitions
group MyGroup {

const integer MyConst:= 1;

type record MyMessageType { .. };

group MyGroupl { // Sub-group with definitions
type record AnotherMessageType { .. };
const boolean MyBoolean := false

}

// A group of altsteps
group MyStepLibrary {
group MyGroupl { // Sub-group with the same name as the sub-group with definitions
altstep MyStepll() { .. }
altstep MyStepl2() { .. }

altstep MyStepln() { .. }
1
group MyGroup2 {
altstep MyStep21() { .. }
altstep MyStep22() { .. }

altstep MyStep2n() { .. }

}

// An import statement that imports MyGroupl within MyStepLibrary
import from MyModule {
group MyStepLibrary.MyGroupl

ETSI



79 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

8.2.3 Importing from modules

It is possible to re-use visible definitions specified in different modules using the import statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default public (see clause 8.2.5).

NOTE: Groupsarepublic only. Importing agroup meansthat only the visible elements of the group are being
imported.

8.2.3.1 General format of import
Animport statement can be used anywhere in the module definitions part.

Syntactical Structure

[ Visibility ] import from ModuleId

(
( all [ except "{" ExceptSpec "}" 1 )

|
( "{" ImportSpec "}" )
)
[ n,.n ]

Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has a name
(defines the identifier of the definition, e.g. afunction name), a specification (e.g. atype specification or asignature of a
function) and in the case of functions, atsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

EXAMPLE 1a
Name Specification Behaviour description
function MyFunction |(inout MyTypel MyPar) return MyType2 {
runs on MyCompType const MyType3 MyConst := ..;
: // further behaviour
Specification Name Specification
type record MyRecordType {
fieldl MyType4,
field2 integer
}
Specification Name Specification
template |MyType5 MyTemplate =
fieldl := 1,
field2 := MyConst, // MyConst is a module constant
field3 := ModulePar // ModulePar is module parameter
}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to beinvisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

ETSI



80 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function |MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordType |[fieldl, field2 MyType4, integer
template |MyTemplate MyType5, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: Theloca definitions column refersto identifiers only that are newly defined in the importable definition.
Values assigned to individua fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: Thereferenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyTypeb, i.e. they are referenced via MyType5b.

Referenced definitions are also importable definitions, i.e. the source of areferenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all)
e enumerated type Concrete values
e structured type Field names, nested type Field types
definitions
e port type Message types, signatures
e component type Constant names, variable names, |Constant types, variable types, port types
timer names and port names
Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
Data Template Parameter names Template type, parameter types, constants, module
parameters, functions
Signature template Signature definition, constants, module parameters
functions
Function Parameter names Parameter types, return type, component type
(runs on-clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (runs
on-clause)
Test case Parameter names Parameter types, component types (runs on- and
system- clause)

NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN-3 import mechanism distingui shes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier

module A {
type record MyRecl (
integer fieldl,

charstring field2

}
}

module B {
import from A all;

ETSI




81 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

type record MyRec2 ({
MyRecl myFieldl,
// "myFieldl" is the local definition, "MyRecl" is a referenced definition;
// the name "MyRecl" shall be imported in this case as is directly referenced
boolean myField2
1
1

module C {
import from B all;
const MyRec2 t MyRec2 := {
myFieldl := { fieldl := 5, field2 := "A" },

// to define myFieldl of MyRec2 the name "MyRecl" is not needed, the
// information necessary for the usage is its type information,
// i.e. names and types of its fields fieldl and field2
// which is embeddded in the imported definition of MyRec2
myField2 := true

}
}

If an imported definition has attributes (defined by means of awi th statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

The use of import on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All import statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by adot (".").

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Animport statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

b)  Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at alower scope (e.g. local constants defined in afunction) shall not
be imported.

c) A definition isimported together with its name and all local definitions.

NOTE5: A loca definition, e.g. afield name of a user-defined record type, has only meaning in the context of the
definitionsin which it is defined, e.g. afield name of arecord type can only be used to access afield of
the record type and not outside this context.

d) A definition isimported together with al information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If amodule A imports a definition from module B that uses a type reference defined in module C, the
corresponding information necessary for the usage of that type is automatically imported into module A.
Identifiers of referenced definitions are not automatically imported.

ETSI



€)

f)

9)

h)

82 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

If the referenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly from its source module or indirectly by importing the import statements of a module importing
it (see clause 8.2.3.7).

When importing a function, altstep or test case the corresponding behaviour specifications and al definitions
used inside the behaviour specifications remain invisible for the importing module.

The language specification of the import statement shall not override the language specification of the
importing module.

The language specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided alanguage specification is defined

in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

Examples

EXAMPLE 1.  Selected import examples

module MyModuleA

{

}

// Scope of the imported definitions is global to MyModuleA
import from MyModuleB all; // import of all definitions from MyModuleB

import from MyModuleC ({ // import of selected definitions from MyModuleC
type MyTypel, MyType2; // import of types MyTypel and MyType2
template all // import of all templates

}
function MyBehaviourC()

{

// import cannot be used here
1
control

{

// import cannot be used here

EXAMPLE 2:  Use of imported definitions and visibility of definitions referenced by them

module ModuleONE {

modulepar integer ModParl := ..;

type record RecordType T1 {
integer Fieldl T1,

}

type record RecordType T2 {
RecordType_ T1 Fieldl T2,

const integer MyConst := ..;

template RecordType T2 Template T2 (RecordType Tl TempPar T2):= { // parameterized template
Fieldl T2 := ..

}

} // end module ModuleONE

module ModuleTWO {

import from ModuleONE {
template Template_ T2
}

ETSI



83 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

// Only the names Template T2 and TempPar T2 will be visible in ModuleTWO. Please note, that
// the identifier TempPar T2 can only be used when modifying Template T2. All information

// necessary for the usage of Template T2, e.g. for type checking purposes, are imported

// for the referenced definitions RecordType T1, Fieldl T2, etc., but their identifiers are

// not visible in ModuleTWO.

// This means, e.g. it is not possible to use the constant MyConst or to declare a

// variable of type RecordType Tl or RecordType T2 in ModuleTWO without explicitly importing
// these types.

import from ModuleONE {
modulepar ModPar2
1
// The module parameter ModPar2 of ModuleONE is imported from ModuleONE and

// can be used like an integer constant

} // end module ModuleTWO

module ModuleTHREE {
import from ModuleONE all; // imports all definitions from ModuleONE
type port MyPortType {

inout RecordType T2 // Reference to a type defined in ModuleONE
1

type component MyCompType {
var integer MyComponentVar := ModPar2;
// Reference to a module parameter of ModuleONE

}

function MyFunction () return integer ({
return MyConst // Reference to a module constant of ModuleONE
1

testcase MyTestCase (out RecordType T2 MyPar) runs on MyCompType {

MyPort .send (Template T2); // Sending a template defined in ModuleONE

}

} // end ModuleTHREE

module ModuleFOUR {
import from ModuleTHREE {

testcase MyTestCase

// Only the name MyTestCase will be visible and usable in ModuleFOUR.

// Type information for RecordType T2 is imported via ModuleTHREE from ModuleONE and
// Type information for MyCompType is imported from ModuleTHREE. All definitions

// used in the behaviour part of MyTestCase remain hidden for the user of ModuleFOUR.

} // end ModuleFOUR

EXAMPLE 3: Handling of name clashes
module MyModuleA {
type bitstring MyTypeA;
import from SomeModuleC {
type MyTypeA, // Where MyTypeA is of type character string
MyTypeB // Where MyTypeB is of type character string
}
control

var SomeModuleC.MyTypeA MyVarl := "Test String"; // Prefix must be used
var MyTypeA MyVar2 := '10110011'B; // This is the original MyTypeA

ETSI



84 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

var MyTypeB MyVar3 := "Test String"; // Prefix need not be used ..
var SomeModuleC.MyTypeB MyVar3 := "Test String"; // .. but it can be if wished

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing a type that is already
defined locally, even with the same name, would lead to two different types being available in the
module.

8.2.3.2 Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of
single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

Syntactical Structure

[ Visibility ] import from ModuleId "{"

{
(

( type { TypeDefIdentifier [Lv,m1 1}
( template { TemplateIdentifier [ S D
( const { constIdentifier L1}
( testcase { TestcaseIdentifier L1} |
( altstep { AltstepIdentifier L1} |
( function { FunctionIdentifier [ S A
( signature { SignatureIdentifier [ I D
( modulepar { ModuleParIdentifier L, 1 3

[ n H n ]
1
n } n [ nen ]
Semantic Description
See clause 8.2.3. Import of an invisible definition shall cause an error.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it isto be imported and shall be visible
to the importing module.

b) Seetherestrictions givenin clause 8.2.3.

Examples

import from MyModuleA ({
type MyTypel // imports one type definition from MyModuleA only
}

import from MyModuleB {

type MyType2, Mytype3, MyType4; // imports three types,
template MyTemplatel; // imports one template, and
const MyConstl, MyConst2 // imports two constants
1
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

ETSI



85 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

It isallowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the
exception list within apair of curly brackets following the except keyword. The all keyword is also allowed to be
used in the exception list; this will exclude all definitions of the same kind from the import statement.

Syntactical Structure

[ Visibility ] import from ModuleId "{"

{

( group { FullGroupIdentifier [ except "{" ExceptSpec "}" 1 [ "," 1 })
[ n ’. n ]
1
n } nopon Pl ]
Semantic Description

The effect of importing agroup isidentical to an import statement that lists al visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of thislist, only definitions are.

It isimportant to point out, that the except statement does not exclude the definitions listed from being imported in
generd; al statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a)  Thegroup to beimported shall be defined in the module from which it is to be imported.
b) Seetherestrictions givenin clause 8.2.3.

Examples
import from MyModule { group MyGroup } // includes all visible definitions from MyGroup

import from MyModule ({
group MyGroup except {
type MyType3, MyType5; // excludes the two types from the import statement,
template all // excludes all templates defined in MyGroup
// from the import statement
// but imports all other visible definitions of MyGroup

}

import from MyModule {
group MyGroup
except { type MyType3 };// imports all visible types of MyGroup except MyType3
type MyType3 // imports MyType3 explicitly

8.2.34 Importing definitions of the same kind

The all keyword may be used to import all visible definitions of the same kind of amodule. Theall keyword used
with the constant keyword identifies all visible constants declared in the definitions part of the module the import
statement refersto. Similarly the a1l keyword used with the function keyword identifies all visible functions and
al visible external functions defined in the module the import statement denotes.

If some visible declarations of akind are wished to be excluded from the given import statement, their identifiers shall
be listed following the except keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

ETSI



86 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Syntactical Structure

[ Visibility ] import from ModuleId "{"

{
(

( type all [ except { TypeDefIdentifier L1311 |
( template all [ except { TemplateIdentifier L1311 |
( const all [ except { ConstIdentifier L1311 |
( testcase all [ except { TestcaseIdentifier L1311 |
( altstep all [ except { AltstepIdentifier L1311 |
( function all [ except { FunctionIdentifier L1311 |
( signature all [ except { SignatureIdentifier [ "," 1 } 1) |
( modulepar all [ except { ModuleParIdentifier [ "," 1 } 1)

)
[ ||,.|| ]
}
" } nopon Pl 1
Semantic Description

The effect of importing definitions of the sasme kind isidentical to an import statement that lists al visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: If thelist of al visible definitions of that kind except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetheredtrictionsgivenin clause 8.2.3.

Examples
import from MyModule ({
type all; // imports all types of MyModule
template all // imports all templates of MyModule

}

import from MyModule ({

type all except MyType3, MyType5; // imports all types except MyType3 and MyTypeb
template all // imports all templates defined in Mymodule
}
8.2.3.5 Importing all definitions of a module

All visible definitions of a module definitions part may be imported using the a1l keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within a pair of curly brackets following the except keyword. The all keyword is also alowed to be used in the
exception list; thiswill exclude all visible declarations of the same kind from the import statement.

NOTE 1: If thelist of al visible definitions of a module except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

NOTE 2: Importing all definitions of a module imports only definitions declared directly in that module, but does
not import the import statements of that module (see also clause 8.2.3.7).

ETSI



87 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Syntactical Structure
[ Visibility ] import from ModuleId
all
[

except "{"

( group { FullGroupIdentifier v, 1} all )
( type { TypeDefIdentifier v, 1} all )
( template { TemplateIdentifier [v,m 1} all ) |
( const { constIdentifier v, 1} all )
( testcase { TestcaseIdentifier v, 1} all ) |
( altstep { AltstepIdentifier [v,m 1} all ) |
( function { FunctionIdentifier v, 1} all ) |
( signature { SignatureIdentifier [v,m 1} all ) |
( modulepar { ModuleParIdentifier v, 1} all )

||}||
[ ";n ]

]
[ n H n ]
Semantic Description

The effect of importing al visible definitions of amodule isidentical to an import statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If dl visible definitions of a module are imported by using the al keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) Inthe set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) is allowed.

Examples
import from MyModule all; // includes all definitions from MyModule

import from MyModule all except (
type MyType3, MyType5; // excludes these two types from the import statement and
template all // excludes all templates declared in MyModule,
// from the import statement
// but imports all other definitions of MyModule

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification shall be used to denote the language (may be together with a version
number) of the source (e.g. module, package, library or even file) from which definitions are imported. It consists of the
language keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from
ES 202 781 [i.12], ES 202 782 [i.15], ES 202 784 [i.13] and ES 202 785 [i.14] can be used in addition. Identifiers for
other languages are defined in the language mapping parts of TTCN-3, i.e. in ES 201 873-7 [i.5], ES 201 873-8 [i.6]
and ES 201 873-9[i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the language specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure

[ Visibility ] import from ModuleIdentifier [ LanguageSpec 1 .. [ ";" ]

ETSI



88 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have a TTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when atemplate is defined based
on astructured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In asimilar way, when a base type is aversioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of a versioned or foreign element means that part of the
information carried by that element, which is necessary to useit in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitions in other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

. to import from a TTCN-3 module of another edition of from a non-TTCN-3 module the import statement shall
contain an appropriate language identifier string;

. only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

Importing can be done automatically using the al directive, in which case al importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Thelanguage specification may only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

b)  Definitionsimported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ES 201 873-7 [i.5], ES 201 873-8 [i.6] or
ES 201 873-9 [i.7], respectively).

Examples

module MyNewModule {
import from MyOldModule language "TTCN-3:2003" {

type MyType

}

module MyNewestModule {
import from MyNewModule { import all } language "TTCN-3:2003";
// the language specifications shall be identical, see clause 8.2.3.8

NOTE: Theimport mechanism is designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

ETSI



89 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

8.2.3.7 Importing of import statements from TTCN-3 modules
Visibleimport statements of TTCN-3 modules can be imported by other TTCN-3 modules.

Syntactical Structure

[ Visibility ] import from ModuleIdentifier [ LanguageSpec ]
n{n import all [ nen ] n}n [ non ]

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that isimported by A using import
statements visible for module B, isalso imported by B. If another module C imports all import statements from B, then
Cimportsall what A isimporting - provided that the import statements are visible to modules B and C.

It is not possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therestrictionsgivenin clause 8.2.3.1 apply.
b) Therestrictions given in clause 8.2.3.6 apply.

¢) Importing of import statementsis only possible from other TTCN-3 modules, i.e. the language specification
shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

Examples

EXAMPLE: Importing of visible import statements

module A
type integer T1;
type integer T2;
template T1 t1 :
template T2 t2 : ;

module B {
public import from A { type T1 }
type charstring T2;

template T1 t1 := (1, 2, 3 );

module C {
public import from B { import all } // imports the import statements only
public import from B { type T2 } // imports the type B.T2

import from A { template all }

module D {
private import from C { import all } // imports the import statements only

module E
import from D { import all }

// yields the following
// module A knows

// A.T1 (defined)
// A.T2 (defined)
// A.tl (defined)
// A.t2 (defined)
//

ETSI



90 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

// module B knows

// A.T1 (imported)

// B.T2 (defined)

// B.tl (defined)

!/

// module C knows

// A.T1 (imported from B importing it from A)

// B.T2 (imported)

// A.tl (imported)

// A.t2 (imported)

//

// module D knows

// A.T1 (imported from C importing it from B importing it from A)
// B.T2 (imported from C importing it from B)

// A.t2 and A.t2 are not imported as their imports are private to C
!/

// module E "knows" nothing
// as the imports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification of the importing modul e, the language specification
of the import statement and the language specification of the source module, where the imported definitions are defined,
have to be compatible according to the following rules.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both a language specification, then they shall be
identical. If none of the two has a language specification, the language specification has to be known from
other sources, which istool specific.

¢) TheTTCN-3 language specification in an import statement shall be lower or equal to the TTCN-3 language
specification of the importing module, i.e. a TTCN-3 module can only import from earlier or same editions of
TTCN-3 but not from later editions.
8.2.4 Definition of friend modules

Modules can define other modules to be friends.

Syntactical Structure

[ private ] friend module ModuleIdentifier { "," ModuleIdentifier } ";"
Semantic Description

Friendship to modulesis defined by the exporting module (the module that declare the definitions) not by the importing
modul e (the module that uses the modul e definitions of another modul€). Friendship can be cyclic.

If amoduleisfriend to a module from which it imports top-level definitions, al top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if afriend moduleis
missing.

ETSI



91 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions
In addition to the general static rules of TTCN 3 given in clause 5, the following restrictions apply:
a)  Only private visibility can be defined for friend definitions as they are always private.

Examples

module MyModuleA {
friend module MyModuleB,MyModuleC;

// MyModuleB and MyModuleC are friends of MyModuleA

module MyModuleB {
friend module MyModuleA;

// MyModuleA is friend of MyModuleB

module MyModuleC ({

}

8.2.5  Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
public except for imported and friend definitions. Import definitions are by default private. Friend definitions are
private only. Group definitionsare public only.

Syntactical Structure
[ public | friend | private ]
Semantic Description
The visibility controls whether atop-level definition or an import statement isimportable by another module.
Three visibilities are distinguished:
e A top-level definition or an import statement with public visibility isimportable by any other module.

e A top-level definition or an import statement with £riend visibility isimportable by friend modules only (see
clause 8.2.4).

e A top-level definition or an import statement with private visibility cannot be imported at al.

NOTE: Asspecifiedin restriction €) of clause 8.2.3.1, this means that importable definitions are imported
together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definitionis
not visible in the importing TTCN-3 module.

The visibility of groupsis awayspublic. Thevisibility of imported definitionsis by default private. All other
module definitions are by default public.

The visibility of atop-level definition or an import statement defines their importability by another module. If the top-
level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of atop-level definition by another module is summarized in table 9, the importability of
import statementsin table 10.

ETSI



92

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Table 9: Visibility and import of module definitions

Visibility of Module definition | Module definition | Module definition | Module definition
module definition importable importable importable via importable via
directly by a directly by a |group import by a|group import by a
non-friend friend module non-friend friend module
module module
public yes yes yes yes
friend no yes no yes
private no no no no
Table 10: Visibility and import of import statements
Visibility of Import imported | Import imported
import by a non-friend by a friend
module module
public yes yes
friend no yes
private no no
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

module MyModuleA {
friend module MyModuleC;
private type integer MyInteger;
// MyInteger is not visible to other modules
friend type charstring MyString;
// MyString is visible to friend modules
public type boolean MyBoolean;
// MyBoolean is visible to all modules

module MyModuleB {
import from MyModuleA all;
// MyString and MyInteger are not visible and are not imported
// MyBoolean is imported

module MyModuleC {
import from MyModuleA all;
// MyInteger is not visible and is not imported
// MyString and MyBoolean are imported

8.3

The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases. A
test case shall be defined in the module definitions part or imported from another module, and called in the control part.

Module control part

The control part of amodule calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visibility, i.e. can be used within the control part only.

Thisis explained in more detail in clause 26.

ETSI



93 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE:
module MyTestSuite
{ // This module contains definitions ..

const integer MyConstant := 1;
type record MyMessageType { .. }
template MyMessageType MyMessage := { .. }
function MyFunctionil() { ..}
function MyFunction2() { .. }

testcase MyTestcasel() runs on MyMTCType { .. }
testcase MyTestcase2() runs on MyMTCType { .. }

// .. and a control part so it is executable
control

{

var boolean MyVariable; // local control variable

execute( MyTestCasel()); // sequential execution of test cases
execute ( MyTestCase2()) ;

9 Port types, component types and test configurations

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additional configuration and deployment support for TTCN-3 is defined in the optional package[i.12].

TTCN Test system

<4+——>
MTC PTC,

‘l_, PTC, —T

+ Abstract Test System Interface V#

/ -/
Real Test System Interface

SUT

Figure 4. Conceptual view of atypical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of the create
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

ETSI



94 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Test component types and port types, denoted by the keywords component and port, shal be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
create and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of themap operation (see clause 21.1.1).

9.1 Communication ports

Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 portsareinfinitein principlein areal test system they may overflow. Thisisto be treated
as atest case error (see clause 24.1).

MTC m‘— PTC
>

Figure 5: The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 6(g) or figure 6(h)).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a)  Thefollowing connections are not alowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figures 7 (a) and 7(g)).

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(seefigure 7(c)).

- A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figures 7(b) and 7(d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7(f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7(g)).

b)  Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at run-time and shall lead to atest case error when failing.

ETSI



95 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

test system test component
test component test component A
A I T B H
test system interface (I\
(@) (b)
test system
test component test component test component
A [E ﬂ B
test system interface
(c) (d)

test component
test component A
A

(e) ®

test system

i e test component | | test component
test component D B A B

A
| — | —
test component E ;
D c test system interface W

p——

(9 (h)

Figure 6: Allowed connections

ETSI



96 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

test system

test component
test component

A

test system interface

@ (b)

test system

test component test component
test component :| B A

Il ] /E&\
>

test system interface

N
(

(c) (d)

test component test system
A -
[é test system interface /_I\ A

(e) ®

test system
Y test component test component

A B

test system interface f\/
—/

(@)

Figure 7: NOT allowed connections

9.2 Test system interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.
The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object is known asa
System Under Test or SUT. Inthe minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in ageneral way to mean either SUT or [UT.

Inarea test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition isidentical to a component definition, i.e. it isalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connectionsto the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unmap operations (see clause 21.1).

ETSI



97 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure
The same as a component type definition (see clauses 6.2.11 and 6.2.11.2).
Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interfaceis system. This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The same asfor component type definitions (see clauses 6.2.11 and 6.2.11.2).

Examples

EXAMPLE 1.  Explicit definition of atest system interface

type component MyMTCType

{
var integer MyLocallInteger;
timer MyLocalTimer;
port MyMessagePortType PCO1

type component MyTestSystemInterface

{
port MyMessagePortType PCO1, PCO2;
port MyProcedurePortType PCO3

}

// MyTestSystemInterface is the test system interface
testcase MyTestcasel () runs on MyMTCType system MyTestSystemInterface {
// establishing the port connections
map (mtc:PCO1l, system:PCO2) ;
// the testcase behaviour
/]
}

EXAMPLE 2 Implicit definition of atest system interface

// MyMTCType is the test system interface
testcase MyTestcase2 () runs on MyMTCType ({
// map statements are not needed
// the testcase behaviour

/]

ETSI



98 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

10 Declaring constants

TTCN-3 constants are run-time constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure
const Type { ConstIdentifier [ ArrayDef ] ":=" ConstantExpression [ "," 1 } [ ";" ]
Semantic Description

A constant assigns a name to a fixed value. A valueis assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multipletimesin a TTCN-3 module.

Optional fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an optional attribute with thevalue "implicit
omit" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping) mechanism
(seeclause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Constants shall not be of port type.

NOTE: Theonly value that can be assigned to constants of default and component typesis the special value
null.

b) Constant expressionsinitializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of rnd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this paragraph.

Examples

const integer MyConstl :
const boolean MyConst2 :

1;
true, MyConst3 := false;

11 Declaring variables

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variablesto store templates.

Variables can be of simple basic types, basic string types, structured types, special data types (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

ETSI



99 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

11.1  Value variables

A TTCN-3 value variable stores values. It is declared by the var keyword followed by atype identifier and avariable
identifier. Aninitial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
return keyword in bodies of functions with areturn clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var Type VarIdentifier [ ArrayDef ] [ ":=" Expression ]
{ [ ", 1 VarIdentifier [ ArrayDef ] [ ":=" Expression ] } [ ";" ]

Semantic Description

A value variable associates a name with the location of avalue. A value variable may change its value during test
execution several times. A value can be assigned several timesto a value variable. The value variable can be referenced
multipletimesin a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Expression shall be of type Type.
b) Vauevariables shall store values only.

¢) Vauevariables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Useof uninitialized or not completely initialized value variables at other places than the left hand side of
assignments or as actual parameters passed to inout or out formal parameters shall cause an error.

Examples

var integer MyVaroO;
var integer MyVarl :
var boolean MyVar2 :

1;
true, MyVar3 := false;

11.2  Template variables

A TTCN-3 template variable stores templates. They are declared by the var template keyword followed by atype
identifier and avariable identifier. Aninitial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
return keyword in bodies of functions defining a template-type return value in their headers and may be passed as
actual parameters to template-type formal parameters. It is also allowed to assign atemplate instance to atemplate
variable or atemplate variable field.

Syntactical Structure

var template [ restriction ] Type VarIdentifier [ ArrayDef ] ":=" TemplateBody
{ [ ", 1 varIdentifier [ ArrayDef ] ":=" TemplateBody } [ ";" ]

Semantic Description

A template variable associates a name with the location of atemplate or avalue (as every value is also atemplate).
A template variable may change its template during test execution several times. A template or value can be assigned
several timesto atemplate variable. The template variable can be referenced multiple timesin a TTCN-3 module.

The content of atemplate variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

ETSI



100 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE 1: String and list type templates can be concatenated, see clause 15.11.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b)  When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be a template variable too.

¢)  When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: Whileitis not allowed to directly apply TTCN-3 operations to template variables, it is allowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Useof uninitialized or not completely initialized template variables at other places than the left hand side of
assignments or as actual parameters passed to out formal parameters shall cause an error.

e) If thetemplate variable isrestricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

f)  Template variables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

0) Restrictionson templatesin clause 15 shall apply.

Examples
var template integer MyVarTempl := ?;
var template MyRecord MyVarTemp2 := { fieldl := true, field2 := * },
MyVarTemp3 := { fieldl := ?, field2 := MyVarTempl };

12 Declaring timers

TTCN-3 provides atimer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be anon-negative £loat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can aso be declared. Default duration(s) of the elements of atimer
array shall be assigned using a value array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall
explicitly be declared by using the not used symbol ("-").

Syntactical Structure

timer { TimerIdentifier [ ArrayDef ] ":=" TimerValue [ "," 1 } [ ";" ]
Semantic Description

Timers are local to components. A component can start and stop atimer, check if atimer is running, read the el apsed
time of arunning timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE 1. Timers declared and started in scope units such as functions cease to exist when the scope unit is left.
They do not contribute to the test behaviour once the scope unit isleft.

NOTE 2: Itisnot possible to define atimer array as type.

ETSI



101 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Incaseof asingletimer, the default duration value shall resolve to a non-negative numerical float value (i.e.
the value shall be greater or equal 0.0, infinity and not_a_number are disallowed).

b) Incaseof atimer array, it shall resolve to an array of float values obeying to restriction @) above of the same
Size as the size of the timer array.

Examples

EXAMPLE 1. Singletimer

timer MyTimerl := 5E-3;
// declaration of the timer MyTimerl with the default value of 5ms

timer MyTimer2; // declaration of MyTimer2 without a default timer value i.e. a value has
// to be assigned when the timer is started

EXAMPLE 2:  Timer array

timer t Mytimer1[5] := { 1.0, 2.0, 3.0, 4.0, 5.0 }
// all elements of the timer array get a default duration.

timer t Mytimer2[5] := { 1.0, -, 3.0, 4.0, 5.0 }
// the second timer (t_Mytimer2([1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 isthe ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the in/out/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

// a structured, ordered message with two fields
type record ARecord { integer i, float f }

ETSI



102 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. thetest system performsthe call) or in the test system (i.e. the SUT performsthe call).

Syntactical Structure

signature SignatureIdentifier

"(" { [ in | inout | out ] Type ValueParIdentifier [ ","] } ")"
[ ( return Type ) | noblock ]
[ exception " (" ExceptionTypeList ")" ]

Semantic Description

For all used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure signature shall be defined in the TTCN-3 module.

TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the noblock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Parameters shall be of datatype only, i.e. of abasic type, a structured type
thereof or a subtype thereof. Within a signature definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e. in, out, or inout. Thedirection inout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1: The direction of the parametersis as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
areturn clausein the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return values of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation istool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included in the signature definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usualy only be distinguished by specific values of these types).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Signature definitions for non-blocking communication shall use the noblock keyword, shall only have in
parameters and shall have no return value but may raise exceptions.

b)  Signature parameters shall not be of port, component or default type or of structured types having fields of
port, component or default type.

Examples
signature MyRemoteProcOne () ; // MyRemoteProcOne will be used for blocking
// procedure-based communication. It has neither
// parameters nor a return value.
signature MyRemoteProcTwo () noblock; // MyRemoteProcTwo will be used for non blocking

// procedure-based communication. It has neither
// parameters nor a return value.

signature MyRemoteProcThree (in integer Parl, out float Par2, inout integer Par3);

// MyRemoteProcThree will be used for blocking procedure-based communication. The procedure
// has three parameters: Parl an in parameter of type integer, Par2 an out parameter of

// type float and Par3 an inout parameter of type integer.

ETSI



103 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

signature MyRemoteProcFour (in integer Parl) return integer;

// MyRemoteProcFour will be used for blocking procedure-based communication. The procedure
// has the in parameter Parl of type integer and returns a value of type integer after its
// termination

signature MyRemoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2) ;
// MyRemoteProcFive will be used for blocking procedure-based communication. It returns a
// float value in the inout parameter Parl and an integer value, or may raise exceptions of
// type ExceptionTypel or ExceptionType2

signature MyRemoteProcSix (in integer Parl) noblock

exception (integer, float);
// MyRemoteProcSix will be used for non-blocking procedure-based communication. In case of
// an unsuccessful termination, MyRemoteProcSix raises exceptions of type integer or float.

15 Declaring templates

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
template specification. Templates can be defined globally or locally.

Templates provide the following possibilities:
a) they are away to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
isapartia specification.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Templatesshall not be of default type.

b)  Structured type or signature templates shall not include afield of default type, neither directly, nor by
nesting or referencing a structured type or signature that contains a default field.

NOTE: The anytype type doesnot include the default type (see clause 6.2.6), so that restriction b) does not
apply to anytype templates.

Examples

type record MyRecord ({
default def
1
type union MyUnion
integer choicel,
MyRecord choice2
1
template MyUnion t_integerChosen := { choicel := 5 }
// shall cause an error as the type MyUnion contains MyRecord, which includes
// a field of default type.

ETSI



104 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

15.1 Declaring message templates

Instances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A template used in a send operation defines a complete set of field values comprising the message to be transmitted
over aport.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

A template used in areceive, trigger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetime of a send operation, the used template shall be completely initialized and all fields shall resolveto
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

At thetime of areceiving operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of atemplate or atemplate field, an optional attribute with the
value "implicit omit" (seeclause 27.7) shall be associated with it either directly or viathe attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Template for sending messages

// Given the message definition
type record MyMessageType

{

integer fieldl optional,
charstring field2,
boolean field3

}

// a message template could be
template MyMessageType MyTemplate:=

fieldl := omit,
field2 := "My string",
field3 := true

}

// and a corresponding send operation could be
MyPCO. send (MyTemplate) ;

EXAMPLE 2: Template for receiving messages

// Given the message definition
type record MyMessageType

{

integer fieldl optional,
charstring field2,
boolean field3

}

// a message template might be

ETSI



105 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

template MyMessageType MyTemplate:=

fieldl := ?,
field2 := pattern "abc*xyz",
field3 := true

}

// and a corresponding receive operation could be
MyPCO.receive (MyTemplate) ;

EXAMPLE 3: Template for receiving messages

// When used in a receiving operation this template will match any integer value
template integer Mytemplate := ?;

// This template will match only the integer values 1, 2 or 3
template integer Mytemplate := (1, 2, 3);

15.2  Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A template used inacall or reply operation defines a complete set of field valuesfor all in and inout
parameters. At the time of the call operation, al in and inout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersis simply ignored, therefore it is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used in agetcall operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeof acall, reply and raise operation, the used template shall be completely initialized and al
in/inout parametersinacall, al out/inout parametersin areply or raise operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

Atthetimeof agetcall, getreply and catch operation, the matching template shall be completely initialized.

¢) Optional fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, an optional attribute with the value "implicit
omit" (see clause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping)
mechanism (see clause 27.1.1).

ETSI



106

Examples

EXAMPLE 1:

// signature definition for a remote procedure
signature RemoteProc (in integer Parl, out integer Par2,

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Templates for invoking and accepting procedures

inout integer Par3) return integer;

// example templates associated to defined procedure signature

template RemoteProc Templatel:

{

Parl := 1,
Par2 := 2,
Par3 := 3

}

template RemoteProc Template2:

{

Parl := 1,
Par2 := ?,
Par3 := 3

}

template RemoteProc Template3:

{

Parl
Par2
Par3
1
EXAMPLE 2:  In-line templates for invoking procedures

// Given example 1 in this clause

// Valid invocation since all in and inout parameters have a distinct value

MyPCO.call (RemoteProc:Templatel) ;

// Valid invocation since all in and inout parameters have a distinct value

MyPCO.call (RemoteProc:Template2) ;

// Invalid invocation causing an error

// since the inout parameter Par3 has a matching attribute not a value

MyPCO.call (RemoteProc:Template3s) ;

// Templates never return values.

In the case of Par2 and Par3 the values returned by the

// call operation must be retrieved using an assignment clause at the end of the call statement

EXAMPLE 3:

// Given example 1 in this clause

In-line templates for accepting procedure invocations

// Valid getcall, it will match if Parl == 1 and Par3 ==
MyPCO.getcall (RemoteProc:Templatel) ;

// Valid getcall, it will match if Parl == 1 and Par3 ==
MyPCO.getcall (RemoteProc:Template2) ;

// Valid getcall, it will match on Parl == 1 and Any value of Par3

MyPCO.getcall (RemoteProc:Template3s) ;

15.3  Global and local templates
TTCN-3 alows defining global templates and local templates.
Syntactical Structure

Type Templateldentifier [" ("

" TemplateBody

template [ restriction ]
[ modifies TemplateRef ]

.=n

NOTE: The optional restriction part is covered by clause 15.8.

ETSI

TemplateFormalParList ")"]



107 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Semantic Description

Globa templates can be defined in the module definitions part. Local templates can be defined in module control,
testcases, functions, altsteps or statement blocks. Both global and local templates scoping rules specified in clause 5

apply.

Both global and local templates can be parameterized. The actual parameters of atemplate can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

At the time of their use (e.g. in communication operations send, receive, call, getcall, etc),itisalowedto
change template fields by in-line modified templates, to passin values via value parameters as well asto passin
templates via template parameters.. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a)  Thedot notation such as MyTemplateld.Fieldld shall not be used to set or retrieve values in templatesin
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Restrictions on referencing elements of templates or template fields are described in clause 15.6.

Cc) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

// The template
template MyMessageType MyTemplate (integer MyFormalParam) :=

fieldl := MyFormalParam,
field2 := pattern "abc*xyz",
field3 := true

}

// could be used as follows
pcol.send (MyTemplate (123)) ;

15.4  In-line Templates
Templates can be specified directly at the place they are used. Such templates are called in-line templates.

Syntactical Structure

[ Type ":" 1 [ modifies TemplateRefWithParList ":=" ] TemplateBody

NOTE 1: Anin-line template is an argument of a communication operation or an actual parameter of atestcase,
function or altstep call, i.e. it is aways placed within parenthesis and potentially separated with acomma.

Semantic Description
In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they can not be referenced or reused. The lifetime of in-line templatesis
the TTCN-3 statement (an assignment, a testcase/function/al step invocation, a return from a function, a communication
operation), where they are defined.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port and default types.

b) Thetypefield may only be omitted when the type isimplicitly unambiguous.

ETSI



108 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE 2: For literal in-line templates, the following types may be omitted: integer, £loat, boolean,
bitstring, hexstring, octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

¢) In-linetemplates containing instead of values or inside values matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. receive, trigger, check,
getcall, getreply and catch), in arguments of thematch and select case operations, in actual
template parameters, at the right hand side of assignments (when there is a template variable at the left hand
side of the assignment) and in return statements of template returning functions. In-line templates not
contai ning matching mechanisms can be defined wherever values are allowed.

d)  When used in communication operations, the type of the in-line template shall be in the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

€) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

MyPCO.receive (charstring: "abcxyz") ;

15.5 Modified templates

Normally, atemplate specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the original
template, either directly or indirectly. Aswell as creating explicitly named modified templates, TTCN-3 alowsthe
definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

template [restriction] Type TemplateIdentifier ["(" TemplateFormalParList ")"]
modifies TemplateRef ":=" TemplateBody

NOTE: Theoptiona restriction part is covered by clause 15.8.

In-line modified template:

[ Type ":" ] modifies TemplateRefWithParList ":=" TemplateBody
Semantic Description

Themodifies keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in alinked fashion eventually tracing back to the original template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used. When the field to be modified is nested within atemplate field which is a structured field itself, no other field of
the structured field is changed apart from the explicitly denoted one(s).

When individual values of a modified template or amodified template field of record of type wished to be changed,
and only in these cases, the value assignment notation may also be used, where the left hand side of the assignment is
the index of the element to be altered.

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if thisis denoted by the dash (don't change) symbol at the place
of the parameters' default value or respectively template.

ETSI



109 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If abasetemplate has aformal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) thederived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

2) aderived template can have additional (appended) parametersif wished;
3) theformal parameter list shall follow the template name for every modified template;

4) if the dash (don't change) symbol is used at the place of a default value or default template, the
corresponding parameter of the parent template shall have avalid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

¢) Restrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.
Examples

EXAMPLE 1:

// Given

type record MyRecordType

{
integer fieldl optional,
charstring field2,
boolean field3

1

template MyRecordType MyTemplatel :=

{

fieldl := 123,
field2 := "A string",
field3 := true

// then writing
template MyRecordType MyTemplate2 modifies MyTemplatel :=

fieldl :
field2

omit, // fieldl is optional but present in MyTemplatel
"A modified string"

// field3 is unchanged
!
// is the same as writing
template MyRecordType MyTemplate2 :=

fieldl := omit,
field2 := "A modified string",
field3 := true

1
EXAMPLE 2:  Modified record of template
template MyRecordOfType MyBaseTemplate := { o, 1, 2, 3, 4, 5, 6,

template MyRecordOfType MyModifTemplate modifies MyBaseTemplate :
// MyModifTemplate shall match the sequence of values { 0, 1, 3,

N3
—_
N
Ul — o
I
w

EXAMPLE 3: Modified in-line template

// Given
template MyMessageType Setup :=
{ fieldl := 75,

field2 := "abc",

field3 := true

ETSI



110 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

}

// Could be used to define an in-line modified template of Setup
pcol.send (modifies Setup := {fieldl:= 76});

EXAMPLE 4: Modified parameterized template

// Given
template MyRecordType MyTemplatel (integer MyPar) :=

fieldl := MyPar,
field2 := "A string",
field3 := true

}

// then a modification could be
template MyRecordType MyTemplate2 (integer MyPar) modifies MyTemplatel :=

{ // fieldl is parameterized in Templatel and remains also parameterized in Template2
field2 := "A modified string"

}

EXAMPLES5: Default values of modified parameterized templates

// Given
template MyRecordType MyTemplatell (integer p _int := 5 ):= {
// p_int has the default value 5
fieldl := p_ int,
field2 := "A string",
field3 := true

}

// then possible template modifications are

template MyRecordType MyTemplatel2 (integer p int) modifies MyTemplatell := {
// p_int had a default value in MyTemplatell but has none in this template
field2 := "B string"

}

template MyRecordType MyTemplatel3 (integer p_int := 0) modifies MyTemplatel2 := {

// p_int has the default value 0
// no change is made to the template's content, but only to the default value of p_int

}

template MyRecordType MyTemplatel4 (integer p int := - ) modifies MyTemplatel3 := {
// p_int inherits the default value 0 from its parent MyTemplatel3
field2 := "C string"

}

template MyRecordType MyTemplatel5 (integer p int := - ) modifies MyTemplateld := {
// p_int inherits the default value 0 from MyTemplatel3 via MyTemplatel4
field2 := "D string"

}

template MyRecordType MyTemplatel6 (integer p int) modifies MyTemplatel5 := {

// p_int has no default value

template MyRecordType MyTemplatel7 (integer p int := - ) modifies MyTemplatel6 := {
// causes an error as p_int has no default value in the parent template MyTemplatelé6
field2 := "E string"

}

15.6  Referencing elements of templates or template fields

This clause defines rules and restrictions when referencing elements of templates or template fields.

15.6.1 Referencing individual string elements

It isnot allowed to reference individua string elements inside templates or template fields. Instead, the substr
function (see clause C.34) shall be used.

ETSI



111 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE:

var template charstring t_ Charl := "MYCHAR";
var template charstring t_Char2;

t_Char2 := t_Charl[1l];
// shall cause an error as referencing individual string elements is not allowed

15.6.2

Referencing record and set fields

Both templates and template variables alow referencing sub-fields inside a template definition using the dot notation.

However,

the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This

clause provides rules for such cases.

a  Omit, AnyVaueOrNone, value lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyVaueOrNone, avalue list or acomplemented list is assigned, at the right hand side of an
assignment, shall cause an error.

When referencing a subfield within a structured field to which AnyValueOrNone or omit is assigned, at the
left hand side of an assignment, the structured field isimplicitly set to be present, it is expanded recursively
up to and including the depth of the referenced subfield. During this expansion an AnyValue shall be
assigned to mandatory subfields and AnyVaueOrNone shall be assigned to optional subfields. After this
expansion the value or matching mechanism at the right hand side of the assignment shall be assigned to the
referenced subfield.
When referencing a subfield within a structured field to which value lists or complemented value lists are
assigned, at the left hand side of an assignment, shall cause an error.
EXAMPLE 1:
type record R1 {
integer f1 optional,
R2 f2 optional
!
type record R2 {
integer gil,
R2 g2 optional
1
var template R1 t_R1 := {
f1 := 5,
f2 := omit
1
var template R2 t R2 := t R1.f2.92;
// causes an error as omit is assigned to t_R1.f2
t R1. f2 := *;
t R2 := £t R1.f2.92;
// causes an error as * is assigned to t _R1.f2

t Rl := ({fl:=omit, £f2:={gl:=0, g2:=omit}}, {fl:=5, f2:={gl:=1, g2:={gl:=2, g2:=omit}}});

t R2 := t R1.£f2;

t_R2 := t_R1.f2.92;

t R2 := t R1.f2.92.92;

// all these assignments cause error as a value list is assigned to t Rl
t Rl :=

complement ({fl:=omit, f2:={gl:=0, g2:=omit}}, {f1:=5, £2:={gl:=1, g2:={gl:=2, g2:=omit}}});
t_R2 := t_R1.f2;

t_R2 := t_R1.f2.92;

t R2 := t R1.f2.92.92;

// all these assignments cause errors as a complemented list is assigned to t_R1

ETSI



112 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

b) AnyVaue: when referencing a subfield within a structured field to which AnyValue is assigned, at the right
hand side of an assignment, AnyValue shall be returned for mandatory subfields and AnyVaueOrNone shall
be returned for optional subfields.

When referencing a subfield within a structured field to which AnyValue is assigned, at the left hand side of an
assignment, the structured field isimplicitly expanded recursively up to and including, the depth of the
referenced subfield. During this expansion an AnyValue shall be assigned to mandatory subfields and
AnyVaueOrNone shall be assigned to optional subfields. After this expansion the value or matching
mechanism at the right hand side of the assignment shall be assigned to the referenced subfield.

EXAMPLE 2:
t Rl := {f1:=0, f2:=?}
t R2 := t R1.f2.92;
// after the assignment t R2 will be {gl:=?, g2:=*}
t R1.f2.g92.92 := ({gl:=1, g2:=omit}, {gl:=2, g2:=omit});

// first the field t R1.f2 has hypothetically be expanded to {gl:=?,g92:={gl:=?,g2:=*}}
// thus after the assignment t R1 will be:
// {f1:=0, f2:={gl:=?,92:={gl:=?,92:=({gl:=1, g2:=omit},{gl:=2, g2:=omit})}}}

c) Ifpresent attribute: referencing a subfield within a structured field to which the ifpresent attribute is attached,
shall cause an error (irrespective of the value or the matching mechanism to which i fpresent is appended).

15.6.3 Referencing record of and set of elements

Both templates and template variables alow referencing elements of arecord of or set of template or field using
the index notation. However, a matching mechanism may be assigned to the template or field within which the element
isreferenced. This clause provides rules on handling such cases.

a  Omit, AnyVaueOrNone, value lists, complemented lists, subset and superset: referencing an element within a
record of or set of field to which Omit, AnyValueOrNone with or without a length attribute, avalue list, a
complemented list, a subset or a superset is assigned, shall cause an error.

EXAMPLE 1.

type record of integer RoOI;
type record of RoI ROROI;

var template RoI t_RoI;
var template RORoI t_RoROI;
var template integer t_ Int;

t RoRoI := ({},{o},{o0,0},{0,0,0});
t RoI := t_RoRoOI[0];
// shall cause an error as value list is assigned to t_RoRoI;

b) AnyVaue: when referencing an element of arecord of or set of templateor field to which AnyValueis
assigned (without alength attribute), at the right hand side of an assignment, AnyValue shall be returned. If a
length attribute is attached to the AnyValue , theindex of the reference shall not violate the length attribute.
When referencing an element withinarecord of or set of template or field to which AnyVaueis
assigned (without a length attribute), at the left hand side of an assignment, the value or matching mechanism
at the right hand side of the assignment shall be assigned to the referenced element, AnyElement shall be
assigned to all elements before the referenced one (if any) and a single AnyElementsOrNone shall be added at
the end. When a length attribute is attached to AnyVal ue, the attribute shall be conveyed to the new template
or field transparently. The index shall not violate type restrictions in any of the above cases.

ETSI



EXAMPLE 2:

type record of integer RoOI;
type record of RoI RoOROI;

var template RoI t_RoI;
var template RORoI t_RoROI;
var template integer t_ Int;
t_RoI ?;
t Int := t_RoI[5];

// after the assignment

t_RoRoOI := ?;
t RoI := t_RoRoI[5];

// after the assignment
t_Int := t_RoRoI[5].[3];

113 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

t_Int will be AnyValue(?);

t RoI will be AnyValue (?);

// after the assignment t_Int will be AnyValue (?);

t RoI := ? length (2..5);
t_Int := t_RoI[3];

// after the assignment t_Int will be AnyValue (?);

t_Int := t_RoI[5];

// shall cause an error as the referenced index is outside the length attribute
// (note that index 5 would refer to the 6™ element) ;

t RoRoI[2] := {0,0};

// after the assignment t RoRoI will be {?,?,{0,0},*};
t_RoRoI[4] := {1,1};

// after the assignment t RoRoI will be {?,?,{0,0},?,{1,1},*};
t_RoI[0] := -5;

// after the assignment t RoI will be {-5,*} length(2..5);
t_RoI := ? length (2..5);
t_RoI[1] := 1;

// after the assignment t RoI will be {?,1,*} length(2..5);

t RoI[3] := ?

// after the assignment t RoI will be {?,1,?,?,*} length(2..5);

t RoI[5] := 5

// after the assignment t RoI will be {?,1,?,?,?,5,*} length(2..5); note that t RoI
// becomes an empty set but that shall cause no error;

¢) Permutation: when referencing an element of arecord of template or field, which islocated inside a
permutation (based on itsindex), this shall cause an error. Indexes of elements sheltered by a permutation shall
be determined based on the number of permutation elements. AnyVaueOrNone as a permutation element
causes that the permutation shelters all record of element indexes.

EXAMPLE 3:

t RoI := {permutation(0,1,3,?),2,?}

t_Int := t_RoI[5];
// after the assignment t_Int will be AnyValue (?)

t Rol := {permutation(0,1,3,?),2,*}

t_Int := t_RoI[5];
// after the assignment t Int will be * (AnyValueOrNone)

t_Int := t_RoI[2];
// causes error as the third element (with index 2) is inside permutation

t RoI := {permutation(0,1,3,%*),2,?}

t_Int := t_RoI[5];
// causes error as the permutation contains AnyValueOrNone (*) that is able to
// cover any record of indexes

d) [Ifpresent attribute: referencing an element withinarecord of or set of field to whichthe i fpresent

attribute is attached, shall cause an error (irrespective of the value or the matching mechanism to which
ifpresent isappended).

ETSI



114 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

15.7 Template matching mechanisms

Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire
contents of atemplate. Matching mechanisms may al so be used in-line (see clause 15.4).

Matching mechanisms are arranged in four groups:
. specific values,
. special symbolsthat can be used instead of values;
. specia symbols that can be used inside values,
. special symbols which describe attributes of values;
Some of the mechanisms may be used in combination.

The supported matching mechanisms and their associated symbols (if any) and the scope of their application are shown
intable 11. The left-hand column of thistable lists all the TTCN-3 types to which these matching mechanisms apply.
A full description of each matching mechanism can be found in annex B.

Table 11: TTCN-3 Matching Mechanisms

Used with values |Value Instead of values Inside values Attributes
of
S O C \ A A R S S P A A P L |
p m o a n n a u u a n n e e f
e i m | y y n p b t y y r n P
C t p u \% \% g e S t E E m g r
i I e a a e r e e | | u t e
f e L | I s t r e e t h s
i m | u u e n m m a R e
C e S e e t e e t e n
\Y, n t | O n n i S t
a t r t t 0 t
I e N ? S n r
u d o] (0] i
e L n r c
| e N t
s * o} i
t n o
e n
*)
boolean Yes | Yes' | Yes | Yes | Yes |Yes’ Yes™
integer Yes | Yes' | Yes | Yes | Yes |Yes'| Yes Yes'
float Yes | Yes' | Yes | Yes | Yes |Yes'| Yes Yes'
bitstring Yes | Yes® | Yes | Yes | Yes |ves® Yes | Yes Yes | Yes'
octetstring Yes | Yes' | Yes | Yes | Yes |Yes’ Yes | Yes Yes | Yes'
hexstring Yes | Yes' | Yes | Yes | Yes |Yes’ Yes | Yes Yes | Yes'
character strings Yes | Yes' | Yes | Yes | Yes |Yes'| Yes Yes | Yes® | Yes® Yes | Yes'
record Yes | Yes® | Yes | Yes | Yes |ves® Yes'
record of Yes | Yes' | Yes | Yes | Yes |Yes’ Yes | Yes | Yes | Yes | Yes’
array Yes | Yes' | Yes | Yes | Yes |Yes’ Yes | Yes Yes | Yes'
set Yes | Yes® | Yes | Yes | Yes |ves® Yes'
set of Yes | Yes' | Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes | Yes'
enumerated Yes | Yes' | Yes | Yes | Yes [yes® Yes'
union Yes | Yes' | Yes | Yes | Yes |Yes’ Yes'
anytype Yes | Yes® | Yes | Yes | Yes |ves® Yes'
NOTE 1: Can be assigned to templates, however when used shall be applied to optional fields of record and set types
only (without restriction on the type of that field).
NOTE 2: Have matching mechanism meaning within character patterns only.

ETSI



115 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

15.7.1 Specific values

Specific values are the basic matching mechanism of TTCN-3 templates. Specific values in templates are expressions
which do not contain any matching mechanisms.

Syntactical Structure

SingleExpression

Semantic Description

The matching mechanism for a specific value is an expression that evaluates to a specific value.

For further details please refer to clause 6 and to annex B.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetherestrictionsgivenintable 11 and in annex B.

Examples

MyPCO.receive (charstring: "abcxyz") ;
MyPCO.receive ('AAAA'O) ;

15.7.2 Special symbols that can be used instead of values
These matching mechanisms can be used to characterize a set of values.

Syntactical Structure

omit |

v (v { TemplateInstance [","] } ")" |

complement " (" { TemplateInstance [","] } ")" |

non |

mxn

"(" ( ConstantExpression | -infinity ) ".." ( ConstantExpression | infinity ) ")"
superset " (" { ConstantExpression [","] } ")" |

subset "(" { ConstantExpression [","] } ™)" |

pattern Cstring
Semantic Description
The matching mechanisms for special symbols that can be used instead of values are:

. omit: the optional field, in which it is used, is not present;

(...): alist of values or templates;

. complement (...): complement of alist of values or templates;

. ?: wildcard for any value;

e  *:wildcard for any value or no value at al, i.e. the field is not present;

. (lowerBound . . upperBound): arange of integer or float val ues between and including the lower- and upper
bounds;

. superset: at least all of the elements listed, i.e. possibly more;
. subset: at most the elementslisted, i.e. possibly less;
. pattern: acharstring or universal charstring that matches this format.

For further details please refer to annex B.

ETSI



116 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Seetheredtrictionsgivenintable 11 and in annex B.

Examples

MyPCO.receive (integer:complement (1, 2, 3));

15.7.3 Special symbols that can be used inside values
These matching mechanisms allow to characterize value sets by varying values inside.

Syntactical Structure

e |
aEn |
.permutation " (" { ( TemplateBody | "?" L N L I LD L

Semantic Description

The matching mechanisms for special symbols that can be used inside values are:
. ?: wildcard for any single element in astring, array, record of of set of;

e  *:wildcard for any number of consecutive elementsin astring, array, record of or set of, 0rno
element at al (i.e. an omitted element);

. permutation: all of the elements listed but in an arbitrary order (note, that ? and * are also alowed as
elements of the permutation list).

For further details please refer to annex B.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetheredtrictionsgivenintable 11 and in annex B.

Examples
template bitstring b := '10???'B; // where each "?" may either be 0 or 1
type record of integer RI;
template RI ri := {1, 2, 3} // where ? may be any integer value

15.7.4 Special symbols which describe attributes of values
These matching mechanisms define properties of values.

Syntactical Structure

length " (" ConstantExpression [ ".." ( ConstantExpression | infinity ) ] ")" [ ifpresent ]
ifpresent

Semantic Description
The matching mechanisms which describe attributes of values are:

e length: restrictions for string length of string types and the number of elementsfor record of, set of
and arrays,

. ifpresent: for matching of optional field values (if not omitted).

For further details please refer to annex B.

ETSI



117 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetheredtrictionsgivenintable 11 and in annex B.

Examples

type record R ({
record of integer ri optional
}

template R r:=

{

ri := * length (1 .. 6) ifpresent // any value containing 1, 2, 3, 4,
// 5 or 6 provided it is present

15.8 Template Restrictions

Template restrictions allow to restrict the matching mechanisms that can be used with atemplate. Template restrictions
are applicable to template definitions and template variables, formal template parameters, and return template types of
functions. Template restrictions can be applied equally to message and signature templates.

Syntactical Structure

template " (" ( omit | present | value ) ")" Type

Semantic Description
The restrictions mean in case of:

. (omit) the template shall resolve to a value matching mechanism (i.e. the fields of it shall resolveto a
specific value or omit, and the whole template may also resolve to omit). Such a template can be used to define
afield of arecord and set template and the latter one could still be used in a send statement.

. (value) thetemplate shall resolve to a specific value (i.e. the fields of it shall resolve to a specific value or
omit, but the whole template shall not resolve to omit). It can be used to define a mandatory field of arecord or
set template and the latter one could still be used in a send statement.

. (present) thetemplate as a whole shall not resolve to matching mechanisms that match omit (i.e. its fields
may contain any of the matching mechmisms or matching attributes). Such atemplate can be used to define a
mandatory field of arecord or set template.

NOTE: Templaterestrictionsallow TTCN-3 toolsto check more easily at compile time whether templates and
matching expressions are used correctly. Whether the checks are performed at compile time and invalid
codeisrejected or whether the checks are performed at execution time and dynamic errors areraised, is
outside the scope of the present document.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Matching mechanisms can be used within restricted templates according to table 12.

ETSI



118 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Table 12: Using matching mechanisms with restricted templates

Used with
template Value Instead of values Inside values Attributes
restriction
S o C \Y, A A R S S P A A P L I
p m o] a n n a u u a n n e e f
e i m I y y n p b t y y r n P
[ t p u \% \% g e S t E E m g r
i \Y, I e a a e r e e | | u t e
f a e L | | S t r e e t h S
i I m I u u e n m m a R e
c u e S e e t e e t e n
\% e n t | O n n i S t
a t r t t o] t
| e N @) s n r
u d o} (0] i
e L n r c
I e N t
S *) o] i
t n 0
e n
. (*)
omit Yes | Yes
value Yes | Note
present Yes | Note Yes | Yes |Note| Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Note

NOTE: It is allowed to use the matching mechanism in fields of the template, but the template as a whole shall not
resolve to this matching mechanism.

b) Restricted and unrestricted templates can be used as actual parameters of formal template parameters or
assigned to template variables according to table 13.

Table 13: Restrictions of formal and actual template parameters

Actual value template template template template
parameter/right (omit) (value) (present)
hand side of an
expression
Formal
parameter/-
left hand
side of an
expression
template(omit) Yes Yes Yes (see note) (see note)
template(value) Yes (see note) Yes (see note) (see note)
template(present) Yes (see note) Yes Yes (see note)
template Yes Yes Yes Yes Yes
NOTE: These restrictions are related to the content of the actual parameter or right hand side expression
and not to the definition of the entities used. Which cases are checked at compile time and which
ones at runtime is a tool implementation issue.

c) A restricted, modified template has to have the same or more restrictive restriction as the base template. A
restricted parameter of a modified template has to have the same or a more restrictive restriction as the
corresponding parameter of the base template. The allowed restrictions are listed in table 14.

Table 14: Restricting modified templates

Restriction in base template Allowed restrictions in modified template
template template, template(present), template(omit), template(value)
template(present) template(present), template(value)

template(omit) template(omit), template(value)

template(value) template(value)

ETSI



119 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

// definitions of restricted templates
type record ExampleType {

integer a,

boolean b optional

}

template (omit) ExampleType exampleOmit := omit;

template (omit) ExampleType exampleOmitValue:= { 1, true };

template (omit) ExampleType exampleOmitAny := ?; // incorrect

template (value) ExampleType exampleValueomit := omit; // incorrect

template (value) ExampleType exampleValue := { 1, true };

template (value) ExampleType exampleValueOptional := { 1, omit };
// omit assigned to a field is correct

template (present) ExampleType examplePresent := {1, ?};

template (present) ExampleType examplePresentIfpresent := { 1, true } ifpresent;
// incorrect

template (present) ExampleType examplePresentAny := ?;

// restricted template usage

var template ExampleType (omit) v_omit;

var template ExampleType (present) v_present;
var template ExampleType (value) v_value;

v_omit := exampleOmit;

v_omit := exampleValueOptional;

v_omit := examplePresentAny; // incorrect, not a specific value
v_present := exampleOmit; // incorrect, must not be omit
v_present := examplePresent;

v_value := exampleOmit; // incorrect, must not be omit
v_value := examplePresentAny; // incorrect, must be a single value

// template modification

template (present) ExampleType exampleBase( template (omit) boolean p) := { ?, p };

//correct, template and its parameter are more restrictive

template (value) ExampleType exampleModified( template (value) boolean p)
modifies exampleBase := { a := 1 };

//incorrect, modified template is less restrictive

template ExampleType exampleModified( template (value) boolean p)
modifies exampleBase := { a := 1 };

//incorrect, parameter of modified template is less restrictive

template (present) ExampleType exampleModified( template (present) boolean p)
modifies exampleBase := { a := 1 };

15.9  Match Operation

Thematch operation allows to compare a value (specified in form of an expression) with atemplate.

Syntactical Structure

match " (" Expression "," TemplateInstance ")"
Semantic Description

Thematch operation returns a boolean value. If the types of the template and the value (specified in form of an
expression) are not compatible (see clause 6.3) the operation returns false. If the types are compatible, the return
value of thematch operation indicates whether the value matches the specified template.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theexpression-parameter of thematch operation shall not evaluate to atemplate, i.e. thematch operation
cannot be used to compare two templ ates.

ETSI



120 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples
template integer LessThanl0 := (-infinity..9);
MyPort .receive (integer:?) -> value RxValue;

if ( match( RxValue, LessThanl0)) { .. }
// true if the actual value of Rxvalue is less than 10 and false otherwise

15.10 Valueof Operation

Thevalueof operation alows to return the value specified within atemplate. The returned val ue can be assigned to a
variable, may be used in expressions, as an actual value parameter, etc.

Syntactical Structure
valueof " (" TemplateInstance ")"

Semantic Description

Thevalueof operation returns the value of atemplate instance.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thetemplate shall be completely initialized and resolve to a specific value.

Examples

EXAMPLE 1:

type record ExampleType

{

integer fieldl,
boolean field2

}

template ExampleType SetupTemplate :=

{

fieldl := 1,
field2 := true
}
var ExampleType RxValue := valueof (SetupTemplate) ;
EXAMPLE 2:
function MyFunc() {
var template integer vt_int := omit;
//is ok, but to be used for optional record or set fields only
var integer v_int := valueof (vt_int)

//causes an error as omit is not a value and shall not be an argument of valueof

15.11 Concatenating templates of string and list types

Templates of string and list types (bitstring, octetstring, hexstring, charstring, universal charstring, record of, set of, and
array) can be concatenated from severa single (inline) templates using the concatenation operation. Each single
template shall have the same root type. The single templates shall contain only specific values, AnyVaueOrNone
constrained to afixed length, AnyElement, or AnyElementsOrNone matching mechanisms. The concatenation resultsin
the sequential concatenation of the single templates from left to right, with one exception: a single template that is
AnyVaueOrNone constrained to a fixed length N shall be replaced by an inline template containing N AnyElement
matching symbols before concatenation. The concatenation shall be performed completely before using the resulting
template (e.g. for assignment or matching) and the result shall be type-compatible with the place of its use.

ETSI



121 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE 1: Inline templates used for the concatenation need not be valid templates of the result type (e.g. odd humber
of hexadecimal digits are allowed in an octetstring template concatenation), but the resulting template has
to be avalid template.

NOTE 2: See dso concatenation of character string patternsin clause B.1.5.

EXAMPLE 1: Composing templates of string types

template charstring t_Mycharl := "ABC" & "D*" & "E?F";
// results in the template "ABCD*E?F"
template charstring t Mychar2 := "ABC" & * length(2) & "E?F";
// results in the template "ABC??E?F"
template bitstring t Mybit := '010'B & '*'B & '1?1'B;
// results in the template '010*1?1'B
template octetstring t Myoctl := 'ABC'O & 'D*'O & '?EF'O;
// results in the template 'ABCD*?EF'O
template octetstring t Myoct2 := 'ABCD'O & * length (2) & 'EF'O;

// results in the template 'ABCD??EF'O
// (i.e. a 5 octets i.e. 10 hexadecimal digits long value)

template octetstring t Myoct := 'ABCD'O & '?'0O & '?E'OQ;
// causes an error, the resulting template shall be a legal value
// (if composed, 'ABCD??E'O would denote 9 hexadecimal digits, but the length should be an
// even number of digits)
template charstring t MycharWrong := "ABC" & * length(1l..2) & "E?F";
// causes an error, the length attribute shall be of fixed length

template charstring t_ MycharPar (integer N):= "ABC" & * length(N) & "E?F";
function MyFunc() runs on MyCompType {
var integer v_int := 3;

var template charstring vt char;

vt_char := "ABC" & * length(v_int) & "E?F";
//results in the template "ABC???E?F"
P.receive (t_MycharPar (4));
//actual content of t MycharPar is "ABC????E?F"
1

EXAMPLE 2.  Composing templates of list types

type record of charstring RecofChar;
type set of integer SetofInt;

template RecofChar t MyRecofChar := {"ABC"} & {"D*", "E?F"};
// results the template {"ABC", "D*", "E?F" }
template SetofInt t MySetofInt := { 1, 2 } & * length(2) & { 3, 4 };

// results the template {1, 2, ?, ?, 3, 4 }

template RecofChar t MyRecofCharWrong:= "ABC" & * length(1l..2) & "E?F";
// causes an error, the length attribute shall denote a fixed length

template RecofChar t MyRecofCharPar (integer N):= { "ABC" }, & * length(N) & { "E?F" };
function MyFunc() runs on MyCompType {

var integer v_int := 3;

var template RecofChar vt_recofChar;

vt_recofChar := { "ABC" } & * length(v_int) & { "E?F" };
//results the template { "ABC", ?, ?, ?, "E?F" }
P.receive ( t_MyRecofCharPar(4) );
//actual content of t MyRecofCharPar is { "ABC", ?, ?, ?, ?, "E?F" }

16 Functions, altsteps and testcases

In TTCN-3, functions, altsteps and testcases are used to specify and structure test behaviour, define default behaviour
and to structure computation in a module etc. as described in the following clauses.

16.1 Functions

Functions are used in TTCN-3 to express test behaviour, to organize test execution or to structure computation in a
module, for example, to calculate asingle value, to initialize a set of variables or to check some condition.

ETSI



122 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Syntactical Structure

function FunctionIdentifier

"(" [ { ( FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar ) [","] } 1 ")"
[ runs on ComponentType ]

[ return [ template ] Type ]

StatementBlock

Semantic Description

Functions are portions of TTCN-3 behaviour, which perform a specific task and are relatively independent of the
remaining behaviour.

Functions may return avalue or atemplate. Vaue return is denoted by the return keyword followed by atype
identifier. Template return is denoted by the return template keywords followed by atype identifier. Template
return can be restricted to the matching mechanisms specific value and omit, see clause 5.4.1.2. The keyword return,
when used in the body of the function with a value return defined in its header, shall always be followed by an
expression representing the return value. The type of the return value shall be compatible with the return type. The
keyword return, when used in the body of the function with atemplate return defined in its header, shall always be
followed by an expression or a template instance representing the return template. The type of the return template shall
be compatible with the return template type. If the return template is restricted, then the return template shall either be a
specific value or omit. The return statement in the body of the function causes the function to terminate and to return the
return value to the location of the call of the function.

The behaviour of afunction can be defined by using statements and operations described in clauses 18 to 25 and
clause 26. If afunction uses variables, constants, timers and ports that are declared in a component type definition, the
component type shall be referenced using the runs on keywords in the function header. The one exception to thisrule
isif al the necessary component-wide information is passed in the function as parameters.

Functions may be parameterized.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A function without runs on clause shall never invoke a function or altstep or activate an altstep as default
witharuns on clauselocally.

b)  Functions started by using the start test component operation shall always have aruns on clause
(see clause 22.5) and are considered to be invoked in the component to be started, i.e. not locally. However,
the start test component operation may be invoked in functions without a runs on clause.

NOTE 1. Therestrictions concerning the runs on clause are only related to functions and altsteps and not to test
cases.

¢) Functions used in the control part of a TTCN-3 module shall have no runs on clause.
NOTE 2: Nevertheless, functions used in the control part are allowed to execute test cases.
d) Therulesfor formal parameter lists shall be followed as defined in clause 5.4.

€) Forreturn template statements the restrictions specified in clause 15 shall apply.

Examples

EXAMPLE 1: Function with return

// Definition of MyFunction which has no parameters
function MyFunction() return integer

{

return 7; // returns the integer value 7 when the function terminates

ETSI



123 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 2:  Function with template return

// Definition of functions which may return matching symbols or templates
function MyFunction2() return template integer

return ?; // returns the matching mechanism AnyValue
function MyFunction3 () return template octetstring

{

return 'FF??FF'O; // returns an octetstring with AnyValue inside it

}
EXAMPLE 3:  Function with runs on clause

function MyFunction3() runs on MyPTCType {

lo // MyFunction3 doesn't return a value, but
var integer MyVar := 5; // does make use of the port operation
PCO1.send (MyVar) ; // send and therefore requires a runs on
// clause to resolve the port identifiers
} // by referencing a component type

EXAMPLE 4: Parameterized function

function MyFunction2 (inout integer MyParl) {
// MyFunction2 doesn't return a value
MyParl := 10 * MyParl; // but changes the value of MyParl which
} // is passed in by reference

16.1.1 Invoking functions
A function isinvoked by referring to its name and providing the actual list of parameters.

Syntactical Structure

FunctionRef " (" [ { ActualPar [","] } 1 )™
Semantic Description

A function invocation results in the execution of the statement block of the invoked function. The invoked function is
performed by the test component invoking it. Actual parameters are passed into the statement block. If the function
returns (upon termination and potentially with areturn value), the test components continues its behaviour right after
the function invocation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Functionsthat do not return values shall be invoked directly. Functions that return values may be invoked
directly or inside expressions.

b) Therulesfor actual parameter lists shall be followed as defined in clause 5.4.

c) Specia restrictions apply to functions bound to test components using the start test component operation.
These restrictions are described in clause 21.2.2.

d) Wheninvoking afunction, the compatibility to the test component type of the invoking test component as
described in clause 6.3.3 need to be fulfilled.

€) Restrictions on invoking functions from specific places are described in clause 16.1.4.

ETSI



Examples
MyVar := MyFunction4 () ;
MyFunction2 (MyVar2) ;

MyVar3 := MyFunctioné (4)

16.1.2 Predefined f

124

/!
!/

//
!/

actual parameter MyVar2,

+ MyFunction?7 (MyVar3); // Functions used in expressions

unctions

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

The value returned by MyFunction4 is assigned to MyVar.
The types of the returned value and MyVar have to be compatible

MyFunction2 doesn't return a value and is called with the
which may be passed in by reference

TTCN-3 contains a number of predefined (built-in) functions that need not be declared before use. These are

summarized in table 15.

Table 15: List of TTCN-3 predefined functions

Returns the name of the currently executing test case

Category Function Keyword

Conversion functions Convert integer value to charstring value int2char
Convert integer value to universal charstring value int2unichar
Convert integer value to bitstring value int2bit
Convert integer value to hexstring value int2hex
Convert integer value to octetstring value int2oct
Convert integer value to charstring value int2str
Convert integer value to float value int2float
Convert float value to integer value float2int
Convert charstring value to integer value char2int
Convert charstring value to octetstring value char2oct
Convert universal charstring value to integer value unichar2int
Convert bitstring value to integer value bit2int
Convert bitstring value to hexstring value bit2hex
Convert bitstring value to octetstring value bit2oct
Convert bitstring value to charstring value bit2str
Convert hexstring value to integer value hex2int
Convert hexstring value to bitstring value hex2bit
Convert hexstring value to octetstring value hex2oct
Convert hexstring value to charstring value hex2str
Convert octetstring value to integer value oct2int
Convert octetstring value to bitstring value oct2bit
Convert octetstring value to hexstring value oct2hex
Convert octetstring value to charstring value oct2str
Convert octetstring value to charstring value, version I oct2char
Convert charstring value to integer value str2int
Convert charstring value to hexstring value str2hex
Convert charstring value to octetstring value str2oct
Convert charstring value to float value str2float
Convert enumeration to integer value enum2int

Length/size functions Return the length of a value or template of any string type, lengthof
record of, set of or array
Return the number of elements in a value or a template of a sizeof
record or set

Presence checking functions |Determine if an optional field in a record or set value or ispresent
template is present
Determine which choice has been selected in a union value or |ischosen
template
Determine if a template evaluates to a concrete value isvalue

String/List handling functions |Returns part of the input string matching the specified pattern |regexp
group within a character pattern
Returns the specified portion of the input string/list value or substr
template
Replaces a substring of a string with or inserts the input string |replace
into a string, and similarly for lists

Codec functions Encode a value into a bitstring encvalue
Decode a bitstring into a value decvalue

Other functions Generate a random float number rnd

testcasename

ETSI




125 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Syntactical Structure

int2char " (" SingleExpression ")" |

int2unichar " (" SingleExpression ")" |

int2bit " (" SingleExpression "," SingleExpression ")" |
int2hex " (" SingleExpression "," SingleExpression ")" |
int2oct " (" SingleExpression "," SingleExpression ")" |
int2str " (" SingleExpression ")" |

int2float " (" SingleExpression ")" |

float2int " (" SingleExpression ")" |

char2int " (" SingleExpression ")" |

char2oct " (" SingleExpression ")" |

unichar2int " (" SingleExpression ")" |

bit2int " (" SingleExpression ")"

bit2hex " (" SingleExpression ")"

bit2oct " (" SingleExpression ")"

bit2str " (" SingleExpression ")"

hex2int " (" SingleExpression ")"

hex2bit " (" SingleExpression ")"

hex2oct " (" SingleExpression ")"

hex2str " (" SingleExpression ")"

oct2int " (" SingleExpression ")"

oct2bit " (" SingleExpression ")"

oct2hex " (" SingleExpression ")"

oct2str " (" SingleExpression ")"

oct2char " (" SingleExpression ")" |

str2int " (" SingleExpression ")"

str2hex " (" SingleExpression ")"

str2oct " (" SingleExpression ")"

str2float " (" SingleExpression ")" |

enum2int " (" SingleExpression ")" |

lengthof " (" TemplateInstance ")" |

sizeof "(" TemplateInstance ")" |

ispresent " (" TemplateInstance ")" |

ischosen " (" TemplateInstance ")" |

isvalue " (" TemplateInstance ")" |

regexp " (" Templatelnstance"," TemplateInstance"," SingleExpression ")" |
substr " (" TemplateInstance "," SingleExpression "," SingleExpression ")" |
replace " (" SingleExpression "," SingleExpression "," SingleExpression "," SingleExpression ")" |
encvalue " (" TemplateInstance ")" |

decvalue " (" SingleExpression "," SingleExpression ")" |
rnd " (" [ SingleExpression ] ")" |

testcasename " ()"

Semantic Description
The description of predefined functionsis given in annex C.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a  When apredefined function is invoked:
1) the number of the actual parameters shall be the same as the number of the formal parameters; and
2) each actual parameter shall evaluate to an element of its corresponding formal parameter's type; and

3) all actual parameters shall be initialized with the exception of the actual parameter passed to the
isvalue predefined function, which may be uninitialized.

b)  Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples

var hexstring h:= bit2hex ('111010111'B);
var octetstring o:= substr ('01AB23CD'O, 1, 2);

ETSI



126 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

16.1.3 External functions
A function may be defined within a module or be declared as being defined externally (i.e. external).

Syntactical Structure

external function ExtFunctionIdentifier
"(" [ { ( FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar ) [","] } 1 ")"
[ return Type ]

Semantic Description

For an externa function only the function interface has to be provided in the TTCN-3 module. The redlization of the
external function is outside the scope of the present document.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) External functions are not allowed to contain port, timer or default handling operations.
b) Externa functions are not alowed to return templates.

¢) Restrictions on invoking functions from specific places are described in clause 16.1.4.

Examples
external function MyFunction4 () return integer; // External function without parameters
// which returns an integer value
external function InitTestDevices() ; // An external function which only has an

// effect outside the TTCN-3 module

16.1.4 Invoking functions from specific places

Value returning functions can be called during communication operations (in templates, template fields or in-line
templates) or during snapshot evaluation (in Boolean guards of alt statements or altsteps (see clause 20.2) and in
initialization of altstep local definitions (see clause 16.2). To avoid side effects that cause changing the state of the
component or the actual snapshot and to prevent different results of subsequent evaluations on an unchanged snapshot,
the following operations shall not be used in functions called in the cases specified above:

a)  All component operations, i.e. create, start (component), stop (component), kill,
running (component), alive, done and killed (seenotesl, 3, 4 and 6).

b)  All port operations, i.e. start (port), stop (port), halt, clear, send, receive, trigger, call,
getcall, reply, getreply, raise, catch, check, connect, map (seenotesl, 2, 3and 6).

¢) Theaction operation (see notes2 and 6).

d) All timer operations, i.e. start (timer), stop (timer), running (timer), read, timeout (Seenhotes4
and 6).

e) Cadling external functions (see notes 4 and 6).
f)  Calling the rnd predefined function (see notes 4 and 6).

g) Changing of component variables, i.e. using component variables on the left-hand side of assignments, and in
the instantiation of out and inout parameters (see notes 4 and 6).

h) Cadlingthe setverdict operation (see notes 4 and 6).
i)  Activation and deactivation of defaults, i.e. the activate and deactivate statements (see notes 5 and 6).

j)  Cdling functionswith out or inout parameters (see notes 7 and 8).

ETSI



127 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE 1: The execution of the operations start, stop, done, killed, halt, clear, receive, trigger,
getcall, getreply, catch and check can cause changes to the current snapshot.

NOTE 2: The use of operations send, call, reply, raise, and action causesan error, i.e. all
communication are to be made explicit and not as a side-effect of another communication operation or the
evaluation of a snapshot.

NOTE 3: The use of operationsmap, unmap, connect, disconnect, create causesan error, i.e. al
configuration operations are to be made explicit, and not as a side-effect of a communication operation or
the evaluation of a snapshot.

NOTE 4: Caling of externa functions, rnd, running, alive, read, setverdict, and writing to component
variables causes an error because it may lead to different results of subsequent eval uations of the same
snapshot, thus, e.g. rendering deadlock detection impossible.

NOTE 5: The use of operationsactivate and deactivate causesan error because they modify the set of
defaults that is considered during the evaluation of the current snapshot.

NOTE 6: Restrictions except the limitation on the use of out or inout parameterization apply recursively, i.e. it
is disalowed to use them directly, or viaan arbitrary long chain of function invocations.

NOTE 7: Therestriction of calling functions with out or inout parameters does not apply recursively, i.e. calling
functions that themselves call functions with out or inout parametersislegal.

NOTE 8: Using out or inout parameters causes an error because it may lead to different results of subsequent
evaluations of the same snapshot.

16.2  Altsteps

TTCN-3 uses altsteps to specify default behaviour or to structure the alternatives of an alt statement.

Syntactical Structure

altstep AltstepIdentifier
"(" [ { ( FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar ) [","] } 1 ")"
[ runs on ComponentType ]

n{n
{ ( VarInstance | TimerInstance | ConstDef | TemplateDef ) [";"] }
AltGuardList

n } n
Semantic Description

Altsteps are scope units similar to functions. The altstep body defines an optional set of local definitions and a set of
aternatives, the so-called top alternatives, that form the altstep body. The syntax rules of the top alternatives are
identical to the syntax rules of the alternatives of alt statements.

The behaviour of an atstep can be defined by using the program statements and operations summarized in clause 18.
Altsteps may invoke functions and altsteps or activate altsteps as defaults.

Altsteps may be parameterized as defined in clause 5.4.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theloca definitions of an altstep shall be defined before the set of alternatives.

b) Theinitialization of local definitions by calling value returning functions may have side effects. To avoid side
effects that cause an inconsistency between the actual snapshot and the state of the component, and to prevent
different results of subsequent evaluations on an unchanged snapshot, restrictions given in clause 16.1.4 shall
apply to theinitialization of local definitions.

ETSI



128 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

c) If analtstep includes port operations or uses component variables, constants or timers the associated
component type shall be referenced using the runs on keywordsin the altstep header. The one exception to
thisruleisif al ports, variables, constants and timers used within the altstep are passed in as parameters.

d) Anatstep without aruns on clause shall never invoke afunction or altstep or activate an altstep as default
witharuns on clauselocally.

€) Analtstep that is activated as a default shall only have in value or template parameters, port parameters, and
timer parameters. An altstep that is only invoked as an alternative in an alt statement or as stand-alone
statement in a TTCN-3 behaviour description may have in, out and inout parameters. The rules for formal
parameter lists shall be followed as defined in clause 5.4.

Examples

EXAMPLE 1: Parameterized altstep with runs on clause

// Given
type component MyComponentType {
var integer MyIntVar := 0;

timer MyTimer;
port MyPortTypeOne PCO1l, PCO2;
port MyPortTypeTwo PCO3;

}

// Altstep definition using PCOl, PCO2, MyIntVar and MyTimer of MyComponentType
altstep AltSet A(in integer MyParl) runs on MyComponentType {
[] PCOl.receive (MyTemplate (MyParl, MyIntVar)
setverdict (inconc) ;
}

[1 PCO2.receive
if (MyParl != 0) {
repeat

else
break
1
1

[] MyTimer.timeout ({
setverdict (fail) ;
stop
1

}
EXAMPLE 2:  Altstep with local definitions

altstep AnotherAltStep(in integer MyParl) runs on MyComponentType {
var integer MyLocalVar := MyFunction(); // local variable
const float MyFloat := 3.41; // local constant
[] PCOl.receive (MyTemplate (MyParl, MyLocalVar) {
setverdict (inconc) ;

}

[1 PCO2.receive
repeat
}

16.2.1 Invoking altsteps

Theinvocation of an atstep is always related to an alt statement. The invocation may be done either implicitly by the
default mechanism (see clause 21) or explicitly by adirect call within an alt statement (see clause 20.2).

Syntactical Structure
AltstepRef " (" [ { ActualPar [","] } 1 ")n"
Semantic Description

Theinvocation of an altstep causes no new snapshot and the evaluation of the top aternatives of an altstep is done by
using the actual snapshot of the alt statement from which the altstep was called.

ETSI



129 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

NOTE: A new snapshot within an altstep will of course be taken, if within a selected top aternativeanew alt
statement is specified and entered.

For an implicit invocation of an altstep by means of the default mechanism, the altstep shall be activated as a default by
means of an activate statement before the place of the invocation is reached.

An explicit call of an altstep within an alt statement looks syntactically like a function invocation as an alternative.
When an altstep is called explicitly within an alt statement, the next alternative to be checked is the first alternative of
the altstep. The aternatives of the altstep are checked and executed the same way as alternatives of an alt
statement (see clause 20.1) with the exception that no new snapshot is taken when entering thealtstep. An
unsuccessful termination of the altstep (i.e. al top aternatives of the altstep have been checked and no matching
branch is found) causes the evaluation of the next alternative or invocation of the default mechanism (if the explicit call
isthe last aternative of the alt statement). A successful termination may cause either the termination of the test
component, i.e. the altstep ends with a stop statement, or a new snapshot and re-evaluation of the alt statement,

i.e. the altstep ends with repeat (see clause 20.2) or a continuation immediately after the alt statement, i.e. the
execution of the selected top alternative of the altstep ends with abreak statement (see clause 19.12) or without
explicit repeat or stop.

An altstep can also be caled as a stand-alone statement in a TTCN-3 behaviour description. In this case, the call of
the altstep can beinterpreted as shorthand for an alt statement with only one alternative describing the explicit call
of thealtstep.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a  Wheninvoking an atstep, the compatibility of the test component type of the invoking test component and of
the altstep runs on clause (as described in clause 6.3.3) need to be fulfilled.

b)  Further restrictions on invoking altsteps in the activate statement are given in clause 20.5.2.
Examples

EXAMPLE 1: Implicit invocation of an atstep via a default activation

var default MyDefVarTwo := activate (MySecondAltStep()); // Activation of an altstep as default

EXAMPLE 2:  Explicit invocation of an atstep within an alt statement

alt {
[1 PCcO3.receive {

=

[] AnotherAltStep(); // explicit call of altstep AnotherAltStep as an alternative
// of an alt statement
[] MyTimer.timeout {}

}
EXAMPLE 3:  Explicit, stand-alone invocation of an altstep

// The statement
AnotherAltStep(); // AnotherAltStep is assumed to be a correctly defined altstep

//is a shorthand for

alt {
[1 AnotherAltStep() ;
1

ETSI



130 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

16.3 Test cases

A test case is complete and independent specification of the actions required to achieve a specific test purpose. It
typically startsin a stable testing state and ends in a stable testing state. It may involve one or more consecutive or
concurrent connectionsto the SUT. The test case shall be complete in the sense that it is sufficient to enable atest
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events). The test
case shall be independent in the sense that it shall be possible to execute the derived executable test case in isolation
from other such test cases.

In TTCN-3, test cases are aspecial kind of function. Test cases define the behaviours, which have to be executed to
check whether the SUT passes atest or not. This behaviour is performed by the MTC which is automatically created
when atest case is being executed.

Syntactical Structure

testcase TestcaseIdentifier

"(m [ { ( FormalValuePar | FormalTemplatePar) [","] } 1 ")"
runs on ComponentType

[ system ComponentType ]

StatementBlock

Semantic Description

A test case is considered to be a self-contained and compl ete specification that checks atest purpose. The result of atest
case execution isatest verdict.

A test case header has two parts:

a) interface part (mandatory): denoted by the keyword runs on which references the required component type
for the MTC and makes the associated port names visible within the MTC behaviour; and

b) test system part (optional): denoted by the keyword sy stem which references the component type which
defines the required ports for the test system interface. The test system part shall only be omitted if, during test
execution, only the MTC isinstantiated. In this case, the MTC type defines the test system interface ports
implicitly.

The behaviour of atest case can be defined by using the program statements and operations described in clause 18.

Test cases may be parameterized as described in clause 5.4. Test cases can be executed in the control part of a module
(see clause 26).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therulesfor forma parameter lists shall be followed as defined in clause 5.4.

b) Test cases may only be invoked with an execute statement in a module control part as defined in clause 26.

Examples
testcase MyTestCaseOne ()
runs on MyMtcTypel // defines the type of the MTC
system MyTestSystemType // makes the port names of the TSI visible to the MTC

// The behaviour defined here executes on the mtc when the test case invoked

}

// or, a test case where only the MTC is instantiated
testcase MyTestCaseTwo () runs on MyMtcType2

// The behaviour defined here executes on the mtc when the test case invoked

ETSI



131 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

17 Void

18 Overview of program statements and operations

The fundamental program elements of test cases, functions, altsteps and the control part of TTCN-3 modules are
expressions, basic program statements such as assignments, loop constructs etc., behavioural statements such as
sequential behaviour, alternative behaviour, interleaving, defaults, etc., and operations such as send, receive,
create, €tC.

Statements can be either single statements (which do not include other program statements) or compound statements
(which may include other statements and statement blocks).

Statements shall be executed in the order of their appearance, i.e. sequentialy, asillustrated in figure 8.

S1

S2 |::> S1; S82; 83;

S3

Figure 8: lllustration of sequential behaviour

Theindividual statements in the sequence shall be separated by the delimiter ";".
EXAMPLE:

MyPort .send (Mymessage) ; MyTimer.start; log("Done!") ;

The specification of an empty statement block, i.e. { }, may be found in compound statements, e.g. abranchinan alt
statement, and implies that no actions are taken.

Table 16 gives an overview of the TTCN 3 expressions, statements and operations and restrictions on their usage.

Table 16: Overview of TTCN-3 expressions, statements and operations

Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean
guards, or
from
initialization of
altstep local
definitions
Expressions (...) Yes Yes Yes
Basic program statements
Assignments = Yes Yes Yes
(see note 3)
If-else if (..){.}else{.} Yes Yes Yes
Select case select case (...) { case Yes Yes Yes
(..){.}caseelse{..}}
For loop for (..){...} Yes Yes Yes
While loop while (...) {...} Yes Yes Yes
Do while loop do {...} while (...) Yes Yes Yes
Label and Goto label / goto Yes Yes Yes
Stop execution stop Yes Yes
Returning control return Yes Yes
(see note 4)

ETSI



132 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)
Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean
guards, or
from
initialization of
altstep local
definitions
Leaving a loop, alt, altstep or interleave |break Yes Yes Yes
Next iteration of a loop continue Yes Yes Yes
Logging log Yes Yes Yes
Statements and operations for alternative behaviours
Alternative behaviour alt{...} Yes Yes
(see note 1)
Re-evaluation of alternative behaviour |repeat Yes Yes
(see note 1)
Interleaved behaviour interleave {...} Yes Yes
(see note 1)
Activate a default activate Yes Yes
(see note 1)
Deactivate a default deactivate Yes Yes
(see note 1)
Configuration operations
Create parallel test component create Yes
Connect component port to component (connect Yes
port
Disconnect two component ports disconnect Yes
Map port to test interface map Yes
Unmap port from test system interface  [unmap Yes
Get MTC component reference value  |mtc Yes Yes
Get test system interface component system Yes Yes
reference value
Get own component reference value self Yes Yes
Start execution of test component start Yes
behaviour
Stop execution of test component stop Yes
behaviour
Remove a test component from the kill Yes
system
Check termination of a PTC behaviour |running Yes
Check if a PTC exists in the test system |alive Yes
Wait for termination of a PTC behaviour |done Yes
Wait a PTC cease to exist killed Yes
Communication operations
Send message send Yes
Invoke procedure call call Yes
Reply to procedure call from remote reply Yes
entity
Raise exception (to an accepted call) raise Yes
Receive message receive Yes
Trigger on message trigger Yes
Accept procedure call from remote getcall Yes
entity
Handle response from a previous call _ |getreply Yes
Catch exception (from called entity) catch Yes
Check (current) message/call received |check Yes
Clear port queue clear Yes
Clear queue and enable sending & start Yes
receiving at a to port
Disable sending and disallow receiving |stop Yes
operations to match at a port
Disable sending and disallow receiving |halt Yes

operations to match new
messages/calls

ETSI




133 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)
Statement Associated keyword or| Can be used | Can be used | Can be used
symbol in module in functions, | in functions
control test cases and| called from
altsteps templates,
Boolean
guards, or
from
initialization of
altstep local
definitions
Timer operations
Start timer start Yes Yes
Stop timer stop Yes Yes
Read elapsed time read Yes Yes
Check if timer running running Yes Yes
Timeout event timeout Yes Yes
Verdict operations
Set local verdict setverdict Yes
Get local verdict getverdict Yes Yes
External actions
Stimulate an (SUT) action externally  [action | Yes | Yes |
Execution of test cases
Execute test case execute Yes Yes
(see note 2)
NOTE 1: Can be used to control timer operations only.
NOTE 2: Can only be used in functions and altsteps that are used in module control.
NOTE 3: Changing of component variables is disallowed.
NOTE 4: Can be used in functions and altsteps but not in test cases.

19 Basic program statements

The basic program statements presented in table 17 can be used in the control part of amodule and in TTCN-3
functions, altsteps and test cases.

Table 17: Overview of TTCN-3 basic program statements

Basic program statements
Statement Associated keyword or symbol
Assignments =
If-else if (..){.}else{.}
Select case select case (...) { case (...) {...} case
else{...}}
For loop for (...){...}
While loop while (...) {...}
Do while loop do {...} while (...)
Label and Goto label / goto
Stop execution stop
Returning control return
Leaving a loop, alt, altstep or |break
interleave
Next iteration of a loop continue
Logging log

ETSI



134 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

19.1  Assignments

Values or templates may be assigned to variables or template variables (see clause 11). Thisisindicated by the symbol

Syntactical Structure
VariableRef ":=" ( Expression | TemplateBody )
Semantic Description

During execution of an assignment, the right-hand side of the assignment shall evaluate to a value or template. The
effect of an assignment isto bind the variable to the value of the expression or to atemplate. The expression shall
contain no unbound variables. Assignments are processed from left to right, i.e expressionsin the left-hand-side are
evaluated before those in the right-hand-side. The evaluations obey the operator precedence defined in table 6. The
right-hand-side is evaluated completely before the resulting value or template is bound to the evaluated left-hand side of
the assignment. Whenever assignments are used within the right-hand-side of an assignment (due to assignment
notation), these rules apply recursively.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theright-hand side of an assignment shall evaluate to a value or template, which is type compatible with the
variable at the left-hand side of the assignment.

b)  When the right-hand side of the assignment evaluates to atemplate (global or local template, in-line template
or template variable), the variable at the left hand side shall be atemplate variable.

Examples

MyVariable := (x + y - increment(z))*3;

19.2 The If-else statement

The i f-else statement, also known as the conditional statement, is used to denote branching in the control flow.

Syntactical Structure

if " (" BooleanExpression ")" StatementBlock
{ else if " (" BooleanExpression ")" StatementBlock }
[ else StatementBlock]

NOTE: else if "(" BooleanExpression")" StatementBlock [ else StatementBlock] is a shorthand notation for
else "{"if "(" BooleanExpression")" StatementBlock [ else StatementBlock] "}".

Semantic Description

The branching of the control flow is decided upon the value of the Boolean expressions - the condition. A statement
block - and only one - will be executed, if its condition evaluates to true. The optional else specifies a statement block
that will be executed if al the "if" and "else if" conditions before are false.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples
if (date == "1.1.2005") { return ( fail ); }
if (MyVar < 10) { MyVar := MyVar * 10; log ("MyVar < 10"); }
else { MyVar := MyVar/5; }

ETSI



135 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

19.3 The Select case statement

The select case statement isan aternative syntactic form of the 1 £ - else statement.

Syntactical Structure

select " (" SingleExpression ")" "{n"
{ case " (" { SingleExpression [","] } ")" StatementBlock }
[ case else StatementBlock ]

n } n
Semantic Description

Theselect case Statementisanaternativetousing if .. else if .. else statements when comparing avalue to
one or several other values. The statement contains a header part and zero or more branches. Never more than one of the
branchesis executed.

In the header part of the select case statement an expression shall be given. Each branch starts with the case
keyword followed by alist of templatelnstance (alist branch, which may also contain asingle element) or theelse
keyword (an else branch) and a statement block.

All templatel nstance in al list branches shall be of atype compatible with the type of the expression in the header.

A list branch is selected and the statement block of the selected branch is executed only, if any of the templatel nstance
matches the value of the expression in the header of the statement. On executing the statement block of the selected
branch (i.e. not jumping out by a go to statement), execution continues with the statement following the select case
Statement.

The statement block of an else branch is always executed if no other branch textually preceding the el se branch has
been selected.

Branches are evaluated in their textual order. If none of the templatel nstance-s matches the value of the expression in
the header and the statement contains no el se branch, execution continues without executing any of the select case
branches.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theselect SngleExpression and the case SingleExpression-s shall be type compatible.

Examples

select (MyModulePar) // where MyModulePar is of charstring type

{

case ("firstValue")

{

log ("The first branch is selected");

}

case (MyCharVar, MyCharConst)

log ("The second branch is selected");

}

case else

{

log ("The value of the module parameter MyModulePar is selected");

}
}

// the above select statement is equivalent to the following nested if-else statement.
// Note: the following textual replacement of the select-case statement is described in
// the operational semantics of TTCN-3.

{

var charstring myTempVar := MyModulePar;
if (match(myTempVar, "firstValue")

log ("The first branch is selected");
else if (match(myTempVar, MyCharVar) or match (myTempVar, MyCharConst))

log ("The second branch is selected");

}

ETSI



136 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

else

log ("The value of the module parameter MyModulePar is selected");

}

19.4  The For statement

The for statement defines a counter 1oop.

Syntactical Structure

for "(" ( VarInstance | Assignment ) ";" BooleanExpression ";" Assignment ")"
StatementBlock

Semantic Description

The for statement contains two assignments and aboolean expression. The first assignment is necessary to initialize
the index (or counter) variable of the loop. The boolean expression terminates the loop and the second assignment is
used to manipulate the index variable.

The value of the index variable isincreased, decreased or manipulated in such a manner that after a certain number of
execution loops a termination criteriais reached.

The termination criterion of the loop shall be expressed by aboolean expression. It is checked at the beginning of
each new loop iteration. If it evaluatesto true, the execution continues with the statement block in the for statement, if
it evaluatesto £alse, the execution continues with the statement which immediately follows the for loop. If abreak
statement is executed that is not within the body of an enclosed loop, alt, aststep or interleave, thentheloopis
terminated, too.

Theindex variable of a £or loop can be declared before being used in the for statement or can be declared and
initiadlized in the for statement header. If the index variable is declared and initialized in the for statement header, the
scope of theindex variable islimited to the loop body, i.e. it isonly visible inside the loop body.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples
var integer j; // Declaration of integer variable j
for (j:=1; j<=10; Jj:= j+1) { .. } // Usage of variable j as index variable of the for loop
for (var float 1:=1.0; 1<7.9; i:= i*1.35) { .. } // Index variable i is declared and initialized

// in the for loop header. Variable i only is
// visible in the loop body.

19.5 The While statement

A while statement defines aloop that is executed as long as the loop condition holds.

Syntactical Structure
while " (" BooleanExpression ")" StatementBlock
Semantic Description

The loop condition shall be checked at the beginning of each new loop iteration. If the loop condition does not hold,
then the loop is exited and execution shall continue with the statement, which immediately followsthewhile loop. If a
break statement is executed that is not within the body of an enclosed loop, alt, aststep or interleave, then the
loop is terminated, too.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI



137 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

while (j<10){ .. }

19.6 The Do-while statement

A do-while statement defines aloop that is executed up until the loop condition does not hold.

Syntactical Structure
do StatementBlock while " (" BooleanExpression ")"
Semantic Description

Thedo-while loopisidentical to awhile loop with the exception that the loop condition shall be checked at the end
of each loop iteration. This means when using ado-while loop the behaviour is executed at least once before the loop
condition is evaluated for the first time. If abreak statement is executed that is not within the body of an enclosed
loop, alt, alststep or interleave, then theloop isterminated, too.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

do { .. } while (j<10);

19.7 The Label statement

The 1abel statement allows the specification of labelsin test cases, functions, atsteps and the control part of a
module.

Syntactical Structure
label LabelIdentifier
Semantic Description

A label marks astatement. Thelabel isused by the goto statement (see clause 19.8) to transfer control to alabelled
statement.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A label statement can be used freely like other TTCN-3 behavioural program statements according to the
syntax rules defined in annex A. It can be used before or after a TTCN-3 statement but not as the first
statement of an aternative or top alternative in an alt statement, interleave Statement or altstep.

b) Labelsused following the 1abel keyword shall be unique among all l1abels defined in the same test case,
function, altstep or control part.

Examples
label MyLabel; // Defines the label MyLabel
// The labels L1, L2 and L3 are defined in the following TTCN-3 code fragment

label L1; // Definition of label L1

alt{
[l PCOl.receive (MySigl)
{ label L2; // Definition of label L2

PCO1l.send (MySig2) ;
PCOl.receive (MySig3)

}

[l PCO2.receive (MySig4)
{ PCO2.send (MySig5) ;

ETSI



138 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

PCO2.send (MySig6) ;
label L3; // Definition of label L3
PCO2.receive (MySig7) ;

19.8 The Goto statement

A goto statement performsajumptoalabel.

Syntactical Structure

goto LabelIdentifier
Semantic Description

The goto statement can be used in functions, test cases, altsteps and the control part of a TTCN-3 module to transfer
control to alabelled statement.

The goto statement provides the possibility to jump freely, i.e. forwards and backwards, within a sequence of
statements, to jump out of a single compound statement (e.g. awhile loop) and to jump over severa levels out of
nested compound statements (e.g. nested alternatives).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Itisnot alowed to jump out of or into functions, test cases, altsteps and the control part of a TTCN-3 module.

b) Itisnot alowed to jump into a sequence of statements defined in a compound statement (i.e. alt statement,
while loop, for loop, i £-else statement, do- while loop and the interleave statement).

c) Itisnot alowed to use the goto statement within an interleave Statement.

Examples

// The following TTCN-3 code fragment includes

label L1; // .. the definition of label L1,
MyVar := 2 * MyVar;

if (MyVar < 2000) { goto L1; } // .. a jump backward to L1,
MyVar2 := Myfunction (MyVar) ;

if (MyVar2 > MyVar) { goto L2; } // .. a jump forward to L2,

PCOl.send (MyVar) ;
PCOl.receive;
label L2; // .. the definition of label L2,
PCO2.send(integer: 21);
alt {
[] PCOl.receive { }
[] PCO2.receive(integer: 67)
label L3; // .. the definition of label L3,
PCO2.send (MyVar) ;
alt {
[] PCOl.receive { }
[] PCO2.receive (integer: 90)
PCO2.send(integer: 33);
PCO2.receive (integer: 13);
goto L4; // .. a jump forward out of two nested alt statements,
!
[] PCO2.receive (MyError)
goto L3; // .. a jump backward out of the current alt statement,
1
[1 any port.receive ({
goto L2; // .. a jump backward out of two nested alt statements,

}
}
}
[1 any port.receive ({
goto L2; // .. and a long jump backward out of an alt statement.

}

ETSI



139 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

label 14;

19.9 The Stop execution statement
The stop statement terminates execution of test components, a test case or atest control.

Syntactical Structure

stop
Semantic Description

The stop statement terminates execution in different ways depending on the context in which it is used. When used in
the control part of a module or in afunction used by the control part of a module, it terminates the execution of the
module control part. When used in atest case, altstep or function that are executed on atest component, it terminates
the relevant test component.

NOTE: Thesemantics of a stop statement that terminates a test component is identical to the stop component
operation self . stop (see clause 21.2.3).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

module MyModule {
// Module definitions
testcase MyTestCase () runs on MyMTCType system MySystemType{
var MyPTCType ptc:= MyPTCType.create; // PTC creation
ptc.start (MyFunction()) ; // start PTC execution
: // test case behaviour continued
stop // stops the MTC, all PTCs and the whole test case

}

function MyFunction() runs on MyPTCType {

sto // stops the PTC only, the test case continues
D P Y

}

control
: // test execution
stop // stops the test campaign
} // end control
} // end module

19.10 The Return statement

The return statement terminates execution of functions or altsteps.
Syntactical Structure

return [ Expression ]
Semantic Description

The return statement terminates execution of afunction or atstep and returns control to the point from which the
function or altstep was called. When used in functions, a re turn statement may be optionally associated with areturn
value.

TTCN-3 alows optional statement blocks that may follow altstep calls within alt statements. If thereis a statement
block, the return statement returns control to the beginning of this statement block and the statement block is
executed before the alt statement isleft. If there is no statement block, test execution continues with the first statement
following the alt statement.

ETSI



140 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a)  Thereturn statement shall not be used in the statement block of a testcase.

Examples
function MyFunction() return boolean {
if (date == "1.1.2005") ({

return false; // execution stops on the 1.1.2000 and returns the boolean false
1

return true; // true is returned

}

function MyBehaviour () return verdicttype

if (MyFunction())
setverdict (pass) ;
1

else
setverdict (inconc) ;
1

return getverdict; // explicit return of the verdict

// use of MyFunction in an if statement

19.11 The Log statement

The 1og statement provides the means to write logging information to some logging device. The information that can
be logged is summarized in table 18.

Table 18: TTCN-3 language elements that can be logged

Used in a log statement What is logged Comment
module parameter identifier actual value
literal value value This includes also free text.
data constant identifier actual value

template instance

actual template or field
values and matching
symbols

data type variable identifier

actual value
or "UNINITIALIZED"

See notes 3 and 4.

self, mtc, systemor
component type variable
identifier

actual value and if
assigned the component
instance name
or "UNINITIALIZED"

On logging actual values see notes 2 to
4. Actual component states shall be
logged according to note 5.

running operation
(component or timer)

return value

true or false. In case of component or
timer arrays, array element specification
shall be included.

alive operation
(component)

return value

true or false. In case of arrays, array
element specifications shall be included.

port instance

actual state

Port states shall be logged according to
note 6.

default type variable identifier

actual state
or "UNINITIALIZED"

Default states shall be logged according
to note 7. See also notes 2 to 4.

timer name

actual state

Timer states shall be logged according to
note 8.

read operation

return value

See clause 24.3.

match operation

return value

getverdict operation

return value

none, pass, inconc, Or fail

predefined functions

return value

See annex C.

function instance

return value

Only functions with return clause are
allowed.

external function instance

return value

Only external functions with return clause
are allowed.

ETSI




141 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Used in a log statement What is logged Comment

formal parameter identifier see comment column Logging of actual parameters shall follow

rules specified for the language elements

they are substituting. In case of value

parameters the actual parameter value,

in case of template-type parameters the

actual template or field values and

matching symbols, in case of component

type parameters the actual component

reference etc. shall be logged. For timer

parameters also the use of the read

operation and for component type and

timer parameters the use of the running

operation are allowed.

NOTE 1: Actual value/actual template is the value/template at the moment of the execution of the log
statement.

NOTE 2: The type of the logged value is tool dependent.

NOTE 3: In case of array identifiers without array element specification, actual values and for
component references names of all array elements shall be logged.

NOTE 4: The string "UNINITIALIZED" is logged only if the log item is unbound (uninitialized).

NOTE 5: Component states that can be logged are: Inactive, Running, Stopped and Killed (for further
details see annex F).

NOTE 6: Port states that can be logged are: Started and Stopped (for further details see annex F).

NOTE 7: Default states that can be logged are: Activated and Deactivated.

NOTE 8: Timer states that can be logged are: Inactive, Running and Expired (for further details see
annex F).

Syntactical Structure

log " (" { ( FreeText | TemplateInstance ) [","] } ")"
Semantic Description

The 1og statement provides the means to write one or more log items to some logging device associated with the test
control or the test component in which the statement is used. Items to be logged shall be identified by a
comma-separated list in the argument of the log statement. Log items may be individual language elements specified in
table 18 or expressions composed of such log items.

It is strongly recommended that the execution of the 1og statement has no effect on the test behaviour. In particular,
functions used in alog statement shall neither explicitly nor implicitly change component variable values, port or timer
status, and shall not change the value of any of itsinout or out parameters.

NOTE: Itisoutside the scope of the present document to define complex logging and trace capabilities which
may be tool dependent.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Functions used in log statements shall not use directly or indirectly statements other than i f£...else, for,
while, do..while, label, goto, return, mtc, system, self, running (PTC or timer), read and
getverdict.

Examples

var integer myVar:= 1;

log("Line 248 in PTC A: ", myVar, " (actual value of myVar)");

// The string "Line 248 in PTC_A: 1 (actual value of myVar)" is written to some log device
// of the test system

ETSI



142 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

19.12 The Break statement

A break statement causes the exit from aloop, from an altstep or froman alt or interleave Statement.
Syntactical Structure

break
Semantic Description

On executing abreak statement the innermost, currently executed loop, alt statement or interleave Statement is
left. Execution continues with the statement following the construct which isleft. Using break outside the body of a
loop (for, while, do-while) or an dternative of an alt or interleave statement shall cause a dynamic error.

Altsteps are aways executed within a surrounding alt statement. If the execution of atop aternative of an altstep (see
clause 16.2) ends with abreak statement, the altstep and the surrounding alt statement are left. Execution continues
with the statement following the surrounding alt statement.

NOTE: TTCN-3 alows optional statement blocks that may follow altstep calls within alt statements. These
statement blocks are not executed when the altstep isleft by executing abreak statement. A return
statement has to be used, if such an optional statement block has to be executed (see clause 19.10).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples
do {

if (condl) {
break; // the do-while loop is left
1

for (var integer j:=1; j<=10; j:= j+1) {

if (cond2) {
break; // the for-loop is left but the do-while loop is continued
1

}

while (j<10);

19.13 The Continue statement

A continue statement causes the start of the next iteration of aloop.

Syntactical Structure

continue
Semantic Description

On executing acontinue statement, the subsequent statements of the body of the innermost, currently executed loop
are skipped and the next iteration starts. Using continue outside the body of aloop (for, while, do-while) shall
cause a dynamic error.

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI



143 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples
do {

if (cond) {
continue; // execution continues with the next iteration of the do-while-loop

for (var integer j:=1; j<=10; j:= j+1) {

if (cond2) {
continue; // continues with the next iteration of the for-loop

}

while (j<10);

19.14 Statement block

Statement blocks can be used like basic program statements to introduce alocal scope in the flow of control of TTCN-3
behaviour. The declarations and statementsin a statement block are executed in the order of their appearance,
i.e. sequentially.

Syntactical Structure
n{v { LocalDefinition | Statement } "}v
Semantic Description
A statement block defines alocal scope unit. Scoping rules for TTCN-3 are defined in clause 5.2.
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples
var integer aVar:= 0; // aVar is declared
{ // start of a statement block
var integer myVar:= 2; // myVar is declared
avVar := 5 + myVar; // myVar is used in an assignment
} // end of statement block

// after leaving the statement block aVar is still known, but myVar is not known anymore.

20 Statement and operations for alternative behaviours
Test behaviour cannot only be expressed sequentially, but also as a set of alternatives or combinations of both.

An interleaving operator allows the specification of interleaved sequences or alternatives. Table 19 summarizes the
statements and operations for alternative behaviours.

Table 19: Overview of TTCN-3 statements and operations for alternative behaviours

Statements and operations for alternative behaviours
Statement/Operation Associated keyword or symbol
Alternative behaviour alt{...}
Re-evaluation of alt statements |repeat
Interleaved behaviour interleave { ... }
Activate a default activate
Deactivate a default deactivate

ETSI



144 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

20.1  The snapshot mechanism

A more complex form of behaviour is where sequences of statements are expressed as sets of possible alternatives to
form atree of execution paths, asillustrated in figure 9.

S1;
S1 alt {
[1 s2 {
alt {
[1 s4a { s7}
[1 s5 {
S8;
alt {
1 so {}
[1 s10 {}
}
1
1

[1 s3 { s6}

Figure 9: lllustration of alternative behaviour

Thisisdone with the alt statement.

When entering an alt statement, a snapshot istaken. A snapshot is considered to be a partial state of atest component
that includes al information necessary to evaluate the Boolean conditions that guard alternative branches, all relevant
stopped test components, all relevant timeout events and the top messages, calls, replies and exceptionsin the relevant
incoming port queues. Any test component, timer and port which isreferenced in at least one alternativeinthealt
statement, or in atop aternative of an altstep that isinvoked as an alternative in the alt statement or activated as
default is considered to be relevant. A detailed description of the snapshot semanticsis given in the operational
semantics of TTCN-3 (part 4 of the TTCN-3 standard - ES 201 873-4 [1]).

NOTE 1: Snapshots are only a conceptual means for describing the behaviour of the alt statement. The concrete
algorithms for the snapshot handling can be found in part 4 of the TTCN-3 standard (ES 201 873-4 [1]).

NOTE 2: The TTCN-3 semantics assumes that taking a snapshot is instantaneous, i.e. has no duration. In areal
implementation, taking a snapshot may take some time and race conditions may occur. The handling of
such race conditionsis outside the scope of the present document.

20.2  The Alt statement

The alt statements expresses sets of possible aternatives that form atree of possible execution paths.

Syntactical Structure

alt " { n
{
"[" [ BooleanExpression ] "]"

( ( TimeoutStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
CatchStatement |
CheckStatement |
GetReplyStatement |
DoneStatement |
KilledStatement ) StatementBlock )

( AltstepInstance [ StatementBlock ] )

[ "[" else "]" StatementBlock ]

n}n

ETSI



145 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Semantic Description

The alt statement denotes branching of test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components, i.e. it isrelated to the use of the TTCN-3 operations
receive, trigger, getcall, getreply, catch, check, timeout,done andkilled. The alt Statement
denotes a set of possible events that are to be matched against a particular snapshot.

Execution of alternative behaviour:
When entering an alt statement, a snapshot is taken.

The aternative branchesin the alt statement and the top aternatives of invoked altsteps and altsteps that are activated
as defaults are processed in the order of their appearance. If several defaults are active, the reverse order of their
activation determines the evaluation order of the top alternatives in the defaults. The alternative branchesin active
defaults are reached by the default mechanism described in clause 20.5.

Theindividual alternative branches are either branches that may be guarded by a Boolean expression or else-branches,
i.e. alternative branches starting with [else].

Else-branches are always chosen and executed when they are reached (see below).

Branches that may be guarded by a Boolean expressions either invoke an altstep (altstep-branch), or start with adone
operation (done-branch), akilled operation (killed-branch), t imeout operation (timeout-branch) or areceiving
operation (receiving-branch), i.e. receive, trigger, getcall, getrepy, catch or acheck operation. The
evaluation of the Boolean guards shall be based on the snapshot. The Boolean guard is considered to be fulfilled if no
Boolean guard is defined, or if the Boolean guard evaluatesto true. The branches are processed and executed in the
following manner.

An altstep-branch is selected if the Boolean guard is fulfilled. The selection of an altstep-branch causes the invocation
of the referenced altstep, i.e. the atstep isinvoked and the evaluation of the snapshot continues within the altstep.
Altstep-branches may contain an optional statement block. The optional statement block shall be executed only, if an
alternative of the altstep referenced in the altstep-branch has been selected and executed.

A done-branch is selected if the Boolean guard is fulfilled and if the specified test component isin the list of stopped
components of the snapshot. The selection causes the execution of the statement block following the done operation.
The done operation itself has no further effect.

A killed-branch is selected if the Boolean guard is fulfilled and if the specified test component isin thelist of killed
components of the snapshot. The selection causes the execution of the statement block followingthekilled
operation. Thekilled operation itself has no further effect.

A timeout-branch is selected if the Boolean guard is fulfilled and if the specified timeout event isin the timeout-list of
the snapshot. The selection causes execution of the specified timeout operation, i.e. removal of the timeout event
from the timeout-list, and the execution of the statement block following the t imeout operation.

A receiving-branch is selected if the Boolean guard is fulfilled and if the matching criteria of receiving operation is
fulfilled by one of the messages, calls, replies or exceptions in the snapshot. The selection causes execution of the
receiving operation, i.e. removal of the matching message, call, reply or exception from the port queue, maybe an
assignment of the received information to a variable and the execution of the statement block following the receiving
operation. In the case of the trigger operation the top message of the queue is also removed if the Boolean guard is
fulfilled but the matching criteriais not. In this case the statement block of the given aternative is not executed.

NOTE 1: The TTCN-3 semantics describe the evaluation of a snapshot as a series of indivisible actions of atest
component. The semantics do not assume that the evaluation of a snapshot has no duration. During the
evaluation of a snapshot, test components may stop, timers may timeout and new messages, calls, replies
or exceptions may enter the port queues of the component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot eval uation.

If none of the alternative branchesin the alt statement and top alternativesin the invoked altsteps and active defaults
can be selected and executed, the alt statement shall be executed again, i.e. a new snapshot is taken and the evaluation
of the alternative branches is repeated with the new snapshot. This repetitive procedure shall continue until either an
aternative branch is selected and executed, or the test case is stopped by another component or by the test system

(e.g. because the MTC is stopped) or with a dynamic error.

ETSI



146 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

The test case shall stop and indicate a dynamic error if atest component is completely blocked. This means none of the
aternatives can be chosen, no relevant test component is running, no relevant timer is running and al relevant ports
contain at least one message, call, reply or exception that do not match.

NOTE 2: The repetitive procedure of taking a complete snapshot and re-evaluate all alternativesisonly a
conceptual means for describing the semantics of the alt statement. The concrete algorithm that
implements this semantics is outside the scope of the present document.

Selecting/deselecting an alter native:

If necessary, it is possible to enable/disable an alternative by means of a Boolean expression placed between the
("[...1") brackets of the alternative.

Else branch in alternatives:

Any branch in an alt statement can be defined as an el se branch by including the el se keyword between the opening
and closing brackets at the beginning of the alternative. The statement block of the else branch is always executed if no
other alternative textually preceding the else branch has proceeded.

Default mechanism:

It should be noted that the default mechanism (see clause 20.5) is always invoked at the end of al alternatives. If an
else branch is defined, the default mechanism will never be called, i.e. active defaults will never be entered.

NOTE 3: Itisalso possibleto use else in altsteps.
NOTE 4. ltisallowed to use arepeat statement within an else branch.

NOTE 5: It isallowed to define more that one else branch in an alt statement or in an altstep, however always only
the first else branch is executed.

Re-evaluation of alt statements:
There-evauation of an alt statement can be specified by using a repeat statement (see clause 20.3).
Invocation of altsteps as alter natives:

TTCN-3 alowstheinvocation of altsteps as alternativesin alt statements (see clause 16.2.1). When an altstep is
explicitly invoked as an alternative, the optional statement block following the atstep call shall also be executed.

Continue execution after the alt statement:

Behaviour execution continues with the statement following the alt statement when one of the branches of the alt or
invoked defaultsis selected and completely executed, or abranch of an altstep used in an altsteps-branch is selected
and the branch and the optional statement block following the invoked altstep are completely executed.

Execution also continues with the statement following the alt statement if abreak statement isreached in the
statement block of the selected branch of an alt statement, of an altstep used in an atstep-branch, or of an
altstep invoked as default.

The alt statement can also be left by using agoto statement in the selected branch of the alt (i.e. no branches of
atsteps and defaults can be considered in this case), and execution continues with the statement following the 1abel,
goto ispointing to.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Theopen and close square brackets ("[...]") shall be present at the start of each aternative, even if they are
empty. This not only aids readability but also is necessary to syntactically distinguish one alternative from
another.

b) The evaluation of a Boolean expression guarding an alternative may have side-effects. To avoid side effects
that cause an inconsistency between the actual snapshot and the state of the component, the same restrictions
astherestrictions for theinitialization of local definitions within altsteps shall apply (clause 16.2).

ETSI



147 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

¢) Theelse branch shall not contain any of the actions allowed in branches guarded by a boolean expression
(i.eeanaltstep cal or adone, akilled, a timeout Or areceiving operation).

d) Analt statement used within the module control part shall only contain the timeout statements.
Examples

EXAMPLE 1:  Nested alternatives

alt {
[] MyPort.receive (MyMessage) {

setverdict (pass);

MyTimer.start;

alt {

[] MyPort.receive (MySecondMessage) {

MyTimer.stop;
setverdict (pass);

[] MyTimer.timeout ({
MyPort.send (MyRepeat) ;
MyTimer.start;
alt {
[] MyPort.receive (MySecondMessage) {
MyTimer.stop;
setverdict (pass)
}
[l MyTimer.timeout { setverdict (inconc) }
[] MyPort.receive { setverdict (fail) }

}
[] MyPort.receive { setverdict (fail) }
}
}
[] MyTimer.timeout { setverdict (inconc) }
[] MyPort.receive { setverdict (fail) }

1
EXAMPLE 2:  Alt statement with guards

alt {
[x>1] L2.receive // Boolean guard/expression
setverdict (pass) ;
[x<=1] L2.receive { // Boolean guard/expression

setverdict (inconc) ;

}

EXAMPLE 3.  Alt statement with else branch

// Use of alternative with Boolean expressions (or guard) and else branch

alt {
[else] { // else branch
MyErrorHandling () ;
setverdict (fail) ;
stop;

1
EXAMPLE 4. Re-evauation with repeat

alt {
[1 PCO3.receive
count := count + 1;
repeat // usage of repeat

[] T1.timeout { }

[1 any port.receive ({
setverdict (fail) ;
stop;

ETSI



148 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLES: Alt statement with explicitly invoked altstep

alt {
[] PCO3.receive { }
[1 AnotherAltStep() { // Explicit call of altstep AnotherAltStep as alternative.
setverdict (inconc) // Statement block executed if an alternative within
// altstep AnotherAltStep has been selected and executed.
1

[] MyTimer.timeout { }

}

20.3 The Repeat statement

The repeat statement is used for are-evaluation of an alt statement.

Syntactical Structure

repeat
Semantic Description

The repeat statement, when used in the statement block of aternatives of alt statements, causes the re-eval uation of
the alt statement, i.e. a new snapshot is taken and the alternatives of the alt statement are evaluated in the order of
their specification.

When used in statement blocks of the response and exception handling parts of blocking procedure calls, the repeat
statement causes the re-eval uation of the response and exception handling part of the call (see clause 22.3.1).

If arepeat statement is used in atop alternative in an altstep definition, it causes a new snapshot and the
re-evaluation of the alt statement from which the altstep has been called. The call of the altstep may either be done
implicitly by the default mechanism (see clause 20.5.1) or explicitly in the alt statement (see clause 20.2).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Therepeat statement shall only be used within alt statements, call statements or altsteps.
Examples

EXAMPLE 1.  Usage of repeat in an alt statement

alt {
[1 PCO3.receive
count := count + 1;
repeat // usage of repeat

[] T1.timeout { }

[1 any port.receive ({
setverdict (fail) ;
stop;

1
!

EXAMPLE 2:  Usage of repeat in an altstep

altstep AnotherAltStep() runs on MyComponentType {
[] PCOl.receive({
setverdict (inconc) ;
repeat // usage of repeat

}

[] PCO2.receive {}

ETSI



149 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

20.4  The Interleave statement

The interleave statement alows to specify the interleaved occurrence and handling of receiving eventsincluding
done, killed, timeout, receive, trigger, getcall, getreply, catch and check.

Syntactical Structure

interleave "{"

{ "[1" ( TimeoutStatement |
ReceiveStatement |
TriggerStatement |
GetCallStatement |
CatchStatement |
CheckStatement |
GetReplyStatement |
DoneStatement |
KilledStatement ) StatementBlock

1
n } n
Semantic Description

The interleave statement allows to specify the interleaved occurrence and handling of the statements done,
killed, timeout, receive, trigger, getcall, getreply, catch and check.

Interleaved behaviour can always be replaced by an equivalent set of nested alt statements. The procedures for this
replacement and the operational semantics of interleaving are described in part 4 of the TTCN-3 standard
(ES 201 873-4 [1]).

The rules for the evaluation of an interleaving statement are the following:

a)  Whenever areception statement is executed, the following non-reception statements are subsequently executed
until the next reception statement is reached, abreak statement is reached, or the interleaved sequence ends.

NOTE 1: Reception statements are TTCN-3 statements which may occur in sets of alternatives, i.e. receive,
check, trigger, getcall, getreply, catch, done, killed and timeout. Non-reception
statements denote al other non-control-transfer statements which can be used within the interleave
Statement.

b) If none of the alternatives of the interleave statement can be executed, the default mechanism will be
invoked. This means, according to the semantics of the default mechanism, the actual snapshot will be used to
evaluate those altsteps that have been activated before entering the interleave statement.

NOTE 2: The complete semantics of the default mechanism within an interleave statement is given by
replacing the interleave statement by an equivalent set of nested alt statements. The default
mechanism applies for each of these alt statements.

¢) Theevaluation then continues by taking the next snapshot if no break statement was encountered.

d) Theevauation of the interleave statement isterminated if abreak statement is executed.
The operational semantics of interleaving are fully defined in part 4 of the TTCN-3 standard (ES 201 873-4 [1]).
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Control transfer statements for, while, do-while, goto, activate, deactivate, stop, repeat,
return, direct call of atsteps as aternatives and (direct and indirect) calls of user-defined functions, which
include communication operations, shall not beused in interleave statements.

b) Inaddition, it isnot alowed to guard branches of an interleave statement with Boolean expressions
(i.e. the'[ ]' shall always be empty). It isalso not alowed to specify else branchesin interleaved behaviour.

ETSI



150 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

// The following TTCN-3 code fragment
interleave
[] PCOl.receive(MySigl)
{ PCOl.send (MySig2) ;
PCOl.receive (MySig3) ;
}

[] PCO2.receive (MySig4)
{ PCO2.send (MySig5) ;
PCO2.send (MySig6) ;
PCO2.receive (MySig7) ;

}

// is a shorthand for
alt {
[] PCOl.receive(MySigl)
{ PCOl.send (MySig2) ;
alt {
[l PCOl.receive (MySig3)
PCO2.receive (MySig4) ;
PCO2.send (MySig5) ;
PCO2.sgend (MySig6) ;
PCO2.receive (MySig7)
1
[] PCO2.receive (MySig4)
{ PCO2.sgend (MySig5) ;
PCO2.sgend (MySig6) ;
alt {
[] PCOl.receive (MySig3) {
PCO2.receive (MySig7); }
[] PCO2.receive (MySig7) {
PCOl1.receive (MySig3); }
1

!
1
[] PCO2.receive (MySig4)
{ PCO2.send (MySig5) ;
PCO2.send (MySig6) ;
alt {
[] PCOl.receive(MySigl)
{ PCOl.send (MySig2) ;
alt {
[l PCOl.receive (MySig3)
{ PCO2.receive (MySig7) ;

}

[l PCO2.receive (MySig7)
{ PCOl.receive (MySig3) ;

1
1
}
[l PCO2.receive (MySig7)
{ PCOl.receive (MySigl) ;

PCO1l.send (MySig2) ;
PCOl.receive (MySig3) ;

20.5 Default Handling

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults. For each test component the defaults,

i.e. activated altsteps, are stored as an ordered list. The defaults are listed in the reversed order of their activation i.e. the
last activated default isthe first element in the list of active defaults. The TTCN-3 operations activate

(see clause 20.5.2) and deactivate (see clause 20.5.3) operate on the list of defaults. An activate putsanew
default asthe first element into thelist and a deactivate removes adefault fromthelist. A default in the default list
can be identified by means of default reference that is generated as aresult of the corresponding activate operation.

ETSI



151 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

20.5.1 The default mechanism

The default mechanism is evoked at the end of each alt statement, if due to the actual snapshot none of the specified
aternatives could be executed. An evoked default mechanism invokes the first altstep in the list of defaults, i.e. the last
activated default, and waits for the result of its termination. The termination can be successful or unsuccessful.
Unsuccessful means that none of the top alternatives of the altstep (see clause 16.2) defining the default behaviour
could be selected, successful means that one of the top alternatives of the default has been selected and executed.

NOTE 1. Aninterleave Statement is semantically equivalent to a nested set of alt statements and the default
mechanism also applies to each of these alt statements. This means, the default mechanism also applies
to interleave statements.

In the case of an unsuccessful termination, the default mechanism invokes the next default inthe list. If the last default
inthe list has terminated unsuccessfully, the default mechanism will return to the place in the alt statement in which it
has been invoked, i.e. at the end of the alt statement, and indicate an unsuccessful default execution. An unsuccessful
default execution will also beindicated if the list of defaults is empty.

An unsuccessful default execution may cause a new snapshot or a dynamic error if the test component is blocked
(see clause 20.1).

In the case of a successful termination, the default may either stop the test component by means of a stop statement, or
the main control flow of the test component will continue immediately after the alt statement from which the default
mechanism was called or the test component will take new snapshot and re-evaluate the alt statement. The latter has
to be specified by means of arepeat statement (see clause 20.3). If the execution of the selected top alternative of the
default ends with abreak statement or without arepeat statement the control flow of the test component will
continue immediately after the alt statement.

NOTE 2: TTCN-3 does not restrict the implementation of the default mechanism. It may for example be
implemented in form of a process that isimplicitly called at the end of each alt statement or in form of a
separate thread that is only responsible for the default handling. The only requirement is that defaults are
called in the reverse order of their activation when the default mechanism has been invoked.

20.5.2 The Activate operation

The activate operation isused to activate altsteps as defaults.

Syntactical Structure
activate " (" AltstepRef " (" [ { ActualpPar [","] } 1 m)nm m)n
Semantic Description

An activate operation will put the referenced altstep as the first element into the list of defaults and return a default
reference. The default reference is a unique identifier for the default and may be used in adeactivate operation for
the deactivation of the default.

The effect of an activate operationislocal to the test component in which it is called. This means, atest component
cannot activate a default in another test component.

The activate operation can be called without saving the returned default reference. Thisform is useful in test cases
which do not require explicit deactivation of the activated default, i.e. deactivation of a default is done implicitly at
MTC termination.

The actual parameters of a parameterized altstep (see clause 16.2.1) that should be activated as a default, shall be
provided in the corresponding activate statement. This means the actual parameters are bound to the default at the
time of its activation (and not e.g. at the time of its invocation by the default mechanism).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  All timer instancesin the actual parameter list shall be declared as component type local timers
(see clause 6.2.10.1).

ETSI



152 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

b) Analtstep that is activated as a default shall only have in parameters, port parameters, or timer parameters.

Examples

EXAMPLE 1:  Activation where the default referenceis kept

// Declaration of a variable for the handling of defaults
var default MyDefaultVar := null;

// Declaration of a default reference variable and activation of an altstep as default
var default MyDefVarTwo := activate (MySecondAltStep()) ;

// Activation of altstep MyAltStep as a default
MyDefaultVar := activate(MyAltStep()); // MyAltStep is activated as default

// Usage of MyDefaultVar for the deactivation of default MyDefAltStep
deactivate (MyDefaultVar) ;

EXAMPLE 2:  Simple activation

// Activation of an altstep as a default, without assignment of default reference
activate (MyCommonDefault ()) ;

EXAMPLE 3:  Activation of a parameterized altstep

altstep MyAltStep2 ( integer par_valuel, MyType par_value2,
MyPortType par port, timer par timer )

{

}

function MyFunc () runs on MyCompType

{ :

var default MyDefaultVar := null;

MyDefaultVar := activate (MyAltStep2 (5, myVar, myCompPort, myCompTimer) ;

// MyAltStep2 is activated as default with the actual parameters 5 and
// the value of myVar. A change of myVar before a call of MyAltStep2 by
// the default mechanism will not change the actual parameters of the call.

20.5.3 The Deactivate operation
The deactivate operation is used to deactivate defaults, i.e. previously activated altsteps.

Syntactical Structure

deactivate [ "(" VariableRef | FunctionInstance ")" ]
Semantic Description
A deactivate operation will remove the referenced default from the list of defaults.

The effect of adeactivate operationislocal to the test component in which it is called. This means, atest
component cannot deactivate a default in another test component.

A deactivate operation without parameter deactivates all defaults of atest component.

Cdling adeactivate operation with the special valuenull has no effect. Calling adeactivate operation with
an undefined default reference, e.g. an old reference to a default that has already been deactivated or an uninitialized
default reference variable, shall cause aruntime error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of default type.

ETSI



Examples

var default MyDefaultVar :
:= activate (MySecondAltStep())

var default MyDefVarTwo
var default MyDefVarThree

153

null;

activate (MyThirdAltStep ()

MyDefaultVar := activate (MyAltStep());

)i

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

deactivate (MyDefaultVar); // deactivates MyAltStep

deactivate; // deactivates all other defaults, i.e. in this case MySecondAltStep
// and MyThirdAltStep

21

Configuration Operations

Configuration operations are used to set up and control test components. They are summarized in table 20. These
operations shall only be used in TTCN-3 test cases, functions and altsteps (i.e. not in the module control part).

Table 20: Overview of TTCN-3 configuration operations

Operation

Explanation

Syntax Examples

Connection Operations

connect

Connects the port of one test
component to the port of another test

connect (ptcl:pl, ptc2:p2);

component

disconnect Disconnects two or more connected disconnect (ptcl:pl, ptc2:p2);
ports

map Maps the port of one test component to |map (ptcl:q, system:sutPortl);
the port of the test system interface

unmap Unmaps two or more mapped ports unmap (ptcl:q, system:sutPortl);

Test Component Operations

create

Creation of a normal or alive test
component, the distinction between
normal and alive test components is
made during creation

(MTC behaves as a normal test
component)

Non-alive test components:
var PTCType c PTCType.create;

Alive test components:
var PTCType c PTCType.create alive;

start

Starting test behaviour on a test
component, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehaviour()) ;

stop

Stopping test behaviour on a test
component

c.stop;

kill

Causes a test component to cease to
exist

c.kill;

alive

Returns true if the test component has
been created and is ready to execute or
is executing already a behaviour;
otherwise returns false

if (c.alive)

running

Returns true as long as the test
component is executing a behaviour;
otherwise returns false

if (c.running)

done

Checks whether the function running on
a test component has terminated

c.done;

killed

Checks whether a test component has
ceased to exist

c.killed { ..

}

Test Case Operations

stop

Terminates the test case with the test
verdict error

testcase.stop ( .. );

Reference Operations

mtc Gets the reference to the MTC connect (mtc:p, ptc:p);

system Gets the reference to the test system  |map(c:p, system:sutPort);
interface

self Gets the reference to the test self.stop;

component that executes this operation

ETSI




154 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

21.1  Connection Operations

The ports of atest component can be connected to other components or to the ports of the test system interface
(seefigure 10). In the case of connections between two test components, the connect operation shall be used. When
connecting atest component to atest system interface themap operation shall be used. The connect operation
directly connects one port to another with the in side connected to the out side and vice versa. Themap operation on
the other hand can be seen purely as a name trandlation defining how communications streams can be referenced.

Test system Connected Ports

[ [T
MTC < PTC

>
ouT IN
ouT IN
Mapped Ports 4
Abstract Test System Interface ouT ¢ | IN

Real Test System Interface

SUT

Figure 10: lllustration of the connect and map operations

21.1.1 The Connect and Map operations
The connect operation and the map operation are used to setup connections to the SUT or between test components.

Syntactical Structure

connect " (" ComponentRef ":" Port "," ComponentRef ":" Port ")"
map " (" ComponentRef ":" Port "," ComponentRef ":" Port ")"

Semantic Description

With both the connect operation and themap operation, the ports to be connected are identified by the component
references of the components to be connected and the names of the ports to be connected.

The operation mtc identifiesthe MTC, the operation system identifies the test system interface and the operation
self identifies the test component in which sel £ has been called (see clause 6.2.11). All these operations can be used
for identifying and connecting ports.

Both the connect and map operations can be called from any behaviour definition except for the control part of a
module. However before either operation is called, the components to be connected shall have been created and their
component references shall be known together with the names of the relevant ports.

Both themap and connect operations allow the connection of a port to more than one other port. It is not allowed to
connect to a mapped port or to map to a connected port.

ETSI



155 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) For both the connect and map operations, only consistent connections are allowed.
Assuming the following:
1) ports PORT1 and PORT2 are the ports to be connected,;
2) inlist-PORT1 defines the messages or procedures of the in-direction of PORT1;
3) outlist-PORT 1defines the messages or procedures of the out-direction of PORT1;
4)  inlist-PORT2 defines the messages or procedures of the in-direction of PORT2; and
5) outlist-PORT2 defines the messages or procedures of the out-direction of PORT2.
b) The connect operationisallowed if and only if:
outlist-PORT1 c inlist-PORT2 and outlist-PORT2 c inlist-PORT1.
¢) Themap operation (assuming PORT?2 isthe test system interface port) isallowed if and only if:
outlist-PORT1 c outlist-PORT2 and inlist-PORT2 c inlist-PORT 1.
d) Inall other cases, the operations shall not be allowed.

€) Since TTCN-3 allows dynamic configurations and addresses, not all of these consistency checks can be made
statically at compile-time. All checks, which could not be made at compile-time, shall be made at run-time and
shall lead to atest case error when failing.

f)  Inaddition, the restrictions on alowed and disallowed connections described in clause 9.1 apply.

Examples

// It is assumed that the ports Portl, Port2, Port3 and PCOl are properly defined and declared
// in the corresponding port type and component type definitions

var MyComponentType MyNewPTC;
MyNewPTC := MyComponentType.create;

connect (MyNewPTC:Portl, mtc:Port3);
map (MyNewPTC:Port2, system:PCO1) ;

// In this example a new component of type MyComponentType is created and its reference stored
// in variable MyNewPTC. Afterwards in the connect operation, Portl of this new component

// is connected with Port3 of the MTC. By means of the map operation, Port2 of the new component
// is then connected to port PCOl of the test system interface

21.1.2 The Disconnect and Unmap operations
The disconnect and unmap operations are the opposite operations of connect and map.

Syntactical Structure

disconnect [ ( " (" ComponentRef ":" Port "," ComponentRef ":" Port ")" )
( " (" PortRef ")" ) |
( " (" ComponentRef ":" all port ")" ) |
( "(" all component ":" all port ")" ) ]

Semantic Description

The disconnect and unmap operations perform the disconnection (of previously connected) ports of test
components and the unmapping of (previously mapped) ports of test components and ports in the test system interface.

Both, the disconnect and unmap operations can be called from any component if the relevant component references
together with the names of the relevant ports are known. A disconnect or unmap operation has only an effect if the
connection or mapping to be removed has been created beforehand.

ETSI



156 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

To ease disconnect and unmap operations related to all connections and mappings of a component or aport, itis
allowed to use disconnect and unmap operations with one argument only. This one argument specifies one side of
the connections to be disconnected or unmapped. The all port keyword can be used to denote all ports of a
component.

The usage of adisconnect or unmap operation without any parameters is a shorthand form for using the operation
with the parameter self:all port. It disconnects or unmaps all ports of the component that calls the operation.

Theall component keyword shall only be used in combination withtheall port keyword,i.e.all
component:all port, and shal only be used by the MTC. Furthermore, the all component:all port
argument shall be used as the one and only argument of adisconnect or unmap operation and it allowsto release
all connections and mappings of the test configuration.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.
Examples

EXAMPLE 1:  Disconnect/unmap for specific connections

connect (MyNewComponent : Portl, mtc:Port3);
map (MyNewComponent : Port2, system:PCO1) ;

disconnect (MyNewComponent : Portl, mtec:Port3l); // disconnect previously made connection
unmap (MyNewComponent : Port2, system:PCO1) ; // unmap previously made mapping

EXAMPLE 2:  Disconnect/unmap for a component

disconnect (MyNewComponent : Portl) ; // disconnects all connections of Portl, which
// is owned by component MyNewComponent .
unmap (MyNewComponent :all port) ; // unmaps all ports of component MyNewComponent

EXAMPLE 3:  Disconnect/unmap for "self"

disconnect; // is a shorthand form for ..

disconnect (self:all port) ; // which disconnects all ports of the component
// that called the operation

unmap ; // is a shorthand form for ..

unmap (self:all port) ; // which unmaps all ports of the component
// that called the operation

EXAMPLE 4:  Disconnect/unmap for "all component”

disconnect (all component:all port) ; // the MTC disconnects all ports of all
// components in the test configuration.

unmap (all component:all port) ; // the MTC unmaps all ports of all
// components in the test configuration.

21.2  Test case operations

Test case operations address the entire test case by using the keyword testcase. Currently, the test case stop operation is
the only test case operation. It specifies an immediate stop of the test case behaviour with an error verdict.

21.2.1 Test case stop operation

The testcase stop operation defines a user defined immediate termination of atest case with the test verdict error and
an (optional) associated reason for the termination. Such an immediate stop of atest caseis required for cases where a
user defined behaviour that does not contribute to the test outcome behaves in an unexpected manner which leadsto a
situation where the continuation of the test case makes no more sense.

Syntactical Structure

testcase "." stop { ( FreeText | TemplateInstance ) [","] } ")"

ETSI



157 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Semantic Description

The test case stop operation causes an immediate stop of the entire test case behaviour with the verdict error. In
addition, the test case stop operation provides the means to specify the reason for the immediate termination of atest
case by writing one or more items to some logging device associated with the test control or the test component in
which the operation is used. Items to be logged shall be identified by a comma-separated list in the argument of the test
case stop operation. The argument of the test case stop operation shall follow the same restrictions as the argument of
the log statement (see clause 19.11).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thetest case stop operation shall not be used in the module control part or functionsinvoked directly or
indirectly by the module control part.

Examples

testcase.stop ("Unexpected Termination") ;
// The test case stops the an error verdict and the string "Unexpected Termination"
// is written to some log device of the test system

21.3 Test Component Operations

Test component operations are used to create, start, stop and kill test components. They can aso be used to check if test
components are alive, running, done or killed.

21.3.1 The Create operation
The create operation is used to create test components.

Syntactical Structure

ComponentType "." create [ " (" Expression ")" 1 [ alive ]
Semantic Description

The MTC isthe only test component, which is automatically created when atest case starts. All other test components
(the PTCs) shall be created explicitly during test execution by create operations. A component is created with its full
set of ports of which the input queues are empty and with its full set of constants, variables and timers. Furthermore, if a
port is defined to be of thetype in or inout it shall bein alistening state ready to receive traffic over the connection.

All component variables and timers are reset to their initial value (if any) and all component constants are reset to their
assigned values when the component is explicitly or implicitly created.

Two types of PTCs are distinguished: a PTC that can execute a behaviour function only once and a PTC that is kept
alive after termination of a behaviour function and can be therefore reused to execute another function. The latter is
created using the additional alive keyword. An alive-type PTC must be destroyed explicitly using thekill
operation (see clause 21.2.4), whereas a non-alive PTC is destroyed implicitly after its behaviour function terminates.
Termination of atest case, i.e. the MTC, terminates all PTCsthat still exist, if any.

Since al test components and ports are implicitly destroyed at the termination of each test case, each test case shall
completely create its required configuration of components and connections when it is invoked.

The create operation shall return the unique component reference of the newly created instance. The unique
reference to the component will typically be stored in avariable (see clause 6.2.10.1) and can be used for connecting
instances and for communication purposes such as sending and receiving.

Optionally, a name can be associated with the newly created component instance. The test system shall associate the
names'MTC' to the MTC and 'SY STEM' to the test system interface automatically at creation. Associated component
names are not required to be unique.

The component instance name is used for logging purposes (see clause 19.11) only and shall not be used to refer to the
component instance (the component reference shall be used for this purpose) and has no effect on matching.

ETSI



158 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Components can be created at any point in a behaviour definition providing full flexibility with regard to dynamic
configurations (i.e. any component can create any other PTC). The visibility of component references shall follow the
same scope rules as that of variables and in order to reference components outside their scope of creation the component
reference shall be passed as a parameter or asafield in a message.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thename given by Expression shall be a charstring value and when assigned it shall appear as the argument of
the create function.

Examples

// This example declares variables of type MyComponentType, which is used to store the

// references of newly created component instances of type MyComponentType which is the

// result of the create operations. An associated name is allocated to some of the created
// component instances.

var MyComponentType MyNewComponent;

var MyComponentType MyNewestComponent;

var MyComponentType MyAliveComponent ;

var MyComponentType MyAnotherAliveComponent;

MyNewComponent := MyComponentType.create;

MyNewestComponent := MyComponentType.create ("Newest") ;

MyAliveComponent := MyComponentType.create alive;

MyAnotherAliveComponent := MyComponentType.create ("Another Alive") alive;

21.3.2 The Start test component operation

The start operation is used to associate atest behaviour to atest component, which is then being executed by that test
component.

Syntactical Structure

( VariableRef | FunctionInstance ) "." start " (" FunctionInstance ")"
Semantic Description

Once a PTC has been created and connected, behaviour has to be bound to this PTC and the execution of its behaviour
hasto be started. Thisis done by using the start operation (as PTC creation does not start execution of the
component behaviour). The reason for the distinction between create and start isto alow connection operations to
be done before actually running the test component.

The start operation shall bind the required behaviour to the test component. This behaviour is defined by reference to
an aready defined function.

An alive-type PTC may perform several behaviour functionsin sequential order. Starting a second behaviour function
on anon-alive PTC or starting afunction on a PTC that is still running resultsin atest case error. If afunction is started
on an alive-type PTC after termination of a previous function, it uses variable values, timers, ports, and the local verdict
asthey were left after termination of the previous function. In particular, if atimer was started in the previous function,
the subsequent function should be enabled to handle a possible timeout event. In contrast to that, all active defaults are
deactivated when the behaviour of an alive-type PTC is stopped. This means no default is activated when a new
behaviour is started on an aive-type PTC.

NOTE 1. Thelifetime of variables and timersis bound to the scope in which they are declared. When an aive-type
component is stopped, only the component scope is left. This means only variable values and timers
declared in the component type definition of an alive-type PTC can be accessed by afunction with a
corresponding runs on-clause that is started on an alive-type PTC.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

ETSI



159 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

b) Thefollowing restrictions apply to a function invoked in a start test component operation:

e Thisfunction shal have a runs on definition referencing a component type that is compatible with the
newly created component (see clause 6.3.3).

e Portsand timers shall not be passed into this function.

NOTE 2: Possible return values of afunction invoked in a start test component operation, i.e. templates denoted
by return keyword or inout and out parameters, have no effect when the started test component
terminates.

NOTE 3: Asin and inout ports starts listening when the component is created, at the moment, when it starts
execution there may be messages in the incoming queues of such ports already waiting to be processed.

Examples
function MyFirstBehaviour () runs on MyComponentType { .. }

function MySecondBehaviour () runs on MyComponentType { .. }

var MyComponentType MyNewPTC;
var MyComponentType MyAlivePTC;

MyNewPTC := MyComponentType.create; // Creation of a new non-alive test component.
MyAlivePTC := MyComponentType.create alive; // Creation of a new alive-type test component
MyNewPTC.start (MyFirstBehaviour()) ; // Start of the non-alive component.

MyNewPTC.done; // Wait for termination

MyNewPTC.start (MySecondBehaviour()) ; // Test case error

MyAlivePTC.start (MyFirstBehaviour()) ; // Start of the alive-type component
MyAlivePTC.done; // Wait for termination

MyAlivePTC.start (MySecondBehaviour()) ; // Start of the next function on the same component

21.3.3 The Stop test behaviour operation

The stop test behaviour operation is used to stop the execution of atest component by itself or by another test
component.

Syntactical Structure

stop |
( ( VariableRef | FunctionInstance | mtc | self ) "." stop ) |
( all component "." stop )

Semantic Description

By using the stop test component statement a test component can stop the execution of its own currently running test
behaviour or the execution of the test behaviour running on another test component. If a component does not stop its
own behaviour, but the behaviour running on another test component in the test system, the component to be stopped
has to be identified by using its component reference. A component can stop its own behaviour by using asimple stop
execution statement (see clause 19.9) or by addressing itself in the stop operation, e.g. by using the sel £ operation.

NOTE 1. Whilethe create, start, running, done and killed operations can be used for PTC(s) only, the
stop operation can also be applied to the MTC.

Stopping atest component is the explicit form of terminating the execution of the currently running behaviour. A test
component behaviour terminates also by completing its execution upon reaching the end of the testcase or function that
is started on this component or by an explicit return statement. Thistermination is also called implicit stop. The
implicit stop has the same effects as an explicit stop, i.e. the global verdict is updated with the local verdict of the
stopped test component (see clause 24).

If the stopped test component isthe MTC, resources of all existing PTCs shall be released, the PTCs shall be removed
from the test system and the test case shall terminate (see clause 26.1).

Stopping a non-alive-type test component (implicitly or explicitly) shall destroy it and all resources associated with the
test component shall be released.

ETSI



160 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Stopping an alive-type component shall stop the currently running behaviour only but the component continues to exist
and can execute new behaviour (started on it using the start operation). Stopping an alive-type component means that
all variables, timers and ports declared in the component type definition of the alive-type component keep their value,
contents or state. Furthermore, the local verdict of the component keeps its value. In contrast to that, all active defaults
are automatically deactivated when the alive-type component is stopped. The component shall be left in a consistent
state after stopping its behaviour.

For example, if the behaviour of an alive-type component is stopped during assigning a new value to an already bound
variable, the variable shall remain bound after the component is stopped (with the old or the new value). Similarly, if
the component is stopped during re-starting an already running timer, the timer shall be left in the running state after
termination of the behaviour.

The all keyword can be used by the MTC only in order to stop al running PTCs but the MTC itself.
NOTE 2: A PTC can stop the test case execution by stopping the MTC.
NOTE 3: The concrete mechanism for stopping PTCs is outside the scope of the present document.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

EXAMPLE 1:  Stopping another test component and a test component by itself

var MyComponentType MyComp := MyComponentType.create; // A new test component is created
MyComp . start (CompBehaviour ()) ; // The new component is started
if (date == "1.1.2005") {

MyComp . stop; // The component "MyComp" is stopped

if (a < b ) {

self.stop; // The test component that is currently executing stops its own behaviour
}
stop // The test component stops its own behaviour

EXAMPLE 2:  Stopping all PTCsby the MTC

all component.stop // The MTC stops all PTCs of the test case but not itself.

21.3.4 The Kill test component operation

Thekill test component operation is used to destroy atest component by itself or by another test component. Kill and
stop on a non-alive component have the same results, while they differ for alive components. stopping an alive
components stops the test behaviour only, the test component continues to exist. Killing atest component destroys the
test component.

Syntactical Structure
kill |

( ( VariableRef | FunctionInstance | mte | self ) "." kill ) |
( all component "." kill )

ETSI



161 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Semantic Description

The kill operation applied on atest component stops the execution of the currently running behaviour - if any - of that
component and frees all resources associated to it (including all port connections of the killed component) and removes
the component from the test system. The ki11 operation can be applied on the current test component itself by a
simplekill statement or by addressing itself using the sel £ operation in conjunction with the kill operation. The
kill operation can also be applied to another test component. In this case the component to be killed shall be
addressed using its component reference. If the ki1l operation isapplied onthe MTC, e.g. mtc.kill, it terminates
the test case.

The all keyword can be used by the MTC only in order to stop and kill al running PTCs but the MTC itself.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

EXAMPLE 1.  Killing another test component and atest component by itsel f

var PTCType MyAliveComp := PTCType.create alive; // Create an alive-type test component
MyAliveComp.start (MyFirstBehaviour ()) ; // The new component is started
MyAliveComp.done; // Wait for termination
MyAliveComp.start (MySecondBehavior()) ; // Start the component a 2™ time
MyAliveComp.done; // Wait for termination
MyAliveComp.kill; // Free its resources

EXAMPLE 2 Killingall PTCsby the MTC

all component.kill; // The MTC stops all (alive-type and normal) PTCs of the test case first
// and frees their resources.

21.3.5 The Alive operation

The alive operation isaBoolean operation that checks whether atest component has been created and isready to
execute or is executing aready a behaviour function.

Syntactical Structure

( VariableRef |
FunctionInstance |
any component |
all component ) "." alive

Semantic Description

Applied on anormal test component, the alive operation returnstrue if the component isinactive or running a
function and false otherwise. Applied on an alive-type test component, the operation returns true if the component is
inactive, running or stopped. It returns false if the component has been killed.

The alive operation can be used similar to the running operation on PTCSsonly (see clause 21.2.6). In particular,
in combination with the al1 keyword it returnstrue if al (alive-type or normal) PTCs are dive.

The alive operation used in combination with the any keyword returnstrue if at least one PTC is dlive.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

ETSI



162 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples
PTC1.done; // Waits for termination of the component
if (PTCl.alive) { // If the component is still alive ..
PTC1l.start (AnotherFunction()) ; // .. execute another function on it.

}

21.3.6 The Running operation

The running operation is a Boolean operation that checks whether atest component is executing already a behaviour
function.
Syntactical Structure

( VariableRef |
FunctionInstance |
any component |
all component ) "." running

Semantic Description

The running operation alows behaviour executing on a test component to ascertain whether behaviour running on a
different test component has completed. The running operation can be used for PTCs only. The running operation
returns true for PTCsthat have been started but not yet terminated or stopped. It returns £alse otherwise. The
running operation is considered to be aboolean expression and, thus, returnsaboolean value to indicate
whether the specified test component (or all test components) has terminated. In contrast to the done operation, the
running operation can be used freely in boolean expressions.

When the a1l keyword is used with the running operation, it will return true if all PTCs started but not stopped
explicitly by another component are executing their behaviour. Otherwiseiit returns false.

When the any keyword is used with the running operation, it will return true if a least one PTC is executing its
behaviour. Otherwiseit returns false.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples
if (PTCl.running) // usage of running in an if statement

// do something!

while (all component.running != true) { // usage of running in a loop condition
MySpecialFunction ()

21.3.7 The Done operation

The done operation allows behaviour executing on atest component to ascertain whether the behaviour running on a
different test component has completed.

Syntactical Structure

( VariableRef |
FunctionInstance |
any component |
all component ) "." done

ETSI



163 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Semantic Description

The done operation shall be used in the same manner as areceiving operation or a timeout operation. This meansit
shall not be used in aboolean expression, but it can be used to determine an aternative in an alt statement or as
stand-alone statement in a behaviour description. In the latter case a done operation is considered to be a shorthand for
an alt statement with the done operation as the only alternative.

When the done operation is applied to aPTC, it matches only if the behaviour of that PTC has been stopped (implicitly
or explicitly) or the PTC has been killed. Otherwise, the match is unsuccessful.

When the a1l keyword is used with the done operation, it matches if no one PTC is executing its behaviour. It aso
matches if no PTC has been created.

When the any keyword is used with the done operation, it matches if at least the behaviour of one PTC has been
stopped or killed. Otherwise, the match is unsuccessful.

NOTE: Stopping the behaviour of a non-alive component also results in removing that component from the test
system, while stopping an alive-type component leaves the component alive in the test system. In both
cases the done operation matches.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thedone operation can be used for PTCsonly.

b) The variable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance must be of component type.

Examples

// Use of done in alternatives
alt {
[] MyPTC.done {
setverdict (pass)
1

[] any port.receive {
repeat
1

}

var MyComp c := MyComp.create alive;
c.start (MyPTCBehaviour()) ;

c.done;

// matches as soon as the function MyPTCBehaviour (or function/altstep called by it) stops
c.done;

// matches the end of MyPTCBehaviour (or function/altstep called by it) too
if (c.running) {c.done}

// done here matches the end of the next behaviour only

// the following done as stand-alone statement:
all component.done;

// has the following meaning:
alt {
[] all component.done {}

// and thus, blocks the execution until all parallel test components have terminated

ETSI



164 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

21.3.8 The Killed operation

Thekilled operation allows to ascertain whether a different test component is alive or has been removed from the
test system.

Syntactical Structure

( VariableRef |
FunctionInstance |
any component |
all component ) "." killed

Semantic Description

Thekilled operation shall be used in the same manner as receiving operations. This meansit shall not be used in
boolean expressions, but it can be used to determine an aternative in an alt statement or as a stand-alone statement
in a behaviour description. In the latter case akilled operation is considered to be a shorthand for an alt statement
with the killed operation as the only alternative.

NOTE: When checking normal test components a killed operation matches if it stopped (implicitly or explicitly)
the execution of its behaviour or has been killed explicitly, i.e. the operation is equivalent to the done
operation (see clause 21.2.7). When checking alive-type test components, however, the killed
operation matches only if the component has been killed using the ki1l operation. Otherwise the
killed operation isunsuccessful.

When the a1l keyword is used with the killed operation, it matchesif all PTCs of the test case have ceased to exist.
It also matchesif no PTC has been created.

When the any keyword is used with the ki1lled operation, it matchesif at least one PTC ceased to exist. Otherwise,
the match is unsuccessful.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a Thekilled operation can be used for PTCsonly.

Examples
var MyPTCType ptc := MyPTCType.create alive; // create an alive-type test component
timer T:= 10.0; // create a timer
T.start; // start the timer
ptc.start (MyTestBehavior()) ; // start executing a function on the PTC
alt {
[1 ptc.killed { // if the PTC was killed during execution ..
T.stop; // .. stop the timer and ..
setverdict (inconc) ; // .. set the verdict to 'inconclusive'
[1 ptc.done { // if the PTC terminated regularly ..
T.stop; // .. stop the timer and ..
ptc.start (AnotherFunction()) ; // .. start another function on the PTC
1
[1 T.timeout ({ // if the timeout occurs before the PTC stopped
ptc.kill; // .. kill the PTC and ..
setverdict (fail) ; // .. set the verdict to 'fail'

}
}

ETSI



165

Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

21.3.9 Summary of the use of any and all with components

The keywords any and all may be used with configuration operations asindicated in table 21.

Table 21: Any and All with components

Operation Allowed Example Comment
any (see note) | all (see note)
create
start
running Yes but from  |Yes but from any component.running; |Is there any PTC performing test
MTC only MTC only behaviour?
all component.running; |Are all PTCs performing test
behaviour?
alive Yes but from  |Yes but from any component.alive; Is there any alive PTC?
MTC only MTC only all component.alive; |Are all PTCs alive?
done Yes but from  |Yes but from any component.done; Is there any PTC that completed
MTC only MTC only execution?
all component.done; Did all PTCs complete their execution?
killed Yes but from Yes but from any component.killed; |[Is there any PTC that ceased to exist?
MTC only MTC only all component.killed; |Did all PTCs cease to exist?
stop Yes but from all component.stop; Stop the behaviour on all PTCs.
MTC only
kill Yes but from all component.kill; Kill all PTCs, i.e. they cease to exist.
MTC only
NOTE: any and all referto PTCs only, i.e. the MTC is not considered.

22

Communication operations

TTCN-3 supports message-based and procedure-based unicast, multicast and broadcast communication. Furthermore,
TTCN-3 alows to examine the top element of incoming port queues and to control the access to ports by means of
controlling operations. The communication operations and restrictions on their usage are summarized in table 22.

Table 22: Overview of TTCN-3 communication operations

Communication operations
Communication operation Keyword Can be used at Can be used at
message-based ports | procedure-based ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity  |reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check | Yes Yes
Controlling operations
Clear port queue clear Yes Yes
Clear queue and enable sending and start Yes Yes
receiving at a port
Disable sending and disallow receiving stop Yes Yes
operations to match at a port
Disable sending and disallow receiving halt Yes Yes
operations to match new messages/calls

ETSI




166 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

22.1 The communication mechanisms

This clause explains the principles of TTCN-3 communication for message-based communication (see clause 22.1.1),
for procedure-based communication (see clause 22.1.2), for unicast, multicast, and broadcast communication
(see clause 22.1.3), aswell as the general format of sending and receiving operations (see clause 22.1.4).

22.1.1 Principles of message-based communication

M essage-based communication is communication based on an asynchronous message exchange. M essage-based
communication is non-blocking on the send operation, asillustrated in figure 11, where processing in the SENDER
continues immediately after the send operation occurs. The RECEIVER is blocked on the receive operation until it
processes the received message.

In addition to the receive operation, TTCN-3 provides a trigger operation that filters messages with certain
matching criteria from a stream of received messages on a given incoming port. Messages at the top of the queue that
do not fulfil the matching criteria are removed from the port without any further action.

send receive Or trigger

SENDER » RECEIVER

Figure 11: lllustration of the asynchronous send and receive

22.1.2 Principles of procedure-based communication

The principle of procedure-based communication isto call proceduresin remote entities. TTCN-3 supports blocking
and non-blocking procedure-based communication. Blocking procedure-based communication is blocking on the calling
and the called side, whereas non-blocking procedure-based communication is only blocking on the called side.
Signatures of procedures that are used for non-blocking procedure-based communication shall be specified according to
therulesin clause 13.

The communication scheme of blocking procedure-based communication is shown in figure 12. The CALLER callsa
remote procedure in the CALLEE by using the call operation. The CALLEE accepts the call by means of a
getcall operation and reacts by either using a reply operation to answer the call or by raising (raise operation)
an exception. The CALLER handles the reply or exception by using getreply or catch operations. Infigure 12, the
blocking of CALLER and CALLEE isindicated by means of dashed lines.

call getcall
: >
CALLER | | { | CALLEE
14 )
getreply oOr reply oOr
catch exception raise exception

Figure 12: lllustration of blocking procedure-based communication

The communication scheme of non-blocking procedure-based communication is shown in figure 13. The CALLER
calls aremote procedure in the CALLEE by using the call operation and continues its execution, i.e. does not wait for
areply or exception. The CALLEE accepts the call by means of agetcall operation and executes the requested
procedure. If the execution is not successful, the CALLEE may raise an exception to inform the CALLER. The
CALLER may handle the exception by using a catch operation in an alt statement. In figure 13, the blocking of the
CALLEE until the end of the call handling and possible raise of an exception isindicated by means of a dashed line.

ETSI



167 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

call getcall
>
CALLER i | CALLEE
< H
catch exception raise exception

Figure 13: lllustration of non-blocking procedure-based communication

22.1.3 Principles of unicast, multicast and broadcast communication
TTCN-3 supports unicast, multicast and broadcast communication:

J Unicast communication means one sender to one receiver.

o Multicast communication is from one sender to alist of receivers.

. Broadcast communication is from one sender to all receivers (being connected or mapped to the sender).

The terms unicast, multicast and broadcast communication are related to port communication. This means, it isonly
possible to address one, several or all test components that are connected to the specified port. Unicast, multicast and
broadcast can also be used for mapped ports. In this case, one, several or al entities within the SUT can be reached via
the specified mapped port.

22.1.4 General format of communication operations

Operations such as send and call are used for the exchange of information among test components and between an
SUT and test components. For explaining the general format of these operations, they can be structured into two groups:

a) atest component sends a message (send operation), calls aprocedure (call operation), or repliesto an
accepted call (reply operation) or raises an exception (raise operation). These actions are collectively
referred to as sending operations;

b) acomponent receives a message (receive operation), awaits a message (trigger operation),accepts a
procedure call (getcall operation), receives areply for aprevioudy called procedure (getreply
operation) or catches an exception (catch operation). These actions are collectively referred to as receiving
operations.

22141 General format of the sending operations

Sending operations consist of a send part and, in the case of ablocking procedure-based call operation, aresponse
and exception handling part.

The send part:
. specifies the port at which the specified operation shall take place;
. defines the message or procedure call to be transmitted;

. gives an (optional) address part that uniquely identifies one or more communication partnersto which a
message, call, reply or exception shall be send.

The port name, operation name and value shall be present in all sending operations. The address part (denoted by the to
keyword) is optional and need only be specified in cases of one-to-many connections where:

. unicast communication is used and one receiving entity shall be explicitly identified;
. multicast communication is used and a set of receiving entities has to be explicitly identified;

. broadcast communication is used and al entities connected to the specified port have to be addressed.

ETSI



168 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 1:
Send part (Optional) response
and exception
Port and operation Value part (Optional) address part handling part
MyP1l.send (MyVariable + YourVariable - 2) to MyPartner;

Response and exception handling is only needed in cases of procedure-based communication. The response and
exception handling part of the call operation isoptional and is required for cases where the called procedure returns a
value or hasout or inout parameters whose values are needed within the calling component and for cases where the
called procedure may raise exceptions which need to be handled by the calling component.

The response and exception handling part of the call operation makes use of getreply and catch operationsto
provide the required functionality.

EXAMPLE 2:
Send part (Optional) response and exception handling part
Port and Value part (Optional)
operation address part
MyP1l.call (MyProc: {MyVarl}) {
[] MyPl.getreply (MyProc:{MyVar2}) {}
[] MyPl.catch(MyProc, ExceptionOne) {}
}
22.1.4.2 General format of the receiving operations

A receiving operation consists of areceive part and an (optional) assignment part.
The receive part:
a) specifiesthe port at which the operation shall take place;
b) defines a matching part which specifies the acceptabl e input which will match the statement;

c) givesan (optional) address expression that uniquely identifies the communication partner (in case of
one-to-many connections).

The port name, operation name and value part of all receiving operations shall be present. The identification of the
communication partner (denoted by the £rom keyword) is optional and need only be specified in cases of one-to-many
connections where the receiving entity needsto be explicitly identified.

The assignment part in areceiving operation is optional. For message-based portsit is used when it is required to store
received messages. In the case of procedure-based portsit is used for storing the in and inout parameters of an
accepted call, for storing the return value or for storing exceptions. For the assignment part strong typing is required,
e.g. the variable used for storing a message shall have the same type as the incoming message.

In addition, the assignment part may also be used to assign the sender address of a message, exception, reply or
call toavariable. Thisis useful for one-to-many connections where, for example, the same message or call can be
received from different components, but the message, reply or exception must be sent back to the original sending
component.

EXAMPLE:
Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) (Optional) (Optional) sender
address value parameter |value assignment
expression assignment value
assignment
MyP1l.getreply (AProc:{?} value 5) -> param (V1) sender APeer

ETSI




169 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Receive part (Optional) assignment part
Port and operation Matching part (Optional) (Optional) value (Optional) (Optional)
address assignment parameter |sender value
expression value assignment
assignment
MyP2.receive (MyTemplate (5,7)) from APeer -> |value MyVar

22.2 Message-based communication

The operations for message-based communication via asynchronous ports are summarized in table 23.

Table 23: Overview of TTCN-3 message-based communication

Communication operation Keyword
Send message send
Receive message receive
Trigger on message trigger
Check message received check

22.2.1 The Send operation

The send operation is used to place a message on an outgoing message port.

Syntactical Structure

Port "." send " (" TemplateInstance ")"
[ to ( AddressRef | AddressRefList | all component ) ]

Semantic Description

The send operation places a message on an outgoing message port. The message may be specified by referencing a
defined template or can be defined as an in-line template.

Sending unicast, multicast or broadcast

Unicast, multicast and broadcast communication can be determined by the optional to clause in the send operation. A
to clause can be omitted in case of a one-to-one connection where unicast communication is used and the message
receiver is uniquely determined by the test system structure.

Unicast communication is specified, if the to clause addresses one communication partner only. Multicast
communication is used, if the to clause includes alist of communication partners. Broadcast is defined by using the to
clausewith all component keyword.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The Templatelnstance (and all parts of it) shall have a specific valuei.e. the use of matching mechanisms such
as AnyValueis not allowed.

b)  When defining the message in-line, the optional type part shall be used if there is ambiguity of the type of the
message being sent.

¢) The send operation shall only be used on message-based ports and the type of the template to be sent shall be
in the list of outgoing types of the port type definition.

d) A to clauseshall be present in case of one-to-many connections.

€)  AddressRef shall not contain matching mechanisms and must be of address or component type.

ETSI



170 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

EXAMPLE 1:  Simple send (receiver is determined from the test configuration)

MyPort .send (MyTemplate (5,MyVar)) ; // Sends the template MyTemplate with the actual
// parameters 5 and MyVar via MyPort.

MyPort.send (5) ; // Sends the integer value 5 (which is an in-line template)

EXAMPLE 2:  Sending with explicit to clause

MyPort .send (charstring: "My string") to MyPartner;
// Sends the string "My string" to a component with a
// component reference stored in variable MyPartner

MyPCO.send (MyVariable + YourVariable - 2) to MyPartner;
// Sends the result of the arithmetic expression to MyPartner.

MyPCO2.send (MyTemplate) to (MyPeerOne, MyPeerTwo) ;
// Specifies a multicast communication, where the value of
// MyTemplate is sent to the two component references stored
// in the variables MyPeerOne and MyPeerTwo.

MyPCO3.send (MyTemplate) to all component;
// Broadcast communication: the value of Mytemplate is send to
// all components which can be addressed via this port. If
// MyPCO3 is a mapped port, the components may reside inside
// the SUT.

22.2.2 The Receive operation
Thereceive operationis used to receive a message from an incoming message port queue.

Syntactical Structure

Port | amy port ) "." receive
"(" TemplateInstance ")" ]
from AddressRef ]
"->" [ value ( VariableRef |
( "(" { variableRef [ ":=" FieldOrTypeReference ]1[","] } "™)" )
) ]

[ sender VariableRef ] ]

Semantic Description

Thereceive operationis used to receive a message from an incoming message port queue. The message may be
specified by referencing a defined template or can be defined as an in-line template.

The receive operation removes the top message from the associated incoming port queue if, and only if, that top
message satisfies al the matching criteria associated with the receive operation.

If the match is not successful, the top message shall not be removed from the port queuei.e. if the receive operation
is used as an alternative of an alt statement and it is not successful, the execution of the test case shall continue with
the next alternative of the alt statement.

Matching criteria

The matching criteria are related to the type and value of the message to be received. The type and value of the message
to be received are determined by the argument of the receive operation, i.e. may either be derived from the defined
template or be specified in-line. An optional type field in the matching criteriato the receive operation shall be used
to avoid any ambiguity of the type of the value being received.

NOTE: Encoding attributes also participate in matching in an implicit way, by preventing the decoder to produce
an abstract value from the received message encoded in a different way than specified by the attributes.

Receiving from a specific sender

In the case of one-to-many connections the receive operation may be restricted to a certain communication partner.
Thisrestriction shall be denoted using the £rom keyword.

ETSI



171 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Storing the received message and parts of the received message

If the match is successful, the value removed from the port queue and/or parts of this value can be stored in variables or
formal parameters. Thisis denoted by the symbol '->' and the keyword value.

When the keyword value isfollowed by a name of avariable or formal parameter, the whole received message shall
be stored in the variable or formal parameter. The variable or formal parameter shall be type compatible with the
received message.

When the keyword value isfollowed by an assignment list enframed by a pair of parentheses, the whole received
message and/or one or more parts of it can be stored. In asingle assignment within the list, on the left hand side of the
assignment symbol (":=") afield of the template type shall be referenced, on the right hand side the name of the variable
or aformal parameter, in which the value shall be stored. The variable or formal parameter shall be type compatible
with the type on the left hand side of the assignment symbol. As a specia case the field reference can be absent to
indicate that the whole message shall be stored in avariable.

Storing the sender

It isalso possible to retrieve and store the component reference or address of the sender of a message. Thisis denoted
by the keyword sender.

When the message is received on a connected port, only the component reference is stored in the following the sender
keyword, but the test system shall internally store the component name too, if any (to be used in logging).

Receive any message

A receive operation with no argument list for the type and value matching criteria of the message to be received shall
remove the message on the top of the incoming port queue (if any) if al other matching criteriaare fulfilled.

Receive on any port
To receive amessage on any port, use the any port keywords.
Stand-alone receive

The receive operation can be used as a stand-al one statement in a behaviour description. In this latter case the
receive operation is considered to be shorthand for an alt statement with the receive operation as the only
alternative.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  When defining the message in-line, the optional type part shall be present whenever the type of the message
being received is ambiguous.

b) Thereceive operation shall only be used on message-based ports and the type of the value to be received
shall beincluded in the list of incoming types of the port type definition.

¢) No binding of the incoming values to the terms of the expression or to the template shall occur.
d) A message received by receive any message shall not be stored, i.e. the value clause shall not be present.

e) Typemismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

ETSI



172 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

EXAMPLE 1: Basicreceive

MyPort .receive (MyTemplate (5, MyVar)) ; // Matches a message that fulfils the conditions
// defined by template MyTemplate at port MyPort.

MyPort .receive (A<B) ; // Matches a Boolean value that depends on the outcome of A<B

MyPort .receive (integer:MyVar); // Matches an integer value with the value of MyVar
// at port MyPort

MyPort .receive (MyVar) ; // Is an alternative to the previous example

EXAMPLE 2:  Receiving from a sender, storing the message, parts of the message or the sender
MyPort .receive (charstring:"Hello") from MyPeer; // Matches charstring "Hello" from MyPeer

MyPort .receive (MyType:?) -> value MyVar; // The value of the received message is
// assigned to MyVar.

MyPort .receive (MyType:?) -> value (MyVar, MyMessageIdVar:= MyType.messageld)
// The value of the received message is stored in the variable
// MyVar and the value of the messageId field of the received
// message is stored in the variable MyMessageIdVar.

MyPort .receive (anytype:?) -> value (MyIntegerVar := integer)
// If the received value is an integer, it is stored in the variable
// MyIntegerVar, a test case error otherwise.
MyPort .receive (charstring:?) -> value (MyCharstringVar)
// The received value is stored in the variable MyCharstringVar;
// Note that it is the same as to write "value MyCharstringVar"

MyPort .receive (A<B) -> sender MyPeer; // The address of the sender is assigned to MyPeer

MyPort.receive (MyTemplate: {5, MyVarOne}) -> value MyVarTwo sender MyPeer;
// The received message value is stored in MyVarTwo and the sender address is stored in MyPeer.

EXAMPLE 3: Receive any message

MyPort .receive; // Removes the top value from MyPort.

MyPort .receive from MyPeer; // Removes the top message from MyPort if its sender is
MyPeer

MyPort.receive -> sender MySenderVar; // Removes the top message from MyPort and assigns

// the sender address to MySenderVar

EXAMPLE 4: Receive on any port

any port.receive (MyMessage) ;

22.2.3 The Trigger operation
The trigger operation is used to await a specific message on an incoming port queue.

Syntactical Structure

Port | amy port ) "." trigger
"(" TemplateInstance ")" ]
from AddressRef ]
"->" [ value ( VariableRef |
( "(" { variableRef [ ":=" FieldOrTypeReference ]1[","] } "™)" )
) ]

[ sender VariableRef ] ]

Semantic Description

The trigger operation removes the top message from the associated incoming port queue. If that top message meets
the matching criteria, the trigger operation behavesin the same manner asareceive operation. If that top
message does not fulfil the matching criteria, it shall be removed from the queue without any further action.

ETSI



173 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

The trigger operation requires the port name, matching criteria for type and value, an optional £rom restriction
(i.e. selection of communication partner) and an optional assignment of the matching message and sender component to
variables.

Matching criteria
The matching criteria as defined in clause 22.2.2 apply also to the trigger operation.
Trigger on any message

A trigger operation with no argument list shall trigger on the receipt of any message. Thus, its meaning is identical
to the meaning of receive any message.

Trigger on any port
To trigger onamessage at any port, use the any port keywords.
Stand-alone trigger

The trigger operation can be used as a stand-alone statement in a behaviour description. In this latter case the
trigger operation is considered to be shorthand for an alt statement with two alternatives (one alternative expecting

the message and another alternative consuming all other messages and repeating the alt statement, see
ES 201 873-4 [1]).

Storing the received message, parts of the received message or the sender

Rulesin clause 22.2.2 shall aply.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The trigger operation shall only be used on message-based ports and the type of the value to be received
shall beincluded in the list of incoming types of the port type definition.

b) A message received by TriggerOnAnyMessage shall not be assigned to a variable.

c) Typemismatch at storing the received value or parts of the received value and storing the sender shall cause an
error.

Examples

EXAMPLE 1. Basictrigger

MyPort.trigger (MyType:?) ;
// Specifies that the operation will trigger on the reception of the first message observed of
// the type MyType with an arbitrary value at port MyPort.

EXAMPLE 2:  Trigger from a sender and with storing message or sender

MyPort.trigger (MyType:?) from MyPartner;
// Triggers on the reception of the first message of type MyType at port MyPort
// received from MyPartner.

MyPort.trigger (MyType:?) from MyPartner -> value MyRecMessage;
// This example is almost identical to the previous example. In addition, the message which
// triggers i.e. all matching criteria are met, is stored in the variable MyRecMessage.

MyPort.trigger (MyType:?) -> sender MyPartner;
// This example is almost identical to the first example. In addition, the reference of the
// sender component will be retrieved and stored in variable MyPartner.

MyPort.trigger (integer:?) -> value MyVar sender MyPartner;

// Trigger on the reception of an arbitrary integer value which afterwards is stored in
// variable MyVar. The reference of the sender component will be stored in variable MyPartner.

ETSI



174 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 3:  Trigger on any message
MyPort.trigger;
MyPort.trigger from MyPartner;

MyPort.trigger -> sender MySenderVar;

EXAMPLE 4:  Trigger on any port

any port.trigger

22.3 Procedure-based communication

The operations for procedure-based communication via synchronous ports are summarized in table 24.

Table 24: Overview of procedure-based communication

Communication operation Keyword
Invoke procedure call call
Accept procedure call from remote entity getcall
Reply to procedure call from remote entity  |reply
Raise exception (to an accepted call) raise
Handle response from a previous call getreply
Catch exception (from called entity) catch
Check call/lexception/reply received check

22.3.1 The Call operation

The call operation specifies the call of aremote operation on another test component or within the SUT.

Syntactical Structure

Port "." call " (" TemplateInstance [ "," CallTimerValue ] ")"
[ to ( AddressRef | AddressRefList | all component ) ]

Semantic Description
The call operationis used to specify that atest component calls a procedure in the SUT or in another test component.

Theinformation to be transmitted in the send part of the call operation isasignature that may either be defined in the
form of a signature template or be defined in-line.

Handling responses and exceptionsto a call

In case of non-blocking procedure-based communication the handling of exceptionsto call operationsis done by
using catch (see clause 22.3.6) operations as alternativesin alt statements.

If thenowait optionis used, the handling of responses or exceptionsto call operationsisdone by using getreply
(see clause 22.3.4) and catch (see clause 22.3.6) operations as alternativesin alt statements.

In case of blocking procedure-based communication, the handling of responses or exceptionsto acall isdonein the
response and exception handling part of the call operation by means of getreply (see clause 22.3.4) and catch
(see clause 22.3.6) operations.

The response and exception handling part of a call operation looks similar to the body of an alt statement. It defines
a set of alternatives, describing the possible responses and exceptions to the call.

If necessary, it is possible to enable/disable an alternative by means of aboolean expression placed between the "[ 1"
brackets of the alternative.

ETSI



175 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

The response and exception handling part of a call operation is executed like an alt statement without any active
default. This means a corresponding snapshot includes all information necessary to evaluate the (optional) Boolean
guards, may include the top element (if any) of the port over which the procedure has been called and may include a
timeout exception generated by the (optional) timer that supervises the call.

Handling timeout exceptionsto a call

The call operation may optionally include atimeout. Thisis defined as an explicit value or constant of £loat type
and defines the length of time after the call operation has started that a t imeout exception shall be generated by the
test system. If no timeout value part is present in the call operation, no timeout exception shall be generated.

Nowait calls of blocking procedures

Using the keyword nowai t instead of atimeout exception valuein acall operation allows calling a procedure to
continue without waiting either for a response or an exception raised by the called procedure or atimeout exception.

If thenowait keyword isused, a possible response or exception of the called procedure has to be removed from the
port queue by using agetreply or acatch operation in a subsequent alt statement.

Calling blocking procedureswithout return value, out parameters, inout parameters and exceptions

A blocking procedure may have no return values, no out and inout parameters and may raise no exception. The call
operation for such a procedure shall also have a response and exception handling part to handle the blocking in a
uniform manner.

Calling non-blocking procedures

A non-blocking procedure has no out and inout parameters, no return value and the non-blocking property is indicated
in the corresponding signature definition by means of anoblock keyword.

Possible exceptions raised by non-blocking procedures have to be removed from the port queue by using catch
operationsin subsequent alt or interleave statements.

Unicast, multicast and broadcast calls of procedures

Like for the send operation, TTCN-3 aso supports unicast, multicast and broadcast calls of procedures. This can be
done in the same manner as described in clause 22.2.1, i.e. the argument of the to clause of acall operationisfor
unicast calls the address of one receiving entity (or can be omitted in case of one-to-one connections), for multicast calls
alist of addresses of a set of receivers and for broadcast calstheall component keyword. In case of one-to-one
connections, the to clause may be omitted, because the receiving entity is uniquely identified by the system structure.

The handling of responses and exceptions for a blocking or non-blocking unicast call operation has been explained in
this clause under "Handling timeout exceptionsto acall". A multicast or broadcast call operation may cause several
responses and exceptions from different communication partners.

In case of amulticast or broadcast call operation of a non-blocking procedure, all exceptions which may be raised
from the different communication partners can be handled in subsequent catch, alt or interleave Statements.

In case of amulticast or broadcast call operation of a blocking procedure, two options exist. Either, only one response
or exception is handled in the response and exception handling part of the call operation. Then, further responses and
exceptions can be handled in subsequent alt or interleave Statements. Or, several responses or exceptions are
handled by the use of repeat statements in one or more of the statement blocks of the response and exception handling
part of the call operation: the execution of arepeat statement causes the re-evaluation of the call body.

NOTE: Inthe second case, the user needs to handle the number of repetitions.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thecall operation shal only be used on procedure-based ports. The type definition of the port at which the
call operation takes place shall include the procedure nameinitsout or inout listi.e. it must be allowed to
call this procedure at this port.

ETSI



176 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

b) All in and inout parameters of the signature shall have a specific value i.e. the use of matching mechanisms
such as AnyValue is not allowed.

c¢)  Only out parameters may be omitted or specified with a matching attribute.

d) Thesignature arguments of the call operation are not used to retrieve variable names for out and inout
parameters. The actual assignment of the procedure return value and out and inout parameter valuesto
variables shall explicitly be made in the response and exception handling part of the call operation by means
of getreply and catch operations. This allows the use of signature templatesin call operationsin the
same manner as templates can be used for types.

€) A to clause shall be present in case of one-to-many connections.
f)  AddressRef shall not contain matching mechanisms and must be of address or component type.
g) CallTimerValue must be of type float.

h)  The selection of the alternativesto acall shall only be based on getreply and catch operationsfor the
called procedure. Unqualified getreply and catch operations shall only treat replies from and exceptions
raised by the called procedure. The use of else branches and the invocation of atstepsis not allowed.

i)  Theevaluation of the Boolean expressions guarding the alternatives in the response and exception handling
part may have side effects. In order to avoid unexpected side effects, the same rules as for the Boolean guards
inalt statements shall be applied (see clause 20.2).

i) Thecall operation for a blocking procedures without return value, out parameters, inout parameters and
exceptions shall also have a response and exception handling part to handle the blocking in a uniform manner.

k)  Incaseof amulticast or broadcast call operation of ablocking procedure, where the nowait keyword is
used, al responses and exceptions have to be handled in subsequent alt or interleave Statements.

[)  Thecall operation for a non-blocking procedure shall have no response and exception handling part, shall
raise no timeout exception and shall not use the nowai t keyword.

Examples

EXAMPLE 1:  Blocking call with getreply

// Given ..
signature MyProc (out integer MyParl, inout boolean MyPar2) ;

// a call of MyProc

MyPort.call (MyProc:{ -, MyVar2}) { // in-line signature template for the call of MyProc
[] MyPort.getreply (MyProc:{?, ?}) { }
}

// .. and another call of MyProc

MyPort.call (MyProcTemplate) { // using signature template for the call of MyProc
[1 MyPort.getreply (MyProc:{?, 2}) { }

}

MyPort.call (MyProcTemplate) to MyPeer ({ // calling MyProc at MyPeer
[] MyPort.getreply (MyProc:{?, 2}) { }
EXAMPLE 2:  Blocking call with getreply and catch
// Given

signature MyProc3 (out integer MyParl, inout boolean MyPar2) return MyResultType
exception (ExceptionTypeOne, ExceptionTypeTwo) ;

// Call of MyProc3

MyPort.call (MyProc3:{ -, true }) to MyPartner ({
[1 MyPort.getreply (MyProc3:{?, ?}) -> value MyResult param (MyParlVar,MyPar2Var) { }
[] MyPort.catch(MyProc3, MyExceptionOne) {

setverdict (fail) ;
stop;

ETSI



177 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

}

[1 MyPort.catch(MyProc3, ExceptionTypeTwo : ?) {
setverdict (inconc) ;
}

[MyCondition] MyPort.catch (MyProc3, MyExceptionThree) { }

}
EXAMPLE 3:  Blocking call with timeout exception
MyPort.call (MyProc:{5,MyVar}, 20E-3) {

[] MyPort.getreply (MyProc:{?, ?}) { }

[] MyPort.catch(timeout) { // timeout exception after 20ms
setverdict (fail) ;
stop;

}
EXAMPLE 4:  Nowait call

MyPort.call(MyProc:{S, MyVar}, nowait) ; // The calling test component will continue
// its execution without waiting for the

// termination of MyProc
EXAMPLE5: Blocking call without return value, out parameters, inout parameters and exceptions

// Given ..
signature MyBlockingProc (in integer MyParl, in boolean MyPar2) ;

// a call of MyBlockingProc
MyPort.call (MyBlockingProc:{ 7, false }) {
[1 MyPort.getreply( MyBlockingProc:{ -, - } ) { }

EXAMPLE 6: Broadcast call

var boolean first:= true;
MyPort.call (MyProc: {5,MyVar}, 20E-3) to all component { // Broadcast call of MyProc
// Handles the response from MyPeerOne
[first] MyPort.getreply (MyProc:{?, ?}) from MyPeerOne ({
if (first) { first := false; repeat; }

}

// Handles the response from MyPeerTwo
[first] MyPort.getreply (MyProc:{?, ?}) from MyPeerTwo {

if (first) { first := false; repeat; }
[] MyPort.catch(timeout) { // timeout exception after 20ms
setverdict (fail) ;
stop;
1
1
alt {
[] MyPort.getreply (MyProc:{?, ?}) ({ // Handles all other responses to the broadcast call
repeat

}
}

EXAMPLE 7:  Multicast call

MyPort.call (MyProc:{5,MyVar}, nowait) to (MyPeerl, MyPeer2); // Multicast call of MyProc
interleave
[1 MyPort.getreply (MyProc:{?, ?}) from MyPeerl { } // Handles the response of MyPeerl
[] MyPort.getreply (MyProc:{?, ?}) from MyPeer2 { } // Handles the response of MyPeer2

}

ETSI



178 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

22.3.2 The Getcall operation
Thegetcall operation isused to accept cals.

Syntactical Structure

( Port | any port ) "." getcall

[ "(" TemplateInstance ")" ]

[ from AddressRef ]

[ "->" [ param " (" { ( VariableRef ":=" ParameterIdentifier ) "," } |
{ ( variableRef | m"-m ) n,v }

||) n ]
[ sender VariableRef ] ]

Semantic Description

Thegetcall operation is used to specify that atest component accepts a call from the SUT, or another test
component.

The getcall operation shall remove the top call from the incoming port queue, if, and only if, the matching criteria
associated to the getcall operation are fulfilled. These matching criteria are related to the signature of the call to be
processed and the communication partner. The matching criteriafor the signature may either be specified in-line or be
derived from a signature template.

The assignment of in and inout parameter valuesto variables shall be made in the assignment part of thegetcall
operation. This alows the use of signature templatesin getcall operationsin the same manner as templates are used
for types.

A getcall operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

The (optional) assignment part of the getcall operation comprises the assignment of in and inout parameter
values to variables and the retrieval of the address of the calling component. The keyword param is used to retrieve the
parameter values of acall.

The keyword sender isused when it is required to retrieve the address of the sender (e.g. for addressing areply or
exception to the calling party in a one-to-many configuration).

Accepting any call

A getcall operation with no argument list for the signature matching criteria will remove the call on the top of the
incoming port queue (if any) if all other matching criteria are fulfilled.

Getcall on any port

Togetcall onany port is denoted by the any keyword.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thegetcall operation shall only be used on procedure-based ports and the signature of the procedure call to
be accepted shall be included in the list of allowed incoming procedures of the port type definition.

b) The signature argument of the getcall operation shall not be used to passin variable names for in and
inout parameters.

c) The Parameterldentifiers must be from the corresponding signature definition.
d) Thevaue assignment part shall not be used with the getcall operation.

€) Parameters of calls accepted by accepting any call shall not be assigned to avariable, i.e. the param clause
shall not be present.

ETSI



179 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

EXAMPLE 1: Basic getcall
MyPort .getcall (MyProc: MyProcTemplate (5, MyVar)) ; // accepts a call of MyProc at MyPort

MyPort.getcall (MyProc: {5, MyVar}) from MyPeer; // accepts a call of MyProc at MyPort from MyPeer

EXAMPLE 2:  Getcall with matching and assignments of parameter valuesto variables

MyPort.getcall (MyProc:{?, ?}) from MyPartner -> param (MyParlVar, MyPar2Var) ;
// The in or inout parameter values of MyProc are assigned to MyParlVar and MyPar2Var.

MyPort.getcall (MyProc: {5, MyVar}) -> sender MySenderVar;
// Accepts a call of MyProc at MyPort with the in or inout parameters 5 and MyVar.

// The address of the calling party is retrieved and stored in MySenderVar.

// The following getcall examples show the possibilities to use matching attributes
// and omit optional parts, which may be of no importance for the test specification.

MyPort.getcall (MyProc: {5, MyVar}) -> param(MyVarl, MyVar2) sender MySenderVar;
MyPort.getcall (MyProc: {5, ?}) -> param(MyVarl, MyVar2);

MyPort.getcall (MyProc:{?, MyVar}) -> param( - , MyVar2);
// The value of the first inout parameter is not important or not used

// The following examples shall explain the possibilities to assign in and inout parameter
// values to variables. The following signature is assumed for the procedure to be called:

signature MyProc2(in integer A, integer B, integer C, out integer D, inout integer E);
MyPort.getcall (MyProc2:{?, ?, 3, - , ?}) -> param (MyVarA, MyVarB, - , -, MyVarEk);

// The parameters A, B, and E are assigned to the variables MyVarA, MyVarB, and

// MyVarE. The out parameter D needs not to be considered.

MyPort.getcall (MyProc2:{?, ?, 3, -, ?}) -> param (MyVarA:= A, MyVarB:= B, MyVarE:= E);

// Alternative notation for the value assignment of in and inout parameter to variables. Note,

// the names in the assignment list refer to the names used in the signature of MyProc2

MyPort.getcall (MyProc2:{1, 2, 3, -, *}) -> param (MyVarE:= E);
// Only the inout parameter value is needed for the further test case execution

EXAMPLE 3:  Accepting any call
MyPort .getcall; // Removes the top call from MyPort.
MyPort.getcall from MyPartner; // Removes a call from MyPartner from port MyPort

MyPort.getcall -> sender MySenderVar; // Removes a call from MyPort and retrieves
// the address of the calling entity

EXAMPLE 4:  Getcall on any port

any port.getcall (MyProc:?)

22.3.3 The Reply operation
The reply operation isused to reply to acall.

Syntactical Structure

Port "." reply " (" TemplateInstance [ value Expression ] ")"
[ to ( AddressRef | AddressRefList | all component ) ]

Semantic Description
The reply operation isused to reply to a previously accepted call according to the procedure signature.

NOTE: Therelation between an accepted call and a reply operation cannot always be checked statically. For
testing it is allowed to specify a reply operation without an associated getcall operation.

ETSI



180 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

The value part of the reply operation consists of a signature reference with an associated actual parameter list and
(optional) return value. The signature may either be defined in the form of a signature template or it may be defined
in-line.

Responses to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of areply operation isfor unicast responses the address of one receiving entity, for multicast responses alist of
addresses of a set of receivers and for broadcast responsesthe all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

A return value shall be explicitly stated with the value keyword.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A reply operation shal only be used at a procedure-based port. The type definition of the port shall include
the name of the procedure to which the reply operation belongs.

b) All out and inout parameters of the signature shall have a specific valuei.e. the use of matching
mechanisms such as AnyValue is not allowed.

Cc) A to clauseshall be present in case of one-to-many connections.
d) AddressRef shall not contain matching mechanisms and must be of address or component type.

e) If avalueisto bereturned to the calling party, this shall be explicitly stated using the value keyword.

Examples
MyPort.reply (MyProc2:{ - ,5}); // Replies to an accepted call of MyProc2.
MyPort.reply (MyProc2:{ - ,5}) to MyPeer; // Replies to an accepted call of MyProc2 from MyPeer
MyPort.reply (MyProc2:{ - ,5}) to (MyPeerl, MyPeer2); // Multicast reply to MyPeerl and MyPeer2
MyPort .reply (MyProc2:{ - ,5}) to all component; // Broadcast reply to all entities connected
// to MyPort
MyPort .reply (MyProc3: {5,MyVar} value 20) ; // Replies to an accepted call of MyProc3.

22.3.4 The Getreply operation
The getreply operation is used to handle replies from a previously called procedure.

Syntactical Structure

Port | any port ) "." getreply
" (" TemplateInstance [ value TemplateInstance ]")" ]
from AddressRef ]

"->" [ value VariableRef ]
[ param " (" { ( VariableRef ":=" ParameterIdentifier ) "," } |
{ ( variableRef | "-v ) n,n }

||)|| ]

[ sender VariableRef ] ]
Semantic Description
The getreply operation is used to handle replies from a previously called procedure.

The getreply operation shall remove the top reply from the incoming port queue, if, and only if, the matching
criteria associated to the getreply operation are fulfilled. These matching criteria are related to the signature of the
procedure to be processed and the communication partner. The matching criteria for the signature may either be
specified in-line or be derived from a signature template.

Matching against a received return val ue can be specified by using the value keyword.

ETSI



181 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

A getreply operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

The assignment of out and inout parameter values to variables shall be made in the assignment part of the
getreply operation. This allows the use of signature templatesin getreply operationsin the same manner as
templates are used for types.

The (optional) assignment part of the getreply operation comprises the assignment of out and inout parameter
valuesto variables and the retrieval of the address of the sender of the reply. The keyword value isused to retrieve
return values and the keyword param is used to retrieve the parameter values of areply. The keyword sender is used
when it isrequired to retrieve the address of the sender.

Get any reply

A getreply operation with no argument list for the signature matching criteria shall remove the reply message on the
top of the incoming port queue (if any) if all other matching criteria are fulfilled.

If GetAnyReply is used in the response and exception handling part of acall operation, it shall only treat replies from
the procedure invoked by the call operation.

Get areply on any port

To get areply on any port, use the any port keywords.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A getreply operation shal only be used at a procedure-based port. The type definition of the port shall
include the name of the procedure to which the getreply operation belongs.

b)  The signature argument of the getreply operation shall not be used to passin variable names for out and
inout parameters.

c) Parametersor return values of responses accepted by get any reply shall not be assigned to avariable, i.e. the
param and value clause shall not be present.

Examples

EXAMPLE 1.  Basic getreply

MyPort .getreply (MyProc: {5, ?} value 20); // Accepts a reply of MyProc with two out or
// inout parameters and a return value of 20

MyPort.getreply (MyProc2:{ - , 5}) from MyPeer; // Accepts a reply of MyProc2 from MyPeer

EXAMPLE 2 Getreply with storing inout/out parameters and return values in variables

MyPort .getreply (MyProcl:{?, ?} wvalue ?) -> value MyRetValue param(MyParl,MyPar2) ;

// The returned value is assigned to variable MyRetValue and the value

// of the two out or inout parameters are assigned to the variables MyParl and MyPar2.
MyPort.getreply (MyProcl:{?, ?} wvalue ?) -> value MyRetValue param( - , MyPar2) sender MySender;
// The value of the first parameter is not considered for the further test execution and

// the address of the sender component is retrieved and stored in the variable MySender.

// The following examples describe some possibilities to assign out and inout parameter values
// to variables. The following signature is assumed for the procedure which has been called

signature MyProc2 (in integer A, integer B, integer C, out integer D, inout integer E);
MyPort .getreply (ATemplate) -> param( - , - , - , MyVarOutl, MyVarInoutl) ;
MyPort .getreply (ATemplate) -> param(MyVarOutl:=D, MyVarOut2:=E);

MyPort .getreply (MyProc2:{ - , - , - , 3, ?}) -> param(MyVarInoutl:=E);

ETSI



182 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

EXAMPLE 3:  Get any reply

MyPort .getreply; // Removes the top reply from MyPort.
MyPort.getreply from MyPeer; // Removes the top reply received from MyPeer from MyPort.

MyPort .getreply -> sender MySenderVar; // Removes the top reply from MyPort and retrieves the
// address of the sender entity

EXAMPLE 4:  Get areply on any port

any port.getreply (Myproc:?)

22.3.5 The Raise operation
Exceptions are raised with the raise operation.

Syntactical Structure

Port "." raise " (" Signature "," TemplateInstance ")"
[ to ( AddressRef | AddressRefList | all component ) ]

Semantic Description
The raise operation is used to raise an exception.

NOTE: Therelation between an accepted call and a raise operation cannot always be checked statically. For
testing it is allowed to specify a raise operation without an associated getcall operation.

The value part of the raise operation consists of the signature reference followed by the exception value.

Exceptions are specified as types. Therefore the exception value may either be derived from atemplate or be the value
resulting from an expression (which of course can be an explicit value). The optional type field in the value
specification to the raise operation shall be used in cases where it is necessary to avoid any ambiguity of the type of
the value being sent.

Exceptions to one or more call operations may be sent to one, several or all peer entities connected to the addressed
port. This can be specified in the same manner as described in clause 22.2.1. This means, the argument of the to clause
of araise operationisfor unicast exceptions the address of one receiving entity, for multicast exceptions alist of
addresses of a set of receivers and for broadcast exceptionsthe all component keywords.

In case of one-to-one connections, the to clause may be omitted, because the receiving entity is uniquely identified by
the system structure.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Anexception shall only be raised at a procedure-based port. An exception is a reaction to an accepted
procedure call the result of which leads to an exceptional event.

b)  Thetype of the exception shall be specified in the signature of the called procedure. The type definition of the
port shall includeinitslist of accepted procedure calls the name of the procedure to which the exception
belongs.

c) A to clause shall be present in case of one-to-many connections.
d)  AddressRef shall not contain matching mechanisms and must be of address or component type.

Examples
MyPort .raise (MySignature, MyVariable + YourVariable - 2);
// Raises an exception with a value which is the result of the arithmetic expression

// at MyPort

MyPort.raise (MyProc, integer:5}); // Raises an exception with the integer value 5 for MyProc

ETSI



183 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

MyPort.raise (MySignature, "My string") to MyPartner;
// Raises an exception with the value "My string" at MyPort for MySignature and
// send it to MyPartner

MyPort.raise (MySignature, "My string") to (MyPartnerOne, MyPartnerTwo) ;

// Raises an exception with the value "My string" at MyPort and sends it to MyPartnerOne and
// MyPartnerTwo (i.e. multicast communication)

MyPort.raise (MySignature, "My string") to all component;

// Raises an exception with the value "My string" at MyPort for MySignature and sends it
// to all entites connected to MyPort (i.e. broadcast communication)

22.3.6 The Catch operation
The catch operation is used to catch exceptions.

Syntactical Structure

( Port | any port ) "." catch
[ "(" ( Signature "," TemplateInstance ) | TimeoutKeyword ")" ]
[ from AddressRef ]
[ "->" [ value ( VariableRef
( "(" { VariableRef [ ":=" FieldOrTypeReference 1I[","] } ")" )

) ]

[ sender VariableRef ] ]
Semantic Description

The catch operation is used to catch exceptions raised by a test component or the SUT as a reaction to a procedure
call. Exceptions are specified as types and thus, can be treated like messages, e.g. templates can be used to distinguish
between different val ues of the same exception type.

The catch operation removes the top exception from the associated incoming port queue if, and only if, that top
exception satisfies al the matching criteria associated with the catch operation.

A catch operation may be restricted to a certain communication partner in case of one-to-many connections. This
restriction shall be denoted by using the £rom keyword.

The (optional) redirection part of the catch operation comprises of storing the exception value and/or one or more
parts of it and the retrieval of the address of the calling component. The keyword value is used to retrieve the val ue of
an exception and/or the parts of it and the keyword sender isused when it is required to retrieve the address of the
sender.

The catch operation may be part of the response and exception handling part of acall operation or be used to
determine an aternative in an alt statement. If the catch operation is used in the accepting part of acall operation,
the information about port name and signature reference to indicate the procedure that raised the exception is redundant,
because this information follows from the call operation. However, for readability reasons (e.g. in case of complex
call statements) thisinformation shall be repeated.

The Timeout exception

Thereis one specia timeout exception that can be caught by the catch operation. The timeout exceptionisan
emergency exit for cases where a called procedure neither replies nor raises an exception within a predetermined time
(seeclause 22.3.1).

Catch any exception

A catch operation with no argument list allows any valid exception to be caught. The most general case is without
using the £rom keyword. CatchAnyException will aso catch the timeout exception.

Catch on any port

To catch an exception on any port use the any keyword.

ETSI



184 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thecatch operation shall only be used at procedure-based ports. The type of the caught exception shall be
specified in the signature of the procedure that raised the exception.

b)  No binding of the incoming values to the terms of the expression or to the template shall occur. The
assignment of the exception values to variables shall be made in the assignment part of the catch operation.

¢) Catching timeout exceptions shall be restricted to the exception handling part of acall. No further matching
criteria (including a £rom part) and no assignment part is alowed for a catch operation that handles a
timeout exception.

d) Exception values accepted by catch any exception shall not be assigned to avariable, i.e. the value clause shall
not be present.

€) If CatchAnyException isused in the response and exception handling part of acall operation, it shal only
treat exceptions raised by the procedure invoked by the call operation.

Examples

EXAMPLE 1:  Basic catch

MyPort.catch (MyProc, integer: MyVar) ; // Catches an integer exception of value
// MyVar raised by MyProc at port MyPort.

MyPort .catch (MyProc, MyVar) ; // Is an alternative to the previous example.
MyPort .catch (MyProc, A<B); // Catches a boolean exception
MyPort.catch (MyProc, MyType:{5, MyVar}); // In-line template definition of an exception value.

MyPort.catch (MyProc, charstring:"Hello")from MyPeer; // Catches "Hello" exception from MyPeer

EXAMPLE 2:  Catch with storing value and/or sender in variables

MyPort.catch (MyProc, MyType:?) from MyPartner -> value MyVar;
// Catches an exception from MyPartner and assigns its value to MyVar.

MyPort.catch (MyProc, MyTemplate(5)) -> value MyVarTwo sender MyPeer;
// Catches an exception, assigns its value to MyVarTwo and retrieves the
// address of the sender.

MyPort.catch (MyProc, MyTemplate(5)) -> value (MyVarThree:= f1)

sender MyPeer;
// Catches an exception, assigns the value of its field f1 to MyVarThree and retrieves the
// address of the sender.

EXAMPLE 3: The Timeout exception

MyPort.call (MyProc:{5,MyVar}, 20E-3) {
[1 MyPort.getreply (MyProc:{?, 2}) { }

[] MyPort.catch(timeout) // timeout exception after 20ms
setverdict (fail) ;
stop;

1
EXAMPLE 4:  Catch any exception
MyPort .catch;

MyPort.catch from MyPartner;

MyPort.catch -> sender MySenderVar;

EXAMPLES5: Catch on any port

any port.catch;

ETSI



185 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

22.4  The Check operation

The check operation allows reading the top element of a message-based or procedure-based incoming port queue.

Syntactical Structure

( Port | any port ) "." check

[ n(n
( PortReceiveOp | PortGetCallOp | PortGetReplyOp | PortCatchOp ) |
( [ from AddressRef ] [ "->" sender VariableRef ] )

n)n ]

Semantic Description

The check operation is a generic operation that allows read access to the top element of message-based and
procedure-based incoming port queues without removing the top element from the queue. The check operation hasto
handle values of a certain type at message-based ports and to distinguish between calls to be accepted, exceptionsto be
caught and replies from previous calls at procedure-based ports.

Thereceiving operations receive, getcall, getreply and catch together with their matching and value, sender
or parameter storing parts, are used by the check operation to define the conditions that have to be checked and the
information to be optionally extracted.

It isthe top element of an incoming port queue that shall be checked (it is not possible to look into the queue). If the
gueue is empty the check operation fails. If the queue is not empty, a copy of the top element is taken and the
receiving operation specified in the check operation is performed on the copy. The check operation failsif the
receiving operation failsi.e. the matching criteria are not fulfilled. In this case the copy of the top element of the queue
is discarded and test execution continues in the normal manner, i.e. the statement or alternative next to the check
operation is evaluated. The check operation is successful if the receiving operation is successful. In this case, the
value, sender or parameter storing parts of the receiving operation, if any, are executed, i.e. the message and/or a part of
it, the sender's address or component reference, the parameter(s) of the call or reply or the value of the exception are
stored in the associated variables.

If check isused as a stand-alone statement, it is considered to be a shorthand for an alt statement with the check
operation as the only alternative.

Check any operation

A check operation with no argument list allows checking whether something waits for processing in an incoming port
gueue. The check any operation allows to distinguish between different senders (in case of one-to-many connections)
by using a £rom clause and to retrieve the sender by using a shorthand assignment part with a sender clause.

NOTE 1: Information related to the message-based input queue of a mixed port can be retrieved easily by using the
check operation in combination with areceive any operation, e.g.
MyPort .check (receive) -> sender Mysender.

Check on any port

To check on any port, usethe any port keywords.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Using the check operation in a wrong manner, e.g. check for an exception at a message-based port shall
cause atest case error.

NOTE 2: In most cases the correct usage of the check operation can be checked statically, i.e. before/during
compilation.

ETSI



186 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

EXAMPLE 1:  Basic check

MyPortl.check (receive(5)); // Checks for an integer message of value 5.

MyPortl.check (receive (charstring:?) -> value MyCharVar) ;
// Checks for a charstring message and stores the message if the message type is charstring

MyPort2.check (getcall (MyProc: {5, MyVar}) from MyPartner) ;
// Checks for a call of MyProc at port MyPort2 from MyPartner

MyPort2.check (getreply (MyProc: {5, MyVar} value 20)) ;

// Checks for a reply from procedure MyProc at MyPort2 where the returned value is 20 and
// the values of the two out or inout parameters are 5 and the value of MyVar.
MyPort2.check (catch (MyProc, MyTemplate (5, MyVar))) ;

MyPort2.check (getreply (MyProcl:{?, MyVar} value *) -> value MyReturnValue param(MyParl,-));

MyPort .check (getcall (MyProc: {5, MyVar}) from MyPartner -> param (MyParlVar, MyPar2Var)) ;

MyPort .check (getcall (MyProc: {5, MyVar}) -> sender MySenderVar) ;

EXAMPLE 2:  Check any operation
MyPort .check;
MyPort .check (from MyPartner) ;

MyPort .check (-> sender MySenderVar) ;

EXAMPLE 3:  Check on any port

any port.check;

22.5  Controlling communication ports

TTCN-3 operations for controlling message-based and procedure-based ports are presented in table 25.

Table 25: Overview of TTCN-3 port operations

Port operations
Statement Associated keyword or symbol
Clear port clear
Start port start
Stop port stop
Halt port halt

22.5.1 The Clear port operation
The clear port operation emptiesincoming port queues.

Syntactical Structure

( Port | ( all port ) ) "." clear
Semantic Description

The clear operation removes the contents of the incoming queue of the specified port or of all ports of the test
component performing the c1ear operation.

If aport queue is already empty then this operation shall have no action on that port.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

ETSI



187 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Examples

MyPort.clear; // clears port MyPort

22.5.2 The Start port operation
The start operation enables sending and receiving operations on the port(s).
Syntactical Structure
( Port | ( all port ) ) "." start
Semantic Description

If aport is defined as allowing receiving operations such as receive, getcall €tc., the start operation clearsthe
incoming queue of the named port and starts listening for traffic over the port. If the port is defined to allow sending
operations then the operations such as send, call, raise €etc., are also allowed to be performed at that port.

By default, al ports of acomponent shall be started implicitly when a component is created. The start port operation
will cause unstopped ports to be restarted by removing all messages waiting in the incoming queue.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

MyPort.start; // starts MyPort

22.5.3 The Stop port operation
The stop operation disables sending and disallow receiving operations to match at the port(s).

Syntactical Structure

( Port | ( all port ) ) "." stop
Semantic Description

If aport is defined as allowing receiving operations such as receive and getcall, the stop operation causes
listening at the named port to cease. If the port is defined to allow sending operations then stop port disallows the
operations such as send, call, raise €tc., to be performed.

To cease listening at the port meansthat all receiving operations defined before the stop operation shall be completely
performed before the working of the port is suspended.

Restrictions
No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples

MyPort.receive (MyTemplatel) -> value RecPDU;
// the received value is decoded, matched against
// MyTemplatel and the matching value is stored
// in the variable RecPDU
MyPort.stop; // No receiving operation defined following the stop
// operation is executed (unless the port is restarted
// by a subsequent start operation)
MyPort.receive (MyTemplate2); // This operation does not match and will block (assuming
// that no default is activated)

ETSI



188 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

22.5.4 The Halt port operation

The halt operation is comparable to the stop operation, but allows entries being aready in the queue to be processed
with receiving operations.

Syntactical Structure

( Port | ( all port ) ) "." halt
Semantic Description

If aport allows receiving operations such as receive, trigger and getcall, the halt operation disallows
receiving operations to succeed for messages and procedure call elements that enter the port queue after performing the
halt operation at that port. Messages and procedure call elements that were already in the queue beforethehalt
operation can still be processed with receiving operations. If the port allows sending operations then halt port
immediately disallows sending operations such as send, call, raise etc. to be performed. Subsequent halt
operations have no effect on the state of the port or its queue.

NOTE 1. The port halt operation virtually puts a marker after the last entry in the queue received when the
operation is performed. Entries ahead of the marker can be processed normally. After all entriesin the
gueue ahead of the marker have been processed, the state of the port is equivalent to the stopped state.

NOTE 2: If aport stop operation is performed on a halted port before all entries in the queue ahead of the marker
have been processed, further receive operations are disallowed immediately (i.e. the marker isvirtually
moved to the top of the queue).

NOTE 3: A port start operation on ahalted port clears al entriesin the queue irrespectively if they arrived
before or after performing the port halt operation. It also removes the marker.

NOTE 4: A port clear operation on a halted port clears al entriesin the queue irrespectively if they arrived
before or after performing the port halt operation. It also virtually puts the marker at the top of the
queue.

Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples
MyPort.halt; // No sending allowed on Myport from this moment on;
// processing of messages in the queue still possible.
MyPort.receive (MyTemplatel) ; // If a message was already in the queue before the halt

// operation and it matches MyTemplatel, it is processed;
// otherwise the receive operation blocks.

22.6  Use of any and all with ports

The keywords any and a1l may be used with configuration and communication operations as indicated in table 26.

Table 26: Any and All with ports

Operation Allowed Example
any all
receive, trigger, getcall, getreply, catch, check) |yes any port.receive
connect / map
disconnect / unmap yes unmap (self : all port)
start, stop, clear, halt yes all port.start

NOTE: Portsare owned by test components and instantiated when a component is created. The keywords any
port andall port addressall ports owned by atest component and not only the ports known in the
scope of the function or altstep that is executed on the component.

ETSI



189 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

23 Timer operations

TTCN-3 supports a number of timer operations as given in table 27. These operations may be used in test cases,
functions, altsteps and module control.

Table 27: Overview of TTCN-3 timer operations

Timer operations
Statement Associated keyword or symbol
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout

23.1 The timer mechanism

It is assumed that each test component and the module control maintain their own running-timers list and timeout-list,
i.e. alist of al timersthat are actually running and alist of all timersthat have timed out. The timeout-lists are part of
the snapshots that are taken when atest case is executed. The running-timerslist and timeout-list of a component or
module control are updated if atimer of the component or module control is started, is stopped, times out or the
component or module control executes a timeout operation.

NOTE 1: The running-timerslist and the timeout-list are only a conceptual lists and do not restrict the
implementation of timers. Other data structures like a set, where the access to timeout eventsis not
restricted by, e.g. the order in which the timeout events have happened, may al so be used.

NOTE 2: Conceptually, each test component and module control maintain one running-timers list and one timeout-
list only. However, within a given scope unit only timers known in the scope unit can be accessed
individually, i.e. timersthat are declared in the scope unit, passed in as parameters to the scope unit or
known viaaruns-on clause. In some special cases (e.g. for re-establishing atest component during a test
run), it can be necessary to stop timerslocal to other scope units or to check if timerslocal to other scope
units are running or have aready timed out. This can be done by using the keywords all and any in
combination with the timer operations stop, timeout and running. Allowed combinations are
defined in clause 23.7.

When atimer expires, the timer becomes immediately inactive. A timeout event is placed in the timeout-list and the
timer is removed from the running-timer list of the test component or module control for which the timer has been
declared. Only one entry for any particular timer may appear in the timeout-list and running-timer list of the test
component or module control for which the timer has been declared.

All running timers shall automatically be cancelled when atest component is explicitly or implicitly stopped.

23.2  The Start timer operation
The start timer operation is used to indicate that a timer shall start running.

Syntactical Structure

( ( TimerIdentifier | TimerParIdentifier ) { "I[" SingleExpression "1" } )
"." gtart [ "(" TimerValue ")" ]

Semantic Description
When atimer is started, its name is added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default
value specified in the timer declaration. When atimer duration is overridden, the new value applies only to the current
instance of the timer, any later start operations for this timer, which do not specify a duration, shall use the default
duration.

ETSI



190 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Starting atimer with the timer value 0.0 means that the timer times out immediately. Starting a timer with a negative
timer value, e.g. the timer value is the result of an expression, or without a specified timer value shall cause a runtime
error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration parameter.

The start operation may be applied to arunning timer, in which case the timer is stopped and re-started. Any entry in
atimeout-list for thistimer shall be removed from the timeout-list.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)  Timer value shall be a non-negative numerical £1oat number (i.e. the value shall be greater or equal 0.0,
infinity and not_a_number are disallowed).

Examples
MyTimerl.start; // MyTimerl is started with the default duration
MyTimer2.start (20E-3); // MyTimer2 is started with a duration of 20 ms

// Elements of timer arrays may also be started in a loop, for example
timer t Mytimer [5];
var float v_timerValues [5];

for (var integer i := 0; i<=4; i:=i+1)
{ v_timervalues [i] := 1.0 }
for (var integer 1 := 0; i<=4; i:=i+1)

{t_Mytimer [i].start ( v_timerValues [i])}

23.3  The Stop timer operation

The stop operation is used to stop arunning timer.

Syntactical Structure

( ( ( TimerIdentifier | TimerParIdentifier ) { "[" SingleExpression "1" } ) |
all timer )
", " stop

Semantic Description

A stop operation removes a running timer from the list of running timers. A stopped timer becomes inactive and its
elapsed timeis set to the float value zero (0.0).

Stopping an inactive timer is avalid operation, although it does not have any effect. Stopping an expired timer causes
the entry for this timer in the timeout-list to be removed.

The all keyword may be used to stop al timers that have been started on a component or module control.
Restrictions

No specific restrictions in addition to the genera static rules of TTCN-3 given in clause 5.

Examples
MyTimerl.stop; // stops MyTimerl
all timer.stop; // stops all running timers

ETSI



191 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

23.4  The Read timer operation
The read operation is used to retrieve the time that has elapsed since the specified timer was started.

Syntactical Structure

( ( TimerIdentifier | TimerParIdentifier ) { "I[" SingleExpression "1" } )
"." read

Semantic Description

The read operation returns the time that has elapsed since the specified timer was started. The returned value shall be
of type float.

Applying the read operation on an inactive timer, i.e. on atimer not listed on the running-timer list, will return the
float value zero (0.0).

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

var float Myvar;
MyVar := MyTimerl.read; // assign to MyVar the time that has elapsed since MyTimerl was started

23.5 The Running timer operation
The running timer operation is used to check whether atimer isin the running-timer list.

Syntactical Structure

( ( ( TimerIdentifier | TimerParIdentifier ) { "[" SingleExpression "1" } ) |
any timer )
"." running

Semantic Description

The running timer operation is used to check whether a specific timer visible in the given scope unit islisted on the
running-timer list or not (i.e. that it has been started and has neither timed out nor been stopped). The operation returns
thevalue true if thetimer islisted onthelist, false otherwise.

The any keyword may be used to check if any timer started on a component or module control is running.
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

EXAMPLE 1. Checking if a specific timer is running

if (MyTimerl.running) { .. }

EXAMPLE 2:  Checking if an arbitrary timer isrunning

if (any timer.running) { .. }

23.6  The Timeout operation

The timeout operation allows to check the expiration of timers.

Syntactical Structure

( ( ( TimerIdentifier | TimerParIdentifier ) { "[" SingleExpression "1" } ) |
any timer )

ETSI



192 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

"." timeout
Semantic Description

The timeout operation allows to check the expiration of a specific timer in the scope unit of atest component or
module control in which the timeout operation has been called or of any timer that has been started on atest component
or module control before entering the scope in which the timeout operation has been called.

When a timeout operation isprocessed, if atimer name isindicated, the timeout-list is searched according to the
TTCN-3 scope rules. If there isatimeout event matching the timer name, that event is removed from the timeout-list,
and the timeout operation succeeds.

The timeout can be used to determine an aternativein an alt statement or as stand-alone statement in a behaviour
description. In the latter case a timeout operation is considered to be shorthand for an alt statement with the
timeout operation asthe only aternative.

The any keyword used with the t imeout operation succeeds if the timeout-list is not empty.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The timeout shall not be used in aboolean expression.

Examples

EXAMPLE 1:  Timeout of a specific timer

MyTimerl. timeout; // checks for the timeout of the previously started timer MyTimerl

EXAMPLE 2:  Timeout of an arbitrary timer

any timer.timeout; // checks for the timeout of any previously started timer

23.7  Summary of use of any and all with timers

The keywords any and all may be used with timer operations as indicated in table 28.

Table 28: Any and All with Timers

Operation Allowed Example
any all
start
stop yes all timer.stop
read
running ves if (any timer.running) {...}
timeout yes any timer.timeout

24 Test verdict operations

Verdict operations given in table 29 alow to set and retrieve verdicts. These operations shall only be used in test cases,
atsteps and functions.

Table 29: Overview of TTCN-3 test verdict operations

Test verdict operations
Statement Associated keyword or symbol
Set local verdict setverdict
Get local verdict getverdict

ETSI



193 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

24.1  The Verdict mechanism

Each test component of the active configuration shall maintain it's own local verdict. The local verdict is an object
which is created for each test component at the time of its creation. It is used to track the individual verdict in each test
component (i.e. inthe MTC and in each and every PTC).

Additionally, thereisaglobal test case verdict instantiated and handled by the test system that is updated when each test
component (i.e. the MTC and each and every PTC) terminates execution (see figure 14). This verdict is not accessible
tothegetverdict and setverdict operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g. assigned to avariable) then it
islost.

Verdict returned - :
by_thete;_tcase
when it terminates
MTC . pTcr [ pTCh [

Figure 14: lllustration of the relationship between verdicts

NOTE 1: TTCN-3 does not specify the actual mechanisms that perform the updating of the local and test case
verdicts. These mechanisms are implementation dependent.

The verdict can have five different values. pass, fail, inconc, none and error, i.e. the distinguished val ues of
theverdicttype (seeclause 6.1).

NOTE 2: inconc means an inconclusive verdict.
When atest component isinstantiated, itslocal verdict object is created and set to the value none.

When changing the value of the local verdict (i.e. using the setverdict operation) the effect of this change shall
follow the overwriting rules listed in table 30. The test case verdict isimplicitly updated on the termination of atest
component. The effect of thisimplicit operation shall also follow the overwriting rules listed in table 30.

Table 30: Overwriting rules for the verdict

Current value of New verdict assignment value
Verdict pass inconc fail none
None pass inconc fail none
Pass pass inconc fail pass
Inconc inconc inconc fail inconc
Fail fail fail fail fail

The error verdict is special in that it is set by the test system to indicate that atest case (i.e. run-time) error has
occurred. It shall not be set by the setverdict operation and will not be returned by the getverdict operation. No
other verdict value can override an error verdict. This meansthat an error verdict can only be aresult of an
execute test case operation.

Together with the local test verdict, each test component shall also maintain an implicit charstring variable to store
information about the reasons for assigning the verdict. Theimplicit charstring variable shall have no effect on the
overwriting rules and on the calculation of the final test case verdict. On the termination of the test component, the local
verdict of the test component shall be logged together with the implicit charstring variable. Theimplicit
charstring variable cannot be retrieved and read by any TTCN-3 function, it only provides additional information
for logging.

ETSI



194 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

24.2  The Setverdict operation

The local verdict is set with the setverdict operation.
Syntactical Structure

setverdict " (" SingleExpression { "," ( FreeText | TemplateInstance ) } ")"
Semantic Description

The value of the local verdict is changed with the setverdict operation. The effect of this change shall follow the
overwriting rules listed in table 30.

The optional parameters allow to provide information that explain the reasons for assigning the verdict. This
information is composed to a string and stored in an implicit charstring variable. On termination of the test
component, the actual local verdict islogged together with the implicit charstring variable. Since the optional
parameters can be seen as log information, the same rules and restrictions as for the parameters of the log statement
(clause 19.11) apply.

Astheresult of the setverdict operation, theimplicit charstring variable is overwritten whenever the local verdict
of atest component is overwritten. A setverdict operation with averdict only that overwrites the current local
verdict, will also clear the implicit charstring variable. This means previously stored information gets lost.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thesetverdict operation shal only be used with the valuespass, fail, inconc and none. It shal not
be used to assign the value error, thisis set by the test system only to indicate run-time errors.

b) SingleExpression shall resolve to avalue of type verdict.

c) For FreeText and Templatel nstance, the same rules and restrictions apply as for the parameters of the 1og
statement. Table 18 lists al language elements that can be used in a setverdict operation.

Examples
EXAMPLE 1:
setverdict (pass) ; // the local verdict is set to pass
setverdict (fail) ; // until this line is executed, which will result in the value
// of the local verdict being overwritten to fail
// When the ptc terminates the test case verdict is set to fail
EXAMPLE 2:

var integer myVar:= 1;

MyPort .receive (integer:MyVar); // Matches an integer value with the value of MyVar
// at port MyPort
setverdict (pass, "Value received: ", myVar ); // Provided the actual test component verdict is

// none: local verdict is set to pass, the implicit
// charstring variable is set to "Value received: 5"
stop; // The test component terminates. The local test verdict and
// implicit charstring variable are logged

24.3  The Getverdict operation

The value of the local verdict may be retrieved using the getverdict operation.

Syntactical Structure

getverdict
Semantic Description

Thegetverdict operation returnsthe actual value of the local verdict.

ETSI



195 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

MyResult := getverdict; // Where MyResult is a variable of type verdicttype

25 External actions

In some testing situations some interface(s) to the SUT may be missing or unknown a priori (e.g. management
interface) but it may be necessary that the SUT is stimulated to carry out certain actions (e.g. send a message to the test
system). Also certain actions may be required from the test executing personnel (e.g. to change the environmental
conditions of testing like the temperature, voltage of the power feeding, etc.).

The required action may be described as a string expression, i.e. the use of literal strings, string typed variables and
parameters, etc. and any concatenation thereof are allowed.

Syntactical Structure

action " (" { ( FreeText | Expression ) ["&"] } ")
Semantic Description
External actions can be used in test cases, functions, atsteps and module control.

Thereis no specification of what is doneto or by the SUT to trigger this action, only an informal description of the
required action itself.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Expression shall have the base type charstring or universal charstring.

Examples
var charstring myString:= " now."
action("Send MyTemplate on lower PCO" & myString); // Informal description of the

// external action

26 Module control

Test cases are defined in the module definitions part while the module control part manages their execution. The
statements and operations that can be used in the module control are summarized in table 31.

Table 31: Overview of TTCN-3 statements and operations in module control

Statement Associated keyword or symbol

Assignments =

If-else if (..){.}else{.}

Select case select case (...) { case (...) {...}
caseelse {...}}

For loop for (..){...}

While loop while (...) {...}

Do while loop do {...} while (...)

Label and Goto label / goto

Stop execution stop

Leaving a loop, alt or interleave break

Next iteration of a loop continue

Logging log

ETSI



196 Final draft ETSI ES 201 873-1 V4.2.1 (2010-05)

Statement Associated keyword or symbol
Alternative behaviour (see note) alt {...}
Re-evaluation of alternative behaviour |[repeat
(see note)
Interleaved behaviour (see note) interleave {...}
Activate a default (see note) activate
Deactivate a default (see note) deactivate
Start timer start
Stop timer stop
Read elapsed time read
Check if timer running running
Timeout event timeout
Stimulate an (SUT) action externally action
Execute test case execute
NOTE:  Can be used to control timer operations only.

26.1 The Execute statement

Test cases are executed with an execute statement in the module control.
Syntactical Structure

execute " (" TestcaseRef " (" [ { ActualPar [","] } 1 ™)™ [ "," TimerValue ] ")"
Semantic Description

In the module control part the execute statement is used to start test cases (see clause 27.1). The result of an executed
test caseisaways avaue of type verdicttype. Every test case shall contain one and only one MTC the type of
which isreferenced in the header of the test case definition. The behaviour defined in the test case body is the behaviour
of the MTC.

When atest case isinvoked the MTC is created, the ports of the MTC and the test system interface are instantiated and
the behaviour specified in the test case definition is started on the MTC. All these actions shall be performed implicitly
i.e. without explicit create and start operations.

Test case start

A test caseis called using an execute statement. Asthe result of the execution of atest case, atest case verdict of
either none, pass, inconc, fail or error shal be returned and may be assigned to a variable for further
processing.

Optionaly, the execute statement allows supervision of atest case by means of atimer duration.
Test case parameterization and configuration

All variables (if any) defined in the control part of a module shall be passed into the test case by parameterization if
they are t